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Abstract

Motivation: Transcription in single cells is an inherently stochastic process as mRNA levels vary greatly

between cells, even for genetically identical cells under the same experimental and environmental con-

ditions. We present a stochastic two-state switch model for the population of mRNA molecules in single

cells where genes stochastically alternate between a more active ON state and a less active OFF state.

We prove that the stationary solution of such a model can be written as a mixture of a Poisson and a

Poisson-beta probability distribution. This finding facilitates inference for single cell expression data,

observed at a single time point, from flow cytometry experiments such as FACS or fluorescence in situ

hybridization (FISH) as it allows one to sample directly from the equilibrium distribution of the mRNA

population. We hence propose a Bayesian inferential methodology using a pseudo-marginal approach

and a recent approximation to integrate over unobserved states associated with measurement error.

Results: We provide a general inferential framework which can be widely used to study transcrip-

tion in single cells from the kind of data arising in flow cytometry experiments. The approach

allows us to separate between the intrinsic stochasticity of the molecular dynamics and the meas-

urement noise. The methodology is tested in simulation studies and results are obtained for experi-

mental multiple single cell expression data from FISH flow cytometry experiments.

Availability and implementation: All analyses were implemented in R. Source code and the

experimental data are available at https://github.com/SimoneTiberi/Bayesian-inference-on-stochas

tic-gene-transcription-from-flow-cytometry-data.

Contact: Simone.Tiberi@uzh.ch or D.Hebenstreit@warwick.ac.uk or Barbel.Finkenstadt@

warwick.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

This study aims at proposing a methodology for investigating tran-

scription, i.e. the process by which mRNA transcripts are synthe-

sized from genes in single cells. This process is fundamentally

stochastic (Hebenstreit, 2013; Kim and Marioni, 2013; Raj et al.,

2006; Singh et al., 2013) as it involves reactants present in low copy

numbers and depends upon a series of events, whose timing is sub-

ject to natural variability (Delbrück, 1940; Kaern et al., 2005; Kim

and Marioni, 2013; Shahrezaei and Swain, 2008). Investigating sto-

chasticity, or biological noise, in transcription is of particular inter-

est as it could lead to an improved understanding of this essential

cellular mechanism. Here, we develop a basic stochastic dynamic

model regarding transcription and degradation events for the

mRNA population of some gene of interest in single cells and show

that the stationary distribution of the stochastic process can be writ-

ten in a latent variable formulation which facilitates inference. In

particular, we propose a two-state stochastic switch model where

the gene alternates between a more and a less active state that in the

sequel we refer to, for simplicity, as ON and OFF state, but we note

that mRNA may be transcribed—albeit at a lower level—during the

OFF state. In spite of its relative simplicity, this model can account

for transcriptional bursts, corresponding to relatively short periods

of time where high quantities of mRNA are transcribed. This phe-

nomenon has been found to be typical of many genes and species

(Dar et al., 2012; Golding et al., 2005; Harper et al., 2011; Raj

et al., 2006; Rajala et al., 2010; So et al., 2011; Suter et al., 2011;

Zopf et al., 2013) although its underlying mechanism is still largely

unclear and subject to ongoing research.

VC The Author(s) 2018. Published by Oxford University Press. i647

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 34, 2018, i647–i655

doi: 10.1093/bioinformatics/bty568

ECCB 2018

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/34/17/i647/5093237 by U
niversity of W

arw
ick user on 17 Septem

ber 2018
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/158370278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/SimoneTiberi/Bayesian-inference-on-stochastic-gene-transcription-from-flow-cytometry-data
https://github.com/SimoneTiberi/Bayesian-inference-on-stochastic-gene-transcription-from-flow-cytometry-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty568#supplementary-data
Deleted Text: work 
Deleted Text: [
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ]
Deleted Text: [
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ]
Deleted Text: [
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ]
https://academic.oup.com/


The fact that experimental measurement of gene expression is

subject to measurement error gives rise to the concept that the

mRNA population levels are unobserved, or latent. We make use of

a pseudo-marginal approach (Andrieu and Roberts, 2009;

Beaumont, 2003) to estimate the marginal likelihood of the noisy

observations, integrating out the latent states. In order to infer the

parameters of such a model, we develop a methodology for Bayesian

posterior inference via Markov chain Monte Carlo (MCMC). Under

the assumption of stationarity of the equilibrium solution, our

method allows us to fit the proposed stochastic switch model to ex-

pression data obtained for a population of cells at a single time

point, i.e. the kind of data typically available from fluorescence in

situ hybridization (FISH) or FACS experiments. Inference is success-

fully tested in simulations studies. We provide an experimental data

application of the inferential methodology where we analyse gene

expression data in single cells, obtained via FISH flow cytometry

experiments, for the human immunodeficiency virus type 1 (HIV-1)

env gene, whose transcription is believed to occur in bursts. We infer

the model parameters and compare two experimental conditions,

where cells are stimulated at different levels, to gain insight into the

transcriptional process and how it is affected by stimulation.

