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Abstract. An important problem in evolutionary biology is to reconstruct the evolutionary3
history of a set X of species. This history is often represented as a phylogenetic network, that is, a4
connected graph with leaves labelled by elements in X (for example, an evolutionary tree), which is5
usually also binary, i.e. all vertices have degree 1 or 3. A common approach used in phylogenetics to6
build a phylogenetic network on X involves constructing it from networks on subsets of X. Here we7
consider the question of which (unrooted) phylogenetic networks are leaf-reconstructible, i.e. which8
networks can be uniquely reconstructed from the set of networks obtained from it by deleting a9
single leaf (its X-deck). This problem is closely related to the (in)famous reconstruction conjecture10
in graph theory but, as we shall show, presents distinct challenges. We show that some large classes11
of phylogenetic networks are reconstructible from their X-deck. This includes phylogenetic trees,12
binary networks containing at least one non-trivial cut-edge, and binary level-4 networks (the level13
of a network measures how far it is from being a tree). We also show that for fixed k, almost all14
binary level-k phylogenetic networks are leaf-reconstructible. As an application of our results, we15
show that a level-3 network N can be reconstructed from its quarnets, that is, 4-leaved networks16
that are induced by N in a certain recursive fashion. Our results lead to several interesting open17
problems which we discuss, including the conjecture that all phylogenetic networks with at least five18
leaves are leaf-reconstructible.19
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1. Introduction. An important problem in evolutionary biology is to recon-23

struct the evolutionary history of a set of species. This commonly involves construct-24

ing some form of phylogenetic network, that is, a graph (often a tree) labeled by a25

set X of species, for which some data (e.g. molecular sequences) has been collected.26

Over the past four decades several ways have been introduced to construct phyloge-27

netic trees (see e.g. [4]) and, more recently, methods have been developed to construct28

more general phylogenetic networks (see e.g. [7, 8]).29

One particular approach for constructing phylogenetic networks involves building30

them up from smaller networks. This approach is particularly useful when it is only31

feasible to compute networks from the biological data on small datasets (e.g. when32

using likelihood approaches). The problem of building trees from smaller trees has33

been studied for some time (where it is commonly known as the supertree problem; cf.34

e.g. [16, Chapter 6]) but the related problem for networks has been only considered35

more recently (see e.g. [9, 10] focussing on directed phylogenetic networks and [18]36

focussing on pedigrees). Even so, this problem can be extremely challenging.37
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2 LEO VAN IERSEL AND VINCENT MOULTON

In this paper, we shall present a unified approach to constructing phylogenetic net-38

works from smaller networks. We shall consider unrooted phylogenetic networks (cf.39

[6]). Essentially, these are connected graphs with leaf-set labelled by a set X; they are40

called binary if the degree of every vertex is 1 or 3. For such networks, we focus on the41

problem of reconstructing a phylogenetic network from its X-deck, roughly speaking,42

this is the collection of networks that is obtained by deleting one leaf and supressing43

the resulting degree-2 vertex. We call a network that can be reconstructed from its44

X-deck leaf-reconstructible. See Sections 2 and 3 for formal definitions.45

Intriguingly, the problem of reconstructing a graph from its vertex deleted subgraphs46

has been studied for over 75 years (it was introduced in 1941 by Kelly and Ulam [3]),47

where it is known as the reconstruction conjecture. In particular, this conjecture states48

that every finite simple undirected graph on three of more vertices can be constructed49

from its collection of vertex deleted subgraphs. This conjecture remains open, but50

has been shown to hold for several large and important classes of graphs [3]. Even so,51

as we shall see, although determining leaf-reconstructibilty of a phylogenetic network52

is closely related to the reconstruction conjecture, there are several key differences53

which mean that they need to be treated as quite distinct problems.54

We now summarize the contents of the rest of the paper. In the next section, we55

present some preliminaries concerning phylogenetic networks. In Section 3, we then56

formally define leaf-reconstructibility and explain why this concept is distinct from the57

notion of end-vertex reconstructibilty a well-studied concept in graph reconstruction58

theory (see [3, p.237]). (While the notions end-vertex and leaf have the same meaning,59

the difference comes from the fact that end-vertex reconstructibility is applied to60

graphs without leaf-labels, while leaf-reconstructibility is applied to networks where61

the leaves are labelled.) In addition, we show that certain key features of a binary62

phylogenetic network (such as its level and reticulation number) can be reconstructed63

from its X-deck.64

In Section 4, we then show that a large class of phylogenetic networks, which we65

call decomposable networks are leaf-reconstructible. These are networks containing at66

least one cut-edge not incident to a leaf. To show this we first show that any phyloge-67

netic tree with at least 5 leaves is leaf-reconstructible. We also note that phylogenetic68

trees with 4 leaves are not leaf-reconstructible. Our result concerning decomposable69

networks is analogous to a result by Yongzhi [21] who showed that the graph recon-70

struction conjecture can be restricted to considering 2-connected graphs.71

The fact that decomposable networks are reconstructible implies that we can restrict72

our attention to leaf-reconstructibility of simple networks, that is, non-decomposable73

networks. An important feature of a phylogenetic network N is its level, which mea-74

sures how far away the network is from being a phylogenetic tree (in particular, trees75

are level-0 networks). By considering certain subconfigurations in simple networks,76

in Section 5, we prove that, for fixed k, almost all binary level-k networks are leaf-77

reconstructible.78

In Section 6, we then turn to the problem of computing the smallest number of ele-79

ments in the X-deck of a leaf-reconstructible network that are required to reconstruct80

it, which we call its leaf-reconstruction number. This is analogous to the so-called re-81

construction number of a graph (cf. [1] for a survey on these numbers). In particular,82

we show that the leaf-reconstruction number of any phylogenetic tree on 5 or more83

leaves is 2, unless it is a star-tree in which case this number is 3. We also show that84
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this implies that the leaf-reconstruction number of any decomposable phylogenetic85

network with at least 5 leaves is 2.86

In Section 7, we turn our attention to low-level networks, showing that all binary level-87

4 networks with at least five leaves have leaf-reconstruction number at most 2. The88

proof uses several lemmas that could be useful in studying the leaf-reconstructibility89

of higher-level networks.90

In practice, most methods for constructing phylogenetic networks from smaller net-91

works to date have focussed on using networks with small numbers of leaves (in the92

rooted case, often 3-leaved networks). In Section 8, by using a recursive argument93

and our previous results, we show that any level-3 network can be reconstructed from94

its set of quarnets. Essentially, these are 4-leaved networks which are obtained from95

N by selecting 4 leaves in the network, removing all other leaves and suppressing96

degree-2 vertices, multi-edges and biconnected components with two incident cut-97

edges. Our result on quartnets is analogous to results presented in [12] for level-298

rooted phylogenetic networks.99

Several variants of the reconstruction conjecture have been considered in the litera-100

ture (see [3]). We can also consider variants for phylogenetic networks. In Section 9,101

we consider the problem of reconstructing a phylogenetic network from its collec-102

tion of edge-deleted subgraphs, showing that in this setting we can sharpen the leaf-103

reconstructibility bounds that we previously obtained. We then conclude in the last104

section by discussing the problem of reconstructing directed phylogenetic networks,105

as well as various open problems.106

2. Preliminaries. In this section, we present some preliminaries concerning107

phylogenetic networks (cf. [6])108

Let X be a finite set with |X| ≥ 2.109

Definition 2.1. A phylogenetic tree on X is a tree with no degree-2 vertices in which110

the leaves (degree-1 vertices) are bijectively labelled by the elements of X.111

A biconnected component of a graph is a maximal 2-connected subgraph and it is112

called a blob if it contains at least two edges.113

Definition 2.2. A phylogenetic network on X is a connected graph N such that114

contracting each blob (one by one) into a single vertex gives a phylogenetic tree on X.115

