
Dórea, Fernanda C. and Muckle, C. Anne and Kelton, David and McClure, 

J. T. and McEwen, Beverly J. and McNab, W. Bruce and Sanchez, Javier 

and Revie, Crawford W. (2013) Exploratory analysis of methods for 

automated classification of laboratory test orders into syndromic groups 

in veterinary medicine. PLoS ONE, 8 (3). ISSN 1932-6203 , 

http://dx.doi.org/10.1371/journal.pone.0057334

This version is available at https://strathprints.strath.ac.uk/64488/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/158370218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Exploratory Analysis of Methods for Automated
Classification of Laboratory Test Orders into Syndromic
Groups in Veterinary Medicine
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Abstract

Background: Recent focus on earlier detection of pathogen introduction in human and animal populations has led to the
development of surveillance systems based on automated monitoring of health data. Real- or near real-time monitoring of
pre-diagnostic data requires automated classification of records into syndromes–syndromic surveillance–using algorithms
that incorporate medical knowledge in a reliable and efficient way, while remaining comprehensible to end users.

Methods: This paper describes the application of two of machine learning (Naı̈ve Bayes and Decision Trees) and rule-based
methods to extract syndromic information from laboratory test requests submitted to a veterinary diagnostic laboratory.

Results: High performance (F1-macro = 0.9995) was achieved through the use of a rule-based syndrome classifier, based on
rule induction followed by manual modification during the construction phase, which also resulted in clear interpretability
of the resulting classification process. An unmodified rule induction algorithm achieved an F1-micro score of 0.979 though
this fell to 0.677 when performance for individual classes was averaged in an unweighted manner (F1-macro), due to the fact
that the algorithm failed to learn 3 of the 16 classes from the training set. Decision Trees showed equal interpretability to
the rule-based approaches, but achieved an F1-micro score of 0.923 (falling to 0.311 when classes are given equal weight). A
Naı̈ve Bayes classifier learned all classes and achieved high performance (F1-micro= 0.994 and F1-macro= .955), however the
classification process is not transparent to the domain experts.

Conclusion: The use of a manually customised rule set allowed for the development of a system for classification of
laboratory tests into syndromic groups with very high performance, and high interpretability by the domain experts. Further
research is required to develop internal validation rules in order to establish automated methods to update model rules
without user input.
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Introduction

Disease emergence and bioterrorism events, especially since

2001, have highlighted some of the short-comings of traditional

surveillance, generally based on laboratory test results and direct

reporting [1]. Focus has shifted to earlier detection of pathogen

introduction in human or animal populations, leading to the

implementation of new techniques using data sources upstream to

those typically used in traditional surveillance [2]; especially pre-

diagnosis data that are already available and automatically

collected [3], such as sales of over-the-counter medicine, absences

from work or school, and patients’ chief complaint upon visits to

an emergency center [4].

Due to the lack of sensitivity of pre-diagnostic data, surveillance

systems using this information target general groups of diseases, or

syndromes, and are therefore often referred to as ‘‘syndromic

surveillance’’ [5]. Grouping pre-diagnostic data into syndromes is

the first step of implementing a syndromic surveillance system [3].

Valid, reliable, and automatic classification of syndromes was an

essential component of early computerized epidemic detection

systems [6]. When data are structured using standardised codes,

such as the Logical Observation Identifiers Names and Codes

(LOINCH) used in laboratories, the International Classification of

Diseases (now on its 10th revision, ICD-10), or the Systematized

Nomenclature of Medicine (SNOMEDH) [7], syndrome classifi-

cation can be performed by mapping those codes into syndromes.
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However, text mining or other machine learning tools can be

invaluable when free-text or semi-structured data are being used

[6]. Naı̈ve Bayes classifiers have frequently been used in syndromic

surveillance when the input data are chief complaints (free-text

typed in by nurses) at emergency facilities [6,8,9,10,11].

