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VISUALIZING PROBABILISTIC PROOF 

 

ENRIQUE GUERRA-PUJOL

 

ABSTRACT 

The author revisits the Blue Bus Problem, a famous thought-

experiment in law involving probabilistic proof, and presents Bayesian 

solutions to different versions of the blue bus hypothetical. In addition, the 

author expresses his solutions in standard and visual formats, that is, in 

terms of probabilities and natural frequencies. 
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When the facts change, I change my opinion. What do you do sir? 

—John Maynard Keynes
1
 

I. INTRODUCTION: THE PROBLEM OF PROBABILISTIC PROOF 

What role should mathematics and mathematical reasoning play in 

law? Specifically, when should judges and jurors use “probabilistic proof” 

to infer a defendant’s guilt or innocence at trial? 

Courts have generally rejected the use of probabilistic proof for 

identification purposes in both civil and criminal cases.
2
 In the eloquent 

words of one jurist, “Mathematics, a veritable sorcerer in our 

computerized society, while assisting the trier of fact in the search for 

truth, must not cast a spell over him.”
3
 Legal scholars, however, are deeply 

divided on this question.
4
 Broadly speaking, the critics of probabilistic 

proof point to the dangers of probabilistic methods of adjudication. The 

proponents of probabilistic reasoning in law, in contrast, emphasize the 

dangers of not using such probabilistic methods.
5
 In this Article, we shall 

 

 
 1. As quoted in SHARON BERTCH MCGRAYNE, THE THEORY THAT WOULD NOT DIE (2011). 

 2. See, e.g., People v. Collins, 438 P.2d 33 (1968); Smith v. Rapid Transit, Inc., 58 N.E.2d 754 

(1945). 

 3. Collins, 438 P.2d at 33. 

 4. For example, compare Laurence Tribe’s critique of probabilistic methods in law with Daniel 
Shaviro’s defense of probabilistic proof. See Laurence H. Tribe, Trial by Mathematics: Precision and 

Ritual in the Legal Process, 84 HARV. L. REV. 1329 (1971); Daniel Shaviro, Statistical-Probability 

Evidence and the Appearance of Justice, 103 HARV. L. REV. 530 (1989). 
 5. For a review of the arguments both for and against probabilistic methods in law, see 

RICHARD LEMPERT & JOSEPH SANDERS, AN INVITATION TO LAW AND SOCIAL SCIENCE: DESERT, 

DISPUTES, AND DISTRIBUTION (1986). 
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analyze the problem of probabilistic proof through the lens of a thought-

experiment, the “Blue Bus Problem,” a famous hypothetical or “proof 

paradox” illustrating the problem of probabilistic proof. Although the blue 

bus problem is admittedly “an overly simplistic and unusual hypothetical 

case,”
6
 this simple thought-experiment poses fundamental questions about 

probabilistic proof and the legal process generally. Legal scholars—as 

well as mathematicians, philosophers, and psychologists—have been 

debating and discussing the blue bus case and variants of this problem for 

decades.
7
 In summary, solving the blue bus problem is a necessary first 

step to solving the problem of probabilistic proof.
8
 

 

 
 6. Gary L. Wells, Naked Statistical Evidence of Liability: Is Subjective Probability Enough?, 62 
J. PERS. & SOC. PSYCHOL., no. 5, 1992, at 740. 

 7. For a small sample of this literature (listed chronologically), with specific reference to the 

blue bus problem, see Edward K. Cheng, Reconceptualizing the Burden of Proof, 122 YALE L.J. 1254, 
1259, 1269–72 (2013); David Enoch, Levi Spectre, & Talia Fisher, Statistical Evidence, Sensitivity, 

and the Legal Value of Knowledge, 40 PHIL. & PUB. AFF. 197 (2012); S. M. Wexler, Two Forms of 

Legal Proof and the So-called Blue Bus Problem, 6 INT’L ZEITSCHRIFT (IZ) 1 (2010); Wells, supra 
note 6, at 740; Craig R. Callen, Adjudication and the Appearance of Statistical Evidence, 65 TUL. L. 

REV. 457, 494 (1991); Shaviro, supra note 4, at 530–31; Ronald J. Allen, A Reconceptualization of 
Civil Trials, 66 B.U. L. REV. 401, 430 (1986); Lea Brilmayer, Second-Order Evidence and Bayesian 

Logic, 66 B.U. L. REV. 673, 674–76 (1986); Stephen Fienberg, Gatecrashers, Blue Buses, and the 

Bayesian Representation of Legal Evidence, 66 B.U. L. REV. 693 (1986); Stephen Fienberg & Mark 

Schervish, The Relevance of Bayesian Inference for the Presentation of Statistical Evidence and for 

Legal Decisionmaking, 66 B.U. L. REV. 771, 783–84 (1986); Anne W. Martin, Comment, 66 B.U. L. 

REV. 709, 711 (1986); Charles Nesson, The Evidence or the Event? On Judicial Proof and the 
Acceptability of Verdicts, 98 HARV. L. REV. 1357, 1378 (1985); James Brook, The Use of Statistical 

Evidence of Identification in Civil Litigation: Well-Worn Hypotheticals, Real Cases, and Controversy, 

29 ST. LOUIS U. L.J. 293, 301–03 (1985); Craig R. Callen, Notes on a Grand Illusion: Some Limits on 
the Use of Bayesian Theory in Evidence Law, 57 IND. L.J. 1097 (1982); Michael J. Saks & Robert F. 

Kidd, Human Information Processing and Adjudication: Trial by Heuristics, 15 LAW & SOC’Y REV. 

123 (1980); David H. Kaye, The Paradox of the Gatecrasher and Other Stories, 1978 ARIZ. ST. L.J. 
101, 107–09 (1978). As noted in the text, the source of this famous hypothetical is Tribe, supra note 4, 

at 1340–41. 

 8. As an aside, another well-known variant of the blue bus problem is “the paradox of the 
gatecrasher.” See, e.g., Cheng, supra note 7, at 1270–71; Brilmayer, supra note 7, at 674–81, 675–78; 

Fienberg, supra note 7, at 693–97; Fienberg & Schervish, supra note 7, at 783–84; Martin, supra note 

7, at 710–11; Nesson, infra note 25, at 522 n.3; Brook, supra note 7, at 301–03. See also Richard 
Lempert, The New Evidence Scholarship: Analyzing the Process of Proof, 66 B.U. L. REV. 439, 460–

62 (1986). The source of the gatecrasher paradox is L. Jonathan Cohen. L. JONATHAN COHEN, THE 

PROBABLE AND THE PROVABLE § 24, at 74–81 (1977). Yet another (more complex) variant of the blue 
bus case is the green cab, blue cab problem. See, e.g., Cheng, supra note 7, at 1273–74; Michael S. 

Pardo, The Nature and Purpose of Evidence Theory, 66 VAND. L. REV. 547, 588–89 (2013). Judith 

Jarvis Thomson, Liability and the Individualized Evidence, 49 LAW & CONTEMP. PROBS. 199, 199–
200 & 203–06 (1986); Maya Bar-Hillel, The Base-Rate Fallacy in Probability Judgments, 44 ACTA 

PSYCHOLOGICA 211, 211–12 (1980); Saks & Kidd, supra note 7, at 128, 130. The original sources of 

the green cab, blue cab problem are the researchers Amos Tversky and Daniel Kahneman. See Amos 
Tversky & Daniel Kahneman, Evidential Impact of Base Rates, in JUDGMENT UNDER UNCERTAINTY: 

HEURISTICS AND BIASES 153, 156-57 (Kahneman, et al. eds., 1982). Also see problems 9 & 10 in 

Amos Tversky & Daniel Kahneman, Causal Schemas in Judgments Under Uncertainty, in 1 
PROGRESS IN SOCIAL PSYCHOLOGY 49, 56, 61 (Martin Fishbein ed., 1980).  
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My main goal in this Article is to visualize the blue bus problem using 

Bayesian methods of probabilistic reasoning. Although some scholars 

have applied Bayesian methods to the blue bus case, none have taken a 

visual approach to the problem.
9
 Ironically, trial attorneys routinely rely on 

visual forms of evidence (e.g., pictures, objects, scale models, etc.) when 

presenting their cases to juries.
10

 Here, I follow the lead of trial lawyers 

and present a Bayesian approach to the blue bus problem in visual form 

using numerical frequencies instead of fractions or percentages.
11

 In 

addition to solving the blue bus problem, my larger aim is to reevaluate 

the problem of probabilistic proof and make the case for Bayesian 

methods in civil adjudication generally.
12

 

The rest of this Article is organized as follows: Part II reviews the legal 

case that inspired the blue bus problem, Smith v. Rapid Transit, Inc., and 

introduces the famous blue bus thought-experiment. Part III presents a 

Bayesian method for solving the blue bus problem and presents my 

solution both in the standard Bayesian format (in terms of probabilities or 

percentages) and in visual form (in terms of natural frequencies or 

absolute numbers). In brief, the visual representation of the blue bus 

hypothetical simplifies the problem, making my Bayesian approach easier 

for judges, jurors, and lawyers to comprehend. Part IV explains why the 

Bayesian approach to probabilistic proof is a useful method for evaluating 

all forms of evidence generally. Part V concludes my exposition of a 

Bayesian visual approach to probabilistic proof.  

