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Abstract. We study detection of random signals corrupted by

noise that over time switch their values (states) between a finite

set of possible values, where the switchings occur at unknown

points in time. We model such signals as hidden semi-Markov

signals (HSMS), which generalize classical Markov chains by

introducing explicit (possibly non-geometric) distribution for

the time spent in each state. Assuming two possible signal

states and Gaussian noise, we derive optimal likelihood ratio

test and show that it has a computationally tractable form of

a matrix product, with the number of matrices involved in

the product being the number of process observations. The

product matrices are independent and identically distributed,

constructed by a simple measurement modulation of the sparse

semi-Markov model transition matrix that we define in the

paper. Using this result, we show that the Neyman-Pearson

error exponent is equal to the top Lyapunov exponent for

the corresponding random matrices. Using theory of large

deviations, we derive a lower bound on the error exponent.

Finally, we show that this bound is tight by means of numerical

simulations.

Keywords. Multi-state processes, hidden semi Markov mod-

els, explicit random duration, hypothesis testing, error expo-

nent, large deviations principle, threshold effect, Lyapunov

exponent.

I. INTRODUCTION

The problem of detecting a signal hidden in noise is inves-

tigated. The signal to be detected is characterised as having

a constant magnitude in any one state and can transition to

multiple states over time. Each occurrence of a particular state

has a random duration, modelled as a discrete random variable

which takes values from the finite set of integers, according to

a certain probability mass function (pmf) associated with that

state. Signal models of this kind are known in the literature

as hidden semi-Markov models (HSMM) [1][2], which differ

from the standard hidden Markov models in that in each

state, the process can emit more than one observation. The

underlying unobservable process in this case is called semi-

Markov [3], and is defined as a sequence of pairs of two

random variables – one from the Markov chain evolving
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sequence of states, and the other being the time spent in each

visited state, the statistics of which is described by a pmf (or

pdf, in the continuous time case). A related, more general

class of random multi-state signals are Markov switching

models [4] (or Markov jump processes) generally used to

model time series and other kinds of signals, where the signal

parameters of a certain model (e.g., moving average [4])

switch over time in a Markov fashion. When the durations

of each parameter regime are modelled explicitly by a pmf

(or pdf), the corresponding model is called explicit-duration

Markov switching models – of which HSMMs are a special

case.

Our main motivation for studying the described model

comes from non intrusive appliance load monitoring (NILM)

problem, i.e., detecting one or more particular appliance states,

each of unknown duration, within an aggregate power signal,

as obtained from smart meters. With the large-scale roll-

out of smart meters worldwide, there has been increased

interest in NILM, i.e., disaggregating total household energy

consumption measured by the smart meter down to appliance

level using purely software tools [5]. NILM can enrich energy

feedback, it can support smart home automation [6], appliance

retrofit decisions, and demand response measures [7].

NILM is an NP-hard problem [5], and an exact solution can

only be found via exhaustive search: in practice, it would take

over 1700 years to disaggregate 30 appliances using exhaustive

search from a months data with top current GPUs [8, p. 124].

Since NILM boils down to identifying unknown sources that

go through a sequence of (hidden) states (ON to OFF for single

state loads), Hidden Markov Models (HMM), have become

popular for this time-series data, with a number of extensions

proposed over the past few years, including factorial HMM

(FHMM), conditional FHMM, etc. [9], [10], [11], [12]. How-

ever some appliances violate the Markovian assumption [8,

p.142], as the durations that appliances are on and off are not

geometrically distributed, as occurs with HMMs. Further, the

duration of appliance runs are not captured, which is the key

difference w.r.t speech applications where durations of sounds

are approximately equal.

NILM can also be seen as a pure signal waveform, or

pattern recognition problem, with solutions drawn from a

rich field of audio signal processing and speech recogni-

tion, including Dynamic Time Warping [7], rule-based and

dictionary-based approaches. With a vast amount of different

formulations, many signal processing and machine learning

techniques have been proposed in the literature, including k-

means, SVM [13], neural network [14], kNN, Generalized

Viterbi [5], naı̈ve Bayes, Genetic Algorithms, Graph Signal
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Processing (GSP) [15], [16], Decision Trees [7], particle filter-

ing, evolutionary algorithms [17], etc., but without measurable

and convincing evidence of reliability, acceptable accuracy,

and scalability.

Despite significant research efforts in developing efficient

NILM algorithms (see [7], [15], [16], [9], [10] and references

therein), NILM is still a challenge, especially at low sampling

rates, in the order of seconds and minutes. One obstacle is the

lack of standardised performance measures and appropriate

theoretical bounds of detectability of appliance usage, which

can help estimating performance of various algorithms. A

particularly challenging problem is the detection of multi-state

appliances, i.e., appliances whose power consumption switches

over one appliance runtime through several different values.

Examples of such appliances are a dishwasher or a washing

machine, where the load or the chosen program or setting

determines duration that the appliance spends in each state.

The difficulty there arises from the fact that the program and

the load, unknown from the perspective of NILM, are non-

deterministic, i.e., vary each time the same appliance is run

resulting in difficulty in detecting in which state the appliance

is. In this work we propose to use HSMM as a model for multi-

state appliances, where we have the full freedom to describe

the state durations statistics, and thus obtain a better fit for

multi-state appliance signals than with HMMs, which allow

only for geometrically decaying pmfs on the state durations.

The aggregate load minus the load of the appliance to be

detected, consisting of other appliances being switched on and

off randomly over time, is well modelled as Gaussian additive

noise, as shown in [11].

HSMM is also representative of signals occurring in a range

of other applications. In econometrics, examples of explicit

duration signals include marital or employment status, or in

general the time an individual spends in a certain state [18].

Further examples from econometrics are time to currency

alignment or time to transactions in stock market [19]. In

biometrics, HSMM is used to model forest tree growth and

identify individual growth components [20]. In communication

systems theory, pulse-duration modulated (PDM) signals for

transmitting information encoded into the pulse duration have

two possible signal states: the positive value state is a pulse

whose duration is proportional to the information symbol to be

encoded, and the zero-value state in between any two pulses.

The probability distribution of the state duration is then con-

trolled by the probability distribution on the set of information

symbols to be transmitted. Further binary state examples are

random telegraph signals, where the signal switches between

two values in a random manner2, and the activity pattern of a

certain mobile user in a cellular communication system. We

refer the reader to references [2], [4], [1] for detailed accounts

on various other applications of HSMMs.

In this paper we focus on detection of binary signals of

random state durations, hidden in noise, modelled as (binary)

HSMMs. While the problem of detecting multi-state signals

hidden in noise has been presented in [21], [23] and [24],

2We remark that there are other stochastic models in the literature for the
random telegraph signal, e.g., the Poisson model, or the hidden Markov chain
model [21], [22].

the latter model the signal as hidden Markov chains unlike

our proposed approach which adopts HSMM, with an explicit

duration model for each of the states. Specifically, in [21]

random telegraph signals are modelled as binary Markov

chains and the corresponding optimal detection test is derived

in the form of a product of certain measurement defined

matrices. Detection of a random walk on a graph is considered

in [23], where bounds on the error exponent for the Neyman-

Pearson detection test are derived. The method of types is used

in [24] to generalize the results from [23] to non-homogeneous

setting where different nodes have different signal-to-noise

ratios (SNR) with respect to the walk. Furthermore, proof is

given in [24] that the derived bound on the error exponent has

a convex optimization form.

Assuming Neyman-Pearson setting, we are interested in

detection performance characterization, through computing

the corresponding error exponent – the decay rate of the

probability of a miss, under a constraint on the probability

of false alarm, for given HSMM model parameters. It is well-

known that when observations are independent and identically

distributed (i.i.d.) both in the presence and absence of the

signal (e.g., when the signal value is constant and known

and the noise realizations are i.i.d.), the Neyman-Pearson

error exponent is given by the Kullback-Leibler divergence

between the corresponding two hypotheses, see Stein’s lemma

in [25], [26], and also [27]. This property, in a sense, extends

to non-i.i.d. signal models of certain classes (such as, for

example, ergodic models), in which case the error exponent is

given by the asymptotic Kullback-Leibler rate [28], [29] (see

the expression in (7) in Section II further ahead). Computing

this limit is a difficult problem in general, but, for certain

cases, solutions are known.

We briefly review the literature on error exponents for

signals with Markovian structure. In [30] error exponent is

computed for testing between two different Markov sources

(without additive noise in the observations); for applica-

tions and extensions of this result in Markov source-coding

see [31], [32], [33], [34]. Error exponents for HMMs are

considered in [23] and [24], as detailed above. Error exponent

is also shown to be computable for the problem of discrimi-

nating between two autoregressive processes (AR) of different

parameters [35], [36]. For Gauss-Markov models, represented

as AR process of order 1 with Gaussian noise, [37] finds

a closed form for the error exponent via spectral domain

characterization of the observed process. To the best of our

knowledge, there are no results on the error exponent for

HSMMs.

Contributions. In this paper, we first show that the optimal

detection test, seemingly combinatorial in nature, admits a

simple, linear recursion form of a product of matrices of

dimension equal to the sum of the duration spreads for the

two states. Using the preceding result, we show that the

Neyman-Pearson error exponent for this problem is given

by the top Lyapunov exponent [38] for the matrices that

define the recursion. Each matrix involved in the product

is of dimension equal to the sum of durations spreads of

the two states, and it can be decomposed as a product of a
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diagonal random matrix controlled by the process observations

and a sparse constant matrix which governs transitions in the

sequence of states of different durations. Thus, we reveal that

a similar structural effect as with the error exponent for hidden

Markov processes occurs here as well [21], [24]. This result

is of immediate interest for inference in HSMM, as it allows

extension and application to HSMM of certain algorithms

designed for HMM that specifically rely on matrix product

representation of the likelihood, see [20], [39]. Further, using

the introduced transition matrix for the semi-Markov model,

we find explicitly an upper bound on the error exponent, equal

to the expected SNR of the process. This bound has an intuitive

physical interpretation: it is the error exponent for the detection

test which has information on the exact locations of all state

transitions in the observed sequence of measurements. Finally,

using the theory of large deviations [26], we derive a lower

bound on the error exponent and demonstrate by numerical

simulations that the derived bound is very close to the true

error exponent.

