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ABSTRACT 

In this study we explore how the combination of 3 

backscatter and 2 extinction lidar data with data 

that can be collected with ground-based and 

space-borne passive remote sensors, e.g. phase 

function coefficients which can be derived at 

various measurement wavelengths and scattering 

angles can result in improved profiles of particle 

microphysical properties. The algorithm is based 

on a light-scattering model that uses a mixture of 

spheres and randomly oriented spheroids.  

1 INTRODUCTION 

Our study addresses the question on what 

combination of lidar and passive remote sensing 

data could provide an optimum set of data for the 

retrieval of profiles of key particle parameters 

when observed from ground or space. Over the 

past 10 years, multiwavelength Raman/HSRL 

lidars have successfully demonstrated their 

capacity with regard to retrieving particle 

microphysical parameters [1, 2]. In these 

approaches three backscatter () and two 

extinction () coefficients measured with lidar at 

wavelengths () from 355 to 1064 nm are used as 

input data for the retrieval of particle size 

distribution (PSD) as well as particle bulk 

parameters, i.e. effective radius, number, surface-

area and volume concentrations, and the complex 

refractive index mmR-imI (CRI). The major 

challenge in identifying the correct solution of the 

underlying ill-posed inverse problem is the limited 

number of input data, i.e. backscatter coefficients 

at 355, 532, and 1064 nm, and extinction 

coefficients at 355 and 532 nm (3+2 data), high 

measurement errors of up to 10 - 20%, the wide 

range of particle radii r from 0.05 to 15 m, real 

parts (mR) of the CRI from 1.3 to 1.6 and 

imaginary parts (mI) from i0 to i0.05. Considering 

all these factors, it has been shown that different 

solution techniques result in large retrieval 

uncertainties of profiles of particle properties.  

One of the ways that allows us to improve the 

retrieval quality is to increase the number of input 

data. In that context passive remote sensors 

provide us with valuable additional information. 

In this study we explore how the combination of 

3+2 lidar data with data that can be collected with 

ground-based and space-borne passive remote 

sensors, e.g. phase function coefficients which can 

be derived at various measurement wavelengths 

and scattering angles can result in improved 

profiles of particle microphysical properties. The 

algorithm is based on a light-scattering model that 

uses a mixture of spheres and randomly oriented 

spheroids. This light-scattering model is widely 

used in the analysis of passive remote sensing of 

particles of arbitrary shape, e.g. smoke, mineral 

dust, volcanic ash, and anthropogenic pollution. 

2 METHODOLOGY 

2.1 Mathematical model 
The equation that is based on a light-scattering 

model that uses a mixture of spheres and 

randomly oriented spheroids and relates the PSD 

and its optical characteristics is presented in Ref. 

[3]. We can modify this equation as  
max

min

( , )( , ( ), ) ( , ) ( , )
r

gr
k m z r v r z dr g z    , 

g,    (1) 

for the case of a height-dependent volume particle 

size distribution (r,z) and optical profiles 

3(,z)+2(,z), where the kernels of the integral 

equation 
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depend on particle shape () and the volume 

fraction of the spheroid particles [0;1]. If the 

particles are spherical the respective kernel 

kg(…,1) is calculated on the basis of Mie-

scattering theory [4]. The kernels for randomly 

oriented spheroids kg(…,) can be computed in the 

way shown in Ref. [5]. In our study we assume 

that the aspect ratio  (or aspect ratio distribution) 

in the sphere-spheroid model (,) is known, but 

that the spheroid fraction needs to be estimated.  

Our goal is to find the profile (r,z) and the 

profile m(z), see Eq. (1), on the radius and height 

domains r[rmin;rmax] and z(0;zmax] respectively. 

This is an ill-posed, underdetermined problem. In 

order to redefine this problem we include in the 

solution procedure data from a potential passive 

sensor that provides phase function coefficients 

() measured at 5 scattering angles   5, 30, 
60, 90, and 120 at 1 or 2 wavelengths, e.g. at 

410 and/or 670 nm. Passive sensors provide 

column-integrated data. Therefore, we have to 

reformulate Eq. (1) so that it can be used for 

column-integrated data as well. The integration of 

Eq. (1) over height z allows us to find the equation 

that is consistent for data provided by both types 

of instruments  
max

min

( , )( , , ) ( ) ( )
r

gr
k m r v r dr g    ,  g, ,  (3) 

where  

max

0
( ) ( , )

z
g g z dz   , 

max

0
( ) ( , )

z
v r v r z dz  , 

 g,     (4) 

and the parameter m is equal to some intermediate 

value in the profile m(z), so that the equation  
max max

min

( , )
0

( , ( ), ) ( , )
z r

gr
k m z r v r z drdz      

max max

min

( , )
0

( , , ) ( , )
r z

gr
k m r v r z dzdr     (5) 

is fulfilled on the basis of the average theorem.  

We use Eq. (3) and (1) in our strategy in terms of 

two steps in order to find the particle 

microphysical parameters for 1) the column 

integrated data, and 2) the profile data, taking into 

account the column-integrated data as benchmark. 

