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Abstract

Background: Syndromic surveillance research has focused on two main themes: the search for data sources that can
provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals.

Methods: This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak
signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to
detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-
Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring
system to detect and report alarms using these algorithms in a complementary way is proposed.

Results: The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in
simulated data, but the number of false alarms per year when the approach was applied to real data was considered
manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of
this approach, including a method for on-line filtering of potential outbreak signals is described.

Conclusion: The developed system provides high sensitivity for detection of potential outbreak signals while also providing
robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the
system for different syndromes.
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Introduction

The emergence of new diseases and the increasing threat of

bioterrorism have motivated the development, especially since the

turn of the century, of surveillance systems focused on the early

detection of disease. Early work in the field focused on identifying

data that could contain signatures of disease introduction, resulting

in the exploration of various data sources registering healthcare-

seeking behaviours, such as sales of over-the-counter medicine,

emergency hospital visits and laboratory test requests [1]. While

these data precede diagnostic confirmation, observations can be

aggregated and monitored based on syndrome characteristics; an

approach which led to the term ‘‘syndromic surveillance’’ entering

the scientific literature [2].

The next steps in syndromic surveillance research focused on

the development of detection algorithms [3]. Algorithm develop-

ment and evaluation took into consideration the specific temporal

characteristics of surveillance data, such as daily autocorrelations,

seasonal trends and day-of-week effects [4]. This also had to

consider the context of any detection, such as the availability of

temporal and/or spatial data, the influence of external factors in

any particular source of data, or even the availability of multiple,

and sometimes conflicting, data streams [5]. This research

indicated that different algorithms demonstrate better perfor-

mance in different scenarios (e.g. different ‘shapes’ of outbreak

signal) [3], and efforts are being made to combine approaches,

rather than settle on one ‘best’ algorithm [6,7].

Attention has also been given to the issue of preventing outbreak

signals that do occur from reducing the performance of detection

algorithms that operate prospectively and in any automated

manner. Researchers using data-driven methods have demon-

strated that sensitivity of detection can be increased by the use of a

‘‘guard-band’’ between the baseline data and the time point being

evaluated, in order to avoid contamination of the baseline with an

outbreak signal [4,5,8]. Methods for preventing parameters from

being automatically updated in case of an alarm, for model-based

systems, have also been discussed [9,10]. However, the use of
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detection algorithms to remove detected signals from the time

series, during automated monitoring, has not to the knowledge of

the present authors been discussed.

In previous work we addressed the use of diagnostic test requests

made to an animal health laboratory as a syndromic data source,

first preparing the data for use [11,12] and then evaluating the

performance of different detection algorithms [13]. The results

indicated that Shewhart and Exponentially Weighted Moving

Averages (EWMA) control charts, as well as Holt-Winters

exponential smoothing, could detect potential outbreak signals in

the data with high sensitivity. However, none of these approaches

was superior to the others in all scenarios of outbreak signal shape

and duration. The previous results also highlighted the need to

customize the system for the different time series (i.e. syndromic

groups) being evaluated, given the effect of the baseline data on

algorithm performance, something also discussed in [14].

In this paper the use of all three algorithms, in combination, is

explored. The automated implementation of this approach,

including a method for filtering potential outbreak signals after

they have been detected, is described. A scoring system to detect

and report alarms using these algorithms in a complementary way

is proposed. This system also provides robustness and flexibility in

the establishment of what signals constitute an alarm. This

flexibility also allows an analyst to customize the system for

different syndromes.

Methods

Data-source
The Animal Health Laboratory (AHL) is a full-service

veterinary diagnostic laboratory that serves livestock, poultry and

companion animal veterinarians in the province of Ontario,

Canada. The laboratory receives around 65,000 case submissions

per year, resulting in the execution of over 800,000 individual

laboratory tests, of which 10% relate to cattle submissions. Test

requests for diagnoses of disease in cattle were monitored at the

day of submission – pre-diagnostic.

Syndromic groups were created based on the type of sample

submitted and the diagnostic test requested by the veterinarian. A

common standard for the classification of syndromes has not been

developed in veterinary medicine. Classification was therefore

based on manual review of three years of available data, and then

creating rules of classification reviewed by a group of experts

(a pathologist, a microbiologist and a clinical veterinarian) until

consensus was reached by the group. These rules were

implemented in an automated system classification as documented

in Dórea et al. 2013 [11]. Individual health events were defined as

any single syndromic occurrence per herd on a given day. Time

series composed of daily counts of events for each specific

syndromic group will be referred as ‘‘syndromic series’’.

