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Exponential Stability of Highly Nonlinear Neutral Pantograph Stochastic

Differential Equations
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ABSTRACT

In this paper, we investigate the exponential stability of highly nonlinear
hybrid neutral pantograph stochastic differential equations(NPSDEs). The
aim of this paper is to establish exponential stability criteria for a class
of hybrid NPSDEs without the linear growth condition. The methods of
Lyapunov functions and M-matrix are used to study exponential stability and
boundedness of the hybrid NPSDEs.

Key Words: highly nonlinear, Itô’s formula, exponential stability, neutral
pantograph stochastic differential equations, M-matrix.

I. INTRODUCTION

Stochastic delay differential equations are widely
used to model stochastic systems whose evolution
depends on past history of the state. On the other hand,
those systems may often experience abrupt changes in
their structures and parameters caused by phenomena
such as component failures or repairs, the hybrid
systems driven by continuous-time Markov chains are
often used to model such systems (see, e.g., [1–8]).
Stability and boundedness are two of most popular
topics in the area of systems and controls, most of
the papers can only be applied to delay systems
where their coefficients are either linear or nonlinear
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but bounded by linear functions (see, e.g., [9–12]).
Recently, there are some progress on stability for highly
nonlinear stochastic delay systems. For example, Hu
et al. [13] investigated the stability and boundedness
for nonlinear stochastic differential delay equations
(SDDEs) with Markovian switching without the linear
growth condition, the robust stability and boundedness
of SDDEs without the linear growth condition were
studied by Hu et al. [14].

Pantograph differential equation was used by Ock-
endon and Tayler [15] to investigate how the electric
current is collected by the pantograph of an electric
locomotive, from where it gets the name. Hybrid pan-
tograph stochastic differential equations(PSDEs) are
unbounded SDDEs which have been frequently applied
in many practical areas, including biology, mechanic,
engineering and finance. We refer the reader to [16–
23] where pantograph stochastic differential equations
and pantograph stochastic differential equations with
Markovian switching are considered. In fact, many
dynamical systems do not only depend on present and
past states but also involve derivatives with delays.
Neutral differential delay equations are often used to
model such systems (see, e.g., [24–30]). And neutral
pantograph differential equations have been studied by
some researchers [31, 32].

To the best of our knowledge, there is so far
little exponential stability theory on hybrid neutral
pantograph stochastic differential equations (NPSDEs)
without linear growth condition. Inspired by the works
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of You et al. [22], the paper shall develop exponential
stability criteria by the methods of Lyapunov functions
and M-matrices for a class hybrid neutral pantograph
stochastic differential equations. The rest of the
paper is organized as follows. Section 2 offers
some necessary notations, assumptions and lemmas.
Section 3 establishes exponential stability criterion and
boundedness for hybrid neutral pantograph stochastic
differential equations by the methods of Lyapunov
functions. In Section 4, stability criterion will be
proposed with the aid of M-matrices. In Section 5, two
examples are discussed to illustrate the theory. Finally,
a conclusion is drawn in Section 6.

II. Preliminary

Before stating our main results, we present
essential notations and definitions which are necessary
for further consideration. Let (Ω,F , {Ft}t≥0, P ) be a
complete probability space with a filtration {Ft}t≥0
satisfying the usual conditions (i.e., it is increasing and
right continuous while F0 contains all P -null sets).
Let B(t) = (B1(t), · · · , Bm(t))T be an m-dimensional
Brownian motion defined on the probability space. Let
r(t), t ≥ 0, be a right-continuous-left-limit Markov
chain on the probability space taking values in a
finite state space S = {1, 2, · · · , N} with generator Γ =
(γij)N×N given by

P{r(t+∆) = j|r(t) = i}

=

{
γij∆ + o(∆), if i 6= j

1 + γii∆ + o(∆), if i = j

where ∆ > 0. Here γij ≥ 0 is the transition rate from
i to j if i 6= j while γii = −

∑
j 6=i γij . We assume that

the Markov chain r(·) is independent of the Brownian
motion B(·). We also denote by |x| the Euclidean norm
for x ∈ Rn. If A is a vector or matrix, its transpose
is denoted by AT . If A is a matrix, its trace norm
is denoted by |A| =

√
trace(ATA). If both a and b

are real numbers, then a ∨ b = max{a, b} and a ∧ b =
min{a, b}.

We also need some notation on M-matrices. For
a vector or matrix A, by A > 0 we mean all elements
of A are positive. A Z-matrix is a square matrix A =
(aij)N×N which has non-positive off-diagonal entries
(namely aij ≤ 0 for all i 6= j). The following lemma
provides us with two useful criteria to verify if a given
Z-matrix is a nonsingular M-matrix.

Lemma II.1 LetA = (aij)N×N be a Z-matrix. ThenA
is a nonsingular M-matrix if and only if one of the the
following statements holds:

(1) A−1 exists and its elements are all nonnega-
tive.

(2) There exists x > 0 in RN such that Ax > 0.

We now cite the useful nonnegative semi-
martingale convergence theorem as a lemma.