2 Two-state switch gene model

2.1 Model description
A basic model for gene expression assumes that, in each cell, transcrip-

tion and degradation of mRNA molecules occur as a birth and death

process with exponential waiting times, with constant rates a and b, re-

spectively. It has been shown that the corresponding population of

mRNA molecules in a cell at equilibrium follows a Poisson distribution

(Paulsson, 2005; Raj et al., 2006; Singh et al., 2013). However, this

model typically under-estimates the variability of the real biological

mechanism and fails to explain the broadness of the distribution of the

mRNA data, particularly for regulated genes. Indeed, the distribution of

gene expression is often found to be overdispersed relative to the Poisson

distribution, i.e. the variance is significantly larger than the mean

(Munsky et al., 2012). A more realistic approach is hence provided by a

two-state switch model which assumes that the gene stochastically alter-

nates between ON and OFF states, with exponentially distributed wait-

ing times with rates k1, for the change from OFF to ON, and k0, for the

change from ON to OFF (Hebenstreit, 2013; Kim and Marioni, 2013;

Munsky et al., 2012; Peccoud and Ycart, 1995; Suter et al., 2011; Wills

et al., 2013). In this model, it is assumed that the gene only transcribes

mRNA in the ON state, while in the OFF state transcription is turned

fully off. The resulting stationary distribution for the mRNA population

has been derived to be the Poisson-beta distribution (Dattani and

Barahona, 2017; Johnson et al., 2005; Kim and Marioni, 2013), which

can account for overdispersion as well as the occurrence of transcription-

al bursts and thus highly improves upon modelling realism.

The assumption of zero transcription in the OFF state may be

too restrictive in many cases (Hebenstreit et al., 2011; Hey et al.,

2015). We therefore consider a two-state ON/OFF switch model

where the gene may be transcribed into mRNA at two distinct rates,

a1 and a0, such that a1 � a0 � 0, i.e. transcription in the OFF state

is lower than in the ON state, but may occur at a positive rate

(Kepler and Elston, 2001; Singh et al., 2013; Thomas et al., 2014).

Figure 1 graphically illustrates this process. Degradation is assumed

to happen at constant per molecule rate b and the states are subject

to exponentially distributed waiting times, at rates k1 and k0, as

above. The two-state switch model with zero transcription in the

OFF state then corresponds to the sub-case where a0 ¼ 0, while the

simple one-state model can be obtained by setting a1 ¼ a0 or,

equivalently, by assuming that the gene is transcribed at constant

rate in one of the two states and setting k0 ¼ 0 or k1 ¼ 0.

Define X ¼ Xtð Þt�0 as the Zþ-valued process representing

the population of mRNA molecules in a cell, and S ¼ Stð Þt�0 as the

{0, 1}-valued process indicating whether the gene is in ON state, if 1,

or in OFF state, when 0. The model in Figure 1 can be represented

by the Markov process Z ¼ Ztð Þt�0 ¼ S;Xð Þ with transition proba-

bilities described by

P
�

Ztþdt ¼ ðs0; x0Þ
�
¼

¼

bxdt þ o dtð Þ if ðs0;x0Þ ¼ s;x� 1ð Þ;

½a1sþ a0 1� sð Þ�dt þ o dtð Þ if ðs0;x0Þ ¼ s;xþ 1ð Þ;

½k1 1� sð Þ þ k0s�dt þ o dtð Þ if ðs0;x0Þ ¼ 1� s;xð Þ;

0 otherwise;

8>>>>>>>><
>>>>>>>>:

(1)

with Zt ¼ s; xð Þ indicating the state of the system at time t.

Next, using the result by Singh et al. (2013) we shall prove that

the distribution of the mRNA population at equilibrium can be

equivalently represented by a mixture of a Poisson and a Poisson-

beta distribution. This result facilitates the construction a Bayesian

inference algorithm to sample directly from the equilibrium distribu-

tion of the mRNA population.

2.2 Stationary distribution
Singh et al. (2013) show that the mRNA counts from the two-state

model in (1) have the following stationary distribution

Pr X¼ xð Þ ¼ e�~a0

Xx

i¼0

 
C
�

~k1þ i
�
C
�

~k1þ ~k0

�
C
�

~k1

�
C
�

~k1þ ~k0þ i
�� ~ax�i

0

x�1ð Þ!

�
~a1� ~a0

�i

i!

