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ABSTRACT 

 

In this thesis, the theory of quantum electrodynamics (QED) is utilised to study the 

interaction between radiation and matter. In particular, the non-relativistic limit of the theory 

is employed, describing the optical processes and coupling between molecules and light.  

The predictive power of this theory is highlighted from the outset, whereby it is shown that 

a new form of quantum uncertainty, with its origins in delocalised photon emission and 

absorption, exists in non-linear optics: a non-localised mechanism for the processes of both 

spontaneous parametric down-conversion and second harmonic generation is established by 

accounting for virtual photon propagation. 

The subsequent chapter brings forth the often ignored diamagnetic couplings to optical 

processes. Their interesting and unique physical properties are shown to manifest themselves 

in scattering and two-photon absorption processes, and an argument for their inclusion in 

any multiphoton optical process is outlined. 

Next, the question of whether the sign of the topological charge (handedness) of a beam 

possessing optical orbital angular momentum (structured light) engages in chiroptical 

processes with chiral molecules is resolved. It is shown that through the engagement of the 

electric quadrupole molecular moment, discriminatory effects with regards to the direction 

of the vortex twist are anticipated with anisotropic matter.  

Finally, the laser-induced intermolecular forces that exist between molecules present within 

an intense laser beam are focused on. Specifically, it is shown that there exists a 

discriminatory force between chiral molecules when subjected to circularly polarised light. 
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 "'Tis not in mortals to command success; but we'll do more, Sempronius, 

we'll deserve it."  

 

-Joseph Addison, Cato, a Tragedy. (1712). 
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1 
 

QUANTUM ELECTRODYNAMICS 

 

1.1   INTRODUCTION  

 

The theory of quantum electrodynamics (QED) is often quoted as the most accurate physical 

theory that exists to date [1]. The key to its success is that it treats both the matter, radiation, 

and the interaction between the two, using a fully quantised formulation. This is in contrast 

to both the classical and semi-classical methods that pre-dated it. Whilst the shortcomings 

of the fully classical theory are well known, treating the matter quantum mechanically and 

the radiation classically (semi-classical theory) is still widely utilised to this day as it can be 

used to explain a multitude of physical phenomena, and in general gives adequate results 

[2]. However, its shortcomings were eventually highlighted through its inability to explain 

simple optical processes such as spontaneous emission, and it was clear that the only way to 

fully explain the way electrodynamics is observed in the universe is to treat the whole matter-

radiation system as a quantised entity.  

In the late 1920s, the quantum theory of the free electromagnetic field was formulated [3] 

and its first application was in the absorption and emission of light by atoms [4] : QED was 

born. In the decades that followed, many of the significant advances in the field were in the 

successful marrying of special relativity and QED, resulting in a fully-relativistic theory 

applicable to high energy particles coupling to the radiation field [5].  

In this thesis, the interaction of radiation and matter will be concerned with molecules, where 

the energies of the bound electrons are much less than 𝑚𝑐2.  As such, the issues of fermionic 

pair particle creation and destruction events does not concern us, and the number of charged 
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particles present in the system is conserved. However, these charged particles are free to 

exchange energy with the radiation field through the annihilation and creation of photons, 

and as such there is no conservation of photon number. When these limits are placed upon 

fully-covariant QED, the emerging result is a non-relativistic theory, more commonly known 

as molecular QED [6-12]. 

Molecular QED has found wide-ranging success in describing the interactions between 

photons and molecules. The most celebrated of these include the fully-retarded expression 

for the dispersion force between a pair of neutral molecules [13, 14], a plethora of nonlinear 

optical processes including the generation of optical harmonics [15, 16], intermolecular 

forces [12], resonance energy transfer [17, 18], light beams with orbital angular momentum 

interacting with molecules [19], and chirally discriminant processes including optical 

rotation [20], circular dichroism [21], differential Rayleigh and Raman scattering [22, 23].  

This introductory chapter aims to present an outline of the underlying theory of molecular 

QED, suitable for the application to specific photon-molecule interactions in the ensuing 

chapters. It will follow the most well-known method of working through the canonical 

formalism: starting with the classical Lagrangian and applying canonical quantisation to 

yield the total quantum Hamiltonian for the system. This route is best undertaken working 

within the Schrödinger picture, where the time dependence occurs exclusively within the 

state of the system and the operators are time-independent. However, there does exist a less 

well-known viewpoint whereby the electromagnetic field interacts with a wavelike electron 

(rather than a charged particle) – this is sometimes referred to as the field theoretic approach 

[24-26]. This method is most easily understood through the Heisenberg picture, where all 

time dependence is contained within the dynamic variables.  

Most standard texts on the issue of molecular QED begin with what is termed the minimal 

coupling Lagrangian, moving through the canonical quantisation procedure to secure the 

minimal coupling Hamiltonian. This Hamiltonian was widely utilised in the early studies of 

photon-molecule interactions and is therefore engrained within the literature. However, its 

implementation is rather cumbersome due to it being dependent on the vector potential and 

the conjugate momentum. Fortunately, there also exists another Hamiltonian, more suited to 

the interaction of radiation and molecules which is termed the multipolar Hamiltonian. This 

Hamiltonian is dependent on the multipole moments of the molecules and the fundamental 

electric and magnetic fields. It is therefore easier to implement in calculations and gives 
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much better physical insight to the optical processes to be studied. For this reason, it is the 

most-implemented Hamiltonian within modern molecular QED studies. Many texts still 

derive the minimal coupling Hamiltonian and carry out a suitable canonical transformation 

to yield the multipolar Hamiltonian. However, throughout this thesis we explicitly use the 

multipolar Hamiltonian, and therefore it will be derived starting with the multipolar 

Lagrangian.  

 

1.2    QUANTISATION OF MATTER 

 

The first step in developing the fully quantised theory light-matter interactions is to quantise 

the charges which make up the material part of the system. We proceed in the standard and 

most general way through the Lagrangian formulation in the absence of fields. The system 

is made up of particles   with generalised positions q  and velocities q . The Lagrangian 

itself is defined as the kinetic energy T minus the potential energy V: the motivation behind 

such a definition is that the difference between the average kinetic and average potential 

energy is stationary about a classical trajectory.  As is standard, through Hamilton’s principle 

of least action and the calculus of variations, the Euler-Lagrange equation of motion for a 

system of particles with N degrees of freedom is 

 

0;  1,2,... .
d L L

N
dt q q 

  
       

 (1.2.1) 

 

The description of motion in the Lagrangian formulation is by N second-order equations. 

However, it is possible to reduce this computational complexity, first by introducing the 

Hamiltonian function H, and then describing the system by generalised coordinates q , as in 

the Lagrangian method, but instead of generalised velocities, the Hamiltonian approach 

requires generalised momenta p . The Hamiltonian function takes the form 
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1

,
N

H p q L 



    (1.2.2) 

 

and the generalised momenta are defined by 

 

;  1,2,... .
L

p N
q






  


  (1.2.3) 

 

By inserting (1.2.3) into (1.2.1) it is simple to show that 

 

.
L

p
q









  (1.2.4) 

 

When the above is used in determining the total differential dH from (1.2.2), we yield 

Hamilton’s canonical equations 

 

;      ;   =1,2,...N,
H H

q p
p q

 

 

 
   
 

  (1.2.5) 

 

and find that 

 

.
H L

t t

 
 

 
  (1.2.6) 

 

Thus, it can be seen that Hamilton’s canonical equations of motion consist of 2N first-order 

equations and are equivalent to N second-order Euler-Lagrange equations of motion, and 

that they depend on the canonically conjugate variables of generalised position coordinates 
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and generalised momenta. After having obtained the classical Hamiltonian function in terms 

of the canonically conjugate variables (1.2.2), the quantum mechanical Hamiltonian operator 

is found by simply promoting the classical variables to quantum operators. The quantum 

operators must obey the fundamental canonical commutation relations for particles   and 

 : 

 

, 0;   , 0;   , .i          
            q q p p q p   (1.2.7) 

 

1.3   MACROSCOPIC AND MICROSCOPIC FIELDS  

 

In classical electromagnetism [27], Maxwell’s equations relate electricity and magnetism to 

their macroscopic sources, namely the charge density and current density j, these being 

continuous functions of position. However, it is well known that at the microscopic scale, 

matter is made up of a collection of discrete charged particles. Therefore, in the following 

development of quantum electrodynamics, it is suitably advantageous to define the sources 

as charged particles  possessing electrical charge e , situated at a position q and 

possessing a velocity q , and as such (r)and j (r)are defined as 

 

   ,e  



 r r q   (1.3.1) 

 

and 

 

   ,e   



 j r q r q   (1.3.2) 
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respectively. In the above,   r  is the Dirac delta function, which is strongly localised when 

r q .  

The microscopic counterpart to the macroscopic Maxwell equations are the Maxwell-

Lorentz equations:  

 

0

,



e =   (1.3.3) 

 

0, b   (1.3.4) 

 

,
t


  



b
e   (1.3.5) 

 

2 2

0

1 1
.

c t c


  



e
b j   (1.3.6) 

 

In contrast to the macroscopic Maxwell equations, all charged particles in the system 

contribute to  and j, and there are no auxiliary fields; they also only depend on the 

fundamental electric e and magnetic b fields. The constants 0  and 0  are the vacuum 

permittivity and magnetic permeability, respectively, and are related through
2

0 0 c    .  

 

1.4   ELECTROMAGNETIC POTENTIALS  

 

The next issue is key in the management of the eventual quantisation of the radiation-matter 

system which is to come. The microscopic field equations as presented currently are 

expressed in terms of the force fields e and b, however the ensuing canonical quantisation 
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process can be made easier via the use of potentials. It is therefore convenient to introduce 

the two electromagnetic potentials: the scalar   and the vector a, potentials. Using two 

results from vector analysis: 

(i) If the divergence of a vector field vanishes  0 F , the field can be expressed as the 

curl of a vector field a:  

 

,F a  (1.4.1) 

 

since   0  a  for any vector field. 

(ii) If the curl of a vector field vanishes  0 F , the field can be expressed as the gradient 

of a scalar field :  

 

,F  (1.4.2) 

 

since   0  a  for any scalar field. 

Taking into account the above, the vector potential a, with the aid of the second Maxwell-

Lorentz equation (1.3.4), can be defined as 

 

.b a   (1.4.3) 

 

Inserting (1.4.3) into the third Maxwell-Lorentz equation (1.3.5) gives 

 

0.
t

 
   

 

a
e   (1.4.4) 
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Therefore, using the result (1.4.2), that the curl of the gradient of a scalar field is zero, the 

factor in parentheses of  (1.4.4) can be written as 

 

,
t




  


a
e   (1.4.5) 

 

where   is the scalar potential (the choice of negative sign aids later work). Inserting (1.4.5) 

into (1.3.3) yields 

 

 2

0

,
t t


 



  
        

  

a
a   (1.4.6) 

 

whilst inserting both (1.4.3) and (1.4.5) into the final Maxwell-Lorentz equation (1.3.6) gives 

 

 
2

2

2 2 2 2

0

1 1 1
,

c t c t c





 
       

 

a
a a j   (1.4.7) 

 

which has been written with the aid of the vector identity 

 

   2 .     a a a   (1.4.8) 

 

The four Maxwell-Lorentz equations have now been reduced to two coupled equations, both 

written in terms of the electromagnetic potentials (not force fields) and are directly related 

to the sources. 
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1.5   LORENTZ AND COULOMB GAUGES 

 

A potential is only determined up to a constant of integration. As such, the electromagnetic 

potentials a  and   are not uniquely defined, being determined up to an additive gauge 

function f . This gauge freedom of the potentials is easily exhibited through making the 

replacement of f a a  in (1.4.3) 

 

    ,f f      b a a a a   (1.5.1) 

 

where the vector identity   0f   has been used. Evidently, the addition of the gradient 

of a scalar function leaves b invariant. The gauge transformation that must be simultaneously 

applied to   which leaves e invariant can be found by inserting the transformation for the 

vector potential f a a into (1.4.5): 

 

  ,f
t t

 
 

      
 

a
e a   (1.5.2) 

 

and therefore 

 

.
f

t
 

 
    

 
  (1.5.3) 

 

The scalar potential is determined to within the time derivative of the same function f: 

f

t
 


 


. The two relations that constitute the gauge transformation are therefore 
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,f a a  (1.5.4) 

 

and 

 

.
f

t
 


 


 (1.5.5)  

 

The fields and Maxwell-Lorentz equations are unaffected by making the substitution and 

gauge transformation when (1.5.4) and (1.5.5) are applied in conjunction: this invariance is 

described as gauge invariance and leaves the fundamental field vectors unaltered.  

One choice of gauge function is the Lorentz gauge, which relates the scalar potential to the 

charges and the vector potential to the currents. The Lorentz gauge is a more suitable choice 

in the relativistic formulation of QED. A more useful gauge for the non-covariant theory 

developed and used throughout this thesis is known as the Coulomb gauge, and it is a gauge 

in which the vector potential is purely solenoidal 

 

0. a   (1.5.6) 

 

Due to the ability to make a gauge transformation ,f a a  a vector potential with zero 

divergence can always be found: 

 

 

 2

2

0

,

f

f

f

  

  

  

a

a +

a

  (1.5.7) 

 

where the function f can always be chosen as to be a solution of the Poisson’s equation.  

Invoking the Coulomb gauge then, (1.4.6) and (1.4.7) become 
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2

0

,





    (1.5.8)  

 

and 

 

2
2

2 2 2 2

0

1 1 1
,

c t c t c





   
       

   
a j   (1.5.9) 

 

respectively. Therefore, the Poisson’s equation (1.5.8) shows that in the Coulomb gauge the 

scalar potential represents the instantaneous Coulomb potential due to the charge density – 

hence the name Coulomb gauge. We have therefore separated the static and dynamic aspects 

of the sources of the electromagnetic field. In free space, devoid of any sources, the scalar 

potential clearly goes to zero – this is the basis behind the Maxwell-Lorentz equations in free 

space which we discuss in the next section.  

Using Helmholtz’s theorem of decomposition of vector fields into transverse and 

longitudinal components   F F F , it can clearly been seen from (1.3.4) that the vector 

field b must be purely transverse and that (1.3.3) and (1.3.5) become 

 

0

,



 e   (1.5.10) 

 

and 

 

,
t

 
  



b
e   (1.5.11) 
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respectively. The final Maxwell-Lorentz equation (1.3.6) separates into 

 

2 2

0

1 1
,

c t c




  


e
b j   (1.5.12) 

 

and 

 

2 2

0

1 1
0 .

c t c


 



e
j  (1.5.13)  

 

The equation of continuity, 

 

0,
t


  


j  (1.5.14)  

 

is secured through taking the divergence of (1.5.13) and using (1.5.10), and it states that the 

total charge in a specified volume is constant unless there is a net flow of charge in or out of 

the volume: this is the principle of charge conservation.   

The central characteristic of the Coulomb gauge is that the vector potential a has zero 

divergence (as shown in (1.5.6)), and therefore a a . This, in conjunction with the fact 

that    is irrotational (see (1.4.2)), equation (1.4.5) can be divided into longitudinal and 

transverse terms 

 

, e   (1.5.15) 

 

and 
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.
t

 
 



a
e  (1.5.16)  

 

Therefore, equation (1.5.9) can now be written explicitly in terms of transverse components 

only 

 

2
2

2 2 2

0

1 1
,

c t c

 
    

 
a j  (1.5.17) 

  

and   continues to satisfy Poisson’s equation (1.5.8). Clearly then, in the Coulomb gauge, 

the irrotational (longitudinal) and solenoidal (transverse) fields are completely separated. 

The scalar potential (electrostatic potential) describes the static longitudinal fields fully, and 

the vector potential obeys a wave equation and fully describes the transverse dynamic fields. 

This is why the Coulomb gauge is useful and suitable for problems of the electromagnetic 

field coupling to atoms and molecules: the Coulomb potential separates out.  

 

1.6   THE CLASSICAL ELECTROMAGNETIC FIELD IN SOURCE-FREE 

SPACE 

 

Section 1.2 outlined the general method of constructing the quantum mechanics of a system 

of particles beginning with the classical Lagrangian function and progressing through the 

Hamiltonian formulation. In this section, the same general scheme and principles are applied 

to the classical radiation field in a region free of sources (in vacuo) leading to the quantisation 

of the free electromagnetic field. As has been noted previously, this is an essential step in 

the formulation of quantum electrodynamics, whose major difference to other dynamical 

theories is that the radiation is subject to the postulates of quantum mechanics, as well as the 

matter.   
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In regions free of charge, Maxwell’s equations for the fundamental electromagnetic field 

vectors e and b for the microscopic field take the form 

 

= 0,e  (1.6.1) 

 

0, b  (1.6.2) 

 

,
t


  



b
e  (1.6.3) 

 

2

1
.

c t


 



e
b  (1.6.4) 

 

Evidently both e and b are divergence-free and therefore transverse in vacuum. A more 

convenient way to describe the fields is through the electromagnetic potentials defined in 

(1.4.3) and (1.4.5). Employing the Coulomb gauge ( = 0a ) and  e a  - the latter due to 

the fact that the scalar potential  is a constant which may be taken to be zero since the 

electric field is divergence-free in vacuum (see equation (1.5.8) -  the elimination of e and b 

from (1.6.4) using (1.4.3) and (1.4.5) leads to d’Alembert’s equation for the vector potential,  

 

2
2

2 2

1
0.

c t

 
   

 
a  (1.6.5) 

 

e and b satisfy identical equations of motion 

 

2
2

2 2

1
0,

c t

 
   

 
e  (1.6.6) 
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2
2

2 2

1
0.

c t

 
   

 
b   (1.6.7)  

 

One of the possible complex solutions to the wave equations for each of the fields a, e, and 

b are the monochromatic plane waves 

 

 
0 e ,

i t 


k r
a a  (1.6.8) 

 

 
0 0 e ,

i t
e

 


k r
e e   (1.6.9) 

 

 
0 0 e ,

i t
b

 


k r
b b  (1.6.10) 

 

where the pre-exponential scalars and vectors denote the amplitude and polarisation vector, 

respectively. The magnitude of the wave vector k, which describes the direction of 

propagation of the electromagnetic wave, can easily be found by substitution of the plane 

wave solution into the appropriate wave equation and it is seen to be k c k , where 

is the angular frequency.  

 

Inserting (1.6.8) and (1.6.9) into (1.6.6) and (1.6.7) produces  

 

0 0
ˆ ,k c e b   (1.6.11) 

 

and 
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0 0

1ˆ ,k
c

  b e  (1.6.12) 

 

respectively. In the above, k̂ k k  is the unit vector of the wave vector. From (1.6.11) it 

can be seen that b0 is transverse to the propagation of the electromagnetic wave k̂   and to 

the electric polarisation vector e0, its magnitude equal to 0e c  . Equally, (1.6.12) shows e0 

is transverse to k̂ , highlighting the transverse nature of electromagnetic waves: it can be 

seen that e0, b0, and k̂   form a right-handed triad. Another result that will become important 

in the quantisation procedure is noting that from (1.4.5) 

 

0 0.icke a   (1.6.13) 

 

1.7   ELECTROMAGNETIC WAVES IN A BOX 

 

In the monochromatic plane wave solutions (1.6.8)-(1.6.10), the wave vector k that is 

associated with the propagating wave can assume an infinite range of values. Such an infinity 

of continuum states may be overcome in the transition to quantum theory using the technique 

of box normalisation [28]. The method of box normalisation allows the radiation field to be 

composed of field modes, with each mode being normalisable in a simple manner. Upon 

application of the method, it is assumed that the field is present within a finite arbitrary 

volume V (a cube in this case) and that the vector potential a (1.6.8) is required to take the 

same value on opposite faces of the volume (cube). 

Solutions of the plane waves are now restricted to those where the wave vector values satisfy 

the boundary conditions of having the same values on opposite sides of a cube of volume 

V=LxLyLz (L being dimensions along the three sides of the box), namely 

 

2
,i i

i

k n
L


   (1.7.1) 
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where , ,i x y z  and ni are integers and the result is secured through Euler’s formula and 

the result  cos 2 1n   . Each solution applies to two modes of the vector field and is 

characterised by three integers.  