Rule-based methods were widely used before the computational

capacity of common computers made it possible for machine

learning methods to be widely adopted [11]. Nevertheless, they

have remained a popular choice in the health field due to their

transparency and interpretability. In the 2008 challenge organized

by i2b2 (Informatics for Integrating Biology to the Bedside), which

consisted of automatic classification of obesity and comorbidities

from discharge summaries [12], the top ten solutions were

dominated by rule-based approaches, demonstrating their efficacy.

Decision trees are a third type of classification algorithm

recommended when results must be delivered to a broader

audience, such as health workers, as it is also an relatively simple

method to interpret [13]. Other machine learning algorithms used

in the medical field include: Artificial Neural Networks (ANN)

[14]; and Support Vector Machines (SVM) [15]. These methods

are powerful, but both adopt a ‘‘black-box’’ approach; so that the

way in which decisions are made by the classifier is not

transparent. They have been used in more complex medical tasks,

such as the interpretation of radiographs and studies of drug

performance [16,17,18]. However, to the authors’ knowledge, the

use of these algorithms to classify health data for the purposes of

syndromic surveillance has not been documented in the peer-

reviewed literature.

In contrast to laboratory test results, on which traditional

surveillance is based, laboratory test orders can be a valuable data

source for syndromic surveillance, since they are collected and

stored electronically in an automated manner, but are more timely

for surveillance purposes than laboratory test results. Laboratory

submission data have, for example, been incorporated into CDC’s

BioSense Early Event Detection and Situation Awareness System

[19]. Moreover, because there are fewer laboratories than sites of

clinical care, the use of laboratory databases can provide more

complete records and over larger areas [2]. Besides changing focus

to early diagnosis, modern surveillance systems are evolving to

complete biosurveillance systems. This term is intended to imply

a broadening focus, addressing not only human health but all

conditions that may threaten public health, such as a disruption in

the food supply, or large social and economic disruptions resulting

from outbreaks of diseases in animals [2,20]. Besides their role in

the food supply and agricultural economy, animals could serve as

sentinels for the detection of certain zoonotic diseases that may be

recognized earlier in animals than in humans [21].

Animal data have been incorporated into a few surveillance

systems for human populations, including: the Electronic Surveil-

lance System for the Early Notification of Community-based

Epidemics (ESSENCE) [22], the North Dakota Electronic Animal

health Surveillance System [23] and the Multi-Hazard Threat

Database (MHTD) [24]. Glickman et al (2006) [25] and Shaffer

et al (2008) [26] have investigated the value of animal health data

as sentinels for public health. Despite the less frequent requests for

laboratory analyses made by veterinarians compared to human

clinicians, the authors hypothesized that, ‘‘the consistency of test

orders over time is such that increases in cases of disease will result

in detectable increases in the number of test orders submitted by

veterinarians that can be identified using prospective analysis’’

(Shaffer, 2008 [26], page2).

An overview of the development of syndromic surveillance

system in the veterinary context has been provided in a recent

review of the literature [27]. This review indicated that initiatives

using laboratory data had been based on establishing direct

relationships between test codes and syndromic groups. The use of

clinical data has typically relied on syndrome definition being

provided by the veterinarian. Machine learning or rule-based

methods applied to the identification of syndromes in animal

health data had not been documented. This paper describes the

exploratory analysis of such methods to extract syndromic

information from laboratory test requests submitted to a veterinary

diagnostic laboratory. These steps are part of the development of

a syndromic surveillance system taking advantage of the central-

ized, computerized, and routinely updated sources of data

provided by the Animal Health Laboratory in the province of

Ontario, Canada. The initial phase of implementation, described

here, focused on cattle sample submissions.

Methods

Data Source
The Animal Health Laboratory (AHL) at the University of

Guelph is the primary laboratory of choice for veterinary

practitioners submitting samples for diagnosis in food animals in

the province of Ontario, Canada. The number of unique

veterinary clients currently in the laboratory’s database (2008 to

2012) is 326. The AHL has a laboratory information management

system (LIMS) that is primarily used for reporting the results of

diagnostic tests.

Three years of historical data from the AHL were available,

from January 2008 to December 2010. Cattle were chosen as the

pilot species due to high volume of submissions from dairy and

beef herds in Ontario. All laboratory test orders for diagnoses in

cattle were extracted from the database; all farm identification

elements had been removed from these data.

