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Summary 

Parasitism is a life history strategy found across all domains of life whereby nutrition is 

obtained from a host. It is often associated with reductive evolution of the genome, including 

loss of genes from the organellar genomes [1,2]. In some unicellular parasites, the 

mitochondrial genome (mitogenome) has been lost entirely, with far-reaching consequences 

for the physiology of the organism [3,4]. Recently, mitogenome sequences of several 

species of the hemiparasitic plant mistletoe (Viscum sp.) have been reported [5,6], revealing 

a striking loss of genes not seen in any other multicellular eukaryotes. In particular, the nad 

genes encoding subunits of respiratory complex I are all absent and other protein-coding 

genes are also lost or highly diverged in sequence, raising the question what remains of the 

respiratory complexes and mitochondrial functions. Here we show that oxidative 

phosphorylation (OXPHOS) in European mistletoe, Viscum album, is highly diminished. 

Complex I activity and protein subunits of complex I could not be detected. The levels of 

complex IV and ATP synthase were at least 5-fold lower than in the non-parasitic model 

plant Arabidopsis thaliana, whereas alternative dehydrogenases and oxidases were higher 

in abundance. Carbon flux analysis indicates that cytosolic reactions including glycolysis are 

greater contributors to ATP synthesis than the mitochondrial TCA cycle. Our results describe 

the extreme adjustments in mitochondrial functions of the first reported multicellular 

eukaryote without complex I. 
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Results and Discussion 

The size of plant mitogenomes varies enormously in size, from 101 kb in the moss 

Buxbaumia aphyll [7] to 11.3 Mb in Silene conica [8], but gene content is less variable, 

typically comprising ~20 - 41 protein coding genes for subunits of complexes I - V, the 

mitochondrial ribosome, cytochrome c maturation, 3 rRNAs and a variable number of tRNAs 

[9]. The Malaysian mistletoe Viscum scurruloideum has an unusually small mitogenome of 

66 kb, making it the smallest land plant mitogenome sequenced to date [5]. Out of 24 core 

genes found in virtually all angiosperm mitogenomes, V. scurruloideum has lost all 9 nad 

genes coding for subunits of complex I as well as the maturase gene matR, the cytochrome 

c biosynthesis gene ccmB and genes for some ribosomal proteins. The V. scurruloideum 

mitogenome has retained genes for complex II (sdh4), III (cob), IV (cox1, cox2 and cox3) 

and V (atp1, atp4, atp6, atp8 and atp9), genes for 5 ribosomal proteins, the genes for two 

cytochrome c maturation factors (ccmC and ccmF), and the protein transporter mttB. 

Extensive mitochondrial gene loss has also been found in other species of mistletoe [6]. 

Although the mitogenome of European mistletoe, Viscum album, is substantially bigger (565 

kb), a similar pattern of gene loss was observed, including the absence of all 9 nad genes, 

but not matR [10]. Mitochondrial genes can be transferred to the nucleus, for example nad7 

in Marchantia polymorpha [11], but it is highly unlikely that this would have happened for all 

9 nad genes.  

The loss of complex I has occurred several times during evolution, but so far, this has only 

been found in unicellular eukaryotes. In several anaerobes, OXPHOS is lost completely, but 

in four lineages of respiring eukaryotes, complex I is lost, including the yeast 

Saccharomyces [12-14]. Here we provide evidence for the lack of complex I in Viscum 

album and uncover dramatic changes in mitochondrial functions of this multicellular plant 

species.  

To investigate the ultrastructure of Viscum mitochondria, leaf mesophyll cells were studied 

by electron microscopy. Small oval organelles of 0.6 - 1.1 µm in length were seen, 

surrounded by a double membrane (Figure 1A). The presence of internal membrane 

structures reminiscent of cristae indicated that these are mitochondria. In contrast to 

mitochondria in other plants species, the number of cristae is very low. In addition, there was 

poor staining in the matrix, and no ribosomes were seen, suggesting a low rate of translation 

of mitochondrially encoded genes. 

To purify mitochondria for proteomic and biochemical studies, we used protocols developed 

for Arabidopsis based on differential centrifugation steps and density gradient centrifugation 
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[15,16]. Two different Viscum album populations were sampled, one in the UK and one in 

Germany, which gave similar results for all our subsequent analyses. Details on locations 

and host trees for each experiment can be found in Table S1. Terminal leaf buds were used 

as source material (Figure 1B), as initial purification attempts with leaves had failed because 

the extracts were very viscous and had high levels of chloroplast contamination. The 

mitochondria sedimented towards the bottom of the gradient, whereas thylakoids were 

retained at the top of the gradient (Figure 1C). The mitochondrial fraction was collected and 

washed, yielding 0.25 – 1 mg mitochondria from 50 g starting material. To verify the 

enrichment in mitochondrial protein, western blot analysis with antibodies against 

mitochondrial marker proteins was performed (Figure 1D). 