Paper outline. Section II states the problem setup and Sec-

tion III gives the preliminaries. Section IV gives main results

on the form of the optimal likelihood ratio test. Section V

provides the lower bound on the error exponent, while Sec-

tion VI proves this result. Finally, numerical results are given

in Section VII and Section VIII concludes the paper.

Notation. For an arbitrary integer n, Sn−1 denotes the prob-

ability simplex in R
n; e1 denotes the first canonical vector

(the n dimensional vector with 1 only in the first position,

and having zeros in all other positions), and 1 the vector of

all ones, where we remark that the dimension should be clear

from the context; A0 denotes the lower shift matrix (the 0/1
matrix with ones only on the first subdiagonal); ‖ · ‖ denotes

the spectral norm. We denote Gaussian distribution of mean

value µ and standard deviation σ by N (µ, σ2); by p[1, n] an

arbitrary distribution over the first n integers; by U [1, n] the

uniform distribution over the first n integers; log denotes the

natural logarithm.

II. PROBLEM SETUP

We consider the problem of detecting a signal corrupted by

noise that randomly switches from one state m to another,

where m = 1, 2, ...,M and in each state the signal has a

certain magnitude µm. The duration that the signal spends in

a given state m is modelled as a discrete random variable on

a given support set [1,∆m], and with a certain pmf defined

by vector pm ∈ S
∆m−1. In this work, we consider the case

when M = 2 and we assume that for each state m we know

the corresponding value of the observed signal µm. Without

loss of generality, we will assume that µ2 > µ1 ≥ 0. For

each sampling time t = 1, 2, ..., let St = {S1, ..., St} denote

the sequence of states until time t of the signal that we wish

to detect, where for each k = 1, ..., t, Sk ∈ {1, 2}; similarly,

we denote S∞ = {S1, S2, ...}. Let also St denote the set of

all feasible sequences of states st of length t. We assume

that, with probability one, the first state is S1 ≡ 1, and,

for the purpose of analysis, we set S0 ≡ 2. Let Xk denote

the signal measurement for sample time k, k = 1, ..., t, and,

for each t, collect all measurements up to time t in vector

Xt = (X1, ..., Xt). We assume that each measurement is

corrupted by a zero mean additive Gaussian noise N (0, σ2),
where standard deviation σ > 0.

The sequence of switching times. For the sequence of states

S1, S2, ..., we define the sequence of times {T1, T2, ...}, when

the signal in the sequence switches from one state to another,

i.e.,

Ti+1 = max{k ≥ Ti + 1 : Sk = STi+1}, for i = 0, 1, 2, ...
(1)

where we set T0 ≡ 0. We call a phase each time window

[Ti+1, Ti+1], i = 0, 1, 2, . . ., and note that during any phase,

the sequence S∞ stays in the same state. Since S1 ≡ 1, all

odd-numbered intervals [T0 + 1, T1], [T2 + 1, T3],..., where

the ordering is with respect to the order of appearance, are

state 1 phases, and all even-numbered intervals [T1 + 1, T2],
[T3 + 1, T4],... are state 2 phases.

Random duration model. For n = 1, 2, ..., we denote by

D1,n the difference process

D1,n = T2n−1 − T2n−2, (2)

or, in words, for each n, D1,n is the duration of the n-th state-1
phase in the sequence S∞. We assume that durations of state-1
phases are independent and identically distributed (i.i.d.), with

support set of all integers in the finite interval [1,∆1], and with

pmf given by vector p1 = (p11, p12, ..., p1∆1
) ∈ S

∆1−1, which

we denote by D1,n ∼ p1 (1,∆1). Similarly, we define

D2,n = T2n − T2n−1 (3)

to be the duration of the n-th state-2 phase in the sequence

S1, S2, ..., for n = 1, 2, ...; we assume that the D2,n’s are

i.i.d., with support set of all integers in the interval [1,∆2], and

pmf given by vector p2 = (p21, p22, ..., p2∆2
) ∈ S

∆2−1, i.e.,

D2,n ∼ p2 (1,∆2). We also assume that durations of state-1
and state-2 phases are mutually independent.

Hypothesis testing problem. Using the preceding definitions,

we model the signal detection problem as the following binary

hypothesis testing problem:

H0 : Xk
i.i.d.∼ N (0, σ2) (4)

H1 : Xk|St indep.∼
{

N (µ1, σ
2), if Sk = 1

N (µ2, σ
2), if Sk = 2

, for k = 1, ..., t,

where we assume S1 ≡ 1. We remark that the model

above easily generalizes to the case when the signals Xk are

under both hypotheses shifted for some µ0 ∈ R, i.e., when,

under H = H0, Xk ∼ N (µ0, σ
2) and, under H = H1,

Xk ∼ N (µSk
+µ0, σ

2); see the example of appliance detection

problem later in this section. The latter hypothesis testing

problem reduces to the one in (4) by means of the change

of variables Yk = Xk − µ0.

Illustration: Multiphase appliance detection. Suppose that

we wish to detect an event that a certain appliance in a

household is switched on. We consider classes of appliances
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whose signature signals exhibit a multistate (multiphase) type

of behavior, such as switching from high to low signal values,

where the durations of phases of the same signal level can be

different across a single appliance run-time and also in differ-

ent run-times of the same appliance. Examples of appliances

whose signatures fall into this class are, e.g., a dishwasher

and a washer-dryer. This problem can be modelled by the

hypothesis testing problem (4) where µ1 corresponds to the

appliance consumption when in low state and µ2 corresponds

to the appliance consumption when in high state. In this

scenario, there is an underlying baseline load which can also

be modelled as a Gaussian random variable of expected value

µ0 and standard deviation σ2. Since the same baseline load is

present both under H0 and H1, to cast the described appliance

detection problem in the format given in (4), we simply

subtract the value µ0 from the observed consumption signal

Xk.

Comparison with random telegraph signals. The signal

model that we consider is structurally similar to the random

telegraph signal, modelled as a hidden binary Markov chain.

The random telegraph signal switches between two opposite

signal values, µ1 = +µ and µ2 = −µ, where the transitions

are governed by a certain transition matrix, which we denote

by PRT = [q (1 − q); (1 − q) q] (assuming, for simplicity,

symmetry in the two states). Given that the random telegraph

signal has just entered, say, state 1, we look at the probability

that the signal stays in this state for d time instants, where

d is arbitrary. It is easy to show that this probability equals

(1 − q)qd−1, for arbitrary d ≥ 1. That is, with the random

telegraph signal, the distribution on the durations of states is

geometric – thus, it decays with d exponentially. On the other

hand, with the binary semi-Markov model that we consider,

there is a complete freedom in setting the distribution on the

time that the signal spends in either of the states, provided that

the maximal state duration is bounded by some finite ∆. When

∆ is large, and these pmfs are quasi (truncated) geometric,

p1 = p2 = 1/(1 − q∆)
(
1− q, q(1− q), . . . , q(1− q)∆−1

)
,

the semi-Markov model can be approximated by the random

telegraph signal, which has a simpler parametric representa-

tion. However, when the two pmfs are, for example, uniform,

or even when the longer state durations in the studied signal

are much more likely than the shorter ones (consider p1 =
p2 = (ǫ, ǫ, . . . , 1− (∆− 1)ǫ)), then the semi-Markov model

is a much better alternative to the random telegraph signal.

With multi-state appliances, once entered, any state is likely

to last for a certain time (usually much longer than the unit,

sampling period time), and hence the motivation to use semi-

Markov models over Markov chains. See also Section VII and

Figure 8 for a numerical illustration of the comparison of the

two models.

Likelihood ratio test and Neyman-Pearson error exponent.

We denote the probability laws corresponding to H0 and H1

by P0 and P1, respectively. Similarly, the expectations with

respect to P0 and P1 are denoted by E0 and E1, respectively.

The probability density functions of Xt under H1 and H0

are denoted by f1,t(·) and f0,t(·), respectively. It will also

be of interest to introduce the conditional probability density

function of Xt given St = st (i.e., the likelihood functions),

which we denote by f1,t|St(·|st), for any st. Finally, the

likelihood ratio at time t denoted by Lt, and at a given

realization of Xt is computed by Lt(X
t) =

f1,t(X
t)

f0,t(Xt) .

It is well known that the optimal detection test (both in

Neyman-Pearson and Bayes sense) for problem (4) is the

likelihood ratio test. Conditioning on the state realizations until

time t, St = st, and denoting shortly P (st) = P1(S
t = st),

we have

Lt(X
t) =

∑

st∈St

P (st)
f1,t|St(Xt|st)
f0,t(Xt)

=
∑

st∈St

P (st)

∏t
k=1

1√
2πσ

e−
(µsk

−Xk)2

2σ2

∏t
k=1

1√
2πσ

e−
X2

k
2σ2

, (5)

where, we recall, St is the set of all feasible sequences – for

which P1(St = st) > 0. In this paper our goal is to find a

computationally tractable form for the optimal, likelihood ratio

test and also to characterize its asymptotic performance, when

the number of samples Xk grows large. In particular, with

respect to performance characterization, we wish to compute

the error exponent for the probability of a miss, under a given

bound α on the probability of false alarm:

lim
t→+∞

−1

t
logPαmiss,t =: ζ, (6)

where Pαmiss,t is the minimal probability of a miss among all

decision tests that have probability of false alarm bounded

by α. By results from detection theory, e.g., [28], [29], the ζ
in (6) is given by the asymptotic Kullback-Leibler rate in (7),

provided that this limit exists

ζ = lim
t→+∞

−1

t
logLt(X

t). (7)

Fig. 1: Simulation setup: ∆ = 3, p1, p2 ∼ U([1,∆]), µ1 =
2, µ2 = 5, σ = 10, α = 0.01. Green full line plots the

evolution of − 1
t logLt; blue dotted line plots the evolution of

− 1
t logP

α
miss,t, and red dashed line plots the estimated slope

of the probability of a miss values (in the logarithmic scale)

calculated for values until t = 300 observations.