Lemma II.2 ( [6, Theorem 1.10 on page 18]) Let
A(t) and U(t) be two continuous adapted increasing
processes on t ≥ 0 with A(0) = U(0) = 0 a.s. Let
M(t) be a real-valued continuous local martingale
with M(0) = 0 a.s. Let ξ be a nonnegative F0-
measurable random variable such that Eξ <∞. Define
X(t) = ξ +A(t)− U(t) +M(t) for all t ≥ 0. If X(t)
is nonnegative, then{

lim
t→∞

A(t) <∞
}

⊂
{

lim
t→∞

X(t) <∞
}
∩
{

lim
t→∞

U(t) <∞
}

a.s.

Consider an n-dimensional hybrid NPSDE

d[x(t)−D(x(θt), r(t), t)] = f(x(t), x(θt), r(t), t)dt

+ g(x(t), x(θt), r(t), t)dB(t), 0 < θ < 1 (1)

on t ≥ 0 with initial data x(0) = x0, r(0) = r0, where
the coefficients

f : Rn ×Rn × S ×R+ → Rn and g : Rn ×Rn ×
S ×R+ → Rn×m are Borel measurable. As a standing
hypothesis, we assume the coefficients are locally
Lipschitz continuous (see, e.g., [6, 10]).

Assumption II.3 For each integer h ≥ 1 there is a
positive constant Kh such that

|f(x, y, t, i)− f(x̄, ȳ, t, i)|2 ∨ |g(x, y, t, i)− g(x̄, ȳ, t, i)|2

≤ Kh(|x− x̄|2 + |y − ȳ|2)

for those x, y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ h
and all (t, i) ∈ R+ × S.

Assume moreover that there is a constant κ ∈
(0, 1) such that

|D(u, i, t)−D(v, i, t)| ≤ κ exp(−1

p
(1− θ)t)|u− v|

(2)

for all u, v ∈ R, and D(0, i, t) = 0.

Remark II.4 In order to overcome the difficulties
caused by the unbounded delay θt, the factor e−

1
p (1−θ)t

is used in the neutral part.
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For V ∈ C2,1(Rn × S ×R+;R+), define an oper-
ator LV : Rn ×Rn × S ×R+ → R by

LV (x−D(y, i, t), y, i, t) = Vt(x−D(y, i, t), i, t)

+ Vx(x−D(y, i, t), i, t)f(x, y, i, t)

+
1

2
trace[gT (x, y, i, t)Vxx(x−D(y, i, t), i, t)g(x, y, i, t)]

+

N∑
j=1

γijV (x−D(y, j, t), j, t),

where

Vt(x, i, t) =
∂V (x, i, t)

∂t
,

Vx(x, i, t) =
(∂V (x, i, t)

∂x1
, · · · , ∂V (x, i, t)

∂xn

)
,

Vxx(x, i, t) =
(∂2V (x, i, t)

∂xk∂xl

)
n×n

.

III. Criterion in terms of Lyapunov functions

In this section, we will give a criterion on
exponential stability and boundedness for system (1) by
Lyapunov functions.

Assumption III.1 There exists the function V (x, i, t) ∈
C2,1(Rn × S ×R+, R+), and positive constants c1, c2,
βk (k = 1, . . . , 5) such that

c1|x|p ≤ V (x, i, t) ≤ c2|x|p,
for all (x, i, t) ∈ Rn × S ×R+,

LV (x−D(y, i, t), y, i, t)

≤ β1 − β2|x|p + β3θ exp(−(1− θ)t)|y|p

− β4|x|q + β5θ exp(−(1− θ)t)|y|q, (3)

where q > p ≥ 2, c2 > c1, β2 > β3, β4 > β5.

Theorem III.2 Let Assumption II.3, III.1 hold, then
for any given initial data, there exists a unique global
solution x(t) of (1), moreover, the solution has the
properties that∫ t

0

E|x(s)|qds ≤c2|x(0)−D(x(0), r(0), 0)|p

β4 − β5

+
β1t

β4 − β5
(4)

and

lim sup
t→∞

E|x(t)|p ≤ β1
(1− κ)pc1ε

, (5)

where ε := min(1, β2−β3

2p−1c2(1+
κp

θ )
).

Proof: By the similar method used in Theorem
1 of [21], the existence and uniqueness of solution
can be got. Fix the initial data x0 ∈ Rn and r0 ∈ S
arbitrarily. Define z(t) = x(t)−D(x(θt), r(t), t), then
we have |z(0)| ≤ |x0|+ |D(x0, r(0), 0)| ≤ (1 + κ)|x0|.
Let k0 > 0 be a sufficiently large integer such that
(1 + κ)|x0| < k0. For each integer k > k0, define the
stopping time

σk = inf{t ≥ 0 : |z(t)| ∨ |x(t)| ≥ k}.

Throughout this paper we set inf ∅ =∞ (as usual ∅
denotes the empty set). It is easy to see that σk is
increasing as k →∞ and limk→∞ σk =∞ a.s. By the
generalized Itô formula (see, e.g., [6, Theorem 1.45 on
page 48]) we obtain that

EV (z(t ∧ σk), r(t ∧ σk), t ∧ σk)

= V (z(0)) + E

∫ t∧σk

0

LV (z(s), x(θs), r(s), s)ds.

