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Abstract—One of the main issues for a robotic passer is to 

detect the onset of a handover, in order to avoid the object from 

being released when the human partner is not ready or if some 

impact occurs. This paper presents the methodology for a robotic 

passer, that is potentially able to estimate the interaction forces by 

the receiver on the object, thus to achieve fluent and safe 

handovers. The proposed system uses a vibrator that energizes the 

object and an accelerometer that monitors vibration propagation 

through the object during the handover. We focused on the 

machine-learning technique to classify between four states during 

object handover. A neural network was trained for these four 

states and tested online. In experimental trials an accuracy of 

85.2% and 93.9% were obtained respectively for four classes and 

two classes of actions by a neural network classifier.   

Keywords—Autonomous; Handover; Machine Learning; 

Neural networks 

I.  INTRODUCTION  

One of the main goals of robotic research is to enable robots 
to work alongside humans in different fields such as in industrial 
[1][2] and domestic settings [3]. For example, a human can ask 
for a tool from a robot in one scenario and for a workplace 
assistance in another [4]. Within this framework object handover 
between robots and humans is among the fundamental 
collaborative tasks that should occur in a safe and fluent manner: 
notably, these are two opposite requirements. In some cases, 
humans can ask for the object while not facing the robot. 
Therefore, a robot should know when the receiver is ready to 
receive the object and hand it over without dropping it. A robot 
should be able to distinguish between a mild touch, proper grasp 
or just a contact (hit), which could be accidental, by a human. 
Otherwise, the robot can make an incorrect decision which can 
harm the human and/or the object. 

Humans hand over objects to one another efficiently and 
fluently as part of daily life, while robot-to-human handovers are 
unintuitive and often inadequate [5]. The way in which an object 
is released by the hand of a robotic passer plays a fundamental 
role in the perceived fluency of the handover action by the 
human receiver. Behavioral studies in humans have highlighted 
how, during object handover, the passer and the receiver regulate 
their grip forces in complementary fashion in order to 

accomplish a successful transfer [6]. To transfer an object, the 
passer must decrease the grip force on the object while the 
receiver increases it. During this time, both partners must share 
the production of adequate grasp forces on the object to 
counteract gravitational and inertial load forces, in order to 
prevent the object from slipping. Finally, when the receiver has 
produced grip forces strong enough to maintain stable control on 
the object, the passer can release the grasp [6][7]. The instant 
when the receiver makes initial contact with the object is known 
to be a salient event of the handover, because it alerts the passer 
to start the load transfer. Between humans, however, not all the 
contacts trigger a handover, e.g. when unwanted collisions occur 
or when the contact is due to a mild touch by the receiver. These 
cases are mastered with apparent ease by humans, which 
determine whether to start the handover based on their sensory 
inputs (including non-verbal communication) and on their 
previous experience. In particular, the passer is in charge for the 
safety/fluency of the handover, by adopting context-dependent 
safety margins on the grip force [6]. 

In a scenario where the passer is an autonomous robot with 
restricted cognitive capabilities and sensory inputs and the 
receiver is a human, there should be an in-built mechanism in 
the robot to identify whether the human has grasped the object 
properly and thus is ready for the handover. The robot should be 
able to distinguish between mild touch and hit by the receiver. 
Traditionally this issue has been tackled using force/torque 
sensors in the arm and end-effector, in order to monitor the 
reaction forces produced by the actions on the object by the 
receiver. In addition, systems that use computer vision to predict 
the partner’s intentions have been developed [8]. 

Many studies have been carried out on various aspects of 
human-robot handovers. Several methods have been proposed 
that help the robot determine when to release the object during 
object handover. Edsinger and Kemp [9] proposed to trigger the 
handover at a fixed delay with respect to the first touch, as 
detected by tactile sensors in the gripper. However, it has been 
shown that the initial phase of the handover, i.e. immediately 
after the object contact, is crucial for the subjective impression 
of the robot behavior’s quality, and a perceived latency in the 
control after this event is generally not acceptable [10].  
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However, in some situations the robot can drop the object if the 
receiver is not ready after that fixed delay.  Likewise Choi et al.  
[11] used force/torque sensors in the digits and a simple 
threshold technique. This method requires less force, but manual 
tuning of hardware-dependent thresholds is needed and the robot 
can drop the object due to an unexpected collision/hit. Bohren et 
al.  [12] proposed to monitor the position in space of a compliant 
robot arm in order to derive the pulling force applied by the 
receiver on the object, and to use such information to trigger the 
load transfer. In this approach there is less chance of a drop, but 
the user has to pull very hard. Finally, Chan et al.  [13] proposed 
a releasing algorithm based on the weight experienced on the 
end-effector as measured by a load cell in the wrist. Once the 
controller detects the slightest pull from the receiver, it releases 
the object.  

