
POPULATION BASED SPATIO-TEMPORAL
PROBABILISTIC MODELLING OF FMRI DATA

by

NAHED ALOWADI

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
May 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/158369816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



To my parents, my son and my daughter



ABSTRACT

High-dimensional functional magnetic resonance imaging (fMRI) data is characterized

by complex spatial and temporal patterns related to neural activation. Mixture based

Bayesian spatio-temporal modelling is able to extract spatiotemporal components repre-

senting distinct haemodyamic response and activation patterns.

A recent development of such approach to fMRI data analysis is so-called spatially reg-

ularized mixture model of hidden process models (SMM-HPM). SMM-HPM can be used

to reduce the four-dimensional fMRI data of a pre-determined region of interest (ROI) to a

small number of spatio-temporal prototypes, sufficiently representing the spatio-temporal

features of the underlying neural activation. Summary statistics derived from these fea-

tures can be interpreted as quantification of (1) the spatial extent of sub-ROI activation

patterns, (2) how fast the brain respond to external stimuli; and (3) the heterogeneity in

single ROIs.

This thesis aims to extend the single-subject SMM-HPM to a multi-subject SMM-

HPM so that such features can be extracted at group-level, which would enable more

robust conclusion to be drawn.

To pave the way for such extension of SMM-HPM, we proposed a normalized form

of the haemodynamics response function (HRF), so as to de-couple the haemodynamics

response magnitude from the HRF shape. Numerical experiments have been conducted

to demonstrate the benefit of this normalization.

To extend the single-subject SMM-HPM, we formulate a hierarchy of multi-subject

SMM-HPM models, ranging from the most constrained model to the most flexible one,

so as to find the optimal common model for extracting informative features that can be



used in comparing different populations.

The multi-subject SMM-HPM has been verified through extensive numerical experi-

ments using both synthetic and real fMRI data. The results of the synthetic experiments

show how a robust and accurate multi-subject model can be learned from the data by the

optimization method we have developed. The results of the experiments with real data

show how the multi-subject SMM-HPM is able to extract spatio-temporal patterns within

individual ROIs from different populations, which enables us to discriminate them.
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CHAPTER 1

INTRODUCTION

With the growing interest in studying human brains, several techniques have been devel-

oped to enable researchers to study brain activities. They include Positron Emission To-

mography (PET), Electro Encephalography (EEG), Magneto Encephalography (MEG),

Optical Imaging (OI) and Functional Magnetic Resonance Imaging (fMRI). Each of these

techniques has its own importance and application area. Due to its high spatial resolution,

fMRI is particularly popular.

fMRI measures the metabolic changes (the increase of the oxygenated blood volume

and flow) that are a consequence of the neural activities in the brain using a scanner

with strong magnetic fields (Magnetic Resonance Imaging (MRI) scanner). Over the past

two decades, fMRI has been the main tool to investigate human brains non-invasively. It

mainly aims to localize activation regions and determine brain connectivity in response

to specific external stimuli. Due to the high dimensionality as well as the complex spatial

and temporal correlation of the fMRI data, advanced data modelling techniques need to

be applied in order to infer the relationship between the external stimuli and the neuronal

response (activation).

In this work we propose a method for fusing information obtained by behavioural

modelling (fast and slow learners) with probabilistic modelling of fMRI data gathered

at different stages of training the subjects. Traditionally, whole brain analysis of fMRI

signals is used. However, there may be subtle differences between cortical activation
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patterns in fast and slow learners at the level of individual ROIs. Whole brain anal-

ysis is not appropriate for this setting. We develop a hierarchy of population models

based on the previous single subject model - a spatially regularized mixture model of

hidden process models (SMM-HPM) [1]. In this way we can answer targeted questions

regarding differences in cortical activation structures in the two populations (slow and

fast learners) in a model based way. SMM-HPM reduces the high-dimensional fMRI

data of a pre-determined region of interest (ROI) to a small number of spatio-temporal

prototypes. This prototype-based modelling method enables us to extract three novel cor-

tical activation signatures (features) from each prototype. The first feature characterizes

the spatial pattern of neural activation within single-ROI (spatial feature); the second

one characterizes the haemodynamics response shape (temporal feature); and the third

one characterizes the heterogeneity in single-ROI (spatio-temporal feature). We study

whether there are significant differences in the three features between the populations of

fast and slow learners. This may provide a basis for further more focused study of the

neural correlates of learning in cognitive science and in brain disorders.

In the literature, spatial structure in fMRI data has not been explicitly modelled

by those earlier fMRI data modelling methods. Instead, the structure was indirectly

incorporated through smoothing the fMRI data over neighbouring voxels [2, 3, 4, 5, 6, 7, 8,

9]. As a result, the spatial correlation in fMRI data is treated in a separate, preprocessing

phase. This is disadvantageous because the whole image is smoothed equally while in

reality the spatial correlation varies across different activation regions. To deal with

this issue, the spatial behaviour of the fMRI data should be considered as a part of

an encompassing model that accounts for both spatial and temporal correlations in the

fMRI data. The Bayesian framework is the optimal approach to naturally describe and

model both the spatial and temporal behaviours of fMRI data because any neuroscientific

knowledge about spatial and temporal correlation in the fMRI data can be formulated as

prior probability distributions.

Depending on whether they adopt an implicit or explicit approach to modelling spatial
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coherence of the neural activation, most Bayesian spatio-temporal fMRI models can be

categorized into two groups. In those models based on the implicit modelling approach,

smoothness constraints are imposed on all temporal parameters that were inferred from

fMRI time series on individual voxels. This can ensure that each of these parameter

varies smoothly across the voxels but note that such parameters are estimated for every

voxel. The smoothness constraints could be formulated as a Markov random field model

[5], Gaussian kernels [2], spatial wavelet shrinkage [3, 4], anisotropic averaging spatial

filtering [6, 7], adaptive spatial filtering (spatial basis filters) [8], or surface-based filtering

(spatially informed basis functions) [10, 11]. We refer to such models as spatially regular-

ized Bayesian spatio-temporal models. In those methods based on the explicit modelling

approach, prior knowledge about the spatial coherence needs to be incorporated explic-

itly by modelling the spatial pattern of neuron activation via a parametric model. An

example of such model is Gaussian mixture model. The means and covariance matrices of

these Gaussian distributions represent the location and spread of the neural activations.

We refer to such models as mixture-based Bayesian spatio-temporal models. It is worth

noting that for the second approach, fMRI data is actually modelled at the cluster level

rather than at the voxel level. In this setting, all clusters have distinct temporal patterns

and spatial extent while fMRI signal at individual voxels is modelled as a mixture of

several temporal patterns corresponding to those clusters. The activation is determined

by assigning the voxels to the most likely components. It also enables inference of the

shape and the location of the activation response.