� 1F1

�
~k1þ i; ~k1þ ~k0þ i; ~a0� ~a1

��
;

x2Zþ;

(2)

where Pr :ð Þ indicates the probability operator, X denotes the ran-

dom variable (rv) representing the mRNA counts, C refers to the

gamma function and 1F1 is the confluent hypergeometric function of

the first kind. We note that the degradation parameter b is not iden-

tifiable as it appears only in combination with other parameters. In

the sequel we consider a reparameterization where the remaining

Fig. 1. System for the proposed two-state switch model. The circles indicate the

states of the gene, called ON or OFF, whilst the rectangle refers to the mRNA

population. The parameters k0 and k1 represent the exponential rates at which the

gene switches between the two states, while a0 and a1 are the transcription rates

in the OFF and ON states, respectively, and b denotes the degradation rate
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kinetic parameters are scaled with respect to the degradation rate,

i.e. ~a0 ¼ a0

b , ~a1 ¼ a1

b , ~k1 ¼ k1

b and ~k0 ¼ k0

b . Inference focuses on

the scaled parameters ~a0; ~a1; ~k1 and ~k0. The following theorem

states that the stationary probability distribution for X can be writ-

ten as a mixture of a Poisson and a Poisson-beta density, which can

usefully be exploited for inference.

THEOREM: The density in (2) can be associated with the following

latent variable structure,

X ¼ Aþ B (3)

where

A � Pois
�

~a1 � ~a0ð ÞP
�

(4)

P � Beta
�

~k1; ~k0

�
(5)

B � Pois ~a0ð Þ; (6)

where Pois(x) indicates the Poisson rv with mean x and variance

x and Beta(a, b) represents the beta rv with mean a= aþ bð Þ and

variance ab
aþbð Þ2 aþbþ1ð Þ. The probability functions for A (Johnson

et al., 2005) and B are

Pr A ¼ yð Þ ¼
C
�

~k1 þ y
�
C
�

~k1 þ ~k0

�
C
�

~k1

�
C
�

~k1 þ ~k0 þ y
��

�
~a1 � ~a0

�y

y!
� 1F1

�
~k1 þ y; ~k1 þ ~k0 þ y; ~a0 � ~a1

�
;

y 2 Zþ;

(7)

and

Pr B ¼ zð Þ ¼ e�~a0
~az

0

z!
; z 2 Zþ: (8)

PROOF: Since X is defined as the summation of A and B, X¼ x

is obtained when A ¼ a;B ¼ bð Þ with a; bð Þ 2 f 0;xð Þ; 1; x� 1ð Þ; . . . ;

x� 1; 1ð Þ; x; 0ð Þg. Furthermore, given A and B are independent Pr

A ¼ a;B ¼ bð Þ ¼ Pr A ¼ að ÞPr B ¼ bð Þ conditionally on parameters.

Hence, the probability density for X can be obtained, via the discrete

convolution formula, as

Pr X ¼ xð Þ ¼
Xx

i¼0

Pr A ¼ ið ÞPr B ¼ x� ið Þ; x 2 Zþ (9)

¼ e�~a0

Xx

i¼0

 
C
�

~k1 þ i
�
C
�

~k1 þ ~k0

�
C
�

~k1

�
C
�

~k1 þ ~k0 þ i
�� ~ax�i

0

x� 1ð Þ!

�
~a1 � ~a0

�i

i!

� 1F1

�
~k1 þ i; ~k1 þ ~k0 þ i; ~a0 � ~a1

��
;

x 2 Zþ;

(10)

which corresponds to the formula in (2). The formulation in (10) follows

from (9) by replacing the probabilities of A and B with their formulae

(7) and (8), respectively. This completes the proof of the theorem.

Hence, we have shown that X can be written as the summation of A

and B, as in (3)–(6). Furthermore, since the summation of two independ-

ent Poisson rvs is again Poisson, we can rewrite the distribution of X as

XjP � Pois
��

~a1 � ~a0

�
Pþ ~a0

�
; with P � Beta

�
~k1; ~k0

�
: (11)

We note that P can be interpreted as the probability that the

gene is in the ON state (Johnson et al., 2005), and its mean

represents the average time the gene spends in the ON state. Explicit

expressions for the mean and variance of P and X are derived in the

Supplementary Section S2.3. To compute Pr(X) in (2), 1F1 needs to

be estimated numerically, which is challenging (Kim and Marioni,

2013; Muller, 2001). However, the decomposition of X in (11) pro-

vided by the theorem shows that this computation can be avoided

by taking advantage of the latent variable structure to sample X

without the need to explicitly compute Pr(X).