Seventeen syndromic groups were defined. Once each test

request was classified into a syndromic group, the data were

collapsed by the unique herd identifier for each day. Due to a very

low number of submissions on weekends, any cases in the database

assigned to weekends were summed to the following Monday, and

weekends were removed from the data. The goal of the system was

to allow data streams to be monitored daily, but only syndromic

series with a median greater than one case per day (10 from the

total 17) were deemed appropriate for daily monitoring [12]. Two

of these are presented here as they help illustrate the methods

developed: daily counts of laboratory test requests related to

mastitis diagnostics in cattle (mastitis series) and for identification of

bovine leukemia virus (BLV series) [11,12]. Tests for BLV are often

requested in animals with a decrease in body condition as well as

milk production. This series was chosen due to the statistical

similarities to the time series of other syndromic groups, while

being the only times series showing evident presence of potential

outbreak signals documented in the historical data. Additionally,

the counts of test requests for diagnosis of mastitis are used to

illustrate the particular effect of working with time series with

stronger seasonal effects. Daily counts of laboratory submissions

for diagnostic of respiratory syndromes (respiratory series), one of the

syndromic groups with the lowest median number of submissions

per day, are also presented.

Data from 2008 and 2009 were used as training data. These

data had been previously analysed in order to remove potential

outbreak signals and excessive noise, creating outbreak-free baselines

for each syndromic series [12]. Untreated data from 2010 and

2011 were used to evaluate the methods described.

Simulated data
The data simulated in a previous study, which evaluated the

performance of each detection algorithm individually [13], was

also used to evaluate the performance achieved by combining

algorithms in this study. These data were simulated using a

Poisson regression model with variables to account for day-of-week

and month to reproduce the normal behaviour of the baseline

series. The choice of a Poisson regression was based on the result

of retrospective analyses of the data [12]. The predicted value for

each day of the year was set to be the mean of a Poisson

distribution, and this distribution was sampled randomly to

determine the value for that day in a given year, for each of 50

simulated years. Outbreak signals were then injected simulating

five different shapes (single spike, moving average, linear increase,

exponential increase and lognormal increase), four magnitudes

(one to four times the baseline counts) and three lengths to peak

(one, two and three weeks). Several simulated time series were

generated, each containing only one specific outbreak type,

repeated over 200 times, and separated by at least 70 days of

non-outbreak data (to ensure separation greater than the baseline

window of 50 days used). Details are described in [13].

The rationale of simulating five different outbreak shapes comes

from the uncertainty regarding how an outbreak in the field would

translate into an outbreak signal in the laboratory data. The use of

submissions assumes that the epidemiological unit is a herd (not an

animal), and it is hard to predict what percentage of the infected

herds would be included in the catchment population of the data

source monitored. These issues have been discussed when the

simulated data were presented in the first part of this work [13].

Due to these uncertainties, a range of outbreak signal shapes previously

documented in simulation studies for development of syndromic monitoring were

reproduced in this study [15,16].

Only the days up to an outbreak peak were simulated, as our

aim was to provide a comparison of how quickly algorithms would

detect an outbreak signal, before its peak. Outbreaks that were not

detected by their peak were considered to be undetected.

Algorithms for detection of outbreak signals
Based on previous quantitative evaluations [13], using the actual

syndromic series as well as simulated data with controlled injection

of outbreaks, three detection algorithms were selected with the

following detection settings:

– Exponentially Weighted Moving Averages control charts

(EWMA) with a smoothing parameter of 0.2, baseline of 50

days, guard-band of 10 days (time between the point being

evaluated and the baseline), and a detection limit of 2 standard

deviations.
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– Shewhart control charts with a guard-band of 10 days, baseline

of 50 days, and detection limit of 2.25 standard deviations.

– Holt-Winters exponential smoothing (HW) with a baseline of 2

years, and detection limit based on the upper limit of the

97.5% confidence interval for model prediction; using 5-day-

ahead predictions (guard-band).

The control charts were applied to data pre-processed by weekly

differencing, while the HW method was applied to data directly.