These two Bayesian modelling approaches have been widely adopted for single-subject

analysis: [12, 13, 14, 15, 16, 2, 17, 18, 19, 20, 21, 22, 21, 23, 24] have applied spatially

regularized Bayesian spatio-temporal modelling, whears [25, 26, 27, 28, 29, 30, 31, 32, 33,

34] have applied mixture based Bayesian spatio-temporal modelling.

Modelling the fMRI data by the mixture model approach is more efficient than the

spatially regularized Bayesian approach because it is no longer necessary to estimate tem-

poral parameters for all voxels. Also, it explicitly models the activation shape and location

3



providing a more interpretable model in which each component corresponds to an under-

lying neuron activation source. A recent development of the mixture model approach is

so-called Spatially regularized Mixture Model of Hidden Process Models (SMM-HPM)[1].

This model is used to identify the spatio-temporal patterns within single ROIs. It ad-

vances the previous spatio-temporal mixture models in the following aspects:

• SMM-HPM adopts a hidden process model (HPM) as a localized temporal proto-

type. HPM assumes that there is a series of overlapping hidden cognitive processes

that probabilistically generate the fMRI time series, which enables the inference of

the contribution of each individual cognitive process (e.g., visual analysis process,

perceptual judgement process, and motor response process) to the observed fMRI

time series. In the literature, General Linear Model (GLM) is the conventional

model for the temporal aspects of the fMRI data in which single cognitive process

describes the haemodynamic response.

• SMM-HPM employs a parametric form of the HPM, which enables imposition of

biological constraints on the HRF and therefore the shape of the HRF can be vary

according to the cognitive process.

• SMM-HPM can detect the neuronal activation naturally in one step. Previous stud-

ies use statistical maps which treat the temporal and the spatial aspects separately,

and result in splitting the analysis into two steps.

• SMM-HPM can infer the response magnitude and the response shape from the data.

• SMM-HPM utilizes a small number of free parameters since it is a prototype based

model1.

• SMM-HPM examined the heterogeneity within a specific ROI by using HPM as a

localized temporal prototype and allowing more than one prototype (component)

to be estimated in each ROI.

1In a broad sense, our prototypes can been seen as a dictionary elements, however, in this case, our
dictionary elements are model-based live in space of voxels not in space of measurements
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Multi-subject data analysis is a natural extension of single-subject analysis. This

allows for a principled and integrated test on statistical significance for any neuroscientific

finding derived from fMRI data analysis. Recently, there has been a clear trend showing

that Bayesian modelling approaches have been increasingly adopted to multi-subject fMRI

data modelling. Several approaches based on spatial regularization have been adopted to

model multi-subject fMRI data [35, 36, 18, 37, 38, 39]. Similarly, mixture based Bayesian

spatio-temporal modelling has also been developed for modelling of multi-subject fMRI

[40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52].

For group-level modelling of fMRI data, employing a mixture model approach is suffi-

cient. It helps in modelling the fMRI data at a higher level of features, such as activation

location and intensity, which provides more subtle information about the neuronal activ-

ities and their variations within and between subjects, and makes it less sensitive to the

misregistration problem in modelling group data.

In this thesis, the main goal is to extend the single-subject SMM-HPM to a multi-

subject SMM-HPM, so that we can extract group-level features of those spatio-temporal

prototypes that can be inferred from the fMRI data using the SMM-HPM model. The

proposed multi-subject model resembles the Gaussian mixture model of [44] in that the

activation pattern is modelled by a mixture of Gaussian distributions over the voxel

locations. However, it has many unique features compared to [44] and many other previous

studies:

• The temporal aspects of the fMRI data have been modelled by HPM instead of the

commonly used model GLM, which helps in considering the underlying cognitive

processes.

• Entire fMRI time series has been modelled while majority of the group-level anal-

ysis methods model statistical maps. This makes our model more realistic because

modelling the entire fMRI time series consider the evolution in the response mag-

nitudes over time. The drawback of modelling entire fMRI time series is that it is

time consuming (the computational time is large).
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• The number of components has been determined automatically from the data based

on consensus clustering method, which is computationally more efficient compared

to the commonly used approach based on a Dirichlet process prior (DPP).

• This model estimates not only the activation intensity, location, and shape; but also

the shape of the haemodynamic response and the time series of response magnitudes.

SMM-HPM has three distinct sets of model parameters: spatial parameters, HRF

shape parameters and response magnitude parameters. We thus ask what is the optimal

multi-subject SMM-HPM that is suitable for all three sets of the model parameters.

To investigate this research question, we formulated the multi-subject SMM-HPM as a

hierarchy of model formations, from the most constrained model, where the parameters

are fixed across subjects except for the haemodynamic response magnitudes, to the most

flexible one, where the parameters are to be inferred for individual subjects from their

corresponding data sets while those individual parameters are controlled by the group-level

priors that are inferred from the data set pooled together. We can determine the optimal

common model by computing the out-of-sample negative log likelihood of each model in

the hierarchy. The optimal common model is the one that has the lowest negative log

likelihood. From the optimal common model, we can extract informative features (spatial

feature, temporal feature, and spatio-temporal feature) that can be used in comparing

the fMRI data of different populations.
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1.1 Motivation

In spite of the fact that considerable effort has been devoted to the problem of modelling

fMRI data, it is still attracting the interest of researchers for new development, which

could make further contributions to fMRI data analysis. The major contribution of [1] is

to reduce a four-dimensional 1 fMRI data set to a small number of spatio-temporal proto-

types. Each prototype consists of three sets of fMRI features. The first set characterizes

the spatial pattern of neural activation within single ROIs (spatial feature); the second

one characterizes the haemodynamics response shape (temporal feature); and the third

set characterizes the cross-correlation between the time series of haemodynamics response

magnitudes of the two prototypes (spatio-temporal feature). More importantly, they all

have direct interpretability. The resulting summary statistics from those features can be

interpreted as quantification of (1) spatial extent of sub-ROI (prototype) activation pat-

terns, (2) how fast the brain responds to external stimuli; and (3) heterogeneity within

single ROIs2.

In this thesis, we further develop this framework so that such features can be extracted

at group-level, which enables more robust conclusions to be drawn. We further hypoth-

esize that the group-level effects can be captured by a hierarchy of group-level models

representing a decreasing degree of group model specificity (degree of model constraints).