Data Structure
Test requests are entered into the AHL database on a daily

basis. Individual test requests are recorded as unique data entries.

A common case code (submission number) is given to all samples

from the same herd on any given day, allowing identification of

samples related to the same health event. In human health, a case

usually refers to one person at a time. Such that two people, with

the same medical complaint, living in the same household,

submitting samples on the same day would be counted as two

cases. In veterinary medicine which often works in herds or flocks,

samples submitted from one, two or more animals, of the same

type, from the same herd (‘‘household’’) with the same medical

complaint on the same day, would be counted as one case.

The nature of the diagnostic sample is identified in the database

by two fields: the sample type field, in which the laboratory staff

chose from a pre-set list (blood, feces, brain tissue, etc); and the

client sample ID, a free-text field used to enter the source animal

identifier given by the client. The diagnostic tests are identified by

codes pre-set in the system. All codes are textual.

Table 1 shows a sample of the data. Only the fields relevant for

medical information extraction are shown. Submission numbers

have been removed, but samples from the same submission are

represented in the table with consecutive rows in the same

shading.

Syndrome Definition
All of the historical data available were reviewed manually to

identify the potential for syndromic classification at the time of

sample submission. Veterinarians do not often provide detailed

case history information. Therefore the identification of syndromes

was based only on the type of diagnostic test requested, and the

Automated Classification of Veterinary Records
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type of sample submitted, which allowed identification of the

organ system targeted for diagnosis.

A syndromic group was defined as a group of test requests that:

(i) are related to diseases from the same organ system; (ii) are all

diagnostic tests for the same specific disease, in cases of tests

requested so frequently that their inclusion in another group would

result in their being, alone, responsible for the majority of

submissions; or (iii) tests that have little clinical relevance and

should be filtered out (e.g., tests in environmental samples, general

haematology profiles, as well as a range of ‘‘non-specific’’

submissions). Despite the absence of clinical information, the

sample description allows identification of abortion cases through

keywords such as ‘‘placenta’’ or ‘‘fetus’’. ‘‘Abortion’’ is therefore

the only syndromic group defined based on a clinical syndrome,

rather than using the three criteria listed above. Based on those

criteria, an initial list of syndromic groups was compiled and then

reviewed by a pathologist (BJM), a bacteriologist (CAM) and

a clinician (DK). Following this review, all historical data were

manually classified into syndromic groups to serve as training

examples for the machine learning algorithms. Syndromic

definition and manual classification were discussed until consensus

was achieved among all experts.

Each submitted case (one or more test requests from a herd on

a given day) could have multiple types of samples and/or multiple

diagnostic tests requested. Syndromic classification was performed

for each individual database entry (test request), and later

collapsed by case submission numbers, eliminating repeated

syndromes within the same case. As a result, a given case could

be associated with multiple syndromes by virtue of clues relating to

multiple organ systems found in the same submission.

Mapping of Test Codes
Based on the aforementioned list of syndromic groups, a list of

all diagnostic test codes that could be mapped into a syndromic

group was established. Mapping is used here to describe the direct

relationship: ‘‘if test requested is X, then syndromic group is Y’’,

and mapping rules of this type were established for all test request

codes that could be classified into only one syndromic group with

certainty. This is typically the case for serological tests, where the

veterinarian specifies the pathogen or disease to be confirmed, and

the sample type is not informative of the organ system affected, as

it is ‘‘serum’’ or ‘‘blood’’.

This mapping was built as a model in RapidMiner 5.0

(Copyright 2001–2010 by Rapid-I and contributors), an open

source data mining package, which provides tools for data

integration, analytical ETL (extract, transform, load), data analysis

and reporting. RapidMiner includes an option to code any learned

model in XML format, which can subsequently be directly

manipulated.

Observations where test code was not associated with any

mapping rule were assigned ‘‘Unknown’’ as the syndromic group

at this stage in the processing. These were test requests such as

‘‘bacterial culture’’, which are not informative of the disease

suspicion or organ system targeted by the veterinarian. These

observations formed an unmapped subset of the data.

