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Resolvent estimates and numerical implementation for

the homogenisation of one-dimensional periodic mixed

type problems

Sebastian Franz∗ and Marcus Waurick†

April 2, 2018

Abstract

We study a homogenisation problem for problems of mixed type in the framework

of evolutionary equations. The change of type is highly oscillatory. The numerical

treatment is done by a discontinuous Galerkin method in time and a continuous

Galerkin method in space.

AMS subject classification (2000): 35M10, 35B35, 35B27, 65M12, 65M60
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1 Introduction

A standard problem in engineering is the approximation of highly oscillatory coefficients
by averaged ones. In fact, given a partial differential equation with variable coefficients,
numerical procedures might be too involved for nowadays computing devices so that an ef-
fective model is often derived. The process of seeking effective coefficients as replacements
for highly oscillatory ones is summarised under the umbrella term of homogenisation. The
mathematical theory of homogenisation goes back to the late 1960s. We refer to the stan-
dard references [1, 3] for a more detailed account.
Standard applications of homogenisation are elliptic, parabolic or hyperbolic divergence
form equations. Only quite recently, [13] it has been noticed that for certain problems of
mixed type, that is, differential equations changing their type from hyperbolic to parabolic
to elliptic on different spatial domains in a highly oscillatory way, one can derive an effec-
tive model, which does not change its type anymore and consists of constant coefficients.
In [13], only a qualitative convergence statement was derived. The techniques developed
in [2, 5], however, suggest that the rate of convergence can be quantified. It is one main
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result of the present exposition – based on the rationale outlined in [2,5] – that a quantified
convergence rate for problems of the type discussed in [13] can be derived. We refer to
Section 2 for the precise equations.
Given the low dimensionality of the problem to be discussed in this paper, we will further-
more numerically study the partial differential equation with highly oscillatory coefficients
and provide a quantitative convergence statement that for highly oscillatory coefficients
the corresponding numerical solution approximates the true solution of the homogenised
model. In fact, the results in [6] show that for mixed type equations one can derive a nu-
merical scheme. It consists of a discontinuous Galerkin method in time, see e.g. [4,11,12],
combined with a continuous Galerkin method in space. The framework developed in [6]
for a slightly different setting can be extended to our present problem easily and approx-
imation properties proved therein can be transferred.
In Section 2, we introduce the model under consideration and provide the desired conver-
gence statement. In Section 3 we recall the numerical scheme derived in [6] and provide
the estimate that the numerical solution of the equation with highly oscillatory coeffi-
cients approximates the solution of the effective equation in a certain controlled way. We
conclude this paper with a short numerical example in Section 3.3.

2 Resolvent estimates for the continuous in-time ho-

mogenisation problem

In [6], we have already established the well-posedness of the Galerkin approximations and
convergence to the original problem. What we aim to establish here is in spirit similar to
the approach developed in [2,5]. The main ingredients for this one-dimensional situation
can readily be found in [2]. The main difference between the cases treated in [2] or [5] is
the underlying spatial domain. In fact, the cited work focused on R and R

d as underlying
spatial domain. In the present case, we treat the unit interval, instead. More precisely,
using the formulation in [13], one can write the problem in question as the following
2× 2-block operator matrix system:

(

∂tM0(N ·) +M1(N ·) +
(

0 ∂#
∂# 0

))

UN = F, (1)

where ∂# is the weak derivative on (0, 1) with periodic boundary conditions, M0,M1 are
1-periodic, measurable bounded C

2×2-valued functions with the additional property that
M0(x) = M0(x)

∗ ≥ 0 and that there exists ρ > 0 and c > 0 such that

ρ〈M0(x)ξ, ξ〉C2 + Re〈M1(x)ξ, ξ〉C2 ≥ c〈ξ, ξ〉C2 .

As the latter equation is formulated on (0, 1), the continuous Gelfand transformation used
in [2] to divide the problem on the whole space has to replaced by its discrete analogue.
In the next two subsections, we will derive an estimate for the static case, which will
eventually be applied to the dynamic case by going into the frequency domain.