To test for the presence of respiratory complexes in Viscum, mitochondrial membranes were 

solubilized with dodecylmaltoside and separated by Blue-Native Polyacrylamide Gel 

Electrophoresis (BN-PAGE). Gels were stained with Coomassie Blue to visualise 

mitochondrial protein complexes, and compared to mitochondria isolated from an 

Arabidopsis thaliana cell culture (Figure 2A). In the Arabidopsis sample, the abundant 

protein complexes I, V and III (from top to bottom) are clearly resolved. The Viscum sample 

also contained numerous bands at high molecular weight, but these were less abundant and 

did not match the pattern in Arabidopsis.  

To identify the respiratory complexes in Viscum, in-gel enzyme activity stains were 

performed on Arabidopsis and Viscum mitochondria separated by BN-PAGE. NADH:NBT 

staining to visualise NADH dehydrogenase activities, including complex I, revealed an 

activity at approximately 146 kDa in both samples, which was previously attributed to 

lipoamide dehydrogenase (LPD2), a component of mitochondrial alpha-ketoacid 

dehydrogenase complexes [17] (Figure 2B). Detection of this activity served as additional 

confirmation that both samples were similarly enriched in mitochondria. In the Arabidopsis 

sample, a clear activity band can be seen at ~1 MDa which represents respiratory complex I. 

This band is completely absent from Viscum mitochondria (Figure 2B). Additional in-gel 

enzyme activity stains confirmed the presence of complex II in Viscum at ~142 kDa (Figure 

2C). Complex III could also be detected, albeit less prominently than in Arabidopsis, through 

visualisation of the peroxidase activity of heme cofactors (Figure 2D). Complex IV was 

detected using reduced cytochrome c and diaminobenzidine, but a much lower activity was 

found in Viscum compared to Arabidopsis (Figure 2E). Taken together, these data show the 

presence of complex II, decreased amounts of complexes III and IV, and they are consistent 

with the proposed absence of respiratory complex I from Viscum. 
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To gain further insights into biochemical functions of mitochondria in Viscum, we performed 

proteomic analyses of whole mitochondria by LC-MS/MS. Because the nuclear genome of 

Viscum album, estimated to be 201 Gb in size [18], has not been sequenced to date, we 

used the Arabidopsis proteome as reference for protein identification. A simulation was 

carried out to show that sample complexity was similar between Arabidopsis and Viscum 

and that 30 to 40 % of the Viscum mitochondrial proteins could be identified using 

Arabidopsis sequences (Data S1). We identified between 384 and 492 proteins per replicate 

(n=3) and built a list of 292 proteins that were confidently identified in at least two replicates 

(Data S1). Of these 292 proteins, 282 have a predicted mitochondrial localization, and 193 

have been experimentally confirmed in Arabidopsis (http://suba.live/). Moreover, we found 

that the Arabidopsis and Viscum mitochondrial samples contained similar, but low (3%) 

levels of likely non-mitochondrial proteins (Data S1). We then determined which biological 

processes are significantly enriched in our purified mitochondria using the gene ontology 

(GO) enrichment tool (geneontology.org). In Arabidopsis, there is, as expected, an 

enrichment of proteins of the electron transfer chain and the mitochondrial ATP synthase. By 

contrast, fewer components of the respiratory chain are detected in Viscum, leading to a 

non-significant enrichment (Figure 3A, Table S2). Because we used the Arabidopsis 

proteome as reference to identify mitochondrial protein in Viscum, this GO enrichment 

analysis suggests that the respiratory chain is either highly divergent between Arabidopsis 

and Viscum or depleted in Viscum. Other mitochondrial functions (e.g. mitochondria 

organisation, TCA cycle, vitamin biosynthesis) are similarly enriched in both samples, 

indicating that they are conserved and demonstrating that comparable numbers of proteins 

involved in these pathways are detectable in both species (Figure 3A, Table S2).  

We also performed complexome profiling to identify and quantify proteins that are 

assembled in higher mass complexes. Mitochondria extracted from Arabidopsis and Viscum 

were solubilized, and protein complexes were separated by BN-PAGE. Each lane was 

divided into 18 gel slices of equal size which were then analysed by mass spectrometry 

(Figure S1A). Using label-free quantification, the abundance profiles of selected proteins 

were extracted. For the respiratory complexes II to V, a number of subunits were detected in 

Viscum, albeit at decreased levels compared to Arabidopsis (Figure S1B). The profiles of 

two proteins involved in housekeeping functions, HSP60 and ANT1, suggest that an equal 

amount of mitochondria was loaded in each lane (Figure S1C).  