A bipartition A|B of X, with A,B 6= ∅ is a split of a phylogenetic network N if N116

contains a cut-edge e such that the elements of A and B are the leaf-labels of the two117

connected components of N − e. If this is the case, we also say that the split A|B is118

induced by e. From the definition of a phylogenetic network it follows that each of its119

cut-edges induces a split and no two cut-edges induce the same split. Moreover, the120

phylogenetic tree obtained by contracting each blob of N into a single vertex is the121

unique phylogenetic tree that has precisely the same splits as N . This phylogenetic122

tree is denoted T (N), see Figure 1 for an example.123

A cut-edge is called trivial if at least one of its endpoints is a leaf. A phylogenetic124

network with at least one nontrivial cut-edge is called decomposable. We call a phy-125

logenetic network simple if it has precisely one blob.126
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Fig. 1. A binary phylogenetic network N , the phylogenetic tree T (N), and two elements of the
X-deck of N : the phylogenetic network Na and the pseudo-network Ne.

Definition 2.3. A pseudo-network on X is a multigraph with no degree-2 vertices in127

which the leaves (degree-1 vertices) are bijectively labelled by the elements of X.128

Hence, each phylogenetic tree is a phylogenetic network and each phylogenetic network129

is a pseudo-network. We let L(N), V (N), E(N) denote, respectively, the set of leaves,130

vertices and edges of a pseudo-network N . In addition, the phylogenetic tree T (N) is131

defined as the phylogenetic tree obtained by contracting each blob of N into a single132

vertex and suppressing any resulting degree-2 vertices. Two pseudo-networks N,N ′133

are equivalent, denoted N ∼ N ′ if there exists a graph isomorphism between N and N ′134

that is the identity on X.135

A pseudo-network is called binary if every non-leaf vertex has degree 3. Note that136

our definition of a binary phylogenetic network is slightly different from the one pre-137

sented in [6], and has the advantage that for fixed X, there are only finitely many138

phylogenetic networks with fixed level and leaf-set X (essentially because the num-139

ber of phylogenetic trees with leaf set X is finite cf. [16]). Note also that a binary140

phylogenetic network is simple precisely when it is not decomposable and not a star141

tree. However, this is not the case for nonbinary networks (because then there can be142

blobs that overlap in a single vertex).143

3. X-decks and leaf-reconstructibility. In this section we introduce the con-144

cept of leaf-reconstructibility. We begin by defining the X-deck for a phylogenetic145

network on X.146

Given a phylogenetic network N and a vertex v ∈ V (N), the pseudo-network Nv is147

the result of deleting vertex v from N , together with its incident edges, and suppress-148

ing resulting degree-2 vertices. See Figure 1 for an example. Given a phylogenetic149

network N on X and U ⊆ V (N), the U -deck of N is the multiset {Nu | u ∈ U}.150
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Fig. 2. A pair of phylogenetic networks that are not leaf-reconstructible (and not even V (N)-
reconstructible) but that are end-vertex reconstructible (when ignoring the leaf-labels).
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Fig. 3. A pair of phylogenetic networks that are not end-vertex reconstructible (when ignoring
the leaf-lables) but that are leaf-reconstructible.

A U -reconstruction of a network N on X is a network N ′ on X with V (N ′) = V (N)151

and N ′u ∼ Nu for all u ∈ U . We call a phylogenetic network N U -reconstructible if152

every U -reconstruction of N is equivalent to N . The U -reconstruction number of a153

network N on X is the smallest k for which there is a subset U ′ ⊆ U with |U ′| = k154

such that N is U ′-reconstructible.155

We are usually interested in the case that U ⊆ X. For the case that U = X, we will156

also refer to X-reconstruction, X-reconstructible and X-reconstruction number as157

leaf-reconstruction, leaf-reconstructible and leaf-reconstruction number, respectively.158

It could also be interesting to take U = V (N), but we shall not consider this possibility159

in this paper.160

If N is a binary network on X and x ∈ X then N can be obtained from Nx by161

attaching x to some edge e, i.e., to subdivide e by a new vertex v and adding a vertex162

labelled x and an edge between v and x. For example, the network N in Figure 1 is163

{e}-reconstructible since it can be uniquely reconstructed from Ne by attaching leaf e164

to one of the multi-edges. Hence, this network has leaf-reconstruction number 1.165

The networks in Figure 2 are not leaf-reconstructible since both networks have the166

same X-deck.167

Remark 1. At first sight it might appear that leaf-reconstructibility of a phylogenetic168

network could be equivalent to end-vertex reconstructibility (where one tries to recon-169

struct a graph from the deck obtained by deleting only its end-vertices, i.e. leaves,170

cf. [3, p.237]). However, these are distinct concepts. For example, the phylogenetic171

networks in Figure 3 are leaf-reconstructible. However, considered as graphs (with no172

labels), they are not end-vertex reconstructible, as they both have the same end-vertex173

deck (the multiset of graphs obtained by deleting a single leaf) [15, p.313]. Conversely,174

the networks in Figure 2 are end-vertex reconstructible but not leaf-reconstructible.175

Leaf-reconstructibility is also different from reconstructibility, because the latter aims176

at reconstructing a graph from subgraphs obtained by deleting any vertex (not neces-177

sarily a leaf) and without suppressing any resulting degree-2 vertices.178
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We call a class N of phylogenetic networks leaf-reconstructible if each N ∈ N is179

leaf-reconstructible. Class N is weakly leaf-reconstructible if, for each network N ∈180

N , all leaf-reconstructions of N that are in N are equivalent to N . Class N is181

leaf-recognizable if, for each network N ∈ N , every leaf-reconstruction of N is also182

in N .183

Observation 1. A class N of phylogenetic networks is leaf-reconstructible if and only184

if it is leaf-recognizable and weakly leaf-reconstructible.185

We conclude this section by showing that certain features of a binary phylogenetic186

network on X can be reconstructed from its X-deck. The reticulation number of a187

pseudo-network N is defined as |E(N)|− |V (N)|+ 1. The level of N is the maximum188

reticulation number of a biconnected component of N . A phylogenetic network is189

called a level-k network, with k ∈ N, if its level is at most k. A phylogenetic network190

is called a simple level-k network if it is simple and has level exactly k.191

A function f defined on a class N of phylogenetic networks is leaf-reconstructible if192

for each N ∈ N and for any leaf-reconstrution M of N we have f(N) = f(M).193

Proposition 3.1. The functions assigning to each binary phylogenetic network its194

number of edges, number of vertices, reticulation number or level are all leaf-recon-195

structible.196

Proof. Let N be any phylogenetic network and x ∈ L(N).197

If |V (N)| = 2, then |V (Nx)| = |V (N)| − 1 and |E(Nx)| = |E(N)| − 1. Moreover, the198

level and reticulation number of Nx are 0, the same as the reticulation number and199

level of N .200

If |V (N)| ≥ 3, then |V (Nx)| = |V (N)| − 2 and |E(Nx)| = |E(N)| − 2. Moreover,201

the level and reticulation number of Nx are the same as the reticulation number and,202

respectively, level of N .203

In both cases, the proposition follows directly.204

The following is a direct consequence.205

Corollary 3.2. For each k ∈ N, the class of binary level-k phylogenetic networks is206

leaf-recognizable.207

4. Decomposable networks. In this section we will consider decomposable208

networks, that is, networks with at least one nontrivial cut-edge (that is, a cut-edge209

which does not contain a leaf). We start with a few simple observations. Note that,210

for |X| ≤ 3, there exists a unique phylogenetic tree on X which is therefore X-211

reconstructible. For |X| = 4, no binary phylogenetic tree on X is X-reconstructible,212

but all phylogenetic trees T on X are V (T )-reconstructible.213

Theorem 4.1. Any phylogenetic tree with at least five leaves is leaf-reconstructible.214