2
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2.1 The static case

We start out with the discrete analogue of the Gelfand transformation as introduced in [5].

Definition. Let N ∈ N, f : R → C. Then we define

VNf(θ, y) :=
1√
N

N−1
∑

k=0

f(y + k)e−iθk (y ∈ [0, 1), θ ∈ {2πk/N ; k ∈ {0, . . . , N − 1}).

Proposition 2.1. The operator VN : L2
#(0, N) → L2(0, 1)N given by

f 7→ (VNf(2π(k − 1)/N, ·))k∈{1,...,N}

is unitary, where L2
#(0, N) := {f ∈ L2

loc(R); f(· + Nk) = f (k ∈ Z)} endowed with the
norm of L2(0, N).

Proof. Let f : R → C be bounded, continuous with f(· + Nk) = f for all k ∈ Z. Then,
we compute with θℓ = 2πℓ/N

N‖VNf‖2L2(0,1)N =
N−1
∑

ℓ=0

‖VNf(2πℓ/N, ·)‖2L2(0,1)

=
N−1
∑

ℓ=0

N−1
∑

k1=0

N−1
∑

k2=0

e−iθℓ(k1−k2)

∫

(0,1)

f(y + k1)f(y + k2)dy.

We shall argue next that for all k1, k2 ∈ {0, . . . , N − 1} with k1 6= k2, we have

N−1
∑

ℓ=0

e−iθℓ(k1−k2) = 0. (2)

For this, denote n := k1 − k2 6= 0 and consider the homomorphism

ϕ : ZN → G := {e−i 2πn
N

ℓ; ℓ ∈ {0, . . . , N − 1}}
ℓ 7→ e−i 2πn

N
ℓ.

By the fundamental theorem on homomorphisms, G = ran(ϕ) ∼= ZN/ ker(ϕ). In partic-
ular, |G| divides N . Furthermore, since ZN is cyclic, we obtain that ZN/ ker(ϕ) is cyclic
and thus G is cyclic. Let z∗ ∈ G generate G. Thus, G = {z0∗ , . . . , zk−1

∗ } are the k unique,
distinct kth unit roots. In particular, we obtain for all z ∈ C

zk − 1 = (z − z0∗) · . . . (z − zk−1
∗ ).

Expanding the right-hand side and comparing the coefficient of zk−1 of both sides, we
deduce that

∑

z∈G
z = 0.

3
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Hence,
N−1
∑

ℓ=0

e−iθℓn =
N−1
∑

ℓ=0

ϕ(ℓ) =
N

|G|
∑

z∈G
z = 0,

which settles (2). Therefore, we obtain

N‖VNf‖2L2(0,1)N =
N−1
∑

ℓ=0

N−1
∑

k1=0

∫

(0,1)

f(y + k1)f(y + k1)dy = N‖f‖2L2(0,N).

Moreover, note that for ϕ ∈ Cc(0, 1)
N , we have that the N -periodic extension of f given

by f(x) = ei2πk/Nϕk+1(x) for x ∈ [k, k + 1) with k ∈ {0, . . . , N − 1} leads to NVNf = ϕ.
Hence, VN has dense range. Thus, VN is unitary.

We shall furthermore introduce the following unitary scaling transformation that scales a
problem on (0, 1) onto (0, N):

Definition. Let N ∈ N. Then define for f ∈ L2(0, 1)

TNf := 1√
N
f
( ·
N

)

and GN := VNTN

Moreover, we define

∂θ : H
1
θ (0, 1) ⊆ L2

#(0, 1) → L2
#(0, 1), f 7→ f ′

and H1
θ (0, 1) = {f ∈ H1(0, 1); f(1) = eiθf(0)}. We use ∂# and H1

#(0, 1), if θ = 0.

Proposition 2.2. Let N ∈ N. Then

(a) TN∂# = N∂#,NTN , where ∂#,N is the weak derivative with periodic boundary condi-
tions,

(b) GN∂# = N diag
(

(∂θk)k∈{0,...,N−1}
)

GN , where θk = 2πk/N .