To obtain a more quantitative overview of differences in mitochondrial functions between 

Viscum and Arabidopsis, we extracted abundance data of individual peptides for 137 

proteins from both proteomic approaches. The proteins were divided into functional groups, 

and the average abundance of the proteins in each group served as an indicator of the 
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relative prominence of a functional pathway in Viscum relative to Arabidopsis. (Figure 3B, 

Data S2). We found that proteins involved in primary metabolism (TCA cycle, respiratory 

chain, photorespiration, amino acid metabolism) and in mitochondrial translation are less 

abundant in Viscum than in Arabidopsis. However, other mitochondrial functions (e.g., 

cofactor biosynthesis, transport, genome maintenance) are not decreased in Viscum. For the 

respiratory chain, subunits of complexes II, III, IV and V, but none of complex I, were 

detected. Moreover, the abundance of complexes II-V was decreased compared to 

Arabidopsis (to 14-44% of the Arabidopsis levels). This result is in good agreement with the 

in-gel activity staining of respiratory complexes (Figure 2), although our complexome 

analysis suggests that complex V subunits are mostly found unassembled (Figure S1B). In 

plants, additional NADH dehydrogenases and ubiquinol oxidases offer alternatives routes for 

electrons in the respiratory chain, by-passing complex I and complexes III/IV, respectively. 

These so-called alternative pathways were found to be more abundant in Viscum than in 

Arabidopsis (Figure 3B).  

The altered OXPHOS system, in particular the dramatic decrease in the protein levels of 

ATP synthase, suggests that ATP production may not be the primary function of 

mitochondria in Viscum. Using 14C-glucose isotopes, we estimated respiratory fluxes in leaf 

discs of Viscum and Arabidopsis. CO2 can be released from the C1 position by the action of 

non-mitochondrial catabolic reactions (pentose phosphate pathway) whereas CO2 evolution 

from the C3 and C4 positions represents mitochondrial reactions (pyruvate decarboxylase, 

malic enzyme). We did not observe a major difference in the rate of CO2 released from 

14C3,14C4 glucose in the first 2 hours, but from then on, the rate in Arabidopsis leaves was 

greater than in Viscum (Figure 4A). In contrast, the CO2 release from 14C1 glucose was 

found to be higher in Viscum than in Arabidopsis leaf discs at all time points measured 

(Figure 4B). The ratio of CO2 evolution from 14C1 glucose to 14C3,14C4 glucose provides a 

proxy for the relative activity of the TCA cycle with respect to other processes of 

carbohydrate oxidation. This ratio was constant in Arabidopsis, indicating a well coupled 

respiratory pathway. In Viscum, this ratio was increased (Figure 4C), suggesting a 

redirection of carbon metabolic flux from the TCA cycle to glycolysis.  

Taken together, our results show a decrease in several mitochondrial functions in the 

parasitic plant Viscum album. Although our analysis was limited to two tissues, buds and 

leaves, harvested in the spring, the findings from different methods are consistent and the 

proteomics data are reproducible using material from two different populations, in the UK 

and in Germany (Table S1). Consistent with the absence of the nad genes from the 

mitogenome [6,10], complex I could not be detected, neither by in-gel activity staining nor 

proteomic approaches. Complex I pumps 4 protons across the inner mitochondrial 



7 
 

membrane for every NADH molecule oxidised [19], making it a major contributor to the 

proton gradient required for ATP synthesis. Arabidopsis mutants lacking complex I display 

increased glycolytic fluxes to produce ATP [16,20]. Similarly, Viscum has rearranged its 

metabolism to generate ATP through glycolysis rather than mitochondrial respiration. The 

shift in ATP metabolism is reminiscent of the Warburg effect in cancer cells [21] and in 

Baker’s yeast [22], where energy is produced by a high rate of glycolysis accompanied by 

the redirection of pyruvate towards lactate production, away from the TCA cycle. However, 

such an energy strategy requires high levels of glycolytic substrates, which in the 

hemiparasitic Viscum can either be supplied by its own photosynthetic capacity, or come 

from the host. The physiology of Viscum is not well characterized, owing to the complexity of 

the relationship between two rather slow-growing plant species. However, it is thought that 

the photosynthesis rate of Viscum is low [23]. Once the seedling is established, high 

transpiration rates [24] suggest a significant flux of carbon from the host of up to 80 % of the 

total carbon [25]. This value would be compatible with the high demand for carbohydrates to 

sustain energy production from glycolysis.  

The mitochondrial reductive evolution seen in Viscum is not as severe as that in the plastid 

genomes (plastomes) of holoparasitic plants, where, as plants become less dependent on 

their own photosynthetic capability, loss or pseudogenisation of genes in the plastome leads 

to complete loss of photosynthesis [2,26]. Perhaps the most striking example of this 

reductive evolution is the giant “carrion flower” from the Philippines, Rafflesia lagascae, that 

may have lost its entire plastome [27]. So far, parasitic plants, including hemiparasites other 

than mistletoe, have shown little evidence of mitochondrial gene loss and reductive evolution 

[27-30], possibly indicating that it is specific to the genus Viscum or the order Santalales. 