By Assumption (III.1) and exp(−(1− θ)t) ≤ 1, we can
obtain that

c1E|z(t ∧ σk)|p ≤ c2|z(0)|p + β1t

− β2E
∫ t∧σk

0

|x(s)|pds+ β3θE

∫ t∧σk

0

|x(θs)|pds

− β4E
∫ t∧σk

0

|x(s)|qds+ β5θE

∫ t∧σk

0

|x(θs)|qds

Noting that

β3θE

∫ t∧σk

0

|x(θs)|pds = β3E

∫ θ(t∧σk)

0

|x(u)|pdu

≤ β3E
∫ t∧σk

0

|x(u)|pdu

and

β5θE

∫ t∧σk

0

|x(θs)|qds = β5E

∫ θ(t∧σk)

0

|x(u)|qdu

≤ β5E
∫ t∧σk

0

|x(u)|qdu,

due to β2 > β3, β4 > β5, we can obtain

c1E|z(t ∧ σk)|p ≤ c2|z(0)|p

+ β1t− (β4 − β5)E

∫ t∧σk

0

|x(s)|qds. (6)

Noting that β5 < β4, we obtain

c1E|z(t ∧ σk)|p ≤ c2|z(0)|p + β1t.
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Consequently

c1k
pP{σk ≤ t} ≤ c2|z(0)|p + β1t.

Letting k →∞ gives that P{σ∞ ≤ t} = 0. This means
that σ∞ > t a.s. Letting t→∞, we can get σ∞ =∞
a.s, which implies that there exists a global solution x(t)
to the system (1).

We shall show assertion (4). It follows from (6) that

(β4 − β5)E

∫ t∧σk

0

|x(s)|qds ≤ c2|z(0)|p + β1t,

let k →∞, we have

(β4 − β5)E

∫ t

0

|x(s)|qds ≤ c2|z(0)|p + β1t,

by which we can obtain

E

∫ t

0

|x(s)|qds ≤ c2|z(0)|p

β4 − β5
+

β1t

β4 − β5
.

Using the well-known Fubini theorem to obtain∫ t

0

E|x(s)|qds ≤ c2|z(0)|p

β4 − β5
+

β1t

β4 − β5
,

which is the desired assertion (4).
We now claim the assertion (5). By the generalized

Itô formula, we have

E[exp(ε(t ∧ σk))V (z(t ∧ σk), r(t ∧ σk), t ∧ σk)]

= V (z(0), r(0), 0) + E

∫ t∧σk

0

ε exp(εs)V (z(s), r(s), s)ds

+ E

∫ t∧σk

0

exp(εs)LV (z(s), x(θs), r(s), s)ds. (7)

By (3) and inequality

|x(t)−D(x(θt), r(t), t)|p

≤ 2p−1(|x(t)|p + |D(x(θt), r(t), t)|p)
≤ 2p−1(|x(t)|p + κp exp(−(1− θ)t)|x(θt)|p),

we can obtain that

E

∫ t∧σk

0

ε exp(εs)V (z(s), r(s), s)ds

≤ 2p−1c2E

∫ t∧σk

0

ε exp(εs)

× (|x(s)|p + κp exp(−(1− θ)s)|x(θs)|p)ds

= 2p−1c2E

∫ t∧σk

0

ε exp(εs)|x(s)|pds

+ 2p−1κpc2E

∫ t∧σk

0

ε exp((ε− 1 + θ)s)|x(θs)|pds

and

E

∫ t∧σk

0

exp(εs)LV (z(s), r(s), s)ds

≤ E
∫ t∧σk

0

exp(εs)(β1 − β2|x(s)|p

+ β3θ exp(−(1− θ)s)|x(θs)|p − β4|x(s)|q

+ β5θ exp(−(1− θ)s)|x(θs)|q)ds

≤ β1
ε

exp (εt)− β2E
∫ t∧σk

0

exp(εs)|x(s)|pds

+ β3E

∫ t∧σk

0

θ exp((ε− 1 + θ)s)|x(θs)|pds

− β4E
∫ t∧σk

0

exp(εs)|x(s)|qds

+ β5E

∫ t∧σk

0

θ exp((ε− 1 + θ)s)|x(θs)|qds.

Note that 0 < θ < 1 and ε ≤ 1, we have (ε− 1 +

θ)/θ ≤ ε. Thus, we get

2p−1κpE

∫ t∧σk

0

ε exp((ε− 1 + θ)s)|x(θs)|pds

≤ 2p−1κp
1

θ
E

∫ t∧σk

0

ε exp(εs)|x(s)|pds.

Similarly, we have

β3E

∫ t∧σk

0

θ exp((ε− 1 + θ)s)|x(θs)|pds

≤ β3E
∫ t∧σk

0

exp(εs)|x(s)|pds,

β5E

∫ t∧σk

0

θ exp((ε− 1 + θ)s)|x(θs)|qds

≤ β5E
∫ t∧σk

0

exp(εs)|x(s)|qds.

Substituting above inequalities into (7), we have

E[exp(ε(t ∧ σk))V (z(t ∧ σk), x(θ(t ∧ σk)),

r(t ∧ σk), t ∧ σk] ≤ c2|z(0)|p +
β1
ε

exp (εt)

− (β2 − β3 − 2p−1c2ε(1 +
κp

θ
))E

∫ t∧σk

0

|x(s)|pds

− (β4 − β5)E

∫ t∧σk

0

|x(s)|qds (8)
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For ε ≤ β2−β3

2p−1c2(1+
κp

θ )
, β4 > β5 and Assumption (III.1),

we can deduce

E[exp(ε(t ∧ σk))|z(t ∧ σk)|p]

≤ c2
c1
|z(0)|p +

β1
c1ε

exp (εt).