Algorithms for Automated Syndrome Classification
For the unmapped subset, text mining was used to separate all

words found in the fields describing the sample type (client sample ID

and sample type, Table 1) in the three years of available data. A

tokenization process was applied using any non-letter character as

a break point to separate words. The list of all mined words in the

historical data was manually reviewed to construct a dictionary of

medically relevant terms, as well as acronyms frequently used, and

common misspellings. This is similar to the process described in

[28] and [29].

Once the dictionary was built, all data tokenization was

performed searching only for those specific tokens. For each

observation being evaluated, the fields sample type and client sample

ID were tokenized, and a vector was created to designate the

binary occurrence of each word in the dictionary. These vectors

Table 1. Sample of the data available, restricted to the fields relevant for syndrome classification.

Date Sample ID* Client Sample ID Sample Type Diagnostic test code Diagnostic test description

2010-01-04 10-####-0001 Tulip Milk Beta-Lactamase_Test Beta-lactamase_test

2010-01-04 10-####-0002 Plum Milk Culture_Bact Bacterial_culture

2010-01-04 10-$$$$-0005 A517_SMALL Intestine Culture_Bact Bacterial_culture

2010-01-04 10-$$$$-0009 B516 Tissue_Pooled RLA Rotavirus_A_-_latex_agglutination

2010-01-04 10-$$$$-0010 #517,_#516 Tissue_-_Fixed Histopathology Histopathology

2010-01-07 10-####-0002 139_W-H-1_-_Pericardial Fluid Culture_Bact Bacterial_culture

2010-01-07 10-####-0004 139_W-H-1_-_Heart Tissue Culture_Bact Bacterial_culture

2010-01-05 10-$$$$-0001 Webb/None_Given Tissue_-_Fixed IHC_-_Bov_Corona IHC_-_Bovine_coronavirus

2010-01-05 10-$$$$-0002 Webb/None_Given Ear_-_Notch BVDV_Antigen_ELISA Bovine_viral_diarrhea_virus_-_antigen_ELISA

2010-01-05 10-####-0001 11675_BOOSTER_110004 Semen Culture_Bact Bacterial_culture

2010-01-27 10-$$$$-0031 Black_Face_w_white_spot Blood_-_Serum N._caninum_ELISA Neospora_caninum_-_ELISA

2010-01-27 10-####-0002 Lung Tissue Culture_Bact Bacterial_culture

2010-01-27 10-####-0003 LuLiKiSpThTy Tissue_Pooled Cell_Cult_Isolation Virus_isolation_in_cell_culture

2010-01-27 10-####-0005 Stom._content Tissue Culture_Bact Bacterial_culture

2010-01-27 10-####-0006 liv/spl/kid Tissue Culture_Bact Bacterial_culture

*The field containing Submission ID was removed to ensure confidentiality, and omitted in the Sample ID shown.
Samples from the same case are represented in the table with consecutive rows of the same shading. Keywords and test names relevant for classification are shown in
bold.
doi:10.1371/journal.pone.0057334.t001
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were then used by the classifier algorithms to learn from the

training dataset and to classify test data.

The rule induction algorithm in RapidMiner [Repeated In-

cremental Pruning to Produce Error Reduction (RIPPER)] was

used. Information gain was used as the criterion used for selecting

attributes and numerical splits. The sample ratio and pureness

were set at 0.9 and the minimal prune benefit 0.25. Using the

XML model of rules induced by the RIPPER algorithm as

a template, a manually modified set of rules was also explored.

The Naı̈ve Bayes learner available in RapidMiner was used to

develop and apply a Naı̈ve Bayes classifier. The learner requires

no parameters settings other than an indication of whether

a Laplace correction should be used to prevent high influence of

zero probabilities. Laplace correction was not used.

Decisions trees were constructed using gain ratio as the criterion

for selecting attributes and numerical splits. The minimal size for

split was set at 4, minimal leaf size 2, minimal gain 0.1, maximal

depth 20, confidence 0.25, and up to 3 pre-pruning alternatives.