Interestingly, the widely divergent parasitic species within the Santalales have all retained 

photosynthesis. Although it is currently not known how many species have lost complex I, it 

seems possible that diminished mitochondrial capacity precludes loss of photosynthesis, as 

this would remove an important source of ATP and reducing equivalents. To provide further 

insight into the evolution and function of plant mitochondria in relation to the adoption of 

parasitic lifestyles, systematic phylogenomic studies are urgently needed.  
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Figure Legends 

 

Figure 1. Ultrastructure and purification of Viscum album mitochondria 

Electron microscopy images of mitochondria from Viscum album leaves. Scale bar (left and 

middle) = 500 nm. White box indicates area shown in right panel, where scale bar = 100 nm. 

(B) Viscum album branch with two leaves and terminal bud (arrow). The buds were 

harvested to purify mitochondria. Scale bar = 1 cm. (C) Membranes from buds were 

separated by centrifugation on a continuous gradient of Percoll, PVP-40 and sucrose, with a 

40% (w/v)  Percoll cushion in the bottom. The mitochondria fraction (Mit) is marked by an 

arrow. (D) Immuno-blot analysis of two mitochondrial proteins, showing enrichment in the 

mitochondrial fraction compared to total extract. VDAC, voltage-dependent anion channel of 

the outer mitochondrial membrane protein; PDH E1α, subunit of the pyruvate 

dehydrogenase (PDH) complex in the mitochondrial matrix. Equal amounts of protein were 

loaded in each lane, as confirmed by Ponceau staining. 

 

Figure 2. Activity of respiratory complexes in Viscum album. 

(A-E) BN-PAGE analysis of mitochondrial samples from Arabidopsis thaliana tissue culture 

and Viscum album buds (A) Protein complexes visualised with Coomassie staining. (B) 

NADH dehydrogenase activities were visualised with NADH:NBT staining, revealing complex 

I in Arabidopsis but not Viscum, and LPD2, lipoamide dehydrogenase 2, in both samples. 

(C) Complex II activity was visualised with succinate:NBT staining. (D) Heme-dependent 

peroxidase activity of complex III was visualised using chemiluminescence. (E) Complex IV 

activity was visualised with Cytc:DAB staining, using a preparation of Viscum album 

mitochondria that contained some chloroplast proteins. The colour balance of the gels was 

adjusted to enhance the enzyme stains relative to the background.  

  

Figure 3. Composition of Viscum album mitochondria. 

Proteome analysis of Viscum mitochondria (see also Figure S1 and Data S1). (A) Table 

presenting a subset of the GO enrichment analysis performed on the list of identified 

proteins, only significantly enriched (p value < 0.05) processes are shown. The full dataset is 

available as Table S2. The fold enrichment is calculated by dividing the identified number of 

proteins of a biological process by the expected number of proteins to be identified if every 
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protein had the same probability to be identified. Note that this analysis is not quantitative 

and the Arabidopsis proteome was used for the Viscum analysis. (B) Quantification of 

mitochondrial proteins identified in complex mixture analysis and BN-PAGE. Label-free 

quantification data were obtained for both proteomic approaches and combined to obtain an 

overview of the relative abundance of proteins involved in a given pathway in Viscum 

mitochondria (Data S2). Top panel, scheme summarising the main mitochondrial functions. 

The arrows indicate the relative abundance of proteins from each pathway in Viscum 

compared to the same proteins in Arabidopsis. Green: increased (more than 110% of 

Arabidopsis), Yellow: similar (between 90% and 110% of Arabidopsis), Orange: slightly 

decreased (between 75% and 90% of Arabidopsis), Red: decreased (less than 75% of 

Arabidopsis). Bottom panel, representation of the respiratory chain, complexes are shown as 

orange boxes, the alternative pathways as green circles, electron transfer as grey arrows 

and proton transfer as black arrows. As no complex I subunits were identified, complex I is 

shown as a white box. The proteins identified are indicated below the complex they belong 

to. The relative amount of each complex was calculated by obtaining the mean value of the 

different identified subunits (Data S2). Proteins indicated in grey were not used for 

quantification as no common peptide between Arabidopsis and Viscum was identified. 

 

Figure 4. Metabolic flux through glycolysis is higher than TCA cycle in Viscum 

Metabolic flux analysis of leaf disks from Arabidopsis thaliana and Viscum album. Glucose 

labelled with radioactive carbon (14C) at position 1 (C1) or position 3 and 4 (C3, C4), were 

fed to illuminated leaf disks and the resulting 14CO2 measured every hour. 14CO2 from 

addition of C1-labelled glucose corresponds to metabolic flux through the pentose 

phosphate pathway which is used as a proxy for glycolysis (A) and from C3, C4 corresponds 

to metabolic flux through pyruvate decarboxylase and malic enzyme which is used as a 

proxy for the TCA cycle (B). Each point represents the mean ± SE (n=4). The ratio between 

the two (C1/C3,C4) can be calculated and used to infer relative rates (C). dpm, 

disintegrations per minute, gFW,  grams fresh weight. 
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STAR Methods 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will 

be fulfilled by the Lead Contact, Etienne Meyer (emeyer@mpimp-golm.mpg.de) 

 

EXPERIMENTAL MODEL AND SUBJECT DETAIL 

Viscum album plants were harvested from locations in the UK and Germany between March 

and July, from various host species (Acer campestre; Acer saccharum; Malus pumila; Salix 

alba, Sorbus aucuparia, Prunus cerasifera). Detailed information on the source material is 

given in Table S1. Leaf buds were harvested for use in biochemical and proteomic assays. 