Letting k →∞, we obtain

exp (εt)E|z(t)|p ≤ c2
c1
|z(0)|p +

β1
c1ε

exp (εt), (9)

which shows

lim sup
t→∞

E|z(t)|p ≤ β1
c1ε

(10)

and

lim sup
0≤t<∞

E|z(t)|p <∞. (11)

By the elementary inequality (see [33, Lemma 4.3])

(a+ b)p ≤ (1 + ε)p−1(ap + ε1−pbp),

∀a, b ≥ 0, p > 1, ε > 0,

we have

E|x(t)|p

≤ (1 + ε)p−1(E|z(t)|p + ε1−p|D(x(θt), r(t), t)|p),

setting ε = κ
1−κ , we derive

E|x(t)|p

≤ (1− κ)1−pE|z(t)|p + κ1−pE|D(x(θt), r(t), t)|p

≤ (1− κ)1−pE|z(t)|p + κ exp(−(1− θ)t)E|x(θt)|p

≤ (1− κ)1−pE|z(t)|p + κE|x(θt)|p. (12)

By inequality (12), we have that for any T > 0,

sup
0≤t≤T

E|x(t)|p

≤ sup
0≤t≤T

(1− κ)1−pE|z(t)|p + sup
0≤t≤T

κE|x(θt)|p

≤ sup
0≤t≤T

(1− κ)1−pE|z(t)|p + sup
0≤t≤T

κE|x(t)|p,

(13)

we can get

(1− κ)p sup
0≤t≤T

E|x(t)|p ≤ sup
0≤t≤T

E|z(t)|p. (14)

Letting T →∞, we have

(1− κ)p lim sup
0≤t<∞

E|x(t)|p ≤ lim sup
0≤t<∞

E|z(t)|p, (15)

from (11), we have

lim sup
t→∞

E|x(t)|p <∞,

by inequality (12), we can obtain that

(1− κ)p lim sup
t→∞

E|x(t)|p ≤ lim sup
t→∞

E|z(t)|p,

this together with (10) imply

lim sup
t→∞

E|x(t)|p ≤ β1
(1− κ)pc1ε

.

Thus the proof is complete. 2

Theorem III.3 Let Assumption II.3, III.1 hold, if β1 =
0, the solution of the NPSDE (1) has the properties that∫ ∞

0

E|x(t)|qdt <∞, (16)

∫ ∞
0

|x(t)|qdt <∞ a.s. (17)

lim sup
t→∞

1

t
logE|x(t)|p ≤ −ε

and

lim sup
t→∞

1

t
log |x(t)| ≤ −ε

p
a.s.

where ε is defined as in Theorem III.2.

Proof: If β1 = 0, (4) turns to be∫ t

0

E|x(s)|qds ≤ c2|x(0)−D(x(0), r(0), 0)|p

β4 − β5
,

letting t→∞, we have the assertion (16) holds, this
implies another assertion (17). Moreover, when β1 = 0,
(9) turns to be

exp (εt)E|z(t)|p ≤ c2
c1
|z(0)|p.

By the same method of (13), we have that for any T > 0

(1− κ)p sup
0≤t≤T

E|x(t)|p ≤ sup
0≤t≤T

E|z(t)|p,

which implies that

sup
0≤t≤T

exp (εt)E|x(t)|p ≤ c2
c1(1− κ)p

|z(0)|p.
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Letting T →∞, we have

sup
0≤t<∞

exp (εt)E|x(t)|p ≤ c2
c1(1− κ)p

|z(0)|p,

that is

lim sup
t→∞

1

t
logE|x(t)|p ≤ −ε.

Applying the generalized Itô formula on
exp(εt)V (z(t), r(t), t) to get

exp(εt)V (z(t)) = V (z(0), r(0), 0)

+

∫ t

0

ε exp(εs)V (z(s), r(s), s)ds

+

∫ t

0

exp(εs)LV (z(s), x(θs), r(s), s)ds+M(t),

where M(t) is a local martingale with the initial value
M(0) = 0. For β1 = 0, applying the same argument on
deriving (8), we have∫ t

0

ε exp(εs)V (z(s), r(s), s)

+ exp(εs)LV (z(s), x(θs), r(s), s)ds

≤ −(β2 − β3 − 2p−1c2ε(1 +
κp

θ
))

∫ t

0

|x(s)|pds

− (β4 − β5)

∫ t

0

|x(s)|qds ≤ 0.

By Assumption (III.1) we can get

c1 exp (εt)|z(t)|p ≤ c2|z(0)|p +M(t).

Applying Lemma II.2 we immediately obtain that

c1 sup
0≤t<∞

exp (εt)|z(t)|p <∞ a.s.

Therefore, there is a finite positive random variable ξ
such that

c1 sup
0≤t<∞

exp (εt)|z(t)|p ≤ ξ a.s. (18)

Applying the similarly argument as (14), we have

(1− κ)p sup
0≤t<∞

exp (εt)|x(t)|p ≤ sup
0≤t<∞

exp (εt)|z(t)|p,

this together with (18), we obtain that

c1(1− κ)p sup
0≤t<∞

exp (εt)|x(t)|p ≤ ξ a.s.

which implies that

lim sup
t→∞

1

t
log |x(t)| ≤ −ε

p
a.s.