3 Inference

3.1 Measurement equation
As the mRNA molecule count cannot be observed exactly, we as-

sume that the observation for cell i, Yi, is proportional to the actual

population of mRNA, Xi, and that the measurement process is per-

turbed by measurement noise. In our FISH flow cytometry experi-

mental data, observations coming from a sample of N cells,

Y ¼ Y1; . . . ;YNð Þ, are assumed to be linked to the original mRNA

levels, denoted by X ¼ X1; . . . ;XNð Þ, via a measurement equation

which involves a proportionality constant, j, and additive Gaussian

measurement error, which we assume to be independently and iden-

tically distributed (iid):

Yi ¼ jXi þ �i; for i ¼ 1; . . . ;N; (12)

with �i � Nðl�; r2
� Þ, where �i represents the measurement error for

the ith cell and N a;bð Þ is the normal rv with mean a and variance b.

In the analysis of the background noise data, described in

Supplementary Section S2.2, we show that the normal distribution

approximates the background error of our experimental data rea-

sonably well. We assume that l� is positive. The reason for this is

that, although ideally the fluorescence probes should bind specifical-

ly to the mRNA of interest only, some probes will bind in an unspe-

cific way and the cells can exhibit autofluorescence. Furthermore,

since the measurement process strongly amplifies the fluorescence

signal from the original populations of mRNA molecules, we also

assume j > 1.

We note that, due to the measurement process, the unobservable

mRNA population in each cell, Xi, is a latent state variable.

The marginal likelihood of the observation for the ith cell, given the

parameter vector h ¼
�

~a0; ~a1; ~k1; ~k0;j;l�; r�
�T

, is obtained by inte-

grating over the latent states as

Pr Yi ¼ yijhð Þ ¼
Ð
Zþ

Pr Yi ¼ yijXi ¼ x; hð ÞPr Xi ¼ xjhð Þdx;

¼
X1
x¼0

Pr Yi ¼ yijXi ¼ x; hð ÞPr Xi ¼ xjhð Þ:
(13)

In practice, we approximate (13) by drawing a finite sample of

size S from (11), zi ¼
�

z
1ð Þ

i ; . . . ; z
Sð Þ

i

�
, to compute the following un-

biased approximation:

bf yijhð Þ ¼
XS

s¼1

P
�

Yi ¼ yi

���Xi ¼ z
sð Þ

i ; h
�

S
: (14)

In order to approximate the densities of all observations, we

should draw N samples of size S, z1; . . . ; zN, which would be compu-

tationally prohibitive. At the same time, in spite of the independent

and identically distributed (iid) nature of the data, using the same

sample z ¼
�

z 1ð Þ; . . . ; z Sð Þ
�

for all N data points would lead to a

biased estimator. Here, we use a recently developed estimator which

allows us to employ the same S particles for all observations while
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preserving unbiasedness. The method is illustrated in detail in the

Supplementary Section S1.1. We combine this calculation with a

pseudo-marginal method where, in the MCMC algorithm, these un-

biased estimates replace the original marginal probabilities.

We note that our approach explicitly allows for two sources of

noise, namely the intrinsic stochasticity due to the biological noise, in-

herent in the molecular processes associated with transcription and deg-

radation, and the measurement noise, which is not part of the

molecular dynamics. The approach outlined below does not rely on the

Gaussianity assumption of the measurement noise, and can be extended

in a straightforward way to other distributional specifications for the

measurement error. An alternative to the pseudo-marginal approach is

to explicitly perform a data augmentation procedure to sample the la-

tent states together with the other parameters of the model. We imple-

mented and tested both methods on simulated data with the conclusion

that the former resulted in improved mixing and convergence of the

posterior chains while the data augmentation procedure with two layers

per cell, i.e. Pi and Xi, led to a highly correlated multidimensional pos-

terior space, which was much more challenging to explore.

3.2 A hierarchical model for biological replicates
As will be shown in Section 4.1, the experimental data available

was collected in four biological replicates, each containing a multi-

tude of single cell observations. The full data of an experiment with

K replicates is Y ¼
�

Y 1ð Þ; . . . ;Y Kð Þ
�

with Y kð Þ ¼
�

Y
kð Þ

1 ; . . . ;Y
kð Þ

Nk

�T

representing the Nk observations available for the kth replicate,

k ¼ 1; . . . ;K. In our case K¼4. The hierarchical measurement equa-

tion, relating the observations to the latent mRNA populations is

Y
kð Þ

i ¼ j kð ÞX
kð Þ

i þ �
kð Þ

i ; for i ¼ 1; . . . ;Nk and k ¼ 1; . . . ;K; (15)

with �
kð Þ

i � N
�
l kð Þ
� ;r2 kð Þ

�

�
.