Automated filtering potential outbreak signals
In order to preserve an outbreak-free baseline when prospective

(‘‘on-line’’) monitoring was implemented, automated filtering of

the potential outbreak signals was necessary. In order to make the

filtering mechanism applicable to all algorithms being tested, a

correction value based on the detection limits for each algorithm

was specified. Algorithms vary in the way they calculate a

detection limit, but the existence of such a threshold for the

generation of an alarm is a common feature among all detection

methods.

Each algorithm was trained using outbreak-free baseline data

constructed using data from 2008 and 2009. During prospective

monitoring, on-line automated filtering was implemented by

specifying that, in case of alarm, the detection limit value

(minimum value that would trigger an alarm) should be stored

as part of the outbreak-free baseline, rather than the observed value for

that time point. This process is outlined schematically in Figure 1.

This process was implemented individually – in parallel – for

each of the three algorithms. Real data available for the years 2009

and 2010 were used to assess, upon evaluation of plotted results,

whether the correction method was successful in filtering out

random peaks and potential outbreak signals. Plots were also used

for qualitative evaluation of the ability of each algorithm to remain

sensitive to outbreak signals after the first days of the signal had

been incorporated into the baseline. Quantitative evaluation was

then performed using simulated data. Using the BLV series, 100

years of baseline activity were simulated as described above. Two-

hundred flat outbreak signals of two weeks duration and

magnitude equal to three times the baseline data were injected

in pairs, one outbreak pair per year. Each pair was composed of

two outbreaks separated from each other by only 10 days. The

percentage of outbreak signal days detected (sensitivity per day)

was compared for outbreak signals which were from the first or the

second in a pair.

Combining algorithms: Scoring system
During the process of evaluating the detection limits which

would provide the best balance between sensitivity and specificity

of detection, for each algorithm, it was observed that no single

detection limit would provide this optimum balance for all 10

syndromic series evaluated [13]. It became evident that the system

should be able to operate under multiple detection limits. This was

explored by maintaining several detection limits for each

algorithm in all syndromic series, and using these to generate an

overall score representing the ‘‘severity’’ of any alarm.

For each algorithm, five detection limits were implemented: the

detection limit that should result in the preferred balance between

sensitivity and specificity for most of the ten syndromic series

evaluated, as noted above for each algorithm; and two additional

detection limits above and below this initial value. The lower

detection limits are more sensitive, and the higher limits more

specific. The lowest detection limit for each algorithm was

determined as one which would result in specificity equal to

97% in at least 6 of the 10 syndromic series evaluated [13]. The

five detection limits for each algorithm are listed in Table 1.

Each algorithm evaluates the current count for the syndromic

series being monitored using all five detection limits, and a detection

score is generated corresponding to how many of these thresholds

the current value has exceeded, that is, a detection score with a value

between 0 and 5.

Combining the results from the different algorithms in this

context became straightforward, as the detection scores for each

Figure 1. Schematic representation of the on-line process of detection of outbreak signals and correction of the observed counts
series in case of alarm, in order to continually store an outbreak-free baseline.
doi:10.1371/journal.pone.0082183.g001

Table 1. Detection limits for each of the three algorithms
implemented and corresponding alarm scores.

Alarm score EWMA* Shewhart* HW**

Score = 1 1.50 1.75 95.5%

Score = 2 1.75 2.00 96.5%

Score = 3 2.00 2.25 97.5%

Score = 4 2.25 2.50 98.5%

Score = 5 2.50 2.75 99.5%

EWMA = Exponentially Weighted Moving Averages control chart;
Shewhart = Shewhart control chart; HW = Holt-Winters exponential smoothing.
*standard deviation.
**confidence interval.
doi:10.1371/journal.pone.0082183.t001
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algorithm could simply be added, to generate a final alarm score with

a value between 0 and 15. Customization of detection for

individual syndromic series was implemented by allowing the

analyst to set an overall reporting threshold independently for each

syndrome. That is, the analyst can manipulate the minimum final

alarm score which will cause the system to report an alarm, by

syndrome. This threshold can be changed at any time in order to

increase sensitivity (using a lower threshold) or specificity (by

setting a higher threshold).

Data from 2010 and 2011 were used to test the scoring system,

in order to visualize the alarms generated by the system against

real data streams. Then, using simulated data, system sensitivity

and specificity were estimated. The scoring system was applied to

over 100 simulated outbreaks of each shape, magnitude and

duration, in order to calculate the sensitivity of the system using

different reporting thresholds (1 to 15). Sensitivity of outbreak detection was

calculated as the percentage of outbreaks detected from all

outbreaks injected in the data. An outbreak was considered to

have been detected when at least one outbreak day generated an

alarm. Sensitivity per day was also calculated as the percentage of

days that generated an alarm from all outbreak signal days.