We prove the existence of the limit in (7) in Lemma 9 in

Section V further ahead. An illustration of the identity (6) is

given in Figure 1, which clearly shows that both sequences
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− 1
t logP

α
miss,t and − 1

t logLt(X
t) are convergent and more-

over that they converge to the same value – the asymptotic

Kullback-Leibler rate for the two hypotheses defined in (4).

For further details on this simulation see Section VII.

III. PRELIMINARIES

In this section we now introduce a number of quantities

related with the sequences st ∈ St, t = 1, 2, ..., and give

certain results pertaining to these quantities that will be useful

for our analysis.

Statistics for the durations of phases.

For each t, for each st, we introduce N1 and N2 to count

the number of state-1 and state-2 phases, respectively, in the

sequence st:

N1(s
t) = |{1 ≤ k ≤ t : sk−1 = 2, sk = 1}| (8)

N2(s
t) = |{1 ≤ k ≤ t : sk−1 = 1, sk = 2}| , (9)

where, since the first phase is state-1 phase, we set s0 ≡ 2.

Note that functions N1 and N2 are, strictly speaking, depen-

dent on time t (this dependence is observed in their domain

sets St which clearly change with time t). However, for

reasons of easier readibility, we suppress this dependence in

the notation, as we also do for all the subsequently defined

quantities. We remark that, for any sequence st, if the last

state st = 2, then N1(s
t) = N2(s

t), and if st = 1, then

N1(s
t) = N2(s

t) + 1. Finally, N(st) is the total number of

phases in st, N ≡ N1 +N2.

We further define the sets Tmn(st) that contain time indices

for the n-th state-m phase, n = 1, ..., Nm(st), m = 1, 2; to

compactly express the likelihood ratio (see expression (27)

further ahead), it will also be of interest to group the Tm,ns

to Tm(st) := ∪Nm(st)
n=1 Tmn(st), with its cardinality denoted by

τm(st), for m = 1, 2. We now go over each state phase Tm,n,

m = 1, 2, and increase the counter corresponding to this phase

duration, d = |Tm,n|,

N1d(s
t) =

N1(s
t)∑

n=1

1{|T1n|=d}(s
t), for d = 1, ...,∆1, (10)

N2d(s
t) =

N2(s
t)∑

n=1

1{|T2n|=d}(s
t), for d = 1, ...,∆2; (11)

i.e., in words, vectors (Nm1, ..., Nm∆m
), m = 1, 2, represent

histograms of phase 1 and phase 2 durations. It is easy to see

that Nm =
∑∆m

d=1Nmd, for m = 1, 2. Also, for each time t
and each sequence st, the total number of state 1 and state 2
occurrences must sum up to t, and therefore

∑∆1

d=1 dN1d(s
t)+∑∆2

d=1 dN2d(s
t) = t.

Figure 2 shows an example of simulation signals under

Hypothesis H1 with ∆1 = ∆2 = 10, µ1 = 3, µ2 = 5 and

σ = 0.05 using random duration model for various switching

times T , difference process durations Dm,n and numbers of

different state-phases with fixed duration Nm,d. We can see

from the figure that D1,1 = T1 − T0 = 8 as shown in eq. (2)

and there is only one state-phase 1 last for 8 samples, hence

N1,8 = 1. Again, from eq. (3) we can see from the figure

again that D2,1 = T2 − T1 = 8 and D2,3 = T6 − T5 = 8.

Thus N2,8 = 2 for there are two state-phase 2 that last for 8
samples.

Fig. 2: Example of simulation signals with ∆1 = ∆2 ==
10, µ1 = 3, µ2 = 5 and σ = 0.05 and various T , Dk,i, and

Nk,d.

To simplify the notation, let o(st) return the duration of the

last phase in the sequence st, and note also that st returns the

type of the last phase in st. The next lemma computes the

probability of a given sequence st, P (st) = P1 (S
t = st).

Lemma 1. For any sequence st, there holds

P (st) =
p+st o(st)

pst o(st)

∆1∏

d=1

p
N1d(s

t)
1d

∆2∏

d=1

p
N2d(s

t)
2d , (12)

where by p+ml we shortly denote p+ml = pml + pml+1 + ... +
pm∆m

, for l = 1, 2, ...,∆m and m = 1, 2.

The proof of Lemma 1 is given in the extended version

of the paper [40]. Further, to simplify the analysis, in what

follows we will assume that ∆1 = ∆2 =: ∆.

Let Ct denote the cardinality of the set of all feasible

sequences of states St. When p1 and p2 are strictly greater

than zero, it can be shown that Ct equals the number of ways

in which integer t can be partitioned with parts bounded by ∆.

This number is known as the ∆-generalized Fibonacci number,

and is computed via the following recursion:

Ct = Ct−1 + . . .+ Ct−∆, (13)

with the initial condition C1 = 1. The recursion in (13) is

linear and hence can be represented in the form C̃t = AC̃t−1,

where C̃t = [Ct Ct−1 . . . Ct−∆+1] and A is a square, ∆×∆
matrix; it can be shown that A is equal to A = e11

⊤ + A0,

where, we recall, A0 is the lower shift matrix of dimension

∆. The growth rate of Ct is given by the largest zero of the

characteristic polynomial of A, as the next result, which we

borrow from [41] asserts.

Lemma 2. [Asymptotics for ∆-generalized Fibonacci num-

ber [41]] For any ǫ, there exists t0 = t0(ǫ) such that for

every t ≥ t0,

et(logψ−ǫ) ≤ Ct ≤ et(logψ+ǫ), (14)

where ψ is the unique positive zero of the following polynomial

ψ∆ − ψ∆−1 − . . .− 1 = 0.
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A. Sequence types

Duration fractions. For d = 1, 2, ...,∆, let Vm,d denote the

number of times along a given sequence of states that state-m
phase had length d, normalized by time t, i.e.,

Vm,d(s
t) =

Nm,d(s
t)

t
, m = 1, 2. (15)

For each sequence st, we define its type as the 2 × ∆

matrix V (st) : =
(
(V1(s

t))
⊤
; (V2(s

t))
⊤
)

, where Vm(st) =

(Vm,1(s
t), ..., Vm,∆(s

t)), for m = 1, 2. Recalling N1 and

N2 (8), which, respectively, count the number of state-1 and

state-2 phases along st, we see that Nm = t1⊤Vm, m = 1, 2.

It will also be of interest to define the fractions of times Θ1

and Θ2 that a given sequence of states was in states 1 and 2,

respectively,

Θm(st) =
τm(st)

t
, m = 1, 2. (16)

It is easy to verify that Θm =
∑∆
d=1 d Vm,d, for m = 1, 2.

Let Vt denote the set of all 2 × ∆-tuples of feasible

occurrence of type V at time t

Vt =
{
ν = (ν1, ν2) : ν = V (st), for some st

}
. (17)

Note that, as they are defined as normalized versions of

quantities Nmd(s
t), Vmd(s

t)’s also inherit the properties of

Nmd’s:

∆∑

d=1

dV1d(s
t) + dV2d(s

t) = 1;

0 ≤ 1
⊤V1(s

t)− 1
⊤V2(s

t) ≤ 1/t.

As t → +∞, for every st ∈ St, the difference between

1
⊤V1(st) and 1

⊤V2(st) decreases. Motivated by this, we

introduce the set

V =
{
ν ∈ R

2×∆
+ : 1⊤ν1 = 1

⊤ν2, q
⊤ν1 + q⊤ν2 = 1

}
, (18)

where q = [1 2 . . . ∆]⊤.

For each t, ν ∈ Vt, define the set Stν that collects all

sequences st ∈ St whose type is ν:

Stν =
{
st ∈ St : V (st) = ν

}
(19)

(note that if ν /∈ Vt, then set Stν would be empty). Set

Stν therefore consists of all sequences with the following

properties: 1) the first phase is state-1 phase; 2) the total

number of state-1 phases is 1
⊤ν1 t, where the total number

of such phases of duration exactly d is given by ν1,d t; and 3)

the total number of state-2 phases is 1
⊤ν2 t, where the total

number of such phases of duration exactly d is given by ν2,d t.
Let Ct,ν denote the cardinality of Stν . This number is equal

to the number of ways in which one can order 1
⊤ν1t state-1

phases (of different durations), where each new ordering has

to give rise to a different pattern of state occurrences, times

the corresponding number for state-2 phases. Since for any d,

any permutation of νm,dt phases, each of which is of length d,

gives the same sequence pattern, Ct,ν is given by the number

of permutations with repetitions for state-1 phases times the

number of permutations with repetitions for state-2 phases:

Ct,ν =

(
1
⊤ν1t

)
!

(ν1,1t)! · . . . · (ν1,∆1t)!

(
1
⊤ν2t

)
!

(ν2,1t)! · . . . · (ν2,∆2t)!
. (20)

From (20) the following result regarding the growth rate of

Ct,ν easily follows (e.g., by Stirling’s approximation bounds).

Lemma 3. For any ǫ > 0 there exists t1 = t1(ǫ) such that for

all t ≥ t1

et(H(ν1)+H(ν2)−ǫ) ≤ Ct,ν ≤ et(H(ν1)+H(ν2)+ǫ), (21)

where H : R∆
+ 7→ R is defined as

H(λ) = −
∆∑

d=1

λd
1⊤λ

log
λd
1⊤λ

, (22)

where λd denotes the d-th element of an arbitrary vector λ ∈
R

∆
+ .

We end this section by giving some well-known results from

the theory of large deviations that we will use in our analysis

of detection problem (4).

B. Varadhan’s lemma and large deviations principle

We first state the definition of the large deviations principle

(LDP) for an arbitrary sequence of random measures (see

eq. (51) further ahead in Section IV for the sequence of ran-

dom measures that will be analyzed in the paper). We remark

that this definition differs from the standard LDP (i.e., the

LDP for a deterministic sequence of measures). In particular,

we require that, for every large deviation set, there exists a

probability one set (with respect to the probability space that

generates the random sequence of measures) such that, on

this set, the corresponding lower and upper large deviations

bounds hold with a certain rate function. Or, alternatively put,

for every large deviation set, the two LDP bounds hold with

probability one (and, of course, with the same rate function).

Large deviations principle.

