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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

Surface integrity describes the attributes of a surface and it 

influences the functional performance of a work piece 

significantly. Residual stress is one of the major 

characterization parameters of surface integrity. Previous 

studies have shown, that residual stress can have a significant 

influence on the fatigue life / performance and distortion of 

the work piece [1-5]. High speed precision machining 

processes have been used in automotive, aerospace and 

tooling industries over the last few decades. To improve a part 

surface quality in particular the surface integrity and 

increasing product life cycle are important aspects for these 

manufacturing industries [1-4]. Hard material, namely tools 

steel such as AISI D2 and H13, are very commonly used as 

dies or molds for forming and forging processes. Nowadays 

these dies and molds require high precision to allow industries 

such as automotive and aerospace to build near net-shape 

forms. Therefore, it is important to build a knowledge bridge 

between residual stress and the machining process, to increase 

the performance of those forging / forming dies and to 

ultimately achieve higher accuracy and reduce manufacturing 

costs. This is the reason why this area is still being researched, 

especially to understand and predict residual stresses, which 

occur during the machining process and remain in the work 

piece.  

This paper will investigate the formation and influential 

factors of residual stress during high speed machining process 
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Abstract 

Surface integrity describes the attributes of a surface and it influences the functional performance of a work piece significantly. Residual stress 

is one of the major characterization parameters of surface integrity. Non-favorable residual stresses on a machined surface can reduce the 

fatigue life and performance of the machined part. It therefore requires a prediction model for residual stress in order to establish machining 

strategy to obtain favorable residual stress for prolonged fatigue life. Hardened tool steels have been widely used to make molds and dies by 

precision milling in aerospace and automotive industries. Knowledge of the relationship between residual stress on the machined molds and 

machining conditions is very important for process control. In this work, a prediction model for residual stress was developed by using a 

model-based approach on an Artificial Neural Network. This model is expected to predict the residual stress based on cutting parameters such 

as cutting speed, feed rate, depth of cut and tool lead angle. Several precision milling trials were carried out using a central composite design 

method. The networks have been trained and validated by experimental results. The performance of a feed forward neural network model with 

backpropagation was assessed and compared with a radial basis function network model by criterion of least mean squared error. Furthermore, 

the neural network prediction model was supported by the finite element simulation of the milling process to understand the formation 

mechanism of the residual stress in the machined surface. It was found, that the predicted values by the neural network model matched well 

with the experimental results. The radial basis function network showed better results than the feed forward network and was therefore chosen 

to take forward in the analysis. The feed rate was in this case the most influential factor, because it contributes significantly to heat and 

deformation on the work piece. The model could be used to optimize machining processes to obtain machining strategy for generating 

favorable residual stress and increasing fatigue life performance of the machined parts. 
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using a ball nose end mill cutter. This includes extensive set of 

machining trials based on a central composite design method 

with four factors, namely, cutting speed, feed rate, depth of cut 

and tool lead angle. The results were analyzed and used to 

develop artificial neural networks models for the prediction of 

residual stress. Two different types of artificial neural network 

models were assessed and compared based on their mean 

squared error performance and regression accuracy. 

Conclusions were drawn based on these analyses. 

 

2. Experiments 

Table 1. Experimental design 

Standard 

Order 

Cutting 

speed 

(m/min) 

Depth of 

Cut 

(mm) 

Feed Rate 

(mm/tooth) 

Lead Angle 

(deg) 

1 350 0.3 0.08 7.5 

2 250 0.5 0.08 7.5 

3 250 0.3 0.16 7.5 

4 350 0.5 0.16 7.5 

5 250 0.3 0.08 22.5 

6 350 0.5 0.08 22.5 

7 350 0.3 0.16 22.5 

8 250 0.5 0.16 22.5 

9 300 0.4 0.12 15 

10 300 0.4 0.12 15 

11 250 0.3 0.08 7.5 

12 350 0.5 0.08 7.5 

13 350 0.3 0.16 7.5 

14 250 0.5 0.16 7.5 

15 350 0.3 0.08 22.5 

16 250 0.5 0.08 22.5 

17 250 0.3 0.16 22.5 

18 350 0.5 0.16 22.5 

19 300 0.4 0.12 15 

20 300 0.4 0.12 15 

21 200 0.4 0.12 15 

22 400 0.4 0.12 15 

23 300 0.1 0.12 15 

24 300 0.6 0.12 15 

25 300 0.4 0.02 15 

26 300 0.4 0.2 15 

27 300 0.4 0.12 0 

28 300 0.4 0.12 45 

29 300 0.4 0.12 15 

30 300 0.4 0.12 15 

 

The machining experiments were conducted on a DMG 

Mori-Seki HSC 75 with a tungsten carbide 4 flute ball nose 

end milling cutter of 8 mm diameter (Mitsubishi - impact 

miracle). The cutting speed of 200 – 400 m/min, depth of cut 

of 0.1 – 0.6 mm, feed rate of 0.02 – 0.2 mm/tooth with tool 

lead angle of 0 – 45 deg were adopted in the experiments. 