1.2 Contribution

The primary contributions of this thesis:

• Extend a single-subject fMRI data model (that is, single-subject SMM-

HPM) to a population-based one in a principled way (a hierarchy of

model formations with increasing complexity in each level of the hierar-

chy)

1 Three spatial dimensions and one temporal dimension.
2Negative cross-correlation between the two time series of haemodynamic responses magnitudes from

the two (subROI) prototypes are the most significant cause for heterogeneity within the ROI
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The main contribution of this thesis is to develop a conceptual common model

(multi-subjects SMM-HPM model) that can examine the heterogeneity within spe-

cific active regions (ROIs) across different groups of subjects, and at the same time

can discriminate between fMRI data from different groups of subjects. There are

many challenges one has to meet so as to achieve this goal, for example, appropriate

group-level models for variations in haemodynamic response and for variations in

spatial extent of HPM prototypes among the subjects. Therefore, modelling the

multi-subjects SMM-HPM requires three hierarchical levels of model complexity:

First level: Model L1G-SMM-HPM : this level is the most constrained one.

The assumption of this model is that within a single ROI, the multi-subject fMRI

time series share most of their properties, namely, the shape of the haemodynamic

response, the location and the shape of the neuronal response sources (we call them

prototypes), and the number of the neuronal response sources. Only the haemody-

namic response magnitudes are considered subject dependent. We start with this

assumption because the heamodynamic response magnitudes depend on the stimuli

and in our experiment different subjects see different stimuli sequences, which mean

that the heamodynamic response magnitudes should be subject-dependent and we

have to estimate them for each subject.

Second level: Model L2G-SMM-HPM : because our model is ROI-based model

and the size of the ROIs are small, which means there is no big variabilities in the

location and the shape of the neuronal response sources within the ROIs, in the sec-

ond level we weaken the constraints by assuming that the haemodynamic response

shapes are different across subjects in addition to the magnitudes. The location

and the shape of the neuronal response sources, and the number of the neuronal

response sources remain shared across subjects.

Third level: Model L3G-SMM-HPM : this model is the least constrained one.

To allow further variabilities, we assume that the remaining property, which is the

location and the shape of the neuronal response sources, is subject-dependent. In
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this level, different subjects only share the number of the neuronal response sources.

All of the other properties of the fMRI time series; the magnitude and the shape

of the haemodynamic response, as well as the location and shape of the neuronal

response sources can vary across subjects.

• Such a hierarchical formulation of the population based fMRI data model

enables finding the optimal common model, and extracting novel infor-

mative features that can be used in contrasting different populations.

The optimal common model can be detected based on computing the out-of-sample

(both spatially and temporally) negative log likelihood of each model in the hier-

archy. The optimal model is the one that has the lowest negative log likelihood.

To discriminate between different groups of subjects, three novel features can be

extracted from the optimal model: a spatial feature, which is described by the pro-

totypes volume (extent of prototypes) (left panel of Fig. 1.1); a temporal feature,

which is described by the haemodynamic response time to peak (how fast is the re-

sponse) (middle panel of Fig. 1.1); and a spatio-temporal feature; which is described

by the zero lag cross-correlation between the haemodynamic response magnitudes

time series of the prototypes within a specific ROI (high cross-correlation means that

the ROI is homogeneous and one prototype is enough, low cross-correlation means

that the ROI is heterogeneous and there is a need for more than one prototype)

(right panel of Fig. 1.1).

1.3 Research questions

1. How can the idea of the population-based fMRI data model be formu-

lated?

To answer this question, modelling the multi-subject version of the single-subject

SMM-HPM is performed at three hierarchical levels with different degrees of model

constraints at each hierarchical level. Starting from the most constrained model,
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Figure 1.1: Features extracted from the optimal model to discriminate between the fMRI
data of different population: spatial feature - prototypes volume (left panel), temporal
feature - haemodynamic response time to peak (middle panel), and spatio-temporal fea-
ture - zero lag cross-correlation between the haemodynamic response magnitudes time
series of the prototypes within the ROI (right panel).

where the population shares the same fMRI data characteristics but with subject

specific haemodynamic response magnitudes, to the most relaxed model, where dif-

ferent subjects have different fMRI data characteristics controlled by appropriate

group-level priors.

2. What is the most constrained model that still can describe the population

based fMRI data and what can be learnt from it?

To answer this question, out of sample negative log likelihood has been computed

for each model in the hierarchy in order to find the optimal model that can describe

the population. From the optimal model, three different features can be identified:

a spatial feature (prototypes volume), a temporal feature (haemodynamic response

time to peak) , and a spatio-temporal feature (zero lag cross-correlation between

the haemodynamic response magnitude time series of different prototypes within

the ROI). These features can be used in analysing within ROI cortical activation,

and in contrasting different populations (e.g., fast vs. slow learners with respect to

a cognitive task )
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1.4 Thesis outline

The remainder of this thesis is organized into the following chapters:

Chapter two gives an overview of functional magnetic resonance imaging (fMRI). It be-

gins by a brief description of neuroscience and neuroimaging, followed by a detailed

background about fMRI and its analysis methods.

Chapter three explains the spatio-temporal modelling of fMRI data. Specifically, the

two main Bayesian-based model-driven approaches; which are spatially regularized

Bayesian spatio-temporal modelling, and mixture-based Bayesian spatio-temporal

modelling. This chapter also reviews related works of each approach both for single-

subject fMRI data modelling and multi-subject fMRI data modelling.

Chapter four provides a detailed description of the single-subject SMM-HPM. It also

proposes a modification which is normalizing the haemodynamic response function

(HRF). This modification is essential to extend the single-subject SMM-HPM to a

multi-subject fMRI data model (multi-subject SMM-HPM).

Chapter five presents the main contribution of this thesis which is to extend the single-

subject SMM-HPM to multi-subject SMM-HPM. It explains the methodology that

has been adopted for this extension through a hierarchy of model formations that

represent different degrees of group specificity at each level. Furthermore, this

chapter describes and discusses the extensive numerical experiments that have been

developed to validate and examine the performance of the proposed multi-subject

models using synthetic and real data.

Chapter six presents the summary of the presented work and the plan of the future

work.
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CHAPTER 2

BACKGROUND

This chapter gives an overview of functional magnetic resonance imaging (fMRI). Section

2.1 gives a brief description of cognitive neuroscience and neuroimaging. Section 2.2 gives

detailed background information about fMRI and its analysis methods.
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2.1 Cognitive neuroscience and neuroimaging

Cognitive neuroscience studies the neural basis of the brain’s cognitive performance. It

relates human cognition (perception, thoughts, beliefs, memory, decision making, atten-

tion, language understanding, and problem solving) to the neurons’ activities in the brain.

Studies have shown that different brain regions have different functions. Cognitive neuro-

science arose in the late twentieth century with the emergence of brain imaging techniques

(neuroimaging: fMRI, PET, EEG, OI and MEG) as tools for analysing brain cognition

[53].