Definition 4 (Large deviations principle [26] with probability

1). Let µωt : B
(
R
D
)

be a sequence of Borel random measures

defined on probability space (Ω,F ,P). Then, µωt , t = 1, 2, ...
satisfies the large deviations principle with probability one,

with rate function I if the following two conditions hold:

1) for every closed set F there exists a set Ω⋆F ⊆ Ω with

P (Ω⋆F ) = 1, such that for each ω ∈ Ω⋆F ,

lim sup
t→+∞

1

t
logµωt (F ) ≤ − inf

x∈F
I(x); (23)

2) for every open set E there exists a set Ω⋆E ⊆ Ω with

P (Ω⋆E) = 1, such that for each ω ∈ Ω⋆E ,

lim inf
t→+∞

1

t
logµωt (E) ≥ − inf

x∈E
I(x). (24)
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We give here the version of the Varadhan’s lemma which

involves sequence of random probability measures and large

deviations principle (LDP) with probability one3.

Lemma 5 (Varadhan’s lemma [26]). Suppose that the random

sequence of measures µωt satisfies the LDP with probability

one, with rate function I , as defined in Def. 4. Then, if for

function F the tail condition below holds with probability one,

lim
B→+∞

lim sup
t→+∞

1

t
log

∫

x:F (x)≥B
etF (x)dµωt (x) = −∞, (25)

then, with probability one,

lim
t→+∞

1

t
log

∫

x

etF (x)dµωt (x) = sup
x∈RD

F (x)− I(x). (26)

IV. LINEAR RECURSION FOR THE LLR AND THE

LYAPUNOV EXPONENT

From (5) and (12), it is easy to see that the likelihood ratio

can be expressed through the defined quantities as:

Lt(X
t) =

∑

st∈St

P (st)e
1
σ2

∑2
m=1 µm

∑

k∈Tm(st)Xk−τm(st)
µ2
m

2σ2

=
∑

st∈St

p+st,o(st)

pst,o(st)
e
∑2

m=1

∑∆m
d=1Nmd(s

t) log pmd×

e
1
σ2

∑2
m=1 µm

∑

k∈Tm(st)Xk−τm(st)
µ2
m

2σ2 . (27)

The expression in (27) is combinatorial, and its straight-

forward implementation would require computing Ct ≈ eψt

summands. This is prohibitive when the observation interval t
is large. In this paper, we unveil a simple, linear recursion

form for the likelihood Lt(X
t), for t = 1, 2, .... We give

this result in the next lemma. To shorten the notation, we

introduce functions fm : R 7→ R, which we define by

fm(x) := 1
σ2µmx − 1

2σ2µ
2
m, for x ∈ R and m = 1, 2.

Recall that e1 denotes the first canonical vector in R
∆ (the

∆ dimensional vector with 1 only in the first position, and

having zeros in all other positions), and 1 denotes the vector

of all ones in R
∆.

Lemma 6. Let Λk =
(
Λ1
k
⊤
,Λ2

k
⊤
)⊤

evolve according to the

following recursion

Λk+1 = Ak+1Λk, (28)

with the initial condition Λ1 =
(
ef1(Xk)e⊤1 , e

f2(Xk)e⊤1
)⊤

, and

where, for k ≥ 2, matrix Ak is given by

Ak =

[
ef1(Xk)A0 ef1(Xk)e1p

⊤
2

ef2(Xk)e1p
⊤
1 ef2(Xk)A0

]
, (29)

3We note one technical subtlety in Def. 4. It would be analytically “cleaner”
to require the existence of a probability one set, say Ω

⋆ ⊆ Ω, on which the
LDP bounds hold for an arbitrary large deviation set. This is, however, too
restrictive for our purposes, and thus we relax this condition to the existence
of such a set for each given large deviation set, but requiring, of course,
that we have the same rate function for each of the obtained large deviation
probabilities. As it turns, this condition is sufficient to yield Varadhan’s lemma
with probability 1; see [40] for details.

and A0 is, we recall, the lower shift matrix of dimension ∆.

Then, for each t ≥ 1, the likelihood ratio Lt(X
t) is computed

by

Lt(X
t) =

∆∑

d=1

p+1dΛ
1
t,d + p+2dΛ

2
t,d, (30)

where Λmt,d is the d-th element of Λmt , for d = 1, ...,∆ and

m = 1, 2.

Remark. We note that the matrix Ak can be further decom-

posed as

Ak = DkP (31)

Dk = diag

((
ef1(Xk)1

⊤, ef2(Xk)1
⊤
)⊤)

, k = 1, 2, ...,

P =




0 . . . 0 p21 p22 . . . p2∆
1 0 . . . 0

0 1 . . . 0
... 0

...
...

. . .
...

0 0 . . . 1 0
p21 p22 . . . p2∆ 0 . . . 0

1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 . . . 1 0




i.e., Dk is a random diagonal matrix of size 2∆, modulated

by the k-th measurement Xk, and P is a sparse, constant

matrix of the same dimension, which defines transitions from

the current state pattern to the one in the next time step.

Proof intuition. The intuition behind this recursive form is the

following. We break the sum in (27) into sequences st whose

last phases are of the same type. For sequences that end with

state m = 1, Λ1
t,d represents the contribution to the overall

likelihood ratio Lt(X
t) of all such sequences whose last phase

is of length d, and similarly for Λ2
t,d. Once the vectors Λ1

t,d

and Λ2
t,d are defined, their update is simple. Consider the value

Λ1
t+1,d, where d > 1; this value corresponds to the likelihood

ratio contribution of all sequences st+1 that end with state-1
phase of duration d. Since d > 1, the only possible way to get

a sequence of that form is to have a sequence at time t that

ends with the same state, where the duration of the last phase is

d−1. This translates to the update Λ1
t+1,d = ef1(Xt+1)Λ1

t,d−1,

where the choice of f1 in the exponent is due to the fact

that the last state is st+1 = 1; see also the first line in (29).

On the other hand, if d = 1, then the state at time t must

have been m = 2. The duration of this previous phase could

have been arbitrary from d = 1 to d = ∆. Hence Λ1
t+1,1 is

computed as the sum Λ1
t+1,1 =

∑∆
d=1 p2de

f1(Xt+1)Λ2
t,d, where

the probabilities p2d are used to mark that the previous phase

is completed, see the second line in (29). The analysis for

Λ2
t+1,d is similar. The formal proof of Lemma 6 is given in

the extended version of the paper [40].
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A. Transition matrix P and error exponent upper bound

The matrix P defined in (31) has a nice physical inter-

pretation. Namely, define the probabilities that the transition

from one state to the other occurs exactly at time t, qt,1 =
P (St = 1, St−1 = 2) and qt,2 = P (St = 2, St−1 = 1), for

t ≥ 1. Conditioning on the duration of the state that just ended,

it is easy to see that these two probabilities, in the next time

step, are computed by

qt+1,1 =

∆∑

d=1

P (St+1 = 1, St = . . . = St−d+1 = 2|

St−d+1 = 2, St−d = 1)P (St−d+1 = 2, St−d = 1)

=

∆∑

d=1

p2dqt−d+1,2, (32)

and similarly for qt+1,2. Since we assume that the first state

is always state 1, and taking for convenience that the ∆ states

preceding S1 are state 2, i.e., S0 = S1 = ... = S−∆+1 = 2,

we have initialization q1,1 = 1 and q1,1−d = 0, for d =
1, ...,∆ − 1, and q2,1−d = 0, for d = 0, ...,= ∆ − 1.

Forming the 2∆ vector qt = [q⊤
t,1q

⊤
t,2]

⊤, where qt,m =
[qt,m, qt−1,m, ..., qt−∆+1,m]⊤, for m = 1, 2, we have the

following transition relation

qt+1 = Pqt, (33)

for t = 0, 1, 2, ..., where q0 = [e⊤1 , 0
⊤
∆]

⊤. It is easy to verify

that the transition matrix P satisfies the following properties.

Proposition 7. 1) P is stochastic and irreducible;

2) the left Perron eigenvector of P is the vector p+ =[
p+1

⊤
, p+2

⊤]⊤
, where the d-th entry of p+m equals p+md,

for m = 1, 2, d = 1, 2, ...,∆.

The fact that P is stochastic follows directly from the

structure of P , by using the fact that vectors p1 and p2 have

entries that sum up to one, and irreducibility follows by the

assumption that p1, p2 > 0 (entry-wise). Property 2 can be

verified directly (note that p+11 = p+21 = 1).

Upper bound on the error exponent. We use the transition

formula (33), together with the properties of P , to derive an

upper bound on the error exponent (6), which we give in the

following lemma and prove in the Appendix.

Lemma 8. There holds

ζ ≤ q⊤p1
q⊤p1 + q⊤p2

µ2
1

2σ2
+

q⊤p2
q⊤p1 + q⊤p2

µ2
2

2σ2
. (34)

Expected SNR interpretation. Interpretation of the upper

bound (34) is highly intuitive. The factor q⊤p1/(q⊤p1+q⊤p2)
represents the fraction of times that the process spends in state

1, and similarly for q⊤p2/(q⊤p1+q⊤p2). Thus, the right hand

side of (34) is in that sense the average SNR of the observed

signal sequence. If we consider any typical sequence of states,

and if we assumed the perfect knowledge of this sequence,

then the error exponent would be given by the right hand side

of (34) (we remark that any typical sequence of states will

have approximately the same SNR, as given in (34)). Since

in our scenario we have a more complex problem where we

only have the observations (and not the underlying states), it

is natural to expect that the corresponding error exponent is

upper bounded by the error exponent for the case when both

the observations and the states are available – equal to the

right hand side of (34).

B. Error exponent ζ as Lyapunov exponent

From Lemma 6 we see that Lt can be represented as a linear

function of the matrix product Πt := At · . . . ·A1,

Lt = p+
⊤
ΠtΛ0, (35)

where Ak are matrices of the form (29). Each Ak is modulated

by the measurement Xk obtained at time k. Since Xk’s, k =
1, 2, ..., are i.i.d., it follows that the matrices Ak are i.i.d. as

well. Applying a well-known result from the theory of random

matrices, see Theorem 2 in [42], to sequence Ak it follows

that the sequence of the negative values of the normalized

log-likelihood ratios − 1
t logLt, t = 1, 2, ..., converges to the

Lyapunov exponent of the matrix product Πt. This result is

given in Lemma 9 and proven in Appendix.