The vector potential  , ta r  can be written in the form of a Fourier series in the modes 

allowed by (1.7.1), giving the mode expansion of a as a sum over plane wave terms 

 

     , ,i it t e t e      k r k r

k k

k

a r a a  (1.7.2)  

 

the  tk
a  being amplitude coefficients and the overbar denotes the complex conjugate. 

Substitution of (1.7.2) into (1.6.5) leads to  tk
a  having to satisfy  

 

 
 

2

2 2

2
0.

t
c k t

t


 



k

k

a
a  (1.7.3)  

 

The solutions to the above equation are obvious: periodic functions of the form i te   and 

therefore 

 

   
e ,

i t
t

 


k r

ka   (1.7.4) 

 

which corresponds to a wave propagating in the k̂   direction with speed c, exactly as in the 

unconfined field (1.6.8). Since 0 a , equation (1.7.2) shows that ˆ 0 
k

k a  which means 

the mode amplitudes are orthogonal to the direction in which the wave is propagating. The 

e and b fields (which are also transverse) are parallel and perpendicular to the a field for 

each mode k. The Fourier amplitudes being orthogonal to k̂  can therefore be specified in 
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terms of two components along two mutually orthogonal directions transverse to k̂  , which 

are the polarisation vectors, chosen to form a right-handed triad with k̂ . That is: 

 

               1 2 1 2ˆ ˆ 0.     e k e k e k k e k k    (1.7.5) 

 

Therefore,  , ta r  can be written as 

 

                 
,

, ,i it a t e a t e
   



    
  k r k r

k k

k

a r e k e k   (1.7.6) 

 

where 
   

e k is the unit electric polarisation vector of mode  ,k , with   denoting the 

polarisation state. The mode expansion for the fundamental fields can easily be obtained 

from (1.7.6), however their fully normalised forms will be given once the field has been 

quantised.   

 

1.8   POLARISATION 

 

The unit electric field vector 
   

e k  from (1.7.6) is a polarisation vector, containing the 

directional properties of the electric field component of propagating photon or 

electromagnetic wave in space and time. A wave or photon is said to be linearly polarised if 

the electric field vector remains, up to a sign, in a fixed direction for all space and time. 

However, a more general state of polarisation can be achieved by combining two mutually 

orthogonal and independent electric field unit vectors. A superposition of two different 

electric fields possessing a phase 1  and 2  gives 

 

     1 2

1 1 2 2, e e e .
i ti i

t e e
   

 
k r

e r e e    (1.8.1) 
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Assuming that the two waves are superposed out of phase, this general state produces 

elliptical polarisation. If both components have the same phase, the result is linear 

polarisation. If the phase difference is 1 2 2      and both waves have equal amplitudes, 

the resultant state is circularly polarised. For orthogonal unit vectors, the left- and right-

handed circular polarisations are defined as   

 

   L/R

1 2

1
.

2
i e e e   (1.8.2) 

 

1.9   LAGRANGIAN AND HAMILTONIAN FOR THE FREE FIELD 

 

The essential characteristics of the classical field in regions free of sources has been outlined. 

In order to progress from the classical theory to the fully quantised form, the canonical 

formalism can be applied to the electromagnetic field in an analogous manner to that in 

Section 1.2. In contrast to the particle formulation, the field varies continuously throughout 

space and is described by a density functional L . The total Lagrangian is  

 

  3, , d .L   a a a rL   (1.9.1) 

 

As is usual, the principle of least action and calculus of variations are utilised to secure the 

Euler-Lagrange equations of motions for the field as 

 

 
0.

i j ii j
t a x aa x

     
   

      

L L L
  (1.9.2) 
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To proceed, it is necessary to find a Lagrangian density functional satisfying the requirement 

that it leads to the correct equations of motion for electromagnetic fields – namely the 

Maxwell-Lorentz equations free of sources. We choose for the Lagrangian density 

 

   
22 2 2 2 20 0 ,

2 2
T V c c

         
 

e b a aL   (1.9.3) 

 

where we have used  e a   and b a , along with taking the square of the electric field 

to be proportional to the kinetic energy and the electromagnetic potential energy as the 

square of the magnetic field. We can now evaluate each of the three terms explicitly in (1.9.2) 

 

0 ,i

i

a
t a


  

 
  

L
  (1.9.4) 

 

and 

 

 
2 2

0 ,i

j i j

c a
x a x


 

  
   

L
    (1.9.5) 

 

and finally 

 

0.
ia






L
  (1.9.6) 

 

Therefore, substituting (1.9.4)-(1.9.6) into (1.9.2) produces (1.6.5), the correct equation of 

motion, validating (1.9.3) as the correct choice of Lagrangian density functional for the free 

electromagnetic field. The next step is to construct the Hamiltonian: the first step is finding 
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the momentum canonically conjugate to a. We define the canonical momentum density for 

the field as 

 

  ,





r
a


L

  (1.9.7) 

 

and therefore the Hamiltonian density is found from the Hamiltonian function 

 

.  aH L   (1.9.8) 

 

Carrying out the partial differentiation of the Lagrangian density as in (1.9.7) using (1.9.3), 

leads to the canonical momentum density being 

 

0 0 ,   a e   (1.9.9) 

 

whose relationship with the electric field is qualified by (1.6.3). We can now go back to the 

Hamiltonian density, which from (1.9.8) and (1.9.3) is seen to be 

 

 
22 20 .

2
c

      
 

a a aH    (1.9.10) 

 

By using the result (1.9.9), we can eliminate a  in favour of  , as this gives the Hamiltonian 

density in terms of the canonical variables (which will aid us when quantising the 

Hamiltonian): 
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     
2

22 2 2 2 30

0

1
 d ,

2 2
c c T V





 
       

 
a e b rH


  (1.9.11) 

 

this is therefore seen to be equal to the electromagnetic energy density, and we can see that 

we produce the formal definition of the Hamiltonian function – the sum of kinetic and 

potential energy.  

 

 

1.10 THE ELECTROMAGNETIC FIELD AS A SUM OF MODE 

OSCILLATORS 

 

Obtaining the mode expansion for   through (1.9.9) and inserting both it and the expansion 

for a (1.7.6) into the Hamiltonian density (1.9.11) it is easily verified that the Hamiltonian 

can be expressed as 

 

     3 2 2

0

,

, d 2 .H V c k a a
 



    k k

k

a a rH   (1.10.1) 

 

We can now introduce two canonically conjugate variables ,q k and ,p k which are defined 

as  

 

             1 2 1 2

0 0;     ,q V a a p ick V a a
   

      k, k k k, k k
  (1.10.2) 

 

and re-write the Hamiltonian as 
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 2 2 2

, , ,

, ,

1
.

2
H H p q  

 

   k k k

k k

  (1.10.3) 

 

Thus, H is now written as a set of harmonic oscillator Hamiltonians, one for each mode  

(k, ), in the new canonically conjugate variables ,p k
and ,q k

 . It is readily shown that H 

leads to the correct Hamilton’s equations (i.e. (1.2.5)): firstly by using (1.6.8) in (1.10.2) 

 

, , 2

, ,

d d
;      ,

d d

q p
p q

t t

 

   
k k

k k   (1.10.4) 

 

and therefore using (1.10.3) 

 

2

, , , ,

, ,

;      ,
H H

p q q p
p q

   

 


 

    
 

k k k k

k k

  (1.10.5) 

 

thus satisfying Hamilton’s canonical equations.  

  

1.11   QUANTISATION OF THE FREE FIELD 

 

From (1.10.3) it is seen that the radiation field can be composed of a collection of non-

interacting harmonic oscillators, and therefore, quantisation of such a set will also lead to 

quantisation of the free field [29, 30]. However, the solution is began by consideration of a 

one-dimensional harmonic oscillator whose classical Hamiltonian function is,   

 

  2 2 2 21
.

2
H p m q

m
    (1.11.1) 
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The corresponding quantum mechanical Hamilton is achieved by promoting the canonical 

variables with their quantum operator counterparts subject to the fundamental commutator 

 

 , .q p i   (1.11.2) 

 

We now define a pair of mutually adjoint operators a  and †a  to replace q and p – this makes 

finding the eigenvalue spectrum of H much more straightforward and physically meaningful 

as we will come to discover: 

 

   
1

22 ,a q ip 


    (1.11.3) 

 

and 

 

   
1

†
22 .a q ip 


    (1.11.4) 

 

It is to be stressed that although a and †a  are both real, they are not Hermitian and do not 

represent observables of the harmonic oscillator unlike q and p. Properties of the operators 

can be found through 

 

   

    

 

1† 2 2 2

1 2 2 2

1

2

2

1
,

2

a a p q i qp i pq

p q i qp pq

H

   

  

 







   

   

 
  

 

  (1.11.5) 
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and similarly 

 

 
1† 1

.
2

aa H 
  

  
 

 (1.11.6) 

 

Therefore, the commutator of the new operators is easily found to be 

 

† † †, 1.a a aa a a        (1.11.7) 

 

Using the above results allows the quantum mechanical Hamiltonian to now be expressed in 

three different, but equivalent forms 

 

 

†

†

† †

1

2

1

2

1
.

2

H a a

aa

a a aa







 
  
 

 
  
 

 

  (1.11.8) 

 

The solutions to the Hamiltonian are therefore given by the eigenvalues and eigenfunctions 

of the operator †a a  , such a combination is termed the number operator n . Its eigenvalues 

are the positive integers and zero, which represent the number of quantised particles in the 

eigenstate n . In the case of the electromagnetic field, the quanta are the massless bosons 

termed photons.   The concept of the photon underpins all quantum electrodynamics, and its 

physicality and fundamental nature is the driving force behind the research presented in this 

thesis. Being bosons, photons obey Bose-Einstein statistics and therefore there exists no 

restriction on the occupation number of any given quantum state: 
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† ;   0,1,2,....a a n n n n    (1.11.9) 

 

From (1.11.8), it is readily verified that the eigenvalues for the harmonic oscillator are 

 1 2 ,  0,1,2,...n n  . The lowest energy (n=0) corresponds to a non-zero value for the 

energy of the field, termed the zero-point energy or vacuum energy, and this has extremely 

important consequences as will be seen throughout QED and the work in this thesis.  

It is can be easily identified that the harmonic oscillator is built up in a ladder of states, with 

each step separated by a quantum of energy  . The individual operators a and †a acting 

on a state, respectively decreasing or increasing its occupation number by unity – they are 

annihilation and creation operators. This ability to account for the changes in particle number 

together with the correct statistical laws that the particles adhere to is called second 

quantisation. It is especially helpful in QED, as the number of photons in any specific mode 

is sometimes not constant in any given optical processes, for example emission, absorption, 

or non-forward scattering. The operator equations for the annihilation and creation operators 

are as follows 

 

0,                   0
,

1 ,     1,2,3,...

n
a n

n n n


 

 

  (1.11.10) 

 

and 

 

† 1 1       0,1,2,....a n n n n      (1.11.11) 

 

Which translate as that for the annihilation operator acting on a state n , the square root is 

taken, and then it is lowered by unity; for the creation operator the state is raised by unity 

and then square rooted.  



 QUANTUM ELECTRODYNAMICS 27 

Section 1.10 outlined how the Hamiltonian for the vacuum electromagnetic field can be 

composed of one-dimensional harmonic oscillator Hamiltonians (Equation (1.10.3). The 

eigenvalues and eigenfunctions that were found for a one-dimensional harmonic oscillator 

can be adapted to form a solution for a sum of uncoupled harmonic oscillator Hamiltonians. 

For a such a case, the annihilation and creation operators of a photon in the mode  ,k , 

with wave vector k and polarisation  , subject to the following commutation rules [31]  

 

       

       

           

† †

† 3 1 3

, 0

, 0

, 8 ,

a a

a a

a a V

 

 

 

  





 



  
 

  
 

   
 

k k

k k

k k k k

  

(1.11.12)

 

 

are employed to construct analogous Hamiltonians of the form (1.11.8), which now take on 

the forms of 

 

               

       

       

† †

,

†

,

†

,

1

2

1

2

1
,

2

H a a a a ck

a a ck

a a ck

   



 



 



  
 

 
  

 

 
  

 







k

k

k

k k k k

k k

k k

  

(1.11.13)

 

 

where .k  k  The eigenenergy of (1.11.13) is simply a sum over all individual oscillators 

   
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where n  is the occupation number of the oscillator and ck  .  

Evidently from (1.11.10), a particle cannot be absorbed from the ground state (n = 0).  In the 

case of the electromagnetic field, when 0n   for all   the ground state is the 

electromagnetic vacuum. Successive application of the appropriate creation operator upon 

the vacuum state leads to occupation of other basis states, as in 

 

   

   

 
   

†
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



   


 
 

k
k k k k    (1.11.15) 

 

The states are known as number states and they correspond to the number of photons in a 

specific mode. Therefore 

 

           †
, , ,   a a n n n

 
 k k k k  (1.11.16) 

 

        , 1 , ,   a n n n


  k k k  (1.11.17) 

 

        †
, 1 1 , .a n n n


   k k k   (1.11.18) 

 

The creation and annihilation operators are time-independent, and all time dependence is 

manifest in the states of the system. This is the Schrödinger picture.  

 

At t = 0, the quantum mechanical analogues to the classical mode expansions are of the form 
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The normalisation factor appearing at the front of the mode expansions is obtained by 

evaluating the expectation value of the energy of the field for a number state, which is known 

to be  1 2n  .  

 

 

1.12   PUTTING IT ALL TOGETHER: MATTER AND RADIATION IN 

MUTUAL INTERACTION 

 

So far we have treated matter and radiation in isolation from one another, moving through 

the canonical quantisation process beginning with the classical Lagrangian for charged 

particles and the electromagnetic field, and progressing to the eventual quantum 

Hamiltonian. The standard treatment of formulating the quantum Hamiltonian for an 

interacting particle-radiation field system begins with what is known as the minimal 

coupling Lagrangian. Then, by utilising the fact that there is no unique choice of the total 

Lagrangian - only that it must lead to the correct equations of motion – the equations of 
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motion derived from the minimal coupling Lagrangian are unaltered by the addition to the 

Lagrangian of a total time derivative of a function of the coordinates q and time t.  

Using the addition of a function first suggestive by Göppert-Mayer [32], a new Lagrangian 

is formed known as the multipolar Lagrangian. Both the minimal coupling and multipolar 

Lagrangian are said to be equivalent. The resultant Hamiltonians will, however, differ in 

form, but are related to one another by a canonical transformation [7, 11, 33-37]. It is to be 

recognised that one can begin with the minimal coupling Lagrangian, and progress through 

to the multipolar Lagrangian followed then by the multipolar Hamiltonian. Equally, one may 

begin with the minimal coupling Lagrangian, then progress to the minimal coupling 

Hamiltonian and then carry out a canonical transformation to produce the multipolar 

Hamiltonian. Thus, it can be seen there are two routes to achieving the desired multipolar 

Hamiltonian.  

In most contemporary QED and quantum optics studies, the multipolar Hamiltonian (most 

often referred to as the Power-Zienau-Wooley Hamiltonian (PZW Hamiltonian) when 

quantised) is predominantly utilised over other Hamiltonians  – such as the minimal coupling 

form. As we will come to discover in the ensuing sections, this is because the PZW 

Hamiltonian offers many distinct physical and calculational advantages, especially for when 

the particles are molecules. For these reasons, in the following sections we do away with the 

minimal coupling regime in full, and begin with the multipolar Lagrangian, follow through 

the canonical formalism, and produce the resulting multipolar Hamiltonian. It will be this 

PZW Hamiltonian that is used to calculate energy shifts and optical rates throughout this 

thesis.     

 

1.13   ELECTRIC AND MAGNETIC POLARISATION FIELDS 

 

Before the formulation of the correct Lagrangian and the subsequent Hamiltonian for the 

quantised light-matter system takes place, it is necessary to define some properties that 

characterise a medium (due to the fact that neither the matter or the radiation are now free 

from each other’s influence). One such property is the charge distribution, which may be 

written in the following way when expressed using the conventional Taylor series expansion 

in terms of point multipole moments about the position R 
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(1.13.1)

 

 

In the above, the true charge density is the overall net charge density of the total distribution, 

and the following terms can be expressed as the divergence of a vector field  p r , which is 

known as the electric polarisation field and can be written in closed form as the parametric 

integral [7] 

 

          
1

0

, .e d       

 

          p r p r q R r R q R  (1.13.2) 

 

For example, the first two terms in the expansion relate to the dipole and quadrupole 

multipole moments about R, respectively.  In the above, the charged particles  have been 

grouped together to form atoms and molecules  , and the approximation that the nuclei are 

fixed in space relative to the freely moving electrons has been legitimately assumed in the 

knowledge of the optical processes studied in the ensuing chapters. Therefore, the dynamical 

variables of the particle-system are the electron coordinates and momenta. This 

simplification is known as the Born-Oppenheimer approximation, and is frequently 

employed in molecular physics. However, it is to be stressed that for many situations nuclear 

motions cannot be ignored, such as vibrational and rotational motion, or the dynamics of 

chemical reactions.  

The magnetisation field m(r) is related to the current density j(r), which is given by  

 

     .e  


 j r q r q   (1.13.3) 
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The current density in a system of neutral atoms or molecules at rest can be partitioned into 

electric and magnetic polarisation terms, as 

 

 
 

 
d

.
dt

 m
p r

j r r  (1.13.4) 

 

Therefore, subtracting the time derivative of (1.13.2) from the current density (1.13.4) leads 

to the expression for the magnetisation field m(r) as 
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1
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 

             m mr r q R q r R q R   (1.13.5) 

 

1.14   MULTIPOLAR LAGRANGIAN 

 

The total Lagrangian for a matter-radiation system in the multipolar form can be written as 

 

mult mol rad int ,L L L L     (1.14.1) 

 

where 

 

   mol 2 ,
2

m
L V

 

 
    

 
 q   (1.14.2) 

 

     2rad 2 2 30 d ,
2

L c


   a r a r r   (1.14.3) 
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and 

 

          int 3 3

interd d ,L V



        m r a r r p r a r r   (1.14.4) 

 

The total electrostatic potential energy has been divided into a sum of one-particle and two-

particle terms:  

 

   .V V V
 

       (1.14.5) 

 

Evidently, in the interaction Lagrangian the coupling of molecules to the radiation occurs 

through the electric and magnetisation polarisation fields - this is characteristic of the 

multipolar Lagrangian. It is also to be noted that the Lagrangian for the uncoupled radiation 

field and particles in a radiation-matter system take on the same form as their free-field and 

particle counterparts.  

A key facet to the Lagrangian formalism is securing the result that the Euler-Lagrange 

equations of motion are invariant. The Euler-Lagrange equation of motion for particles is 

given in (1.2.1). Inserting the multipolar Lagrangian (1.14.1) into the Euler-Lagrange 

equation, it can be shown [11] that the expected equations of motion are secured: namely, 

Newton’s force law with the Lorentz force terms 
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1.15   ATOMIC FIELD EQUATIONS 

 

In the above, it has been highlighted that the multipolar Lagrangian gives the correct 

equations of motion for free particles. It is now shown that it also gives the correct Maxwell-

Lorentz equations in the presence of sources [34, 38]. 

Due to the fact that in the multipolar formalism the bound charges form part of the medium, 

the fields are therefore modified by the surrounding charges. These fields are the electric 

displacement field d and the magnetic displacement field h, which take account of the 

medium locally. 