Proof. The class of phylogenetic trees is leaf-recognizable by Corollary 3.2. To show215

weak-reconstructibility, suppose that there exist phylogenetic trees T 6∼ T ′ on X such216

that T and T ′ have the same X-deck. Then there is at least one nontrivial split217

A|B that is a split of, without loss of generality, T but not of T ′. Since |X| ≥ 5,218

at least one of A and B contains at least three elements. The other side contains at219

least two elements since the split is nontrivial. Assume a1, a2, a3 ∈ A and b1, b2 ∈ B.220

Then Ta1
has split A \ {a1}|B and Ta2

has split A \ {a2}|B. Hence, T ′a1
and T ′a2

have221
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the same splits, respectively. This implies that T ′ has a split that can be obtained222

from A \ {a1}|B by inserting a1. Since it does not have split A|B, it must have split223

A \ {a1}|B ∪ {a1}. Similarly, T ′ must have the split A \ {a2}|B ∪ {a2}. This leads to224

a contradiction because these splits are incompatible (see e.g. [16]).225

Remark 2. It is known that any tree is reconstructible [14]. A proof of this result is226

given in [3, p.232], which uses a generalization of Kelly’s Lemma [14]. Kelly’s Lemma227

is key to proving several results in graph reconstructibility. We were unable to derive228

an analogous result for leaf-reconstructibility – it would be interesting to know if some229

such result exists. Note also that trees are known to be end-vertex reconstructible [11].230

To extend Theorem 4.1 to decomposable networks, we will use the following observa-231

tion.232

Observation 2. For any phylogenetic network N on X and any leaf x ∈ X we have233

(T (N))x = T (Nx)234

Corollary 4.2. The function mapping a phylogenetic network N with at least five235

leaves to T (N) is leaf-reconstructible.236

Proof. By Observation 2 and Theorem 4.1.237

Theorem 4.3. Any decomposable phylogenetic network with at least five leaves is leaf-238

reconstructible.239

Proof. LetN be the class of phylogenetic networks with at least five leaves and at least240

one nontrivial cut-edge. This class is leaf-recognizable since a phylogenetic network241

on X belongs to this class if and only if every element of its X-deck has at least four242

leaves and at most two elements of its X-deck have no nontrivial cut-edges.243

It remains to show weak leaf-reconstructibility. Suppose |X| ≥ 5 and let N be a phylo-244

genetic network on X with some nontrivial cut-edge e. Let A|B be the split induced245

by e. By Corollary 4.2, T (N) is X-reconstructible. Hence, any reconstruction N ′246

of N contains a unique edge e′ representing split A|B. Since e is nontrivial, there247

exist leaves a1, a2 ∈ A and b1, b2 ∈ B. Pseudo-network Na1
contains a unique edge f248

inducing split A \ {a1}|B. Since Na1
∼ N ′a1

, the connected component of Na1
− f249

containing B is equivalent to the connected component of N ′ − e′ containing B. Call250

this connected component NB and let u be the endpoint of f that it contains. Simi-251

larly, pseudo-network Nb1 contains a unique edge g inducing split A|B \ {b1} and the252

connected component of Nb1 − g containing A is equivalent to the connected compo-253

nent of N ′ − e′ containing A. Call this connected component NA and let v be the254

endoint of g that it contains. Then, N ′ can be obtained from NA and NB by adding255

an edge between u and v. Therefore, N ′ ∼ N .256

5. Simple networks. When considering leaf-reconstructability of binary net-257

works we can, by Theorem 4.3, restrict to simple networks, which are binary net-258

works containing precisely one blob. Therefore, in this section we focus on leaf-259

reconstructibility of simple binary networks. The class of such networks is clearly260

leaf-recognizable since a phylogenetic network on X is contained in this class if and261

only if each element of its X-deck is binary and has precisely one blob.262

We say that (x, y, z) is a 3-chain of a phylogenetic network N on X if x, y, z ∈ X263

and N contains a path (u, v, w) such that x, y and z are respectively a neighbour264

of u, v and w.265
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Lemma 5.1. Any simple binary level-k phylogenetic network containing a 3-chain is266

leaf-reconstructible if it has at least 4 leaves and at least 5 leaves if k = 1.267

Proof. The class N of such networks is leaf-recognizable since a simple binary level-k268

phylogenetic network on X, with |X| ≥ 4 and |X| ≥ 5 if k = 1, is contained in N if269

and only if at most three elements of its X-deck do not contain a 3-chain.270

To show weak leaf-reconstructibility, let N ∈ N be a phylogenetic network on X271

and let (x, y, z) be a 3-chain in N . Since |X| ≥ 4, there exists at least one other272

leaf a ∈ X. Consider Ny and Na. First observe that Na contains a 3-chain (x, y, z).273

In Ny, there is a unique edge e between the neighbours of x and z. Moreover, in Ny274

there is no 3-chain (x, a, z) by the assumption that |X| ≥ 5 if k = 1. Let N ′ ∈ N be275

a {y, a}-reconstruction of N . Then N ′ contains a 3-chain (x, y, z) since Na contains276

a 3-chain (x, y, z) and Ny does not contain a 3-chain (x, a, z). Hence, N ′ can be277

reconstructed from Ny by attaching y to edge e. Therefore, N ′ ∼ N .278

Corollary 5.2. Any simple binary level-k phylogenetic network with at least 6k− 5279

leaves and k ≥ 2 is leaf-reconstructible.280

Proof. Leaf-recognizability is clear. Let N be a simple binary level-k phylogenetic281

network on X with k ≥ 2 and |X| ≥ 6k−5. Deleting all leaves from N and suppressing282

all degree-2 vertices gives a 3-regular multigraph G. Since N is simple level-k, |E(N)|−283

|V (N)|+1 = k and hence |E(G)|−|V (G)|+1 = k. Combining this with the fact that,284

since G is 3-regular, 3|V (G)| = 2|E(G)| gives that |E(G)| = 3k − 3. Suppose that N285

contains no 3-chain. Then it could have at most two leaves per edge of G, implying286

that |X| ≤ 6k− 6. Hence, N contains a 3-chain and is therefore X-reconstructible by287