Leaf material was used for electron microscopy and flux analysis.  

Arabidopsis thaliana plants (ecotype Columbia-0) were grown under long day conditions 

(16h light 120 µE.m-2.s-1, 22°C, 8h dark at 20°C). Callus lines were generated from root 

tissue and grown on agar plates containing Gamborg B5 medium, 2% (w/v) glucose, 0.5 

mgL-1 2,4-dichlorophenoxyacetic acid and 0.05 mgL-1 kinetin. 

 

METHOD DETAILS 

Electron Microscopy 

For ultrastructural analysis leaf samples were fixed in 2.5% glutaraldehyde in 50 mM sodium 

cacodylate (pH 7.4) containing 5 mM CaCl2 for 1 hour under vacuum. Fixation was 

continued at 4°C overnight. Post-fixation with 1% OsO4 and 0.8% K3Fe(CN)6 in 50 mM 

cacodylate buffer (pH 7.4) was carried out for 2 hours at 4°C. After rinsing the leaf samples 

in cacodylate buffer, dehydration and embedding in Epon812 (Science Services) were 

carried out following standard protocols. Ultrathin sections (50-70 nm) were cut with diamond 

knives. For electron microscopy, thin sections were stained with 2% uranyl acetate and lead 

citrate and examined in a Zeiss EM 912 Omega transmission electron microscope (Carl 

Zeiss). 
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Mitochondrial purification 

Mitochondria were purified from Viscum album leaf buds, Arabidopsis thaliana rosette leaves 

and cell culture. The material was ground at 4°C in extraction buffer (0.3 M sucrose, 5 mM 

tetrasodium pyrophosphate, 10 mM KH2PO4, pH 7.5, 2 mM EDTA, 1% [w/v] 

polyvinylpyrrolidone40, 1% [w/v] bovine serum albumin, 5 mM Cys, and 20 mM ascorbic 

acid) using mortar and pestle. After filtration through two layers of Miracloth (Millipore), the 

retained material was ground and filtered another time. The filtrates were pooled and 

centrifuged for 5 min at 2,000 x g, and the supernatant was centrifuged for 10 min at 20,000 

x g. The pellet was resuspended in wash buffer (0.3 M sucrose, 1 mM EGTA, and 10 mM 

MOPS-KOH, pH 7.2) and subjected to the same low-speed (2,000 x g) and high-speed 

(20,000 x g) centrifugations. For Viscum a sample was taken after differential centrifugation 

and used for complex IV detection. Further purification was performed on Viscum and 

Arabidopsis rosette leaf samples using a 0 - 4.4% (v/v) polyvinylpyyrolidine-40 gradient in 

28% (v/v) Percoll, with a 40% Percoll cushion at the base to separate mitochondrial and 

thylakoid fractions. The gradient was centrifuged at 40,000 x g for 45 min. The white band 

located at the bottom of the gradient (see figure 1C?) was collected and washed three times 

in wash buffer. Protein concentration was determined using the Bradford method (Bio-Rad 

Protein Assay). 

 

Protein blot analysis 

Total leaf bud cell extract or purified mitochondria from Viscum album were mixed with 

Laemmli buffer (2% [w/v] SDS, 125 mM Tris-HCl, 10% [w/v] glycerol, 0.04% [v/v] β-

mercaptoethanol, and 0.002% [w/v] bromophenol blue, pH 6.8) and separated on a 15% 

SDS-PAGE gel. Proteins were transferred under semi-dry conditions to nitrocellulose 

membrane (Protran™). Equal loading and transfer was confirmed using Ponceau S stain. 

Proteins were labelled with antibodies and detected using secondary horseradish 

peroxidase-conjugated antibodies and chemiluminescence (0.1 M Tris-HCl, pH 8.0, 0.11 mg 

ml-1 3-aminophthalhydrazide (luminol), 16 µg ml-1 p-coumaric acid and 0.009% H2O2. Mouse 

monoclonal antibodies against the E1α subunit of pyruvate dehydrogenase and VDAC 

(GTMA) are as previously reported [31], and both were used at a dilution of 1 in 1000. 

 

Blue-Native PAGE and activity staining 
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Mitochondrial samples were subjected to Blue-Native-PAGE as described previously [32,16]. 