There are two source-dependent Maxwell-Lorentz equations, the first of which can be 

written in terms of (1.13.1) as 

 

       1 1 true

0 0 .          e r r r p r   (1.15.1) 

 

The electric displacement field d (r) can be defined as 

 

     0 , d r e r p r   (1.15.2) 

 

and therefore taking the divergence of d (r) and using (1.15.1) it can be seen that the sole 

sources of the d field are the true charges, thus in a system with no net charge 

 

  0. d r   (1.15.3) 

 

The other source-dependent Maxwell-Lorentz equation is obtained from the Euler-Lagrange 

equation (1.9.2) by inserting the Lagrangian density from (1.14.1) 
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Therefore, after substitution into of each term (1.15.4)-(1.15.6) into the Euler-Lagrange 

equation of motion for the radiation field 
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(1.15.7)

 

 

recovering (1.3.6), the correct equation of motion for the field. The remaining Maxwell-

Lorentz equations are source-free and are automatically satisfied by the choice of gauge 

(Coulomb). 
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1.16   MULTIPOLAR HAMILTONIAN 

 

The canonical formalism can now be applied to the multipolar Lagrangian to yield the 

multipolar Hamiltonian. The multipolar Hamiltonian function is therefore 

 

        3
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,

d .H L 

 

       p q r a r r   (1.16.1) 

 

The momentum   p   is canonically conjugate to the position vector   q   and is found 

by 
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  (1.16.2) 

 

It is convenient to define a new vector field  , n r :  

 

        
1

0

, d ,e                n r q R r R q R   (1.16.3) 

 

this is the same expression as that for the electric polarisation field, except for a factor  in 

the integrand. As such,  , n r  is a polarisation distribution that differs from the electric 

polarisation field in its multipolar weightings, with the nth multipolar component weighting 

being reduced by 1/(n+1). Then, inserting  , n r   into (1.16.2) gives 
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        3, d .m      p q n r b r r   (1.16.4) 

 

The momentum conjugate to the vector potential a(r) is 
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Rearranging (1.16.4) and (1.16.5), then substituting for q  and a  in (1.16.1) gives 
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(1.16.6)

 

 

where the magnetisation field m(r) is different from m(r) in (1.13.5), because the kinetic and 

canonical momenta are now no longer equal to each other,  
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The penultimate term of (1.16.6) is proportional to the square modulus of the transverse 

electric polarisation, and is composed of intra- and intermolecular terms 
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Noting that the total polarised vector field is composed of both transverse and longitudinal 

components       p r p r p r  and is strongly localised in the region of molecules, 

meaning that the total intermolecular polarisation product vanishes for non-overlapping 

charge distributions (i.e.    ) 
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Though arduous, the right hand side of (1.16.9) can be shown to be equal to the final term 

of (1.16.6)  inter ,V


   and as such, in the multipolar Hamiltonian, the intermolecular 

Coulomb interaction potential is cancelled by the intermolecular transverse electric 

polarisation [11], leaving an intramolecular self-energy term, which leaves the Hamiltonian 

in the form of 
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where 
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and 
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(1.16.13)

 

 

The final term of (1.16.10) is, as mentioned above, the intramolecular self-energy term and 

it is independent of the radiation field and therefore does not contribute to processes that 

involve changes in the state of the radiation field. The final term of (1.16.13) represents the 

diamagnetic interaction, and the diamagnetisation field  ,ijO r r  is given by 
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(1.16.14)

 

 

Some interesting features of the multipolar Hamiltonian (1.16.13) include its dependence on 

the transverse electromagnetic fields 
 d  and b, rather than the electromagnetic potentials. 

This has the distinct advantage of making the multipolar Hamiltonian independent of the 

gauge chosen. There is no electrostatic intermolecular interaction term, and molecules 

couple directly to the radiation fields through the electric polarisation, magnetisation, and 

diamagnetisation fields. Therefore, interactions between molecules are mediated by the field 

via the exchange of transverse photons which propagate with speed c in a vacuum. This leads 

to the multipolar Hamiltonian giving fully-retarded results, as required by causality.  
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Expanding the interaction Hamiltonian into specific multipole moments puts it in a more 

convenient form for subsequent application throughout the thesis, using (1.13.2), (1.13.5), 

and (1.16.14) the first few terms are 
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(1.16.15)

 

 

where   ,  ijQ  ,  m  are the electric dipole, electric quadrupole and magnetic dipole 

moments of molecule  , respectively; the final term in (1.16.15) is lowest order diamagnetic 

coupling interaction. Retention of just the first term that involves the electric dipole moment 

constitutes the electric dipole approximation, well-known throughout optical and molecular 

physics. As will be seen, however, inclusion of the higher-order terms is necessary for certain 

optical processes. 

 

1.17   PERTURBATION THEORY 

 

Exact analytic solutions to the Schrödinger equation exist for only an extremely limited set 

of simple physical situations. However, a plethora of techniques of approximation is 

available. One such method, perturbation theory [2, 39], naturally lends itself to QED 

calculations as the radiation-molecule couplings are weak in comparison to the Coulomb 

forces present within atoms and molecules. Although time-independent perturbation theory 

provides adequate results in specific cases, nearly all perturbations are time-dependent and 

in the specific case of molecules interacting with electromagnetic fields that oscillate 

indefinitely, time-dependent perturbation theory is essential. The dynamics are therefore 

governed by the time-dependent Schrödinger equation 
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    ,i t H t
t


  


  (1.17.1) 

 

where  t  represents the state of the total system. Inspection of the Hamiltonian 

(1.16.10), where we can neglect the final term which represents self-energy corrections, 

highlights the fact we can use the first two terms as a basis for solving the full Hamiltonian: 

secular perturbation theory.  

 

0 int ,H H H    (1.17.2) 

 

where 0 mol radH H H   is the unperturbed Hamiltonian. This is a satisfactory partition 

because the intramolecular binding energies in molecules are much larger than the 

interaction between the field and a molecule – which intH  represents. Only for extremely 

intense radiation fields does the perturbation theory breakdown, and other methods are 

sought. Importantly, intH  contains all the time-dependence of the overall Hamiltonian, and 

it can cause transitions that are real or virtual between the states of 0H .  The eigenstates of 

0H   are written as the product of both the molecule and radiation field -     ,mE n  k   

- corresponding to a molecule   in the electronic state Em, and the electromagnetic field in 

a mode  ,k  that is occupied by n photons.  

Expressing the time variation of the state function  from (1.17.1) in terms of the unitary time 

evolution operator  gives 

 

     0 0, .t U t t t      (1.17.3) 

 

 0,U t t  acts on the state at t0 to give the state at time t, enabling (1.17.3) to be determined at 

any time. When the system is in the initial state  0t  and there is no coupling between 
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the radiation field and the molecule through Hint, the perturbation is zero and the evolution 

operator can be written as  0 0e
iH t t 

.  Removing this term from (1.17.3) gives   

 

       0 0

0 0e ,
iH t t

It U t t t
 

     (1.17.4) 

 

which allows the evolution operator, now in the interaction picture, to be interpreted as 

giving a modification to the time evolution of the system state due to the interaction. 

Operating on both sides of  (1.17.4) with i
t




 and using the product rule gives  

 

             0 0 0 0

0 0 0 0 0e , e , .
iH t t iH t t

I Ii t H U t t t i U t t t
t t

    
    

 
  (1.17.5) 

 

Evidently 

 

         0 0

0 int 0 0e , ,
iH t t

IH t H H U t t t
 

      (1.17.6) 

 

and therefore equating (1.17.5) and (1.17.6) (i.e. producing the time-dependent Schrödinger 

equation (1.17.1)) then operating on both sides by  0 0e
iH t t 

 eventually leads to the operator 

equation 

 

     0 int 0, , ,I

I Ii U t t H t U t t
t





  (1.17.7) 

 

where 
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     0 0 0 0

int inte e .
iH t t iH t tIH t H

  
   (1.17.8) 

 

Evaluating the time evolution of the system reduces to solving (1.17.7) for  0,IU t t . 

Integration of (1.17.7), subject to the initial condition  0 0, 1IU t t  ,  gives 
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0

0 int 1 1 0 1

1
, 1 , d .
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I I
t

U t t H t U t t t
i

 
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 
   (1.17.9) 

 

The right-hand side of (1.17.9) can be continuously reinserted as an expression for  0,IU t t

and successively performing this iteration leads to an infinite power series solution 
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The power series (1.17.10) can now be used to calculate the quantum amplitude for the 

transition from the initial state at time t0  to the final state  at time t, due to the perturbation 

from int

IH . Ignoring the constant of integration in (1.17.10) as it only leads to trivial process 

whereby there is no perturbation and no interaction between the radiation and matter, gives 

the matrix elements for the time evolution operator as 

 

   
  0

0

e 1
, .
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I fi

f i
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E E
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
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
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By using the completeness relation, the matrix element fiM  can be expanded in powers of 

the perturbation operator  
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The Born interpretation allows the time-dependent probability of the f i  transition to be 

given as 
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where fi f iE E   .  Many optical processes involve transitions taking place between states 

which may lay within a continuous spectrum. In all such optical processes, the transition 

probabilities must be summed over the continuous range of states  
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where d df f fn E   is the number of levels per unit energy, or more commonly known as 

the density of final states. Finally, we can study how (1.17.14) changes with time, producing 

the famous Fermi golden rate rule 
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Within this thesis we will be looking at optical processes and phenomena. In optical 

processes, the initial and final states of the radiation and/or matter components are not 

identical. A description of these processes requires the time-dependent approach outlined 

above, and therefore a rate calculation ensues. This is because the perturbation gives rise to 

transitions between the unperturbed eigenstates of H0. For certain optical phenomena, 

however, both the initial and final state of the total system is identical, and the perturbation 

is time-independent, causing shifts of the eigenvalues of H0. In this case, a calculation of the 

matrix element alone is needed, and it corresponds to the energy shift for the phenomena: 

 

 0 int int

int ...,                 .i

I i I

f H I I H i
E E f H i i f

E E
     


   (1.17.16) 

 

The evaluation of optical rates and energy shifts using the expansions (1.17.12) and (1.17.16)

is most easily carried out with the aid of diagrammatic techniques. The most routinely 

employed are the time-ordered diagrams introduced by Feynman [40]. These simple graphs 

reduce the complexity of mathematical calculations, but more importantly offer a valuable 

insight into the underlying physical process through presenting all the possible time-ordered 

sequences of photon creation and annihilation events. Through this summation over all 

possible sequences of photon events, a summation over all intermediate states that link the 

initial and final states of the system is achieved. A main facet in the success of QED theory 

is its extremely precise theoretical calculations to match experiment; however it is the 

opinion of the author that the true power of QED is through its ability to predict new 

electrodynamical phenomena, the origin of this being the use of time-ordered Feynman 

diagrams. Other diagrammatic techniques are available, such as the state sequence method 

[41]. In this body of work, however, we will be primarily utilising Feynman’s method.  
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2 
 

QUANTUM DELOCALISATION IN NONLINEAR OPTICS 

 

2.1  INTRODUCTION 

 

Within the well-established restraints of quantum uncertainty, it is generally assumed that 

the spatial extent of multiphoton annihilation or creation events in nonlinear optics is small. 

That is to say, photons are created and destroyed at distinct optical centres - molecules, for 

example. Of course, the exact location of these photon events can never be inferred by a 

direct experimental observation, but in nonlinear optical processes the annihilation and 

creation of photons are assumed to be collocated. For example, in any given generation of 

an    nth-harmonic, n photons are annihilated at a single optical centre, and the corresponding 

output harmonic is emitted from the same centre [1, 2] – the process can be termed 

‘localised’ with regards to the annihilated input and the corresponding emitted output 

photons.  

In QED theory, it is well established that intermolecular coupling occurs through the process 

of virtual photon propagation [3, 4]. Well-known examples include the Casimir-Polder 

potential, laser-induced intermolecular interactions [5], and resonance energy transfer [6]. 

Virtual photons are manifestations of the quantum vacuum, where the vacuum fluctuations 

associated with the non-commuting electric and magnetic fields account for a non-vanishing 

electromagnetic field energy. 

In this chapter, by duly accounting for the possibility of virtual photon propagation in the 

nonlinear optical processes of spontaneous parametric down-conversion (SPDC) [7, 8] and 

second harmonic generation (SHG), it emerges that photon annihilation and creation events 

need not necessarily occur in a localised fashion as described above. Through a fifth-order 
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nonlocal electric-dipole response, a rate for a delocalised mechanism of producing down-

converted photons pairs and the generation of optical harmonics is secured. The derivation 

will concentrate on the process of SPDC, whereby each down-converted photon that 

constitutes the correlated photon pair are emitted from spatially distinct and separated points 

in space, schematically shown in Figure 2.1. The results secured are general in the sense that 

they are readily applicable to the time-inverse process of SPDC, namely SHG. In the 

delocalised mechanism for SHG, the two input photons that form the harmonic are 

annihilated at two completely distinct points in space. 

 

 

 

Figure 2.1 Array of optical centres (purple spheres): single-centred mechanism for SPDC 

on the left; delocalised mechanism for SPDC on the right. Green wavy line represents 

virtual photon propagation.   

 

First, the localised mechanism of SPDC is studied, followed by the development of the 

theory for nonlocalised generation of down-converted photon pairs. Then, by combining 

both the localised and delocalised contributions to the overall rate of SPDC, the result is 

quantitatively analysed using a numerical lattice simulation to give an indicative figure for 

how much the delocalised mechanism contributes to the overall rate, and to gauge whether 

the possibility of observing the nonlocal effect is a legitimate endeavour.  
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2.2  MEDIA CORRECTIONS 

 

In the development of QED theory outlined in Chapter 1, no mention was made of the 

dynamical influence that the surrounding media may have on any given interaction between 

the radiation field and a single, distinct optical centre or molecule. In the condensed phase, 

the electronic influence of surrounding molecules and atoms on the fields experienced and 

produced by the active optical centre need to be taken account of for a fully-correct 

description of the optical process. In QED, such media corrections are accounted for within 

the electric displacement field operator  
d r . Through a rather involved analysis [9-12], 

where the propagation and interaction of quantised radiation is described in terms of 

polaritons, the modified auxiliary field operator,  
d r , takes the form of  
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where 
  m

n k  is the complex, frequency-dependent refractive index for the polariton 

frequency 
 m


k ; 

 m

gv  is the group velocity; 
 
,mP


k  and 
 †

,mP


k  are polariton annihilation and 

creation operators, respectively. 

In all the applications of QED in this thesis, and in general throughout quantum and nonlinear 

optics, it is only the photon-like polaritons that are of interest. As such, the m index in 

Equation (2.2.1), which labels the branches of polariton dispersion, is implicit. This also 

means that is it the standard vacuum annihilation and creation operators that are to be used 

(Equations (1.11.17) and (1.11.18)), rather than 
 
,mP


k   and 
 †

,mP


k , respectively.  

In this chapter, the correct Lorentz local-field factors and complex refractive index will be 

explicitly accounted for where appropriate. This is to give the analysis of the result a firmer 

grounding if one is to make physical predictions of a quantitative nature. However, the 

remaining chapters in the thesis will assume these media corrections implicit in order to 



 QUANTUM DELOCALISATION IN NONLINEAR OPTICS 52 

simplify the ensuing calculations and results. This does not alter any of the physics presented 

as all the work is based on the photon interactions, and the addition of media effects are 

easily accounted for.  

 

2.3  LOCALISED SPDC 

 

In the photonic formulation of QED, the nonlinear optical process of SPDC occurs through 

the annihilation of a single pump photon possessing a wave vector k and the creation of two 

output photons with a wave vector k , where 2 k k . Therefore, this elastic process fulfils 

wave vector matching and the output is coherent. The output photons in this process are 

termed ‘correlated photon pairs’ due to the fact their polarisations are entangled quantum 

states [13, 14].  

As is standard, the input photon annihilation and the creation of the two output photons are 

assumed to occur at a single optical centre or molecule. That is to say, the positional range 

of the location for the emission of the two down-converted photons (and input photon 

annihilation) is small. Therefore, the SPDC photonic mechanism occurs in a localised 

fashion, with the output emitted in a collocated fashion, and only the usual constraints of 

quantum uncertainty put a limit on the precision with which the location of the SPDC process 

can be said to occur.   

The three topologically distinct Feynman time-ordered diagrams that represent localised 

SPDC are shown in Figure 2.3.1-2.3.3. The initial state of the total matter-radiation system 

is    A , 0 ,ii E q    k k , where we have labelled the single interacting optical centre 

of interest within the nonlinear optical medium, ‘A’; the final state of the system is 

   A 1 , 2 ,ff E q     k k . Both the initial and final states of the material system are 

ground states 0 . The interaction is third-order in Hint and therefore within the electric 

dipole approximation the matrix element is seen to be    
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where we use the modified transverse electric displacement operator defined by (2.2.1), and 

r and s represent virtual intermediate states that link the final and initial states of the system.  

The photon annihilation and creation operations in (2.3.1) when carried out on radiation 

modes occupied by q photons gives the following 
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The remainder of the quantum amplitude can then be calculated with the aid of the three 

Feynman graphs in Figure 2.3.1-2.3.3 to give 
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where the three terms in square brackets correspond to the three time-orderings in Figure 

2.3.1-2.3.3. In (2.3.3), there is an implied summation over subscript component indices. This 

Einstein summation convention is a notation that is implicit throughout the rest of this thesis. 

In the denominators in (2.3.3), terms of the form 0rE  signify 0 0r rE E E  .  

 

 

 

 

Figure 2.3.1 Feynman time-ordered diagram for localised SPDC at optical centre A. In 

these two-dimensional Feynman diagrams, time progresses in an upwards manner, whilst 

the horizontal axis represents space. The wavy lines represent single photons. The initial, 

final, and intermediate states are read off between the time shown by the horizontal lines. 

This particular graph corresponds to the first term in square brackets in (2.3.3).   
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Figure 2.3.2 Time-ordered diagram for localised SPDC at centre A, corresponding to the 

second term in square brackets in (2.3.3) 

 

 

 

Figure 2.3.3 Time-ordered diagram for localised SPDC at centre A, corresponding to the 

third term in square brackets in (2.3.3) 
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It has been assumed that no down-converted photons are initially present, and therefore 

0q  . In doing so demands the retention of the sum over the output mode. However, SPDC 

is a coherent process  2 k k , and therefore conservation of photon momentum is intrinsic. 

This also means that for SPDC to occur at any sizeable rate in the condensed phase, the 

process must occur with refractive index-matching – and for simplicity we can neglect any 

minor difference in refractive index at frequencies  and ́: the index therefore appears as 

simply n below.  In the absence of significant optical dispersion, group velocity reduces to 

phase velocity such that vg = c/n. Equation (2.3.3) can be further modified to highlight the 

role that the frequency-dependent nonlinear-susceptibility (2)() takes in SPDC, the form 

of which is conventionally cast in tensor form as follows; 
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  (2.3.4) 

 

where N   is the number density of the active optical centres, equivalent to 1V  ;  j k  

signifies the other terms by exchanging these indices; 
   , ;2

i jk
      is the molecular 

hyperpolarisability tensor. Taking into account all of the above, assuming the correct photon-

mode dependencies implicit, allows the complicated result (2.3.3) to be written as 
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where the product polarisation tensor i j ke e e   is j, k-symmetric, and therefore in its contraction 

with the nonlinear susceptibility tensor (2.3.4), only the j, k-symmetric part of the latter 

contributes. Equation (2.3.5) represents the quantum amplitude for single-centre, localised 

SPDC within a dielectric medium.  

 

2.4  HIGHER ORDER OPTICAL MECHANISMS  

 

The localised mechanism of SPDC outlined in the previous Section is the lowest-order and 

most dominant contribution to the rate of producing down-converted photon pairs. It was 

shown to be third-order in Hint, and we can label it an [AAA] interaction as all photon 

creation and annihilation events occur at the same optical centre ‘A’ – see Figure 2.4.1. The 

quantum amplitude can therefore be labelled as 
 3

AM .   

 

 

Figure 2.4.1 Schematic representation of the dominant [AAA] localised contribution to the 

rate of SPDC. 

 

Beyond this leading term, there exists a multitude of higher-order mechanisms which 

contribute to the rate of SPDC, and some are shown schematically in Figures 2.4.2-2.4.5. 

Clearly, such additional terms can only be of order 3p + 2 (where p is a positive integer). 

Therefore, all of the leading corrections come from fifth-order interactions. Some of these 

high-order corrections occur at the same distinct optical centre [AAAAA], and their matrix 

elements can be written as 
 5

AM , whilst others occur in pairwise fashion with coupling 

between two distinct localities within the optical crystal: 
 5

ABM . However, the majority of 
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these high-order mechanisms deliver no new physics, and act as small corrections to the 

overall rate of SPDC.  

 

 

 

 

 

Figure 2.4.2 [AAAAA]-type minor correction to the overall rate of localised SPDC. A 

mechanism of this type is not separately identifiable and represents the effect of an optical 

Kerr shift in energy levels on the process of SPDC.  

 

 

 

 

 

 

Figure 2.4.3 [AAAAA]-type minor correction to the overall rate of localised SPDC. This 

is a self-energy correction to the fundamental process at A and although it includes a 

virtual photon it has no bearings on issues of nonlocality. 
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Figure 2.4.4 [AAAAB] mechanism highlighting a static contribution to the rate of 

localised SPDC – the dotted line signifying a static electric field associated with polar 

components. Once again, this mechanism has no bearing on the issues of where the output 

photon pair are emitted from, both clearly originating from the same centre as one another 

and the input photon annihilation site. 