(c) For all a ∈ L∞
# (0, 1) we obtain GNa(N ·) = diag

(

(a(·))k∈{0,...,N−1}
)

GN .

Proof. The proof follows along elementary calculations. Note that for (a) and (b) it
suffices to prove the assertions for smooth functions, only.

Next, we introduce a static version of the problem in question:

Definition. Let c > 0 and

Mc := {M ∈ L∞(0, 1)2×2
# ; ReM ≥ c12×2},

where L∞(0, 1)# := {a ∈ L∞(R); a(·+ k) = a (k ∈ Z)}.

4
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For all N ∈ N, find

(

uN

vN

)

∈ L2(0, 1)2 such that

(

M(N ·) +
(

0 ∂#
∂# 0

))(

uN

vN

)

=

(

f
g

)

(3)

for some f, g ∈ L2(0, 1)2. Note that (3) is well-posedness by [5, Lemma 2.5]. With the
help of Proposition 2.2, we obtain an equivalent formulation of (3)

Corollary 2.3. Let N ∈ N. Then

(

GN 0
0 GN

)(

M(N ·) +
(

0 ∂#
∂# 0

))(

GN 0
0 GN

)∗

=

(

diag(M(·))k∈{0,...,N−1} +N diag

((

0 ∂θk
∂θk 0

))

k∈{0,...,N−1}

)

.

As it has been demonstrated in [5, Section 3], we obtain that [5, Theorem 2.4 and Theorem
2.2] applies to the setting in [5, Equation (10)]. Here we recall the results found there
for the particular case of n = d = 1. Note that by [5, Remark 4.6] the one-dimensional
homogenised coefficient is given by the integral mean.

Theorem 2.4. For all N ∈ N and k ∈ {0, . . . , N − 1}, we have

∥

∥

∥

∥

M(·) +N

(

0 ∂θk
∂θk 0

)

−
(
∫

(0,1)

M(y)dy +N

(

0 ∂θk
∂θk 0

))∥

∥

∥

∥

≤ 1

π

(

2

(

1 +
‖M‖∞

c

)2

+ 1

)

1

N
.

2.2 The dynamic case

With the estimate in the latter theorem, we obtain also result for the full time-dependent
problem. The strategy has been outlined in the concluding sections of [2] already. We will,
however, provide the necessary notions and a corresponding estimate in this exposition,
as well. For ρ > 0 and a Hilbert space H, we define

L2
ρ(R;H) := {f : R → H; f measurable,

∫

R

‖f(t)‖2H exp(−2ρt)dt < ∞},

endowed with the obvious scalar product. Employing the usual identification of functions
being equal almost everywhere, we obtain that L2

ρ(R;H) is a Hilbert space. We denote by
H1

ρ(R;H) the first Sobolev space of weakly differentiable functions with weak derivative
being representable as an element of L2

ρ(R;H). Then we put

∂t : H
1
ρ(R;H) ⊆ L2

ρ(R;H) → L2
ρ(R;H), f 7→ f ′.

5
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A spectral representation of ∂t as multiplication operator is given by the Fourier–Laplace
transformation, that is, the unitary extension of the operator Lρ : L

2
ρ(R : H) → L2(R : H)

given by

Lρϕ(ξ) =
1√
2π

∫

R

ϕ(t) exp(−itξ − ρt)dt (ϕ ∈ Cc(R;H)),

where Cc(R;H) is the space of continuous functions with compact support. The spectral
representation reads as follows:

Theorem 2.5 ( [7, Corollary 2.5]). Let ρ ∈ R. Then

∂t = L∗
ρ(im+ ρ)Lρ,

where

m : {f ∈ L2(R;H); (t 7→ tf(t)) ∈ L2(R;H)} ⊆ L2(R;H) → L2(R;H)

f 7→ (t 7→ tf(t))

is the multiplication by the argument operator with maximal domain.