AISI H13 tool steels with an average hardness of 49 HRC 

were used as work materials. 

The experiments were planned based on a 5-level Central 

Composite Design (CCD) method which led to a total of 

30 samples where the run-order was randomized. The 

experimental design can be found in Table 1. 7 additional 

experiments were also carried out for validation of the 

developed neural network prediction models. 

The experimental setup is shown in Fig. 1. The work piece 

is fixed on a fixture (as shown in Fig. 1 (b) which is mounted 

on top of a Kistler dynamometer (Type 9129AA) for 

measuring the cutting forces. Fig. 1 (c) shows the laptop 

computer and signal conditioner to process the cutting force 

data.  
 

 

Fig. 1. Experimental setup, (a): complete machine setup; (b): work piece with 

its holder and dynamometer; (c): Cutting force data processing equipment. 

Table 2. Experimental Von-Mises results 

Standard Order 
Von-Mises 

(MPa) 
Standard Order 

Von-Mises 

(MPa) 

1 165.74 16 181.52 

2 113.74 17 119.37 

3 103.04 18 159.77 

4 115.29 19 181.39 

5 158.42 20 113.02 

6 147.961 21 121.45 

7 150.58 22 145.88 

8 109.34 23 133.67 

9 130.19 24 146.97 

10 114.23 25 173.96 

11 130.71 26 208.02 

12 113.21 27 198.11 

13 108.16 28 161.02 

14 125.96 29 120.46 

15 159.22 30 153.30 

 

A Proto LXRD with a Chromium (Cr) tube and a Bragg-

angle of 156.4ι (2Ʌ) was used to measure the residual stress. 

Each sampling point was measured in 5 different angles in the 

longitudinal and perpendicular directions to the cutting 

direction. Furthermore, each work piece sample was measured 

5 times to calculate an average. The measurement of two 

perpendicular stress vectors and shear stress in one point 

–

           




    


  





    
         



 

଴ߝ  is the reference strain and İ the current strain

‘ ’



 Andreas Reimer et al. / Procedia CIRP 71 (2018) 329�334 331
–

–
– –

–

ι Ʌ

–

allows the calculation of the Von-Mises plane stress (VM).  

Table 2 shows the calculated Von-Mises plane stresses for 

each sample which were used to assess the correlation 

between the FEM simulation and XRD measurement.  

3. Finite Element Simulation Setup 

In order to gain fundamental understanding of the physics 

of formation of residual stress finite element (FE) simulation 

of machining process was also carried out in this paper,. 

Fig. 2 shows the FE simulation model established in 

ABAQUS 6-14. The cutting tool was 3D-scanned prior FE 

implementation to increase accuracy of the simulation. It was 

modelled with rigid shell elements to reduce the calculation 

time. The work piece has 8-node thermally coupled brick, 

trilinear displacement and temperature, reduced integration 

and hourglass control elements (C3D8RT). The element 

deletion in the work piece elements was activated.  

 

 

Fig. 2. FEM setup 

The model can be used to analyze cutting temperature, 

residual stress, cutting forces etc. during the cutting process 

with multi-flute engagement. Therefore, the precision of this 

calculated model is vital to reflect accurate predictions.  

This FE model used the extended Johnson-Cook model (JC) 

(equation 1) as well as an additional material removal 

subroutine [6, 7]. This subroutine deletes elements, which 

exceed the ultimate tensile strength (UTS) and which is 

varying depending on the temperature. The temperature 

change in the material effects the UTS and therefore the 

material removal criteria, it is commonly known that the UTS 

decreases with increasing temperatures [8], based on this the 

subroutine adjusts the UTS. Due to this additional criterion, a 

higher accuracy of simulation can be achieved. The criterion 

is an empirical 3
rd

 degree regression formula based on 

temperature variating tensile experiments, the principal can be 

found in [7]. 
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In equation 1, the flow stress   can be combined by the 

Von-Mises yield criterion and describes an isotropic 

hardening, where    is the proportional strain, &  is the 

proportional strain rate and T is the temperature. A, B, C, m, n, 

T0, Tm are material parameters in the Johnson-Cook 

equation, ߝ଴  is the reference strain and İ the current strain. 

