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1 

Abstract — Acoustic analysis using signal processing tools can 

be used to extract voice features to distinguish whether a voice is 

pathological or healthy. The proposed work uses spectrogram of 

voice recordings from a voice database as the input to a 

Convolutional Neural Network (CNN) for automatic feature 

extraction and classification of disordered and normal voice. The 

novel classifier achieved 88.5%, 66.2% and 77.0% accuracy on 

training, validation and testing data set respectively on 482 

normal and 482 organic dysphonia speech files. It reveals that 

the proposed novel algorithm on the Saarbruecken Voice 

Database can effectively been used for screening pathological 

voice recordings. 

I. INTRODUCTION 

Dysphonia is the global term used for disorders of voice 
production, either due to structural changes in the larynx or 
functional/behavioral issues. Patients diagnosed with 
dysphonia often present with prolonged hoarseness or possibly 
loss of voice. Figures estimate that around 10% of the overall 
working population, and between 3%-9% of the overall adult 
population might experience some problems with their voice 
at any given time [1]. Clinical assessment tends to be based on 
perceptual analysis of voice. However, this is highly subjective 
and outcomes can vary depending on the clinician’s level of 
training and experience with dysphonia. 

Acoustic analysis of pathological voice detection has been 
popular to supplement perceptual analysis as it is non-invasive 
and provides robust quantitative measures. In this case, 
acoustic analysis becomes a popular alternative tool for 
pathological voice diagnosis in the recent years. In general, 
signal processing tools are applied to find the proper feature 
set, and machine learning methods are used for dimensionality 
reduction and classification to diagnose dysphonia. 

Deep Learning in Machine Learning field has become a 
powerful classification framework demonstrating superior 
performance in many application domains such as computer 
vision and speech recognition. However, to date very little 
publications in the use of deep learning technologies for 
pathological voice analysis have been reported.  

In this paper, we propose a method Convolutional Neural 
Network (CNN), which originated from deep learning field, to 
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extract features automatically from the spectrogram of voice 
recordings for dysphonia diagnosis. Small windows are used 
as feature extractors for the spectrogram to detect the subtle 
variations between pathological voice and normal voice which 
are hard to be manually detected using conventional method. 

The rest of the paper is organized as follows. Section II 
introduces the related works in acoustic measurement for 
pathological voice detection. Section III explains the details of 
the methodology and process of the experiments. In Section 
IV, results are represented. Section V provides a conclusion on 
the results reported, and proposes ideas for future works. 

II. RELATED WORK 

There is a large amount of related works exist. Many 
approaches [2-6] extract signal processing features such as 
Mel-frequency Cepstral Coefficients (MFCC), Wavelet 
Packet Transform (WPT), while some uses multidimensional 
voice program (MDVP) parameters according to physiological 
and etiological reasons.  MDVP parameters including pitch, 
jitter and shimmer are used to detect the roughness of the 
speech, while others such as Harmonic-to-Noise Ratio (HNR), 
Normalized noise Energy (NNE) and Glottal-to-Noise Ratio 
(GNR) represent the breathiness of the speech. Furthermore, 
dimensionality reduction methods such as Linear Discriminant 
Analysis (LDA), Principle Component Analysis (PCA), kernel 
PCA, Fisher Discriminant Ratio (FDR) and Singular Value 
Decomposition (SVD) etc. are used for searching the suitable 
latent variables for classification. k- Nearest Neighbor (kNN), 
Random Forests (RF), Support Vector Machine (SVM), 
Gaussian Mixture Model (GMM), Hidden Markov Model 
(HMM) and Neural Networks (NN) are applied for 
classification.  

TABLE I.  OVERVIEW OF RELATED WORKS WITH MEEI DATABASE 

 
Data 

Sourcea 

Feature 

Set 

Feature 

selection 
Classifier Accuracy 

[2] 710-53 
MFCC, 

pitch 
- HMM 98.59% 

[3] 67-53 WPT 
LDA, 

PCA 
SVM 100% 

[4] 657-53 WPT SVD k-NN 100% 

[5] 657-53 NLD - 
GMM, 

SVM 
98.23% 

[6] 53-95 MDVP FDR SVM 88.21% 

a. Data amount (Pathological-Normal) 

As indicated in Table 1 many research works has been 
carried out using the MEEI database. However, these works 
reveal “perfect” result that leads to researchers to question the 
usefulness of the database. Muhammad et al. in [7] explains 
that this is because the normal and pathological voice 
recordings are recorded in two different environments in this 
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database. Therefore, it is hard to distinguish whether the 
system is classifying voice features or environments. In 
addition, due to the unbalanced data structure, with 11 times 
more data from pathological to normal files [2, 4, 5], the 
classification result is effected to some extent.  

Saarbruecken Voice Database is a database with 
recordings that are all sampled at 50 kHz and with 16-bit 
resolution, which makes it a reliable database for research. 
Because this is a new database, little research has been done 
using this database, which are listed in Table II.  