Lemma 5.1.288

Corollary 5.3. Any binary phylogenetic network N = (V,E) on X with |X| ≥289

max{6(|E| − |V |) + 1, 5} is leaf-reconstructible.290

Proof. If N contains a nontrivial cut-edge, then apply Theorem 4.3. If it is simple291

level-1, then apply Lemma 5.1. If it is simple level-k with k ≥ 2 then |E|−|V |+1 = k292

and hence |X| ≥ 6k − 5 and therefore we can apply Corollary 5.2.293

We say that almost all phylogenetic networks from a certain class N are leaf-recon-294

structible, if the probability that a network drawn uniformly at random out of all295

networks in N with n leaves is leaf-reconstructible goes to 1 when n goes to infin-296

ity.297

Corollary 5.4. For any fixed k, almost all binary level-k phylogenetic networks are298

leaf-reconstructible.299

Proof. All networks with at least five leaves and some nontrivial cut-edge are leaf-300

reconstructible by Theorem 4.3. For a simple binary level-k phylogenetic network N =301

(V,E) on X, with k ≥ 1 we have (similar to in the proof of Corollary 5.2)302

|V | = 2k − 2 + 2|X|.303

Hence, when |V | → ∞ then |X| → ∞. When |X| ≥ max{6k − 5, 5} then N is304

X-reconstructible by Lemma 5.1 and Corollary 5.2. The corollary follows.305

6. Reconstruction numbers of decomposable networks. In this section,306

we shall show that the reconstruction number of a decomposable phylogenetic network307

with at least five leaves is at most two.308
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Observation 3. Let k ≥ 0. To recognize that a phylogenetic network N is level-k it309

suffices to check that any element of its X-deck is level-k.310

We start by determining the reconstruction number of binary trees.311

The median of three leaves x, y, z ∈ L(T ) in a phylogenetic tree T is the unique vertex312

that lies on each of the paths between all pairs of leaves in {x, y, z}.313

Lemma 6.1. Any binary phylogenetic tree T with at least five leaves has leaf-recon-314

struction number 2.315

Proof. The class of phylogenetic trees on X is {x}-recognizable for any x ∈ X by316

Observation 3. No phylogenetic tree on X with |X| ≥ 5 is {x}-reconstructible for317

any x ∈ X since attaching x to different edges in Tx gives different non-equivalent318

trees. Hence, the leaf-reconstruction number of such trees is at least 2. It remains to319

show that it is exactly 2.320

Consider a binary phylogenetic tree T on X with |X| ≥ 5. Take any two leaves x, y ∈321

X such that the distance between them is at least 4. Such leaves exist since |X| ≥ 5.322

We will show that T can be uniquely reconstructed from Tx and Ty. First observe323

that any leaf-reconstruction of T is binary since Tx and Ty are binary and x and y do324

not have a common neighbour.325

Let w be the neighbour of x in T and u, v the other two neighbours of w. Then Tx326

has an edge {u, v}.327

First assume that neither u nor v is a leaf. Then there exist leaves a, b 6= y such that328

the path between a and b (in T ) contains u but not w and there exist leaves c, d 6= y329

such the path between c and d (in T ) contains v but not w. Then u is the median330

of a, b, c and v is the median of a, c, d in T . Call in Tx and Ty the median of a, b, c331

also u and the median of a, c, d also v. Then, in Ty, the neighbour of x is adjacent332

to u and v. Hence, we can reconstruct T from Tx by attaching x to the edge {u, v}.333

Now assume that u is a leaf. Then there again exist leaves c, d 6= y such that v is on334

the path between c and d (in T ). In this case, v is the median of u, c, d in T . Call335

the median of u, c, d in Tx and Ty also v. Then, since the neighbour of x in Ty is336

adjacent to u and v, we can again uniquely reconstruct T from Tx by attaching x to337

the edge {u, v}.338

We now consider nonbinary trees.339

Theorem 6.2. Any phylogenetic tree with at least five leaves has leaf-reconstruction340

number 2 unless it is a star, in which case it has leaf-reconstruction number 3.341

Proof. As in the proof of Lemma 6.1, it is clear that, for any x ∈ X, the class of342

phylogenetic trees on X is {x}-recognizable and no phylogenetic tree on X is {x}-343

reconstructible if |X| ≥ 5. Consider a phylogenetic tree T on X with |X| ≥ 5.344

First consider the case that T is a star. Then, for any x, y ∈ X, there exists a345

phylogenetic tree T ′ 6∼ T on X such that T ′x ∼ Tx and T ′y ∼ Ty (T ′ has two internal346

vertices, leaves x and y are adjacent to one of these internal vertices while all other347

leaves are adjacent to the other internal vertex). Hence, the X-reconstruction number348

of T is at least 3. To see that it is exactly 3, note that any phylogenetic tree that is349

not a star has at most two elements in its X-deck that are stars. Hence, since there350

exists a unique phylogenetic star tree on X, the reconstruction number of T is 3.351
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Now consider the case that T contains exactly one nontrivial cut-edge {u, v}. Take352

one leaf x adjacent to u and one leaf y adjacent to v. First suppose that u has353

degree 3. Then v has degree at least 4. Hence, Tx is a star tree and Ty has exactly354

one nontrivial cut-edge {u′, v′}. Suppose x is adjacent to u′. Then u′ is adjacent to355

exactly one other leaf z. Hence, we can uniquely reconstruct T from Tx by attaching x356

to the edge incident to z. Now suppose that both u and v have degree at least 3.357

Then Tx and Ty both have exactly one nontrivial cut-edge. Let z be any leaf adjacent358

to the neighbour of x in Ty. Then we can uniquely reconstruct T from Tx by adding x359

with an edge to the neighbour of z.360

Finally, assume that T has at least two nontrivial cut-edges. Then there exist two361

leaves x, y ∈ X such that the distance between them is at least 4. Let w be the362

neighbour of x in T and u, v 6= x two other neighbours of w.363

If w has degree 3, then we can proceed as in the proof of Lemma 6.1.364

Now assume w has degree at least 4. Then it has a neighbour z /∈ {u, v, x}. Then there365

exist leaves a, b, c /∈ {x, y} reachable by paths from u, v and z respectively that do366

not contain w. Therefore, the median of a, b and c in T is w. Hence, we can uniquely367

reconstruct T from Tx by adding x with an edge to the median of a, b and c.368

Corollary 6.3. Any decomposable phylogenetic network with at least five leaves has369

leaf-reconstruction number at most 2.370

Proof. Let N be a phylogenetic network that has at least five leaves and at least371

one nontrivial cut-edge and let x and y be maximum distance apart in T (N). Then372

any {x, y}-reconstruction has a nontrivial cut-edge. Moreover, since the distance373

between x and y in T (N) is at least 3, T (N) is {x, y}-reconstructable by the proof374

of Theorem 6.2. Moreover, by the proof of Theorem 4.3, it now follows that N is375

{x, y}-reconstructable.376

7. Low-level networks. In this section we show that all binary networks with377

at least five leaves and level at most 4 are leaf-reconstructible and, moreover, have378

leaf-reconstruction number at most 2. The proofs are based on the following no-379

tions.380

Definition 7.1. A binary level-k generator, for k ≥ 2, is a 2-connected 3-regular381

multigraph G = (V,E) with |E| − |V |+ 1 = k. The underlying generator of a binary382

simple level-k network N is the generator obtained from N by deleting all leaves and383

suppressing resulting degree-2 vertices. For an edge e of G, we say that a leaf x is on384

edge e in N if the neighbour of x is on a path that is suppressed into edge e. If x is385

on edge e then we also say that e contains x and we refer to e as the x-edge.386

See Figure 4 for all binary level-k generators, for 2 ≤ k ≤ 4.387

We say that two cycles are similar if they have the same number of vertices and388

the same number of vertices that are neighbours of leaves, and hence also the same389

number of generator vertices (i.e. vertices that are not neighbours of leaves).390

The following three lemmas show several special cases of simple level-k networks that391

are leaf-reconstructible. We will use these lemmas to show that all simple level-4392

networks are leaf-reconstructible, if they have at least five leaves.393

Lemma 7.2. Let N be a binary simple level-k network on X, with k ≥ 2 and |X| ≥ 5.394

If N contains a cycle C containing the neighbours of leaves a, b, c and d and either395
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level-2

level-3

level-4

G1 G3G2

G4 G5

Fig. 4. All binary level-k generators, for 2 ≤ k ≤ 4.