Mitochondrial proteins were solubilized with dodecylmaltoside (1% [w/v] final) in ACA buffer 

(750 mM amino caproic acid, 0.5 mM EDTA, and 50 mM Tris-HCl, pH 7.0) and incubated 20 

min at 4°C. The samples were centrifuged for 10 min at 20,000 x g, and Serva Blue G 

(0.25% [v/v] final) was added to the supernatant. The samples were loaded onto a 4.5% to 

16% polyacrylamide gradient gel prepared in 0.25 M amino caproic acid, 25 mM Bis-Tris-HCl 

pH 7. The migration was performed for 45 min at 100 V followed by 14 h at 400 V in cathode 

buffer (50 mM tricine, 12.5 mM Bis-Tris-HCl pH 7, 0.02% Coomassie G250) and anode 

buffer (50 mM Bis-Tris-HCl pH 7). 

Activity stains were carried out as described previously [33]. Briefly, gels were equilibrated in 

buffer without staining reagents for 10 min. For complex I, NADH dehydrogenase activity 

was visualized with 0.1 M Tris-HCl, pH 7.4, 0.2 mM NADH and 0.1 % (w/v) nitro-blue 

tetrazolium (NBT); For complex II, electron transfer from succinate was shown using 50 mM 

KH2PO4, pH 7.4, 0.1 mM ATP, 10 mM succinate, 0.2 mM phenazine methosulfate, 0.2 % 

(w/v) NBT; For complex IV, oxidation activity was visualized using 50 mM KH2PO4, pH 7.4, 1 

mg ml-1 cytochrome c, 0.1 % (w/v) 3,3’-diaminobenzidine. After the desired staining intensity 

was reached, the reaction was stopped using a solution of 45% (v/v) methanol and 5% (v/v) 

acetic acid, followed by washes in the same solution to remove excess Coomassie Blue dye. 

For detection of complex III proteins were transferred to PVDF membrane and detected by 

chemiluminescence [34,35]. 

 

Mass spectrometry 

For the analysis of whole mitochondria, 10 µg of mitochondrial protein were solubilized in 6 

M urea, 2 M thiourea, reduced with 5 mM DTT and alkylated with 15 mM iodoacetamide. 

After dilution to 1.5 M urea with 10 mM Tris-HCL pH 8.0, trypsin digestion was performed for 

16 h. Lanes of 1D BN-PAGE were cut into 18 slices. Gel slices were prepared for mass 

spectrometry by trypic in-gel digestion as described previously [32]. Gel slices were washed 

three times with 50% acetonitrile, 50 mM NH4HCO3, reduced with 10 mM DTT and alkylated 

with 55 mM iodoacetamide, 50 mM NH4HCO3 for 30 min prior to digestion with 10 µg ml-1 

trypsin for 16 h. Peptides from both preparations were purified using Ziptips (Millipore) 

according to the manufacturer instructions. The peptides were resuspended in 5% (v/v) 

acetonitrile, 0,1 % (v/v) formic acid, and analyzed by LC-MS/MS. Peptides were separated 

on a C18 reverse phase analytical column (Acclaim PepMap100, Thermo Fisher Scientific) 

using an Easy-nLC 1000 liquid chromatograph system (Thermo Fisher Scientific). Peptides 

were eluted using a non-linear 5% - 34% (v/v) acetonitrile gradient in 0.1% (v/v) formic acid 
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and 5% (v/v) DMSO at a flow of 300 nl.min-1. The gradient lasted 28 min for peptides 

obtained after in-gel digestion and 72 min for peptides obtained after the digestion of whole 

mitochondria. After the gradient, the column was cleaned for 10 min with 85% (v/v) 

acetonitrile in 0.1% (v/v) formic acid and 5% (v/v) DMSO. Eluted peptides were transferred 

to an NanoSpray Ionization source and sprayed into an Orbitrap Q-Exactive Plus mass 

spectrometer (Thermo Fisher Scientific). The MS was run in positive ion mode. For full MS 

scans, the following settings were used, resolution: 70000, AGC target: 3E6, maximum 

injection time: 100 ms, scan range: 200 to 2000 m/z. For dd-MS2, the following settings were 

used, resolution: 175000, AGC target: 1E5, maximum injection time: 50 ms, loop count: 15, 

isolation window: 4.0 m/z, NCE: 30. The following Data-dependent settings were used: 

underfill ratio: 1%; apex trigger: off; charge exclusion: unassigned, 1, 5, 5–8, >8; peptide 

match: preferred; exclude isotypes: on; dynamic exclusion: 20.0 sec.  

To qualitatively assess the mass spectrometry runs of the whole mitochondria samples, we 

used MASCOT (Matrix Science). The raw files obtained from Xcalibur were converted into 

mgf files using MSConvert (Proteowizard). We then performed database searched using an 

in-house database containing Arabidopsis proteins (TAIR10) and translated sequences of 

Viscum album mitochondrial genes [10]. The search parameters used are the following: 

missed cleavage: 1, fixed modification: carbamidomethyl (C), variable modification: 

Oxidation (M), peptide tolerance: 10 ppm, MS/MS tolerance: 0.6 Da, peptide charge: 2+/3+ 

and 4+, decoy activated. During the search, every time a protein sequence from the 

database is tested, a random (decoy) sequence of the same length is automatically 

generated and tested. The numbers obtained are presented in Data S1. 