Define the hierarchical parameter vector for the kth replicate as

h kð Þ ¼
�

~a kð Þ
0 ; ~a kð Þ

1 ; ~k
kð Þ

1 ; ~k
kð Þ

0 ;j kð Þ; l kð Þ
� ;r kð Þ

�

�T
:

Bayesian hierarchical modeling (Finkenstädt et al., 2013;

Gamerman and Lopes, 2006; Hey et al., 2015) provides a natural

framework for pooling data from several experiments whilst quanti-

fying variation between biological replicates in a statistically rigor-

ous way. In contrast to assuming that a replicate k is described by

exactly the same value of the parameter vector, in a hierarchical

model it is a random sample from a joint distribution p
�
hðkÞ
���H�

with H ¼ H1; . . . ;Hq

� �
, where q is the number of parameters in h kð Þ,

q¼7 in our case, and each Hj ¼ lj; sj

� �T
; j ¼ 1; . . . ; q, is a hyper-

parameter vector quantifying the mean and precision of the jth

parameter across the replicates. The graphical model for the hier-

archical system used is shown in Figure 2.

Assuming that replicates are independent, the full likelihood for

all cells in the experiment is

Lðh;YÞ ¼
YK
k¼1

L
�
h kð Þ; y kð Þ

�
¼
YK
k¼1

YNk

i¼1

P
�

Y
kð Þ

i

���h kð Þ
�

(16)

with h ¼
�
h 1ð Þ; . . . ; h Kð Þ

�
denoting the matrix of hierarchical param-

eter vectors and where y kð Þ ¼
�

y
kð Þ

1 ; . . . ; y
kð Þ

Nk

�T
indicates the realiza-

tion of Y kð Þ. In the MCMC algorithm, we replace the intractable

likelihood L
�
h kð Þ; y kð Þ

�
, which involves a latent state for the

unknown mRNA population of every cell, with an unbiased esti-

mate as in (14).

Let pðhjHÞ ¼
QK

k¼1

Qq
j¼1 p

�
h kð Þ

j

���Hj

�
denote the prior distribution

of h and pðHÞ ¼
Qq

j¼1 p Hj

� �
the prior distribution for the hyperpara-

meter H. The posterior distribution of the parameters given the data

is then proportional to

p h;HjYÞ / Lðh; YÞp hjHÞp HÞ:ððð (17)

In the hierarchical model we wish to infer upon the posterior

p h;HjYÞð which is achieved by formulating an appropriate MCMC

algorithm that samples from it.

3.3 Prior distributions
For all our hierarchical parameters we use a log-normal prior distribution

p
�
h kð Þ

j

���Hj

�
� logN lj;

1

sj

� �
; (18)

where logN a;bð Þ denotes the log-normal distribution with mean a

and variance b, which has R
þ as support. As j kð Þ > 1 we assume a

truncated log-normal prior distribution with support in 1;1ð Þ.
Regarding the hyperparameters we assume the well known normal-

gamma conjugate prior model (Gamerman and Lopes, 2006)

ljjsj � N aj;
bj

sj

� �
and sj � G cj; dj

� �
; for j ¼ 1; . . . ; q; (19)

where aj, bj, cj and dj are the hyperprior parameters and G a; bð Þ is

the gamma distribution with mean a
b and variance a

b2. The choice of

Fig. 2. Graphical model for the hierarchical system. On the left side the hyper-

parameters H generate the hierarchical parameters. Given the kinetic hier-

archical parameters, the latent states X ð1Þ; . . . ;X ðK Þ are drawn from (2). These,

together with the hierarchical measurement equation parameters, generate

the observed data Y ð1Þ; . . . ;Y ðK Þ
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the prior and hyperprior distributions leads to conjugate forms

of the conditional posterior distributions for the hyperprior parame-

ters, which allow us to sample using a corresponding Gibbs sampler

(Hey et al., 2015). The hyperparameters l5 and s5 are sampled via a

Metropolis–Hasting sampler, due to the truncation of the log-

normal distribution for j. We set aj¼0, bj ¼ 104; cj ¼ 0:001 and

dj ¼ 0:001, which correspond to a vague normal prior with zero

mean for the hypermean, lj, and a vague gamma prior for the hyper-

precision, sj, with mean 1 and variance 103. The hyperparameters

for the measurement error, l6, l7, s6 and s7, are not sampled:

the hierarchical parameters l kð Þ
� and r kð Þ

� are assumed to follow a

constant informative prior, which is distinct for each replicate,

k ¼ 1; . . . ;K, and matches the results we obtained from an addition-

al analysis of background noise data shown in the Supplementary

Section S2.2.