Lemma 9. With probability one,

lim
t→+∞

1

t
log ‖Πt‖ = lim

t→+∞
1

t
E0 [log ‖Πt‖] , (36)

and thus, with probability one,

ζ = lim
t→+∞

−1

t
log ‖Πt‖ = lim

t→+∞
−1

t
E0 [logLt] . (37)

Lemma 9 asserts that the error exponent for hypothesis

testing problem (4) equals the top Lyapunov exponent for

the sequence of products Πt. Computation of the Lyapunov

exponent (e.g., for i.i.d. matrices) is a well-known problem

in random matrix theory and theory of random dynamical

systems, proven to be very difficult to solve, see, e.g., [38].

We instead search for tractable lower bounds that tightly

approximate ζ. We base our method for approximating ζ on

the right hand-side identity in (37).

V. MAIN RESULT

Our first step for computing the limit in (37) is a natural

one. Since µ1 ≥ 0 is the guaranteed signal level (recall that

µ2 > µ1 ≥ 0), we assume that the signal was at all times

at state 1, and remove the corresponding components of the

signal to noise ratio (SNR)
µ2
1

2σ2 and the signal sum
∑t
k=1Xk

from the likelihood ratio. This manipulation then gives us a

lower bound on the error exponent. By doing so, we arrive

at an equivalent problem to problem (4) just with µ1 = 0.

Mathematically, we have

Lt(X
t)=

∑

st∈St

P (st)e

1
σ2 µ1





t
∑

k=1

Xk−
∑

k∈T2(st)

Xk



−(t−τ2(st))
µ2
1

2σ2

×

× e

1
σ2 µ2

∑

k∈T2(st)

Xk−τ2(st)
µ2
2

2σ2

= e
1
σ2 µ1

t
∑

k=1

Xk−t
µ2
1

2σ2 ×

×
∑

st∈St

P (st)e

1
σ2

∑

k∈T2(st)

(µ2−µ1)Xk−τ2(st)
µ2
2−µ2

1
2σ2

.

(38)
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Taking the logarithm, dividing by t, and computing the expec-

tation with respect to hypothesis H0, we get

1

t
E0

[
logLt(X

t)
]
= − µ2

1

2σ2
+

1

t
E0

[
log

∑

st∈St

P (st)×

× e
1
σ2

∑

k∈T2(st)(µ2−µ1)Xk−τ2(st)
µ2
2−µ2

1
2σ2

]
, (39)

where we used that E0 [Xk] = 0, for all k, see (4). Taking the

limit as t→ +∞, we obtain

ζ =
µ2
1

2σ2
+ η, (40)

where η is given by the following limit

η = lim
t→+∞

− 1

t
E0

[
log

∑

st∈St

P (st)×

×e 1
σ2

∑

k∈T2(st)(µ2−µ1)Xk−τ2(st)
µ2
2−µ2

1
2σ2

]
, (41)

the existence of which is guaranteed by (37), in Lemma 9.

From now on, we focus on computing η.

For λ ∈ R
∆, and p ∈ S

∆−1, introduce the relative entropy

function D(λ||p) := ∑∆
d=1

λd

1⊤λ
log

λd/(1⊤λ)
pd

.

Theorem 10. There holds η+
µ2
1

2σ2 ≤ ζ, where η is the optimal

value of the following optimization problem

minimize G(ν, ξ)

subject to H(ν1) +H(ν2) ≥ ξ2

2θ2σ2

θ2 = q⊤ν2
ν ∈ V
ξ ∈ R.

, (42)

where G(ν) = D(ν1||p1) + D(ν2||p2) +
θ2
2σ2

(
ξ
θ2

− (µ2 − µ1)
)2

+ θ2
µ1(µ2−µ1)

σ2 , for ν ∈ R
2∆
+ ,

ξ ∈ R.

Guaranteed error exponent. Since each of the terms in the

objective function of (42) is non-negative, its optimal value is

lower bounded by 0. Using relation (40), we obtain that the

value of the error exponent is lower bounded by the value of

SNR in state-1,
µ2
1

2σ2 , i.e.,

ζ ≥ µ2
1

2σ2
. (43)

The preceding bound holds for any choice of parameters

∆, p1, p2, µ1 and µ2. This result is very intuitive, as it math-

ematically formalizes the reasoning that, no matter which

configuration of states occurs, signal level µ1 is always guar-

anteed, and hence the corresponding value of error exponent
µ2
1

2σ2 is ensured. In that sense, any appearance of state 2 (i.e.,

signal level µ2 > µ1) can only increase the error exponent.

A. Special case µ1 = 0 and detectability condition

When the signal level in state 1 equals zero, then, since

the statistics of Xk for Sk = 1 is the same as its statistics

under H0, effectively we can have information on the state of

nature H1 only when state Sk = 2 occurs. Denoting µ = µ2,

optimization problem (42) then simplifies to:

minimize D(ν1||p1) +D(ν2||p2) + θ2
2σ2

(
ξ
θ2

− µ
)2

subject to H(ν1) +H(ν2) ≥ ξ2

2θ2σ2

θ2 = q⊤ν2
ν ∈ V
ξ ∈ R.

.

(44)

From (44) we obtain the following condition for detectabil-

ity of process Sk:

H(p1) +H(p2) ≥
q⊤p2

q⊤p1 + q⊤p2

µ2

2σ2
, (45)

i.e., if the inequality above holds, then the optimal value of

optimization problem (44) is zero. To see why this holds, note

that the point (ν1, ν2, ξ) ∈ R
2∆+1, where νm = pm/(q

⊤p1 +
q⊤p2), m = 1, 2, and ξ = q⊤p2/((q⊤p1 + q⊤p2))µ un-

der which the cost function of (44) vanishes, under condi-

tion (45) belongs to the constraint set of (44). Thus, under

condition (45), the lower bound on the error exponent η is

zero, indicating that the process Sk is not detectable. To

further illustrate this condition, note that the left hand-side

corresponds to the entropy of the process Sk, and the right

hand-side corresponds to the expected, i.e. – long-run SNR

of the measured signal (q⊤p2/
(
q⊤p1 + q⊤p2

)
is the expected

fraction of times that the process was in state 2, and µ2

2σ2 is

the SNR for this state). Condition (45) therefore asserts that,

if the entropy of the process Sk is too high compared to the

expected, or long-run, SNR, then it is not possible to detect its

presence. Intuitively, if the dynamics of the phase durations is

too stochastic, then it is not possible to estimate the locations

of state 2 occurrences, in order to perform the likelihood ratio

test. However, on the other hand, if the SNR is very high

(e.g., the level µ is high compared to the process noise σ2)

then, whenever state 2 occurs, the signal will make a sharp

increase and can therefore be easily detected. The condition

in this sense quantitatively characterizes the threshold between

the two physical quantities which makes detection possible.

Reformulation of (44). In this subsection we show that

optimization problem (44) admits a simplified form, obtained

by suppressing the dependence on ξ through inner minimiza-

tion over this variable. To simplify the notation, introduce

H(ν) = H(ν1) + H(ν2) and R(ν) = q⊤ν2
µ2

2σ2 ; note that

the function R has the physical meaning of the expected SNR

of the St process that we wish to detect, for a given sequence

type ν.

Lemma 11. Suppose that H(p1) + H(p2) <

q⊤p2/
(
q⊤p1 + q⊤p2

)
µ2

2σ2 . Then, optimization problem (44)

is equivalent to the following optimization problem:

minimize D(ν1||p1) +D(ν2||p2) +
(√

H(ν)−
√
R(ν)

)2

subject to H(ν) ≤ R(ν)
ν ∈ V

.

(46)

The proof is given in the Appendix.
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VI. PROOF OF THEOREM 10

Sum of conditionals as an expectation. For each st ∈ St,
introduce

Xst =
1

t

∑

k∈T2

Xk, (47)

and note that, for each st and under H = H0, Xst is

Gaussian random variable of mean zero and variance equal to

σ2τ2(s
t)/t2 = σ2θ2(s

t)/t. The idea is to view the sum in (41)

as an expectation of a certain function gX : St 7→ R defined

over the set St of all possible sequences st, parameterized

by random family (i.e., vector) X = {Xst : st ∈ X t}. More

precisely, consider the probability space with the set of out-

comes St and where an element st of St is drawn uniformly at

random – and hence with probability 1/Ct, where, we recall

Ct = |St|; denote the corresponding expectation by EU . We

see that the sum under the logarithm in (41) equals

∑

st∈St

P (st)et
(µ2−µ1)

σ2 Xst−τ2(st)
µ2
2−µ2

1
2σ2

= Ct
∑

st∈St

1

Ct
gX (st) = Ct EU

[
gX (st)

]
, (48)

where it is easy to see that gX (st) =

P (st)et
(µ2−µ1)

σ2 Xst−τ2(st)
µ2
2−µ2

1
2σ2 , for st ∈ St.

Using further the type V defined in Subsection III-A, we

can express gX (st) as

gX (st) = e
t
(µ2−µ1)

σ2 Xst−tΘ2(s
t)

µ2
2−µ2

1
2σ2 +t

2
∑

m=1

∆
∑

d=1

Vmd(s
t) log pmd

,
(49)

where we assumes that o(st) = ∆, in which case the first

factor on the right hand side of (49) equals 1, but we remark

that the claims that follow can be derived even without this

assumption, by a slightly more technical proof path – we refer

the reader to the extended version of the paper [40].

Induced measure. We see that function gX essentially de-

pends on st only through type V of the sequence and the

values of vector X . More precisely, define F : R2∆×R 7→ R

as

F (ν, ξ) =
µ2 − µ1

σ2
ξ − θ2

µ2
2 − µ2

1

2σ2
+

2∑

m=1

∆∑

d=1

νmd log pmd.