Neuroimaging is considered today as one of the most successful research fields. It has a

number of different technologies to image the brain directly or indirectly, which help in un-

derstanding the brain and its cognition. These technologies provide different information.

Structural neuroimaging provides information about the structure of the brain, which

helps in diagnosing intracranial diseases, stroke, and tumours. Functional neuroimaging

provides information about the relationship between the brain’s neuronal activity in spe-

cific areas and specific cognition function, which helps in diagnosing metabolic diseases.

It is mainly used in cognitive neuroscience because it provides a way to image the brain’s

activities while subjects perform specific cognitive tasks [54].

Many functional neuroimaging techniques are available. They are varied in what they

measure, and in the resolution of their temporal and spatial results.

Electroencephalography (EEG) measures the electrical activity of the brain by

measuring voltage variations in brain areas from the electrical currents. It is one of the

first utilized functional neuroimaging techniques, from back in 1920. It helps in diagnosing

sleep problems and brain tumours, distinguishing between seizures types, confirming brain

death and examining head injuries. It has many advantages. It is safe, non-invasive and

cheap compared to other techniques. Its temporal resolution is high, but on the other

hand, its spatial localization resolution is uncertain. This is due to the fact that EEG

electrodes are separated from neuronal sources in the brain by cerebrospinal fluid (CSF),

the skull, and the scalp [55].

14



Magnetoencephalography (MEG) originates back to 1960. It is similar to the

EEG, but it measures the magnetic fields resulting from the electrical currents. There-

fore, it is more accurate1, particularly in identifying the location of the brain’s activities.

MEG is very useful in diagnosing brain tumours, and defects in motor areas and primary

auditory; and in identifying the sources of epileptic seizures. The MEG is mostly used in

combination with fMRI. As with EEG, the integration of MEG and fMRI works under the

hypothesis that the regions with the greater fMRI BOLD responses have larger possibility

of being electrically active over the time period of interest [56, 57].

Positron emission tomography (PET) measures metabolic changes (blood flow,

oxygen use and metabolic activity) at the cellular level by injecting a small dose of radio-

tracer into the blood, which can be harmful, and then scans the subject with a PET

scan. It provides a 3D image of how organs and tissues work, which is used in cancer and

cognitive problems’ detection, such as Alzheimer’s; and in diagnosing brain tumours and

seizures. However, its use is limited because it is expensive [58].

Optical Imaging (OI) is the most recent method for brain investigation. It measures

blood and tissue oxygenation changes in the brain using near-infrared (NIR) light [59]. It

can provide images of brain metabolism or intrinsic activity. However, it does not provide

a full coverage of the brain volume.

Functional magnetic resonance imaging (fMRI) dates back to 1990. It measures

the metabolic changes (the increase of the oxygenated blood volume and flow) that are

a consequence of the neural activities in the brain using a scanner with strong magnetic

fields (MRI scanner). The fMRI is friendlier compared to the other techniques. There

is no need to inject the subjects with a radio-tracer as with PET or to place electrodes

on their heads as with EEG. It is safe to all individuals including children and it can be

used repeatedly. It is accessible to many more researchers than PET had been. This is

because fMRI could be performed on many standard MRI scanners, and by the 1990s

1MEG is more accurate than EEG in terms of identifying the location of the brain activities. This is
because MEG measures local magnetic fields inside the brain while surface EEG measures a mixture of
electric signals from the whole brain.
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MRI systems had proliferated such that nearly every medical center had at least one

scanner and often several [54]. Moreover, although fMRI has a lower temporal resolution

compared to EEG1, its superior spatial resolution (fMRI provide images with high spatial

resolution) makes it preferable. There are also several drawbacks of fMRI, fMRI includes

confined space in which participants must be placed, which can induce claustrophobia in

susceptible participants; subjects in the scanner are required to lie absolutely still since

any movement can induce changes in the Signal-to-Noise Ratio (SNR); and subjects should

protect their ears with ear plugs because of the acoustic noise required to obtain scans

[57, 60, 54]. The cost also can be a disadvantage for fMRI if there is not a readily available

instrument to acquire the images. Relative to EEG-based techniques, fMRI is expensive

( MRI scanners cost millions of dollars, and their maintenance can be expensive as well).

Relative to PET and MEG-based techniques, fMRI have similar costs for implementation

[57].

Although all of these neuroimaging techniques are important in different application

areas, functional magnetic resonance imaging (fMRI) has become the predominant tech-

nique in the cognitive neuroscience studies in the last two decades [54], and will be the

focus of this thesis.

2.2 Functional Magnetic Resonance Imaging (fMRI)

2.2.1 fMRI and the BOLD signal and the HRF

The neural activation cannot be measured directly by fMRI. However, fMRI exploits

the fact that the neuronal activation is associated with metabolic changes: increases in

oxygenated blood volume and flow in the brain’s activated areas. The most common

method of fMRI depends on measuring these changes in blood oxygenation as an indirect

1fMRI has low temporal resolution because temporal resolution depends on the time between acqui-
sitions of successive brain volumes, which is in second, and because the BOLD response peaks approxi-
mately 5 seconds after neuronal firing begins in an area. This means that it is hard to distinguish BOLD
responses to different events which occur within a short time window [57].
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measurement of neural activities in the brain [61, 62, 54, 60]. These changes in oxygenation

are called the Blood Oxygenation Level Dependent signal (BOLD) signal by Ogawa et al.

[63]. The BOLD signal arises from the interplay of blood flow, blood volume, and blood

oxygenation in response to changes in neuronal activity. In short, under an active state,

the local concentration of oxygenated haemoglobin increases, which increases homogeneity

of magnetic susceptibility, resulting in an increase in T2*-weighted MRI signal. This

BOLD signal is recorded during the fMRI scan. Hence, the fMRI signal is the BOLD

signal [60].

The underlying haemodynamic response (blood flow increase) evoked due to the neu-

ronal activation is called the Haemodynamic Response Function (HRF) by Friston [64].

It can be described as the ideal, noiseless response to an infinitesimally brief stimulus [54].

The HRF underlies the basic features of the BOLD signal. It can be considered as

a generalized approximation of the BOLD signal curve. Hence, the BOLD signal can be

modelled by the HRF, and the shape of the HRF can vary between subjects and between

the brain regions of one subject. The haemodynamic response is very slow compared to

the neuronal activity. Just after the neuronal activity, there is a slight undershoot for

1 to 2 seconds. Then, the haemodynamic response takes about 5 to 7 seconds to reach

its peak. After that there is a long undershoot lasting between 15 to 20 seconds before

the haemodynamic response returns back to its baseline. Based on these features of the

haemodynamic response, the shape of the HRF underlying the BOLD signal is sketched

in Fig.(2.1) [60, 54, 65].