(i) there is no cycle C ′ 6= C in N that is similar to C and contains the neighbours396

of a, b and c; or397

(ii) c and d are on the same edge of the underlying generator and there is no398

cycle C ′ 6= C in N that is similar to C and contains the neighbours of a, b, c399

and d in a different order,400

then N is {d, e}-reconstructible, for any e ∈ X \ {a, b, c, d}.401

Proof. (i) Note that Ne has a cycle Ce containing the neighbours of a, b, c and d and no402

other cycle that is similar to Ce and contains the neighbours of a, b, c and d. Assume403

without loss of generality that these neighbours are visited in this order. Suppose404

that the neighbour of d is the i-th vertex on the path from the neighbour of c to the405

neighbour of a on Ce. Now consider Nd, which contains a cycle Cd containing the406

neighbours of a, b and c and no other cycle similar to Cd that contains the neighbours407

of a, b and c. Let P be the path from the neighbour of c to the neighbour of a on Cd,408

not via the neighbour of b. If the neighbour of e is among the first i vertices of P409

then we let f be the i-th edge on P . Otherwise, we let f be the (i− 1)-th edge on P .410

Then the unique way to insert d into Nd is by attaching it to edge f .411

(ii) Assume without loss of generality that the distance between c and d is 3. Note412

that Ne has a cycle Ce containing the neighbours of a, b, c and d and no cycle that is413

similar to Ce and contains the neighbours of a, b, c and d in a different order. Assume414
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12 LEO VAN IERSEL AND VINCENT MOULTON

again that Ce visits a, b, c and d in this order. Now consider Nd and choose any415

cycle Cd containing the neighbours of a, b and c. Let f be the first edge on the path416

from the neighbour of c to the neighbour of a along Cd, not via the neighbour of b.417

Then the unique way to insert d into Nd is by attaching it to edge f .418

Lemma 7.3. Let N be a binary simple level-k network on X, with k ≥ 2 and |X| ≥ 5.419

If the underlying generator of N has a pair of multi-edges e1, e2 then, unless one420

of e1, e2 contains two leaves and the other one no leaves in N , then N has leaf-421

reconstruction number at most 2.422

Proof. First suppose that there is exactly one leaf x that is on one of the multi-edges.423

Then Nx has multi-edges. Since multi-edges are not allowed in phylogenetic networks,424

the unique way to insert x into Nx is by attaching it to one of the multi-edges.425

Now suppose that there is exactly one leaf x on e1 and exactly one leaf a on e2. Let y426

be any other leaf. Then Ny contains a unique 4-cycle containing the neighbours of x427

and a, and these neighbours are not adjacent. Since Nx contains a unique 3-cycle C428

containing the neighbour of a, the only way to insert x into Nx is by attaching it to429

the unique edge on C that is not incident to the neighbour of a.430

Now suppose that there are exactly two leaves a, b on e1 and exactly one leaf x on e2.431

Let y ∈ X \ {a, b, x}. Then, Ny contains a unique 5-cycle containing the neighbours432

of a, b and x and the neighbour of x is not adjacent to the neighbours of a and b.433

Since Nx contains a unique 4-cycle C containing the neighbours of a and b, the unique434

way to insert x into Nx is by attaching it to the unique edge on C that is not incident435

to the neighbours of a and b.436

Now suppose that there are exactly two leaves a, b on e1 and exactly two leaves c, d437

on e2. This case is handled by Lemma 7.2 (i).438

The only remaining possibility is that there is a 3-chain, which is handled by the proof439

of Lemma 5.1.440

Lemma 7.4. Let N be a binary simple level-k network on X, with k ≥ 2 and |X| ≥ 5.441

If the underlying generator of N has three pairwise incident edges and N has at least442

three leaves on these edges, then N has leaf-reconstruction number at most 2.443

Proof. First suppose that all three edges are incident to some vertex v and the other444

three endpoints are all distinct. If each edge contains at least one leaf, let a, b, c be445

the leaves closest to v on each of the edges. Then N is {a, d}-reconstructible for446

any d ∈ X \ {a, b, c}, since we can reconstruct N from Na by attaching a to the447

edge that is incident to the vertex v′ that is incident to the b-edge and to the c-edge,448

making a the leaf closest to v′ on that edge. Similarly, if one edge contains at least two449

leaves a, b and another edge at least one leaf c, then N is again {a, d}-reconstructible450

for any d ∈ X \ {a, b, c}.451

A similar argument can be used to handle the case that the three edges form a triangle.452

Finally, suppose that at least two of the three edges are multi-edges. Then, by453

Lemma 7.3, exactly two of the three edges form multi-edges, one of them contain-454

ing two leaves, the other one no leaves, and the third edge of the three pairwise455

incident edges contains at least one leaf. Then again it can be seen that N has456

leaf-reconstruction number at most 2 by using a similar argument as above.457

Theorem 7.5. Any binary level-4 phylogenetic network with at least five leaves has458

leaf-reconstruction number at most 2.459
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Proof. Let N be such a network. By Corollary 6.3, we may assume that N has no460

nontrivial cut-edges, i.e. N is simple.461

If N is a simple level-1 network, pick any two x, y that are distance at least 4 apart.462

The fact that N is simple is {x, y}-recognizable. Moreover, using the fact that N463

has at least five leaves, it can easily be shown that N can be uniquely reconstructed464

from Nx and Ny.465

Now suppose that N is a simple level-k network, with k ≥ 2.466

If N has a 3-chain (x, y, z) and a ∈ X \ {x, y, z}, then any {y, a}-reconstruction467

of N is simple. Moreover, by the proof of Lemma 5.1 it can be concluded that N is468

{y, a}-reconstructible. Hence, we may assume that N contains no 3-chains.469

If k = 2, then, considering the unique level-2 generator in Figure 4, we are done by470

Lemma 7.3.471

If k = 3, then there are two possible underlying generators, see Figure 4. First suppose472

the underlying generator G is not K4 and thus has two pairs of multi-edges. Then,473

by Lemma 7.3, we may assume that each pair of multi-edges has one edge containing474

exactly two leaves. Hence, we are done by Lemma 7.2 (i). Now suppose that G = K4.475