The XML code of the models used, as well as the set of

customised rules for classification, are available upon request from

the first author.

Assessing Algorithms Performance
Due to the large variability in the free-text entered by

veterinarians to describe the samples submitted, it was deemed

important to have a large test set, in order to assure that

classification would be satisfactory once applied to new data.

Manually classified historical data were split in half. After sorting

sample submissions according to date and submission number,

observations were alternately assigned to two different sets. Each

classification algorithm was trained using one of the two sets, and

then used to classify the alternative set. The process was then

repeated switching training and test subsets.

Based on a comparison to the manual classification which had

been carried out with the help of experts, the following

performance measures were assessed for each classifier (using

overall results from both test datasets): recall (the fraction of

relevant instances correctly identified by the algorithm); precision

(the fraction of the identified instances that were correct), and F1-

score, the harmonic mean of recall and precision; i.e. (2 * precision

* recall) * (precision+recall)21. After computing recall, precision

and F1-score for each of the classes, these measures were averaged

over all classes to give macro-averaged scores. An average

weighted according to the number of records in each of the

Table 2. Syndromic groups, defined based on an evaluation of three years of diagnostic test requests.

Syndromic group Criteria for syndromic group creation

Number of test

requests Number of cases

Abortion Clinical sign 559 225

Circulatory Organ systems 57 50

Eyes and ears 37 20

GIT 8,733 2,564

Haematopoietic 231 199

Hepatic 135 119

Mastitis 49,246 6,766

Musculoskeletal 233 149

Nervous 150 129

Reproductive 857 192

Respiratory 8,501 1,452

Skin and Tegument 14 7

Systemic 3,328 700

Urinary 501 146

BSE* Individual diseases with high number of test
requests

5,306 158

BLV 34,468 3,321

BVD 12,689 2,354

Johnes disease 11,123 2,040

Neosporosis 6,198 1,467

Clinical Pathology (hematology/biochemistry) Other types of tests 61,059 4,282

Environmental samples 655 58

Antimicrobial susceptibility 140 33

Toxicology 6,866 955

Nonspecific samples Samples whose syndromic group could not be
determined

7,708 3,374

Total 218,795 30,760**

GIT =Gastro-intestinal tract; BSE = Bovine Spongiform Encephalopathy; BLV =Bovine Leukemia Virus; BVD= Bovine Viral Diarrhea.
*BSE test requests are large compared to counts of other test submissions that can be classified as ‘‘Nervous’’.
**The number of cases after classification is higher than the initial number of cases because multiple syndromes can be identified within a single submission.
doi:10.1371/journal.pone.0057334.t002
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classes was also calculated; often referred to as micro-averaged

scoring.

Stability was investigated by producing slightly different training

subsets (for instance removing small random samples from the

training set, or eliminating individual syndromic groups at a time),

and assessing the resulting difference in the performance of the

classifier.

Figure 1. Number of syndromes identified in each case using information from individual test requests.
doi:10.1371/journal.pone.0057334.g001

Figure 2. Percentage of test requests classified by direct mapping and automated classification.
doi:10.1371/journal.pone.0057334.g002
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Results

The three years of historical data contained 23,221 cases

(samples from the same herd on a given day), consisting of a total

of 218,795 individual test requests from cattle (i.e. bovine, dairy or

beef animals of any age).

Based on an evaluation of these three years of historical data,

and input from experts, the syndromic groups listed in Table 2

were defined. The table also lists the criteria for syndromic group

creation and the number of test requests and cases assigned to

each syndromic group following manual classification.

After classifying all sample submissions, and eliminating re-

peated syndromic instances within the same case, the final number

of ‘‘syndromic cases’’ in the historical dataset was 30,760. Given

that there were 23,221 initial herd investigations, this implies an

average of 1.32 recorded syndromes per case. The distribution of

syndromes per case is shown in Figure 1.

Of all the samples submitted, 75.7% (165,649) could be directly

mapped into syndromic groups based on the test request

information alone.