The percentage of days with false alarms was calculated after

applying the same thresholds to 35 years of simulated data which

had not been injected with outbreaks. The modeled variability in

syndromic counts according to month and day of the week, and

the stochastic elements added by sampling values from a Poisson

distribution, were assumed to mimic the natural variability in real

data that would tend to generate false alarms, based on results

from extensive retrospective analysis of these data streams [12].

System reports
Once a set reporting threshold is reached for a given syndromic

series, an alarm is generated, that is, a report is triggered.

Syndromic surveillance development based on this data source has

been an initiative of the data provider (the AHL) and the Ontario

Ministry of Agriculture, Food and Rural Affairs (OMAFRA),

responsible for the programs of animal disease surveillance in the

province. A designated pathologist from AHL and a designated

epidemiologist from OMAFRA are the end users of the system

developed, and are referred as the ‘‘analysts’’. These analysts will

be responsible for receiving system outputs, interpreting them, and

if necessary following up on alarms. The contents of the reports

generated in case of an alarm were discussed with analysts, and the

final format adopted is presented in the results. These reports were

generated as PDF files, which were then automatically emailed to

analysts in case of alarms. Analysts also receive reports for every

syndromic series in a regular weekly email.

Figure 2. Automated correction in the BLV series for 2010 in order to remove possible outbreak-signals and excessive noise. Before
attempting to use control charts the data have been pre-processed to remove temporal effects using weekly differencing. The original data are
represented in green lines. The series subjected to monitoring are shown in red, superimposed on by blue lines showing the corrected series. Alarms
are shown as red triangles along the bottom of each graph.
doi:10.1371/journal.pone.0082183.g002
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All methods were implemented using modules from the R

environment (http://www.r-project.org/) [17], and the codes are

available from the first author upon contact.

Results

Automated filtering potential outbreak signals
The results of filtering aimed at preserving the outbreak-free

baseline are shown in Figure 2 for the BLV series in 2010. For the

control charts the series subjected to monitoring is composed of

the residuals of weekly differencing (applied to remove temporal

effects), rather than the observed time series, which are shown in

green. The results indicated that automated filtering using the

detection algorithm was effective. Besides a visual comparison

between the original and the corrected time series, this conclusion

is based on the fact that all algorithms were able to flag outbreak

signals in multiple days, even past the guard-band period (10 days).

This implies that the outbreak signals observed were not

incorporated to the baseline, and that the algorithms remained

sensitive to consecutive outbreak signal days.

This qualitative analysis was followed by quantitative compar-

ison of the detection performance in outbreaks signals injected in

pairs. When the automated filtering was not implemented, the

reduction in sensitivity per day during the second outbreak signal

was 24.3% for the Shewhart control chart, 14.9% for the EWMA

control chart, and 8.8% for the Holt-Winters exponential

smoothing. When filtering was implemented, these differences

were reduced to 12.6%, 6.2% and 3% respectively. In addition to

the smaller reduction in sensitivity, the HW correction approach

presents two qualitative advantages over the other two methods.

First, the results are simpler to interpret. Since the time series is not

altered by differencing, analysts can readily compare the filtered

series with the original observed counts, in order to qualitatively

assess the performance of the detection algorithm in filtering out

random spikes and potential outbreak signals. Second, because this

algorithm can deal with the temporal effects present in the data, its

detection limits for each time point reproduce these effects.

The implementation of a combined scoring system allowed the

three detection algorithms to be implemented in parallel.

However, for their results to be combined sensibly it was

considered essential that the algorithms were operating under

the same conditions, that is, that they were using the same

baseline. If automated filtering was implemented in parallel using

all three algorithms, as time passed, and most especially in case of

repeated outbreak signals, each of them would effectively utilise

different baselines. Based on the conclusions presented above, HW

exponential smoothing was selected as the sole method to preserve

the outbreak-free baseline by automated filtering of the data

streams.