Next, we recall an elementary version of the well-posedness theorem for evolutionary
equations, which is particularly relevant to the case studied here. For this, note that we
will use the same notation for an operator acting in H and its corresponding lift as an
abstract multiplication operator on L2

ρ(R;H).

Theorem 2.6 ( [9, Solution Theory], [10, Theorem 6.2.5]). Let A be a skew-selfadjoint
operator in H, 0 ≤ M0 = M∗

0 ,M1 ∈ L(H). Assume there exists c, ρ > 0 with

ρ〈M0ϕ, ϕ〉+ Re〈M1ϕ, ϕ〉 ≥ c〈ϕ, ϕ〉 (ϕ ∈ H). (4)

Then the operator B := ∂tM0+M1+A with D(B) = D(∂t)∩D(A) is closable in L2
ρ(R;H).

Moreover, Sρ := B−1
is well-defined, continuous and bounded with ‖Sρ‖L(L2

ρ)
≤ 1/c.

We can now state and prove the full time-dependent version of Theorem 2.4. We shall also
refer to [2, Theorem 7.1] for a corresponding result with R instead of (0, 1) as underlying
state space.

Theorem 2.7. Let ρ > 0, M0,M1 ∈ L∞(0, 1)2×2
# (⊆ L(L2(0, 1)2)), M0 = M∗

0 ≥ 0. Assume
there exists c > 0 such that

ρ〈M0ϕ, ϕ〉+ Re〈M1ϕ, ϕ〉 ≥ c〈ϕ, ϕ〉 (ϕ ∈ L2(0, 1)2),

set A :=
(

0 ∂#
∂# 0

)

, H = L2(0, 1)2. Then, there exists κ ≥ 0 such that for all N ∈ N, we

have

‖
(

(∂tM0(N ·) +M1(N ·) + A)−1 − (∂tM
av
0 +Mav

1 + A)−1
)

∂−2
t ‖L(L2

ρ(R;H)) ≤
κ

N
,

where Mav
j :=

∫

(0,1)
Mj(y)dy for all j ∈ {0, 1}.

6



arXiv April 2, 2018

Proof. Applying the unitarity of the Fourier–Laplace transformation and the spectral
representation of ∂t, we deduce that the claim is equivalent to showing that there exists
κ ≥ 0 such that for all N ∈ N and ξ ∈ R:

‖
(

((iξ + ρ)M0(N ·) +M1(N ·) + A)−1 − ((iξ + ρ)Mav
0 +Mav

1 + A)−1
)

(iξ+ρ)−2‖L(H) ≤
κ

N
.

(5)
For this, we deduce from the positive definiteness estimate imposed on M0 and M1 that

(iξ + ρ)M0(·) +M1(·) ∈ Mc

for all ξ ∈ R. Hence, using Theorem 2.4 and Corollary 2.3, we obtain the existence of
κ ≥ 0 such that for all N ∈ N and ξ ∈ R

‖
(

((iξ + ρ)M0(N ·) +M1(N ·) + A)−1 − ((iξ + ρ)Mav
0 +Mav

1 + A)−1
)

‖L(H))

≤ κ

N
(1 + |ξ|2)(1 + ‖M0‖∞ + ‖M1‖∞)2.

Thus, we conclude

‖
(

((iξ + ρ)M0(N ·) +M1(N ·) + A)−1 − ((iξ + ρ)Mav
0 +Mav

1 + A)−1
)

(iξ + ρ)−2‖L(H))

≤ κ

N
(1 + |ξ|2)(1 + ‖M0‖∞ + ‖M1‖∞)2

1

|iξ + ρ|2 =
κ

N

1 + ξ2

ρ2 + ξ2
(1 + ‖M0‖∞ + ‖M1‖∞)2,

which implies (5) and, thus, the assertion.

3 Numerical implementation

We use as numerical method a discontinuous Galerkin method in time and a continuous
Galerkin method in space. For a similar problem this approach is already considered and
analysed in [6]. Therefore, we will only describe the method here shortly and point to the
differences in the numerical analysis.