 

 

 

 

Figure 2.4.5 [AAABB]-type mechanism that appears to be a nonlocal contribution, but 

again the photon pair is emitted from the same distinct location as one another. This 

contribution is also not specifically identifiable as it is simply a forward scattering 

mechanism which is accounted for by the inclusion of material-induced field corrections, 

manifest in using media-corrected field expansions implicit in this analysis.  
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We now focus our attention on the contribution that does delivers new physics, namely the 

[AAABB] mechanism shown in Figure 2.4.6. This non-localised mechanism of generating 

down-converted photon pairs requires virtual photon propagation to produce single photons 

from completely separate points in space, but they still constitute a down-converted photon 

pair.  

 

 

 

Figure 2.4.6 [AAABB] mechanism for nonlocalised generation of down-converted photon 

pairs at separate and distinct optical centres. The green wavy line represents virtual photon 

propagation which acts to couple the optical centres and transfer energy across the 

medium, allowing for the photons that constitute the down-converted pair to be born from 

different locations.  

 

 

2.5  NONLOCALISED SPDC 

 

The nonlocalised mechanism briefly outlined above will now be rigorously identified, and 

characterised, in this section. As intimated, the nonlocalised [AAABB] mechanism involves 

the coupling of the optical centre A with a new point in the medium, which we label B. There 

are no constraints on the positions of A or B, and we assume they are both electronically 

equivalent, such that any labelling of A or B is arbitrary (only that the former is associated 
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with the position of the input photon annihilation). As such, there is no need to entertain the 

role reversal A-B. 

The mechanism of [AAABB] is as follows: An input photon of frequency   is annihilated 

at an optical centre A (just as in the localised mechanism); however, A only emits a single 

real photon of frequency  , whilst also coupling to another optical centre B, via virtual 

photon propagation, B itself then emitting another single real photon of frequency  . Thus, 

the down-converted photon pair emerges from two, fully distinct delocalised points within 

the optical medium.  

The initial and final states of the system are analogous to those in Section 2.3, this time 

containing the optical centre B as a constituent of the total system: 

   A B

0 0; , 0 ,i E E q    k k  and    A B

0 0; 1 , 2 ,f E E q     k k  - where both 

the initial and final matter states are once again ground states. The delocalised mechanism 

entails five photon-matter interaction events, and so we have recourse to fifth-order 

perturbation theory to compute the corresponding quantum amplitude. The sum over all 

intermediate states r(1)…r(4)  decomposes into 5! = 120 topologically distinct time-ordered 

permutations of the five interaction events.   

To highlight the procedure, we take as an example calculation, the uppermost pathway in 

the state sequence diagram [15]  Figure 2.5.2 which corresponds to the Feynman diagram in 

Figure 2.5.1. The quantum amplitude for this single pathway is given as 
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  (2.5.1) 

 

 

which includes a sum over all virtual photon modes that possess a wave vector p and 

polarisation  .  
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Figure 2.5.1 1 of 120 topologically distinct Feynman diagrams for the nonlocalised 

mechanism of SPDC. This particular time-ordered graph corresponds to the uppermost 

pathway in the state sequence diagram Figure 2.5.2. 
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Figure 2.5.2  State-sequence diagram for the nonlocalised mechanism of SPDC, 

incorporating 120 Feynman graphs in a single diagrammatic representation. The state for 

the system (comprising three parts: A, B, and radiation) evolves from left to right, from 

state i shown at the far left, to state f at the far right. The process entails five distinct 

interaction events, each illustrated with parallel lines of a given colour: absorption of the 

input photon by A (green); creation of an output photon k’ by A (red); creation of an 

output photon k’ by B (grey); interaction of the virtual photon p by A (blue); and 

interaction of the virtual photon p by B (gold). (courtesy of Jack S. Ford) 
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Combining the result (2.5.1) with the other 119 contributions    AB 2 AB 120
M M  to the rate 

secures the full nonlocalised SDPC quantum amplitude [16, 17]  
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where 
B A r r r . As in the single-centre localised SPDC (2.3.5), the nonlocalised 

mechanism (2.5.2) also depends on the nonlinear-susceptibility. However, the delocalised 

contribution also depends on the linear susceptibility, which takes the form 
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where  ,lm    is the molecular polarisability tensor. The other difference, besides pre-

multiplicative factors, is the dependence on the retarded resonance electric-dipole coupling 

tensor [9] 
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where n is the complex refractive index. By engaging the complex value, dissipative effects 

can be incorporated in the theory without the need of contriving an additional term to account 

for optical losses as light traverses the bulk medium.   
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It is worth highlighting the origin of the coupling tensor (2.5.4). Through a computationally 

demanding manipulation of all the 120 quantum amplitudes that contribute to (2.5.2), the 

following entity    can be identified: 
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This can be further manipulated using the following relations [18]: 
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3 2d d d ,p p p   (2.5.7) 
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to give 
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Using the following result on angular integration 
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p r   (2.5.10) 



 QUANTUM DELOCALISATION IN NONLINEAR OPTICS 66 

 

then gives 
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   (2.5.11) 

 

Extending the limits of integration from 0 to   to   to  , and using special functions [6] 

provides the solution of the Green’s function as 
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 
   
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  (2.5.12) 

 

And finally, by inserting (2.5.12) into (2.5.11) yields the result 
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  (2.5.13) 

 

where  , ,jlV n k
r  is the retarded dipole-dipole coupling tensor, either choice of sign being 

perfectly legitimate, however it is the lower sign that is most often employed. The retarded 

dipole-dipole coupling tensor arises in QED every time there is a E1-E1 or M1-M1 

intermolecular coupling through virtual photon propagation [19]. In the short range limit, 

this retarded coupling tensor becomes the static, or instantaneous, coupling tensor. There 

exists a generalised formula for all orders of electric multipole coupling (i.e. electric dipole-

electric quadrupole) [20, 21], as well as a coupling tensor for interactions between electric 

and magnetic dipoles, and the general scheme of the derivation for these multipole-multipole 
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tensors is analogous to that of the dipole-dipole [6]. The coupling tensor presented here is 

suitable for working in dispersive media, as it possesses the correct media corrections 

through the Lorentz factors and refractive indices. However, as stated earlier, most theories 

work in vacuo, on the assumption that media corrections are easily incorporated if necessary. 

The coupling tensor in vacuo is related to the one derived here through [22] 

 

   
2

2
vac

2

1 2
, , , .

3
jl jl

n
V n k V nk

n

 
  

 
r r   (2.5.14) 

 

2.6  PAIR-GENERATION RATE 

 

The localised [AAA] matrix element (2.3.5) as it stands applies to a single centre A, and so 

do the high-order single centre correction terms [AAAAA]. However, for a collection of N 

optical centres as in an optical medium, the corresponding matrix element is easily secured 

by introducing a sum over all N  

 

       3 3 5 5

A A A A

A A

;         .
N N

M M M M     (2.6.1) 

 

This is essential for the correct lattice sum calculation to be carried out. However, to perform 

a lattice sum for the pairwise coupling that exists in the nonlocalised mechanism [AAABB] 

requires a subtle analysis to correctly account for interaction over a system of optical centres 

where 2N  .  It transpires that (see Appendix 2.1) the correct form of the matrix element 

for the pairwise AB interactions takes for form 
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For the following quantitative analysis, we neglect the [AAAAA] contributions, and all other 

high-order mechanisms in fact, for reasons outlined above in Section 2.4.   

The position of the optical centre A is chosen to be the origin  A 0r  of our spatial 

coordinate system. Therefore, the positional displacement vector of site B from site A is 

B A B  r = r r r . Combining the localised (2.3.5) and nonlocalised (2.5.2) quantum 

amplitudes for SPDC, along with the correct lattice sum factors that are present in (2.6.1) 

and (2.6.2), gives the overall rate of SPDC for an optical medium containing N optical 

centres as 

 

 
   

   
 

 B

2

2
1

1 0
B2

B

, ;2

, e , , .
1

i k i jk

N
i

j m lm jl

S e e

e e V n k
n N N

   


  


 

   

 
        


k r

r

  (2.6.3) 

 

From here on in, the tensor functions will be written without their arguments for brevity. All 

scalar pre-multiplicative factors common to both terms are consolidated in (2.6.3) into the 

constant of proportionality S 
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  (2.6.4) 

 

where f  is the density of final states – in this case the appropriate choice is of the radiation, 

due to the final state of the material component being in the ground state.  Because the 

quantum amplitude has the same form for every site A, the sum over all positions of A 

becomes a factor of 2N  in the rate due to the coherent nature of the vector-matching 

 2 k k  that is implicit within SPDC. 

The total SPDC rate is calculated by performing a global sum over all sites B, including 

every possible interacting optical centre in the medium other than the chosen origin A. In a 

solid nonlinear medium larger than a few micrometres, the calculation requires an unfeasible 
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number of terms to include, and therefore to facilitate an indicative lattice simulation only 

sites that lie within a certain cutoff distance from the point A are included.  Each active site 

of the medium is only included in the summation over B if Br C , such that C is the cutoff 

radius of a spherical region centred on A. It is within these spherical shells that 

nonlocalisation is accounted for, and by calculating the rate as a function of C, a picture of 

how the relative delocalised contributions from B can be determined at various distances 

from A.  

The following tensor can be introduced to enable the formulation of the global summation 

of B with (N - 1) terms as a function of C 

 

  B

B

e ,
CN

i

jl jlC V
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k r
  (2.6.5) 

 

where the (N - 1) normalisation integer becomes NC, which is the integer number of centres 

B obeying Br C . Therefore, expressing the overall SPDC rate (2.6.3) as a function of C 

gives 
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  (2.6.6) 

 

In the expansion of the system from a single centre to a spherical region of radial cutoff C, 

the interpretation of the overall rate of observed pair emission needs revising: the observable 

rate is increased by the cross-section area of the active region. That is, the rate equation 

(2.6.6) is measuring the down-conversion from the individual centre A, but as we are 

allowing the emission of the second photon from any B within the sphere, we must measure 

the emission over this cross sectional area to secure a rate that is indicative of the observable 

amount of SPDC. Therefore, the effective observable rate, C
 , is given by multiplying the 

second term in (2.6.6) by the cross-sectional area of the sphere, 2C  - as this represents the 



 QUANTUM DELOCALISATION IN NONLINEAR OPTICS 70 

transverse area from within which a pair of photons can emerge when delocalisation is 

accounted for:   
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  (2.6.7) 

 

Evidently as C becomes smaller and smaller until a point where no centres B are included, 

NC = 0 and therefore 0  . This in turn leads the nonlocalised contribution to vanish upon 

setting the indeterminate 0/0 as zero, collapsing the rate equation into the single centre rate 

 

 
 

22 2

0 A .i k j i jk
S M S e e e        (2.6.8) 

 

2.7  RATE COMPUTATION 

 

To secure a figure for the potential enhancement or diminution of the rate of SPDC that 

occurs due to the delocalised mechanism, a lattice sum calculation has to be carried out. 

Numerical calculations of this kind require real information about the physical properties of 

the material within which the optical process takes place, along with the beam parameters.  

To approximate the optical medium in a computational analysis, it is efficient to model it as 

a primitive cubic lattice. The location of the optical centre A is an appropriate coordinate 

origin, and an optical centre B is placed at every site that has integer values for the x, y, and 

z coordinates in units of the unit-cell length u, such that 1 3V N u   . The length of u is 

chosen to be approximately one-tenth of the wavelength for the output mode 2 k   . The 

total number of positions that are occupied by an optical centre B for this calculation is 1013.   

The necessary calculations can be broken into two parts, the first involves the computation 

of  values of  jl C , using equation  (2.6.5), for all values of C up to 50u (in increments of 

0.1u). The results of carrying out these calculations are presented in Figure 2.7.1.  
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To proceed in calculating the total rate, we require indicative figures of the physical 

parameters in equation (2.6.7). Firstly, on the assumption of an isotropic medium, the linear 

susceptibility may be cast in a scalar form    1 1

lm lm   ,  enabling the use of the relationship

 2 1
1n    to provide a useful estimate for the values of   1

 . The values for the nonlinear-

susceptibility tensor  
 2

i jk
  need not be subjected to such approximations. A suitable choice 

for the nonlinear medium is beta-barium borate (BBO), a crystal that is routinely used to 

create down-converted photon pairs [23]. If the plane of each BBO unit is aligned to the 

lattice xy plane, then only four components of  
 2

i jk
  are significant:  

 
 
 2 2

x xx y yy
  ;

 
 

 
 2 2

z xx z yy
  , with the other 14 components being negligible.  

The second part of the calculation uses the computed values of  jl C and NC to implement 

(2.6.7), and the ensuing data allows a plot of the normalised rate of SPDC as a function of 

the cutoff radius C from zero to 50u – the results exhibited in Figure 2.7.2.  

In Figure 2.7.2, the first nine data points correspond to C < 1.0u and describes the limit 

0C
     according to (2.6.8). The opposite limit 


  is found at the convergence of  

C
  in 

the region of C > 4  , a range of where delocalisation over more than 300 000 B centres are 

accounted for. The physically sensible convergence is only secured through the correct form 

of the multicentre sums (2.6.2). Comparing the overall long-range delocalised result to the 

standard single-centre rate gives the ratio 
0 1.022

    , meaning that the contribution to 

the rate of degenerate down-conversion from the delocalised mechanism accounts for 2.2% 

of the correlated photons produced – or, 1 pair in every 50 pairs of correlated photons 

produced can be attributed to the delocalised mechanism.   
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Figure 2.7.1. The four independent components of the tensor σjl(C), computed according to Equation (2.6.5) in our virtual cubic lattice of 1013 

positions. In order to avoid alignments that might influence the sum over positions, the direction of the radiation mode is chosen to be 

misaligned with the Cartesian unit vectors - in a standard basis, 1 1 1ˆ ˆ ˆ0.25 0.5 0.25u u u     i j kk . The index-symmetry of Vij leads to σjl = σlj, and 

the equality kx = kz in our choice of k′ leads to σxx = σzz and σxy = σyz.
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The observable rate of SPDC, C
  , computed according to Equation (2.6.7) using the σ results shown in Figure 2.7.1, and normalised against the 

C=0 rate given by Equation (2.6.8). Values for the material parameters are chosen to approximately match BBO: n  1.7 + 0.1i;  
 2

5.8
x xx

   and 

 
 2

0.29
z xx

  (manufacturer reported values relative to standard KDP reference).1 

                                                           
1 http://www.redoptronics.com/BBO-crystal.html 
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2.8  SECOND-HARMONIC GENERATION 

 

The delocalised mechanism highlighted in this chapter for the specific case of SDPC can in 

fact be applied in a more general sense to other suitable optical processes. One such process 

that is immediately amenable to the same form of analysis is another nonlinear optical 

process: second-harmonic generation (SHG). In coherent SHG, two pump photons of wave 

vector k are converted into a single output photon k , where photon momentum is conserved 

such that 2 k k . Clearly then, SHG is seen to be the time-inverse process of SPDC (see 

Figure 2.8.1), and it is for this reason that general analysis on SPDC is easily implemented 

to SHG. 

 

 

 

 

Figure 2.8.1 A schematic depiction highlighting the time-symmetry relationship between 

the delocalised mechanisms of SHG (left) and SPDC (right).  

 

Using the same methods as in Section 2.3 and with the aid of the time-ordered diagrams for 

SHG in Figure 2.8.2, the localised rate of coherent SHG is seen take the form 

 



 QUANTUM DELOCALISATION IN NONLINEAR OPTICS 75 

          

 
 
     

A

A

3 2 3
2

1 2 2SHG

A 2

0

1 23 2

2 2

2

0

2
1 , ; 2 e

2 3

1
, ; 2 e .

2

i

i j k i jk

i

i j k i jk

i n
M q q e e e

Vn

q qi
e e e

n V


   




   



 

 

   
      

  

  
    

   

k k r

k k r

    

(2.8.1)

 

 

 

 

Figure 2.8.2 The three topologically distinct Feynman diagrams for localised SHG.  

 

Whilst the nonlocalised quantum amplitude for SHG when the two input photons are 

annihilated at two distinct centres A and B, producing a harmonic from site B is [24] 
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(2.8.2)

 

 

One of the single indicative Feynman diagrams used when calculating the amplitude (2.8.2) 

is shown in Figure 2.8.3. 
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Figure 2.8.3 1 of 120 representative Feynman diagrams for the nonlocalised mechanism 

for SHG.   

 

Within the constraints of which the theory was derived, the detailed results and simulations 

secured for SPDC are readily applicable to SHG due to the highlighted symmetry between 

the two processes. The rate equations deliver a result that has exactly the same form for both 

SHG and SPDC – subject to factors connected with the input mode intensities: SHG has a 

nonlinear (quadratic) dependence on the input irradiance, whereas SPDC has a strictly linear 

dependence. 

 

2.9   DISCUSSION 

 

The first physical consequence that can be drawn from the analysis on delocalised 

contributions to the nonlinear optical processes of SPDC and SHG concern the effect that 

particle and optical crystal size has on the output rate. Although the graph in Figure 2.7.2 is 
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only applicable within the context of a rectangular lattice upon which it models, the 

dampened oscillatory behaviour exhibited leads to an obvious distance-dependent 

efficiency. It is important to realise that the graph displays a normalised rate of SPDC whose 

form is already integrated in the sense that each individual point C accounts for all local and 

non-local SPDC up to that particular distance: the area under the curve does not represent 

the rate, the individual points do. Aside from the local fluctuations, the most important 

behaviour is associated with the sharp rise in efficiency that runs out to about half of the 

longer of the two wavelengths (input for SHG and output for SPDC). Beyond this point, a 

gradual decline occurs leading to an eventual convergence on a rate that is slightly enhanced 

(compared to the normalised localised rate) to approximately 2%. These results are tabulated 

in Table 2.9.1.  

 

 

Radius /  <0.2 1.0 1.33 2.0 3.0 4.0 5.0 6.0 ∞ 

Enhancement % 0 +33 +40 +15 +3 +6 +4 +2 +2 

 

Table 2.9.1 Tabulated data extracted from Figure 2.7.2: Extent of conversion efficiency 

enhancement in nanoparticles of dimensions comparative to the wavelength of input (for 

SHG) and output (SPDC).  

 

 

Therefore, by controlling the size of nanoparticles (a particle built up of many optical 

centres) or nonlinear crystals, the conversion efficiency of SPDC and SHG can be fine-tuned 

to exhibit an enhanced propensity of nonlinear activity per unit volume relative to that for a 

bulk of the same material. It can be envisaged that a collection of compact, suitably-sized 

nanoparticles would lead to a markedly large increase in optical nonlinearity. This is 

suggestive of a significant design criterion when synthesising the appropriate nonlinear 

mediums – an artistic representation of what might be created is presented in Figure 2.9.1. 
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Figure 2.9.1 Impression of an engineered nanomaterial consisting of compact, suitably 

sized nanoparticles (purple spheres) placed in an array, taking advantage of the size-

dependent enhancement of nonlinear processes identified from Table 2.9.1. 

 

The physical origin of this size-dependent effect stems from the local effects of constructive 

optical interference within the nonlinear medium. Interestingly, a similar effect has been 

observed in SHG within nanomaterials [25, 26]. Evidently, as the sample size grows beyond 

a couple of wavelengths it starts to trail off to an asymptotic limit and any such advantages 

from particle-size effects are quickly lost. This is down to additional contributions causing 

destructive interferences and eventually any individual particle becomes more and more 

representative of the bulk phase.  

Several features of nonlocal origin are anticipated to be detectable in the output. Firstly, in 

the case of SPDC, one can expect a degree of temporal broadening associated with some 

down-converted photon pairs being emitted from positions that are separated by a 

wavelength or so in advance of, or behind, each other with respect to the forward emission 

direction.  

The corresponding lateral broadening of the photonic output has implications for both SPDC 

and SHG. The delocalised emission of photon pairs in SPDC signifies that in applications 

such as ghost imaging [27-30], the resolution of the image [31] will be to some extent 
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jeopardised by an insurmountable phenomenon of quantum origin (notwithstanding the 

experimental limitations when dealing with physical optics). This is due to the fact that 

perfect imaging would require each correlated pair to originate from the same spatial origin.  