 

 
For an overview of these proof paradoxes and others, see Mike Redmayne, Exploring the Proof 

Paradoxes, 14 LEGAL THEORY 281 (2008). In this Article, we shall focus solely on the blue bus 
problem because of its simplicity and pedigree, or in the words of one scholar, “Although the blue bus 

case is an overly simplistic and unusual hypothetical case, . . . it drives to the heart of the questions of 
proof, sufficiency, and process.” See Wells, supra note 6, at 740. 

 9. Some scholars, however, are beginning to work on graphic and visual representations of 

evidence generally. For a summary of this work, see Peter Tiller, Introduction: Visualizing Evidence 
and Inference in Legal Settings, 6 LAW, PROB. & RISK 1 (2007). 

 10. We thank Orlando I. Martinez-García, personal communication (2001), for bringing this 

point to our attention. For a diverse sample of visualization techniques in the natural sciences, see 
2012 Visualization Challenge, 339 SCIENCE 509 (Judith Gan & Colin Norman eds., 2013). For the use 

of visualization techniques in a legal context, see Daniel Martin Katz, Quantitative Legal Prediction, 

62 EMORY L.J. 909 (2013). See also Orlando I Martínez-García, The Person in Law, the Number in 

Math: Improved Analysis of the Subject as Foundation for a Noveau Régime, 18 AM. U. J. GENDER 

SOC. POL’Y & L. 503 (2010). 

 11. See generally Gerd Gigerenzer & Ulrich Hoffrage, How to Improve Bayesian Reasoning 
Without Instruction: Frequency Formats, 102 PSYCHOL. REV., no. 4, 1995, at 684; see also Ulrich 

Hoffrage & Gerd Gigerenzer, Using Natural Frequencies to Improve Diagnostic Inferences, 73 ACAD. 

MED., no. 3, 1998, at 538. 
 12. We shall consider the use of probabilistic proof in criminal cases in a future paper. 

http://openscholarship.wustl.edu/law_jurisprudence/vol7/iss1/6
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II. BRIEF BACKGROUND 

Here, I provide some background into the blue bus hypothetical and the 

problem of probabilistic proof generally. First, I begin by examining the 

Federal Rules of Evidence. Next, I review Smith v. Rapid Transit, the case 

that inspired the blue bus hypothetical, and provide some background on 

the nature of probabilistic proof versus traditional forms of proof. I then 

turn to the scholarly literature to introduce the blue bus thought-

experiment. 

A. The Federal Rules of Evidence 

The Federal Rules of Evidence do not address the problem of 

probabilistic proof directly. One rule broadly states that “[r]elevant 

evidence is admissible . . .” and that “[i]rrelevant evidence is not 

admissible.”
13

 Another rule defines “relevant evidence” as evidence 

having “any tendency to make a fact more or less probable than it would 

be without the evidence . . . .”
14

 A literal and liberal reading of these rules 

appears to make room for the use of probabilistic proof at trial, yet in the 

absence of any particularized or individualized evidence, most courts 

reject purely probabilistic proof standing alone.
15

 Consider the case of 

Smith v. Rapid Transit, Inc. below. 

B. The Original Blue Bus Case (Smith v. Rapid Transit, Inc.)  

Since Smith v. Rapid Transit provides a simple illustration of the 

problem of probabilistic proof and is also the source of the famous blue 

bus problem (see II.C below), I will first explore Smith.
16

 The plaintiff in 

this case, Betty Smith, alleged the following facts, as reported in Smith, 

pp. 754–755: 

In summary, the plaintiff Betty Smith was driving down Main Street in 

the City of Winthrop, Massachusetts at about 1:00 a.m. on February 6, 

 

 
 13. Fed. R. Evid. 402. 
 14. Fed. R. Evid. 401. 

 15. See cases cited supra note 2. Notice that this judicial or common law policy systematically 

benefits defendants as a class when plaintiffs lack individualized evidence, and in the words of one 
scholar, “there is no reason why that policy should redound solely to the detriment of plaintiffs.” 

Allen, supra note 7, at 430. 

 16. In a future paper, we shall consider another leading case involving the use of probabilistic 
reasoning, People v. Collins, 438 P.2d 33 (1968).  

Washington University Open Scholarship
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1941.
17

 She saw a bus coming toward her at high speed and, to avoid a 

direct collision with the bus, she swerved to the right and crashed into a 

parked car, but she did not actually see whose bus ran her off the road. 

Nevertheless, the plaintiff later discovered that the defendant operated a 

bus line in the City of Winthrop and had an exclusive license to operate a 

bus route on Main Street, and according to the defendant’s timetable, the 

defendant’s buses were scheduled to travel down Main Street at 12:10 

a.m., 12:45 a.m., 1:15 a.m., and 2:15 a.m. Lastly, the plaintiff also 

discovered that a second bus company had a license to operate a bus line 

in the City of Winthrop but not on Main Street. 

Since this is a civil case, the plaintiff must prove her case by “a 

preponderance of the evidence.”
18

 Stated in probabilistic terms, it must be 

more likely than not that the defendant’s bus caused the plaintiff to swerve 

into the parked car. The problem in the Smith case, however, is that the 

only evidence linking the defendant’s bus line to the scene of the accident 

is probabilistic in nature. That is, since by the plaintiff’s own admission 

she did not actually see which bus was going down Main Street at the time 

of the accident, the only evidence linking the defendant’s bus to the scene 

of the accident is the defendant’s published timetable or schedule.  

This problem in turn presents a controversial legal issue. Stated simply, 

the issue in Smith is whether this probabilistic proof alone is enough for 

the plaintiff to prove her case. Should the plaintiff even be allowed to 

present her case to the jury? The trial judge ruled that probabilistic proof is 

not enough as a matter of law and entered a directed verdict in favor of the 

defendant bus line. The Massachusetts Supreme Court then affirmed the 

trial court’s decision, holding that probabilistic proof, by itself, is not 

sufficient to prove one’s case. The Massachusetts Supreme Court 

explained its reasoning that “[t]he most that can be said of the evidence in 

the instant case is that perhaps the mathematical chances somewhat favor 

the proposition that a bus of the defendant caused the accident. This [is] 

not enough.”
19

 

 

 
 17. As an aside, notice that the accident occurred in February 1941, while the plaintiff’s case was 

not finally decided until January 4, 1945. In our view, this lengthy legal delay (lasting nearly four 

years) alone justifies the consideration of alternatives to traditional litigation. See, e.g., Enrique 

Guerra-Pujol, The Turing Test and the Legal Process, 21 INFO. & COMMC’N. TECH. L. 113 (2012). 

 18. See, e.g., Wexler, supra note 7, at 16. As an aside, a fertile area for further research is the 
“proof beyond a reasonable doubt” standard in criminal law and the role of Bayesian methods in 

criminal cases. In a future paper, we shall consider the role of Bayesian reasoning in criminal cases, 

such as the controversial case of People v. Collins, 438 P.2d 33 (1968). 
 19. Smith, 58 N.E.2d at 755. 

http://openscholarship.wustl.edu/law_jurisprudence/vol7/iss1/6
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Why is probabilistic proof not enough? If, by the Smith Court’s own 

admission, “the mathematical chances somewhat favor the proposition that 

a bus of the defendant caused the accident,” then why is the plaintiff’s 

probabilistic proof not enough to pass the lightweight “preponderance of 

the evidence” test? The “preponderance of the evidence” standard simply 

means that the plaintiff’s version of events is more likely to be true than 

the defendant’s version of events. Given that that the defendant bus line in 

Smith was the sole bus company authorized to operate on Main Street, 

then it is highly probable that the defendant’s bus was, in reality, the one 

that caused the plaintiff to swerve and crash. 

The Smith Court’s triumphant but tautological answer to this question 

was as follows: “While the defendant had the sole franchise for operating a 

bus line on Main Street, Winthrop, this did not preclude private or 

chartered buses from using this street; the bus in question could very well 

have been one operated by someone other than the defendant.”
20

 

Before proceeding, it is worth noting that this legal ruling, holding that 

probabilistic proof alone is “not enough,” can be restated in Bayesian 

terms as follows: evidence based on a person’s subjective or Bayesian 

priors alone is never sufficient to pass the “preponderance of the evidence” 

test. Broadly speaking, note that a “Bayesian prior” refers to one’s 

personal beliefs about the probability of a certain event before one has 

received or considered any evidence about the likelihood of that event. For 

example, in Mrs. Smith’s case, one might assign an equal probability that 

the defendant’s bus or another bus caused her accident before taking 

notice of the defendant’s timetable or the fact that no other bus company 

had the legal right to travel on Main Street.
21

  

The Smith Court’s conclusion, however, is circular. Even if the plaintiff 

herself or another eyewitness were able to identify the particular bus that 

was going down Main Street at the time of the accident, it is still possible, 

as the Smith Court stated, that “the bus in question could very well have 

been one operated by someone other than the defendant.”
22

 After all, the 

plaintiff’s identification testimony would no doubt be self-serving and 

biased. Further, her vision could have been cloudy, her recollection 

imperfect.
23

 In sum, even if the plaintiff or a neutral witness had seen the 

 

 
 20. Id. 

 21. For a readable overview of the Bayesian approach to probability, see NATE SILVER, THE 

SIGNAL AND THE NOISE: WHY MOST PREDICTIONS FAIL BUT SOME DON’T 232–61 (2012). 
 22. Smith, 58 N.E.2d at 755. 