3.4 Markov chain Monte Carlo
We develop a Metropolis–within-Gibbs algorithm (Hastings,

1970; Metropolis and Ulam, 1949; Metropolis et al., 1953)

where parameters are alternately sampled from their conditional

distributions: the hyperparameters Hjh are sampled from a Gibbs

sampler; the hierarchical parameters hjH;Y are sampled, separate-

ly for each replicate, via a Metropolis algorithm in two blocks,

one for ð~a0; ~a1; ~k1; ~k0;jÞ and one for ðl�; r�Þ. This particular

choice was motivated by maximizing the correlation of the

parameters within each block such that correlated parameters are

updated jointly. Such strategy was found to significantly improve

mixing of the posterior chains. The proposal values for the

Metropolis algorithm are sampled via an adaptive random walk

(ARW) scheme (Haario et al., 2001) where during any Metropolis

step, the actual likelihood, which involves a latent state for

the mRNA population, is replaced by an unbiased estimate as

in (14). The details of the sampling scheme are described in the

Supplementary Section S1.2.

3.5 Simulation study
In order to assess the performance of our inferential methodology

we carried out a simulation study where we simulated six datasets,

each composed of 4 replicates of 1000 independent observations,

the same size as the experimental data used. The parameter values

were chosen approximately such that they give rise to densities

that are broadly similar to the ones observed for the experimental

data. The details of the simulation study are provided in the

Supplementary Section S1.3. The parameter values used are reported

in the Supplementary Tables S1 and S2 and the simulated densities

are shown in Supplementary Figure S1. For each simulated dataset,

we apply our Bayesian hierarchical estimation algorithm to sample

from the posteriors of the model parameters as described above. In

each simulation study, the MCMC algorithm was run for 6� 105

iterations where the first 105 iterations were discarded as burn-in.

We computed the highest posterior density (HPD) credible intervals

(CIs) via the HPDinterval function of the R (R Core Team, 2016)

package coda (Plummer et al., 2016). Table 1 displays the empirical

coverages of the 0.90 and 0.95 level HPD CIs for the hierarchical

and hyper parameters, respectively. On average 98.2 and 98.8% of

the hierarchical parameters fall in the 0.90 and 0.95 level HPD CIs,

respectively; while all hypermean and hyperprecision parameters

fall in the respective 0.90 and 0.95 level HPD CI. We hence con-

clude that the algorithm performs well in retrieving the unknown

parameters.

4 Experimental data analysis

4.1 Data description
As a case study of the proposed methodology we analyse single cell

expression data obtained from a modified version of HEK293 cells

containing a version of the HIV-1 env gene under the control of a

tetracycline inducible promoter (Damgaard et al., 2008). The

mRNA levels are observed, separately for each cell, via FISH flow

cytometry where the native mRNA is tagged with fluorescent

labelled oligos, which are short nucleotide sequences designed to

bind specifically to the mRNA of interest. A laser is then used to in-

duce these tagged mRNAs to emit light. The measurement proced-

ure is illustrated in Supplementary Figure S2. The BD FACSDivaTM

software, of the BD LSRFortessaTM cell analyzer, is used to measure

the overall light intensity in each cell. While about 10 000 observa-

tions were detected in each replicate we find that the distribution of

the data is already accurately approximated by using 1000 observa-

tions with very marginal loss of information and we therefore pre-

sent results here using data from a randomly selected subset of 1000

observations. The HIV-1 env gene under study is observed at two

levels, 5 and 10ng/ml, of induction by tetracycline. In each of the

two experimental conditions, data are collected in the same four

biological replicates. Supplementary Figure S6 shows the densities

obtained from the experimental data in each replicate. Interest lies

in inferring the kinetic parameters of the model and in studying the

effect of tetracycline on the system.

4.2 Inference
We apply the hierarchical Bayesian methodology described in

Section 3 separately to each dataset corresponding to the two experi-

mental conditions. The MCMC algorithm was run for at least

6� 105 iterations, the first 105 of which were discarded as burn-in.

We use the Heidelberger and Welch convergence diagnostic

(Heidelberger and Welch, 1981, 1983), via the heidel.diag function

of the R package coda (Plummer et al., 2016), to test for the statio-

narity of each chain and automatically assess its burn-in period. We

apply the convergence test to all hierarchical and hyperparameters

and found that none of them were rejected at the 1% significance

level. For one parameter the estimated burn-in was larger i.e.

1:8� 105. In this case we ran the MCMC for longer in order to in-

crease the burn-in to the one estimated by heidel.diag and keep the

following 5� 105 iterations as our posterior sample. For the hyper-

parameters, we use a thinning factor of 100, while we keep all itera-

tions from the hierarchical parameters. After having removed the

burn-in period, we use the ess function of the mcmcse R package

(Flegal et al., 2017) to compute the effective sample size (ess) of

every posterior sample, i.e. the size of an iid sample with the same

variance as the chain considered. All the ess estimates are above 170

for the hyperparameters, with an average ess of about 2500, and

above 785 for the hierarchical parameters, with an average ess of

approximately 10 000. To appreciate the convergence and mixing of

the algorithm, Supplementary Figures S10 and S11 show the thinned

chains of two re-parametrizations of the hierarchical parameters

representing the mean and standard deviation of y 1ð Þ; . . . ; y Kð Þ.