Which completes the proof. 2

IV. Criterion on M-matrix

On the basis of Lyapunov function, we establish
the above Lyapunov-type stability criteria for system
(1). However, the condition (3) in Assumption (III.1)
is not related to the coefficient f, g explicitly. In
this section, we derive some sufficient conditions by
using the coefficients of system (1) to guarantee its
exponential stability.

Assumption IV.1 Assume also that there are two con-
stants q > p > 2. Assume furthermore that for each i ∈
S, there are constants αi2 ∈ R and αi1, αi3, ai4, αi5 ∈
R+ such that

(x−D(y, i, t))T f(x, y, i, t) +
p− 1

2
|g(x, y, i, t)|2

≤ αi1 + αi2|x|2 + αi3θ exp
(
− 2

p
(1− θ)t

)
|y|2

− αi4|x|q−p+2

+ αi5θ exp
(
− q − p+ 2

q
(1− θ)t

)
|y|q−p+2. (19)

Assumption IV.2 Under Assumption IV.1, assume
furthermore that

A := −diag(pα̃12, · · · , pα̃N2)− (γ̃ij)i,j∈S

is a nonsingular M-matrix, where a = 23−p ∧ 1, ā =
2p−3 ∨ 1,

α̃i2 =

{
ā(1 + 2

pκ
p−2)αi2 if αi2 ≥ 0,

(a− 2
pκ

p−2)αi2 if αi2 < 0,

and γ̃ij =

{
21−pγii if i = j,
2p−1γij if i 6= j.

We also define

α̂i2 =

{
ā (p−2)

p αi2 if αi2 ≥ 0,

− (p−2)
p αi2 if αi2 < 0,

and γ̂ij =

{
−γii if i = j,

2p−1γij if i 6= j.

By properties of M-matrices, we have a vector with all
positive entries defined by the nonsingular M-matrix A:

(λ1, · · · , λN )T = A−1(1, · · · , 1)T > 0. (20)

Theorem IV.3 Let Assumptions II.3, IV.1 and
IV.2 hold. Set c1 = mini∈S λi, c2 = maxi∈S λi,
δ1 = maxi∈S āpλiαi1, δ2 = mini∈S{1− āθ(p−
2)λiαi3}, δ3 = maxi∈S{āλiαi3(2 + pκp−2) +
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1
θκ

p−2pλiα̂i2 + κp 1
θ

∑N
j=1 γ̂ijλj}, δ4 =

mini∈S{pλiαi4(a− κp−2 q−p+2
q )− p(p−2)

q θαi5λiā},
δ5 = maxi∈S{ (p−2)θq pλiαi4κ

p−2 + αi5λiā( q−p+2
q +

κp−2)}, and ρ = θ
1+θ [δ2 − δ3], if αi1 = 0 for all i ∈ S,

then ρ = 0.

Assume that

δ3 < δ2 (21)

and

δ5 ≤ δ4. (22)

Then for any initial data, there is a unique global
solution x(t) to the hybrid NPSDE (1) on t ∈ [0,∞).
Moreover, the solution has the properties that

lim sup
t→∞

1

t

∫ t

0

E|x(s)|qds ≤ K1, (23)

and

lim sup
t→∞

E|x(t)|p ≤ K2, (24)

where K1 and K2 are positive constants.

Proof: We will define a Lyapunov function V : Rn ×
S ×R+ → R+ by

V (x, i, t) = λi|x|p, i ∈ S.

It is easy to see that

c1|x|p ≤ V (x, i, t) ≤ c2|x|p.

Now we compute LV (x−D(y, i, t), y, i, t). For any
i ∈ S,

LV (x−D(y, i, t), y, i, t)

= pλi|x−D(y, i, t)|p−2(x−D(y, i, t))T f(x, y, i, t)

+
p(p− 2)

2
λi|x−D(y, i, t)|p−4

× |(x−D(y, i, t))T g(x, y, i, t)|2

+
1

2
pλi|x−D(y, i, t)|p−2|g(x, y, i, t)|2

+
∑
j∈S

λjγij |x−D(y, i, t)|p

≤ pλi|x−D(y, i, t)|p−2
[
(x−D(y, i, t))T f(x, y, i, t)

+
p− 1

2
|g(x, y, i, t)|2

]
+
∑
j∈S

λjγij |x−D(y, i, t)|p

≤ pλiαi1|x−D(y, i, t)|p−2

+ pλiαi2|x−D(y, i, t)|p−2|x|2

+
∑
j∈S

γijλj |x−D(y, i, t)|p

+ pλiαi3θ exp(−2

p
(1− θ)t)|x−D(y, i, t)|p−2|y|2

− pλiαi4θ|x−D(y, i, t)|p−2|x|q−p+2

+ pλiαi5θ exp(−q − p+ 2

q
(1− θ)t)

× |x−D(y, i, t)|p−2|y|q−p+2. (25)