 23. For a comprehensive overview of cognitive biases in the adjudication process, See generally, 

Saks & Kidd, supra note 7. Since the unreliability of eyewitness testimony is by now well-known, this 

Washington University Open Scholarship



 

 

 

 

 

 

46 WASHINGTON UNIVERSITY JURISPRUDENCE REVIEW [VOL. 7:39 

 

 

 

 

actual bus that caused Mrs. Smith to swerve, the evidence would still 

remain probabilistic in nature, because even if the plaintiff were to offer 

individualized or particularized proof (as opposed to mere probabilistic 

proof), it would still be possible that the witness could be mistaken, that 

“the bus in question could very well have been one operated by someone 

other than the defendant”!
24

 

Nevertheless, despite its circular reasoning, the Smith case poses an 

important question about the role of probabilistic proof in law. 

C. The Blue Bus Thought-Experiment 

We now turn our attention to the blue bus problem, a famous thought-

experiment in evidence law.
25

 Broadly speaking, thought-experiments like 

the blue bus problem are useful because they reveal anomalies, help clarify 

our thinking, and lead to new insights. Professor Laurence Tribe, the 

original source of this thought-experiment, presents the problem as 

follows: 

Consider next [a case] in which the identity of the responsible agent 

is in doubt. Plaintiff is negligently run down by a blue bus. The 

question is whether the bus belonged to the defendant. Plaintiff is 

prepared to prove that defendant operates four-fifths of all the blue 

buses in town. What effect, if any, should such proof be given?
26

 

 

 
is why we insist that all forms of evidence, even individualized or particularized evidence, are 

probabilistic in nature. 
 24. For a detailed and well-reasoned critique of the standard arguments against the use of 

probabilistic evidence, see Brilmayer, supra note 7, at 674–81. For brevity, we shall not cover this 

highly technical terrain in this Article, for our main point is that all evidence is ultimately probabilistic. 
 25. The blue bus hypothetical has many names. Ed Cheng, for example, refers to “the Blue Bus 

problem famous in statistical proof circles.” Cheng, supra note 7, at 1259. Similarly, Steve Wexler, 

Lea Brilmayer, and Anne Martin also refer to “the blue bus problem.” Wexler, supra note 7, at 2; 
Brilmayer, supra note 7, at 674; and Martin, supra note 7, at 711. For their part, Gary Wells and 

Charles Nesson refer to “the blue bus case,” while Craig Callen refers to “the popular hypothetical 

from the Smith case.” Wells, supra note 6, at 740; Nesson, supra note 7, at 1378; Callen, supra note 7, 
at 494. In a different paper, Professor Nesson refers to “the famous blue bus hypothetical.” See Charles 

Nesson, Agent Orange Meets the Blue Bus: Factfinding at the Frontier of Knowledge, 66 B.U. L. REV. 

521, 522 (1986). Stephen Fienberg refers to “Laurence Tribe’s ‘case of the blue bus’” as a “classic 

hypothetical[].” Fienberg, supra note 7, at 693. Likewise, Craig Callen refers to “Professor Tribe’s 

blue bus hypothetical . . . .” Callen, Notes on a Grand Illusion, supra note 7, at 34. 

 26. Tribe, supra note 4, at 1340–41. Although the primary source for the blue bus hypothetical is 
Tribe’s 1971 paper, in a footnote Tribe acknowledges that Smith v. Rapid Transit is “the actual case on 

which this famous chestnut is based.” Id. at 1341 n.37. Tribe’s reference to “this famous chestnut” 

appears to imply that the blue bus hypothetical was already part of a well-established oral tradition 
among generations of law professors and law students. For another famous example of “a fairly well-
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Professor Tribe’s hypothetical has generated extensive commentary 

among scholars (see references in footnote 7 above) and has been retold 

many times over the years. For example, Professor Charles Nesson 

describes the blue bus problem as follows: 

While driving late at night on a dark, two-lane road, a person 

confronts an oncoming bus speeding down the center line of the 

road in the opposite direction. In the glare of the headlights, the 

person sees that the vehicle is a bus, but he cannot otherwise 

identify it. He swerves to avoid a collision, and his car hits a tree. 

The bus speeds past without stopping. The injured person later sues 

the Blue Bus Company. He proves, in addition to the facts stated 

above, that the Blue Bus Company owns and operates 80% of the 

buses that run on the road where the accident occurred. Can he 

win?
27

 

For her part, Professor Lea Brilmayer presents the blue bus problem as 

follows: 

In the blue bus problem, the plaintiff has uncontroverted eyewitness 

testimony demonstrating that he was run over by a blue bus. 

However, he does not have a license plate number or any other 

evidence tending to show which blue bus it was. The defendant in 

the hypothetical owns four-fifths of the blue buses in town.
28

 

Similarly, Professor Daniel Shaviro restates the problem as follows: 

Consider the well-known hypothetical case in which a plaintiff is hit 

by a bus that she knows is blue but cannot otherwise describe. She 

establishes that the defendant bus company operates eighty percent 

of all the blue buses in the area. In the absence of other relevant 

evidence, this evidence establishes an eighty percent chance that the 

bus company is liable. Nonetheless, the plaintiff is denied recovery 

by directed verdict.
29

  

 

 
defined oral tradition,” this one in economics, see R. H. Coase, The Problem of Social Cost, 3 J.L. & 

ECON. 1, 39–42 (1960) (analysis of factory smoke). 

 27. Nesson, supra note 7, at 1378–79. 
 28. Brilmayer, supra note 7, at 674. 

 29. Shaviro, supra note 4, at 530–31 (citations omitted). Shaviro’s statement of the blue bus 

problem also appears in Ronald J. Allen, On the Significance of Batting Averages and Strikeout Totals: 
A Clarification of the Naked Statistical Evidence Debate, the Meaning of Evidence, and the 

Requirement of Proof beyond a Reasonable Doubt, 65 TUL. L. REV. 1093, 1097–98 (1991). 
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Most recently, Professor Edward Cheng presents the problem as 

follows: 

Recall the facts of Smith v. Rapid Transit, Inc., as famously adapted 

by Laurence Tribe and Charles Nesson. The plaintiff is driving 

along a two-lane undivided country road on a dark night when she 

is faced with the oncoming lights of a bus traveling along the 

median. To avoid an accident, the plaintiff swerves, causing her car 

to end up in a roadside ditch. Because of the emergency, the 

plaintiff is unable to observe anything except that the bus was blue. 

The plaintiff presents this testimony, along with evidence that the 

defendant, the Blue Bus Company, operates 80 percent of the blue 

buses in town. The defense concedes both facts and presents no 

additional evidence. Is the plaintiff entitled to recover?
30

 

In sum, as this small sample shows, the blue bus problem has been stated 

and restated in different ways over the years. Nevertheless, all these 

versions of the blue bus problem share the same information content. 

Specifically, these various versions of the blue bus problem provide us 

with two pieces of information:  

1. The plaintiff was injured by a blue bus. 

2. The defendant operates four-fifths or 80% of all the blue buses 

in town. 

Thus, since all of these statements of the blue bus problem share the same 

information content, we shall refer to them as the “standard version” of the 

blue bus problem. 

Given this information content, the standard version of the blue bus 

problem is a useful thought-experiment. In the words of the historian of 

science Thomas Kuhn, for example, a thought-experiment, or the close 

analysis of an “imagined situation,” can confront its audience with 

unanticipated consequences of their normal conceptual operations.
31

 This 

is precisely why the blue bus hypothetical is useful and illuminating, for it 

produces a clear anomaly or contradiction. Specifically, when confronted 

with the blue bus problem, most people are reluctant to impose civil 

liability on the defendant in this case, even though there is a substantial 

 

 
 30. Cheng, supra note 7, at 1269 (citations omitted). 

 31. THOMAS S. KUHN, A Function for Thought Experiments, in THE ESSENTIAL TENSION: 
SELECTED STUDIES IN SCIENTIFIC TRADITION AND CHANGE 240, 252 (1977). By way of example, in 

his essay on thought experiments Kuhn explains how Galileo’s simple thought experiment on falling 

objects transformed the classical or Aristotelian conception of speed. Id. at 249. 
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statistical probability that it was the defendant’s blue bus that caused the 

plaintiff’s injuries.
32

 Thus, the blue bus problem presents a puzzle: given 

such a high level of probability of guilt, why does plaintiff’s case in this 

hypothetical not pass the “preponderance of the evidence” test? 

One possible reason for this anomaly, however, is simply the low 

information content of the blue bus problem. That is, in Bayesian terms, 

the standard version of the blue bus problem provides information only 

about true positives or “hits”: the fraction of buses that are blue. It does 

not, however, provide any information about false positives or “false 

alarms”—the number of buses that are blue but that are not owned by the 

defendant—nor are we given any information about the total number of 

buses in town (not just blue buses, but all buses). Given this information 

gap, it is no wonder why so many legal scholars
33

 have rejected the use of 

probabilistic proof. The standard version of the blue bus problem does not 

provide us with sufficient information to draw a Bayesian inference about 

the strength of the evidence in the blue bus case. We are not the first to 

make this observation,
34

 but in part three of the Article below, we are the 

first to consider different versions of the blue bus problem and to present 

our Bayesian model of the blue bus problem in visual form. 