Table 1. Coverage of the 0.90 and 0.95 level HPD CIs for the hier-

archical parameters, out of 24 (6 simulations of 4 replicates each)

Level ~a0 ~a1
~k1

~k0 j l� r� Average (%)

0.90 24 24 21 24 24 24 24 98.2

0.95 24 24 22 24 24 24 24 98.8
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The horizontal lines represent the sample mean and standard devi-

ation observed in the respective experimental data and always fall in

the central area of the posterior chains.

4.3 Results
Figure 3 shows the posterior densities for the hierarchical parame-

ters in both experimental conditions, while Figure 4 shows the esti-

mated posterior densities for the exponential transformations of the

hypermean parameters which, in a log-normal distribution, repre-

sent the posterior modes of the respective hierarchical parameters.

Further estimation details are provided in Supplementary Table S5,

which gives the 0.95 level HPD CIs for the exponential of the hyper-

mean parameters, in Supplementary Tables S6 and S7, that list the

0.95 level HPD CIs for the hierarchical parameters and some repara-

metrizations of these, and in Supplementary Figure S9, which shows

the posterior densities for the hyperprecision parameters.

Inference reveals insights into the transcriptional process and

how it is affected by an increased level of stimulation. We notice

that the posterior densities for the measurement error parameters, as

well as for the proportionality constant j, are mostly unchanged be-

tween experimental conditions. This is expected as they are associ-

ated with the measurement process which in principle remained

unchanged between experiments. Naturally, the measurement error

parameters are very similar across conditions also due to the inform-

ative prior used. Regarding the kinetic parameters we note that, the

transcription rates, ~a0 and ~a1, only show minor variations, while

both switch rates, and particularly ~k1, clearly increase with the

higher level of stimulus. In particular, the fold change between con-

ditions of the posterior modes of ~k1 and ~k0, i.e. el3 and el4 , is 2.0

and 2.3, respectively. It hence appears that, in cells stimulated at a

higher level of tetracycline, the speed of both ON and OFF switch-

ing increases.

We also compute the coefficient of variation (CV), i.e. the ratio

of the standard deviation to the mean, of the hierarchical parameters

across replicates, to study how parameters vary between biological

replicates. Table 2 reports the posterior means of the CVs: in both

conditions, the measurement error parameters and ~a1 show the

smallest variation, the switch rates exhibit more variability, while ~a0

clearly is the most variable parameter between replicates. The same

indication is also evident when looking at how the posterior den-

sities of the hierarchical parameters vary between replicates in

Figure 3.

Figure 5 shows some reparametrizations of the hierarchical

parameters which allow us to gain further insight into the transcrip-

tional process. We note that the ratio between ~a0 and ~a1 falls be-

tween 0 and 0.04, which confirms that transcription in the OFF

state usually is non-zero and that our assumption of positive tran-

scription in both states is more realistic for this gene. Nonetheless, it

also highlights the finding that transcription in the active state is
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Fig. 3. Posterior densities for the hierarchical parameters. The black solid and

red dotted lines refer to cells stimulated with 5 and 10 ng/ml of tetracycline,

respectively
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orders of magnitude higher than in the inactive one. Studying the

mean of P, lP, allows us to compare the overall time the gene spends

in the ON state between conditions. It appears that, for an increas-

ing dose of tetracycline, although both switches are accelerated,

there is some considerable variation between replicates and no dis-

cernible difference in the time the gene spends in the more active

state. We also find that the gene spends between approximately 3

and 14% of the time in the ON state, while most of the time they

are OFF. Despite ~a0 being much smaller than ~a1, since the gene is

mostly OFF, we find that a significant fraction of mRNA is tran-

scribed from the OFF state (Table 3 and Fig. 5, bottom panel). The

asymmetry in timing along with the large difference in the associated

transcription rates is responsible for the dynamic appearance of

short and intense bursts, and the findings here are consistent with

results obtained from fitting switch-type stochastic models to single

cell reporter imaging time series data for other genes (Harper et al.,

2011; Hey et al., 2015). In particular, Dunham et al. (2017) further

characterize this asymmetry by showing that switches from the OFF

to the ON states are typically abrupt and result in short and intense

bursts which are followed by a gradual deactivation of the gene. The

estimation results for the inverted switch rates (Fig. 5, middle pan-

els), which correspond to the average time the gene spends in each

state, confirm that a higher level of stimulation leads to a faster

switching behaviour. Note that the time unit here is the degradation

rate. This appears to be a strong result as there are clear differences

between the two levels of stimulus, particularly for the ON

switching.