2.2 Retrieval approach for column-

integrated data 

Eq. (3) for column-integrated data is the classical 

integral equation of the Fredholm type of the 1
st
 

kind with unknown input parameters  and m. 

This equation can be solved by inversion with 

regularization, as shown in Ref. [3], but now data 

from a passive sensor (5-10) are added to the 

input lidar data (3+2). It means that the 

underlying inversion problem (3) has NO10-15 

pieces of input information, i.e., 3+2 + (5-10). 

Such a relatively high number of input data allows 

us to modify the algorithm in Ref. [3] and take 

into account just a few inversion windows 

[rmin;rmax] located from 0.05 to 10-15 m particle 

radius. The use of 5-7 inversion windows instead 

of 100-120 inversion windows reduces the 

solution space by one order of magnitude.  

We find the column-integrated PSD (r) as well 

as effective radius reff, number n, surface-area s 

and volume v concentrations, and the complex 

refractive index m. In section 3 we mainly 

describe this approach and show results of 

numerical simulations.   

2.3 Retrieval approach for profile data 
Eq. (1) can be considered as a system of Fredholm 

integral equations of the 1
st
 kind at a finite number 

of height bins zl, l1, 2, …, NL, distributed along 

the height from 0 to zmax. In a recent publication 

[6] the gradient correlation method (GCM) and 

proximate analysis (PA) were presented. GCM 

and PA allow us to find vertical profiles that 

contain stable solutions of the inversion problem. 

GCM and PA use regression equations that 

connect the lidar data products (optical data) and 

the particle microphysical parameters. It was 

shown in Ref. [6] that the careful estimation of the 

regression coefficients (RC) of the underlying 

regression equations permits for a comparably 

accurate retrieval of the PSD (r,zl) as well as the 

profiles of effective radius reff(zl), number n(zl), 

surface-area s(zl) and volume v(zl) concentrations, 

and the complex refractive index m(zl). 

Knowledge of column-integrated data derived in 

step 1 of our strategy provides us with a robust 

estimation of the RCs. Detailed results of 

numerical simulation with GCM and PA can be 

found in Ref. [6].  
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and the parameter m is equal to some intermediate 

value in the profile m(z), so that the equation  
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GCM and PA use regression equations that 

connect the lidar data products (optical data) and 

the particle microphysical parameters. It was 

shown in Ref. [6] that the careful estimation of the 

regression coefficients (RC) of the underlying 

regression equations permits for a comparably 

accurate retrieval of the PSD (r,zl) as well as the 

profiles of effective radius reff(zl), number n(zl), 

surface-area s(zl) and volume v(zl) concentrations, 

and the complex refractive index m(zl). 
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numerical simulation with GCM and PA can be 

found in Ref. [6].  

 

 

3 RESULTS OF NUMERICAL 

SIMULATIONS 

In our numerical simulations we generated syn-

thetic optical data 3+2+10. We used two 

types of PSDs, i.e. one monomodal and one bi-

modal PSD. The monomodal PSD (MPSD) is de-

scribed by the log-normal law with mean radius 

r00.1 m and mean width 1.49. The bimodal 

PSD (BPSD) includes the fine mode with the 

same parameters r0 and  of the MPSD and the 

coarse mode with r01 m and 1.8. 

We use three values (levels) of particle light-

absorption. For low light-absorbing (LA) particles 

the CRI is m1.38-i0.002, for moderate light-

absorbing (MA) m1.45-i0.005, and for high 

light-absorbing (HA) m1.57-i0.018. Last but not 

least we use three types of sphere-spheroid mod-

els (,), i.e., (0,0.33), (0.7,0.33) and (0.75,033).  

 
Fig. 1. Black thick curve shows the true (0.7,0.33)-HA-

MPSD. The grey solid curve and the 30 grey-dotted 

curves represent the PSDs retrieved in scenario A and 

C, respectively, from the optical data set 3+2+10. 

The black thin curve shows the PSD retrieved in 

scenario A from the optical data set 3+2+5. 

 

We generated two data sets, i.e., 3+2+5 and 

3+2+10 that were used as input for the inver-

sion problem (3). The solution space in the re-

trieval approach is defined on the basis of the in-

put data that are defined by Eq. (3) as follows: 

  7 inversion windows on the radius domain 

rmin0.05-0.10 m and rmax8-15 m; 

  6 real parts of the CRI, equidistantly distributed 

between 1.35 and 1.6; 

  11 imaginary parts of the CRI, equidistantly dis-

tributed between i0 and i0.05; 

  5 spheroid fractions, equidistantly distributed 

between 0 and 1. 

We assume the following scenarios in our simula-

tions in order to solve the inversion problem (3): 

A. The optical data 3+2+5 and 3+2+10 

are error-free; the spheroid fraction  is unknown. 

B. The synthetic optical data 3+2+(5-10)  

have maximum errors up to 5% and average errors 

up to 2%; the spheroid fraction  is not known.  