Parameter D and E are 2
nd

 and 3
rd

 grade polynomial 

regression, respectively. In the following table 3 the used 

parameter in the FE model can be found.  

Table 3. Johnson-Cook material parameter for AISI H13 

Hardness 

[HRC] 

A 

[MPa] 

B  

[MPa] 

C 

[-] 

n  

[-] 

m  

[-] 

Tm 

[°K] 

Source 

46 674.8 239.2 0.027 0.28 1.3 1760 [9] 

 

4. Artificial Neural Network model 

4.1. Artificial Neural Network Structure 

In the recent years machine learning or artificial 

intelligence has gained ever more attentions in research. 

Therefore the prediction results can achieve a very high 

accuracy and can predict more complex problems compared 

to other prediction methods. Machine learning can be divided 

in several different methods; the most common methods are 

the artificial neural network, Fuzzy Logic, etc. Substantial 

literature has already been published in this area of research 

[5, 10-16]. 

The artificial neural network (ANN) imitates the human 

brain structure whereby it consists of an input layer, followed 

by a hidden layer of neurons and an output layer. The ANN 

can be further divided into different types of networks, like 

Feed Forward (FF), Radial Basis Function (RBF), Recurrent 

Neural Network, Dynamic Neural Networks, etc. [11, 14]. In 

this work the main focus is on the FF and RBF type of neural 

networks. 

In general the FF network can have any number of hidden 

layers and any number of neurons in each layer of the hidden 

layers. Each neuron is constructed with an initial weight and 

every neuron is connected to each other from one layer to the 

other. The feed forward network usually needs to be trained, 

like a human brain, with each training cycle the network gains 

more knowledge and accuracy since the weights are re-

adjusting accordingly to the target. 

The Radial Basis Function has a similar structure as a FF 

network, however it only consists of one hidden layer and 

therefore the network has in most cases a simpler structure 

and works faster than a ‘traditional’ FF or multiplayer 

perceptron network (MLP). The RBF uses a classification by 

hyper spheres which is the biggest and most important 

difference from the FF network; the MLP networks using 

arbitrarily shaped hyper surfaces for its separation [10].  

4.2. Artificial Neural Network Model Framework 

In this work, two neural networks were used and the 

performance of both networks was compared based on its 

regression accuracy as well as the Mean Squared Error (MSE). 
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Matlab (R2017a) Toolbox Neural Network (Ver. 10.0) was 

used to realize the neural networks.  

A sequential order of networks was tested with three 

hidden layers and neurons ranged between 1 to 10 in each 

layer, which result in 1000 tested networks. The training, 

validation and test ratio of those FF networks was 70:15:15, 

respectively. Fig. 3 shows the best structure of the FF network. 

 

 

Fig. 3. FF Network structure 

This network consists of an input layer, three hidden layers 

with each 10 neurons and an output layer. Every tested 

network has been trained 200 times to achieve consistent 

outcome. It was found that when the activation functions of 

the hidden layers were using a combination, it can increase 

the performance of the network. In this work, the best 

performance was achieved when the first hidden layer is set to 

a Log-Sigmoid activation function (equation 2); the following 

two hidden layers and the output layer to a hyperbolic-tangent 

sigmoid activation function (equation 3).  
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The training of the neural network was based on the 

backpropagation function. The algorithm can be described in 

the following sequence; in the first step the input goes through 

the system and the MSE is calculated then, from the output 

the sensitivity is propagated back to the first layer and the 

weights, biases are updated [5].  

The MSE is a function to measure and evaluate the 

performance in neural networks and can be defined as follows 

in equation 4: 

 

 2

1

1 n

k kk
MSE y t

n 
     (4) 

 

Where n indicates the number of total data patterns, yk is 

the output generated by the neural network at point k and tk is 

the target value at point k. To investigate the actual distance 

between the output and targets, the Root Mean Squared Error 

(RMSE) can be calculated as follows in equation 5: 

 

 2

1

1 n

k kk
RMSE y t

n 
     (5) 

 

Additionally from the more ‘traditional’ feed forward 

network with backpropagation (FFBP), the Radial Basis 

Function Network (RBF) is presented in the following 

paragraph. The general structure of the RBF, can be found in 

Fig. 4, the network also consists of an input layer, one hidden 

layer and an output layer. The hidden layer has 37 neurons 

(the same amount as the entire experiment).  