Typically, in the fMRI analysis, they assumed that the response to a stimulus is well

modelled by linear convolution of the stimulus with the HRF, and the nonlinear effects,

such as nonlinearities in the vascular response, are largely ignored due possibly to several

reasons. First, the assumption that BOLD responses were approximately linear over a

range of stimulus durations promised to greatly simplify analysis. Second, nonlineari-

ties are believed to be relatively small compared to the overall BOLD effects for events

spaced more widely than 2. Third, most work on development of expected hemodynamic
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Figure 2.1: Shape of haemodynamic response function (HRF) underlying BOLD signal.

Source: Figure modified from [66]

responses has focused on determining canonical responses to single stimuli rather than

exploring interactions among them. Finally, existing nonlinear models require fitting a

large number of parameters, which may not be practical for many multicondition fMRI

experiments due to overfitting and loss of power. In addition, the interpretation of param-

eter estimates with such models becomes more problematic [67]. However, modelling the

nonlinearities in the BOLD response have been considered by some studies [68, 69, 70, 71].

2.2.2 fMRI time series

The acquired fMRI data consists of a sequence of brain volumes (magnetic resonance

images) acquired repeatedly at T separate time points (T varies between 100 to 2000

time points) with repetition time (TR) equal typically to 3 seconds. Each brain volume

consists of multiple uniformly spaced elements, called voxels. This means that one volume

is a three-dimensional matrix of voxels (3D activation map). Hence, fMRI data is four-

dimensional; three dimensions represent the spatial features of the fMRI data and one

dimension represents the temporal features of the fMRI data. The fMRI time series in

any voxel is the temporal evolution of the brain activation at that location.

In one fMRI experiment, typical brain volumes have (64×64×30) voxels (i.e. 122,880
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voxels) sampled for T time points. This produces 122,880 time series of length equal to T .

The experiment is often repeated for the same subject or for multiple subjects (around

10 to 40 subjects) several times 1. Consequently, fMRI data is massive and comprises

hundreds of thousands of fMRI time series [62, 65, 54].

The fMRI data mostly suffer from distortion because of head motion; physiological

oscillations, such as breathing and heartbeats; and variations in the image acquisition

time, and in the magnetic static field. Consequently, the fMRI time series consists of the

BOLD signals (the component of interest) and noise [65].

2.2.3 fMRI experimental objectives

There are three common objectives for the fMRI experiments: localize the activation re-

gions for each type of stimuli; determine brain connectivity; and predict the psychological

and physiological state of the brain [65, 58].

Localizing the activation regions for specific type of stimuli is the most common

objective of the fMRI experiment. In the experiment, the subject’s brain is scanned many

times while the subject performs specific cognitive tasks.

Determining brain connectivity has received increased interest recently. It aims to

reveal brain networks by finding how different brain regions interact, or understanding the

transmission of information between different brain regions. It is most often performed as

resting state fMRI without a specific task, in which the brain pseudo-randomly activates

under little or no guiding external influence. Since no task performance is required on the

part of the subject, the resting state implementation has the advantage of being a pas-

sive method of interrogating functional brain networks and their functional connectivity

[57]. Brain connectivity can be structural connectivity, functional connectivity, or effec-

tive connectivity. In the structural connectivity, the connectivity network is determined

based on the anatomical interaction that connect different brain regions. In functional

1The data acquisition process continues for 5 to 20 minutes, called a run and is repeated for a number
of sessions.
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connectivity, the connectivity network is determined based on the statistical dependence

between signals from different regions. In the effective connectivity, the connectivity net-

work is determined based on the causal dependence between signals from different regions

(activation signal in one region causes activation signal in another region) [72, 61, 62].

2.2.4 fMRI experimental design

The two main designs used in fMRI experiments are block experimental design and rapid

event-related experimental design, respectively.

The block experimental design, Fig. (2.2), presents a stimulus continuously for a

long period (20 to 30 s would be typical durations), followed by absence of stimuli or

by a comparison stimulus for a long period. The block experimental design provides

high statistical detection power to detect brain activated regions (high spatial resolution);

however, it provides poor information about the onset and the width of the haemodynamic

response (low temporal resolution). It also suffers from the effects of fatigue, anticipation,

boredom, and habituation, particularly in the case of a large block length.

Figure 2.2: Typical modeling of the BOLD signal at a given voxel for block design ex-
perimental. The BOLD signal is modeled as the convolution of the experimental stimulus
and the hemodynamic response function (HRF).

Source: Figure obtained from [65]

The rapid event-related experimental design, Fig. (2.3), presents many types of stimuli

for short durations (about 2s). Rapid event-related design experiment provides fMRI

data with high temporal resolution. It also can avoid the effects of fatigue, anticipation,
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boredom, and habituation. However, its statistical power to detect brain activated regions

is low (low spatial resolution).

Figure 2.3: Typical modeling of the BOLD signal at a given voxel for rapid event-related
design experimental. The BOLD signal is modeled as the convolution of the experimental
stimulus and the hemodynamic response function (HRF).

Source: Figure obtained from [65]

Which experimental design is optimal depends on the goal of the experiment, the

nature of the cognitive tasks, the ability of the resulting signal to track changes over time

resulting from the task, and the statistical analysis that will be used in the experiment.

2.2.5 fMRI data preprocessing

Preprocessing the fMRI data is essential before performing statistical analysis due to the

low signal-to-noise ratio, the distortions that mostly occur during data acquisition, and

the large variability in the fMRI data. Some preprocessing steps aim to detect and repair

distortions in the data caused by the scanners (variations in the image acquisition time

and in the magnetic field), or by the subjects (head motion and physiological oscillations).

Other steps aim to reduce the variabilities in the data (standardize brain regions within

and across subjects) in order to increase the sensitivity and validity, particularly in the

case of group-based analysis. These pre-processing steps are not fixed. A particular step

is used based on the aim of the statistical analysis and the fMRI data itself [73]. fMRI

preprocessing steps include:

Slice timing correction: during the fMRI experiment, the brain is scanned sequen-

21



tially at different time points; therefore, the same time series in different slices (layers of

the brain) are sampled at different time points, and hence temporally shifted and appear

different (left panel in Fig. 2.4). These differences depend on the repetition time (TR).

The acquisition time of one slice equals to (TR/Number of slices), hence the last slice is

acquired almost TR seconds later than the first slice.

To correct the slice timing, the time series of all voxels in the different slices are

shifted so they appear as if they are measured simultaneously (right panel in Fig. 2.4).