Noting that if p > 2,

|x|p−2 ≤ ā(|x−D(y, i, t)|p−2 + |D(y, i, t)|p−2),

|x−D(y, i, t)|p−2 ≤ ā(|x|p−2 + |D(y, i, t)|p−2),

we have that

|x−D(y, i, t)|p−2

≥ a|x|p−2 − κp−2 exp(−p− 2

p
(1− θ)t)|y|p−2,

|x−D(y, i, t)|p−2

≤ ā(|x|p−2 + κp−2 exp(−p− 2

p
(1− θ)t)|y|p−2).
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Thus, we have

pλiαi1|x−D(y, i, t)|p−2 ≤ āpλiαi1|x|p−2

+ āpλiαi1κ
p−2 exp(−p− 2

p
(1− θ)t)|y|p−2

≤ δ1|x|p−2 + δ1κ
p−2 exp(−p− 2

p
(1− θ)t)|y|p−2

= δ1ρ
− p−2

p (ρ|x|p)
p−2
p

+ δ1ρ
− p−2

p (ρκp exp(−(1− θ)t)|y|p)
p−2
p

≤ 4

p
ρ−

p−2
2 δ

p
2
1 +

ρ(p− 2)

p
|x|p

+
ρ(p− 2)

p
κp exp(−(1− θ)t)|y|p,

pλiαi2|x−D(y, i, t)|p−2|x|2

≤


āpλiαi2|x|p + āpλiαi2κ

p−2

× exp(−p−2p (1− θ)t)|x|2|y|p−2 if αi2 ≥ 0,

apλiαi2|x|p − pλiαi2κp−2
× exp(−p−2p (1− θ)t)|x|2|y|p−2 if αi2 < 0,

by well-known Young inequality, we have

pλiαi2|x−D(y, i, t)|p−2|x|2

≤


āpλiαi2(1 + 2

pκ
p−2)|x|p + āpλi

(p−2)
p αi2κ

p−2

× exp(−(1− θ)t)|y|p if αi2 ≥ 0

pλiαi2(a− 2
pκ

p−2)|x|p − pλi (p−2)p αi2κ
p−2

× exp(−(1− θ)t)|y|p if αi2 < 0

= pλiα̃i2|x|p + pλiα̂i2κ
p−2 exp(−(1− θ)t)|y|p.

Similarly, we can obtain

pλiαi3 exp(−2

p
(1− θ)t)|x−D(y, i, t)|p−2|y|2

≤ ā(p− 2)λiαi3|x|p

+ āλiαi3(2 + pκp−2) exp(−(1− θ)t)|y|p,

− pλiαi4|x−D(y, i, t)|p−2|x|q−p+2

≤ −pλiαi4
(
a− κp−2 q − p+ 2

q

)
|x|q

+ pλiαi4κ
p−2 p− 2

q
exp(−(1− θ)t)|y|q

and

pλiαi5 exp(−q − p+ 2

q
(1− θ)t)|x−D(y, i, t)|p−2|y|q−p+2

≤ p(p− 2)

q
āλiαi5|x|q

+ āpλiαi5(
q − p+ 2

q
+ κp−2) exp(−q

p
(1− θ)t)|y|q

≤ p(p− 2)

q
āλiαi5|x|q

+ āpλiαi5(
q − p+ 2

q
+ κp−2) exp(−(1− θ)t)|y|q.

We also have∑
j∈S

γijλj |x−D(y, t, i)|p

≤ |x|p
∑
j∈S

γ̃ijλj + κp exp(−(1− θ)t)|y|p
∑
j∈S

γ̂ijλj .

Substituting above inequalities into (25), by condition
(20) we can obtain

LV (x−D(y, i, t), y, t, i)

≤ 4

p
ρ−

p−2
2 δ

p
2
1 − [1− āθ(p− 2)λiαi3 −

ρ(p− 2)

p
]|x|p

+ [α̂i2pλi + āθαi3λi(2 + pκp−2) +
ρ(p− 2)

p
κp

+ κp
N∑
j=1

γ̂ijλj ] exp(−(1− θ)t)|y|p

− [apλiαi4 − pλiαi4κp−2
q − p+ 2

q

− p(p− 2)

q
θαi5λiā]|x|q + [

(p− 2)

q
pλiαi4κ

p−2

+ θαi5λiā(
q − p+ 2

q
+ κp−2)] exp(−(1− θ)t)|y|q

≤ 4

p
ρ−

p−2
2 δ

p
2
1 − [δ2 −

ρ(p− 2)

p
]|x|p + [δ3 +

ρ(p− 2)

θp
κp]θ

× exp(−(1− θ)t)|y|p − δ4|x|q + δ5θ exp(−(1− θ)t)|y|q.

Define β1 ∼ β5 as follows β1 = 4
pρ
− p−2

2 δ
p
2
1 , β2 = δ2 −

ρ(p−2)
p , β3 = δ3 + ρ(p−2)

θp κp, β4 = δ4, β5 = δ5.

We have that

LV (x−D(y, t, i), y, i, t)

≤ β1 − β2|x|p + β3θ exp(−(1− θ)t)|y|p

− β4|x|q + β5θ exp(−(1− θ)t)|y|q.
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By condition (21) and definition of ρ, we have

β2 − β3 = δ2 −
ρ(p− 2)

p
− δ3 −

ρ(p− 2)

θp
κp

≥ δ2 − δ3 − ρ−
ρ

θ
κp = (δ2 − δ3)(1− θ + κp

1 + θ
)

= (δ2 − δ3)
1− κp

1 + θ
> 0,

this together with (22), we have

β2 > β3 and β4 ≥ β5.

Then the assertions (23) and (24) can be obtained from
(4) and (5) in Theorem III.2.