Putting the issue of information content to one side, the standard 

version of the blue bus problem also presents a larger question about the 

role of probabilistic proof or “naked statistical evidence” in law. Legal 

scholars are sharply divided on this question, offering a wide variety of 

reasons in support or against the use of probabilistic proof. In summary, 

the arguments against probabilistic proof often focus on moral intuitions, 

on the qualitative or non-quantitative aspects of evidence, and on the 

public perception of the legal system, or in the words of one academic, the 

“danger in being mesmerized by precision and formalization.”
35

 

Yet the critics of probabilistic proof all miss an important point: all 

evidence is ultimately probabilistic in nature. Harvard Law Professor 

Charles Nesson, for example, has argued that jury verdicts based solely on 

probabilistic evidence would undermine the public legitimacy of the legal 

 

 
 32. This is not mere idle speculation or armchair theorizing. See Wells, supra note 6, for 

experimental confirmation of this result. 

 33.  See, e.g., Tribe, supra note 4; Nesson, supra note 25. 

 34. See, e.g., Wells, supra note 6, at 752 (“there is no other evidence [in the blue bus case] to 
combine with the base rates.”); Fienberg & Schervish, supra note 7, at 783 (“the only evidence [in the 

blue bus case] is a summary statistic”); Martin, supra note 7, at 712 (the blue bus problem “do[es] not 
provide sufficient information to apply Bayes’s Theorem”). 

 35. Brilmayer, supra note 7, at 691. 
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system.
36

 In the words of Professor Nesson, “What is crucial in this 

situation is that the public cannot view whatever statement the factfinder 

makes as anything other than a bet based on the evidence.”
37

 This 

reasoning is just as unpersuasive, and equally as circular, as the court’s 

reasoning in the Smith case. After all, if all evidence (statistical or not) is 

probabilistic in nature, then all jury verdicts are “anything other than a bet 

on the evidence.” Professor Tribe too concurs with the outcome in Smith: 

“cases like Smith are entirely sensible if understood instead as insisting on 

the presentation of some non-statistical and ‘individualized’ proof of 

identity before compelling a party to pay damages . . . .”
38

 Nevertheless, 

this argument is weak and unpersuasive for the same reason that Nesson’s 

argument fails. In sum, the problem with Tribe’s reasoning is that all 

forms of evidence, even non-statistical evidence and “individualized” 

proof, are ultimately probabilistic in nature. 

In contrast, the arguments in favor of probabilistic evidence generally 

emphasize the goal of accuracy in adjudication and question the 

distinction between individualized or particularized evidence and 

“probabilistic evidence” or “naked statistical evidence.” The proponents of 

probabilistic proof, however, have generally been unable to solve the blue 

bus problem. Furthermore, their arguments are generally complex, hard to 

follow, and impractical in a traditional math-phobic legal setting. For 

example, Stephen Fienberg and Mark Schervish, two leading proponents 

of Bayesian reasoning in law, have themselves conceded that 

“implementation of [Bayesian methods], especially in the legal setting, is 

fraught with difficulties.”
39

 

In the remainder of this Article, I shall take a different approach to the 

blue bus problem. Specifically, we shall visualize the blue bus problem 

from a Bayesian perspective. In sum, a Bayesian approach to the blue bus 

case allows one to avoid circular reasoning, solves the problem of 

probabilistic proof by identifying the missing information one needs in 

order to make Bayesian inferences, and most importantly, provides an 

accurate alternative to traditional adjudication. In addition, the visual 

representation of the blue bus hypothetical simplifies the blue bus 

problem, making our Bayesian reasoning easy to perform and making our 

Bayesian solutions easy to understand. 

 

 
 36. See Nesson, supra note 7, at 1378–79. 
 37. Id. at 1379. 

 38. Tribe, supra note 4, at 1341 n.37. 

 39. Fienberg & Schervish, supra note 7, at 794. 
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III. A VISUAL APPROACH TO THE BLUE BUS PROBLEM 

Here, we present a Bayesian model of Professor Tribe’s famous blue 

bus hypothetical. In addition, we present our model in two formats: (i) in 

the standard Bayesian format (in terms of probabilities or percentages) as 

well as (ii) in visual form (in terms of natural frequencies or absolute 

numbers). Before presenting our model, however, we must mention that 

the blue bus problem (as stated by Tribe and others) does not have a single 

solution. That is, to apply Bayesian reasoning to the blue bus problem or 

any other probabilistic proof problem, we need three pieces of 

information: (i) the percentage of city buses that run on Main Street (the 

base rate), (ii) the percentage of buses that run on Main Street that are blue 

(hits), and (iii) the percentage of blue buses that do not run on Main Street 

(false alarms or misses).
40

 Since the standard version of the blue bus 

problem (as summarized in Part II.C above) does not provide us with 

information about items (i) and (iii), we shall consider different versions 

of the blue bus problem in Parts III.A to III.G below; we solve a variety of 

blue bus problems with different values for items (i), (ii), and (iii). 

A. Example #1 (Standard Probability Format) 

As we noted above, we need three pieces of information to apply 

Bayesian methods to the blue bus problem: 

(i) the total number of buses in the population of city buses, or base 

rate information; 

(ii) the number of “hits” or the conditional probability that a bus is 

blue, given that it runs on Main Street, expressed as “p(blue|Main)” 

in standard Bayesian notation; and, 

(iii) the number of “false alarms” or the conditional probability that 

a bus is blue, but does not run on Main Street, expressed as 

“p(blue|not Main)” or p(blue|~Main)” in standard Bayesian 

notation. 

Since the standard version of the blue bus problem (as summarized in Part 

III.A above) provides information about item (ii) but is silent about items 

 

 
 40. Christoph Engel & Gerd Gigerenzer, Law and Heuristics: An Interdisciplinary Venture, in 

HEURISTICS AND THE LAW 1, 10 (Christoph Engel & Gerd Gigerenzer eds., 2006) (using the terms 
“false alarms” and “misses”). See also Enrique Guerra-Pujol, supra note 17, at 115. 
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(i) and (iii), for our first version of the blue bus problem we shall assume 

the following priors: 

 40% of all buses run through Main Street, 60% do not; 

 80% of the buses running down Main Street are blue;
41

 and, 

 10% of the buses that do not run on Main Street are blue. 

Given these pieces of information, what is the posterior probability that 

a bus runs on Main Street, given that it is blue? 

Before proceeding, notice that this question is precisely what our 

Bayesian model of the blue bus problem is designed to test. That is, our 

Bayesian model of the blue bus problem is designed to test or measure the 

strength of the plaintiff’s hypothesis that it was a blue bus that caused her 

to swerve. Notice, too, that this question states the blue bus problem in a 

different way. We are not asking, “What is the probability that the bus in 

the plaintiff’s case was blue?” Instead, we are asking a different question, 

“What is the probability that a bus will be on Main Street, given that it is a 

blue bus?” 

Now, to perform this critical test, we begin by asking, what do we 

know? What pieces of information do we have? 

First, we already know that 40% of all city buses run through Main 

Street. This is our “prior probability” and can be stated formally as 

follows: 

p(Main) = 0.4 

Next, we also know that 80% of the buses that run on Main Street are 

blue. This is our “first conditional probability” and can be stated formally 

as follows: 

p(blue|Main) = 0.8 

In plain language, the probability that a certain bus is blue, given that it 

runs on Main Street, is 80% or 0.8. Also, notice that this assumption is 

based on Tribe’s famous blue bus problem.
42

 

Lastly, we know that 10% of the buses that do not run on Main Street 

are blue. This is our “second conditional probability” and can also be 

stated formally as follows: 

p(blue|~Main) = 0.1 

 

 
 41. This assumption is based on the standard version of the blue bus problem as summarized in 
Part II.C above. See also Tribe, supra note 4, at 1340–41. 

42.   See id. 
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In plain language, the probability that a certain bus is blue, given that it 

does not run on Main Street, is 10% or 0.1. 

Given these pieces of information, we want to test the plaintiff’s blue 

bus hypothesis by solving for: 

p(Main|blue) = ? 

Or, stated formally, given our priors p(Main), p(blue|Main), and 

p(blue|~Main), what is the revised or posterior probability that a certain 

bus runs on Main Street, given that it is blue? In plain language, what is 

the strength of the plaintiff’s hypothesis that a blue bus caused her to 

swerve? 

In brief, we can test plaintiff’s blue bus hypothesis using Bayesian 

reasoning as follows: 

1. First, since 40% of city buses run on Main Street, and since 80% 

of those buses that travel down Main Street are blue, then 32% 

of all city buses are blue and run through Main Street [0.4 * 0.8 

= 0.32]; 

2. Next, since 60% of the buses do not run down Main Street, and 

since only 10% of those buses are blue, then 6% of all city buses 

are blue and do not run through Main Street [0.6 * 0.1 = 0.06]; 

3. Therefore, since 32% + 6% = 38%, then a total of 38% of the 

buses that run down Main Street are blue; 

4. Lastly, since 0.32 divided by 0.38 = 0.842, this means that there 

is an 84.2% posterior probability that a certain bus runs on Main 

Street, given that it is blue. 

In other words, it is very likely that the bus on Main Street that caused the 

plaintiff to swerve was a blue bus. Specifically, our conditional 

probabilities in this example caused us to revise or update our prior 

probability from 40% to over 84%. Our Bayesian approach has tested the 

plaintiff’s hypothesis, and the plaintiff has passed this test with flying 

colors. 