Since |X| ≥ 5, it is straightforward to check that at least one 3-cycle C of G contains476

at least three leaves in N . By Lemma 7.2, it contains exactly 3 leaves. There are477

two cases (by Lemma 5.1). Either each edge of C contains exactly one leaf, or one478

edge contains two leaves and one edge one leaf. In either case, it is easy to check479

that wherever the other two leaves are, we can apply Lemma 7.2 to see that N has480

reconstruction number at most 2.481

Finally, suppose k = 4. Then there are five possibilities for the underlying generator G,482

see Figure 4. If G ∈ {G1, G2, G3} then, by Lemma 7.3, each pair of multi-edges has483

one edge containing exactly two leaves and one edge containing no leaves. If G = G1484

or G3, then we are done by Lemma 7.2 (i). If G = G2, then it is straightforward to485

check that, since |X| ≥ 5, there must exist some cycle that satisfies the condition of486

Lemma 7.2 (ii).487

Now suppose that G = G4. Observe that G4 consists of two disjoint 3-cycles and488

three other edges, which we will call the middle edges. For every vertex of G4, at489

most two edges incident to this vertex contain leaves by Lemma 7.4. Since |X| ≥ 5, it490

is straightforward to check that there is at least one vertex v of G4 with exactly two491

leaves a, b on the edges incident to v.492

First assume that a is on a middle edge and b is on a triangle edge. Then there is a493

unique Hamiltonian cycle C of G containing the a-edge and the b-edge. First suppose494

that there is at least one leaf c ∈ X \ {a, b} on an edge of C. Assume that c is the495

first such leaf on the path along C between the neighbour of b and the neighbour of a496

not containing v. Let i be the distance from the neighbour of b to the neighbour of c497

on this path. Let d ∈ X \ {a, b, c}. Then N is {c, d}-reconstructible, since the unique498

way to insert c into Nc is by attaching it to the i-th edge of the path along C from499

the neighbour of b to the neighbour of a not containing v. Now suppose that none500

of the leaves in X \ {a, b} are on edges of C. By Lemma 7.4 there are no leaves on501

the third edge incident to v. Hence, since |X| ≥ 5, there at least three leaves on the502

two edges of G that are not on C and not incident to v. It is now straightforward to503

check that N has reconstruction number 2 by Lemma 7.2 (i).504
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Now assume that a and b are both on the same triangle-edge. Then, if the previous505

case is not applicable for any vertex v′ of G4, the only remaining possibility is that506

the other triangle also has an edge containg two leaves and we can apply Lemma 7.2.507

Now assume that a and b are on different triangle edges (of the same triangle). Then,508

if the previous cases are not applicable, all other leaves must be on the other triangle509

and we can use Lemma 7.4.510

Finally, assume that a and b are both on the same middle edge. Then, if the previous511

cases are not applicable, the only remaining possibility is that some other middle edge512

also contains two leaves and we can apply Lemma 7.2.513

Now consider the last level-4 generator G5 = K3,3. As before, it is straightforward514

to check that there is at least one vertex v of G5 with exactly two leaves a, b on the515

edges incident to v.516

First suppose that a and b are on different edges incident to v. Observe that there517

are precisely two Hamiltonian cycles C and D of G5 containing the a-edge and the518

b-edge. Since each leaf is on an edge of at least one of C and D, at least one edge519

of C and D contains a third leaf c ∈ X \ {a, b}. Suppose that c is on an edge520

of C. First suppose that all leaves are on edges of C. Then we can use a similar521

argument as for the Hamiltonian cycle in G4 to show that N is {c, d}-reconstructible,522

for some d ∈ X \ {a, b, c}. If at least one leaf e ∈ X \ {a, b, c} is on an edge that523

is not also on D, then we choose the Hamiltonian cycle containing the e-edge, and524

choose d 6= e. Otherwise, all leaves are also on edges of D. Observet that there are525

precisely four edges that are on both C and D, which are two pairs of incident edges.526

Since |X| ≥ 5, it then follows by Lemma 7.4 that N has leaf-reconstruction number 2.527

Now suppose that at least one leaf e ∈ X \ {a, b, c} is not on an edge of C. Then N528

is {c, d}-reconstructible, with d ∈ X \ {a, b, c, e}, again using a similar argument as529

for the Hamiltonian cycle in G4, choosing the Hamiltonian cycle of G not containing530

the e-edge.531

Finally, suppose that a and b are on the same edge incident to v. Then, if the previous532

case is not applicable for any vertex v′ of G5, the only remaining possibility is that533

there is some other edge of G5 containing two leaves and we can apply Lemma 7.2 (ii).534

8. Reconstructing networks from quarnets. We have focussed so far on535

reconstructing networks from their X-deck. We could try to use a recursive argument536

in order to reconstruct networks from smaller subnetworks, with less than |X| − 1537

leaves. However, this approach does not work in general since there are networks for538

which no elements of its X-deck are phylogenetic networks, see Figure 5. Nevertheless,539

it is possible to apply a recursive approach if we use the following variant of the X-deck540

of a network.541

Definition 8.1. Given a phylogenetic network N on X and a leaf x ∈ X, the phylo-542

genetic network NPx is the result of deleting leaf x from N , together with its incident543

edge, and applying the following three operations until none is applicable:544

(i) suppress a degree-2 vertex;545

(ii) replace a pair of multi-edges by a single edge;546

(iii) collapse a blob with precisely two incident cut-edges into a single vertex.547
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Fig. 5. An example of a level-1 phylogenetic network N on X such that no elements of its X-
deck are phylogenetic networks. Nevertheless, it is possible to reconstruct N from the quarnets NPa
and NPd .

Given a phylogenetic network N on X and X ′ ⊆ X, the phylogenetic X ′-deck of N548

is the set {NPx | x ∈ X ′}.549

See again Figure 5 for an example. Note that this form of leaf-deletion was introduced550

for directed level-1 phylogenetic networks in [10] – see also [9] for more details for551

general phylogenetic networks.552

All elements of a phylogenetic X-deck are phylogenetic networks by the following553

observation, which is easily verified.554

Observation 4. Let N be a phylogenetic network N on X, with |X| ≥ 3, and x ∈ X.555

Then NPx is a phylogenetic network on X \ {x}.556

This opens the door to reconstructing networks from smaller subnetworks. A quarnet557

is a phylogenetic network with precisely four leaves. The set of quarnets Q(N) of558

a phylogenetic network N on X is defined recursively by Q(N) = {N} if |X| = 4559

and560

Q(N) =
⋃
x∈X

Q(NPx ) if |X| ≥ 5.561

Here, the union operation keeps one phylogenetic network from each group of equiva-562

lent phylogenetic networks. We say that two sets N ,N ′ of phylogenetic networks are563

equivalent, denoted N ∼ N ′, if there exists a bijection f : N → N ′ with N ∼ f(N)564

for all N ∈ N .565

We say that a network N is reconstructible from its quarnets if every phylogenetic566

network N ′ with Q(N)∼Q(N ′) is equivalent to N . Moreover, a class N of phylo-567

genetic networks is quarnet-reconstructible if each N ∈ N is reconstructible from its568

quarnets.569

Similarly, N is reconstructible from its phylogenetic X-deck if every phylogenetic net-570

work N ′, whose phylogenetic X-deck is equivalent to the phylogenetic X-deck of N ,571

is equivalent to N . Moreover, a class N of phylogenetic networks is phylogenetically572

reconstructible if each N ∈ N is reconstructible from its phylogenetic X-deck.573
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b d

a c

N

d b

a c

M

Fig. 6. Two phylogenetic networks that have the same phylogenetic X-deck but not the same X-
deck (even though the X-deck and phylogenetic X-deck of N are equivalent). Network N is neither
X-reconstructible nor reconstructible from its phylogenetic X-deck, while M is X-reconstructible but
not reconstructible from its phylogenetic X-deck.