This effect, if the nonlocal mechanism had not been identified, might be interpreted as 

simply a position-momentum quantum uncertainty with respect to directions perpendicular 

to the down-converted photon propagation. On a similar note, two photons arriving at 

distinct and well-separated locations producing the output harmonic SHG (as in the 

delocalised mechanism) can be anticipated to have implications on the resolution of SHG 

microscopy [32, 33]: perfect imaging would require each photon to annihilate at precisely 

the same optical centre.  

The delocalised production of correlated photon pairs may also have some significance in 

the field of quantum entanglement [13, 14, 34]. The issue of whether the delocalised photon 

pair retains its entanglement fidelity is a reasonable question. However, it is to be recognised 

that the resonance coupling tensor which permits the energy mediation and photon transfer 

to the site ‘B’, in its derivation accounts for all possible polarisation states through the sum 

over polarisation states. Therefore, the entangled polarisation state fidelity is clearly 

maintained.  

Further interesting considerations of entanglement fidelity arise when one permits the use of 

light endowed with orbital angular momentum to produce down-converted photon pairs. It 

has been verified that photon pairs produced in SPDC with Laguerre-Gaussian beams have 

entangled OAM states [35]. Combined with the fact that multipole transitions do not convey 

well-defined values of angular momentum through the resonant multipole-multipole 

coupling tensor [36, 37], adds weight to the assertion that correlated photon pairs produced 

through the nonlocalised mechanism retain the fidelity of their entangled states.   
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APPENDIX 2.1 

 

As noted in Section 2.7, the convergence of the delocalised contribution to SPDC can only 

be secured by implementation of the correct optical centre sums. At the quantum 

electrodynamical level, to this point there are no known attempts to tackle such multicentre 

sums. The largest body of such calculations are limited two-centre interactions, associated 

with specifically pairwise interactions between the nearest individual molecules of the bulk 

[3, 18, 38-40]. There does exist a limited number of reports where three-centre interactions 

are entertained, but no lattice sums were required in the analyses [41, 42].  

To show how the correct  
1

1N


  factor arises in multi-centre lattice sums of the type 

studied in this Chapter, we begin with the foundational equations for the quantum amplitude 

Mfi,: 

 

 int 0 int

0

,
s

fi

s

M f H T H i


                                                                                             (A2.1) 

 

where 

 

 
1

0 0 ,iT E H


                                                                                                      (A2.2) 

 

is the expression for the propagator T0 is based on the eigenstates of the full Hamiltonian H 

being similar to those of H0.  Equation A2.1 represents a coupling that  propagates from an 

initial system state i into a final state f, where s+1 is the order of perturbation theory based 

on the eigenstates of H0.  In both these equations, all states, energies and operators relate to 

the system as a whole.  For a wave-vector matched process such as SPDC, the optical centre 

sums that feature in the quantum amplitude A2.1 will be phase-coherent and therefore 

directly additive.  Noting that only even values of 2s   can contribute to the sum in Equation 

A2.1, then on implementing the optical centre sums we obtain a result expressible as; 
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The leading term, p = 0, delivers interactions that are third order in Hint, comprising a sum 

of N terms, each signifying single-centre SPDC.  To this order, it is readily established that 

all terms for which the three operations of Hint are not effected at the same centre vanish.  

With the use of the completeness relation 

 

   1
q q

r

r r                                                                                                       (A2.4)

  

for any individual centre 
q
 , the leading term to emerge from Equation A2.3  takes the form 
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where it is implicit that the entire expression relates to a single, representative centre.  

Equation A2.5 thus relates to all N conventional SPDC interactions of type [AAA] identified 

in this Chapter.  The next order, p = 1 in Equation A2.3, delivers the leading corrections, of 

the form [AAAAA] and [AAABB].  By similar arguments to those used above, the following 

emerges as a representative of the former;  
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    (A2.6)    
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The expression signifies a self-energy [AAAAA] correction to single-centre SPDC, all 

interactions once again occurring at the same centre.  However, the p = 1 term in Equation 

A2.3 can also deliver non-vanishing results when two distinct centres are involved.  Then, 

the completeness relation of Equation A2.4 is to be implemented not only for any centre 

taking the role of A, but also in each case for the full set of (N-1) centres that can act as 

component B.  Accordingly  

 

     
1

1
1 1

N

q q

q r

N r r






   
A

.                                                                                  (A2.7)     

                                                                                                   

This signifies that a normalisation factor of 1/(N-1) has to be included in implementing a 

global sum over all centres that can take the role of B.  This factor will arise once in each 

state sequence pathway or Feynman diagram, at the point where the operation of Hint is first 

effected at centre B.  To summarise, we can thus write  

 

       
1

1(3) (5) (5)1 , ,
N N N N

fi fi fi fiM M M N M




   

                                      (A2.8)             

                                  

where the three successive terms represent explicit calculations for quantum amplitude 

contributions of the form [AAA], [AAAAA] and [AAABB].   
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3 
DIAMAGNETIC INTERACTIONS IN SCATTERING AND 

NONLINEAR OPTICS 
 

3.1   INTRODUCTION 

In Chapter 1 the derivation of the multipolar Hamiltonian for a closed system of radiation 

interacting with matter led to a result cast in the familiar electric and magnetic multipole 

moments, alongside the less well-known diamagnetic terms. The contribution of the latter to 

optical processes is rarely discussed. However, as will be shown here, it has highly unique 

characteristics and is more than worthy of inclusion when studying interactions between 

light and matter. Indeed, for any multiphoton process, it has to be included for a fully correct 

result.   

In general, the spatial variation of the vector potential across molecular centres can be 

neglected and the lowest order form of electromagnetic coupling, namely electric dipole E1, 

is sufficient to account for most optical phenomena. This approximation being known as the 

‘electric-dipole approximation’, and is widely utilised throughout molecular optics as in 

general it gives the most important physical results for a large number of optical processes, 

and higher-order terms often deliver no new physics, but only minor corrections to the 

calculated magnitude. Indeed, in Chapter 2 the E1 contributions to the localised and 

delocalised mechanisms in nonlinear optics were sufficient to produce the relevant physics. 

However, in certain circumstances and special systems, higher order interaction such as E2 

and M1 are the dominant form of couplings and their inclusion is requisite. Indeed, M1 

couplings are the signature hallmark of optical activity [1] and chiral discriminations [2] in 

molecules that possesses low symmetry, the subject of the final two chapters. Importantly, 
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these higher order M1 and E2 terms are necessary to explain the physics of special 

phenomena, however they also warrant inclusion when E1 couplings are either small or zero 

– one such example being an electronic transition that is electric dipole forbidden [3].  

Particular examples of where higher-order couplings play a significant role include light-

harvesting complexes [4], nanomaterials [5-8], metamaterials [9, 10], the optics of 

lanthanides [11, 12], optical forces [13, 14], and numerous other theoretical studies [15, 16].  

Evidently, E1 interactions are the most well-studied of the couplings between light and 

matter, and the higher order En and Mn multipole couplings are also widely utilised in 

explaining special optical phenomena. However, as was shown in Section 1, there is another 

form of coupling which is known as diamagnetic coupling (which is given the notation Dn) 

that is needed to be included for a fully rigorous treatment of optical interactions. It is 

interesting to speculate on why the term has received such little interest, seeing as it 

possesses the unique property of being quadratically dependent on the magnetic field and 

electric charge. As we shall see, this leads to some interesting and unique properties. The 

lowest-order D1 interactions are also produced at the same level of multipolar expansion in 

the PZW Hamiltonian as the much more widely studied E2 and M1 moments. Another 

important point is that it can only play a role in optical processes that involve 2 or more 

photons: thus, it plays no role in one photon processes.   

The physical significance of the diamagnetic term has its origins in correctly accounting for 

the overall magnetic susceptibility response of a molecule [17]. The magnetic susceptibility 

is a gauge invariant property that manifests itself in two-photon interactions and is always 

measureable. The diamagnetic susceptibility, as well as the paramagnetic susceptibility are 

not independent of the gauge, and therefore have little meaning in a general sense [18]. 

However, in the Coulomb gauge they are legitimately separable physical quantities, so long 

as it is understood that only when they are combined do they give useful gauge invariant 

physical predictions. This is the main reason for why diamagnetic couplings should always 

be included in multiphoton processes. At the lowest-order diamagnetic D1 and magnetic 

dipole coupling M1 for two-photon processes, we produce the leading terms to the 

diamagnetic susceptibilities and paramagnetic susceptibilities. It is worth pointing out, 

however, that molecular QED is a non-relativistic theory and as such takes no account of 

spin [19]. Therefore, when we discuss paramagnetic susceptibilities in molecular QED, we 

are implicitly discussing the temperature-independent form. The spin-only paramagnetic 
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term can be added on in a phenomenological manner because a spin interaction term can be 

included in the Hamiltonian in an analogously  ad-hoc way [20].  Dn and Mn couplings 

where n>2 give rise to higher-order corrections to these susceptibilities, but are so small in 

magnitude they stimulate very little motivation for their inclusion.  

Once computed, the D1 and M12 terms are combined to give the overall magnetic 

susceptibility contribution to the specified multiphoton process. If the D1 contribution is 

larger than the M12, then the molecule is said to be diamagnetic: the other way around, then 

it is paramagnetic. The vast majority of molecules are diamagnetic and therein lays another 

reason that in molecular QED it is extremely important to include the diamagnetic couplings 

terms. Indeed, it has been shown that a particular example where diamagnetic couplings 

become important and prominent is in the Casimir-Polder dispersion forces between ground-

state molecules [21].  

This chapter begins by outlining the general interaction Hamiltonian needed to compute D1-

couplings with matter, followed by calculating the D1 contributions to the rate of two-photon 

absorption and Rayleigh scattering. Comparisons between the E1 and D1 contributions to 

both the rate of two-photon absorption and scattering are made, highlighting the uniquely 

different spectroscopic properties of D1 couplings. 

 

3.2   D1 INTERACTION HAMILTONIAN  

 

The lowest order D1 contribution to the multipolar interaction Hamiltonian derived in 

Chapter 1 (Equation 1.16.15) is given as 

 

      
2

2
mult D1

int

,

,
8

e
H

m
  

 

      q R b R   (3.2.1) 

 

where b is the standard mode expansion for the magnetic field 
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For the purpose of calculations, (3.2.1) is more easily implemented when written in its 

expanded form 
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(3.2.3)

 

 

where the vector calculus result   ijk j ki
a b a b  enables the vector cross products to be 

expressed using Levi-Civita tensors.  For further clarity, the photon modes are now 

suppressed. On the standard assumption that photon annihilation and creation events occur 

at single electrons, its wave function is therefore to a first approximation exactly separable 

from those of the other charged particles in the molecules. This allows us to characterise the 

molecular interactions through transition dipole moments, namely we can write 

 

   .ii
e  



       q R    (3.2.4) 

 

By invoking the completeness relation, we can introduce a sum over intermediate states r  

that connect the initial i   and final f   states through 
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 
0 00 0 .

f fr r

i k i k i k i k

r r

f f r r             (3.2.5) 

With the general mathematical toolkit of D1 interactions outlined, the following sections in 

this chapter will look at implementing them by calculating the D1 contribution to the rate of 

firstly two-photon absorption, followed by Rayleigh scattering.  

 

3.3   TWO-PHOTON ABSORPTION 

 

This section will calculate the lowest-order diamagnetic contribution to two-photon 

absorption (TPA). In contrast to conventional one-photon absorption, multiphoton 

absorption processes involve the concerted absorption of two or more photons at a single 

chromophore centre, where the first photon absorbed puts the optical centre into a virtual 

state that isn’t an eigenstate of the molecule, which is simultaneously promoted to the final 

state through absorption of the second photon – (i) in Figure 3.3.1 [22, 23]. TPA has become 

a widely utilised method within nonlinear spectroscopy [24]. Such nonlinear processes 

require the use of intense sources of radiation: ideally suited to pass this constraint are pulsed 

lasers [25]. The calculation is carried out assuming the absorption of both photons occurs at 

a single electron, and that the origin of both photons is from a single monochromatic beam.  

In contrast to standard En or Mn multipole TPA, diamagnetic interactions Dn occur through 

a single interaction vertex (ii) in Figure 3.3.1. The consequence is that the first-order 

perturbation theory is required for the lowest order diamagnetic contribution D1 to TPA - in 

contrast to the second-order interaction term necessary for computing the electric and 

magnetic multipole contributions. It is therefore interesting to note there are no diamagnetic 

contributions to single-photon absorption.   
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Figure 3.3.1 (i) Feynman diagram for the diamagnetic two-photon absorption, where the 

molecule transitions from an initial state i to a final state f. (ii) A conventional and 

representative Feynman graph for two-photon absorption, where in contrast to (i), the 

molecule progresses through a virtual intermediate state r.  

 

A single beam of n photons of mode  ,k  is incident upon N molecules in their ground 

state energy level E0. The quantum amplitude for the diamagnetic interaction is given by  

 

int ,fiM f H i   (3.3.1) 

 

where the initial state of the radiation-matter system is given by   0,i n E k  and the 

final state by  2 , ff n E  k . Inserting (3.2.3) for Hint and carrying out the radiation 

part of the calculation  
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Calculating the material part of the matrix element, with the aid of (3.2.4) and (3.2.5), yields 

the overall quantum amplitude as 
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  (3.3.3) 

 

In two-photon absorption, the molecule being in a discrete state initially, ends up in an 

excited continuum of states. Also, it is clear that there is a difference between the initial and 

final state of the radiation field. Being an optical process, we require the use of the Fermi 

rule  
2

2 fi fM N   .  It is worth noting that the correct choice for the density of states 

molecule

f  in multiphoton absorption processes is that of the molecule. This makes the result 

dependent on the line shape of the molecular states only. Of course, in actual fact, any 

process will have a dependence on the density of states of both the molecule and the 

radiation. However, it is the factor that delivers the highest overall number of states per unit 

frequency, momentum, or energy interval that will have largest influence upon the overall 

rate. It is therefore appropriate to use the density of final molecule states rather than that of 

the radiation, especially since multiphoton absorption and other nonlinear excitation 

processes are studied with narrow-linewidth laser light. 

Inserting (3.3.3) into the Fermi rule gives 
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To progress, we require the use of the identity for the product of Levi-Civita tensors 
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In the above, all six indices differ, however we require the result when p = m which is easily 

secured from (3.3.5) 
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which leads to 
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ik jl qs rt il jk qt rs ik jl qt rs il jk qs rt

           

               

  

   
  (3.3.7) 

 

Taking the result (3.3.7) and inserting into (3.3.4) 
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  


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b b   0 0 0 .fr r fr r fr r

q q i k i k q s i k q sb b b b b b      b b

  

(3.3.8) 

 

The result (3.3.8)  is applicable to oriented systems such as molecular solids or liquids with 

some form of order. However, for liquids and gases the orientations of the absorbing 

molecules are usually random, and therefore an appropriate averaging scheme needs to be 

applied to the rate (3.3.8) for it to apply in these cases. With the aid of standard techniques 

[26], a rotational average can be applied to each of the different rank tensors in (3.3.8), 

namely zeroth, 2nd , and 4th rank tensors. It is instructive to explicitly show the averaging 

technique to each individual tensor, they are given as: 

 

2 20 0 0 0 ,fr r fr r fr r fr r

i i q q             b b b b   (3.3.9) 

 

20 0 0 01
,

3

fr r fr r fr r fr r

i i q s q sb b               b b b b   (3.3.10) 

 

20 0 0 01
.

3

fr r fr r fr r fr r

q q i k i kbb               b b b b   (3.3.11) 

 

The final term in brackets of  (3.3.8) is a fourth-rank tensor, whose rotational averaging 

scheme is more complicated than the zeroth and two 2nd rank tensors secured in (3.3.9)-

(3.3.11). The more complicated procedure for the fourth-rank tensor is shown below: 
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(3.3.12)

 

 

contracting the Greek indices gives 
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(3.3.13)

 

 

In all of the above, Latin indices refer to the laboratory-fixed frame and the Greek indices to 

the molecule-fixed frame. To finally secure the result, the Latin indices in (3.3.13) are 

contracted to give 

 

 

 
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1
2 1

15

3 ,

fr r fr r fr r fr r

i k q s i k q s

fr r fr r
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   

       

   

  


   

b b

b b

  

(3.3.14)

 

 

where 1 b b  for photons in the same mode has been implemented and the fact that the 

transition dipole moment product is index symmetric. 
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Inserting (3.3.9)-(3.3.11) and (3.3.14) into the rate equation (3.3.8) yields the fully 

rotationally averaged result as 
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(3.3.15)

  

This result is secured upon the summing of (3.3.9)-(3.3.11) and (3.3.14): 
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  (3.3.16) 

 

The pre-multiplier present in (3.3.15) can be manipulated in a way as to be written in a more 

succinct form: 

 



 DIAMAGNETIC INTERACTIONS IN SCATTERING AND NONLINEAR OPTICS 98 

   

 

 

 

2
2 2

2 2 2 2

0 0

24 2 2

24 2 2 2 2

0

2

2 2 6 2

0

22

2 6 2

0

2
1 1

15 16 1920

1
1920

1

1920

,
1920

f f

f

f

N k N k
n n n n

m cV m c V

nc N k
n n

c m c V n

n nn c ck
N

V m cn

I g N
m c

 
 

 













  
    

  

 

 
  
 



   

(3.3.17)

 

 

where firstly taking into account the degree of second-order coherence g(2), which is given 

by [27] 

 

   2

2

1
,

n n
g

n


   (3.3.18) 

 

and secondly by noting that the beam intensity can be given as the mean irradiance 

 

,
n c

I
V


   (3.3.19) 

 

with ck  , gives the overall rate expressible as [28] 

 

 22 D1,NI g B    (3.3.20) 
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with 
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0
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f fr r fr r fr r fr r

r

B
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
       


      
  b b b b   (3.3.21) 

 

The absorption rate (3.3.20) depends on the polarisation of the incident photons through the 

scalar product b b , which is unity for a linearly polarised beam. For both left and right 

circularly polarised photons, the factor becomes zero via   L R ˆ ˆ2i i  b i j , but 

evidently the overall result doesn’t vanish.  

Further insight into the physical properties of diamagnetic interactions can be obtained by 

comparing the rate (3.3.20) with that of electric dipole E1 contributions to TPA 

 

 22 E1,NI g B    (3.3.22) 

 

where 
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B

   





           



      
 

e e e e

  (3.3.23) 

 

A minor difference from the result reported by Craig and Thirunamachandran [2] is that our 

results are written in a form with quadratic dependence on the input irradiance, which is a 

reflection of our more appropriate choice of density of states factor for reasons explained 
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above. It also correctly gives a rate that has a quadratic dependence on the input beam 

intensity.  

There are spectroscopic properties of TPA which differ markedly from conventional E1 one-

photon absorption. One important difference is the fact that the selection rules are not the 

same, and therefore two-photon transitions can produce states that could otherwise not have 

been produced. It can be shown that the standard TPA selection rules for E1 are the same as 

the selection rules for D1 contributions to TPA. Because the two photons absorbed in D1-

TPA come from the same mode, the dyadic 0fr r

    effectively becomes index-symmetric 

due to its tensor contraction with the magnetic polarisation vectors. Since the selection rules 

for D1-TPA are determined by the properties of 0fr r

   , they are the same as those of E1 

which are determined by the index symmetric  0 ,f

   .  As stated earlier, the D1 

interactions are of a similar magnitude as that of the M1 couplings, being in the order of the 

fine-structure constant smaller than the dominant E1 terms. Therefore, one can expect the 

typical quantum amplitude the D1 couplings to be around 10-3-10-2 times smaller relative to 

those of E1. 