But why should this Bayesian probability be relevant at trial? That is, 

after all, the larger question posed by cases like Smith v. Rapid Transit and 

by the blue bus problem in particular. 
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Recall that the injured plaintiff in the blue bus problem knows where 

the accident occurred (on Main Street) but does not know the color of the 

bus that caused her to swerve. But the fact that the plaintiff knows where 

the accident occured tells us something about the probable color of the 

bus that caused her to swerve! In brief, this is why Bayesian reasoning is 

so helpful in solving the blue bus problem. 

Example #1 (Visual Format) 

Now, we present the above example visually in a “frequency tree” 

format
43

 as follows: 

 
 

 
 43.  Gigerenzer & Hoffrage, How to Improve Bayesian Reasoning, supra note 11. 

Total Number 
of Buses 

Blue Buses 

Main Street 
Not on Main 

Street 

Other Buses 

Main Street 
Not on Main 

Street 
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With this visual format as our guide, we now present our first version of 

the blue bus problem (Example #1) using absolute numbers in place of 

abstract percentages as follows: 

 

In summary, this frequency tree consists of three rows of information. 

The top row of the tree tells us the total number of buses in the population 

of city buses. [For simplicity, we assume there are 100 buses. This way, 

the absolute numbers in our frequency tree will correspond one-to-one 

with the probabilities/percentages in the standard probability format 

above.] The middle row provides the relevant base rate information in 

absolute numbers, telling us (in this example) that 40 of the 100 buses in 

town run on Main Street and that the remaining 60 buses do not run 

through Main Street. In Bayesian terms, the absolute number 40 is 

equivalent to p(Main) above, or the prior probability that a bus runs on 

Main Street. 

Lastly, the bottom row of the tree contains the relevant conditional 

probabilities, that is, the critical information regarding “hits,” “misses,” 

and “false alarms” that will allow us to perform a Bayesian test to measure 

the strength of plaintiff’s evidence. Before proceeding, notice that the most 

important pieces of information appear in the first and third branches of 

the tree, moving from left to right.  

Specifically, the first branch on the bottom of the tree (on the left) tells 

us the number of “hits” in our example, that is, the absolute number of 

blue buses that run on Main Street. In Bayesian terms, the first branch is 

equivalent to p(blue|Main), or the conditional probability that a bus is blue 

given that it runs down Main Street. In this example, 32 of the 40 buses 

that run on Main Street are blue buses. 

100 

40 

32 8 

60 

6 54 
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By contrast, the third branch on the bottom of the tree (going from left 

to right) tells us the absolute number of “false alarms,” the number of blue 

buses that do not run on Main Street. In this particular example, there are 

six false alarms since 6 out of the 60 buses that do not run on Main Street 

are blue. (In Bayesian terms, this branch is equivalent to p(blue|not Main), 

the conditional probability that a bus is blue given that it does not run on 

Main Street.) 

One of the advantages of visualizing the blue bus problem using a 

frequency tree is that this method makes it easier to apply Bayesian 

reasoning to the problem. We only need two pieces of information—the 

number of hits and the number of false alarms—in order to find the 

Bayesian posterior (i.e., in order to determine the posterior probability that 

a bus is on Main Street given that it is blue). 

In this particular example, we thus have 32 hits and 6 false alarms. In 

other words, there is an absolute total of 38 blue buses in town. Of these 

38 blue buses, 32 buses run on Main Street (hits), while 6 do not (false 

alarms). Next, we find our Bayesian posterior by dividing the number of 

hits by the total number of hits and false alarms as follows:  

 (    |    )  
  

    
 
  

  
      

Stated formally, there is an 84% posterior probability that a bus that 

runs down Main Street is blue. In plain language, since we know the 

accident occurred on Main Street, and since the hits outnumber the misses 

by a wide margin in this version of the problem, there is an extremely high 

posterior probability that the plaintiff’s accident was caused by a blue bus. 

Thus, the plaintiff should pass the “preponderance of the evidence” test 

because it is more likely than not in this example that a blue bus caused 

the accident. 

B. Example #2 (Standard Format)  

Consider next what effect a change in the prior probability p(Main) has 

on the posterior probability p(Main|blue). In our original version of the 

blue bus problem in Part III.A above (Example #1), we assumed that 

p(Main) was equal to 40% or 0.4. What happens, however, when p(Main) 

is lowered to 0.1? That is, what if only 10% instead of 40% of all city 

buses run through Main Street? 
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In summary, because our hit and miss rates remain constant,
44

 the 

evidence in support of plaintiff’s hypothesis has not changed, and thus the 

degree or level of Bayesian updating in this example does not change. But 

because the prior probability is now much lower (10% instead of 40%), 

we would expect the posterior probability to also be lower, but the 

question is, how much lower?  

To find out, we apply Bayesian reasoning to find the new posterior 

probability as follows: 

1. Since 10% of city buses run on Main Street, and since 80% of 

those buses that travel down Main Street are blue, then only 8% 

of all city buses are blue and run through Main Street [0.1 * 0.8 

= 0.08]; 

2. Since 90% of all city buses do not run down Main Street, and 

since only 10% of those buses are blue, then 9% of all city buses 

do not run through Main Street and are blue [0.9 * 0.1 = 0.09]; 

3. Lastly, since 0.06 + 0.09 = 0.17, a total of 17% of city buses are 

blue, and since 0.08 divided by 0.17 = 0.47, this means that there 

is only a 47% posterior probability that a certain bus runs on 

Main Street, given that it is blue. 

Notice that the prior probability p(Main) has a substantial effect on the 

posterior probability p(Main|blue). Specifically, since so few buses run 

through Main Street (the scene of the accident), there is low probability 

that a blue bus caused the plaintiff’s accident in this version of the blue 

bus problem, even when 80% of the buses that run on Main Street are 

blue. This finding, in turn, helps explain why the standard version of the 

blue bus problem (as summarized in Part II.C above) does not pass the 

“preponderance of the evidence” test: since the standard version of the 

blue bus case, such as Professor Tribe’s blue bus hypothetical, provides no 

information about p(Main), the posterior probability p(Main|blue) can 

either be low (as in this example) or high (as in the next example).  

 

 
 44. For simplicity, we continue to use the conditional probabilities p(blue|Main) and 

p(blue|~Main) constant. Thus, the hit rate p(blue|Main) remains 0.8, and the miss rate p(blue|~Main) 

also remains 0.1, as in Example #1. We hold these conditional probabilities constant in order to test 

what effect a change in the prior probability has on the posterior probability. 
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Example #2 (visual format) 

We now present our second version of the blue bus problem visually 

using absolute numbers as follows: 

 
 

Again, we use absolute numbers instead of percentages or probabilities, 

starting with a population of 100 city buses.  

First, recall our presentation of this particular example in the standard 

probability format. Although we ended up revising our prior probability 

upward from 0.1 to 0.47, we concluded that a Bayesian posterior of 0.47 

does not pass the “preponderance of the evidence” test. Now, consider the 

absolute number of “hits” and “false alarms” on the bottom row of the 

frequency tree. We immediately notice that the 9 false alarms exceed the 8 

hits by a small margin. This is an important observation. Without having 

to perform any complicated computation, we can immediately conclude 

that a random blue bus is slightly less likely to run on Main Street than a 

bus of another color, even though 80% of the buses that run on Main 

Street are blue buses. 

The frequency tree above explains why. In brief, the small number of 

false alarms exceeds the number of hits because only 10 of the 100 city 

buses in this example run on Main Street, but 8 of these 10 buses are blue 

(since our hit rate in this example is 0.8, and 80% of 10 is 8), and of the 90 

buses that do not run on Main Street, only 9 are blue. Thus there are more 

false alarms than hits. 

  

100 

10 

8 2 

90 

9 81 
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C. Example #3 (Standard Format) 

Consider what happens when we increase the prior probability p(Main) 

that the buses in our population of city buses run on Main Street. In the 

previous example, we assumed that p(Main) was equal to 0.1. What 

happens, however, when p(Main) is raised to 0.8?
45

 Since the prior 

probability is now much greater, we would also expect the posterior 

probability to be greater. In particular, we wish to discover how much 

greater will the posterior probability be when p(Main) is raised from 0.1 to 

0.8? 

Again, for simplicity, we continue to hold the hit and miss rates 

constant, so the first conditional probability p(blue|Main) remains 0.8, and 

likewise, the second conditional probability p(blue|~Main) also remains 

0.1. Given this information, we apply standard Bayesian reasoning to 

calculate the posterior probability as follows: 

1. Since 80% of all city buses run on Main Street, and since 80% of 

those buses are blue, then 64% of all city buses are blue and run 

through Main Street [0.8 * 0.8 = 0.64]; 

2. Since 20% of all city buses do not run down Main Street, and 

since only 10% of those buses are blue, then 2% of all city buses 

do not run through Main Street and are blue [0.2 * 0.1 = 0.02]; 

3. Lastly, since 0.64 + 0.02 = 0.66, a total of 66% of city buses are 

blue, and since 0.64 divided by 0.66 = 0.96, this means that there 

is a whopping 96% posterior probability that a certain bus runs 

on Main Street, given that it is blue. 

In other words, the prior probability has a substantial effect on the 

posterior probability, even when the hit and miss rates remain the same. 