TABLE II.  OVERVIEW OF RELATED WORKS WITH SV DATABASE 

 
Data 

Sourcec 

Feature 

Set 

Dimensionality 

Reduction and 

Classifier 

Accuracy 

[6] 262-244 MDVP FDR, SVM 99.68% b 

[8] 266-263 AC - 98.94% b 

[9] 255-255 
MDVP, 

MFCC 
kPCA, RF 100% a 

[10] 1320-650 

MFCC, 

HNR, 
NNR, 

GNR 

GMM 
79.40% a 
67.00% b 

[11] 480-480 - DNN 68.08% b 

   a. Accuracy with fusion of sustained vowels /a/, /i/ and /u/   

b. Accuracy with sustained vowel /a/  

c. Data amount (Pathological-Normal) 

From the literatures, we can see that Saarbruecken Voice 
Database appears more challenging while more trust-worthy 
for experiments. Some experiments use small amount of data 
and achieved almost 100% accuracy using statistical methods 
[6, 8, 9]. This is questionable compared to [10] using GMM-
HMM which achieves 67.00% accuracy when the data amount 
is large. In [11], Deep Learning has been used for the first time, 
applying Long Short-Term Memory (LSTM), a type of 
recurrent neural network and using information from the time-
domain axis. However, since pathological voice contains 
information without regard to time, this model might not be 
the most proper one for this problem. 

III. METHODOLOGY 

A. Data source 

Saarbruecken Voice Database is a German database with a 
collection of voice recordings from more than 2000 
individuals, and it is collected by the Institute of Phonetics of 
Saarland University. Each participant file contains recordings 
of sustained vowels /a/, /i/ and /u/ in low, neutral, high and 
low-high-low pitch and a continuous speech sentence “Guten 
Morgen, wie geht as Ihnen?” (“Good morning, how are 
you?”). All recordings are recorded in 50 kHz sampling 
frequency and 16-bit resolution. It is proved to be superior to 
MEEI database because it is recorded in the same 
environment[7]. 

Saarbruecken voice database contains 71 different 
pathologies. Some pathologies belong to functional dysphonia 
type, including hyper-functional dysphonia, hypo-functional 
dysphonia and psychogenic dysphonia. Other pathologies are 
mostly organic dysphonia which is caused by structural 
changes in the vocal cord. This type of dysphonia contains 
significant characteristics to be detected so that it is chosen for 

this experiment. We select 6 pathologies (Laryngitis, 
leukoplakia, Reinke’s edema, recurrent laryngeal nerve 
paralysis, vocal fold carcinoma, vocal fold polyps) as the 
pathological group. We use sustained vowel /a/ at neutral pitch 
of each individual, of which 482 were healthy and 482 are 
diagnosed with pathologies (140 laryngitis, 41 leukoplakia, 68 
Reinke’s edema, 213 recurrent laryngeal nerve paralysis, 22 
vocal fold carcinoma and 45 vocal fold polyps) (some 
pathologies repeat in the same file).  

The data is divided into training set and testing set with 
75% and 25% samples respectively. Therefore, there are 724 
training and 240 testing files in all.  

B. Pre-processing for Input Data to CNN 

To use CNN for application, a 2-Dimensional graph is 
ideal for extracting features. In this case, we need to perform 
some pre-processing steps to form the feature map to feed into 
the CNN system. 

The procedure is shown in Figure 1. For implementation, 
the Python programming language has been used with the 
signal processing package scipy.signal. The original speech is 
first resampled at 25 kHz. Furthermore, Short-Time Fourier 
Transform (STFT) are applied to the resampled data for 
transforming the time-domain signal into spectral-domain 
signal. Compared to time-domain representation, spectral-
domain signals contain more pathological information. Some 
research works demonstrated that pitch, formants and NHR, 
HHR, GNR etc. can represent some characteristics of the 
pathological voice such as hoarseness, breathiness and 
roughness[12, 13], which can all be seen on spectrograms. In 
STFT, each file use 10 ms hamming window segments, with 
50% overlap between consecutive windows. Finally, the 
spectrograms are reshaped to the same size of 60*155 points, 
with 155 being the minimum length of the spectrograms. This 
is because there is a large part of the area in the spectrogram 
contains no information, and the useless part of the 
spectrogram is cut off to reduce the effect of noise to the 
classification result. The comparison of the spectrograms are 
shown in Figure 2.  

Figure 1.  Pre-processing steps for Input data 

C. CNN Architecture 

Pathological voice contains subtle differences that can be 

seen on the spectrogram compared to normal voice, which are 

difficult to be manually defined using particular criteria. 

Hence the CNN plays an important role as a feature extractor 
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to distinguish two classes using specific features. The CNN 

architecture is shown in Figure 3. 

 

Figure 2.  Comparison of input feature map (a).spectrogram of one normal 

voice; (b). spectrogram of one pathological voice 

Figure 3.  CNN architecture (a. length*width*depth) 

The size of the input feature map is 60*155*1. Since it is 

the spectrogram of the speech file, the depth of this input layer 

is 1, and it has the same meaning as “color channels”, i.e. Red-

Green-Blue (RGB) in computer vision field; in other words, 

the spectrogram can be seen as a grey scale image. 