For the syndromic groups created based on clinical signs, non-

specific signs or specific organ systems (see Table 2), Figure 2

illustrates the percentage of test requests which could be allocated

to a syndromic group via direct mapping versus those that fell into

the unmapped subset. Around 25% (53,146) of all instances in the

database could not be directly mapped into a syndromic group

and these provided the material for which automated classification

was explored. Although these unmapped instances contain 16 of the

original 22 defined syndromic groups, the syndromic group

‘‘Mastitis’’ alone is responsible for over 70% of these instances, and

three groups (‘‘Mastitis’’, ‘‘Nonspecific’’ and ‘‘GIT’’) account for

over 90% of the data, as shown in Table 3. For the groups Mastitis

and GIT, 94% and 77% of the unmapped observations, respectively,

refer to the test ‘‘Bacteria culture’’. Unmapped observations which

are ultimately classified as ‘‘Nonspecific’’ contain a greater variety

of test names, including the following which occur frequently:

‘‘Bacterial culture’’ (18%), ‘‘Histology’’ (27%) and ‘‘Necropsy’’

(18%).

The results of automated classification using different algorithms

are shown in Table 4 and described in detail below.

The use of rule induction (RIPPER) achieved only moderate

performance overall. Three groups with low frequency of test

requests – ‘‘Environmental samples’’, ‘‘Skin’’, and Eyes and Ears’’

– were not included in the rules, but as shown in Table 3 these

groups represent only 0.3% of all instances subjected to automated

classification. The F1-macro average was 0.677, but because the

unlearned groups account for such a small proportion of the

submissions, when the classes’ performance is averaged accounting

for the weight of each class, the F1-micro is 0.979 (Table 4). Upon

manual review of the rules created by the algorithm, it was found

that the main source of error was failure of the algorithm to

establish good decision rules when multiple medically relevant

words were found in the same test request. This method was easy

to implement and the rules generated are transparent and easily

interpreted.

The rules produced by the RIPPER algorithm were manually

modified to account for some of the relationships missed,

producing a set of custom rules. Running the custom rule set

against the entire unmapped subset resulted in an F1-macro score of

0.997, and F1-micro score of 0.9995 (Table 4). The remaining errors

tended to be due to use of abbreviations not common enough to

have been incorporated in the rules, misspellings or the absence of

a space between two words, resulting in the tokenization process

failing to identify these words.

The performance of the Naı̈ve Bayes algorithm was high (F1-

macro of 0.955 and F1-micro 0.994), as shown in Table 4. The main

performance issue associated with this algorithm was its instability.

Slightly different datasets resulted in very different performances

(results not shown). With unbalanced training and test datasets, for

Table 3. Instances and syndromic groups in the unmapped

subset of the data.

Syndromic

group Instances

Percentage

of total

Cumulative

percentage

Mastitis 38,934 73.26% 73.26%

Nonspecific 7,667 14.43% 87.68%

GIT 2,857 5.38% 93.06%

Respiratory 1,309 2.46% 95.52%

Reproductive 732 1.38% 96.90%

Abortion 553 1.04% 97.94%

Musculoskeletal 232 0.44% 98.38%

Haematopoietic 231 0.43% 98.81%

Hepatic 129 0.24% 99.06%

Urinary 125 0.24% 99.29%

Envir. samples 109 0.21% 99.50%

Systemic 98 0.18% 99.68%

Nervous 67 0.13% 99.81%

Circulatory 57 0.11% 99.91%

Eyes and ears 38 0.07% 99.98%

Skin and Tegument 8 0.02% 100.00%

Total 53,146

doi:10.1371/journal.pone.0057334.t003

Table 4. Performance measures for the algorithms implemented.