Specifically, since most buses run through Main Street (since the value for 

p(Main) is high in this case), and, since we know the accident occurred on 

Main Street, there is an extremely high posterior probability in this version 

of the blue bus problem that the plaintiff’s accident was caused by a blue 

bus. Thus, the plaintiff in this example should pass the “preponderance of 

the evidence” test because it is more likely than not that a blue bus caused 

the accident.  

 

 
 45. That is, suppose 80% instead of only 10% of all city buses run through Main Street. 
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Example #3 (visual format) 

We now present this version of the blue bus problem visually as 

follows, using absolute numbers instead of percentages: 

 

Without having to perform any complicated computations, we 

immediately notice 64 “hits” compared with just 2 “false alarms.” In 

Bayesian terms, a random blue bus in this example is far more likely to 

run on Main Street than a bus of any other color because the number of 

hits exceeds the number of false alarms by a wide margin. 

Again, the frequency tree explains this conclusion in three steps: most 

of the city buses run on Main Street (80 out of 100) (step one), and most of 

these buses in turn are blue (64 out of 80) (step two), while only 2 of the 

20 buses that do not run on Main Street are blue (step 3). Thus, because 

there are far more hits than false alarms, it is more likely than not (in terms 

of the preponderance of the evidence standard) that the bus that caused the 

plaintiff’s accident was a blue bus. The plaintiff in this particular example 

should thus pass the “preponderance of the evidence” test. 

D. Example #4 (Standard Format) 

Next, consider what happens when the hit rate, p(blue|Main), is greater 

than the miss rate, p(blue|~Main). Expressed in the standard Bayesian 

probability format, what happens when we return the prior probability 

back to its original value, 40%, and instead increase the first conditional 
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probability or hit rate to 95%? In this version of the blue bus problem, our 

revised priors are as follows: 

 The probability that a city bus runs on Main Street is 0.4; 

 The probability that a certain bus is blue, given that it runs on 

Main Street, is now 0.95; 

 The probability that a certain bus is blue, given that it does not 

run on Main Street, is still 0.1. 

Given this revised data, we apply Bayesian reasoning to find the new 

posterior probability as follows:  

1. Since 40% of all city buses run on Main Street, and since 95% of 

those buses are blue, then 38% of all city buses are blue and run 

through Main Street [0.4 * 0.95 = 0.38]; 

2. Since 60% of all city buses do not run down Main Street, and 

since only 10% of those buses are blue, then 6% of all city buses 

do not run through Main Street and are blue [0.6 * 0.1 = 0.06]; 

3. Since 0.38 + 0.06 = 0.44, a total of 44% of city buses are blue, 

and since 0.38 divided by 0.44 = 0.86, this means that there is a 

whopping 86% posterior probability that a certain bus runs on 

Main Street, given that it is blue. 

Notice that the first conditional probability p(blue|Main) in this 

example is far larger than the other conditional probability p(blue|~Main). 

In plain language, this means that there are significantly more buses that 

are blue and that run on Main Street than buses that are blue but do not run 

on Main Street. Based on the evidence in this example, we must update 

our posterior probability that a bus is on Main Street given that it is blue 

upwards—in this example, from 40% percent up to 86%. Although the 

plaintiff in the blue bus problem may not have seen the color of the bus 

that caused her to swerve, she knows that the accident occurred on Main 

Street, and the Bayesian updating in this example strongly supports her 

hypothesis that a blue bus caused her to swerve. 

Also, before proceeding, notice that this version of the blue bus 

problem corresponds most closely to the facts in Smith v. Rapid Transit, 

discussed in Part II.B of this Article. In essence, the plaintiff’s evidence in 

Smith showed that only the equivalent of blue buses were authorized to 

run on Main Street, but as the court noted, the plaintiff’s probabilistic 
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proof “did not preclude private or chartered buses from using this street.”
46

 

According to the court’s reasoning, there was always a small probability 

that a non-blue bus was travelling down Main Street at the time of the 

accident. What the court should have been asking, however, was “how 

small” was this small probability? 

Example #4 (visual format) 

Using our frequency tree format, we now present this example visually 

as follows: 

 

Again, without having to perform any complicated computations, we 

immediately notice 38 “hits” compared with just 6 “false alarms.” Thus, as 

in the previous example, a random blue bus in this particular example is 

more likely to run on Main Street than a bus of any other color because the 

number of hits exceeds the number of false alarms by a wide margin. In 

legal terms, the plaintiff in this example should pass the “preponderance of 

the evidence” test. 

E. Example #5 (Standard Format) 

Now, consider what happens when both the hit rate and miss rate are 

high. For example, what happens when the hit rate p(blue|Main) is 95% 

and the miss rate p(blue|~Main) is 80%, while the base rate p(Main) is 

 

 
 46.  Smith, 58 N.E.2d at 755.  
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constant at 40%, as in our original example?
47

 Our revised priors are now 

as follows: 

 The probability that a city bus runs on Main Street is still 0.4; 

 The probability that a certain bus is blue, given that it runs on 

Main Street, is 0.95; 

 The probability that a certain bus is blue, given that it does not 

run on Main Street, is now 0.8. 

Given these revised pieces of information, we apply standard Bayesian 

reasoning to update our priors as follows:  

1. Since 40% of all city buses run on Main Street, and since 95% of 

those buses are blue, then 38% of all city buses are blue and run 

through Main Street [0.4 * 0.95 = 0.38]; 

2. Since 60% of all city buses do not run down Main Street, and 

since 80% of those buses are blue, then 48% of all city buses do 

not run through Main Street and are blue [0.6 * 0.8 = 0.48]; 

3. Since 0.38 + 0.48 = 0.86, a total of 86% of city buses are blue; 

4. Lastly, since 0.38 divided by 0.86 = 0.44, there is only a 44% 

posterior probability that a certain bus runs on Main Street, given 

that it is blue. 

In summary, notice that the prior probability, p(Main), in this example 

and in the previous example did not change. In both cases, p(Main) was 

set at 40%. Notice too that the posterior probability in this example, 44%, 

remained close to our prior probability, 40%. In the previous example, by 

contrast, the posterior probability increased to 86%, a large departure from 

our original prior probability. 

Thus, by comparing this example to the previous one, we see how the 

difference between the two conditional probabilities (the difference 

between the rate of hits and the rate of misses) determines the level of 

updating in our Bayesian model. In sum, if the difference between the two 

conditional probabilities is small (as in this example), then the effect on 

the prior probability is small. We do not need to update or revise our prior 

probability too greatly. If, however, the difference between the two 

conditional probabilities is large (as in the previous example), then this 

 

 
 47. We continue to hold p(Main) constant in order to test the effect of changes in the hit and miss 
rates. 
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difference will lead us to revise our prior probability by a large amount as 

well. 

Example #5 (visual format) 

We now present this same example visually as follows: 

 

Once again, without having to perform any complicated computations, 

we immediately notice the total or absolute number of hits and false 

alarms: 38 hits versus 48 false alarms. Since there are more false alarms 

than hits, this means that a random blue bus is less likely to run on Main 

Street than a bus of another color. Given this observation, the plaintiff 

should not pass the “preponderance of the evidence” test. 

F. Example #6 (Standard Format) 

Next, consider what happens when the miss rate is greater than the hit 

rate. Expressed in Bayesian terms, what happens when the second 

conditional probability is larger that the first conditional probability? For 

example, what if p(blue|Main) is only 30%, while p(blue|~Main) is 60%?
48

 

Our revised priors can thus be stated formally as follows: 

 The probability that a city bus runs on Main Street is 0.4; 

 The probability that a certain bus is blue, given that it runs on 

Main Street, is 0.3; 

 

 
 48. Again, we hold p(Main) constant at 40% in order to test the effect of changes in the hit and 

miss rates. 
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 The probability that a certain bus is blue, given that it does not 

run on Main Street, is 0.6. 

Stated formally, the second conditional probability (“the probability 

that a bus is blue given that it does not run on Main Street”) is twice as 

large as the first conditional probability (“the probability that a bus is blue 

given that it does run on Main Street”). Given this new data, we apply 

standard Bayesian reasoning as follows: 

 Since 40% of all city buses run on Main Street, and since 30% 

of those buses are blue, then 12% of all city buses are blue and 

run through Main Street [0.4 * 0.3 = 0.12]; 

 Since 60% of all city buses do not run down Main Street, and 

since 60% of those buses are blue, then 42% of all city buses do 

not run through Main Street and are blue [0.6 * 0.6 = 0.36]; 

 Since 0.12 + 0.36 = 0.48, a total of 48% of city buses are blue, 

and since 0.12 divided by 0.48 = 0.25, there is only a 25% 

posterior probability that a certain bus runs on Main Street, 

given that it is blue. 

In other words, when the second conditional probability is larger than 

the first conditional probability (i.e., when the rate of misses is larger than 

the rate of hits) we must update our prior probability downward—in this 

example, from 40% down to 25%.  

Now, consider this result in light of the blue bus problem. When the 

rate of misses p(blue|~Main) is greater than the rate of hits p(blue|Main), 

this means that there are more buses that are blue and do not run on Main 

Street than buses that are blue and do run on Main Street. Since our 

hypothesis is that a blue bus caused the plaintiff’s accident, our 

conditional probabilities are telling us that this hypothesis is more likely to 

be false because it is more likely for a bus on Main Street not to be blue. 
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Example #6 (visual format) 

We now present this example visually as follows: 

 

Without having to perform any complicated computations, we 

immediately notice 12 hits and 36 false alarms. As in the previous 

example, there are more false alarms than hits. In Bayesian terms, a 

random blue bus is less likely to run on Main Street than a bus of another 

color, and given this observation, the plaintiff in this example should not 

pass the “preponderance of the evidence” test. 