 

Flux analysis 

Estimation of respiratory fluxes by following 14CO2 evolution was carried out as described 

previously [37,38]. Leaf discs (7 mm in diameter) were incubated in 50 mM MES-KOH, pH 

6.5 containing 0.3 mM of glucose labelled with 6.2 MBq.mmol-1 of 14C at position 1 or 

positions 3 and 4 (ARC0120A and ARC0211, respectively, American Radiolabelled 

Chemicals) in closed flasks. Evolved 14CO2 was trapped with 10% (w/v) KOH and the trap 

was replaced every hour. The KOH solution was mixed with scintillation cocktail (Rotizint 

Eco Plus, Roth) and radioactivity was determined by a liquid scintillation counter (LS6500, 

Beckman Coulter). 
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QUANTIFICATION AND STATISTICAL ANALYSIS 

Quantification of the mitochondrial proteins in the proteomic datasets 

The raw files obtained from Xcalibur (Thermo Fisher Scientific) were uploaded into 

MaxQuant (version 1.5.2.8) [36] and queried against an in-house database containing 

Arabidopsis proteins (TAIR10) and translated sequences of Viscum album mitochondrial 

genes [10]. Default parameters were used, except that label-free quantification (LFQ) and 

intensity-based absolute quantification (IBAQ) were activated. Intensities values from the 

evidence table were extracted for each peptide identified in the Arabidopsis and Viscum 

samples. An average value was calculated for each protein for which more than one peptide 

was identified (Data S2). 
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Legend for Supplemental Excel tables 

 

Data S1 

List of proteins identified in the mitochondria fractions isolated from Viscum album using 

complex mixture LC-MS/MS analysis. Related to Figure 3. 

 

Data S2 

Quantification of proteins in two proteomic approaches. Related to Figure 3B. 

 

 



 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Mouse monoclonal anti-PDH E1a GT Monoclonal 
Antibodies 

PM030 

Mouse monoclonal anti-VDAC GT Monoclonal 
Antibodies 

PM035 

   

   

   

Bacterial and Virus Strains  

   

   

   

   

   

Biological Samples 

   

   

   

   

   

Chemicals, Peptides, and Recombinant Proteins 

Cytochrome c from equine heart Sigma 30396 

3,3’-diaminobenzidine tetrahydrochloride hydrate Sigma D5637 

Nitro-blue tetrazolium Sigma N6876 

Phenazine methosulfate Sigma P9625 

Percoll GE Healthcare 17524.02 

Polyvinylpyrrolidone-40 Sigma PVP40 

3-aminophthalhydrazide ACROS Organics AC153850050 

p-coumaric acid ACROS Organics AC121090250 

Coomasie Blue G250 Serva  

Trypsin Sigma T6567 

Glucose, D[1-14C] American 
Radiolabelled 
Chemicals 

ARC0120A 

Glucose, D-[3,4-14C] American 
Radiolabelled 
Chemicals 

ARC0211 

Deposited Data 

   

   

   

   

   

Experimental Models: Cell Lines 

   

   

Key Resource Table



 

   

   

   

Experimental Models: Organisms/Strains 

Arabidopsis thaliana (ecotype: Columbia-0)  N/A 

Viscum album refer to Table S1 N/A 

   

   

   

   

Oligonucleotides 

   

   

   

   

   

Recombinant DNA 

   

   

   

   

   

Software and Algorithms 

Mascot Matrix science http://www.matrixsci
ence.com/ 

Maxquant [36] http://www.coxdocs.
org/doku.php?id=ma
xquant:start 

MSConvert Proteowizard http://proteowizard.s
ourceforge.net/ 

   

   

Other 
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Table S1
Details of Viscum album  material used in this study. Related to the STAR Methods section and Figures 1, 2, 3 and 4

Date Location Host tree Tissue Extraction method

BN-PAGE 
and activity 
staining

Complex 
mixture LC-
MS/MS

Proteomic 
analysis of 
BN-PAGE

Flux 
analysis

Electron 
microscopy

26/03/2017 Cambridge, 
U.K. Acer campestre Buds, male differential centrifugation X

17/04/2017 Cambridge, 
U.K. Acer saccharum Buds, ? differential centrifugation X

17/04/2017 Cambridge, 
U.K.