The most popular slice timing correction is based on using a reference slice and temporally

interpolating the time series of the other slices to match the timing of the reference slice.

Slice timing correction is effective when the TR is short (low variability). In the case of

long TR, it is better if the slice timing correction is skipped because it could introduce

errors.

Figure 2.4: Illustration of slice timing correction. Assume three brain slices, exhibiting
a similar time course, are sampled sequentially during each TR. Since the voxels are
sampled at different time points relative to one another, their respective time courses will
appear shifted (left panel). Slice timing correction shifts the time series so they can be
considered to have been measured simultaneously (right panel).

Source: Figure obtained from [65]

Motion correction: motion occurs frequently during the fMRI data acquisition be-

cause of the subject’s head movement and the physiological oscillations (breathing and

heartbeat). Motions cause a mismatch in the locations of the time series in subsequent

volumes. Even a small number of motion events could cause large distortion in the time

22



series.

Head motion can be corrected by aligning all the volumes to a reference volume (the

first volume or the mean volume) with rigid-body transformations: three rotation param-

eters (around the x, y, and z axes), and three translation parameters (up-down, left-right,

and forward-backward). Assessment of the similarity between any volume and the refer-

ence volume is performed by optimizing a cost function (mutual information or sum of

squared differences) in order to find the optimal parameter values.

The physiological motion can be addressed by monitoring and recording the heartbeat

time and the breathing time, and correct for their effects on the data. A severe amount

of motion results in excluding the subject from the study completely.

Co-registration and Normalization: co-registration or intra-subject registration

is the process of aligning the functional image to the structural image of the same subject.

In the case of group-based analysis, because of the high variabilities in the shapes

and features of the brains of different subjects,it is necessary to transform each subject’s

anatomical image into a standard atlas space, such as the Montreal Neurological Institute

(MNI), and Talairach template brain. That means that a specific voxel in all subjects

should represent the same brain location. This transformation is known as normalization

or inter-subject registration. By normalizing the data, activations’ locations become more

interpretable and the results can be generalized and compared across different subjects and

studies. However, normalization reduces the spatial resolution of the data and introduces

errors. Currently, there are several approaches to deal with the variabilities of fMRI data

in group-based analysis. One approach is smoothing, and another is identifying regions

of interest (ROIs) and restricting the analysis to these regions only.

Smoothing: smoothing means blurring the fMRI images by convolving them with a

Gaussian kernel. The distribution of the Gaussian kernel is described by the Full Width

at Half Maximum (FWHM) of its height. Broader (Wider) FWHM produces smoother

images. In the smoothed image, the number and the shape of the voxels remains the

same, but the resolution of the image is reduced. Smoothing is essential in the group-
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based analysis to increase the overlap of activated regions between subjects by averaging

the signal over a large area. This increases the results’ significance and increases the

analysis’ validity since realistic neighbouring voxels are spatially correlated. Smoothing

also increases the signal-to-noise ratio; because in the smoothed image the signal of each

voxel not only originates from the voxel itself but from the neighbouring voxels as well;

which reduces the effects of the random noise. The drawback of smoothing is that it

could mask important variabilities between subjects. In a recent fMRI analysis approach:

spatio-temporal analysis, there is no need for smoothing, as the spatio-temporal model

itself deals with this issue.

2.2.6 fMRI data modelling methods

Due to the high dimensionality and the complex spatial and temporal correlation of fMRI

data, it should be analysed and modelled in order to infer the relationship between the

stimuli (cognitive task) and the neuronal response (temporal and spatial resolutions of

the neuronal activities). fMRI data modelling methods can be categorized into two types:

model-driven methods and data-driven methods.

Model-driven methods

Model-driven methods assume that there exists a model generating the observed fMRI

data. These methods model the relationship between the experimental stimulus and the

BOLD response. They also model the underlying HRF and noise, and try to fit the model

to the observed fMRI data.

Modelling the BOLD signal and the HRF (effect of interest)

Due to the supposed linear time invariant relationship between the BOLD response

and the stimulus, the BOLD response can be modelled by convolving the stimulus function

with the appropriate HRF model. The shape of the signal resulting from this convolu-

tion closely represents the BOLD response. However, this assumption is poor in certain
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situations, such as in the case when nonlinearities are predominant when there are short

separations (less than 3 s) between stimuli. Such nonlinearities are predicted by nonlin-

ear biophysical models, for example, the balloon model [70] Another approach that can

be used in the GLM setting is to extend the idea of convolution to include second-order

nonlinear terms using Volterra kernels [68, 71].

In the literature, there are many methods adopted to model the HRF. One of the most

popular methods is the parametrized HRF; where an analytical function (e.g.Gamma

HRF) with a small number of free parameters learned from the data is used to model

the HRF. Another popular approach is to use basis functions (canonical HRF, canonical

HRF and its derivative, and constrained basis set) [54, 71].

Modelling the noise (effect of no interest)

fMRI data consists of the BOLD signal and noise. Noise is variance in the signal due

to uncontrolled or unpreventable events (e.g. head motion, breathing, heartbeats, scanner

instability). To improve the fit of the model, the noise should be modelled. The fMRI

data has two types of noise: white noise and coloured noise. White noise is unstructured

random noise and cannot be modelled. Coloured noise (scanner instability noise , head

motion noise, and breathing and heartbeat noise ) is a structured noise resulting from

consistent sources of variabilities. This type of noise should be modelled [54]:

• High frequency noise due to the temporal correlation of the fMRI time series in

one voxel. This type of noise can be corrected by convolving the time series with a

smoothing function, such as a Gaussian curve, or by calculating and removing the

correlation between the neighbouring time scans using a first-order auto-regression

model (Auto-Regression model (AR)).

• Low frequency noise due to the scanner instability. It is one of the most obvious

coloured noises. A high pass filter, which means a high frequency signal may pass,

and pre-whitening or pre-colouring, which means removing the temporal autocorre-

lation by estimating it and construct pre-whitening temporal filter to undo it, are

used as two steps to remove this noise.
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• Movement noise due to head motion. This type of noise is removed by calculating

the degree of the movement (realignment of the movement) and then transforming

the images accordingly.

• Physiological noise due to the breathing and heartbeat. This type of noise can be

removed by measuring it during scanning and then removing it from the signal in

the pre-processing phase, or adding it as a covariate of no interest into the model

design matrix. Nevertheless, some studies left it un-modelled.

Model-driven conventional method

The General Linear Model (GLM) of Eq. (2.1) is the conventional and most adopted

model-driven method.

Y = Xβ + ε, (2.1)

where Y : observed data, X: design matrix, β: regression coefficients, i.e. weight of each

regressor, and ε: remaining noise (White noise).