In general the above mentioned methods are unable to 
effectively distinguish between the three possible conditions, 
namely mild touch, proper grasp and hit. However, we argue 
that the reason for these limitations actually resides in the 
sensing approach used, which is inappropriate for measuring the 
grip force applied by the receiver. Contrary to the conventional 
load/torque sensors, we propose a new method for a robotic 
passer, which is potentially able to estimate the interaction 
forces exerted on the object by the receiver and, therefore, able 
to implement acceptable fluent and safe handovers. 

 In this paper, we introduce a novel approach which can help the 
robot release the object at the right moment with less 
complexity. The general idea is to energize the grasped object 
with a mechanical vibration, and to monitor how such vibration 
propagates through the object due to its interaction with the 
environment.  To find out the intensity of the grip force applied 
by the receiver on the object during the handover, we focus on 
machine-learning techniques to classify between different states  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

during object handover rather than to use thresholds to detect 
just the touch by the receiver.  The remainder of this paper is 
organized as follows. Sections 2 discusses the methodology used 
in the proposed design, Sections 3 and 4 discuss the data 
recording and data analysis respectively. The experimental 
results are reported and analyzed in Section 5 while Section 6 
concludes the paper.   

II. METHODOLOGY  

There are several potential machine-learning techniques such as 
support vector machine (SVM), artificial neural network (ANN) 
and linear discriminate analysis (LDA) that have been used in 
the last decade [14]. We have used ANN for the online 
validation of our system. 

We have designed an experimental setup with a small vibrator 
on one digit and an accelerometer on another digit of a gripper 
to hold objects by applying constant external force. Then we 
have recorded the variation when the human hand touches, hits 
or grasps the object. In our experiment we have used the gripper 
as passer a human as a receiver and 3 objects. Then, based upon 
the vibration analysis, the algorithm is able to classify the 
strength of the receiver grasp and thus to safely and efficiently 
trigger the beginning of the handover. The basic concept in this 
work is to provide a forced vibration to the system “end-effector 
– object” and to measure the propagated vibration modes using 
a sensor embedded on the robot. Every material vibrates at some 
frequency and its vibration changes when someone touches that 
vibrating material. The method here proposed measures these 
changes and helps the robot to differentiate between a mild 
touch, proper grasp and hit by a human. As illustrated in the 
simplest configuration in Fig. 1, the forced vibration is provided 
by a motor with rotating eccentric mass, placed on one digit, and 
is sensed by an accelerometer placed on the other digit.  

In stationary conditions, the mechanical vibration of the 
system as sensed by the accelerometer Vo, will be ruled by a 
function F, based on a multitude of variables, which include: the 
grip force (GF), the features of the forced vibration (Vi), the 
dynamic properties of the system (mass m, damping c, stiffness 
k), and the external interacting forces (FE), as in (1): 

  ௢ܸ ൌ ǡܨܩሺ ܨ ௜ܸ ǡ ݉ǡ ܿǡ ݇ǡ  ாሻܨ
 

(1) 

 
Fig.  1.  Representation of the proposed method. GF is the Grip 

Force, Vi and Vo are the input (forced) and output vibration,respectively. 

FE are external forces  
Fig.  3.  Experimental setup: (a)Gripper with accelerometer on one digit 

and vibrator on other digit (b) upper view (c) fornt view of the setup. 

 

Fig.  2. Time series recorded with the experimental setup. 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

As illustrated in Fig. 2, when the system is perturbed, i.e. the 
external force FE is not null or the dynamic features (m, c, k) are 
modified due to the interaction with external bodies, the 
vibration picked up by the accelerometer will change 
accordingly. At first approximation changes may pertain to the 
vibration amplitude and frequency, or a combination of these. 
For example, one can expect that a mild touch will slightly 
reduce the amplitude of the picked up vibration, whereas an 
actual grasp (two counteracting forces on the object by an 
external agent) will attenuate the Vo to a larger degree. Finally, 
a collision/hit will produce an impulse in the measured vibration 
as illustrated in Fig. 2. 

