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Abstract: We present a transfer printing technique with sub-100nm absolute placement

accuracy. Hybrid integration of pre-processed membrane waveguide devices is achieved across

a range of materials, including silicon, polymer and III-V devices.
OCIS codes: (130.0130) Integrated optics; (220.0220) Optical design and fabrication;

1. Introduction

Integrated photonics, across a range of material platforms has shown applications in fields from lab-on-a-chip sensing

[1] to all-optical signal processing [2]. It is now becoming clear that to harness the full power of PIC ”photonic

integrated circuits” technology, multiple material platforms must be integrated into single chip-scale systems.

Transfer printing (TP) has been proposed as an attractive approach for hybrid integration with the ability to verti-

cally assemble microscale devices onto virtually any material substrate in a massively parallel and scalable fashion.

Recent demonstrations include III-V-on-silicon devices [3], nano-lasers [4], and µLEDs [5]. However, TP lacks the

nanometric absolute placement accuracy necessary for low-loss complex hybrid integration without utilising back-end

processing [6]. We present a micro-assembly technique demonstrating integration of multiple material platforms with

sub-100nm positional accuracy including vertically coupled polymer waveguides, silicon (Si) ring resonators, and both

III-V nanowire lasers and µ-disks integrated with waveguides.

2. Nanoscale alignment accuracy

The TP technique enables the micro-assembly of fully fabricated devices between different substrates in a highly con-

trollable fashion (Fig 1a). A donor substrate contains suspended membranes with fully patterned waveguide structures

(Fig 1b) as well as both substrates containing fabricated alignment markers with a non-centrosymmetric marker de-

sign, promoting sensitivity to variations in positional information. The absolute position of each alignment marker

is calculated by cross-correlating to an identical virtual marker image of a known coordinate position within the TP

system. By measuring the change in cross-correlation amplitude as a function of the TP system’s translation stage, the

absolute positions of donor and receiver substrates can be measured with high precision. Using this alignment method

we can integrate individual photonic devicesvfrom different native substrates to sub-100nm positional accuracy (Fig

1c).

(a) (b) (c)

Fig. 1: (a) Schematic illustrating the micro assembly of multiple material substrates. (b) SEM images of Si suspended

membranes situated on the donor substrate (c) SEM top-view image of AlGaAs micro-disk resonator transfer printed

next to a SOI waveguide.



3. Micro-assembled photonic devices

The micro-assembly of sub-micrometre waveguides across multiple material platforms is demonstrated. These include

the vertical coupling of polymer waveguides through the bonding of thin-film glass substrates (Fig 2a) as well as the

3-dimensional integration of Si waveguides by the printing of pre-patterned suspended membranes (Fig 2b). Corre-

sponding transmission spectra show the production of high quality ring resonator devices with low loss interfaces. The

coupling strength between ring resonator and bus waveguide is controlled through the interlayer lateral alignment of

the bonded waveguides.

(a) (b)

Fig. 2: (a) Vertically coupled polymer ring resonator and corresponding transmission spectrum. (b) Transfer printed

membrane producing a vertically coupled Si ring resonator and corresponding transmission spectrum.

4. Conclusions

We present a nanoscale absolute alignment procedure which when used with a transfer printing technique enables the

vertical micro-assembly of devices from a variety of material platforms. High quality optical devices are demonstrated.
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