For each replicate and experimental condition, we simulated the

observed data, Y kð Þ, for k ¼ 1; . . . ;4, from 100 posterior values of

the hierarchical parameters h kð Þ: in all cases the simulated densities

closely match the experimental data, showing that the parameter

values inferred, and the model used, are able to reproduce very

similar patterns as those experimentally observed (Supplementary

Fig. S8).

The latent population of mRNA in single cells is estimated to oc-

cupy a range between a few tens to a few hundreds of molecules,

while the ratio between variance and mean is inferred to be

orders of magnitude bigger than 1 (the lower bounds of all 0.95 level

HPD CIs are bigger than 10), which highlights the large degree of

overdispersion observed for gene expression in single cells (details in

Supplementary Fig. S7 and HPD CIs in Supplementary Tables S6

and S7).

5 Conclusions

We propose a stochastic gene expression model that allows for tran-

scriptional switching between two states, where transcription in the

so called OFF state is less active than in the ON state, but may occur

at a positive rate. While approaches exist to fit this system, and in-

deed more complex types of switch models, to single cell time series

imaging data on gene expression (Featherstone et al., 2016; Harper

et al., 2011; Hey et al., 2015), the aim here is for such a model to be

fitted to single cell expression data from flow cytometry experiments

such as FACS or FISH, which only report gene expression at a single

point in time. We show that the stationary distribution of the sto-

chastic process can be decomposed as a mixture of a Poisson and a

Poisson-beta distribution, a latent structure that greatly facilitates

inference as it allows one to sample the population of mRNA mole-

cules at equilibrium instead of having to approximate its density nu-

merically. We also formulate a process exhibiting measurement

error, which introduces a latent state for the mRNA population, and

develop a pseudo-marginal likelihood approach to integrate over the

latent states. In order to infer the model parameters, we develop a

methodology for Bayesian posterior inference via MCMC, where we

Table 2. Posterior mean of the CV of the hierarchical parameters

across replicates

Tetracycline (ng/ml) ~a0 ~a1
~k1

~k0 j l� r�

5 0.39 0.11 0.28 0.15 0.13 0.10 0.12

10 0.78 0.19 0.18 0.28 0.21 0.10 0.13
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Fig. 5. Posterior densities for the following reparametrizations of the

hierarchical parameters:
aðkÞ

0

aðkÞ
1

; lðkÞP ; 1=~k
ðkÞ
1 ; 1=~k

ðkÞ
0 and ~x

ðkÞ
0 , with k ¼ 1; . . . ; 4,

where ~x
ðkÞ
0 ¼

aðkÞ
0

�
1�lðkÞ

P

�
aðkÞ

0

�
1�lðkÞ

P

�
þaðkÞ

1
lðkÞ

P

represents the fraction of mRNA which is tran-

scribed from the OFF state. The black solid and red dotted lines refer to cells

stimulated with 5 and 10 ng/ml of tetracycline, respectively

Table 3. Posterior mean for the fraction of mRNA which is tran-

scribed from the OFF state in each replicate for both experimental

conditions

Tetracycline (ng/ml) Replicate

1 2 3 4

5 0.19 0.08 0.35 0.18

10 0.15 0.01 0.14 0.12
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embed the model into a Bayesian hierarchical structure, which

allows us to quantify the variability between biological replicates.

The methodology is validated in simulation studies and applied to

experimental single cell FISH flow cytometry expression data

obtained from a version of the HIV-1 env gene under the control of

a tetracycline inducible promoter. We find strong evidence that tran-

scription mostly happens in short and intense bursts, where the gene

spends most of the time in the less active state, and only switches for

a short time into a more active state, the latter being characterized

by a much larger transcription rate. For increasing level of stimulus,

the transcription rates are mostly unchanged, while there is a signifi-

cantly increased speed of switching in both states.

Further analyses are currently being performed to compare more

experimental conditions and to investigate how transcription varies

during the life cycle of a cell. We note that Harper et al. (2011)

developed methods to reconstruct transcription dynamics from two

loci in real time in single cells and were able to provide evidence for

the existence of a refractory period in the inactivation phase of gene

transcription. This finding has since been confirmed as an important

ubiquitous property of genes (see, e.g. Molina et al., 2013). Hence, a

potential aspect to address in future work is to investigate the pres-

ence of such a period by introducing an intermediate state between

the OFF and ON states, which would allow to model gene activa-

tion in two steps. Inferring this from flow cytometry experimental

data alone might pose challenges to parameter identifiability, in par-

ticular if measurement error modelling is included. On the other

hand, an approach combining time series reporter imaging with

flow cytometry expression data may be a promising way forward to

fit these kinds of models to experimental data in order to study in

more detail the processes involved in transcription and transcrip-

tional regulation.
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