(50)

Then, for any st, gX (st) = eF (V (st),Xst ). For each vector X ,

let then QX
t : B

(
R

2∆+1
)
7→ R denote the probability measure

induced by (V (st),X (st)), for the assumed uniform measure

on St:
QX
t (B) :=

∑
st∈St 1{(V,X )∈B}(s

t)

Ct
, (51)

for arbitrary B ∈ B
(
R
N2+N

)
. It is easy to verify that QX

t

is indeed a probability measure. Also, we note that, for any

fixed t and X , QX
t is discrete, supported on the discrete set

{(V (st),Xst) : st ∈ St}; note that the latter set is a subset

of Vt × ∪st∈St
Xst – the Cartesian product of the set of all

feasible types at time t with the set of all elements of vector

X .

Let EQ denote the expectation with respect to measure QX
t .

Then, we have EU [gX (St)] = EQ

[
etF (V,X )

]
. Going back

to (48), and using the result of Lemma 2, we obtain for η
given in (41):

η = − logψ + lim
t→+∞

−1

t
E0

[
logEQ

[
etF (V,X )

]]
, (52)

where, we recall E0 is the expectation with respect to proba-

bility P0 that corresponds to H0 state of nature, under which

measurements Xk – and hence vector X are generated.

If the measures QX
t were sufficiently nice such that they

satisfied the LDP and the moderate growth condition (25), then

one could apply Varadhan’s lemma to compute the exponential

growth of the expectation in the right hand side of (52).

However, the measures QX
t are very difficult to analyze due to

the correlations in different elements of X which couple the

indicator functions in (51). Hence, we resort to an upper bound

of η which we derive by replacing vector X by vector Z with

the same statistical properties, but with an added feature that its

elements are mutually independent. More precisely, for each

t we introduce a family of independent Gaussian variables

Z = {Zst : st ∈ St}. Further, for each st the corresponding

element of the family Zst is Gaussian with the same mean and

variance as Xst : expected value equal to 0, and variance equal

to Var [Zst ] = σ2θ2(s
t)/t. Denote by P and E, respectively,

the probability function and the expectation corresponding to

the family {{Zst : st ∈ St} : t = 1, 2, . . .}. Then, the follow-

ing result holds; the proof is based on Slepian’s lemma [43],

and it can be found in an extended version of this paper [40].

Lemma 12. For each t, there holds,

E

[
logEQ

[
etF (V,Z)

]]
≥ E0

[
logEQ

[
etF (V,X )

]]
, (53)

where the inner left hand side expectation is with respect to

the measures QX
t and the inner right hand-side expectation is

with respect to the measures QZ
t .

The next result asserts that QZ
t satisfies the LDP with

probability one and computes the corresponding rate function.

Theorem 13. For every measurable set G, the sequence of

measures QZ
t , t = 1, 2, ..., with probability one satisfies the

LDP upper bound (23) and the LDP lower bound (24), with

the same rate function I : R2∆+1 7→ R, equal for all sets G,

which for ν ∈ V for which H(ν1) +H(ν2) ≥ Jν(ξ) is given

by

I(ν, ξ) = logψ −H(ν1)−H(ν2) + Jν(ξ), (54)

and equals +∞ otherwise, and where, for any ν ∈ V , function

Jν : R 7→ R is defined as Jν(ξ) :=
1

q⊤ν2

ξ2

2σ2 .

Having the large deviations principle for the sequence QZ
t ,

we can invoke Varadhan’s lemma to compute the limit of

the scaled values in (52). Applying Lemma 5 (the details

of the moderate growth condition (25) for QZ
t are given in

the extended version of this paper [40]), we obtain that, with

probability one,

lim
t→+∞

1

t
logEQ

[
etF (V,Z)

]
= sup

(ν,ξ)

F (ν, ξ)− I(ν, ξ). (55)
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It can be shown that the sequence under the preceding limit

is uniformly integrable, the proof of which can be found in

the extended version of this paper [40]. Thus, the limit of the

sequence values and the limit of their expected values coincide,

i.e.,

lim
t→+∞

1

t
E

[
logEQ

[
etF (V,Z)

]]
= lim
t→+∞

1

t
logEQ

[
etF (V,Z)

]
.

(56)

Combining with (52), (53), and (55), we finally obtain

η ≥ − logψ − sup
(ν,ξ)∈R2∆+1

F (ν, ξ)− I(ν, ξ). (57)

It remains to show that the value of the above supremum

equals the value of the optimization problem (42). Using the

definition of I , we have that I(ν, ξ) = +∞ for any (ν, ξ) such

that H(ν) < Jθ(ξ) or such that ν /∈ V . Since the supremum

is surely not achieved at these points, set R2∆+1 in (57) can

be replaced by {(ν, ξ) ∈ V ×R : H(ν) < Jθ(ξ)}. Using the

definitions of F and I , we have

F (ν, ξ)− I(ν, ξ) =

2∑

m=1

∆∑

d=1

νmd log pmd − νmd log νmd

+
µ2 − µ1

σ2
ξ − θ2

µ2
2 − µ2

1

2σ2
− 1

θ2

ξ2

2σ2
− logψ. (58)

Cancelling out the term logψ in the preceding equation with

the one in (57), and recognizing that
∑∆
d=1 νmd log pmd −

νmd log νmd = −D(νm||pm), we see that problem (42) is

equivalent to the one in (57). This completes the proof of

Theorem 10.

VII. NUMERICAL RESULTS

In this section we report our numerical results to demon-

strate tightness of the developed performance bounds. We also

illustrate our methodology on the problem of detecting one

single run of a dish-washer, where we use real-world data to

estimate the state values for a dish-washer.

In the first set of simulations, we consider the setup in which

µ1 > 0 and we compare the error exponents obtained via

simulations to the guaranteed lower bound (43). We simulate

a two-state signal, Xt, as an i.i.d. Gaussian random variable

with standard deviation σ and mean µ1 = 2 and µ2 = 5 in

states 1 and 2, respectively. We take the maximal duration

to be ∆ = 3. The observation interval is t ∈ [1, T ], where

T = 200. In the absence of the signal, the data is distributed

according to the Gaussian distribution with mean µ0 = 0 and

the same standard deviation σ.

To estimate the receiver operating characteristics (ROC)

curves, we use J = 100000 Monte Carlo simulation runs for

each hypothesis. For each hypothesis and each simulation run,

we compute the values Lt(X
t), for t = 1, 2, ..., T , using the

linear recursion from Lemma 6. Then, for each t, to obtain

the corresponding ROC curve, we first find the minimal and

maximum value Lt,m and Lt,m, respectively, across J runs

for each hypothesis m, and change the detection threshold γ
with a small step size from Lt,1 − β to Lt,0 + β, where β
is a carefully chosen bound. For each t and γ the probability

of false alarm Pfa or false positive, i.e., wrongly determining

that the signal is present, is calculated as

P γfa,t =

∑J
j=1 1(Lt(X

t
(j)) ≥ γ)

J

where 1 is an indicator function that returns 1 if the corre-

sponding condition is true and 0 otherwise, and Xt
(j) is the

j-th realisation of the sequence Xt under H0. The probability

of a miss Pmiss or false negative, that is, declaring that the

signal is not present, though it is, is calculated as:

P γmiss,t =

∑J
j=1 1(Lt(X

t
(j)) < γ)

J
.

We set the bound α = 0.01 and find Pαmiss,t = P γ
⋆

miss,t where

γ⋆ resulted in the highest probability of a miss that satisfied

P γ
⋆

fa,t ≤ α.

Error exponents for uniform and concentrated distri-

butions. In the first set of experiments, we investigate the

dependence of the slope both on the noise variance σ2 and also

on the pmfs p1 and p2, for fixed signal levels µ1 and µ2. With

respect to p1 and p2, we start with the uniform distribution,

in which case the signal is the most difficult to detect, as

each of the state durations is equally likely (the sequence of

states has the highest entropy), and thus it is very difficult

to detect the locations of state transitions. Then we gradually

shift towards the distribution which has the probability of 0.9
on the duration d = 2 of both states; it is intuitive that with

the latter distribution the signal should be easier to detect

than with the uniform, as we know that, in any state, the

transition occurs, with high probability, after two sampling

periods. More precisely, we consider five different cases with

respect to the two pmfs: 1) p1 = p2 = [1/3, 1/3, 1/3]
(uniform distribution); 2) p1 = p2 = [0.25, 0.5, 0.25]; 3)

p1 = p2 = [0.15, 0.7, 0.15]; 4) p1 = p2 = [0.1, 0.8, 0.1];
and 5) p1 = p2 = [0.05, 0.9, 0.05].

For each of the five cases above, and each different value

of σ, we compute the values of Pαmiss,t, for t = 1, ..., T , and

apply linear regression on the sequence of values − logPαmiss,t

for all observation times t for which the probability of a miss

was non-zero. For each of the five cases, this gives an estimate

for the error exponent (i.e., the slope) for the probability of

a miss under a fixed value of σ, which we denote by S
(k)
σ ,

k = 1, ..., 5.

Figure 3 plots the probability of a miss curve (in the

logarithmic scale) vs. the number of samples t for five

different values of σ, namely σ = 10, 15, 20, 25, 30, for the

case when the distributions p1 and p2 are uniform, p1 =
p2 = [1/3, 1/3, 1/3]. We observe that for large observation

intervals t the curves are close to linear, as predicted by the

theory, see Lemma 9. Further, as σ increases the magnitude of

the slope decreases becoming very close to 0 for large values

of σ.

Figure 4 compares the five error exponents curves S
(k)
σ ,

k = 1, ..., 5, obtained numerically. As expected, as σ increases,

each of the curves tends to zero, and they also become

closer. Comparing the five curves, we see that, for any fixed

noise variance, the lowest curve is always the one with the
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uniform pmfs. As the pmf gradually becomes more and more

concentrated, the error exponents monotonically increase, until

the highest error exponent curve, corresponding to the most

concentrated pmf of the five, with state duration d = 2
occurring most of the time. This result is expected, as it is

easiest to detect the process with the lowest entropy, and hence

the corresponding error exponent should be the highest.

Figure 4 also plots the theoretical upper and lower bounds

in (43) and (34), respectively; we note that, since p1 = p2
in each of the five simulation setups, the same upper bound–

equal to 1/2µ2
1/(2σ

2) + 1/2µ2
2/(2σ

2)– applies, see eq. (34).