G. Example #7 (Standard Format) 

Lastly, suppose the rate of hits and false alarms are the same. In 

Bayesian terms, what if our conditional probabilities are the same? For 

example, our hit rate p(blue|Main) is now 0.8 and our miss rate 

p(blue|~Main) is now 0.8, while p(Main) is constant at 0.4. Our revised 

priors are now as follows: 

 The probability that a city bus runs on Main Street is 0.4; 

 The probability that a certain bus is blue, given that it runs on 

Main Street, is 0.8; 

 The probability that a certain bus is blue, given that it does not 

run on Main Street, is 0.8. 
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Given this new information, we again apply the standard Bayesian 

method as follows:  

1. Since 40% of all city buses run on Main Street, and since 80% of 

those buses are blue, then 32% of all city buses are blue and run 

through Main Street [0.4 * 0.8 = 0.32]; 

2. Since 60% of all city buses do not run down Main Street, and 

since 80% of those buses are blue, then 48% of all city buses do 

not run through Main Street and are blue [0.6 * 0.8 = 0.48]; 

3. Since 0.32 + 0.48 = 0.80, a total of 80% of city buses are blue; 

4. Lastly, since 0.32 divided by 0.80 = 0.4, there is a 40% posterior 

probability that a certain bus runs on Main Street, given that it is 

blue. 

Notice that the posterior probability in this example is the same as the 

prior probability. Furthermore, this will always be the case when the hit 

and miss rates are the same. In general, when both conditional 

probabilities are the same, the conditional probabilities end up exerting the 

same amount of force on our Bayesian update—meaning that our 

Bayesian update provides us with no new information from which to 

revise our original prior probability. 

In terms of the blue bus problem, if a bus is just as likely to be blue 

given that it runs on Main Street (the hit rate or first conditional 

probability) as it is likely to be blue given that it does not run on Main 

Street (the miss rate or second conditional probability), the fact that the 

defendant bus line owns all the blue buses in town does not provide any 

new information about whose bus caused the plaintiff’s accident. Thus, 

with no new information, we are unable to update or revise our prior 

probability. 
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Example #7 (visual format) 

We now present this example visually as follows: 

 

As in the previous two examples, there are more false alarms than hits: 

48 false alarms versus 32 hits. In Bayesian terms, since there are more 

false alarms than hits, a random blue bus is less likely to run on Main 

Street than a bus of another color. Given this observation, the plaintiff 

should not pass the “preponderance of the evidence” test. The larger lesson 

here is that defendants, not just plaintiffs, can potentially use Bayesian 

methods.  

Thus far, we have used frequency trees and frequency grids to visualize 

our Bayesian models. Next, we present an alternative visualization of our 

Bayesian approach to the blue bus problem. 
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H. An Alternative Visualization of the Bayesian Approach 

Here, we present an alternative visualization of the blue bus problem 

based on the work of Luke Muehlhauser and Eliezer Yudkowsky.
49

 

Consider the following diagram: 

 

The diagram conveys the following information: 

 The bar on the top of this diagram is divided between p(A) and 

p(not A), where “A” is the condition of being on Main Street. In 

brief, this bar shows the prior probability that a bus (of any 

color) runs on Main Street. Since the probability in this 

hypothetical example is 33%, the division between the two sides 

of the bar is just left of center.
50

 

 The slanted line in the middle of the diagram represents the 

effect of hits and misses, or the effect of the conditional 

probabilities, on the prior probability, where “X” is the 

condition of being blue. The first conditional probability, the hit 

rate, is p(X|A) (i.e., “the probability that a bus is blue given that 

it runs on Main Street”). Similarly, the second conditional 

 

 
 49. See Luke Muehlhauser, An Intuitive Explanation of Eliezer Yudkowsky’s Intuitive 

Explanation of Bayes’ Theorem (Dec. 18, 2010), http://commonsenseatheism.com/?p=13156 (last 
visited on Oct. 12, 2014). See also Eliezer S. Yudkowsky, An Intuitive Explanation of Bayesian 

Reasoning (June 4, 2006), available at http://yudkowsky.net/rational/bayes (last visited on Sept. 26, 

2014). The Bayesian diagram below appears in Yudkowsky. 
 50. If the prior probability in our example had been 50% instead of 40%, the division between 

the two sides would have appeared in the center. 
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probability is p(X|~A), or “the probability that a bus is blue 

given that it does not run on Main Street.” This is the rate of 

misses. Since the hit rate p(X|A) is greater than the miss rate 

p(X|~A) in this example, the middle line is slanted from left to 

right, and the degree of this slant reflects the probability 

regarding the color of a particular bus running on Main Street. 

 Finally, the bottom row represents the revised or posterior 

probability that a bus is blue and runs on Main Street, or p(X & 

A), as well as the posterior probability that a bus is blue and 

does not run on Main Street, p(X & ~A). 

Also, before proceeding, notice that the bar at the top of the diagram is 

much wider than the bar at the bottom. This differential occurs because the 

top bar refers to the collection of all buses that run or do not run on Main 

Street, while the bottom bar refers only to the collection of blue buses that 

run or do not run on Main Street.
51

 

Now, returning to the diagram, notice the differential in proportions 

between the left side of the top bar and the left side of the bottom bar. This 

differential tells us that the proportion of buses that are blue and that run 

on Main Street (the left side of the bottom bar) is somewhat larger than the 

proportion of all buses that run on Main Street (the left side of the top bar). 

Thus, based on the evidence in this example, the hit and miss rates p(X|A) 

and P(X|~A), we must update our posterior probability that a bus is on 

Main Street given that it is blue upwards—in this example, from 33% 

percent up to 59.6%. Although the plaintiff in the blue bus problem may 

not have seen the color of the bus that caused her to swerve, she knows 

that the accident occurred on Main Street, and the Bayesian updating in 

this example strongly supports her hypothesis that a blue bus caused her to 

swerve.  

Does this particular example pass the “preponderance of the evidence” 

test? This example ought to pass the preponderance test because in this 

case it is more likely than not that a blue bus caused the accident. 

IV. THE CASE FOR BAYES 

Thus far, we have restated the famous blue bus thought-experiment and 

have presented our alternative Bayesian visualization of the blue bus 

problem. But what about the general questions we posed at the beginning 

 

 
 51. See generally Muehlhauser, supra note 49. 
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of this Article regarding the role of mathematics and mathematical 

reasoning in law?
52

 Specifically, what larger lessons can we hope to learn 

from our simple Bayesian model of the blue bus problem? 

Recall the legal issue in Smith v. Rapid Transit and the question posed 

by the blue bus thought-experiment itself: the problem of probabilistic 

proof in legal trials. Specifically, what role should probabilistic proof play 

in the legal process? What role should the Bayesian methods proposed in 

this Article and by others play in adjudication?
53

 I shall conclude this 

Article by summarizing and discussing the main virtues of Bayesian 

reasoning generally and of my Bayesian approach to evidence.
54

 

A. What Bayes is Not 

To avoid confusion, we begin by stating what Bayesian reasoning is 

not. It is not a magic conjurer, Delphic oracle, or “veritable sorcerer.”
55

 

Bayesian reasoning is not a method for eliminating uncertainty; it is a 

method for measuring our level of uncertainty.
56

 Put another way, the 

Bayesian approach to evidence is not only a method of drawing inferences, 

but it is also a method of measuring the strength or weakness of such 

inferences. In the legal process context, the Bayesian approach is not a 

method for deciding the ultimate guilt or innocence of a defendant. 

Instead, it is a method for measuring or evaluating the strength of a party’s 

evidence of guilt or innocence, and thus Bayesian methods may not only 

be used offensively by a moving party (plaintiff or prosecutor) to measure 

the strength of his case; such methods can also be used defensively by a 

defendant to test or challenge the strength of the moving party’s case.  

 

 
 52. It is worth noting that these same questions were first raised two centuries ago by such 
intellectual giants as Pierre Simon Laplace and the Marquis de Condorcet. See generally Bertsch 

McGrayne, supra note 1, at 27–28. Here, our focus is on the problem of probabilistic proof. 

 53. It is worth noting that Tribe’s original critique of mathematical proof in law (see Tribe, supra 
note 4) was a response to a paper proposing Bayesian methods in law. 

 54. For a more systematic explanation of Bayesian reasoning, see generally Yudkowsky, supra 

note 49. See also Colin Howson & Peter Urbach, Bayesian Reasoning in Science, 350 NATURE 371 
(1991). 

