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Abstract

A unit speed Searcher, constrained to start in a given closed set S; wishes to
quickly �nd a point x known to be located in a given closed subset H of a
metric network Q. This de�nes a game G = G (Q;H; S) ; where the payo¤ to
the maximizing Hider is the time for the Searcher path to reach x: Lengths
on Q are de�ned by a measure �; which then de�nes distance as least length
of connecting path. For trees Q; we �nd that the minimax search time (value
V of G) is given by V = � (H) � dH (S) =2, where dH (S) is what we call
the �H�diameter of S�, and equals the usual diameter d (S) of S in the case
H = Q: For the classical case of Gal where the S is a singleton and H = Q,
our formula reduces to his result V = � (Q) : If S = H = Q; our formula gives
Dagan and Gal�s result V = � (Q)� d (Q) =2: In all other cases, our result is
new. Optimal searches consist of minimum length paths covering H which
start and end at points of S; traversed equiprobably in either direction.

keywords: network, search, zero-sum game, tree



1 Introduction

We are concerned with the problem of �nding an unknown hiding point x
on a known metric network Q; by tracing out a path at unit speed. The
hiding point x might be say the midpoint of an arc; it does not have to be
a node. Speed is well de�ned because arcs � have given lengths denoted by
� (�) : The arc � can then be thought of metrically (topologically) as the
closed interval [0; � (�)], and we can extend � to the Lebesgue measure on
this interval, and then similarly to a measure � on all of Q: The aim is to
minimize the time T required to reach x: This is equivalent to minimizing
the length of the search path which ends at x: An approach which goes back
at least to the book of Isaacs [23] is to suppose that the point x is chosen
by an adversarial Hider, who wishes to maximize the search time, thereby
creating a zero-sum �search game�where capture time T is the payo¤ to the
maximizing Hider. In the original formulation of the problem, by Isaacs on
general regions and by Gal [17] on networks, the Hider can hide (or place an
object) anywhere on Q and the Searcher must start his search at a speci�ed
point known to the Hider. Roughly speaking, the Hider tends to place x
away from the Searcher�s start. There are two interpretations of the Hider
placing x : it could be where she hides (herself) or where she places some
object which the Searcher needs to �nd quickly.
If the network is some physical entity, say a road system, it may be that

there are only a limited number of places where there is enough �cover�to
avoid the object at x being spotted from afar, circumventing the necessity
of a search on foot. This is the �rst paper to model this as a parameter in
the game. We specify that the point x must belong to an arbitrary given
closed subset H (called the �hiding set�) of Q; not necessarily a node. Thus
all previous work in this area can be said, in our terminology, to have the
assumption H = Q: In addition, we model the possibility that the Searcher
can only enter the network at some closed subset S of Q; known as the
Searcher starting set. Together, these two new parameters de�ne a more
general search game G = G (Q;H; S) : The work of Gal for the simpler cases
goes over to this general setting to establish that the in�nite strategy game G
has a value, an optimal mixed search strategy, and "�optimal mixed hiding
strategies (see Appendix 1 of [18]). Of course when Q is a tree all points
other than leaf nodes are clearly dominated and so optimal search strategies
are simply going to these in some order; so both players have �nitely many
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undominated strategies and the standard �nite minimax theorem applies. In
this paper, we give a complete solution to the game G for the case where Q
is a tree. Our solution has a simple formula for the value V = V (G), the
minimax search time, which subsumes the known cases for H = Q and where
S is a singleton or all of Q (�xed start or arbitrary start). For a zero-sum
two person game, V is the expected value of the payo¤, assuming optimal
play on both sides.
Our solution involves a new concept of a signed metric called theH�distance

dH (a; b) between points a and b of Q (again, not necessarily nodes). Roughly
speaking, this distance measures the length of the shortest path P between a
and b; however only the portion of P within the set H is counted positively;
the portion lying outside of H is counted negatively. As long as this path
intersects H; that is the de�nition. However if a and b are both outside H
and can be connected outside of H; then we require that P is the shortest
path between a and b which intersects H: So for example if a lies outside of
H; then dH (a; a) is minus twice the usual distance of a to H:We then de�ne
the H�radius of S , denoted �H (S) ; by mina2H maxb2S dH (a; b) : If H = Q
then the �distance�dH and the �radius��H revert to their usual de�nitions.
Our main result, Theorem 3, says that the value V of the game G (Q;H; S)
is given by

V = � (H)� dH (S) =2 = � (H)� �H (S) :
In the original paper of Gal [17], where H = Q and S is a singleton, the value
was found to be � (Q) ; which agrees with our result. In the paper of Dagan
and Gal [15], where the Searcher was allowed to begin his search anywhere
in Q (so S = H = Q) ; the value was found to be � (Q)�� (Q) ; which agrees
with our more general result. In the cases where H is not Q and S is not a
singleton or all of Q; our result is new.