The lower bound, equal to µ2
1/(2σ

2), is plotted in blue dotted

line, while the upper bound is plotted in red dashed line. It

can be seen from the figure that each of the five numerical

error exponent curves is at all points sandwiched between the

lower bound (43) curve µ2
1/(2σ

2) and the upper bound curve

1/2µ2
1/(2σ

2)+1/2µ2
2/(2σ

2). Further, the closest curve to the

lower bound is the error exponent for the uniform distribution,

p1 = p2 = [1/3, 1/3, 1/3], which is intuitively expected, as

also explained in the above paragraph. The curve closest to

the upper bound is the most skewed, i.e., sharpest distribution,

p1 = p2 = [0.05, 0.9, 0.05].
In order to get further closer to the theoretical error exponent

limit, we shift the probability mass from state duration d = 2
to d = 3, and simulate the case p1 = p2 = [0.05, 0.05, 0.9].
The reasoning is the following: the longer the process stays in

the same state, it should be easier to detect it. For complete-

ness, we also simulate the case p1 = p2 = [0.9, 0.05, 0.05],
i.e., when the process often switches from one state to the

other. The results, shown in Figure 5, are well aligned with

the intuition. The lowest of the three curves is the curve

corresponding to the fastest switching process, with most of

the mass on the shortest possible duration, d = 1. The highest

curve (and the one closest to the theoretical upper bound) is

the curve corresponding to the most inert process, when most

of the mass is on the longest state duration, d = ∆ = 3, while

the curve with the mass concentrated on d = 2 is in the middle

of the two.

Fig. 3: Simulation setup: ∆ = 3, p1 = p2 = [1/3, 1/3, 1/3],
µ1 = 2, µ2 = 5, α = 0.01. Evolution of probability of a miss,

in the logarithmic scale, for σ = 10, 15, 20, 25, 30.

In the second set of experiments, we consider the setup

where the signal level in state 1 is zero, µ1 = 0, and µ2 =
µ = 1; similarly as in the previous setup, we consider uniform

Fig. 4: Simulation setup: ∆ = 3, µ1 = 2, µ2 = 5, α = 0.01.

σ varies from 5 to 50. The five middle full lines plot the nu-

merical error exponents estimated from slope of logPαmiss,t vs.

σ, for 1) p1 = p2 = [1/3, 1/3, 1/3] (yellow); 2) p1 = p2 =
[0.25, 0.5, 0.25] (turquoise); 3) p1 = p2 = [0.15, 0.7, 0.15]
(pink); and 4) p1 = p2 = [0.1, 0.8, 0.1] (light green); and 5)

p1 = p2 = [0.05, 0.9, 0.05] (brown). Blue dotted line plots the

theoretical lower bound µ2
1/(2σ

2) in (43) and red dashed line

plots the upper bound 1/2µ2
1/(2σ

2) + 1/2µ2
2/(2σ

2) in (34)

Fig. 5: Simulation setup: ∆ = 3, µ1 = 2, µ2 = 5,

α = 0.01. σ varies from 5 to 50. The three middle full

lines plot the numerical error exponents estimated from slope

of logPαmiss,t vs. σ, for 1) p1 = p2 = [0.9, 0.05, 0.05]
(brown); 2) p1 = p2 = [0.05, 0.9, 0.05] (light green); and

3) p1 = p2 = [0.05, 0.05, 0.9] (pink). Blue dotted line plots

the theoretical bound µ2
1/(2σ

2) in (43) and red dashed line

plots the upper bound 1/2µ2
1/(2σ

2) + 1/2µ2
2/(2σ

2) in (34).

distributions p1, p2 ∼ U([1,∆]), with ∆ = 2. We compare the

numerical error exponent with the one obtained as a solution

to optimization problem (46). To solve (46), we apply random

search over 106 different vectors from set V , and pick the point

which gives the smallest value of the objective (and satisfies

the constraint in (46)).

Figure 6 plots probability of a miss vs. number of samples

t for 5 different values of σ, in the interval from 0.2 to 0.6.

Again, we can observe that linearity emerges with the increase

of σ. Figure 7, top, compares error exponent estimated from

the slope in Figure 6 with the theoretical bound calculated

from solving (46). We can see from the plot that the two

lines are very close to each other. In fact, we have that the

numerical values are slightly below the lower bound values.

This seemingly contradictory effect is a consequence of the

following. As the probability of a miss curves have a concave

shape in this simulation setup (which can be observed from
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Figure 6) their slopes continuously increase with the increase

of the observation interval. As a consequence, the linear fitting

performed on the whole observation interval is underestimat-

ing the slope, as it is trying to fit also the region of values

where concavity is more prominent. To further investigate this

effect, we performed linear fitting of probability of a miss

curves only for a region of higher values of t, where emergence

of linearity is already evident. In particular, for each different

value of σ, we apply linear fitting for [4/5 tmax, tmax], where

tmax is the maximal t for which the probability of a miss is

non-zero, and we plot the results in Figure 7, bottom. It can

be seen from the figure that the numerical curve got closer to

the theoretical curve, indicating that the bound in (46) is very

tight or even exact. Finally, it can be seen from Figure 7 (top

and bottom) that the value of σ for which the error exponent

is equal to zero matches the threshold predicted by the theory,

σ⋆ = µ/(2
√
2 log∆) = 0.4247, obtained from detectability

condition (45).

Fig. 6: Simulation setup: ∆ = 2, p1, p2 ∼ U([1,∆]), µ1 =
0, µ2 = 1, α = 0.01. Plots of probability of a miss in the

logarithmic scale for σ = 0.3, 0.33, 0.37, 0.4, 0.45

Comparison with the HMM detector. To illustrate the

difference between the HSMM and the HMM, we compare

the performance of the optimal HSMM detector derived here

with HMM-based detector, derived in [22], see Proposition 1.

Namely, we run both detectors on the same data generated

by an HSMM model, with certain pmfs. In particular, we set

∆ = 5 and consider two sets of simulations: 1) truncated geo-

metric pmfs p1,g = p2,g = 1/(1−q∆)((1−q), q(1−q), q2(1−
q), q3(1−q), q4(1−q)) ∈ R

5, where q = 0.8; and 2) concen-

trated pmfs p1,c = p2,c = (0.025, 0.025, 0.025, 0.025, 0.9) ∈
R

5, see paragraph on the comparison with random telegraph

signal in Section II. In the first case we set the HMM transition

matrix as PHMM = [q, (1− q); (1− q), q], which ensures that

the resulting distribution of the state durations will be close

to p1,g = p2,g. Since the data is in this case well fitted by

the HMM, we expect that the non-optimal but tuned HMM-

based detector will behave close to the optimal HSMM-based

detector. In the second case, the pmfs cannot be fitted by a

geometric distribution, but we keep the same transition matrix

PHMM, as it describes well the property that the process stays

the same time in both states. Since in this case the data is

far from an HMM, we expect that the optimal HSMM-based

detector will outperform the HMM-based detector.

Fig. 7: Simulation setup: ∆ = 2, p1, p2 ∼ U([1,∆]),
µ1 = 0, µ2 = 1, α = 0.01. σ varies from 0.2 to 0.6.

Blue full line plots the numerical error exponent estimated

from slope of logPαmiss,t vs. σ by linear fitting. Top: linear

fitting performed on the whole interval [1, tmax]; bottom:

linear fitting performed on [4/5 tmax, tmax]. Red dashed line

plots the theoretical bound calculated by solving (46)).

Fig. 8: Simulation setup: (upper) ∆ = 5, σ = 10, µ1 = 2,

µ2 = 5, α = 0.01. Top: p1,g = p2,g = 1/(1 − q∆)((1 −
q), q(1− q), q2(1− q), q3(1− q), q4(1− q)), where q = 0.8;

bottom: p1,c = p2,c = (0.025, 0.025, 0.025, 0.025, 0.9).
The curves plot the probability of a miss logPαmiss,t (in the

log scale) vs. number of samples t. Blue full lines with

“x” markers plot the probability of a miss for the HSMM-

based detector, and red full lines with “o” markers plot the

probability of a miss for the HMM-based detector.
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Fig. 9: Simulation setup: ∆ = 10, p1, p2 ∼ U([1,∆]), µ1 =
66, µ2 = 2200, σ = 90, α = 0.01. Plots of probability of a

miss for 5 different σ values.

The results shown in Figure 8 (top and bottom) corroborate

the preceding intuition. Indeed, in the first case, the two error

probability curves are very close to each other, but the HSMM

detector still has an edge over the HMM-based one, which is of

course expected, as HSMM-based detector is the optimal one.

On the other hand, in the second case, when the state duration

distribution is concentrated on the highest duration ∆ = 5,

the advantage of applying the optimal HSMM-based detector

is evident: for the value of error probability of e−5 = 0.0067,

the HSMM takes about 80 samples, while the HMM takes

more than 120 samples, hence requiring 50% more resources

in terms of measurements. Note that the HMM model is not

very adequate for the concentrated pmf p1,c = p2,c, while the

HSMM model developed here is capable of accommodating

this type of distributions.

NILM simulation. In the final set of simulations, we demon-

strate applicability of the results to estimate the number of

samples needed to detect an appliance run from the smart

meter data. To do that, we use measurements of a dishwasher

from the REFIT dataset [6]. REFIT dataset contains 2 years

of appliance measurements from 20 houses. The monitored

dishwasher is a two-state appliance, with mean power values

of µ1 = 2200W , µ2 = 66W and standard deviation of

σ1 = 36.6W and σ2 = 18.2W , in states 1 and 2, respectively.

The mean value of background noise which is also base-

load in that house is µ0 = 90 and with standard deviation

σ0 = 16.6W . We downsampled dishwasher data with ∆ = 10
to simulate the influence of noise, including base-load and

unknown appliances on detecting the appliance. The simula-

tion results are shown in Figure 9 as plots of Pαmiss,t vs. t for

several values of σ between the measured σ1 and σ2.

As expected, the probability of a miss decreases with the

increase of number of samples t. Furthermore, the number of

samples needed for successful detection is about 10.