3.1 Numerical method

We will start by describing the method and providing a convergence result for an arbitrary
problem of type (1), that is, we shall focus on problems of the type

(∂tM0 +M1 + A)U = F, (6)

where A =

(

0 ∂#
∂# 0

)

andM0 = M∗
0 ≥ 0,M1 are in L∞(Ω)2×2, which are readily extended

to operators acting on L2
ρ(R;L

2(Ω)2). Throughout, we shall assume

ρ〈M0ϕ, ϕ〉+ Re〈M1ϕ, ϕ〉 ≥ c〈ϕ, ϕ〉

for some c > 0 and all ϕ ∈ L2(Ω)2.

7
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Let the time-interval [0, T ] be partitioned into subintervals Im = (tm−1, tm] of length τm
for m ∈ {1, 2, . . . ,M} with t0 = 0 and tM = T . Let the space-interval Ω := (0, 1)
also be partitioned into subintervals Jk = [xk−1, xk] of length hk for k ∈ {1, 2, . . . , K}
with x0 = 0 and xK = 1. Furthermore, let a temporal-polynomial degree q ∈ N and a
spatial-polynomial degree p ∈ N be given.
Then we define the discrete space

Uh,τ :={(uh, vh) ∈ Hρ(R;H) : uh|Im , vh|Im ∈ Pq(Im;V (Ω)),m∈{1, . . . ,M}} ,

where the spatial space is

V (Ω) :=
{

v ∈ H1
#(Ω); v|Jk ∈ Pp(Jk), k∈{1, . . . , K}

}

,

Furthermore, Pq(Im) is the space of polynomials of degree up to q on the interval Im and
similarly Pp(Jk). Thus our discrete space consists of function that are piece-wise polyno-
mials of degree p and continuous w.r.t. the space variable, and piece-wise polynomial of
degree q and discontinuous at the time-points tk w.r.t. time.
The method reads: For given F ∈ Uh,τ and x0 ∈ H, find U ∈ Uh,τ , such that for all
Φ ∈ Uh,τ and m ∈ {1, 2, . . . ,M} it holds

Qm [(∂tM0 +M1 + A)U ,Φ]ρ + 〈M0[[U ]]x0

m−1,Φ
+
m−1〉H = Qm [F,Φ]ρ . (7)

Here, we denote by

[[U ]]x0

m−1 :=

{

U(tm−1+)− U(tm−1−), m ∈ {2, . . . ,M}
U(t0+)− x0, m = 1,

the jump at tm−1, by Φ+
m−1 := Φ(tm−1+) and by

Qm [a, b]ρ :=
τm
2

q
∑

i=0

ωm
i 〈a(tm,i), b(tm,i)〉H

a right-sided weighted Gauß–Radau quadrature formula on Im approximating

〈a, b〉ρ,m :=

tm
∫

tm−1

〈a(t), b(t)〉H exp(−2ρ(t− tm−1))dt,

see [6] for further details. We denote by Uh,τ
N the numerical solution obtained by above

method (7) for the problem with periodic, rough coefficients and by Uh,τ for the ho-
mogenised data.

3.2 Numerical analysis

We are ready to provide the convergence result for the above method assuming enough
regularity of the solution of Example (6) measuring the error in an L∞-L2 sense with

E2
sup(a) := sup

t∈[0,T ]

〈M0a(t), a(t)〉L2(Ω)2

8
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Uh,τ
N Uh,τ

UN U

Thm. 3.1
Rem. 3.2

Thm. 2.7

Thm. 3.1

Figure 1: Diagram showing the connections between the different problems

and with the discrete version of the L2
ρ(R;H)-norm, given by

E2
Q(a) := e2ρT

M
∑

m=1

Qm [a, a]ρ e
−2ρtm−1 .