Assumption IV.4 If q > p = 2, assume furthermore
that for each i ∈ S, there are constants ᾱi2 ∈ R and
ᾱi1, ᾱi3, ᾱi4, ᾱi5 ∈ R+ such that

(x−D(y, i, t))T f(x, y, i, t) +
1

2
|g(x, y, i, t)|2

≤ ᾱi1 + ᾱi2|x|2 + ᾱi3θ exp(−(1− θ)t)|y|2

− ᾱi4|x|q + ᾱi5θ exp(−(1− θ)t)|y|q.

Assumption IV.5 Under Assumption IV.4, assume
furthermore that

A := −diag(2ᾱ12, · · · , 2ᾱN2)− Γ

is an nonsingular M-matrix. By properties of M-
matrices, we have a vector with all positive entries
defined by the nonsingular M-matrix A:

(λ̄1, · · · , λ̄N )T = A−1(1, · · · , 1)T > 0.

Corollary IV.6 Let Assumptions II.3, IV.4 and
IV.5 hold. Set c̄1 = mini∈S λ̄i, c̄2 = maxi∈S λ̄i,
δ̄1 = maxi∈S λ̄iᾱi1, δ̄2 = maxi∈S

∑
j∈S κλ̄j |γij |,

δ̄3 = maxi∈S{2λ̄iāi3 + 1
θ

∑
j∈S κ|γij |λ̄j +

1
θ

∑
j∈S,j 6=i κ

2γij λ̄j}, δ̄4 = mini∈S λ̄iᾱi4, δ̄5 =

maxi∈S λ̄iᾱi5. If, moreover,

δ̄2 + δ̄3 < 1 (26)

and

δ̄5 ≤ δ̄4, (27)

then the hybrid NPSDE (1) on t ∈ [0,∞) has a
unique global solution. Moreover, the solution has the
properties that

lim sup
t→∞

1

t

∫ t

0

E|x(s)|qds ≤ K̄1, (28)

and
lim sup
t→∞

E|x(t)|2 ≤ K̄2, (29)

where K̄1 and K̄2 are positive constants.

Proof: We will define a Lyapunov function V :
Rn × S ×R+ → R+ by

V (x, i, t) = λ̄i|x|2 i ∈ S.

It is easy to see that

c̄1|x|2 ≤ V (x, i, t) ≤ c̄2|x|2.

Now we compute LV (x−D(y, i, t), y, i, t). For
any i ∈ S,

LV (x−D(y, i, t), y, t, i)

= 2λ̄i[(x−D(y, i, t))T f(x, y, i, t) +
1

2
|g(x, y, i, t)|2]

+
∑
j∈S

λ̄jγij(x−D(y, i, t))T (x−D(y, i, t))

≤ 2λ̄iᾱi1 + 2λ̄iᾱi2|x|2 + 2λ̄iᾱi3θ exp(−(1− θ)t)|y|2

− 2λ̄iᾱi4|x|q + 2λ̄iᾱi5θ exp(−(1− θ)t)|y|q

+
∑
j∈S

λ̄jγij |x|2 − 2
∑
j∈S

λ̄jγijx
TD(y, i, t)

+
∑
j∈S

λ̄jγij |D(y, i, t)|2

≤ 2λ̄iᾱi1 + [2λ̄iᾱi2 +
∑
j∈S

λ̄jγij +
∑
j∈S

κλ̄j |γij |]|x|2

+ [2λ̄iᾱi3 +
1

θ

∑
j∈S

κ|γij |λ̄j +
1

θ

∑
j∈S,j 6=i

κ2γij λ̄j ]

× θ exp(−(1− θ)t)|y|2

− 2λ̄iᾱi4|x|q + 2λ̄iᾱi5θ exp(−(1− θ)t)|y|q,

by definitions of δ̄1 ∼ δ̄5, we have

LV (x−D(y, i, t), y, t, i)

≤ 2δ̄1 − (1− δ̄2)|x|2 + δ̄3θ exp(−(1− θ)t)|y|2

− 2δ̄4|x|q + 2δ̄5θ exp(−(1− θ)t)|y|q.

Define β1 ∼ β5 as follows

β1 = 2δ̄1, β2 = 1− δ̄2, β3 = δ̄3, β4 = 2δ̄4, β5 = 2δ̄5.

We have that

LV (x−D(y, t, i), y, i, t)

≤ β1 − β2|x|2 + β3θ exp(−(1− θ)t)|y|2

− β4|x|q + β5θ exp(−(1− θ)t)|y|q.
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By conditions (26) and (27), we have

β2 > β3 and β4 ≥ β5.

Then the assertions (28) and (29) can be obtained from
(4) and (5) in Theorem III.2.

V. Examples

In this section we will discuss two examples to
illustrate our theory.

Example V.1 Consider a scalar hybrid NPSDE

d[x(t)−D(x(0.5t),r(t), t)] = f(x(t), r(t), t)dt

+ g(x(0.5t), r(t), t)dB(t), (30)

where B(t) is a scalar Brownian motion, r(t) is a
Markov chain on the state space S = {1, 2} with its
generator

Γ =

(
−1 1
10 −10

)
.

The coefficients D, f and g are defined as

D(y, 1, t) = D(y, 2, t) = 0.1 exp(−0.25t)y,

f(x, 1, t) = −4x− 4x3, f(x, 2, t) = x− 4x3,

g(y, 1, t) = exp(−0.25t)y2, g(y, 2, t) = exp(−0.25t)y2.