Scoring system
Detection using real data: qualitative analysis. Figure 3

shows the results of applying the scoring system to 2010 data, for

the mastitis and BLV syndrome series. In this figure a reporting

threshold of 7 for both syndromes was used to illustrate the

method. That is, the analyst will only receive a report when the

vertical bars representing the summed detection scores for all

algorithms (final alarm score) is equal or greater than 7 (and therefore is

higher than the grey shaded area, which limit was set to 6.5). This

would have happened only once, in April, for the mastitis series, and

on three occasions, likely related to the same ongoing process in

March, for the BLV series. Visual evaluation of detection

performance is difficult due to the day-of-week effects in the data,

which can be misleading when judging the presence of unexpected

peaks in counts. True quantitative analyses are reported below.

Application of the scoring system to real data was an important

step in evaluating how the system might add value to the analysis

performed. The analyst can, by looking at the graphs illustrated in

Figure 3, compare the final alarm score to the information

Figure 3. Outbreak-signal detection using three algorithms (Shewhart control charts, EWMA control charts and Holt-Winters
exponential smoothing) combined using the scoring system and applied to real data. The top panel plots the Mastitis series for the year
2010. Detection scores for each algorithm are shown as vertical bars, stacked to give a final alarm score which scale is shown in the secondary axis.
The gray rectangle is used to mark the limit in the secondary axis which corresponds to the reporting threshold – here 7. The bottom panel shows a
similar graph for the BLV series.
doi:10.1371/journal.pone.0082183.g003
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regarding the behaviour of the data. The analyst will also know

which algorithms were responsible for the alarm signal, and the

individual scores generated. For the BLV series, for instance, small

absolute signals between July and September indicate that some

days with seemingly normal activity resulted in the generation of

detection signals by the EWMA algorithm; likely indicating that

these observations were somewhat unusual for that day-of-week.

For the mastitis series a generally higher concentration of test

requests can be observed between July and September. However,

the detection scores indicate that these were not highly unexpect-

ed, with only a few, low level, detection signals being generated by

the control-chart algorithms. The HW algorithm, which can

account for temporal effects more explicitly, did not generate any

detection signals during this period, leading to the hypothesis that

the generally increased numbers may be a temporal effect, such as

a seasonal trend. It is also evident that lowering the reporting

threshold of the mastitis series to 6, for instance, would have generated

a much larger number of alarms in the 2010 syndrome data

stream. These would arguably be false alarms, as no outbreak has

been documented in the province in that year. Eight other

syndromes monitored as part of this research were evaluated

(graphs not shown), and three of these required adjustment of their

combined reporting threshold to a value of 9 or 10 in order to prevent

excessive numbers of false alarms.

Detection using simulated data: quantitative

analysis. Figure 4 shows the results of applying outbreak signal

detection using the scoring system against the simulated mastitis

series. As many scenarios were evaluated, only the median

performances are shown; the graph’s purpose is to highlight the

comparative performance of system settings across a range of

outbreak shapes. The results indicate that decreasing the reporting

threshold of the scoring system can result in great sensitivity, but at

the cost of higher levels of false detection.

Besides high sensitivity, an advantage of using multiple

algorithms is shown when the detection is compared to individual

algorithms for each shape of outbreak signal. Figure 5 compares

the results associated with sensitivity and false alarms in the BLV

series by contrasting the performance of the combined approach

with the individual algorithms as documented in previous work

[13]. The HW algorithm, for instance, showed higher sensitivity

than the scoring system for the detection of spike signals (black

lines, sensitivity plotted in the y-axis), but the sensitivity achieved

by this algorithms is lower than the sensitivity of the scoring

system, in the ranges of detection limits investigated, for all other

outbreak signal shapes. A similar result can be observed for the

Shewhart control chart, with the detection of spikes showing high

sensitivity with the algorithm, but the sensitivity of detection of

other shapes being higher when the scoring system is applied. The

comparisons must be made with caution, taking into account the

differences in the range of false alarms observed with the different

approaches. The scoring system is capable of reaching sensitivity

up to two times higher than the EWMA algorithm for all

algorithm shapes, in the range of detection limits evaluated, but

the number of false alarms is also higher than for that algorithm.

Overall, Figure 5 illustrates that the use of multiple algorithms

in combination allows the system to achieve higher sensitivity for a

range of outbreak types, as outbreak shapes not detected by one

algorithm will be detected by another. Once again as the main

purpose of these graphs is to provide the analyst with a tool to

compare across algorithmic approaches and outbreak shapes only

median values are shown in Figure 5.

System reports
In the event of an alarm, the analyst receives an e-mail with an

attached PDF file. The first page of the file contains the list of all

the syndromes being monitored, with all those for which an alarm

has been generated on the given day highlighted in red. Individual

reports for the syndrome(s) which generated alarm(s) follow on

individual pages. An example report page is shown in Figure 6.