III. DATA RECORDING 

A. Experimental Setup 

The experimental setup was developed to prove the working 
principle of the proposed method, and comprises a bi-digital 
gripper as illustrated in Fig. 3. In the handover scenario, the 
gripper acts as the passer, holding the object in place, while the 
subject, i.e. a human, acts as the receiver. The subject had to 
perform different interactions with the object either by touching, 
grasping or hitting it. The gripper was able to hold objects with 
diameter ranging between 20-90 mm and can produce constant 
grip force (GF). One digit was equipped with a miniature 
vibrator (Model 308-107, Precision Microdrives Ltd) and, the 
other digit with an analogue accelerometer (ADXL 335, Analog 
Devices Inc.). Data was recorded with a PC through a data 
acquisition board (NI-USB 6009, National Instruments Corp.) 
with the rate of 1 kHz. 

As the damping due to the introduced vibration is a function of 
the mass and the compliance of the object, three different objects 
with widely different properties were considered: an empty 
plastic bottle (very soft, long, 30 grams), coffee cup (compliant, 
medium, 10 grams) and white tape (stiff, small, 5 grams). 

TABLE I. TOTAL NUMBER OF TRIALS 

Object Trails Grasp Touch Hit 

Bottle 10 500 500 500 

Cup 10 500 500 500 

Tape 10 500 500 500 

 30 1500 1500 1500 

 

 

 

 

 

 

 

 

We applied a constant GF of 5N on the gripper during the 
whole experiment. 

B. Procedure 

For the grasp condition, the subject had to grasp the object 
in the same manner as in real handover scenario of taking the 
object from another human. For this condition the subject was 
allowed to use all fingers as shown in Fig. 4(a).For the touch 
condition, the subject was allowed to use only one finger to 
touch the object as shown in Fig. 4(b), and in the hit condition 
the subject was instructed to hit the object repeatedly. All three 
interactions were performed in the following sequence: 50 
grasps, 50 touches and 50 hits. There was a random rest phase 
i.e. when there was no interaction with an object occurring 
between hits. The trial started with the rest phase and then 
followed by the interactions. In one trial 50 grasps, 50 touches 
and 50 hits, as shown in Fig. 5, were recorded. For each object 
there were 10 trials, with a total of 30 trails for all three objects. 
The whole dataset comprises of 1500 grasps, 1500 touches and 
1500 hits as shown in TABLE I.   

IV. DATA ANALYSIS 

A. Preprocessing and feature extraction. 

A flowchart of the methodology carried out in this study is 
shown in Fig. 6. The raw data was filtered using high pass and 
low pass third order Butterworth filters, to remove frequencies 
lower than 5Hz and higher than 300Hz. Then the filtered signal 
was processed according to different window sizes and overlaps. 
We selected window sizes from 100ms to 300ms with an 
increment of 100ms. For each window size, overlaps of 0%, 
25%, 50%, 75% and 95%. From our experiments we have 
selected the window size 300ms for online validation of our 
system, as results indicated that this window size gives the best 
classification results in this case. 

In this study all the features are extracted from the three 
channels, i.e. axes, of the accelerometer.  

 

 
Fig.  4. Subject performing  (a) Grasp  (b) Touch with the three objects. 

 

Fig.  5. Sequence of the interactions  

 

 
Fig.  6. Flowchart purpose illustrating the classification methodology. 

 



 

 
 

 

 

 

 

 

 

 

 

The fundamental purpose of feature extraction is to emphasize 
the important information in the measured signal, while 
rejecting the noise and irrelevant data. 

The time domain features that are extracted include [15]:  

• Standard Deviation (STD); 

• Mean absolute value (MAV); 

• Peak-Peak amplitude (PPA); 

• Median absolute value (MEDAV);  

• Autoregressive model (AR), 4 coefficients;   

• Waveform length (WL); 

Time–frequency representation (TFR) can localize the 
energy of the signal both in time and in frequency, thus allowing 
a more accurate description of the physical phenomenon. On the 
other hand, TFR generally requires a transformation that could 
be computationally heavy. In this study Discrete Wavelet 
Transform (DWT) has been used as TFR [15]. 