2 Literature

The idea of studying worst case analysis of search problems by positing an
adversarial immobile Hider goes back at least to the pioneering work of Isaacs
[23]. Such search games on networks were introduced by Gal [17], who gave
a complete solution to search games on a tree when the Hider could locate
anywhere and the Searcher began his search at a speci�ed point known the
Hider. In our terminology, this is the case where H = Q and S is a single-
ton set. This paper in fact contained the main ideas that were subsequently
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extended to cover more cases. Under the same assumptions on Q;H and S;
Gal�s solution was extended to weakly cyclic networks by Reijnierse and Pot-
ter [27] and to weakly Eulerian networks by Gal [19]. Another important and
surprisingly di¢ cult case is the network consisting of two nodes connected
by an odd number of equal length arcs, solved by Pavlovic [26]. Search on
lattices has been considered by Zoroa et al [28]. An algorithmic approach to
the problem is given by Anderson and Aramendia [13]. These development
has been surveyed several times, see [4], [20], [21], [25].
Enlarging the Searcher�s starting set S to all of Q (called the �arbitrary

start�game) was �rst considered by Dagan and Gal [15] for trees, a result
which is subsumed by our Theorem 3. This was extended by Alpern [1] to
trees to which disjoint Eulerian networks are attached at single points. The
limits to such topological extensions of the Dagan-Gal result were explored
by Alpern, Baston and Gal [6], who showed that the qualitative solution to a
game on a certain network changed as the length of one of its arcs changed.
The arbitrary start problem was solved for symmetric networks by Alpern,
Baston and Gal [7]. There is no literature on restricting the Hider to a
speci�ed subset H of the network.
Variations on the basic search methods and costs have also been consid-

ered. The arcs might have di¤erent travel times when traversed in di¤erent
direction (see Alpern [2], Alpern and Lidbetter [10]; there might be a cost to
turning (Demaine, Fekete and Gal [16]); the search might be able to jump to
previously searched points (Alpern and Lidbetter [9]); there might be varying
costs to search nodes, in addition to travel costs (Baston and Kikuta[14]);
there might be several Hiders (Lidbetter [24]); there might be di¤erent speeds
for travelling on the network and stooping to discover a Hider (Alpern and
Lidbetter [11]); the Searcher might not be able to turn around inside an arc
(Alpern [5]); the Searcher might have to �nd the Hider and bring her back
to the start point (Alpern [3]).
The subject of search games is covered in several books. See Gal [18],

Garnaev [22], Alpern and Gal [8] and Alpern et al [12].
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3 De�nitions and Main Result

3.1 The H�distance dH
The usual �shortest path�distance on a tree Q is de�ned as the minimum
length of a path between the two points. On a tree, such a path (called
a geodesic) will always be unique. In the presence of a given set H; part
of the shortest path will lie within H and some of it will be outside. The
H�distance dH counts the part inside H positively and the part outside H
negatively. Of course if H = Q; then this reduces to the usual distance. In
general, we should think of dH as a signed distance. A more formal de�nition,
which includes the possibility that the shortest path between a and b does
not pass through H; is given below.

De�nition 1 Suppose Q is a tree and H � Q is connected, hence also a
tree. Let PH (a; b) be the minimum length path starting at a; ending at b; and
intersecting H: De�ne the H�distance dH (a; b) between points a; b 2 Q by

dH (a; b) = � (PH (a; b) \H)� �
�
PH (a; b) \ �H

�
; (1)

where �H denotes the complement of H in Q:

Note that if H = Q then dH reduces to the usual distance d; otherwise it
is not a metric.
To illustrate the calculation of dH , consider the family of trees Q = Qr;s

drawn below in Figure 1. Here H is the subtree which is a star with three
rays of length 2 and the Searcher start set S consists of the three points A;B
and C: We have drawn H in thick red lines and S as green disks. Note that
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the network Q has total length given by � (Q) = 6 + r + s:

Figure 1. Tree Q = Qr; s with Hider tree H (thick red).
Searcher start S = fA;B;Cg:

The function for dH on the set fA;B;Cg is given by the symmetric matrix.
Note that some entries may be negative.

dH A B C
A �2r 4� r � s 3� r
B 4� r � s �2s 3� s
C 3� r 3� s 0

(2)

Table 1: The �distances�dH for Qr;s:

There are several observations to be made. For points like C; which lie inside
H; self distances are 0: However for points like A; lying outside H; the path
PH (A;A) goes to H and back, so the self distance is twice the distance to H:
The H�distance dH (C;A) is based on the path PH (C;A) which consists of
a path (red) in H of length 3 followed by a path outside H (blue) of length
r; so dH (C;A) = 3� r by the de�nition (1).
Recall the usual de�nitions of the diameter and radius of a compact metric

space (X; d) as d (X) = maxx;y d (x; y) and � (X) = minxmaxy d (x; y) =
d (X) =2: We use the analog to de�ne the H�versions of these concepts. We
will only consider the case where Q is a tree in this paper, which makes the
center c unique (but not the antipodal pairs). A center is a point which
minimizes the maximum distance to other points.
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De�nition 2 Let Q be a tree. De�ne the H-diameter of S; denoted dH (S)
as

dH (S) = max
a;b2S

dH (a; b) = dH (a
�; b�) ;

where such a pair a� and b� are called antipodal points. Note that it is possible
that a� = b�: It is also possible that the pair is not unique. De�ne the H-
radius of S by

�H (S) = min
x2H

max
y2S

dH (x; y) = max
y2S

dH (c; y) = dH (S) =2;

where c is called the H�center of S:

Note that if Q = H = S is a star with m equal length rays, m > 2; then
any pair of distinct leaf nodes form an antipodal pair. To illustrate these
concepts, take r = 1 and s = 2 in the network depicted in Figure 1. The
H�diameter will be simply the largest element of the 9 entry matrix given
in Table 1, where the antipodal points a� and b� are A and C: We thus have

dH (fA;B;Cg) = dH (A;C) = 3� r = 3� 1 = 2:

The H�center of S is the node of degree 3, which has respective distances
from the points A;B; and C of S of 1; 0 and 1; so the H�radius is 1 =
max f1; 0; 1g (which follows from the above).

3.2 Main Result

Now that we have de�ned and explained the notion ofH�diameter orH�radius,
we can easily state our main result in terms of either of these. The assump-
tion that the hiding set H is connected is not required, because we can
replace H with its connected hull, without helping the Hider. That will be
explained later. At the moment, we give the optimal Hider mixed strategy
in terms of the (known) optimal strategy found by Gal [17] for the game
G (Q;H; S) when the Hider can hide anywhere (H = Q) and the Searcher
starts at a known point c (the only point in the singleton set S). We will
explicitly describe this strategy hc later in Section 5. The distribution hc is a
probability measure on H concentrated on the leaf nodes of the tree H and
is uniquely de�ned by the property that at every branch node, the measure
of each branch (away from the root c) is proportional to its total length. For
that reason it has been called the Equal Branch Density (EBD) distribution,
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see Alpern [2]. Note that the EBD distribution is a function of both the tree
Q and the chosen root c:

Theorem 3 Let Q be a tree and let H be a connected closed subset of Q (a
subtree). Then the value V of the game G (Q;H; S) is given by

V = � (H)� dH (S) =2 = � (H)� �H (S) : (3)

An optimal strategy for the Hider is to adopt Gal�s optimal strategy hc for
the game where H = Q and S = fcg 2 H (the EBD strategy), where c is the
H�center of S. An optimal strategy for the Searcher is to pick a minimum
length path �P which starts and ends at antipodal points of S and covers H;
and to traverse �P with probability 1=2 in each direction. (A path covers a set
if every point in the set belongs to the path.)

A trivial example is when H is a singleton fxg in which case it is obvious
that the Searcher starts at the closest point y 2 S to x and the value of the
game is d (x; y) : But this is the same as ��H (S) and since � (H) = 0 in this
case our formula is trivially correct. For the more interesting example given
by the network of Figure 1 with r = 1 and s = 2 the Theorem says that
the expected search time is given by V = � (H) � �H (S) = 6 � 1 = 5 and
an optimal searcher strategy is to traverse a shortest path between A and
C which covers H equiprobably in either direction. Taking the root of H
to be the H�center given by the node of degree 3; we see that it has three
equal length branches. So the optimal strategy for the Hider is the EBD
distribution which gives the same probability to each of the three leaf nodes
of H: In Section 6 we will consider a range of r and s:
We will prove Theorem 1 in two parts. In Section 4 we will establish in