The input feature map is then convolved with a set of 8 

filters. Each filter has the shape of 8*3*1 and stride of 1. We 

use the rectangular filters in this work due to the spectrogram 

characteristics. Furthermore, max-pooling filters with the 

shape 4*4 and stride of 1 are applied to pool the significant 

values out and reduce the computational complexity. Then the 

activation function RELU is applied to make the neural 

network non-linear and fit for classification. 

After the first hidden layer, each layer was convolved with 

8 filters with the shape 8*3*8 and stride of 1. Max-pooling 

filters and activation function is the same as for the first 

hidden layer.  

After 10 hidden layers to extract the features from the 

spectrogram, the feature map is formed into a Dense Layer, 

which is a fully-connected layer, to train the model for 

classification. L2-regularization is used in this layer to avoid 

overfitting problems.  

D. Hyper-parameter Setting 

Python based Tensorflow[14] is used as a framework for 

the training process. Because the mini-batch gradient descent 

use GPU for matrix computation and will lead to high speed, 

the training samples are divided into 256 samples in each 

mini-batch to be trained on GPU NVidia GTX1070 in this 

work. Adam Optimizer[15] is applied in this experiment with 

initial learning rate 0.0006 so that the training process 

becomes more robust. Delta value of the L2 regularization is 

set to 0.0001 and the maximum epochs of training is 100. 

IV. EXPERIMENTAL RESULTS 

Confusion matrix of validation dataset and testing dataset 

are listed respectively in Table III and Table IV. Several 

metrics indicating the classification result are shown in Table 

V. Sensitivity (SN) reveals how good the classifier is at 

detecting the pathological voice files, which has the same 

meaning as “recall” and is calculated as in . Specificity (SP) 

calculated as in  reveals the proportion of normal voice 

files that are correctly identified. Precision (P) shows how 

many of the pathological voice files classified are relevant, 

and F1-score (F1) has also been taken into account, calculated 

as in  ܵܰ ൌ  ܶܲܶܲ ൅ ܰܨ ǡ ܵܲ ൌ ܲܨܰܶ  ൅ ܶܰ  

ܲ ൌ  ܶܲܶܲ ൅ ܲܨ ǡ ͳܨ ൌ ʹ ܲ ή ܵܰܲ ൅ ܵܰ   

 

True Negative (TN) represent normal voice recordings that 

are correctly detected as “normal voice”; True Positive (TP) 

represent pathological voice recordings that are correctly 

detected as “pathological voice”; False Negative (FN) 

represent pathological voice recordings that are detected as 

“normal voice”, False Positive (FP) represent normal voice 

recordings that are classified as “pathological voice”. 

It can be seen from Table V that the classifier achieved 

overall accuracy (ACC) of 88%, 66% and 77% on training 

dataset, validation dataset and testing dataset respectively. 

Compared to [11], spectrogram features show greater 

performance on pathological voice detection than raw time-

domain signals. Moreover, the proposed algorithm is shown 

to be more robust for dealing with large amount of data 

compared to [6, 8, 9]. However, training data accuracy 
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achieved much better than validation set and testing set, 

which reveals overfitting problem to some extent. 

TABLE III.  CONFUSION MATRIX OF VALIDATION DATASET 

 
True: 

pathological 

True: 

normal 

Prediction: 
pathological 

39 25 

Prediction: 

normal 
24 57 

TABLE IV.  CONFUSION MATRIX OF TESTING DATASET 

 
True: 

pathological 

True: 

normal 

Prediction: 

pathological 
61 19 

Prediction: 
normal 

14 51 

TABLE V.  METRICS TO MEASURE THE CLASSIFIER 

Dataset 
Metrics 

SN(r)  SP p F1 ACC 

Training dataset 0.93 0.83 0.85 0.89 0.88 

Validation dataset 0.61 0.70 0.61 0.61 0.66 

Testing dataset 0.76 0.79 0.81 0.78 0.77 

V. CONCLUSION 

Our results have shown that spectrograms can been used 

effectively as the input to classify pathological voice and 

normal voice, without the necessity to extract features 

manually. In this work, organic dysphonia was selected as the 

pathological group, as it shows more significant pathological 

characteristics than functional dysphonia. However, the high 

accuracy on training dataset compared to the validation and 

testing dataset reveals an overfitting phenomenon on the 

classifier, which is an old Bias and Variance dilemma in deep 

learning field. Different CNN structure has been changed to 

eliminate the problem. For example, reducing the number of 

nodes of CNN, increasing the size of the filters, performing 

drop-out on convolutional layers, and adding L2 

regularization on Dense Layer. We conduct hundreds of 

experiments to choose the most appropriate parameters and 

structures for CNN. However, the best way might be using 

larger amounts of training data, while requiring spending time 

and resources to collect. 

In the future work, more data will be collected with 

Glasgow Royal Infirmary. At the same time, subtle 

characteristic differences between functional dysphonia and 

organic dysphonia will be investigated and compared together 

with normal voice recordings. Deep learning techniques and 

traditional data mining tools will be compared to explore a 

better approach for dysphonia screening. 
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