Feature selection is the process of selecting a subset of 
relevant features for the use in model construction. The main 
objectives of the feature selection technique are: (1) to enhance 
generalization by reducing overfitting, (2) to provide faster and 
cost effective models (3) to avoid issues arising due to 
dimensionality. For Wavelets, we decomposed the signal till the 
5th level. But there was no useful information in the first and the 
last levels. So we have used only the 2nd, 3rd and 4th levels for the 
processing of the data. For each level three features were 
extracted, namely MAV, Singular Value Decomposition (SVD) 
and WFL. Therefore, for each axis there were 9 features (3 
features x 3 DWT levels), with a total of 27 features for the three 
axis. So we performed classification with combinations of DWT 
and time domain features (54 features in total). 

B. Classification 

The standard ANN used for function fitting was a two-layer 

feed-forward network, with Bayesian Regularization, as 

illustrated in Fig. 7. As hidden layer, 12 neurons was used, 

which gave the minimum training model error with Neural 

Network in MATLAB 2016a. To train the ANN model, 3 trails 

were used excluding the online validation trails.  

 

TABLE II. CLASSIFICATION ACCURACY FOR WINDOW SIZE OF 300ms 

Overlap (%) Accuracy (%) 

0 79.39 

25 79.46 

50 79.44 

75 79.19 

95 78.23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To create the ANN model, 70% of 3 trails was used as training 

data, 15% as testing data and 15 % as validation data. The ANN 

model was trained using all three objects and then validated 

online.  

The ANN was trained to classify the data into four classes (Fig.  

7(a)), and then into two classes (Fig. 7(b)). The four classes 

were rest, grasp, touch and hit. Then we generalized these four  

classes into just two classes, i.e. “release” class (which includes 

the grasp state) and “not release” class (which includes the rest, 

touch and the hit states). The main rationale for generalizing the 

four classes was to improve the decision making of the system, 

because even if there are four possible classes, effectively the 

system makes a binary decision, either to release the object or 

not. So with just two classes higher accuracy could be obtained 

as compared to the four classes case. 

V. RESULTS 

We measured the online validation results for four classes 
and two classes separately. 

A. Window size 

TABLE II shows the classification results for a single window 

size (300ms) with different levels of overlaps. The results 

clearly indicate that the accuracy is not affected by the 

percentage of overlap. We have selected the 0% overlap for the 

online validation of our system. The main reason for selecting 

this overlap is that the online processing takes 400ms to process 

data, i.e.100ms more than the window size. Strictly speaking, 

the system is not real-time as the processing time is longer than 

the acquisition time; however, the delay of 100ms for every 

output form the ANN classifier is comparable with the delay 

associates to the time response of the tactile feedback in healthy 

humans [16]. 

 

 

 
Fig.  8. Confusion matrix for four classes validation 

 
Fig.  7. ANN for (a) four classes (b) two classes 



 

 
 

 

 

 

 

 

 

 

 

B. Four class validation  

The confusion matrix for four class validation is shown in Fig.  
8. An overall accuracy of 85.2% was achieved. The maximum 
accuracy was of 92.8% for the grasp class. For the hit class, out 
of 1500 hits, the system was able to correctly classify 1409 hits, 
therefore achieving an accuracy of 91.8%. However for the hit 
class and the rest class the accuracy was less compared to the 
other two classes. There was a rest phase between each hit; that 
is why the classifier was confused between the hit class and the 
rest class. Nonetheless 91.8% of hits were classified correctly 
regardless of the 78.2% accuracy of the rest class. 

C. Two class validation 

       The confusion matrix for the two class validation is shown 

in Fig. 9. The overall accuracy when compared to the four class 

validation has increased to 93.9%. In this case the following 

three classes rest, touch and hit were taken as only one class (i.e. 

the not release class), while the grasp class as the release class. 

Therefore system accuracy  has increased as it only needs to 

decide whether to release the object or not release the object.  

 

VI. CONCLUSION 

This paper described the development of a new system that is 

able to effectively, and online detect different events like rest, 

grasp, touch and hit during human robot interaction. The main 

motivation was to reduce the complexity in the present system 

for detecting handover events. We obtained accuracy of 85.2% 

for four classes and 93.9% for two classes, with a delay of 100ms 

for the detection of the events. 

Future research steps include experiments with a large number 

of objects and the implementation of this algorithm on a robotic 

system to test it in industrial and domestic environments. 
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Fig.  9. Confusion matrix for two classes validation 