 

3.4   RAYLEIGH SCATTERING 

 

Rayleigh scattering is a two-photon process involving a single photon annihilation and 

creation event, where the final molecular state is equal to the initial state and therefore the 

incident and scattered photon energies are equal (an elastic process). This is in contrast to 

Raman scattering, where the energy of the molecule can either be increased or decreased via 

coupling to the radiation field, leading to Stokes and anti-Stokes shifts in the output photon 

(inelastic scattering) respectively. Both are multiphoton processes, and therefore D1 

couplings will make a contribution to the overall rates of the scattering mechanisms. In both 

cases, the scattering can be either forward or non-forward, depending on the direction of the 

output wave vector. The theory presented will concentrate on elastic scattering, but the 

mechanism developed for D1 scattering can readily be extended to inelastic scattering.  
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For the same reasons as discussed for two-photon absorption, the D1 contributions to two-

photon scattering processes are calculated using first-order perturbation theory (3.3.1) 

whereas non-diamagnetic contributions are second order in the interaction.  

 

 

 

 

Figure 3.4.1 (i) Time-ordered diagram for the diamagnetic contribution to Rayleigh 

scattering. (ii) Representative Feynman graph for conventional Rayleigh scattering. 

 

Let the incident beam be in an initial state of n photons of mode  ,k , whilst the scattered 

photon (whose quantities are labelled with a prime) state is initially unoccupied; inserting 

Hint into (3.3.1) leads to the radiation part of the matrix element taking the form  
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(3.4.1)

 

 

Assuming the molecule is in its ground state E0 the rest of the calculation can be carried out, 

yielding the quantum amplitude    

 

 0
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e .
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

  
   

 


k k R
 (3.4.2) 

 

To proceed we once again use the Fermi rule. In contrast to two-photon absorption, for 

Rayleigh scattering we make the judicious choice that the density of final states is that for 

the emitted radiation, which is due to the uncertainty associated with the axis of emission 

(the molecular state is the ground state and is therefore well defined) [29] 

 

 

2
emission

3

d
,

2
f

k V

c



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   (3.4.3) 

 

where d   represents the solid angle centred in the output k  direction. Using (3.4.3) for 

the density of final states in the Fermi rule, and inserting the matrix element as (3.4.2) gives 

for collection of N molecules      
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which is the infinitesimal scattering rate into the element of solid angle d  . Division by the 

photon flux number  nc V converts (3.4.4) into an infinitesimal cross section d :    
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  (3.4.5) 

 

where the differential cross section d d   follows immediately, securing an analogous 

diamagnetic form of the Kramers-Heisenberg dispersion formula. 

Due to the presence of the phase factor in (3.4.5), to proceed requires the distinction between 

non-forward scattering k k   and forward scattering k k . Of course, for Rayleigh 

scattering k k .  The forward scattering term is responsible for optical trapping forces 

and takes the form of 
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For non-forward scattering, the modulus square of the phase factor introduces off-diagonal 

terms 
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  (3.4.7) 
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The second term clearly depends on the positions of pairs of molecules, whilst the first term 

depends on a single molecular centre. For an elastic process we can set k k  and the one 

centre terms are therefore 
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(3.4.8)

 

  

with the two centre terms as 
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(3.4.9)

 

  

The single centre term (3.4.8) represents the incoherent contribution, whilst (3.4.9) embodies 

the coherent mechanism of scattering. In the rotational averaging to follow, the coherent 

term vanishes for non-forward scattering, and so can be ignored.  Thus, using the same 

rotational averaging technique from section 3.2, the non-forward infinitesimal scattering rate 

of an assembly of randomly orientated molecules is 
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(3.4.10)
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Writing the result (3.4.10), with recourse to (3.4.4), in terms of the scattered intensity  I k   

 

   

   

4
2 2 0 0

2 2 2 4

0

2 22 20 0 0 0

14 1
30720

4 4 1 ,

fr r fr r

r

fr r fr r fr r fr r

NIk
I

m c
   

       

   
 

       

       


            


k b b b b

b b b b b b b b

  

(3.4.11)

 

 

via    d dI ck    k . Finally, due to the transition dipole moment products being index 

symmetric, the final two terms in square brackets of (3.4.11) can be summed to give [28]  
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(3.4.12)

 

 

Once again, it is worth comparing the D1 result (3.4.12) to the standard E1 result for non-

forward Rayleigh scattering, namely  
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where  0 ,f

ij    is the frequency-dependent polarisability  
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 
   (3.4.14) 

 

In both cases of D1 and E1 scattering there exists the fourth power dependence on the 

frequency (inverse fourth power of wavelength) that is characteristic of scattering intensities. 

However, there also exists dispersion character from the E1 (indeed, all En/Mn multipole 

contributions) term through two dipole interactions, manifest in the dynamic molecular 

polarisability (3.4.14). Clearly, no such dispersion character is present in D1 scattering, 

making this contribution to scattering especially striking and unique. It is worth speculating 

on a potential way to observe this dispersion-free behavior. In principle, a study of scattering 

wavelength dependence, over a region of significant dispersion, should enable the specific 

identification, verification, and quantification of the diamagnetisation effect. By best-fitting 

the dispersion curve to a suitable line-shape function, running the residuals into a log-log 

plot against wavelength and observing a -4 gradient (which has its origin on the wavelength 

dependence present in the premuliplier in (3.4.12)) would verify the dispersion-free 

characteristic of the scattering and therefore verify the D1 diamagnetisation coupling.  
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4 
OPTICAL ORBITAL ANGULAR MOMENTUM: TWISTED 

LIGHT AND CHIRALITY 
 

4.1   INTRODUCTION 

 

Radiation fields consist of massless photons which possess and convey energy, and therefore 

according to Einstein’s relativistic energy-momentum relation, photons must also possess 

linear momentum. This association of linear momentum and energy has long been 

understood in physics, and is manifest in phenomena such as radiation pressure [1]. 

However, light can also exhibit an angular momentum [2]. Total angular momentum consists 

of a spin and an orbital part: with regards to light, the associated intrinsic spin angular 

momentum has been known for some time and is established in terms of circularly polarised 

photons carrying a spin angular momentum of  . The fact that light can possess an orbital 

angular momentum is not a new concept either. Darwin [3], during the early development of 

modern quantum theory, realised that in radiative quadrupole transitions the photon must 

carry away not only spin but also an orbital angular momentum. However, the realisation 

that intense beams of laser light could be prepared in the laboratory with a well-defined 

orbital angular momentum of   about the axis of propagation is relatively recent [4].  

The fact light beams and photons can possess an intrinsic orbital angular momentum has 

found wide application, and the optical orbital angular momentum of light has become a 

substantial and ever-growing field of research in its own right [5, 6].  One of the most striking 
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and physically gratifying studies of the angular momentum of light to date was the 

demonstration that spin angular momentum would induce a trapped particle to rotate on its 

axis, and the orbital angular momentum causes the particle to orbit around the beam axis [7]. 

Another key advancement in the field was the utilisation of spontaneous parametric down-

conversion (the process that is the subject of Chapter 2) to prove that quantised orbital 

angular momentum existed at the single-photon level [8].   

This chapter aims to resolve the issues surrounding if, and how, the orbital angular 

momentum of structured light plays a role in chiroptical interactions with matter. Such 

discriminatory effects that are sensitive to the material and/or the radiation components of 

the system have been long understood in terms of the spin angular momentum of light, which 

is manifest through circular polarisation handedness [9, 10]. The work begins with a review 

of chirality in the general sense, through fundamental symmetry analysis; this is followed by 

a short introduction to Laguerre-Gaussian beams, the most widely used and studied form of 

structure/twisted/vortex light; then a full QED analysis of one-photon absorption by chiral 

molecules possessing E1, M1, and E2 multipole transition moments is carried out to 

determine whether the orbital angular momentum of the input light can engage with chiral 

matter.  

 

4.2   CHIRALITY 

 

Molecules are said to be chiral if they belong to point groups which include no improper 

axis of rotation, and can either be right- or left-handed; light can also possesses a handedness 

through circularly polarised photons, and/or the direction the vortex twists in a beam 

possessing OAM. In a chemical sense, a molecule’s handedness can have drastic effects 

when interacting with other molecules in chemical processes. However, the interplay 

between the handedness of light and matter is exclusively manifest in chiroptical 

interactions. That is to say, chiral molecules and chiral light can exhibit discriminatory 

effects, where the magnitudes of optical processes and phenomena are dependent on the 

handedness of the light and/or molecules [11].  

Quantum electrodynamics, like nearly all physical theories and laws, is invariant to the 

universal symmetry operations of spatial parity inversion P, and time reversal T (charge 
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conjugation C does not concern us in non-relativistic QED). That is to say, any equation 

describing an optical process does not change if the system coordinates are inverted through 

the coordinate origin; or if all the motions of the fields and particles are reversed. The origin 

of this invariance is that the laws underlying electrodynamics are the Maxwell equations and 

the Lorentz force, all of which can easily be shown to be invariant to the symmetry 

operations, and consequently any interaction that involves electromagnetic fields must 

conserve these symmetry elements. 

Fully accounting for these simple laws of symmetry invariance allows the determination of 

whether any known or conjectured light-matter interaction is going to be observable or not. 

This form of symmetry analysis is particularly well-suited for scrutinising the interplay of 

optical and intrinsic material chirality. Indeed, it will be shown that looking at the individual 

matter or radiation part of the system allows for the determination of whether a particular 

chiral discrimination is allowed or disallowed [10].  

The first point that needs to be made if one is to successfully utilise symmetry operations to 

make predictions of the legitimacy of any chiroptical processes is that any symmetry law 

applies to the total system: radiation and matter. For example, a spatial parity operation P on 

the material components may give a different result which appears to violate the symmetry 

invariance, however, the same operation applied to the radiation part will always recover the 

same initial physical result if the optical process is allowed. In fact, it is this ability to 

partition the material and radiation components of a total system that enables the prediction 

of whether specific chiroptical interactions are observable.  

The appropriate physical quantities to apply the symmetry considerations to in the photon-

molecule interactions that this work is concerned with are the electric and magnetic 

multipole moments En and Mn, along with the electric and magnetic fields. We will 

concentrate on the operations of P, rather than T, as an even or odd character to P for any 

quantity necessarily requires the same parity for T in any legitimate light-matter interaction 

in order to conserve overall PT symmetry. 

 The determination of the spatial parity of any transition electric multipole or magnetic 

multipole moment is simply given by 

 

    1E ( 1)        ; M ( 1) ,n nP n P n       (4.2.1) 
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where n is a positive integer. From these two simple relations, the spatial parity eigenvalues 

of any combination of electric and magnetic multipole transitions, their interferences, and 

respective molecular response tensors can be determined.  

For the radiation part, the analysis is not as straightforward because a single axis becomes 

the symmetry element, and not the coordinate centre of a physical entity such as a molecule. 

This has its origins in retaining the right-hand rule and the correct sign of the Poynting 

vector. To account for this, use is made of the following polarisation vector identity [12]: 

 

       ; 
  e k e k   (4.2.2) 

 

and the resultant operations of P  on circularly polarised states of light are found to be 
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e k e k

b k k e k k e k b k

  

(4.2.3)

 

 

Therefore, spatial inversion changes the sign of the electric, but not the magnetic polarisation 

vectors. This agrees with the well-known fact that the electric field is a true or polar vector, 

and the magnetic field is an axial or pseudovector. However, it is worth highlighting the fact 

that the symmetry assertions for the electromagnetic fields are true only for the fields as a 

whole, and do not necessarily apply when considering specific modes.  

For the purposes of the analysis in this Chapter, we require the simple results from the above 

considerations that the operation of the spatial parity P on a chiral molecule results in a 

swapping of molecular handedness. And for the radiation, the two parts that have the 

capacity to carry a sense of handedness, namely the circular polarisation state and the sense 

of direction of the twisted beam manifest through the sign of the topological charge, will 

also be a swapping of the handedness.  
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4.3   OPTICAL ORBITAL ANGULAR MOMENTUM 

 

It has been shown in Chapter 1 that Maxwell’s equations, although generally given in terms 

of the electric and magnetic fields, can be cast in terms of the vector a and scalar    

potentials, and implementing this yields the wave equation (1.6.5). Throughout this chapter, 

and indeed most experimental and theoretical work in the field of optical orbital angular 

momentum, we restrict the equations to the paraxial approximation [13]. This is a justified 

simplification due to the fact that in general, during laser beam propagation, the wave vectors 

of the field fall within a narrow cone with a small inclination to the optical axis, which is 

conventionally defined as being the z-axis. This restricts beam propagation to the z-axis, and 

that the component of k in the xy-plane is small compared to the z-component: .zk k c 

Thus, in the paraxial regime, an ansatz for the vector field a is  

 

     
, , , e ,

ikz i t
t u x y z


a r e   (4.3.1) 

 

where e is a polarisation vector normal to ẑ  and  , ,u x y z is the transverse amplitude.  

It follows that  , ,u x y z  must satisfy the paraxial scalar Helmholtz equation: 

 

   
2 2

2 2
, , 2 , , 0.u x y z ik u x y z

x x z

   
   

   
  (4.3.2) 

 

There exists many light beams which are solutions to the paraxial equation (4.3.2). Examples 

include Hermite-Gaussian beams and Bessel beams.  It is worth mentioning, however, that 

non-paraxial wave solutions do exist for the full Helmholtz equation. For reasons outlined 

above, however, we will restrict ourselves to paraxial light beams. One such solution that is 

widely utilised to describe laser fields possessing an orbital angular momentum are the 
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Laguerre-Gaussian modes.[4] These LG modes have a cylindrical symmetry and therefore 

are more conveniently expressed in cylindrical coordinates, consisting of an off-axis radial 

distance r, axial position z and azimuthal angle . As a consequence, LG beams are solutions 

to (4.3.2) when it is expressed in cylindrical coordinates 

 

 
2 2

LG

,2 2 2

1 1
2 , , 0,pik u r z

r r r r z




    
    
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  (4.3.3)  

 

where the normalised solution for the amplitude  LG

, , ,pu r z  is 
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(4.3.4)

 

 

with the normalisation constant taking the form  1
2 ! !pC p p

     ;   

     
2 2

0 1 Rw z w z z   is the radius of the beam at z, with w0 the Gaussian beam-waist 

at z = 0;    2 1 arctan Rp z z   is known as the Gouy phase; zR is the Rayleigh range (a 

measure of the focal region of the beam); and finally pL  is the generalised Laguerre 

polynomial of order p, which for a given argument x are found using  
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0

1
1 .

p
n n

p

n

p
L x x

p n n

 
   

 
      (4.3.5) 

 

The Rayleigh range is a measure of how sustained the collimation of the beam is over z, and 

experimentally for LG beams it can be in the order of several metres. In considering beam 
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interactions with particles it is therefore reasonable to assume Rz z . In the long Rayleigh 

range, we have  

 

  0 ,w z w  (4.3.6) 
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z z
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  (4.3.7) 

 

and 

 

 2 1 arctan 0.
R

z
p

z

 
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 
  (4.3.8) 

 

These allow the amplitude  LG

, , ,pu r z  to take the form of  

 

     LG LG

, , ,, , , e ,i

p p pu r z u r f r       (4.3.9) 

 

where the radial distribution function  , pf r  is given by 
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  (4.3.10) 

 

Transitioning to the quantum theory, the electric displacement and magnetic field expansions 

for Laguerre-Gaussian beams in the paraxial approximation emerge as functions of the 
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cylindrical coordinates [14, 15]: the off-axis radial distance r, axial position z and azimuthal 

angle   
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(4.3.11)

 

 

and 
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(4.3.12)

 

 

where 
   , pa


k  and 
   †

, pa


k  are the annihilation and creation operators for a photon of 

mode  , , , pk . The most significant part of (4.3.11) and (4.3.12) is the azimuthal angular 

dependence contained in the term e i  . This azimuthal phase structure is what gives 

Laguerre-Gaussian modes their OAM.  This term gives rise to  intertwined helical wave-

fronts, and these wave-fronts can twist either clockwise or anticlockwise as they propagate. 

This twist direction, determined by the sign of , gives the helices their handedness: by 

definition, for 0 , beams twist to the left and for 0 , to the right. Therefore, light 

propagating with any form of helical wavefront is inherently chiral. It is for this reason that 

it would be reasonable to anticipate chiroptical interactions with respect to the orbital angular 

momentum, in an analogous way to how chirally discriminant effects are manifest through 

spin orbital angular momentum and circular polarised light.  
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4.4   TWISTED LIGHT INTERACTING WITH CHIRAL MATTER  

 

There exist a multitude of optical processes and phenomena that are ideally suited for 

carrying out an explicit analysis looking at whether the handedness of twisted light can play 

a role in chiroptical interactions. The optical rates or energy shifts of all such discriminatory 

interactions are sensitive to the handedness of the molecules and/or the handedness of the 

light. Well-known optical processes and phenomena that are explicitly chiroptical in their 

nature are circular dichroism [16-18], optical rotation [19], differential Raman and Rayleigh 

scattering [20, 21], and induced circular dichroism [22]. There also exists the case of  

discriminatory absorption of left- and right-handed photons by achiral molecules, known as 

magnetic circular dichroism [23], and chiroptical interactions in intermolecular forces as 

outlined in Chapter 5, as well as chiral discriminatory forces in optical trapping.    

The most elementary of these chiroptical interactions is arguably circular dichroism – which 

is simply a difference in the rate of one-photon absorption of circularly polarised photons by 

chiral molecules. For this reason, in the first instance, it seems logical to focus the analysis 

of how twisted beam handedness interacting with molecules could potentially exhibit a 

chiroptical influence on one-photon absorption. Indeed, previous work looking at OAM and 

chirality in light-matter interactions has focused on E1 and M1 couplings in one-photon 

absorption [24]. These analyses concluded that wavefront handedness should, up to the order 

of multipole interaction studied, provide no chiroptical influence in optical processes. Their 

prediction was then met with experimental verification [25, 26]. However, the following 

analysis will highlight that due consideration of electric quadrupole (E2) moments and the 

degree of orientational order of the matter will indeed reveal a basis for the helicity 

associated with photon OAM to exhibit a chiroptical influence in one-photon absorption: the 

rate of absorption will depend on which direction the vortex beam is twisting and therefore 

the sign of the topological charge. To elucidate all the physics and produce a fully rigorous 

result up to the chosen multipolar level, we will also include M1 interactions in our analysis. 

We need not include diamagnetic D1 couplings as this is a single-photon interaction (see 

Chapter 3). 
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Once again, the Power-Zienau-Woolley Hamiltonian is adopted (Equation 1.16.15). The 

quantum amplitude of one-photon absorption by a molecule   in its ground state, subjected 

to an incident LG beam of n photons in a single mode  , , , pk ,  is  
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(4.4.1)

 

 

For clarity, all photon mode dependence will be assumed rather than explicitly stated 

throughout the analysis, and we can also drop the  label for the same reason. It is also easier 

to explicitly calculate each of the three terms in (4.4.1) on a term by term basis, where we 

use the mode expansions given in (4.3.11) and (4.3.12) 
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To move towards calculating a rate with the aid of the Fermi rule, it is necessary to carry out 

the gradient operation present in (4.4.4).  The operator is, in cylindrical coordinates  

 

1 ˆˆ ˆ ,j j j jr z
r r z




  
   

  
  (4.4.5) 

 

where 

 

ˆ ˆ ˆcos sin

ˆ ˆ ˆsin cos

ˆ ˆ.

r x y

x y

z z

 

  

 

  



  

(4.4.6)

 

 

In Cartesian coordinates, 
ˆ

0
i

i





 (where i = x, y, or z), however this is not necessarily the 

case for the corresponding cylindrical coordinates as can be seen from (4.4.6): 
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  (4.4.7) 

 

With the characteristics of the gradient operator outlined above, it can now be implemented 

and used to evaluate the E2 contribution to the matrix element (4.4.4),  
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 (4.4.8) 

 

This result allows (4.4.4) to be written in a form where the gradient operation has been  

carried out 
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(4.4.9)

 

 

Using (4.4.2), (4.4.3), and (4.4.9) gives the total quantum amplitude as 
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(4.4.10)
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The matrix element is now in a suitable form to secure the rate of one-photon absorption, 

with the aid of the Fermi rule, where 
2

fiM ,  and taking term by term: 
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(4.4.19)

 

 

Clearly, the terms that depend on the handedness of the vortex beam through a linear 

dependence on  include the E1E2, M1E2, and E2E2 contributions (notice that all involve 

the quadrupole E2 moment). The E1E1 term is the standard result for one-photon absorption 

in the electric dipole approximation and is not influenced by the chirality of either the 

molecules or the radiation; the M1M1 is the magnetic dipole contribution to the one-photon 

absorption rate, smaller than the E1E1 by about 10-6 , and it too is not discriminatory; the 

E1M1 terms are discriminatory, being the leading order contributions to circular dichroism 

(CD), in which the one-photon absorption rate is dependent on the helicity of the input 

circularly polarised photons and the handedness of the molecules – but the handedness of a 

vortex beam has no influence upon the rate of CD.  