We will refer to r(t) as the mode of the system. So the
system is operated in two modes, 1 and 2. In mode 1,
the system is described by the NPSDE

d[x(t)− 0.1 exp(−0.25t)x(0.5t)] = [−4x(t)− 4x3(t)]dt

+ exp(−0.25t)x2(0.5t)dB(t),

while in mode 2

d[x(t)− 0.1 exp(−0.25t)x(0.5t)] = [x(t)− 4x3(t)]dt

+ exp(−0.25t)x2(0.5t)dB(t).

When the system is being operated, it will switch from
one NPSDE to the other according to the movement
of the Markov chain. Let us define V ∈ C2,1(R× S ×
R+;R+) by

V (x, i, t) =

{
x2 if i = 1,
2x2 if i = 2.

It is easy to see

LV (x−D(y, 1, t), y, 1, t)

= 2(x− 0.1 exp(−0.25t)y)(−4x− 4x3)

+ exp(−0.5t)y4 + (x− 0.1 exp(−0.25t)y)2

and

LV (x−D(y, 2, t), y, 2, t)

= 4(x− 0.1 exp(−0.25t)y)(x− 4x3)

+ 2 exp(−0.5t)y4 − 10(x− 0.1 exp(−0.25t)y)2.

Applying the inequality aβb1−β ≤ βa+ (1− β)b, we
can obtain

LV (x−D(y, 1, t), y, 1, t) ≤ −6.5x2 + 0.51 exp(−0.5t)y2

− 7.4x4 + exp(−0.5t)y4 + 0.2 exp(−t)y4

≤ −6.5x2 + 0.51 exp(−0.5t)y2

− 7.4x4 + 1.2 exp(−0.5t)y4,

similarly,

LV (x−D(y, 2, t), y, 2, t) ≤ −4.8x2 + 1.1 exp(−0.5t)y2

− 14.8x4 + 2.4 exp(−0.5t)y4.

Thus, we have

LV (x−D(y, i, t), y, i, t) ≤ −4.8x2 + 1.1 exp(−0.5t)y2

− 7.4x4 + 2.4 exp(−0.5t)y4.

Thus, we have p = 2, q = 4, β1 = 0, β2 = 4.8, β3 =
2.2, β4 = 7.4, β5 = 4.8. Figures 4.1 illustrates the
sample paths of the Markovian chain and x(t) for the
solution of the NPSDE (30) by the Euler–Maruyama
method (see [34]).

0 2 4 6 8 10

1

1.2
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1.6

1.8
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1

2

t

x(
t)

Figure 4.1 : The computer simulation of the sample paths of
the Markovian chain and x(t) for the solution of the NPSDE
(30) using the Euler–Maruyama method with step size 10−3.

Example V.2 Consider following hybrid NPSDEs

d[x(t)−D(x(0.9t),r(t), t)] = f(x(t), r(t), t)dt

+ g(x(0.9t), r(t), t)dB(t). (31)
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where r(t) is a Markov chain on the state space S =
{1, 2} with its generator

Γ =

(
−0.1 0.1

4 −4

)
.

Set p = 3, q = 5. The coefficients are

D(y, 1, t) = D(y, 2, t) = 0.1 exp(− t

30
)y,

f(x, 1, t) = −6x− 8x3, f(x, 2, t) = 0.1x− x3,
g(y, 1, t) = 0.2 exp(−0.04t)y2,

g(y, 2, t) = 0.1 exp(−0.04t)y2.

It can be estimated that

(x−D(y, 1, t))T f(x, y, 1, t) + |g(x, y, 1, t)|2

= (x− 0.1 exp(− t

30
)y)(−6x− 8x3)

+ 0.04 exp(−0.08t)y4

≤ −5.7x2 + 0.3 exp(− t

15
)y2 − 7.4x4

+ 0.2 exp(− 2t

15
)y4 + 0.04 exp(−0.08t)y4

≤ −5.7x2 + 0.3 exp(− t

15
)y2

− 7.4x4 + 0.24 exp(−0.08t)y4

and

(x−D(y, 2, t))T f(x, y, 2, t) + |g(x, y, 2, t)|2

≤ 0.105x2 + 0.005 exp(− t

15
)y2

− 0.925x4 + 0.035 exp(−0.08t)y4.

That means the quantities appeared in (19) are
α11 = α21 = 0, α12 = −5.7, α22 = 0.105, α13 =
0.3, α23 = 0.005, α14 = 7.4, α24 = 0.925, α15 =
0.24, α25 = 0.035. For α11 = α21 = 0, we have ρ = 0.
Thus, we can obtain that

A =

(
17.125 −0.4
−16 0.685

)
and A−1 =

(
0.128 0.075
3.002 3.213

)
.

By the definition in (20), we have λ1 = 0.203, λ2 =
6.215. Direct calculation gives the quantities involved
in Theorem IV.3: δ1 = 0, δ2 = 0.776, δ3 = 0.692, δ4 =
1.788, δ5 = 1.166. It can be concluded that the hybrid
system (31) with the above coefficients is stable in
theory.

VI. Conclusion

In this paper, we have investigated exponential
stability and asymptotic boundedness for a class of
highly nonlinear hybrid NPSDEs by removing the
linear growth condition. Both Lyapunov functions and
M-matrix techniques have been used to study stability
and boundedness. Two examples have been provided to
illustrate our results.
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