C. the synthetic lidar data (3+2) have errors up 

to 10%, the synthetic data of the passive sensor 

(10) have errors up to 5%; the spheroid fraction 

 is not known.  

D. We use scenario C but the spheroid fraction  

is known.  

We carried out inversions with noisy data (erro-

neous data), which implies that 30 different error 

runs were made in scenarios B-D.  

We show the statistics of the results of our 

numerical simulations in Fig. 1-2 and Table 1-2. 

The results derived using scenario A agree well 

with the theoretical values. MPSD (thin black 

curves and BPSD (solid grey curves) in Fig. 1, 2 

almost coincide, however the PSD is more stable 

in the case of 3+2+10  (solid grey curve).  

 
Fig. 2. The same as Fig. 1 but for (0.7,0.33)-HA-BPSD. 

 

The uncertainties of the estimated parameters stay 

within a few percent. Such a quality of retrieval 

results cannot be obtained from a 3+2 data set 

even if particle depolarization coefficients are 

available [3]. The uncertainties of the estimated 

real and imaginary parts do not exceed 0.025 and 

i0.0025, respectively, which are half of the step 

sizes of our entry values, and which was never ob-

tained in the case of using 3+2 data only [3]. 

The results derived from scenario B are close to 

the results obtained in scenario A. The uncertain-

ties of the estimated parameters of the PSD do not 

exceed 50% in the worst case. The CRI is estimat-

ed with the same uncertainty in both scenarios 

(not shown here).  

The retrieval results become worse in scenario C. 

For some error runs we find that the PSDs show a 
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strong (extensive) coarse mode (see dotted lines in 

Fig. 2). Such outliers result in the overestimation 

of the volume concentration and the effective ra-

dius of up to 155% and 120%, respectively (see 

Table 1). The analysis of these PSDs shows that 

they are linked to very high values of the retrieved 

imaginary part, exceeding the true value by i0.03 

and more (see for example HA-MPSD in table 2). 

Simultaneously, the value of the spheroid fraction 

cannot be retrieved and we obtain the value 0. It 

means that the sphere-spheroid model (,) can be 

mimicked by a pure sphere model (0,) at the cost 

of overestimating the true values of the imaginary 

part and the volume concentration. We note that 

the retrieval of number concentration is more sta-

ble; the uncertainty is 80% whereas using the 3+2 

data set the uncertainty is 100% and above [3]. 

Surface-area concentration is the most stable pa-

rameter in the retrieval (uncertainty is 53%). As 

we mentioned before, the uncertainty of the CRI 

retrieval increases as well; it is up to i0.04 for the 

imaginary part and up to 0.07 for the real part. 

However, our approach still allows us to distin-

guish the L-MA and HA particles because in the 

first case the uncertainty is less than i0.009 for the 

imaginary part of large particles (see LA, HA 

BPSD in table 2). 
Table 1.Retrieval uncertainty of the PSD parameters in 

scenarios C and D 

Scenario reff, % n, % s, % v, % 

C 120 80 53 155 

D 80 75 40 63 

The results in scenario D shows that the 

uncertainties we obtained in scenario C can be 

reduced if we know the true sphere-spheroid 

model, i.e. the parameter pair (,). In this case 

the uncertainties of reff, n, s and v decrease to 80, 

75, 40 and 63%, respectively (see table 1). The 

real parts of the CRI can be estimated with an 

uncertainty of 0.08, the imaginary parts with an 

uncertainty of i0.003 for LA, MA BPSD and 

i0.009 for HA BPSD (table 2). 

4 CONCLUSIONS 
Preliminary simulations show that the synergy of 

both instruments allows us to improve the retriev-

al quality not only of particle size distribution pa-

rameters but particularly also allows us to im-

prove the accuracy of the CRI retrievals. If maxi-

mum measurement errors of the 3+2+10 data 

set do not exceed 5% and if the average uncertain-

ty is 2%, the uncertainties of the estimated PSD 

parameters do not exceed 50%, the accuracy of 

the CRI retrievals is 0.025 for the real part and 

i0.0025 for the imaginary part.  
Table 2.Retrieval uncertainty of the CRI in scenarios C 

(numerator) and D (denominator) for MPSD, BPSD 

and different levels of particle light-absorption 

Particle 

Absorption 

mR mI 

MPSD BPSD MPSD BPSD 

LA 
0.03 

0.07 

0.07 

0.04 

i0.043 

i0.010 

i0.009 

i0.003 

MA 
0.07 

0.05 

0.07 

0.08 

i0.029 

i0.013 

i0.009 

i0.003 

HA 
0.07 

0.02 

0.07 

0.08 

i0.030 

i0.019 

i0.027 

i0.009 

10% measurement error of 3+2 lidar data can 

lead to an overestimation of the volume 

concentration up to 155% and up to i0.03 of the 

imaginary part of the CRI. The retrieval results 

can be stabilized if the true sphere-spheroid 

model, i.e. the parameter pair (,) is known.  
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