This report was generated because the final alarm score for the

Respiratory series was 12, against a defined reporting threshold of 7.

In the top panel, the analyst can see the final alarm score for the

current day, which shows why the report was generated. The

analyst can also quickly glance at the previous 4 days (one full

week, since 5-day weeks are used in the system). From the lower

panels the analyst gains a broader view of the data behaviour, as

well as detection algorithm performance, over the last 6 months.

In the middle panel detection scores are plotted as a secondary axis,

and the reporting threshold is shown as a gray box in the background.

The bottom panel allows the analyst to assess visually the

performance of the automated filtering to preserve an outbreak-

free baseline.

Discussion

The role of laboratory data in the rapid detection of outbreaks

has been recognized in public health, partly due to the extensive

area coverage provided by these data in comparison to clinical

data coming from individual practitioners or hospitals [18]. In a

series of steps we have developed methods and a system to

implement syndromic surveillance in animal health based on

veterinary laboratory data. Having concluded that laboratory test

requests represented an opportunistic data source with great

potential for syndromic surveillance systems in livestock medicine

[19], we explored diagnostic submissions for cattle made to the

Animal Health Laboratory in the province of Ontario, Canada, in

order to construct a monitoring and early disease warning system

for that province.

Steps to classify data into syndromes [11], and to evaluate these

data retrospectively so they could be prepared for monitoring [12],

were documented. Using the data available together with

simulated data, the performance of different detection algorithms

was evaluated [13]. This indicated that algorithm performance

depended on the shape of the outbreak signals encountered, as

well as the baseline characteristics of each individual syndromic

series being monitored.

In the current paper, the implementation of multiple algorithms

in parallel has been explored, together with the challenge of

preventing outbreak signals from contaminating the training data

set. The latter goal was addressed first. The correction of baseline

series in case of alarms has mainly been discussed for regression

methods [9,10], and it is generally based on preventing model

parameters from updating in cases where an alarm has been

generated. The use of a guard-band between the baseline data and

the time point being evaluated [4,3,8] can avoid incorporation to

the baseline of an outbreak signal before its first detection, but it

does not provide a method to maintain an outbreak-free baseline.

In the present work the detection limit of each algorithm is used to

correct the observed data, continuously storing an outbreak-free

baseline which is used by the algorithms as training data. The

method proved effective for all three algorithms explored,

however, Holt-Winters exponential smoothing was chosen due

to its advantages in terms of interpretability and explicit modeling

of temporal effects in the data.

A detection system should be able to detect a variety of

outbreaks with different signatures [20,21]. This is especially

Syndromic Surveillance in Animal Health
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important when the outbreak signature is not known. However,

different detection algorithms typically demonstrate optimal

performance for outbreaks with a specific temporal progression

pattern; a challenge if one specific algorithm has to be selected [6].

The use of multiple algorithms in parallel has been explored

through the use of decision rules which pool the binomial results

from different algorithms [6], or by using goodness-of-fit tests to

decide when to switch between algorithms [21].

This work combined three algorithms that had demonstrated

solid performance in detecting outbreaks signals of varying shapes

across a range of syndromes which had been subjected to

monitoring [13]. These algorithms were: Shewhart control charts

designed to detect sudden spikes; EWMA control charts developed

to detect slow increases in counts; and Holt-Winters exponential

smoothing which can explicitly account for temporal effects. For

each algorithm, multiple detection limits were used, in order to

transform the outcome of each method into a magnitude score,

rather than a binomial signal indicating whether a potential

outbreak signal was present or not. These detection scores were

then combined to produce a final alarm score. All algorithms

contribute to the measure of alarm magnitude, and this combined

magnitude is used to decide whether analysts should receive an

alarm report or not. In case of any alarm analysts can review the

output of all three detection algorithms across the range of

monitored syndromes.

The use of magnitude scores, rather than a binary alarm

decision, results in the analyst being responsible for the definition

as to when an alarm will be triggered. This is seen as a positive

feature. Considering the number of external factors that can

influence fluctuations in the data being entered into any syndromic

surveillance system it is expected that, once an alarm has been

raised, a human analyst will review the output in the light of

relevant factors and decide whether a true problem exists [22].

This is even more critical in animal health data than in the human

case, since laboratory submission is not just a function of disease

but also of animal value [23], and several economic factors have

been associated with the rate of diagnostic submission to

laboratories [24].