 55. Collins, 438 P.2d at 33. 

 56. See, e.g., Howson & Urbach, supra note 54, at 372 (Bayesian reasoning is a method of 

“characterizing a scientific conclusion about a hypothesis as a statement of its probability”); Fienberg 

& Schervish, supra note 7, at 773 (“Bayesian probability theory . . . provide[s] both a framework for 

quantifying uncertainty and methods for revising uncertainty measures in the light of acquired 
evidence.”). 
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B. A Legal Trial is Just a Test 

We often assume that trials are a search for the truth.
57

 Yet, truth itself 

is a probabilistic ideal, not an absolute one, since there might be different 

versions or interpretations of the truth. Moreover, from the perspective of 

a trial attorney and the litigating parties, a trial is a risk-taking activity, a 

game whose main object is to “win,” regardless of truth. Metaphorically 

speaking, then, a legal trial is more like poker and less like science.
58

  

Of course, it helps to have the truth on one’s side, but my point here is 

that having the truth on one’s side is neither a necessary nor sufficient 

condition for winning at trial (the ultimate goal of litigation from the 

perspective of the parties). Truth, too, is a probabilistic concept, for there 

can be competing conceptions of the truth in any given case.
59

 In law, this 

means that a legal trial is not a dispassionate or scientific search for truth. 

Rather, a legal trial is a bet or wager on which party’s story or version of 

the truth is more likely to be accepted as true. 

In sum, instead of a search for truth, a legal trial is a test—a test of the 

evidence one offers in support of one’s version of the truth. Thus, a legal 

trial is more like a medical test or a spam filter, but instead of testing for 

cancer, HIV, or spam, litigation simply tests the strength of the moving 

party’s case. In Anglo-American law, the moving party is either the State 

(e.g., the prosecution in a criminal case) or a private party (e.g., the 

plaintiff in a civil case), and when a prosecutor or plaintiff goes to trial, he 

is literally putting his allegations (his case) to the test. In either case, civil 

or criminal, the moving party must submit sufficient evidence to pass the 

relevant test. Sometimes the test is pass/fail (e.g., the preponderance of the 

evidence standard); sometimes the test requires a higher standard of 

evidence (e.g., the reasonable doubt standard). In either case, the question 

is the same: has the prosecution proven its case beyond a reasonable 

 

 
 57. See, e.g., Cheng, supra note 7, at 1273 (“the legal system’s purpose is to discover a single, 
stable ‘truth’ or narrative”). See also THOMAS A. MAUET, TRIAL TECHNIQUES 24 (8th ed. 2010) (“A 

theory of the case is a clear, simple story of ‘what really happened’ from your point of view . . . Trials 

are in large part a contest to see which party’s version of ‘what really happened’ the jury will accept as 
more probably true”). In the criminal context, see Brady v. Maryland, 373 U.S. 83, 86 (1963) (citation 

omitted). For an extended discussion of the Brady rule in criminal cases, see Robert Hochman, Brady 

v. Maryland and the Search for Truth in Criminal Trials, 63 U. CHI. L. REV. 1673 (1996). 
 58. For a simple poker model of litigation, see Enrique Guerra-Pujol, The Poker-Litigation Game 

(Working Paper Series, Dec. 26, 2012), available at http://papers.ssrn.com/sol3/papers.cfm? 

abstract_id=2193993. For a risk-based analysis of litigation, see Tristan Barnett, Applying the Kelly 
Criterion to Lawsuits, 9 LAW, PROB. & RISK 139 (2010). 

 59. Cf. Cheng, supra note 7, at 1259 (“the preponderance standard [in civil cases] is better 
characterized as a probability ratio, in which the probability of the plaintiff’s story of the case is 

compared with the defendant’s story of the case”). 
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doubt? Or, has the plaintiff proven his case by a preponderance of the 

evidence? This, then, is what is meant when describing a trial as a test. 

C. A Test is Separate from Reality 

When we use a medical test, or a spam test, or a legal test, we must 

cognitively distinguish that the test is separate from the underlying 

hypothesis or event being tested. Put another way, “tests are not the 

event.”
60

 A spam filter tests for spam, but the spam test itself is separate 

from the event of actually having a spam message, and by the same token, 

a test for cancer or HIV is separate from the event of actually having 

cancer or HIV. Or, in the words of one Bayesian: 

Even a useful mammography test does not actually change [the 

underlying reality] whether or not a woman has cancer. She either 

has cancer or she doesn’t. Reality is not uncertain about whether or 

not the woman has cancer. We are uncertain about whether or not 

she has cancer. It is our information, our judgment, that is uncertain, 

not reality itself.
61

 

Likewise, a legal trial or “legal test” is separate from the underlying 

condition being tested: a defendant’s guilt or innocence. Again, the 

defendant either has or has not committed a wrongful act (e.g., a crime, a 

tort, a breach of contract, etc.).
62

 Reality itself is not uncertain about the 

defendant’s conduct. It is we (the jury or the trier or fact) who are 

uncertain about the defendant’s guilt or innocence.
63

 

As an aside, this point helps explain the logic of our Bayesian approach 

to adjudication. A Bayesian or any probabilistic method for trying cases is 

 

 
 60. This phrase is from Kalid Azad, An Intuitive (and Short) Explanation of Bayes’ Theorem 

(May 7, 2007), available at http://betterexplained.com/articles/an-intuitive-and-short-explanation-of-
bayes-theorem/ (last visited on Sept. 26, 2014). 

 61. Muehlhauser, supra note 49, at 8 in the pdf format, italics in original (explaining the ideas of 

Yudkowsky, supra note 49).  
 62. As our editors have pointed out, the legal elements of a wrongful act—that is, what 

constitutes a particular crime or tort—are human-constructed elements, since we ultimately define 

what elements constitute a tort or crime, such as “battery,” for example. As a result, the underlying 

metaphysical reality (e.g., “did this defendant commit a battery?”) might not congruently align with 

the human-defined elements of the wrongful act. In this case, stating that “a defendant either has or has 

not committed a crime” would present a false dichotomy. Nevertheless, there is no reason in principle 
why we could not apply Bayesian methods to the task of interpreting what behavior constitutes a 

wrongful act in the first place. That is, we could apply Bayesian methods to predict what interpretation 

of law is most likely to prevail in a given close case. 
 63. Even the practice of science, like litigation, is just a series of tests. There is a test for a given 

phenomenon, and there is the event of the phenomenon itself. See Azad, supra note 60. 
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not designed to tell us with 100% certainty whether a given defendant is 

guilty or innocent. No method or test could produce such perfect 

outcomes. Instead, our Bayesian approach is simply an alternative method 

for testing the strength of the moving party’s case, that is, for testing how 

likely the plaintiff or prosecutor has proven his or her case.  

D. All Tests are Imperfect 

Tests sometimes detect things that do not exist (false positives or “false 

alarms”) and miss things that do exist (false negatives or “misses”).
64

 

Consider spam filters, which are designed to detect spam or unwanted 

email messages. The problem is that no spam filter is perfect. Sometimes 

the spam net is cast too wide and some non-spam email messages fall into 

the spam filter and into one’s junk email folder; sometimes the spam net is 

not wide enough and spam messages get past the filter and into your 

regular inbox. 

By analogy, the same problem occurs in litigation. A “frivolous” civil 

case, or criminal case in which the prosecutor has “overcharged” the 

defendant, can be compared to spam. In a perfect legal system, judges and 

juries would be able to detect and distinguish frivolous claims from valid 

ones (in civil cases) and such superfluous criminal charges from 

substantial ones (in criminal cases). But judges and juries make mistakes. 

We all do. Sometimes judges dismiss valid claims (misses) and allow 

frivolous claims to go to trial (false alarms). Likewise, sometimes juries 

convict innocent men (false alarms) and allow the guilty to go free 

(misses). 

E. Why Bayes is Useful: It Puts Tests to the Test 

Bayesian methods are useful because they allow one to update and test 

one’s prior probability of a given event (e.g., x has cancer, y is a spam 

message, z committed a crime or a tort). In the case of a legal trial, the 

Bayesian approach is a formal method for updating one’s prior beliefs 

about a defendant’s guilt or innocence. Put another way, Bayesian 

reasoning is a method for testing the reliability and accuracy of a legal 

 

 
 64. As we noted in Part III above, the terms “false alarms” and “misses” were used by Engel and 
Gigerenzer. Engel & Gigerenzer, supra note 40, at 10. 
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trial.
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 It is a way of testing legal tests, a test of a test. This principle, the 

idea that Bayes puts tests to the test, we believe is the most important one. 

V. CONCLUSION 

This article represents a small first step in solving the problem of 

probabilistic proof in law. By focusing on a simple proof problem, the 

famous blue bus hypothetical, and by visualizing this problem using 

Bayesian methods, we have demonstrated the following lessons: 

 Probabilistic proof—like all forms of proof—can in principle be 

subjected to Bayesian testing given sufficient information about 

hits and misses. 

 Our simplified Bayesian testing procedure consists of 

comparing the number of hits and misses. 

 Our testing procedure measures the strength of the evidence 

being tested. 

 Visual presentation of a given evidence problem can be useful 

because it can simplify the problem. 

 But, to apply our test protocol, we need information about base, 

hit, and miss rates. 

In sum, legal scholars, lawyers, and judges should reconsider the 

potential usefulness of Bayesian methods at trial to test and evaluate the 

strength of probabilistic proof, instead of rejecting such proof altogether. 

To the extent law is nothing more than a prediction of what courts, juries, 

and legislators will do,
66

 the law of the future should be open to Bayesian 

methods. 

 

 
 65. See, e.g., Enrique Guerra-Pujol, A Bayesian Model of the Litigation Game, 4 EUR. J. LEGAL 

STUD. 220 (2011). 

 66. See O.W. Holmes, The Path of the Law, 10 HARV. L. REV. 457, 460–61 (1897) (“The 
prophecies of what the courts will do in fact, and nothing more pretentious, are what I mean by the 

law.”). 
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