Class average (Macro)* Weighted average (micro)

Algorithm recall precision F-score recall precision F-score

Manually modified rules .994 1.000 .997 1.000 1.000 1.000

Rule Induction** .626 .793 .677 .991 .981 .979

Naı̈ve Bayes .983 .939 .955 .994 .996 .994

Decision Trees** .290 .416 .311 .936 .937 .923

*The total number of groups in the training data was 16, and the total number of instances 53,146.
**The Rule Induction algorithms failed to learn 3 classes, and the Decision Tree 11 classes.
doi:10.1371/journal.pone.0057334.t004
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instance, rather than assigning the label ‘‘Nonspecific’’ to samples

that could not be classified, the Naı̈ve Bayes algorithm would

assign these samples, as well as misclassified samples from other

groups, into one of the groups with a small number of submissions.

The classifier based on Decision Trees performed reasonably

well in the micro score (F1-micro score of 0.923). However the

classifier failed to learn 9 classes, which are biologically relevant,

despite accounting for only 2% of the unmapped instances (which

explains the high micro average). Moreover, the models appeared

to be unstable: slight changes in the training data could result in

a completely different ‘shape’ of decision tree, and a similar

phenomenon was observed when the initial parameters for

minimal gain and confidence where varied.

Discussion

This study evaluated the classification of structured data from

animal laboratory test requests into syndromic groups for

surveillance. This type of data lacks specificity not only because

it precedes diagnostic results, but also due to the limited amount of

clinical information provided by veterinarians. Previous work has

focused on the direct mapping of specific test requests to

syndromic groups [25,26]. Here the use of text-mining was

explored to extract information from fields containing a description

of the sample collected by the veterinarian, in order to identify the

organ system(s) affected in the clinical case being investigated.

Due to the structured format of the data, the text-mining task

did not need to account for sentence semantics or other contextual

information. Statistical methods were sufficient to capture the

majority of medically relevant information from the fields mined.

The binary occurrence of words from a manually constructed

dictionary served as input to the classifier. The algorithms needed

therefore to learn the relationship between these words, their co-

occurrences and the target syndromic group.

Rule induction is suitable for uncovering these types of regular

relations [28], and is recommended in cases when improvements

in accuracy can be achieved by incorporating relationships among

attributes [30]. However, upon manual review of the rules created

by the algorithm, it was found that performance could be

improved by including specific relationships in cases of multiple

word occurrences. It was noted that the main relationships that the

rule induction had failed to capture involved:

(i) Sampling of multiple organs. For instance heart was

associated with the ‘‘Circulatory’’ syndrome, and liver with

‘‘Gastro-intestinal’’, but the observation of samples from

both organs in the same test request should be classified as

‘‘Systemic’’.

(ii) Precedence being given to some words. ‘‘Abortion’’ is an

actual clinical syndrome, in contrast to all other groups

based on organ systems. Therefore the observation of any

words related to abortion (fetus, placenta, aborted, etc) should

result in classification of ‘‘Abortion’’, regardless of what fetal

organ(s) was(were) collected.

(iii) The co-occurrence of words which have a different meaning

than when they occur on their own. For instance ear is a word

included in the dictionary of relevant terms and would

Figure 3. Daily counts of cases allocated to Bovine Viral Diarrhea (top) and Mastitis (bottom) syndromes.
doi:10.1371/journal.pone.0057334.g003
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typically be associated with the ‘‘Eyes and ears’’ syndrome;

however, this word should be ignored when it appears in the

expression ear tag, which refers only to animal identification

within a herd.

These relationships are still simpler than typical contextual

challenges associated with full textual analysis, and the set of

manually modified rules exhibited high performance. The

remaining issues that prevented correct classification, such as

misspellings and inconsistent abbreviations relate to the quality of

the data, something which often complicates the interpretation of

syndromic information [31].

The rule-based algorithm using manually modified rules was

considered the most suitable algorithm for the classification of the

animal laboratory dataset at hand, due to its high accuracy, ease of

implementation, and high interpretability/transparency. Although

simple, this rule-based solution is in line with research reporting

from the i2b2 Obesity Challenge. Among the top 10 performing

systems, rule-based approaches were the most successful in the

textual task, which required classification based on documented

information [12].

Rules also have the advantage that they are transparent and can

typically be easily interpreted by the collaborating health experts

[28]. Their main disadvantage is the knowledge acquisition

bottleneck, in the case where rules are manually created, limiting

portability and flexibility [28,32]. Updates in the future to

accommodate changes in the language may have to be

implemented manually, rather than in an automated manner.