With recourse to Section 4.2, it is appropriate to remind ourselves of the space parity of the 

multipole moments; E1 (-1), M1 (+1), and E2 (+1). Therefore, the M1E2 and E2E2 multipole 

moment products have even space parity, and therefore replacing one chiral molecule with 

its corresponding enantiomer of opposite handedness (equivalent to parity inversion) leaves 

these multipole moment products invariant. It can be therefore be concluded that M1E2 and 

E2E2 have no chiroptical sensitivity with regards to the material component of the system. 

This doesn’t rule out the possibility of discriminatory effects with regards to the helicity of 

the radiation part of the system – we return to this issue in the Appendix 4.1. In contrast to 

the M1E2 and E2E2, the E1E2 multipole couplings will change sign under parity inversion, 

and therefore E1E2 contributions to the overall rate of one-photon absorption will be 

sensitive to the particular handedness of the molecules and the sign of . Therefore, 

collecting these terms which have chiroptical sensitivity to both the material and vortex 

twist, and invoking the all the components of the Fermi rule, yields the modified rate 
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where N is the number of absorbers. Writing the density of final states in terms of the 

irradiance per unit frequency interval  I   (of which integration over the frequency gives 

the beam intensity)  
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allows the modified rate to be written as 
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Evidently, since all the other parameters in (4.4.22) are real, the polarisation vectors must be 

complex quantities to produce a non-zero real result. Therefore, at the most significant order 

of E1E2, we would only expect a chiroptical response if the incident photons are circularly 

polarised. This has the interesting and somewhat unique property that to this order, the 

orbital angular momentum of light alone cannot produce chiroptical effects, and that only in 

conjunction with spin angular momentum is it possible to engage the handedness of vortex 

beams in discriminatory interactions with chiral molecules.  In this sense, the process is an 

analogue of circular dichroism but with beams carrying a topological charge, a chiroptical 

effect that can be termed circular-vortex dichroism (CVD).  

Recently, there has been experimentally verified discriminatory effects with vortex beams 

involving linear polarisation of states, termed ‘helical dichroism’ [27]. This is made possible 

when molecular responses are modified through plasmonic resonance [28-30]. The 

possibility of dichroism depending only on the twisted wavefront and molecule handedness 
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are not ruled out in the analysis here, but they do not arise in the leading E1E2 level of 

multipolar interaction of molecules in the paraxial approximation, which this analysis is 

concerned with. Nor is theory employed here suitable to study light interacting with matter 

that has an extensively delocalised electron structure.  

To proceed, we make use of the following identity 
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Therefore, retaining only the real terms 
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The result can also be written in terms of the absolute difference in absorption rates between 

left- and right-handed circularly polarised photons [31, 32] 
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where CD  has been included and represents all of the terms that no dependence on the 

sign of the topological charge  . These terms are seen to be: 
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(4.4.26)

 

 

where 
0 0f f

i im im  . The above result is simply the sum of the E1E2 and E1M1 contributions 

which have no dependence on the sign or magnitude of  from (4.4.13), (4.4.14), (4.4.17), 

and (4.4.18). They represent a form for LG beams that is in full agreement with the well-

known results for standard CD with non-vortex light reported by Craig and 

Thirunamachandran [9].   It is important to retain these terms as when 0 , the total rate 

(4.4.25) reduces to the standard result for conventional CD.  

It is interesting to comment on the magnitude of the CVD contributions, particularly in 

comparison with the CD rate. When all E1, E2 and M1 couplings are accounted for, and 

since E2 and M1 interactions with the field are approximately equal in strength, it is expected 

that the strength of CVD will be approximately the same as CD. It is worth remembering, 

however, that CVD does scale linearly . This also agrees with the fact that both the spin 

angular momentum and orbital angular momentum contribute on the same level of 

magnitude to the overall angular momentum flux.   

As it stands, (4.4.25) applies to one or more molecules with a fixed orientation in any point 

in the LG beams (it is a local effect). The ˆ
j term contracts with an index of the quadrupole 

transition moment (which itself has a fixed orientation within the molecule) and therefore 

the magnitude and sign of the CVD differential will in general vary around the beam axis. 

Specifically, for any given sign of , the CVD rate will vary between a maximum and 

minimum of opposite sign across the beam profile: the angular variation of CVD intensity 

exhibits a simple sinusoidal dependence. This is due to the different directions of phase 

gradient around each intensity ring that are experienced by chiral molecules with a common 

orientation. Therefore, for a system of molecules that possess a degree of orientational order, 

the observed differential will be enhanced on one side of the beam and equally diminished 

on the other (as compared to the standard CD value along the singular core). One way to 

fully verify this mechanism would be to conduct experiments with varying values of   and 
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plot the measured differential    L R
  , necessarily taking account of the differences in 

intensity distribution associated with the corresponding radial distribution functions  , pf r

. It is worth bearing in mind, however, that due to the radial and azimuthal components being 

symmetrical about the z axis, any integration over the beam profile will only leave terms that 

are dependent solely on z: namely, the standard CD terms (4.4.26). This means that the net 

result of CVD will be zero if looking at the whole beam profile.  Most experiments do not 

resolve the extent of absorption at different locations within the beam profile, but this is what 

would be needed to observe the effect of CVD.  

To complete the analysis, we now consider the case where the molecules possess no sense 

of orientational order. Such a randomly orientated distribution of optical centres occurs in 

molecular fluids. To elucidate the effect that random orientation has on the rate of CVD we 

have to perform an isotropic rotational average [33] of the expression (4.4.25). This requires 

the E1-E2 and E2-E1 terms to be contracted with the corresponding third rank Levi-Civita 

isotropic tensor. However, since the electric quadrupole moment is fully index symmetric, 

and the Levi-Civita is antisymmetric in its indices, the resulting molecular average is zero. 

Therefore, it can be concluded that the rate of CVD is zero for fully randomly oriented 

molecules. Differential one-photon absorption with a circularly polarised vortex beam is 

therefore only non-zero for systems that possess a degree of ordering.  

 

4.5   DISCUSSION 

 

In light of the analysis of the previous section on molecular orientational averaging, it is 

worth discussing the possibility of specially designed systems for introducing molecular 

order. Although molecular fluids are generally isotropic, there are potential ways to engineer 

special systems for chiral effects using twisted light. Such systems are routinely employed 

in nonlinear optics [34], where the generation of second harmonics is usually precluded in 

isotropic fluids, and allow normally forbidden transitions to occur. One potential method 

involves exploiting the degree of molecular ordering that is present at the boundaries of 

isotropic systems [35]. Other ways would be introducing molecular alignment using optical 

methods [36], or introducing a magnetic field to induce symmetry breaking [37]. Another 

interesting point is that although E2 moments usually generate small contributions to the 
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overall amplitude of an optical process due to their dependence on the gradient of the 

electromagnetic field, in vortex beams the gradient of the field becomes increasingly 

significant as the topological charge increases. Indeed, this is manifest in (4.4.25) through 

the linear dependence on  . This enhanced role of E2 moments is already recognised with 

vortex beams interacting with atoms and molecules [38-41].  

The aim of this Chapter was to consider whether the orbital angular momentum of light could 

produce chiroptical interactions with chiral molecules. Previous work has correctly 

concluded that in neither E1 nor M1 interactions could the vortex handedness play any role 

in chiroptical interactions. However, it has now been clearly demonstrated to the leading 

order that any potential discriminatory process with respect to the topological charge of 

vortex beams must engage with the quadrupole E2 moment of the material component. For 

the most generally significant order whereby these effects are anticipated - the interference 

term E1E2 - it was found that for one-photon absorption the material component must 

possesses a degree of molecular ordering, and the beam must also possesses circular 

polarisation. This process was termed circular-vortex dichroism (CVD), due to its similarity 

to regular circular dichroism. Clearly, for any optical process the E2 moment must be 

engaged for any anticipation of OAM-dependent chiroptical interactions, beyond this, 

however, any detailed conclusions about the polarisation state and/or molecular orientation 

requires specific analysis.  

The idea of whether vortex handedness can play a role in chiroptical interactions has been 

subject to much uncertainty since twisted light was discovered, and the many viewpoints on 

the issue are in a constant flux. However, it is hoped that the analysis presented here 

progresses the field further and will provide a broader basis and further stimulus for 

experimental and theoretical work on the potentially significant role that vortex handedness 

can now be anticipated to play in chiroptical interactions.  
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APPENDIX 4.1 

 

Calculating the full rate of one-photon absorption using the Fermi rule with the total matrix 

element given by (4.4.10), produces a rate which includes all E1, E2 and M1 multipole 

couplings and their interference terms: 
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In the main body of work in the Chapter, we specifically identified those leading-order terms 

that were dependent on the sign of the handedness of the vortex beam through the sign of 

the topological charge and the handedness of the molecules. However, the full-derivation 

also produces other terms that are interesting. We have discussed the E1E1, M1M1, and 

E1E2 and E1M1 terms explicitly above. We will now concentrate on the remaining terms. 

All the terms that have either a quadratic or linear dependence on the electric quadrupole 

moment (E2E2 and M1E2) are accompanied by a plethora of further physical quantities. 

Nearly all of these terms represent position-dependent effects, due to the nature of the LG 

beam structure and the interaction of the quadrupole moment with the variation of the vector 

potential. These contributions are local and therefore their net contribution is anticipated to 

be zero across the whole beam profile. Terms that depend on only ẑ clearly survive a beam 

average, and represent higher-order contributions to standard one-photon absorption. For 

example, the term 
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is in precise agreement with the standard electric quadrupole contribution to one-photon 

absorption, if the intensity distribution of an LG beam is taken account of [9]. There are then 

other terms, which will also survive a beam average, which represent the influence of the 

vortex structure on the E2E2 contribution to one-photon absorption: 
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With regards to the multipole moments, the E2E2 and M1E2 couplings are clearly invariant 

- and possess even parity signature with regards to - the operation of spatial inversion P. 

Therefore, they could not play any role in chiroptical effects that have chiral sensitivity with 

regards to intrinsic molecular chirality. However, it does not rule out the possibility of 

seemingly chiral effects if LG beams with circular polarisation states were used. This 



 OPTICAL ORBITAL ANGULAR MOMENTUM: TWISTED LIGHT AND CHIRALITY 130 

‘mixing’ of handedness between vortex structure and polarisation state has yet to be 

specifically studied, and a physical interpretation of this mixing of helicity is yet to be 

elucidated, so any conclusions cannot not be made with regards to whether it is a legitimate 

chiroptical effect. It will represent a possible avenue for future work both at a level of interest 

for its application, but also at the fundamental symmetry level. It is anticipated to be involved 

in issues of spin-orbit coupling. As outlined in the Discussion section of the main text, this 

current work is in its infancy at present, leaving many exciting questions to be answered by 

people engaged in the study of the angular momentum of light.   
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5 
 

CHIRAL DISCRIMINATION IN OPTICAL FORCES 

 

 

5.1   INTRODUCTION  

 

The capacity of electromagnetic fields to produce forces and torques on particles is well 

established [1, 2]. Indeed, the forces that arise from radiation pressure have been known 

since the formulation of Maxwell’s equations [3, 4]. However, it was not until the invention 

of the laser that the magnitude and manipulation of these radiation forces became suitable 

for experimental investigation. In his pioneering work, Ashkin [5] showed how intense 

beams of laser light could manipulate and control small particles of matter through non-

contact radiation forces. The nature of the work required narrow beam-width intense laser 

light, which in turn provided for sharp intensity gradients and differential forces across the 

beam. These gradient forces are completely distinct from the transfer of momentum 

associated with the radiation force due to the radiation pressure. In the QED description, the 

radiation force is due to one-photon absorption, whilst forward Rayleigh scattering produces 

the gradient force [6]. The latter of these forces provide the basis for the well-known optical 

tweezer technique [7], and both forces constitute the method of optical trapping [8]. 

The radiation and gradient forces are single-particle forces.  However, interparticle forces 

are known to arise between two or more particles, and their origin is also due to 

electromagnetic fields. Indeed, in the absence of any applied optical source, vacuum field 
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fluctuations induce electric dipole moments, whose coupling produces the well-known 

Casimir-Polder interaction [9].  

The associated fields due to the presence of a sufficiently intense laser beam can produce 

another kind of interparticle force. First predicted by Thirunamachandran using QED 

methods [10], the laser-induced intermolecular force is commonly known as optical binding. 

Completely distinct from the single-particle forces present in optical trapping, in optical 

binding the optically-induced dipoles couple between two (or more) distinct particles. A 

decade after the original QED analysis, Burns et al. [11] provided the first experimental 

studies of optical binding. Using the aforementioned optical tweezer technique to isolate a 

pair of micron-sized polystyrene spheres, their semi-classical analysis found that the spheres 

formed a bound structure with preferred distances of interparticle separation. Since then, 

optical binding has been realised as a significant optical method of manipulating both micro- 

and nanoparticle assemblies. To date, many theoretical and experimental investigations have 

been carried out [12, 13], with the most contemporary being occupied with the nanoscale 

regime [14-17].   

In the following analysis, the issue of optical binding between chiral particles is addressed. 

In general, optical processes between chiral particles are dependent on the handedness of 

each material component and/or that of the radiation field. These chiral discriminations were 

the basis of the work in Chapter 4. The issue of discriminatory effects in optical binding has 

previously been studied using QED methods [18]. However, a different mechanism is 

highlighted in this Chapter, which leads to a discriminatory binding force typically several 

orders of magnitude larger than that of the earlier study. It also exhibits different physics, 

being chirally sensitive to both the handedness of the material and radiation components of 

the system. A full comparison between the two mechanisms is given in Section 5.7. First, 

however, the calculation method of induced multipole moments is outlined, followed by an 

implementation in deriving the optical binding energy shift between a pair of chiral 

molecules. Both molecular and phase-weighted pair orientational averages are carried out, 

along with a polarisation analysis, to give a set of results applicable to a plethora of 

experimental situations. To finish, the role that discriminatory binding forces could have in 

optical manipulation, and as a probe for identifying chirality in matter, is discussed. 
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5.2   INDUCED MULTIPOLE MOMENTS 

 

Throughout this thesis the method of diagrammatic time-dependent perturbation theory was 

utilised when carrying out QED calculations. This is generally the most common method 

used in QED studies, with the diagrammatic part usually being fulfilled using Feynman time-

ordered diagrams [19] for calculating matrix elements. There exists, however, a multitude 

of other methods which give further physical insight to optical processes and phenomena, 

and can also help circumvent the computational effort that comes with Feynman diagrams. 

Particular methods include state-sequence diagrams [20], response theory [21, 22], the 

retarded coupling approach [23], effective interaction “collapsed vertex” Hamiltonian [24-

26], and the induced moments method [27-29]. Throughout this chapter it is the later 

technique which will be deployed for its added physical insight, but predominantly for its 

ease of implementation. 

The method of induced moments is underpinned by the fact that multipole moments are 

induced in neutral polarisable bodies in the presence of electromagnetic fields, and these 

moments interact via the corresponding resonant multipole-multipole coupling tensor 

(which was discussed in Chapter 2). The expectation value of the appropriate matrix element 

over a radiation state with N photons, which combines the spatial variations of the radiation 

fields at two different points in space, then gives the required energy shift.  

The  1... ni i  component of the nth-order electric multipole moment induced by an incident 

electric displacement field in a polarisable body   is given by 
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with the nth-order magnetic multipole moment induced by an incident magnetic field is 
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A generalised, frequency-dependent molecular polarisability 
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introduced and defined by 
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 are components of the nth-order transition electric multipoles En for the 

transition from b a . The corresponding counterpart expression for a molecular 

polarisability cast in terms of magnetic multipoles Mn for 
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. There also exist mixed electric-multipole 

magnetic-multipole polarisabilities, which are dependent on both  
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.  

 

5.3   DERIVATION OF THE OPTICAL BINDING ENERGY FOR A PAIR OF 

CHIRAL MOLECLES 

 

With the theory of induced moments outlined in the previous section, it is now employed in 

an analysis to determine the laser-induced intermolecular forces between chiral molecules. 

As has been outlined in Chapter 4, the source of chiroptical effects typically arise from E1-

M1 coupling terms. Although small in comparison to E1 couplings, they possess unique 

characteristics that can be dependent on both molecular and radiation handedness.  

Consider a pair of neutral polarisable chiral molecules (A, B) which are in mutual interaction 

within an optical trap. Any such species will possess electric-dipole polarisability  ij   
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and mixed electric-magnetic polarisability  ijG   tensors that have nonzero components. 

The two tensors are explicitly given by: 

 

 
0 0 0 0

0 0

,

r r r r

i j j i

ij

r r rE E

   
 

 

  
  

   
   (5.3.1) 

  

 

 
0 0 0 0

0 0

.

r r r r

i j j i

ij

r r r

m m
G

E E

 


 

  
  

   
   (5.3.2)  

 

The first of these represents the simplest and lowest order implementation of  (5.2.3), namely 

the non-discriminatory E12 interaction – switching a molecule of one particular handedness 

to its respective enantiomer leaves the sign of this tensor unchanged. The second term is the 

E1M1 analogue, which clearly changes sign upon parity inversion through the product of E1 

and M1 moments. This inversion physically corresponds to replacing one enantiomer by its 

corresponding partner of opposite handedness.  

At this point, it is worth highlighting some of the properties of the molecular response tensors 

and transition moments. For real wave functions the transition moment 
0r  is real and 

0r
m  

is imaginary. Therefore, provided the optical frequency is well away from any absorption 

band,  ij   is a real quantity, whilst  ijG   is imaginary. The reason is that transition 

electric dipoles are based on the displacement of charge, whilst transition magnetic dipole 

moments entail the circulation of charge, through an imaginary angular momentum operator.  

To continue, in the presence of a radiation field, a chiral molecule   at position R

experiences the induction of both an electric and magnetic dipole moment due to the  ijG   

tensor: 

 

       ind G
, ,i ij jG b     R   (5.3.3) 
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       ind G 1

0 , .j ij im G d   

  R    (5.3.4) 

 

As well as an induced electric-dipole moment due to the  ij   tensor 

 

       ind 1

0 , .i ij jd   
  

   R   (5.3.5) 

 

The incident field consists of n photons of any specific radiation mode  ,k , and therefore 

we can assume that the process of photon annihilation and creation occurs in the same mode 

(since the emission is then stimulated and therefore the most favoured). This then allows the 

energy shift to be given as the expectation value of the following expression 

 

                 

                 
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ind ind G ind G ind

A B A B Re ,

A B A B Im , ,

i j i j ij

i j i j ij

E V k

m m U k

   

 

 

 

   
 

  
 

R

R
  

(5.3.6)

 

 

where R is the separation vector R = RB – RA. It is therefore seen from (5.3.6) that electric 

dipoles induced at each centre couple through the tensor  ,ijV k R , whilst an electric dipole 

induced at one centre couples to a magnetic dipole induced at the other through  ,ijU k R ; 

both retarded dipole-dipole coupling tensors are given explicitly as: 

 

        2 2

3

0

1 ˆ ˆ ˆ ˆ, 3 1 e ,
4

ikR

ij ij i j ij i jV k R R ikR R R k R
R

 


      
 

R   (5.3.7) 
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3

0

1 ˆ, e .
4

ikR
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


 R   (5.3.8) 



 CHIRAL DISCRIMINATION IN OPTICAL FORCES 141 

 

The first of these tensors (5.3.7) was discussed in Chapter 2, the second one (5.3.8) is 

similarly derived in the QED theory through a calculation based on virtual photons, and 

couples a magnetic transition dipole moment to an electric transition dipole moment.  

To proceed, the induced moments from (5.3.3)-(5.3.5) are inserted into (5.3.6), producing a 

form of the energy shift that is cast in terms of the electric and magnetic radiation fields, 

along with the electric dipole polarisability (5.3.1) and mixed electric-magnetic dipole 

polarisability (5.3.2) of each of the two chiral molecules: 
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         

       

     

1

0 A B

A B

2

0

A B

A, B,

A, B, Re ,

              + A, B, A, B,

Im , .

ik lj k l

ki lj k l ij
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(5.3.9)

 

 

In the above we have introduced the identity: ij jiG G   , which is manifested on the grounds 

that the magnetic-dipole operator is time-odd – magnetic transition dipoles therefore satisfy 

the relation 
0 0r r

i im m   in the mixed electric-magnetic dipole polarisability tensor (5.3.2). 