(5) that V is not more than the stated value and in Section 5 we will show
in (8) that it is not less than the stated value.
Two well known results can be immediately obtained as corollaries when

Q = H:

Corollary 4 If the Hider can choose the hiding point x anywhere in Q; that
is H = Q; then

V = � (H)� d (S) =2 =
�
� (H) ; if S is a singleton [17], and
� (H)� d (H) =2 if H = S = Q [15].
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In Theorem 3 we assumed that the Hider set H is a tree. Suppose the
Hider is forced to locate in some closed set Ĥ: De�ne H to be the tree
spanned by Ĥ; the intersection of all connected supersets of H: Clearly, since
the Hider has more strategies, we have

V (Q;H; S) � V
�
Q; Ĥ; S

�
:

On the other hand, by Theorem 3, an optimal Hider strategy for the game
G (Q;H; S) is supported on the leaves of the tree H; which all must be in
Ĥ: So restricting the Hider to Ĥ does not decrease the value. So Theorem 3
holds in the case where H is the spanning tree of the Hider set.

4 Searcher Strategies

We begin with an elementary result which has appeared in various forms and
contexts, beginning perhaps with Theorem 12.3.1 of Isaacs [23].

Lemma 5 Let P be a path in Q of length L which covers H: Then the
equiprobable mixture P � of P and its time reversed path P�1 (de�ned by
P�1 (t) = P (L� t)) reaches any point x of H in expected time not exceeding
L=2:

Proof. Fix any point x 2 H: Since P covers H it reaches x at some time
t � L: At time L�t the reverse path P�1 is at P�1(L�t) = P (L� (L� t)) =
P (t) = x and so T (x; P�1) � L � t: So P � reaches x in expected time not
exceeding (t+ (L� t)) =2 = L=2:
Obviously the Searcher, who wants to minimize the capture time, wants

to �nd such a covering path with minimum length L: Let �P = PH (a; b) be a
path starting and ending at points a and b of S (possibly the same, in which
case �P is a tour), which covers H: The length L = �

�
�P
�
is given by

�
�
�P
�
= 2� (H)� � (PH (a; b) \H) + �

�
PH (a; b) \ �H

�
= 2� (H)� dH (a; b)
� 2� (H)� dH (S) :

This hold with equality when a and b are antipodal points a�; b�: Let T (x; P )
denote the time taken for the path P to reach the point x; that is, the payo¤
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if the hiding point is x and the search path is P: So taking a and b to be
antipodal points and letting P � denote the equiprobable mixture of �P and
its time reversed path �P�1; we have for any x 2 H by Lemma 5 the estimate

T (x; P �) =
1

2
T
�
x; �P

�
+
1

2
T
�
x; �P�1

�
(4)

� 1

2
�
�
�P
�

=
1

2
(2� (H)� dH (S))

= � (H)� dH (S)
2

:

Hence we have

V � � (H)� dH (S)
2

: (5)

This establishes the Searcher part of Theorem 3.

5 Hider Strategies

The optimal strategy for the hider is a variant of the optimal mixed strategy
hc for the game G (Q;H; fcg), where Q = H and the searcher starts at a
given point c; found by Gal [17]. (The strategy hc considered Q as a tree
with root c and has all its weight on leaf nodes. At every branch node of Q;
it assigns total weight to each branch proportional to its total length. This
strategy is known as the Equal Branch Density (EBD) strategy.) For our
purposes here, we only need to know Gal�s result in [17] that against any
pure search strategy starting at a known point c; the expected search time
is at least � (H) :
Suppose the hider adopts the strategy hc; taking c to be the H-center of

Q; as de�ned earlier. Let P be any searcher strategy, a path starting at some
point a 2 S and covering H: Let a0 be the �rst point of H reached by P; at
some time t0 = d (a; a0) : Once reaching a0; the expected additional time to
�nd the hider is at least � (H) � d (c; a0) ; otherwise in the game where the
searcher starts at c; he could �rst go to a0 and then �nd the hider in expected
additional time less than � (H)� d (c; a0) , or in total time less than � (H) ;
contradicting Gal�s 1979 result. So we have shown that the expected time to
�nd a hider distributed according to hc; when starting at a point a 2 S; is
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at least d (a; a0) plus the time needed to �nd the Hider when starting at a0:

T (hc; P ) � d (a; a0) + [� (H)� d (c; a0)]
= � (H) + [d (a; a0)� d (c; a0)] (6)

= � (H)� dH (c; a) (because dH (c; a) = [d (c; a0)� d (a0; a)]
� � (H)� �H (S) (by de�nition of H-radius �H)

= � (H)� dH (S)
2

; for any searcher path P: (7)

It follows that

V � � (H)� dH (S)
2

: (8)

We note that combining our two estimates for the value, (8) and (5), estab-
lishes our main result, Theorem 3.