VIII. CONCLUSION

We studied the problem of detecting a multi-state signal

hidden in noise, where the durations of state occurrences vary

over time in a nondeterministic manner. We modelled such

a process via a random duration model that, for each state,

assigns a (possibly distinct) probability mass function to the

duration of each occurrence of that state. Assuming Gaussian

noise and a process with two possible states, we derived

optimal likelihood ratio test and showed that it has a form of a

linear recursion of dimension equal to the sum of the duration

spreads of the two states. Using this result, we showed that the

Neyman-Pearson error exponent is equal to the top Lyapunov

exponent for the linear recursion, the exact computation of

which is a well-known hard problem. Using the theory of large

deviations, we provided a lower bound on the error exponent.

We demonstrated the tightness of the bound with numerical

results. Finally, we illustrated the developed methodology in

the context of NILM, applying it on the problem of detecting

multi-state appliances from the aggregate load signal.

ACKNOWLEDGEMENT

This project has received funding from the European Unions

Horizon 2020 research and innovation programme under the

Marie Sklodowska-Curie grant agreement No 734331.

APPENDIX

Proof of Lemma 9. To prove the claim, we apply Theorem 2

from [42]. Note that since matrices Ak are i.i.d., they are

stationary and ergodic, and hence they are also metrically

transitive, see, e.g., [44]. Therefore the assumptions of the

theorem are fulfilled. We now show that the condition of the

theorem holds, i.e., we show that

E0

[
log+ ‖Ak‖

]
< +∞, (59)

where log+ = max{log, 0}. It is easy to verify that ‖Ak‖ ≤
emaxm=1,2|fm(Xk)|CM0 , where CM0 = ‖M0‖. Thus, we have

log+ ‖Ak‖ ≤ log+ CM0e
maxm=1,2|fm(Xk)|

≤ log+ CM0 + max
m=1,2

|fm(Xk)|

≤ log+ CM0
+ |f1(Xk)|+ |f2(Xk)| . (60)

Since Xk is Gaussian, and f1 and f2 are linear functions, we

have that f1(Xk) and f2(Xk) are Gaussian. Therefore, the

expectation of the right hand side of the preceding equation

is finite (which can be seen by bounding E0 [|f1(Xk)|] ≤√
E0 [f21 (Xk)] ≤ +∞, and similarly for m = 1). Hence, the

condition (59) follows. By Theorem 2 from [42] we therefore

have that

lim
t→+∞

1

t
log ‖Πt‖ = lim

t→+∞
1

t
E [log ‖Πt‖] , (61)

which proves (36). To prove (37), we note that Lt =

p+
⊤
Πt12∆, where p+ > 0. Thus, there exist constants c and C

such that c‖Πt‖ ≤ Lt ≤ C‖Πt‖ [45]. The claim now follows

from the preceding sandwich relation between Lt and ‖Πt‖.

Proof of Lemma 8. Fix t ≥ 1 and consider Lt as expressed

in (27). Applying Jensen’s inequality, and taking the logarithm,

we get:

logLt ≥
∑

st∈St

P (st)


 1

σ2

2∑

m=1

µm
∑

k∈Tm(st)

Xk − τm(st)
µ2
m

2σ2


 .

(62)
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Recall now Lemma 9, eq. (61). Taking the expectation w.r.t.

H0 in (62), and expressing τm(st) =
∑t
k=1 1{Sk=m}, we

obtain

E0 [logLt] ≥ −
∑

st∈St

P (st)

(
τ1(s

t)
µ2
1

2σ2
+ τ2(s

t)
µ2
2

2σ2

)

= −
∑
st∈St P (st)µ2

st

2σ2
= −E1

[
µ2
St

]

2σ2
, (63)

where µ2
st =

∑t
k=1 1{sk=1}µ

2
1 +

∑t
k=1 1{sk=2}µ

2
2, and simi-

larly for a random sequence St. Dividing both sides of (63)

by t, inverting the sign, and taking the limit we get

ζ ≤ lim inf
t→+∞

1

2σ2

E1

[
µ2
St

]

t
, (64)

i.e., the error exponent is upper bounded by the expected, per

sample SNR (we will show shortly that the above limit in

fact exists). The right hand side in the above equation can be

alternatively expressed as:

E1

[
µ2
St

]
=

2∑

m=1

E1

[
t∑

k=1

1{Sk=m}

]
µ2
m

=

2∑

m=1

t∑

k=1

P1 (Sk = m)µ2
m. (65)

For an arbitrary time k, we now express the probability that

Sk = m via the vector q, defined in Subsection IV-A:

P1 (Sk = 1)˙=

∆∑

d=1

P1 (Sk = . . . = Sk−d+1 = 1, Sk−d = 2)

=

∆∑

d=1

p+1dP1 (Sk−d+1 = 1, Sk−d = 2) =
(
p+1

)⊤
qk,1. (66)

Summing up over k = 1, ..., t and using the transition

formula (33), we get:

1

t

t∑

k=1

P1 (Sk = m) =
[(
p+1

)⊤
, 0⊤∆

] ∑t
k=1 P

k

t
q0. (67)

Using now proposition 7, it is easy to show that P k →
1

q⊤p1+q⊤p2 [1
⊤
∆, 1

⊤
∆]

⊤ (p+)
⊤

, see Theorem 8.5.1 in [45]. As

the Cesaró averages must converge to the same matrix, we

have

lim
t→

1

t

t∑

k=1

P1 (Sk = m) =
q⊤p1

q⊤p1 + q⊤p2
, (68)

where the identity follows by the fact that only the first element

of q0 is equal to one(the remaining ones being zero), and also

the fact that p+11 = 1. Similar identity can be derived for the

limit of 1
t

∑t
k=1 P1 (Sk = m). Replacing the right hand-side

of (68) for m = 1 and m = 2 in (64) we get the claim of the

Lemma.

Proof of Lemma 11.

Proof. Fix ν ∈ V . To remove the dependence on ξ in (44),

for any given fixed ν ∈ V , we need to solve

minimize θ2

(

ξ
θ2

−µ
)2

2σ2

subject to H(ν) ≥ ξ2

2θ2σ2

ξ ∈ R

, (69)

where, as before, we denote θ2 = q⊤ν2. Since µ > 0, and

the constraint set is defined only through the square of ξ, the

optimal solution of (69) is achieved for ξ ≥ 0. Thus, (69) is

equivalent to

minimize θ2

(

ξ
θ2

−µ
)2

2σ2

subject to 0 ≤ ξ ≤ σ
√
2θ2H(ν)

. (70)

The solution of (70) is given by: 1) ξ⋆ = θ2µ, if

θ2µ ≤ σ
√

2θ2H(ν); and 2) ξ⋆ = σ
√

2θ2H(ν), oth-

erwise. Hence, to solve (44) we can partition its con-

straint set V = V1

⋃V2 according to these two cases,

where V1 =
{
ν ∈ V : H(ν) ≥ θ2

µ2

2σ2

}
and V2 ={

ν ∈ V : H(ν) ≤ θ2
µ2

2σ2

}
, solve the corresponding two op-

timization problems, and finally find the minimum among the

two obtained optimal values.

Consider first the case ν ∈ V1. Since in this case ξ⋆ = θ2µ,

plugging in this value in (70), we have that the optimization

problem (44) with V reduced to V1 simplifies to:

minimize D(ν1||p1) +D(ν2||p2)
subject to ν ∈ V1.

. (71)

If H(p) ≥ q⊤p2
q⊤p1+q⊤p2

µ2

2σ2 , then the point 1/
(
q⊤p1 + q⊤p2

)
p

belongs to V , where p = (p1, p2) and hence the optimal

solution to (71) equals 1/
(
q⊤p1 + q⊤p2

)
p with the corre-

sponding optimal value equal to 0. Suppose now that H(p) <
q⊤p2

q⊤p1+q⊤p2

µ2

2σ2 . We show that in this case the solution to (71)

must be at the boundary of the constraint set, in the set of

points
{
ν ∈ V : H(ν) = θ2

µ2

2σ2

}
.

We prove the above claim. Since the entropy function H , see

eq. (22), is concave, the constraint set V1 is convex, and since

KL divergence D is convex, we conclude that the problem

in (71) is convex. Also, it can be shown that the Slater point

exists [46]. Therefore, the solution to (71) is given by the

corresponding Karush-Kuhn-Tucker (KKT) conditions:





(1 + λ) log ν1d
1⊤ν1

− log p1d = 0, for d = 1, ...,∆

(1 + λ) log ν2d
1⊤ν2

− log p2d + λd µ2

2σ2 = 0, for d = 1, ...,∆

H(ν) ≥ q⊤ν2
µ2

2σ2

λ ≥ 0

λ
(
H(ν)− q⊤ν2

µ2

2σ2

)
= 0

ν ∈ V

.

(72)

From the fourth and fifth condition, we have that either

λ = 0, or that λ > 0 and H(ν) = q⊤ν2
µ2

2σ2 . Suppose

that λ = 0. Then, from the first two KKT conditions we

have that the solution ν must satisfy νmd/1
⊤νm = pmd,

for m = 1, 2, d = 1, ...,∆. However, this contradicts with

the third condition (recall that we assumed that H(p) <

q⊤p2
µ2

2 ). Therefore, the solution to (71) must belong to

the set
{
ν ∈ V : H(ν) = q⊤p2/

(
q⊤p1 + q⊤p2

)
µ2

2σ2

}
. Since

this set intersects with the set V2, we conclude that, when

H(p) < q⊤p2/
(
q⊤p1 + q⊤p2

)
µ2

2σ2 , then the optimal solution

to (44) is found by optimizing over the smaller set V2 ⊆ V ,

i.e., (44) is equivalent to
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minimize D(ν1||p1) +D(ν2||p2) + θ2
2σ2

(
ξ⋆

θ2
− µ

)2

ν ∈ V2.
,

(73)

where ξ⋆(ν) = σ
√
2θ2H(ν). Simple algebraic manipulations

reveal that the third term in the objective above is equal

to
(√

H(ν)−
√
R(ν)

)2

. Finally, set V2 is precisely the

constraint set in (44), and hence the claim of the lemma

follows.
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