It becomes critical, therefore, to develop system outputs that

provide as much information as possible, according to the

capabilities of the data at hand and the system. This was

addressed by developing output charts that combine observed data

with the detection scores for all three algorithms, plotted over time,

and provided frequently to the analyst. Although the charts

combine a lot of information, the consistency of the presentation

results in rapid familiarization. Once the analyst becomes familiar

Figure 4. Sensitivity of detection and false alarm rates when the combined algorithms are applied to the simulated mastitis series,
with five different shapes of simulated outbreak signals. The table rows and graph nodes show different final alarm scores used as the
reporting threshold. Values in the table correspond to the median among 3 different outbreak magnitudes (1 to 4 times the background activity of
the series) and 3 different outbreak lengths (1, 2 and 3 weeks; except for the spike, which is always one single day).
doi:10.1371/journal.pone.0082183.g004
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with their interpretation, the frequent inspection of reports should

inform the analyst in the behaviour of the data and algorithms. For

this reason the monitoring results for all syndromes are emailed to

analysts weekly, regardless of the detection of any signal. Should

an alarm be detected, the analyst will be able to judge, based on

the past behaviour of the data, whether to challenge that alarm.

The use of algorithms that can detect various outbreak signal

shapes, coupled with a user interface that allows flexible

customization of alarms, resulted in a robust system. Multiple

syndromic series are analysed within the same process, even if the

expected patterns of disease spread would be different in cases of

outbreaks for each of those syndromes. This means that in the

future more syndromes can be incorporated into the system

without the need to implement additional detection algorithms or

to make significant changes to the statistical analyses underlying

the system. The statistics which comprise the core of the system

need not be changed once the system is in place. The end user (the

analysts) can fine tune to system to increase performance

individually for each syndrome. All the work described here for

fine tuning (for instance increasing the reporting threshold of some

syndromes in order to avoid false alarms) has been designed to

mimic the natural manner in which the system would adjust to

analysts’ needs after one year of use.

While analysts will review the system outputs, taking informa-

tion regarding the detection scores of each algorithm into

consideration, and make the final decision regarding any alarm,

it is not expected that all system users will have sufficient

background in quantitative methods to decide which algorithms

are best for each syndrome. Their decisions regarding changes in

the reporting thresholds that generate alarms will be mainly

operational, that is, ‘‘is the current number of alarms generated

manageable’’. This is the reason why a combined score, rather

Figure 5. Sensitivity of detection and false alarms rate in the BLV series. Panel A shows the sensitivity of detection compared to false alarms
rate when all three algorithms combined using the scoring system are applied to the simulated BLV series, with five different shapes of simulated
outbreaks injected. The graph nodes show different final alarm scores used as the reporting threshold. Points represent the median among 3
different outbreak magnitudes (1 to 4 times the background activity of the series) and 3 different outbreak lengths (1, 2 and 3 weeks; except for the
spike, which is always one single day). The remaining panels show sensitivity and false alarm when each detection algorithm is applied individually, as
previously documented in [13].
doi:10.1371/journal.pone.0082183.g005
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than a choice of different algorithms for individual syndromes, was

considered more robust and easier to interpret and manipulate by

the end users. User tweaking, however, cannot actually degrade

system performance. It should be remembered that while analysts

can change the reporting thresholds, they do not adjust core

parameters associated with any of the algorithms – e.g., the

detection limits applied to the data streams or the thresholds which

trigger data correction to filter out outbreak signals and excessive

noise. Thus the performance of the algorithms is expected to

remain unchanged regardless of the choices made by the analysts

concerning reporting. In addition the default weekly generated

reports ensure that raw rates of syndrome observation remain

transparent. Thus if an analyst were to drastically reduce the

sensitivity by setting excessively high reporting thresholds it is likely

that the problems associated with this choice would be obvious to

those using the system. In addition, because automated filtering

will have continued as the system runs, the outbreak-free baseline

will have incorporated outbreak signals, which are filtered out

even if a reporting threshold was not reached.