The Naı̈ve Bayes classifier demonstrated high performance.

The main limitation observed with the use of this algorithm was its

instability when groups with low frequency were included in the

dataset. This behavior has been documented elsewhere [29]. The

algorithm assumes that parameters are independent [32]. In this

context the parameters were the binary occurrences, within each

record, of the keywords from the dictionary built. Instability was

however not observed to be due to occurrence of multiple

keywords; rather it was associated with groups having small

numbers of training examples. Due to the fact that the Naı̈ve

Bayes approach exhibits low transparency, it was not possible to

track the specific mechanisms causing the problems observed in

these low frequency categories, or to instigate measures to improve

the way the algorithm was recording and using relationships

between samples and the classification groups.

If transparency is not a limiting issue, that is, if domain

knowledge experts are not required to understand and review the

way by which the classifier is making decisions and classifying each

instance, the Naı̈ve Bayes algorithm can be an alternative to

manually modified rules. Besides the high performance – though

not as high as the custom set of rules – its implementation was the

easiest of all algorithms evaluated, and automated updates can be

planned by retraining the algorithm at regular intervals.

Nonmetric methods, such as Decision Trees, provide a ‘‘natural

way to incorporate prior knowledge from human experts’’ [30].

However, this algorithm performed very poorly when small

frequency groups were present; completely missing up to nine

syndromic groups. Decision Trees were also very unstable to small

changes on the data. This type of behaviour, in terms of training

set sensitivity, has been well documented for Decision Trees [30].

The high performance reported in this study for the rule-based

classifier refers to the algorithm’s ability to reproduce the manual

classification of records provided by a human expert. This

classification, however, is based on an active review of test orders

and diagnostic specimens submitted. Clinical descriptions are not

normally submitted by veterinarians, and were not available for

use in the classification of records, which constitutes a limitation to

the classification process. While the lack of clinical information is

expected to reduce the precision and recall of the system in

comparison to the actual syndromes observed by the veterinarians,

the consistency of the classifier and its high accuracy in utilising the

information that is available should allow the system to capture

increases in the number of submissions across different syndromic

groups. Figure 3 illustrates the time series of daily counts,

constructed after data had been classified using the rule-based

algorithm, for two syndromic groups with expected seasonal

behaviour: Bovine Viral Diarrhea and Mastitis. The series reflect

the expected seasonal patterns, which supports the conjecture that

classified records successfully reflect real trends in the number of

submissions for various syndromes.

The development of this system has been conducted at the

request of the data providers and the Ontario Ministry of

Agriculture Food and Rural Affairs, which is responsible for the

animal surveillance activities in the province of Ontario. The

system has benefited greatly from the automated extraction of

surveillance information from this animal health database. As the

information extraction was based on data already regularly

submitted to the AHL without any requirement for passive or

active collection of additional data, sustainability of the system is

not expected to be an issue.

Conclusion
Real-time monitoring of animal health data depends on

establishing reliable models that reflect medical knowledge and

that can be applied in an automated manner. Such models should

be efficient, but also comprehensible to end users.

In this study the structured format of laboratory data, and the

use of standard test codes, allowed for classification of approxi-

mately 75% of test requests into syndromic groups using direct

mapping. For the remainder of the data, high accuracy (F1-

macro = 0.997) was achieved through the use of a rule-based

syndrome classifier. Induced rules were manually modified during

the construction phase, but resulted in clear interpretability of

decisions and resulting classification. While the use of rules was

easy to implement and interpret, the construction of a dictionary

of medically relevant terms and the manipulation of rules were

time-consuming steps. Implementation of similar systems making

use of other sources of laboratory data should be easier facilitated

as standardized languages are more widely adopted in animal

health laboratories, avoiding the repetition of this process for every

new database.

The use of a custom rule set limits the potential for automatic

revision of the classification model. Further research is required to

establish internal validation rules, possibly based on the results

available from historical data, in order to define automated ways

to carry out model updates in the future.
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