6 Examples: The Qr;s network of Figure 1

We now give a family of examples, based on the network of Figure 1, which
illustrate various cases of optimal strategies in Theorem 3. Without loss of
generality we may assume r � s; so we have dH (C;A) � dH (C;B) : The
case r = 1 and s = 2 has already been covered in the main text, showing in
particular that V = 5:

6.1 The network Q3:5;3:5
Consider the case with r = s = 3:5: In this case all the elements of the matrix
(2) are negative except for dH (C;C) = 0: So the antipodal points are C and
C itself. The H�radius of S; �H (S) = 0 taking the center at c = C: Thus
V = 6�0 = 6: An optimal mixed strategy is to pick a Chinese Postman tour
of H starting at C; and to traverse it equiprobably in either direction. For
the Hider, the EBD strategy on H taking C as the root hides at the top leaf
of H with probability 1=6; with the remaining probability being split equally
at 5=12 for the left and right leaves of H: This structure clearly holds for all
lengths 3 � r � s:
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6.2 The network Q1=2;2
Consider the case r = 1=2 and s = 2: Here the largest entry of the matrix
(2) is dH (A;C) = 5=2 = dH (S) ; so by Theorem 3 we have V = 6 � 5=4 =
19=4: The H�radius is 5=4 and the H�center is the point at distance 1=4
to the left of the degree 3 node. An optimal search strategy is to go between
A and C covering H in a random direction. The Hider should locate at the
left leaf of H with probability (2� 1=4) =6 = 7=24 and then at the other two
nodes with the same probability 17=48: More generally, for s � 1 and r � 3,
we have V = 6� dH (A;C) = 6� (3� r) =2 = (9 + r) =2:

6.3 The Network Q1=4;1=2
Consider the case r = 1=4 and s = 1=2: Now the largest element of the matrix
(2) is d (A;B) = 4� r � s = 4� 3=4 = 13=4: So V = 6� 13=8 = 35=8: The
optimal search strategy is to go between A and B covering H equiprobably
in either direction. The H�center of S is at distance y to the left of the
degree 3 node, where y satis�es the equation

(2� y)� 1=4 = (2 + y)� 1=2; or y = 1=8:

So the Hider locates at the left leaf ofH with probability (2� 1=8) =6 = 5=16:
As above, the remaining probability is split equally between the other two leaf
nodes of H: More generally, for r � s � 1 we have V = 6� (4� r � s) =2 =
(8 + r + s) =2:

6.4 Summary for Qr;s
The region of the space of the parameters r and s where the optimal endpoints
of the Searcher path are AB, AC or CC (path is a tour) is drawn in Figure 2,
together with the value V = V (r; s). By symmetry, it is enough to consider
the region r � s: There are other possibilities for other networks; for example
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the optimal search path could start and end at distinct points of H:

0 1 2 3 4 5
0

1

2

3

4

5

s

r

CC, V=6

AC, V=(9+r)/2

AB

(8+r+s)/2

Figure 2. Regions where search endpoints AB,AC,CC are optimal.

7 Conclusions

This paper generalizes previous assumptions about the start of a network
search game with immobile Hider by allowing restricted hiding places and
restricted places for the Searcher to begin. Despite this, we are able to give
a complete solution to the problem for trees. Many aspects of the solution
mirror that of Gal�s original paper [17] with speci�ed searcher start and
hiding anywhere. In particular, there exist optimal strategies for the Searcher
which consist of only two equiprobable pure strategies (paths) which are time
reversals of each other. Also, the Hider�s optimal distribution over H is an
EBD distribution for a root determined by the problem, as in Dagan and Gal
[15]. It remains to be seen whether this degree of generalization is amenable
to other variations of the problem such as expanding search, variable speed
search, turning costs, and combined search and travel costs. These variations
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were discussed in the literature section. In addition, it is possible that some
of these results can be extended to other networks than trees; at least to
networks consisting of trees to which disjoint Eulerian networks are attached
at single points (as in [1]).
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