In evaluating the performance of a syndromic surveillance

system when applied to historical data, it is generally difficult to

estimate its performance due to lack of documentation as to the

causes of the extraneous signals registered in the data [18], such as

those seen in the BLV series in Figure 3. However, the continuous

inspection of system outputs should enable analysts to progres-

sively tailor the system for optimum performance. The system

described here allows for a high degree of customization by the

analyst, who can change the reporting threshold that triggers an

alarm individually for each series, according to the observed

behaviour of the algorithms, or to comply with institutional

Figure 6. Example page of a daily report sent to analysts in case of alarm. The top table shows the detection score for the three algorithms
used, in the last 5 days. Next the data of the last 26 weeks are plotted against the detection score for all three detection algorithms used, stacked to
give a final alarm score. The main y-axis is the scale for the data, and the secondary y-axis gives the scale for the detection scores. The gray rectangle
shows the range of final alarm score which will not generate an alarm. The bottom panel shows the observed data, superimposed by the data after
outbreak-signal removal by the detection algorithm.
doi:10.1371/journal.pone.0082183.g006

Syndromic Surveillance in Animal Health

PLOS ONE | www.plosone.org 9 December 2013 | Volume 8 | Issue 12 | e82183



objectives. For instance, if too many false alarms are being

observed for a specific syndrome, the reporting threshold for that

individual syndrome can be raised, in order to increase specificity.

Reporting thresholds can be set high in order to generate fewer

reports; perhaps limiting analysis to the inspection of the regular

weekly reports. If a specific syndrome required more intensive

monitoring, the threshold could be lowered to increase sensitivity.

The choice to combine all three algorithms, however, came at

the cost of a decreased specificity for the system as a whole (slightly

higher rates of false alarms), which is expected behaviour when

multiple diagnostic tests are applied in parallel [25]. Surveillance

systems based on laboratory data in general should prioritize

sensitivity and timeliness over specificity, since the coverage of

laboratory data is small (that is, ‘‘small increases in laboratory data

often indicate larger communitywide out-breaks’’ [18]).However,

it has also been highlighted that this increase in sensitivity should

not result in an unmanageable number of signals [18]. Despite the

higher percentage of false alarms identified when using simulated

data, the results of applying detection based on the scoring system

showed that the number of detected outbreaks was never greater

than 4 per year for any of the 10 evaluated syndrome series

providing that the individual reporting thresholds were optimized

for each syndrome. With continuous system optimization, the

number of false alarms is expected to decrease [18], without any

significant loss in system sensitivity.

The potentially high number of false alarms during the initial

phases of system implementation, as well as the need for

continuous inspection of system reports and parameters optimi-

zation, have been key points of contention in an ongoing debate

regarding the value of syndromic surveillance [26]. After

comparing syndromic surveillance results to outbreaks detected

locally by traditional surveillance van den Wijngaard et al.

recommended ‘‘the use of syndromic surveillance to reveal blind

spots of traditional surveillance’’, as well as for ‘‘monitoring disease

burden and virulence shifts of common pathogens’’ [26]. The

system discussed here, developed using laboratory submission data

to the AHL, will serve as a backup to traditional animal health

surveillance in the province of Ontario, detecting outbreaks that

are widespread across the province or which are evolving too

slowly to be noticed by clinicians or pathologists. Moreover, the

second recommendation made by van den Wijngaard et al.[26] is

a key feature of this system, with regular compilations of observed

data being delivered to analysts, which will contribute to

situational awareness in animal health surveillance.
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13. Dórea FC, Revie CW, McEwen BJ, McNab WB, Kelton D, et al. (2011)
Syndromic surveillance using veterinary laboratory data: data pre-processing

and algorithm performance evaluation. Journal of the Royal Society Interface.

10: 20130114. DOI:10.1098/rsif.2013.0114
14. Buckeridge DL (2007) Outbreak detection through automated surveillance: a

review of the determinants of detection. Journal of Biomedical Informatics 40
(4).

15. Mandl KD, Reis B, Cassa C (2004) Measuring outbreak-detection performance

by using controlled feature set simulations. Morb. Mortal. Wkly. Rep. 53, 130–
136.

16. Hutwagner LC, Thompson WW, Seeman GM, Treadwell T (2005) A
simulation model for assessing aberration detection methods used in public

health surveillance for systems with limited baselines. Stat. Med. 24, 543–550.

17. R Core Team, http://www.R-project.orgR: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria,

ISBN 3-900051-07-0 (2012). http://www.R-project.org
18. Widdowson MA, Bosman A, van Straten E, Tinga M, Chaves S, et al. (2003)

Automated, laboratory-based system using the internet for disease outbreak
detection, the Netherlands. Emerging Infectious Diseases 9: 1046–1052.
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