If two phylogenetic networks on X have equivalent X-decks, then they have equiv-574

alent phylogenetic X-decks (but not conversely, see Figure 6). Consequently, if a575

phylogenetic network on X is reconstructible from its phylogenetic X-deck, then it is576

X-reconstructible. The following proposition, which shows that the converse is also577

true in some cases, will permit us to apply results from previous sections.578

Proposition 8.2. Let N be a phylogenetic network on X with |X| ≥ 4. If N is Y -579

reconstructible for some Y ⊆ X with |Y | ≥ 2 and NPy ∼ Ny for all y ∈ Y , then N is580

reconstructible from its phylogenetic X-deck.581

Proof. Suppose that there exists a network M that is not equivalent to N but has an582

equivalent phylogenetic X-deck. Since N is Y -reconstructible, there exists a y ∈ Y583

such that Ny 6∼My. Since MPy ∼ NPy ∼ Ny, it follows that MPy 6∼My and hence that584

the neighbour of y in M is in a triangle. Moreover, since Ny has the same reticulation585

number as N , MPy also has the same reticulation number as N . Since, in M , the586

neighbour of y is in a triangle, M has a higher reticulation number than MPy and N .587

Take any z ∈ Y \ {y}. Then, since MPz ∼ NPz ∼ Nz, MPz has the same reticulation588

number as N and MPy and hence a lower reticulation number than M . It follows that589

the neighbour of z in M is also in a triangle. We distingish two cases.590

First assume that the neighbours of y and z are both in the same triangle in M .591

Consider any two leaves x, p ∈ X\{y, z}. Then, the neighbours of y and z are together592

in the same triangle in MPx ∼ NPx and in MPp ∼ NPp . On the other hand, neither of the593

neighbours of y and z is in a triangle in N , since NPz ∼ Nz and NPy ∼ Ny. This is only594

possible when N is a simple level-1 network on X = {x, y, z, p}. This contradicts the595

assumption that N is Y -reconstructible, with Y ⊆ X, and hence X-reconstructible.596

Now assume that the neighbours of y and z are in different triangles in M . Then, the597

neighbour of z is also in a triangle in MPy ∼ Ny. On the other hand, the neighbour598

of z is not in a triangle in N , since NPz ∼ Nz. Hence, in N , the neighbours of y and z599

are part of a 4-cycle. Consider again two leaves x, p ∈ X \ {y, z}. In NPx ∼ MPx and600

in NPp ∼ MPp , the neighbours of y and z are in a triangle or 4-cycle. This is only601

possible when, in M , the neighbours of (without loss of generality) x and y are in602

one triangle while the neighbours of p and z are in a different triangle, and the two603

triangles are adjacent. This implies that there are no other leaves, i.e. X = {x, y, z, p},604

and again N is a simple level-1 network on X. This again leads to a contradiction605

since N is X-reconstructible.606

In particular, we have the following.607
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a

b c
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c

a

Fig. 7. Phylogenetic networks on X = {a, b, c} that are X-reconstructible but not reconstructible
from their phylogenetic X-deck.

Corollary 8.3. Let N be a phylogenetic network on X with |X| ≥ 4. If the X-608

deck of N consists of only phylogenetic networks, then N is reconstructible from its609

phylogenetic X-deck if and only if N is X-reconstructible.610

Note that Corollary 8.3 does not hold when |X| = 3, see Figure 7.611

Theorem 8.4. Let N be a class of phylogenetic networks such that each element612

of N has at least five leaves and, for each element N of N with at least six leaves, the613

phylogenetic X-deck of N is equivalent to a subset of N . Then N is phylogenetically-614

reconstructible if and only if it is quarnet-reconstructible.615

Proof. If N is quarnet-reconstructible then it is phylogenetically-reconstructible since616

if two phylogenetic networks N,N ′ ∈ N have equivalent phylogenetic X-decks then617

it follows directly that Q(N)∼Q(N ′).618

Now suppose that N is phylogenetically-reconstructible. We prove by induction on i619

that each N ∈ N with at most i leaves is quarnet-reconstructible. If i = 5 then the620

phylogenetic X-deck of N is equal to Q(N) and therefore N is quarnet-reconstructible.621

Now suppose i ≥ 6. Since N is reconstructible from its X-deck and each element of622

its X-deck is, by induction, quarnet-reconstructible, N is quarnet-reconstructible.623

First observe that each phylogenetic tree on X with |X| ≥ 5 is reconstructible from624

its phylogenetic X-deck by Theorem 4.1 and Proposition 8.2. Hence, the class of625

phylogenetic trees with at least five leaves is phylogenetically reconstructible.626

However, a similar argument cannot be used to show that even the class of level-627

1 networks is phylogenetically reconstructible. Therefore, it is interesting to study628

which classes of networks are phylogenetically reconstructible.629

Theorem 8.5. The class of level-3 phylogenetic networks with at least five leaves is630

phylogenetically reconstructible.631

To prove this theorem, we will first show that an analogue of Theorem 4.3 holds.632

Theorem 8.6. The class of decomposable phylogenetic networks with at least five633

leaves is phylogenetically reconstructible.634

Proof. The proof is very similar to that of Theorem 4.3. As in that proof, first note635

that a phylogenetic network has at least one nontrivial cut-edge if and only if at most636

two elements of its phylogenetic X-deck do not. Let N be some phylogenetic network637

on X with at least one nontrivial cut-edge and |X| ≥ 5. Since (T (N))Px = T (NPx ),638

for all x ∈ X, we can reconstruct T (N) from the phylogenetic X-deck of N . We can639

then use exactly the same argument as in the last part of the proof of Theorem 4.3640
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to show that N is reconstructible from its phylogenetic X-deck (see Figure 5 for an641

illustration).642

We now prove Theorem 8.5.643

Proof. By Theorem 8.6, it suffices to consider simple level-k networks with 1 ≤ k ≤ 3.644

For simple level-1 networks, the phylogenetic X-deck is precisely equal to the X-deck645

and we are done by Proposition 8.2.646

Now consider a simple level-2 network N and its underlying generator G. If the647

phylogenetic X-deck of N is not equal to its X-deck then one of the three edges648

of G contains exactly one leaf x, another edge of G contains no leaves, and the third649

edge of G contains all other leaves X \ {x}. Then N is {y, z}-reconstructible for any650

y, z ∈ X \ {x} with distance between them at least 4. Since NPy = Ny and NPz = Nz651

we are done by Proposition 8.2.652

Therefore, we may assume that N is a simple level-3 network. Suppose the phyloge-653

netic X-deck of N is not equal to its X-deck. Then the underlying generator G of N654

is not equal to K4 (since K4 does not have any multi-edges). Hence, G is the other655

level-3 generator, see Figure 4. Moreover, at least one pair of multi-edges contains656

precisely one leaf, say leaf x. The other pair of multi-edges contains at least one leaf y.657

If there is at least one leaf z on an edge that is not in a pair of multi-edges, then it658

is straightforward to check that, wherever you put leaves p, q ∈ X \ {x, y, z}, there659

is a cycle containing the neighbours of leaves a, b, c, d satisfying the conditions of660