Each column (regressor) in the design matrix X is the result of convolving the stimulus

function and HRF to represent the BOLD signal. In addition to the regressors that

represent the factor of interest (BOLD signal), other regressors can be added; such as a

constant regressor which represents the intercept to model a baseline signal (the signal

during rest periods), and an uncorrected coloured noise regressor if there is a need to

model it.

The goal of the GLM1 is to estimate the regression coefficients β (signal intensity

at each voxel) that describe the observed data Y correctly by minimizing (optimizing)

the residual error ε = Y − Xβ (usually, by minimizing the sum of the square error). If

the design matrix X is non-singular, the minimization of the sum of the square error

is equivalent to β = (XTX)−1XTY . Thresholding is used to infer the existence of the

activation by comparing each voxel’s intensity to a significant threshold value. The null

hypothesis of no effect is rejected if the voxel intensity is larger than the threshold value.

1In the case of fMRI data analysis, solving GLM is under-determined (for individual voxel, number of
parameters is more than number of observed fMRI data ). Pseudo inverse can be used to solve it.
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In the literature, most of the studies that applied GLM on modelling fMRI data produce

a statistic image ( t-, F-, or Z- map) with signal intensity at each voxel. Signal intensity

measures the evidence of the activation in the corresponding voxel. High intensity means

there is an effect and the voxel is active. Low or zero intensity means there is no effect

and the voxel is non-active.

The drawbacks of the GLM is that it is a mass-univariate method 1 that assumes that

the voxels are independent; while in reality, neighbouring voxels are spatially coherent.

Data-driven methods

In this method, there is no underlying model. The goal is to find a structure (meaningful

temporal or spatial pattern) within the data for the brain activation based on the as-

sumption that the task-related activation leads to a distinctive structure in the data. A

number of data-driven methods are available: Independent Component Analysis (ICA),

clustering, parcellation, and Multi-Variate Pattern Analysis (MVPA).

Independent Component Analysis (ICA)

ICA decomposes the observed fMRI data Y into a set of underlying sources (hidden

components) based on the assumption that the observed data Y is a linear combination

of hidden components C:

Y = A× C, (2.2)

where Y : observed fMRI data, A: mixing matrix of mixing coefficients, which define

the weight (amplitude) of each hidden component C, and C: hidden spatial or temporal

components.

The hidden components C are statistically independent (the value of one component

does not provide any information about the value of any other component), and have

non-Gaussian distribution. In Eq. (2.2), mixing matrix A and hidden components C are

1mass-univariate method models the fMRI data in each voxel (voxel-wise inference) and assumes that
noise covariance is diagonal (independent noise over the voxel space).
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unknown. To estimate C:

C = Y × A−1, (2.3)

where A−1: is the inverse of the mixing matrix A.

This means A should be estimated first in order to calculate its inverse A−1 and find

C. Based on the assumption that the components C are independent and have non-

Gaussian distribution, the mixing matrix A can be estimated to a good approximation of

it by maximizing the non-Gaussianity (maximizing the non-Gaussianity is equivalent to

minimizing the mutual information). After estimating A, the original hidden components

C can be recovered by multiplying the observed signals Y with the inverse of the mixing

matrix A−1 simply by Eq. (2.3). Here it is assumed that the mixing matrix is square.

If the number of basis vectors is greater than the dimensionality of the observed vectors,

the task is over-complete but is still solvable with the pseudo inverse.

ICA was introduced the first time for analysing fMRI data by McKeown [74]. Following

his successful study , many studies applied ICA in modelling fMRI data. There are

two ICA approaches: temporal ICA and spatial ICA. Temporal ICA detects temporal

independent components by assuming that each voxel signal is a mixture of independent

time courses (points). Spatial ICA detects spatial independent components within the

fMRI data by assuming that the fMRI volumes (images) are a mixture of independent

spatial components. The choice of which of these two approaches is better to model

fMRI data is controversial. In the literature, spatial ICA is adopted more than temporal

ICA [62, 75, 76, 77]. Some studies such as Stone et al. [78] apply both spatial and

temporal ICA together to model fMRI data. At first, spatial ICA is applied to reduce

the dimensionality. Then, temporal ICA is applied to estimate the temporal response

(haemodynamic response).

The drawbacks of ICA are that it is non-deterministic (different run of the ICA on

the same data provides different components and different numbers of components), and

its interpretability is low (no statistical framework to assess the results).

Clustering
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K-means clustering is the most popular clustering method that has been used in mod-

elling fMRI data [79, 80, 81, 82]. In the literature, Many of the studies applied K-means

directly on the fMRI time series, but this often produces unsatisfactory and inadequate

results, due to the fact that K-means is sensitive to noise and fMRI data has a high noise

level. To deal with this issue, K-means has been applied on the cross-correlation between

the fMRI time series of the voxels [83, 84]. Applying the K-means on the cross-correlation

helps in reducing the noise and improving the performance of the K-means.

Other clustering methods that have been adopted to model fMRI data: hierarchical

clustering [85, 86], and support vector clustering which provides high quality results [87,

88].

Parcellation

Parcellation means grouping voxels into small anatomically or functionally homo-

geneous areas called parcels. It was proposed by Thirion et al. [89]. Brain parcel-

lations can be performed in an anatomical context based on prior anatomy and con-

nectivity knowledge known from an existing brain atlas, such as, the Talairairach at-

las and automatic anatomical labelling. It also can be performed in functional context

[89, 90, 91, 62, 47, 92, 93, 94, 95]. Parcellation can serve as a basis for any further analysis

of fMRI data [96].

Mostly, brain parcellation is developed by applying clustering algorithms on brain

images. The most popular clustering techniques that are used for parcellation are K-

mean clustering, hierarchical clustering (e.g. Ward’s algorithm), spectral clustering and

clustering based on mixture models. Independent component analysis (ICA) and principle

component analysis (PCA) can be used as well to develop a parcellation.

The problem with brain parcellation is the lack of reproducibility. Parcellation results

from a specific context may not fit a slightly different context, particularly, for multi-

subjects’ parcellation. One solution to enhance the reproducibility of parcellation is by

random parcellation [97].

Multi-Variate Pattern Analysis (MVPA)
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In the last decade, MVPA has been increasingly used to model fMRI data. This

is mainly because MVPA overcomes the drawbacks of the mass-univariate model-driven

methods (e.g GLM), where the correlation among the neighbouring voxels is ignored and

there is a need for a threshold, which may be affected by the experimental conditions;

and the drawbacks of the exploratory non-parametric data-driven methods (e.g. ICA), in

which there is no statistical framework to assess the results.