Malus pumila 
“Bramley”

Buds, 
female

diff. centrifugation and 
density gradient X X

26/04/2017 Cambridge, 
U.K. Acer campestre Buds, male differential centrifugation X

02/05/2017
Potsdam-
Golm, 
Germany

Salix alba Buds, male diff. centrifugation and 
density gradient X X X

25/06/2017
Potsdam-
Golm, 
Germany

Sorbus aucuparia Buds, male diff. centrifugation and 
density gradient X

19/07/2017
Potsdam-
Golm, 
Germany

Sorbus aucuparia Leaves, 
male X X

10/01/2018
Potsdam-
Golm, 
Germany

Prunus cerasifera Buds, male diff. centrifugation and 
density gradient X

Experiments performed



Table S2
Composition of Viscum album  mitochondria. Related to Figure 3A
A GO enrichment analysis was performed using the list of Viscum  mitochondrial proteins obtained after complex mixture LC-MS/MS analysis (Data S1).

reference list: the number of proteins in the reference list that map to the biological process
nb of proteins: indicates how many proteins from the experimental proteome are found in the reference list. The total indicate the size of these proteomes 
(794 proteins for Arabidopsis, 292 proteins for Viscum)
expected: indicates the number of proteins that should be identified if every of the 27502 proteins in the GO annotation had the same probability to be 
identified.
Fold enrichment: nb of proteins divided by expected. If >1, it indicates that the biological process is overrepressented in the experimental proteome
P value: p-value as determined by the binomial statistic. This is the probability that the number of genes you observed in this category occurred by 
chance (randomly), as determined by your reference list.
non significant enrichment (p value > 0.05) are highlighted in red

GO biological process reference 
list

nb of proteins 
(total: 794) expected Fold 

Enrichment P value nb of proteins 
(total: 292) expected Fold 

Enrichment P value

photosynthesis 233 46 6.74 6.83 3.08E-20 33 2.54 12.98 1.22E-22

fatty acid biosynthetic process 150 16 4.34 3.69 3.06E-02 10 1.64 6.11 1.98E-02

fatty acid oxidation 36 11 1.04 10.57 3.61E-05 10 0.5 25.46 3.72E-08

cellular respiration 120 44 3.47 12.68 6.75E-30 22 1.31 16.81 1.20E-16

glycolytic process 69 13 1.99 6.52 4.77E-04 11 0.75 14.61 1.20E-06

nicotinamide nucleotide metabolic 
process 113 19 3.27 5.82 4.80E-06 15 1.23 12.17 1.05E-08

tricarboxylic acid cycle 50 19 1.45 13.15 4.83E-12 15 0.55 27.5 9.43E-14

respiratory electron transport chain 44 19 1.27 14.94 5.00E-13 6 0.48 12.5 6.75E-01

mitochondrial ATP synthesis 
coupled electron transport 28 10 0.81 12.35 3.87E-05 3 0.31 9.82 1.00E+00

proton transport 68 22 1.97 11.19 7.78E-13 4 0.74 5.39 1.00E+00

Arabidopsis Viscum



GO biological process reference 
list

nb of proteins 
(total: 794) expected Fold 

Enrichment P value nb of proteins 
(total: 292) expected Fold 

Enrichment P value

mitochondrion organization 117 30 3.38 8.87 1.77E-15 11 1.28 8.62 2.52E-04

mitochondrial transport 104 30 3.01 9.98 7.35E-17 12 1.13 10.58 7.08E-06

organic acid metabolic process 1050 136 30.35 4.48 1.11E-44 74 11.45 6.46 1.61E-34

organic acid catabolic process 116 31 3.35 9.24 1.47E-16 20 1.27 15.81 1.97E-14

transmembrane transport 613 54 17.72 3.05 3.66E-09 22 6.69 3.29 3.83E-03

cofactor biosynthetic process 202 27 5.84 4.62 3.20E-07 13 2.2 5.9 1.28E-03

alpha-amino acid metabolic 
process 280 41 8.09 5.07 2.50E-13 20 3.05 6.55 1.80E-07

nucleotide metabolic process 301 56 8.7 6.44 6.97E-24 23 3.28 7 1.69E-09

photorespiration 53 28 1.53 18.28 1.91E-22 8 0.58 13.84 4.35E-04

translation 567 146 16.39 8.91 4.61E-86 28 6.19 4.53 1.41E-07

response to bacterium 426 33 12.31 2.68 1.50E-03 19 4.65 4.09 8.82E-04

response to oxidative stress 446 36 12.89 2.79 1.76E-04 16 4.87 3.29 1.05E-01

response to abiotic stimulus 1954 144 56.48 2.55 1.93E-21 64 21.31 3 5.95E-12

unclassified 5719 78 165.32 0.47 0.00E+00 35 62.38 0.56 0.00E+00

transcription, DNA-templated 1833 13 52.99 0.25 4.67E-08 4 19.99 0.2 2.75E-02

regulation of gene expression 2652 29 76.66 0.38 2.19E-07 9 28.93 0.31 1.87E-02

regulation of macromolecule 
metabolic process 2857 26 72.04 0.36 2.35E-07 11 31.17 0.35 3.56E-02

Arabidopsis Viscum
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