Lemma 7.2(i) and a fifth leaf e such that NPd = Nd and NPe = Ne, and we are done661

by Proposition 8.2.662

The only remaining case is that all leaves in X \{x} are on the pair of multi-edges not663

containing x. Then there is again a cycle containing the neighbours of leaves a, b, c, d664

satisfying the conditions of Lemma 7.2(i) and a fifth leaf e such that NPd = Nd. How-665

ever, if |X| = 5 then the only choice for e is e = x and hence NPe 6∼Ne. Nevertheless,666

we can use a similar argument as in the proof of Lemma 7.2(i) since NPe does contain667

a unique cycle containing the neighbours of a, b, c and d.668

Corollary 8.7. Any level-3 phylogenetic network is reconstructible from its quar-669

nets.670

9. Edge-reconstructibility. In this section we shall consider the problem of re-671

constructing a phylogenetic network from its edge-deleted networks. We first formalize672

this concept (cf. [3, Section 2] for a review of edge-reconstruction in graphs).673

Given a phylogenetic network N and an edge e ∈ E(N), the pseudo-network Ne is the674

result of deleting edge e from N and suppressing resulting degree-2 vertices. The edge-675

deck of N is the multiset {Ne | e ∈ E(N)}. An edge-reconstruction of a network N676

on X is a network N ′ on X with E(N ′) = E(N) and N ′e ∼ Ne for all e ∈ E(N). Note677

that by E(N ′) = E(N) we do not mean that the edges of N are the same pairs of678

vertices as the edges of N ′, but that there exists a bijection f : E(N)→ E(N ′) which679

we assume to be the identity. We call a phylogenetic network N edge-reconstructible680

if every edge-reconstruction of N is equivalent to N .681

Lemma 9.1. Let N be a phylogenetic network on X. If N is leaf-reconstructible then682

it is edge-reconstructible.683

This manuscript is for review purposes only.



LEAF-RECONSTRUCTIBILITY OF PHYLOGENETIC NETWORKS 19

b d

a c

d b

a c

b d

a c

d b

a c

b c d

a

b d c

a

a b c a c b

Fig. 8. Pairs of phylogenetic networks that are not leaf-reconstructible but that are edge-
reconstructible. The dashed edges indicate an edge e such that Ne is not contained in the edge-deck
of the other network of the pair.

Proof. This follows directly from the observation that Ne ∼ N ′e if and only if Nx ∼ N ′x684

for each edge e that has an endpoint x ∈ X in both N and N ′.685

However, there exist edge-reconstructible networks that are not leaf-reconstructible,686

see the examples in Figure 8.687

When considering edge-reconstructability of binary networks we can, by Theorem 4.3688

and Lemma 9.1, again restrict to simple networks.689

We say that (x, y) is a 2-chain of a phylogenetic network N on X if x, y ∈ X and the690

distance between x and y in N is 3.691

Proposition 9.2. Any simple binary phylogenetic network on X containing a 2-chain692

is edge-reconstructible.693

Proof. The fact that N is simple can be recognized by considering three elements694

of its edge-deck Ne1 , Ne2 , Ne3 such that each of e1, e2, e3 is incident to a leaf. Since695

each of Ne1 , Ne2 , Ne3 consists of a simple network and an isolated vertex, any edge-696

reconstruction of N is simple.697

Suppose that N has a 2-chain (x, y). Let u and v be the neighbours of x and y698

in N respectively and e = {u, v}. Let u′ and v′ be the neighbours of x and y in Ne699

respectively.700
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First suppose that (x, y) is not a 2-chain in Ne. There exists at least one edge f that is701

not incident to u or v. Since (x, y) is a 2-chain in Nf , we can uniquely reconstruct N702

from Ne by subdividing the edges {u′, x} and {v′, y} and creating a new edge between703

the subdividing vertices.704

Now suppose that (x, y) is also a 2-chain in Ne. We say that a network has an xy-705

ladder of length k if there exist disjoint paths (x, u1, . . . , uk) and (y, v1, . . . , vk) such706

that ui and vi are adjacent for 1 ≤ i ≤ k. Let p ≥ 1 be the maximum length of707

an xy-ladder in N . Take any such ladder and observe that there exists at least one708

edge g that is not incident to any vertex of the ladder. Then the maximum length of709

an xy-ladder is p in Ng and is p−1 in Ne. Hence, we can again uniquely reconstruct N710

from Ne by subdividing the edges {u′, x} and {v′, y} and creating a new edge between711

the subdividing vertices.712

The following corollary can be proved in a similar way to Corollaries 5.2 and 5.3.713

Corollary 9.3.714

(i) Any simple binary level-k phylogenetic network on X with k ≥ 2 and |X| ≥715

3k − 2 is edge-reconstructible.716

(ii) Any binary phylogenetic network N = (V,E) on X with |X| ≥ max{3(|E| −717

|V |) + 1, 5} is edge-reconstructible.718

10. Discussion. In this paper we have introduced the concept of leaf-recon-719

structible phylogenetic networks. We have shown that several large classes of phy-720

logenetic networks are leaf-reconstructible, and used our results to show that level-3721

networks are defined by their quarnets. We conjecture that all unrooted phylogenetic722

networks with 5 or more leaves are leaf-reconstructible. We expect that this could723

be a difficult conjecture to settle, as with other variants of the graph reconstruction724

conjecture.725

In another direction, it could be of interest to also consider leaf-reconstructibility of726

nonbinary networks. In Theorem 4.1, we showed that nonbinary phylogenetic trees are727

leaf-reconstructible, and in Theorem 4.3 that even all decomposable nonbinary phy-728

logenetic networks are leaf-reconstructible, but what about non-decomposable non-729

binary networks? The following related question could also be worth considering: If730

every nonbinary phylogenetic network with at least five leaves is leaf-reconstructible,731

then is every graph reconstructible?732

In Section 9, we considered edge-reconstructibility, a variant of the leaf-reconstruc-733

tibility problem. Another variant that should be considered is leaf-reconstructibility734

for directed phylogenetic networks. This is an important class of networks, in which735

the networks are directed acyclic graphs, with a single root and leaves labeled by736

the set X. In [9] certain examples of directed phylogenetic networks are presented737

which indicate that such networks may not be leaf-reconstructible, but it remains738

an open problem whether or not this is the case (note that not all digraphs are739

reconstructible [17]).740

In the longer term, it would be interesting to consider leaf-reconstructibility of net-741

works that arise in biological settings. Indeed, even if not every network is leaf-742

reconstructible, it may be that counter-examples are somewhat unlikely to occur as743

evolutionary histories (e.g. if they are highly symmetric).744
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One way to approach this could be to consider random networks. As we have seen745

in Corollary 5.4, for any fixed k, almost all level-k phylogenetic networks are leaf-746

reconstructible. It would be interesting to know whether or not almost all phyloge-747

netic networks on a fixed leaf-set are leaf-reconstructible. In this context, it is worth748

noting that almost every graph has reconstructing number three [2]. We have shown749

that decomposable and binary level-4 networks with at least five leaves have recon-750

struction number at most 2. So, do almost all (binary) phylogenetic networks have751

reconstruction number at most 2?752

Finally, it would be interesting to consider leaf-reconstructibilty of networks that are753

generated according to some model of molecular evolution (see e.g. [4] for a review754

of such models). This would be somewhat analogous to recent ground-breaking work755

on reconstructibility of pedigrees in a stochastic setting [19, 20], and could focus on756

models such as those presented in, for example, [13].757
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