Theorem 3.1. We assume for the solution U = (u, v) of Example (6) the regularity

U ∈ H1
ρ(R;H

p
#(Ω)×Hp

#(Ω)) ∩Hq+3
ρ (R;L2(Ω)× L2(Ω))

as well as
AU ∈ Hρ(R;H

p
#(Ω)×Hp

#(Ω)).

Then we have for the error of the numerical solution by (7) with a generic constant C

E2
sup(U − Uh,τ ) + E2

Q(U − Uh,τ ) ≤ Ce2ρT (τ 2(q+1) + Th2p).

Proof. The proof is basically identical to the one given in [6]. The only difference being
the periodic boundary condition instead of the homogeneous Dirichlet condition. But all
estimates are the same, as only local estimates in space are used, independent of boundary
conditions.

Considering now the problem coming from the homogenisation process, we essentially have
two different problems we can approximate numerically, see Figure 1, where in addition
UN denotes the solution to the problem with rough coefficients.

Remark 3.2. Following the diagram in Figure1, we have by the Theorems 2.7 and 3.1
for a the suitable choice of polynomial degrees p = q + 1 ≥ 1 and meshwidths τ = c1h =
c2
N
, c1, c2 > 0 the convergence result

EQ(U
h,τ
N −U) ≤ EQ(U

h,τ
N −UN)+EQ(UN−U) ≤ EQ(U

h,τ
N −UN)+C‖UN−U‖H1

ρ(R,H) ≤ CN−1,

where the second inequality comes from Sobolev’s embedding theorem (see e.g. [7, Lemma
5.2]) and the final one from applying Theorems 2.7 and 3.1. Note that for this estimate
to hold we have to impose suitable regularity in time for the right-hand side in (1) (or
(6)).

9
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Table 1: Convergence results for UN − Uh
N and U − Uh

N of problem (8)

n Esup(UN − Uh,τ
N ) EQ(UN − Uh,τ

N ) Esup(U − Uh,τ
N ) EQ(U − Uh,τ

N )
4 2.857e-03 1.117e-03 1.381e-01 3.683e-02
8 9.490e-04 1.59 3.623e-04 1.62 3.418e-02 2.01 1.297e-02 1.51
16 2.802e-04 1.76 1.151e-04 1.65 1.328e-02 1.36 4.463e-03 1.54
32 8.611e-05 1.70 3.713e-05 1.63 5.890e-03 1.17 2.039e-03 1.13
64 2.306e-05 1.90 9.136e-06 2.02 2.802e-03 1.07 9.983e-04 1.03

3.3 Numerical example

Let N ∈ N be even and with

εN(x) :=

{

1, ∃i ∈ N0 : x ∈
[

2i
N
, 2i+1

N

)

0, otherwise
, σN(x) := 1− εN(x)

we consider the rough-coefficient problem for UN = (EN , HN)

(

∂t

(

εN 0
0 1

)

+

(

σN 0
0 0

)

+

(

0 ∂#
∂# 0

))(

EN

HN

)

=

(

J
K

)

(8)

and the homogenised problem for U = (E,H)

(

∂t

(

1
2

0
0 1

)

+

(

1
2

0
0 0

)

+

(

0 ∂#
∂# 0

))(

E
H

)

=

(

J
K

)

, (9)

where J(t, x) = sin(2πx) · min{1, 10t} and K(t, x) = 0 for all t > 0, x ∈ [0, 1] For our
numerical experiment we use the Matlab/Octave software SOFE [8]. The exact solutions
are unknown. Therefore, we use reference solutions computed on a very fine grid and
higher polynomial degree in the computation of the errors.
In Table 1 we present the simulation results of Uh,τ

N = (Eh,τ
N , Hh,τ

N ) for h = 1/K, τ = 1/M
andM = 2K = 8N and polynomial degrees p = q+1 = 2. In the second and third column
we see almost second order convergence of Uh,τ

N towards UN = (EN , HN) in accordance
with Theorem 3.1, while in the last two columns we observe first order convergence of
Uh,τ
N towards U = (E,H) in accordance with Remark 3.2.
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