 

 

Fig. 4. RBF Network structure 

The hidden layer uses a Gaussian activation function, see 

formula 6. Whereby xi is weighted input vector for the 

specific neuron i; ci is the center of neuron i and ɘi is the 

width of neuron i [10]. 
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5. Results and Discussion 

5.1. Neural Network results 

 In this work sinʹɗ method was used to calculate the �es�dual st�ess �� the AISI H13 work piece measured by the 

Proto LXRD with 30 kV voltageǤ 
Fig. 5 shows the regression analysis results if the predicted 

residual stress by FFBP. This regression analysis consists of 

four components; training, validation, test and overall. This 

analysis shows that the overall status can achieve an accuracy 

of 81.71 %. The performance based on the MSE was 

calculated to 303.19 (MPa)
2
, which means a RMSE of 

17.41 MPa. 

 

 

Fig. 5. Regression analysis of FF network 
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Fig. 6 shows the overall fit of RBF. It was found that the 

performance of the network worked based on the MSE was 

around 46 % better (an overall MSE performance of 

164.78 (MPa)
2 

was achieved). However, the RMSE 

performance difference is less and the actual RMSE of the 

RBF is around 12.84 MPa. The overall regression of the RBF 

achieves an accuracy of 88.95 %.  

 

 

Fig. 6. Regression analysis of RBF network 

The surface response model and regression analysis for the 

machining parameter on residual stress is shown in Fig. 7. 

This shows that feed rate has the most influential effect on the 

residual plane stress in the machining process followed by the 

cutting speed (surface speed), depth of cut and the tool lead 

angle. The feed rate has a quadratic function behavior, similar 

to the negative quadratic behavior in cutting speed and depth 

of cut. An increase of the feed rate also decreases the residual 

stress up to an optimum point, when the residual stress 

increases again. 
 

 

Fig. 7. Effect plot for experimental residual stress results  

 

Fig. 8. Effect plot for predicted residual stress results 

    Fig. 8 shows the predicted results from the ANN, when 

using RBF. Comparing these results with the results from 

Fig. 7, it can be seen that they have a very good correlation.  

5.2. Finite Element Model results 

To develop an understanding for the evolvement of the 

residual stress during high speed milling a finite element 

simulation ran successfully. The simulation was compared 

with machining experiment No. 14 under the same machining 

parameters. The distribution of the plane residual stress based 

the JC formula is shown in Fig. 9. This illustration highlights 

that during cutting process, spikes of residual stress have 

developed on the cutting flute engagement and relaxation 

after the material removal.  

 

 

Fig. 9. Residual stress (VM) of experiment No.14 in FE model during cutting 

Fig. 10 shows the top residual plane stress is 130.39 MPa 

in the FE simulation. The corresponding experiment has a 

plane stress of around 125.96േ12 MPa, which is well within 

the measuring tolerances of the XRD.  
 

 

Fig. 10. VM residual stress vs. time in FE simulation  

Heat is usually mainly responsible for generating tensile 

residual stress [17] in machining. The FE model shows the 

cutting temperatures does not exceed 420 ιC. Such low 

temperatures illustrate that no work hardening has taken place 

during the cutting process (as shown in Fig. 11). The quick 

rising and cooling back to room temperature at the work piece 

leads to tensile stresses on the machined surface and sub-

surfaces.  
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Fig. 11. Temperature distribution in work piece during cutting process 

The above mentioned feed rate influences the residual 

stress the most, in form of a quadratic function, this is mainly 

due to the heat induction on the work piece. Applying a 

higher feed rate, heat on the deformed material increases and 

therefore the resistance of material removal decreases and less 

residual stresses occur in the work piece. However, if the feed 

rate is too high the relative motion between work piece and 

tool become faster than the material can be removed by the 

cutting tool. The heavily deformed and heated material 

remains on the work piece with a higher residual stress. 

 

6. Conclusion 

This work is a part of a research study to investigate and 

optimize high speed machining in a finishing process of a 

hard material. For analyzing and prediction of residual stress 

Artificial Neural Networks have been used. It was found that: 

 The RBF model provides a more consistent and precise 

prediction for residual stress. This is due to the irregular 

response surface of the residual stress and small sample 

set.  

 The feed rate was the most influencing factor on the 

plane residual stress state.  

 During the machining process cutting temperature does 

not rise to more than 420 ιC and therefore no work 

hardening of the material occurs. The adiabatic heating, 

which heats the work piece up in a very short time and let 

it cool immediately, encloses tensile stresses on the 

surface and subsurface, which was reflected by the 

experiment as well as the FE-Simulation. 
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