The energy shift (5.3.9) is therefore clearly a result of the polarisability   of one chiral 

molecule, coupling to the G polarisability tensor of the other.  
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Figure 5.3.1 Four permutations of E1 and M1 interactions in ‘µµµm’ contributions to the 

48 topologically distinct Feynman time-ordered diagrams for optical binding, in one 

representative ordering.  

 

The next step required is to calculate the expectation values for the system state 

 A B

0 0, ; ,E E n k   for each of the four terms in (5.3.9). For all terms, the expectation values 

for the molecular parts yield the ground-state molecular polarisabilities. Focusing on the first 

term in (5.3.9), which we label µµµm as it corresponds to the first representative time-

ordered diagram in Figure 5.3.1, the expectation value over the radiation field is  
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       
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k k
  (5.3.10) 

 

The numerical factors n and (n + 1) in (5.3.10) reflect the fact that two contributing terms 

have a different origin: in one, the throughput photon creation at one centre A or B features 

before the photon annihilation at the other centre B or A, whereas for the other term the 

opposite is true. The origins of this stem from the fact all possible pathways have to be 

summed over when calculating rates of processes and energy shifts in QED. However, on 

the valid assumption that for high intensity radiation, the mode occupation number is 

sufficiently large (n + 1) ~ n, and therefore the two terms in (5.3.10) are complex conjugates, 

allows twice the real part to be taken. This then allows the energy shift to be expressed more 

concisely 
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The three other remaining terms from (5.3.9), namely the µµmµ, µmµµ, and mµµµ (see 

Figure 5.3.1) terms can be calculated in a similar fashion with the use of the expectation 

values: 

 

       

                 

A B

0

, ,

1 e e ,
2

k l

i i

k l k l

n d d n

ck
n e e ne e

V

   

 



 

           
k k

k R k R

k R R k

k k
  

(5.3.12)
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The corresponding energy shifts thus take the form of 

 

               
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5.4   MOLECULAR ORIENTATION AVERAGING  

 

The next step in the analysis is to perform an orientational average which will deliver results 

for the interaction of the molecules whose relative displacement R is in a fixed position with 

regards to the beam of throughput radiation, but whose individual orientations are random. 

We use the standard techniques [30] from previous chapters. Taking the µµµm term (5.3.11) 

we find 

 

       1
9

A, B, A, B, ,ik lj ik ljG G                (5.4.1) 

 

where ij  is the symmetric Kronecker delta tensor. Inserting (5.4.1) into (5.3.11) gives the 

following energy shift 
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where the numeral factor in (5.4.1) has been subsumed into the molecular tensors, allowing 

the result to be given in terms of polarisability scalars:    1
3

, ,       and 

   1
3

, ,G G     .   

Carrying out the same analysis on the three remaining terms (5.3.14)-(5.3.16) yields the total 

energy shift for mutually randomly oriented molecules as 
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(5.4.3)

 

 

5.5   POLARISATION ANALYSIS  

 

At this stage, it is appropriate to carry out a polarisation analysis. This allows us to ascertain 

if there is any difference in behaviour between using linearly polarised or circularly polarised 

input. We can also add further complexity to the analysis by defining the direction of 

propagation of the beam with respect to the interparticle displacement vector: the wave 

vector k can either be parallel  or perpendicular   to R.  

When the input beam is linearly polarised, the result (5.4.3) is zero for both propagation 

configurations, k R  and k R . This is anticipated on symmetry grounds alone: each term 

in (5.4.3) possesses only one constituent that is odd under parity inversion (the G tensor) and 

therefore one cannot expect a chiral response with achiral light. It is also evident from 
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expanding both  Re ,ijV k R  and   Im ,ijU k R  in (5.4.3) and using the following relations 

based on the transversality and real character of plane polarisation vectors 

 

                0,ij i je b
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       ˆ 0.k ijk i jR e e
 

 k k   (5.5.3) 

 

However, it must be realised that the leading order, non-discriminatory E1E1 binding energy 

shift persists using linearly polarised light.   

When circularly polarised light is used, on an argument based purely on symmetry 

considerations, it can be anticipated that the result (5.4.3) should lead to a non-zero 

discriminatory process. Using the following identity 
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(5.5.4)

 

 

and once again taking the µµµm term as an example - since  ,ijV k R  is index symmetric 

only the first term in (5.5.4) contributes, giving the energy shift for k R   
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where I is the input laser irradiance used in previous chapters and is equal to  2n c k V .  

Once again, following a similar analysis as above on the other three remaining terms (µµmµ, 

µmµµ, and mµµµ) secures the energy shift for two neutral chiral molecules in the presence 

of circularly polarised light propagating perpendicular to R as 
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(5.5.6)

 

 

where we have further simplified the notation using    , ,G iG     .  The ‘Re’, which 

signifies to take the real part of the equation, has been dropped from equation (5.5.6) as no 

imaginary parts longer exist, due to the tensor G itself being imaginary, as noted earlier.   

Following the methods above, the total energy shift for a pair of neutral chiral particles in 

the presence of circularly polarised light propagating parallel to R is found to be  
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(5.5.7)

 

 

5.6   PHASE-WEIGHTED PAIR ORIENTATIONAL AVERAGE ANALYSIS  

 

The above results are clearly only valid for specific experimental setups, however a more 

general result applicable to molecular gases and liquids can be secured through a phase-

weighted pair orientational average [31]. This more involved method averages over all k 

relative to R and over all relative orientations of the pair of molecules in the system. Because 

we are concerned with a pair interaction (the A-B coupling), the difference in optical phase 

of the input beam at each centre must be taken account of: a phased rotational average.  
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The phase rotational can be written in a generic form as 
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1 2 1 2
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i iE K S T e

 

  k R
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where  
1 2i iS k  and k are respectively tensors and vectors which are fixed in a laboratory 

frame of reference; in our specific example k relates to the wave vector of light and  
1 2i iS k  

the two polarisation vectors:  
1 2

T  R and R are tensors and vectors fixed in a molecular 

frame, with  
1 2

T  R the appropriate retarded resonant dipole-dipole interaction tensor as 

given by (5.3.7) and (5.3.8);  K  is a constant. Through a rather involved analysis, the above 

expression can be cast as 
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where   k R , m is the rank of the tensor to be averaged, and 
p pil  is the direction cosine 

of the angle between the laboratory axis ip and the molecular axis λp.. The following results 

for 
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   , defined by (5.6.2), are expressed in terms of spherical Bessel 

functions jm(α) for m ≤ 2: 
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Once again, a polarisation analysis can be carried out along with the phase averaging. Let us 

first look at the case of linear polarised light. Using the fact that Re  ,ijV k R is  
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(5.6.5)

 

 

Taking the µµµm term (5.4.2) (which has orientationally averaged molecules) and inserting 

(5.6.5) gives  
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(5.6.6)

 

 

Taking the relevant terms for the averaging procedure:  
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then the phase-weighted averaging is seen to be 
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Expanding the square bracket in (5.6.9) gives the first term which involves j0 as zero (see 

(5.5.1); the second term which involves j1 is also zero due to the contraction of the index-

symmetric ˆ ˆR R   with  , itself anti-symmetric in its indices; the final term involving j2 is 
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also clearly zero due to the transverse nature of the electromagnetic field vectors and the 

wave vector.  

Carrying out a similar analysis as above on the other term which involves  ,ijV k R , namely 

the mµµµ term (5.3.16), highlights this contribution to the energy shift with linear polarised 

light is also zero.  

The other two terms require the result of  
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k l kle e U k
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k k R   (5.6.10) 

 

For linearly polarised light, the real part of 
       k le e
 

k k  is index symmetric, and if the 

expanded form (5.3.8) of  ,klU k R is inserted into (5.6.10), it is clearly seen that the index 

symmetric polarisation product is contracted with the antisymmetric ijk , and hence (5.6.10) 

is zero. Therefore, it can be concluded that the energy shift for a pair of freely tumbling 

chiral molecules in the presence of linearly polarised light is zero.  

 

The case where the input radiation is circularly polarised is now looked at, and once again 

the analysis begins by looking at the µµµm term. The relevant terms to look at whilst 

averaging are once again  
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To render the analysis easier to follow, we will look at each term in angular brackets in 

(5.6.11) on an individual basis. Beginning with the first in its expanded form 
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Concentrating on the first term in (5.6.12) 
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where 
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j jb ie k k  has been used. The second term in angular brackets in 

(5.6.12) is 
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Taking the above term by term: 
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and 
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Therefore, the overall phased average result for (5.6.12) 
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Carrying out an analogous analysis on the second term in (5.6.11) gives 
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which gives the overall phase-averaged energy for the µµµm term is 
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A similar analysis for the mµµµ term gives 
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The final two terms, µmµµ and µµmµ, which are dependent on  ,ijU k R , are seen to be 

zero: 
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However, from (5.4.3) it follows that we require the imaginary part of this result, but the 

result is in fact real and so its contributions are zero.  

To secure the final result, both contributions (5.6.20) and (5.6.21) are added together; 

expanding the spherical Bessel functions from table A5.1 in the Appendix 5.1 and using 

double-angle formulae we get: 
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for, the energy shift experienced by two neutral, randomly orientated and tumbling chiral 

molecules bound together by the presence of an intense throughput of circularly polarised 

light [32].  

 

 

5.7   -G AND G-G COUPLING MECHANISMS 

 

Evidently the result (5.6.23) depends linearly on the input beam irradiance, and the same is 

true for the dominant    coupling. The discriminatory effects of the G   coupling 
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(5.6.23) arise from the handedness of the circularly polarised radiation and the mixed 

electric-magnetic polarisabilities of the molecules. If both the chiral molecules were 

chemically identical and of opposite handedness (one left-handed and one right-handed), it 

is clear that the discriminatory binding energy contributions (5.5.7), (5.5.6) and (5.6.23) will 

be zero. It is worth noting, however, that when the chiral species A and B are not identical, 

their G tensors will generally differ in magnitude and the above will be nonzero.   The energy 

shift experienced by pairs of chiral molecules with the same sense of handedness will differ, 

the sign of the energy shift being dependent on the relative handedness of the incident light 

and of the molecules. Take for example, if the incident beam is of a specific handedness, the 

optical binding energy between two left-handed molecules will differ in energy from the 

binding between two right-handed molecules. Upon changing the handedness of the incident 

light, the signs will reverse. These results are summarised in Figure 5.7.1.  

 

 

 

Figure 5.7.1 Illustration of the equivalences a ≡ b and c ≡ d, and non-equivalences a, b ≠ 

c, d, between the discriminatory optical binding forces for chiral particles of different 

handedness (depicted by red and green spheres) irradiated by circularly polarised light of 

either handedness (right- and left-handed forms shown with opposite twist). For cases e, f, 

where the two molecules are an enantiomeric pair, the G    discriminatory force 

vanishes.   
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The presented analysis has focused upon a novel mechanism that operates between chiral 

particles subject to a sufficiently intense, circularly polarised laser beam. In particular, it has 

elucidated discriminatory optical binding forces which arise due to the G   coupling 

terms. These discriminatory forces are seen to be both dependent on the handedness of the 

circularly polarised light - being zero for linearly polarised beams – and of the molecular 

handedness. The leading contributions to optical binding forces come from the E1E1-E1E1 

interactions, i.e. the    couplings. Their forces are non-discriminatory with regard to 

both the beam and the molecules, and they are of an order of magnitude 103 times larger than 

the G   discriminatory contributions to the overall binding force. It is worth bearing in 

mind, however, that discriminatory binding forces can be made larger by exploiting pre-

resonance enhancement of   ,G  by using an input wavelength approaching an 

absorption region for the material, though any enhancement will of course result in a 

corresponding increase in  ,   

There also exists another form of discriminatory binding forces: the G G  coupling 

mechanism (E1M1-E1M1), identified previously by Salam [18].  This term is in the order 

of 10-3 and 10-6 times smaller than the G  and    terms, respectively. However, it does 

offer different physics to both the larger contributions. The G G contribution to the energy 

shift for a pair of freely tumbling, randomly orientated chiral molecules is seen to be 
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  (5.7.1) 

 

This energy is also linearly dependent on the irradiance of the input beam, just as in the 

G  and    coupling terms. Importantly, the G G coupling is only chirally sensitive 

to the handedness of the molecules A and B, and is independent of the input light polarisation 

state:  
 

 
 

L/R Lin

G G G G
E E

 
   , which is also in contrast to the G  coupling in the sense it 

gives a non-zero result for linearly polarised radiation. Another important difference 

between the discriminatory G   and G G  contributions is that as we have shown in the 

former case, when the molecules A and B are chemically identical but of opposite 
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handedness, the energy shift is zero; however, in the latter the energy shift between a left-

handed and a right-handed molecule is non-zero.  

It is interesting and informative to speculate on why the G   coupling was not reported 

before now. Firstly, the G   coupling represents the interaction between two chiral 

molecules as we have shown, but it also represents the interaction between a chiral molecule 

with an achiral molecule. This is the crux: chiral molecules still engage their E1 moments 

and therefore still possesses a dynamic polarisability . This is what has been overlooked 

by many. Just because a molecule is chiral, it does not necessarily mean its only molecular 

response is through its G tensor – the interferences between  and G must be included.  

 

5.8   DISCUSSION  

 

Two possible routes of exploiting these discriminatory optical binding forces are 

immediately evident. The first is concerned with helicity-dependent optical manipulation of 

particles. Optical nanomanipulation is a burgeoning field, wherein light is used to trap, 

rotate, and accelerate small particles of matter. In this sense, optical methods of manipulation 

offer distinct advantages due to their non-contact nature. A particular application of these 

optomechanical forces could be in chiral sorting. Although a host of established methods 

exist for chiral resolution at the molecular level, these methods generally rely on other chiral 

molecules or other materials to act as resolving agents. Recent work in the field has looked 

at using circular dichroism (the preferential absorption of left- and right-circularly polarised 

light) as a way to separate enantiomers in a fluidic environment [33]. Further contemporary 

work utilising optical methods have identified discriminatory optical forces as a potential 

tool in the separation of left- and right-handed molecules [34-37]. 

Although it may prove difficult at present to implement optical binding forces in the direct 

pursuit of enantiomer separation, there is another possible application in the development of 

identifying chirality in optically bound systems [38]. For example, consider an input laser 

beam that is modulated between right- and left-handed circular polarisations, the response 

of a system comprising chiral particles with the same handedness will be an oscillation from 

their equilibrium positions [39]. If the modulation frequency of the laser is tuned to 
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resonance with the essentially harmonic natural frequency of the optically bound pair, the 

small-scale oscillations should become readily detectable. Treating (5.6.23) as a correction 

to the standard E12-E12    coupling produces graphs of the form given in Figure 5.7.2. 

In producing the graph, the magnitude of the correction term G   is taken to be of the 

order of the fine structure constant. It emerges that for a laser wavelength of 628 nm, there 

is a displacement of 5 nm between these minima. This verifies that a modulation of optical 

input between circular polarisations will produce a corresponding oscillation in their 

equilibrium positions [40, 41].   
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Figure  5.7.2  Plot of the optical binding potential energy (in arbitrary units) for two chiral particles in a circularly polarised beam. The abscissa 

scale measures the inter-particle distance R in dimensionless units of kR, the wave number k is defined as 2    with   as the laser 

wavelength. On the scale of the main graph there is an imperceptible difference between the results for particles who handedness is either the 

same, or opposite to, that of the radiation. The inset exhibits the difference between the two cases, around the position of the first potential 

energy minimum.
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APPENDIX 5.1 

 

Table A5.1. Spherical Bessel functions  nj kR , 4n  . 

n  nj kR   

0 1
sin kR

kR
  

1 

 
2

1 1
sin coskR kR

kRkR
   

2 

   
3 3

1 3 3
sin coskR kR

kR kR kR

 
  

  

  

3 

     
2 4 3

6 15 1 15
sin coskR kR

kRkR kR kR

   
     

      

  

4 

       
3 5 2 4

1 45 105 10 105
sin coskR kR

kR kR kR kR kR

   
      

      

  

 

Higher-order results can be determined from the relation 

 

       
1

1 12 1 .n n nj n j j  


                                                                                         (A5.1) 
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CONCLUSION 

 

Throughout this thesis the theory of molecular quantum electrodynamics has been 

employed to study fundamental interactions between light and matter. It has been explicitly 

highlighted how to implement the theory, and the powerful nature of its ability to predict 

new optical phenomena has been demonstrated.  

All such theoretical predictions made throughout the thesis should be readily observable 

using modern laser techniques found in optics laboratories. Specific details of possible 

experimental methodology can be found at the end of each respective chapter.  However, 

common to each potential experiment would be the need for a coherent light source, 

typically a femtosecond laser for experiments requiring high intensity and a tuneable 

frequency, supplemented by a continuous-wave source for other measurements.  Other key 

components, included amongst the beam-steering and focusing units on an optical table, 

would be appropriate wave plates to obtain the desired polarisation state, especially useful 

for generating circularly polarised photons for studying chiroptical interactions. The 

production of twisted beams required in Chapter 4 may be achieved with spatial light 

modulators or spiral phase plates.  The final key element being a suitable photodetector 

and associated electronic circuitry. 

To conclude this work we shall now look towards the future, and in particular, how each 

project presented in the thesis might continue to evolve.  In Chapter 2 a novel mechanism 

which involved the delocalised production of correlated photon pairs and optical 

harmonics was highlighted and quantitatively evaluated. Clearly, the next step would be to 

try an experimentally validate its existence. One of the more immediately obvious methods 

would be invoking the design criteria laid out for enhanced nonlinear optical processes 

using ideally-sized nanoparticle composites, and studying the output intensity. Another 

issue worth studying is how this mechanism affects the fidelity of entangled photon pairs 

produced in SPDC, and if any such manifestations may play an important role in the field 

of quantum information where correlated photon pairs are utilised extensively.  

In Chapter 3, the often-neglected diamagnetic interactions with the radiation field were laid 

out for scattering and two-photon absorption. The work was concerned with highlighting 

the existence and unique characteristics of the diamagnetic couplings, whose origin of 
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importance comes from securing gauge invariant results. Although it may prove 

technically demanding, a potential scheme for observing their unique contribution to 

scattering rates was outlined.  

Arguably Chapter 4 is the most open-ended and promising area for future developments. 

Now that the issue of whether the handedness of a vortex beam can play a role in 

chiroptical interactions has been given a firm theoretical grounding, one can anticipate that 

studying more complex optical processes will lead to further examples of optical rates that 

are sensitive to vortex beam handedness. Furthermore, there are theoretical questions to be 

answered with regards as to why it appears both the spin and orbital angular momentum 

need to be engaged to observe chiroptical effects in single-photon absorption with vortex 

beams – it suggests the route to take would be that of studying the total angular momentum 

of light in chiroptical interactions. Finally, as laid out at the end of Chapter 4, the results 

seem to highlight a mechanism of discriminatory effects using achiral material, this avenue 

requires further work as it potentially opens up chiroptical interactions to a much wider 

range of molecules.    

The key issue developed in Chapter 5 concerned illuminating the fact that chiral molecules 

will still engage their electric polarisability, as well as their mixed electric-magnetic 

susceptibility. Firstly, this invites a reappraisal of past studies on chiroptical interactions in 

other two-centre optical processes and intermolecular interactions, for example the Casmir-

Polder interaction. A more practical application worthy of development would be to 

quantitatively combine the discriminant optical trapping and optical binding forces into a 

single optical force experienced by molecules in an optical trap, and observing the 

interplay of altering parameters that are specific, or shared by, either optical force, 

potentially leading to an all optical method of chiral resolution.  

With the rapid surge of research in the contemporary fields of photonics, plasmonics, and 

metamaterials, QED itself in the future should be adapted to be able to account for these 

types of interactions in what can be termed exotic materials, compared to the standard 

application to dielectric molecules. Quantum electrodynamics is the best theory we have to 

date, and the rewards of its successful application to these new and interesting fields 

should provide bountiful insights.  

 