MVPA was introduced in 2001 by Haxby et al. [98]. It models the neural response as

a pattern of activity [99]. While standard fMRI analysis maps the experimental condi-

tions (cognitive tasks stimulus) to a brain activated region, MVPA conversely maps the

activated pattern to cognitive tasks (brain reading).

In the literature, MVPA mostly is used as a supervised classification method to find

the relationship between the spatial pattern and the experimental conditions (brain state

stimulus) of the fMRI activity, i.e. for each pattern determine the experimental condition

to which it belongs. A number of classifiers have been used in modelling fMRI data

including: Gaussian naive Bayes, support vector machine (SVM), Linear Discriminant

Classifier (LDC), and neural network.

SVM is the most popular classifier used for fMRI data modelling, due to its flexibility

in dealing with high dimensional data in a reasonable time, and modelling data from

diverse sources. SVM has two phases: a training phase to find the statistical properties

of an activated pattern in the fMRI training data in order to discriminate between the

cognitive tasks; and a test phase to predict and classify the cognitive tasks of test data

[100, 101, 102, 103, 104, 100].

The limitation of the MVPA are it is complex to implement. However, there are some

libraries that implement MVPA, such as: SVM-light1,LIBSVM2,and PyMVPA3;The ap-

plication of a classifier is not as straightforward as the statistical and exploratory method;

Different experimental designs and data samples require different classification approaches

1www.cs.cornell.edu/people/tj/svm_light
2https://www.csie.ntu.edu.tw/~cjlin/libsvm
3www.pymvpa.org
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and parameter tuning methods to avoid overfitting and to keep the results reliable; the

high dimensionality and limited number of samples could easily bias the analyses; Suc-

cessful application of a classifier to fMRI data relies on tight cooperation between neuro-

scientists and experts in machine learning techniques [62].

2.2.7 fMRI software packages

Currently, there are a number of fMRI data modelling software packages:

Statistical Parametric Mapping (SPM)1 is the most popular. It was developed

in the mid 1990s by Karl Friston and his colleagues at University College London using

MATLAB, which makes it widely accessible and easy to use. SPM provides model-driven

(mass-univariate) fMRI data analyses based on GLM. SPM is open source, and mostly

used for data pre-processing and read and write data files, even if it is not used for the

analysis of the data. It has unique connectivity modelling tools (dynamic causal modelling

and psycho-physiological interaction); but it has limited visualization capabilities [54].

BrainVoyager2 has been developed by Rainer Goebel and his colleagues. It is a

commercial solution available for all platforms. BrainVoyager provides model-driven (uni-

variate) and data-driven (multivariate) fMRI data analyses. It is easy to use, and has a

user- friendly interface [54].

Analysis of Functional NeuroImages (AFNI)3 developed in the early days of

fMRI by Robert Cox and his colleagues at the Medical College of Wisconsin (now, AFNI

is maintained by the National Institute of Mental Health). AFNI is sort of open source

C programs for UNIX. It provides high visualization abilities, but on the other hand, it

provides less sophisticated statistical modelling compared to SPM and FSL [54].

FMRIB Software Library (FSL)4 developed by Stephen Smith and his colleagues

at Oxford University in 2000. It is open source with an extensive library of statistical

1http://www.fil.ion.ucl.ac.uk/spm/software/download/
2http://www.brainvoyager.com/downloads/downloads.html
3https://afni.nimh.nih.gov/download
4https://fsl.fmrib.ox.ac.uk/fsldownloads_registration
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and analysis tools for fMRI data. In recent years, FSL has been leading the statistical

modelling of fMRI data. It has a robust toolbox for ICA, and for the analysis of diffusion

tensor imaging data. It provides high visualization ability and rapid analysis for large

data sets (FSL supports grid computing)[54].

Which of these different fMRI software packages is more appropriate depends on the

analysis aspects and requirements. Based on the modelling methods: in ICA modelling,

FSL is preferable; and in the case of dynamic causal modelling, SPM is preferable. Based

on computing platforms: for UNIX, almost all the packages are appropriate; but for

Windows, SPM is better [54]. Based on the size of the data set: for a large dataset, FSL

is the superior software package [54]. FSL has become the most common package and it

has been used by a number of researchers recently [54]. There is also the possibility of

using more than one package, such as using SPM for data pre-processing and using FSL

for data modelling and analysis [105, 54]

2.3 Summary

In this chapter, we have provided a brief overview of cognitive neuroscience and neu-

roimaging. Because in this work we use fMRI data, we have explained functional mag-

netic resonance imaging (fMRI) in detail: what is fMRI, fMRI experimental objectives,

the experimental design of fMRI experiments, pre-processing steps of fMRI data, the

methods used in modelling fMRI data, and the most popular fMRI software packages.

The following chapter explains the spatio-temporal methods of modelling fMRI data, and

reviews related works.
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CHAPTER 3

SPATIO-TEMPORAL MODELLING AND
LITERATURE REVIEW

This chapter explains the spatio-temporal modelling of fMRI data and its approaches;

specifically, the Bayesian-based model-driven approaches. It also reviews the previous

studies in each approach for single-subject and multi-subject fMRI data modelling. Sec-

tion 3.1 introduces the spatio-temporal modelling of fMRI data. The two main Bayesian

based model-driven approaches for the spatio-temporal modelling of fMRI data, spa-

tially regularized Bayesian spatio-temporal modelling; and mixture based Bayesian spatio-

temporal modelling, are described in sections 3.1.1 and 3.1.2, respectively.
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3.1 Spatio-temporal modelling of fMRI data

Spatio-temporal modelling of fMRI data models both the spatial and the temporal be-

haviours of fMRI time series (i.e. BOLD signal dispersion in both space and time).

The temporal behaviour of this dispersion is characterized in time by the haemodynamic

response function (HRF). The spatial behaviour of this dispersion is characterized by

assuming that each voxel’s effect is constrained by its neighbouring voxel’s response.

In the standard model-driven approach (GLM), the spatial behaviour of fMRI data

is not explicitly modelled. In the literature, they deal with the spatial extent of neu-

roal response indirectly by smoothing (averaging the signal over neighbouring voxels) the

fMRI data. The most used smoothing approach is FWHM fixed-width Gaussian kernels

[2], which defines the activation size (the number of voxels in the neighbourhood). Other

smoothing approaches include spatial wavelet shrinkage, which provides relatively little

smoothing compared to Gaussians [3, 4]; Markov random field filtering [5]; anisotropic

averaging spatial filtering [6, 7]; adaptive spatial filtering (spatial basis filters) [8]; or

surface-based filtering (spatially informed basis functions) [10, 11]. The limitation of

these approaches is that they mainly consider the spatial behaviour of fMRI data in

the pre-processing phase, before the analysis of fMRI data. Consequently, the amount of

smoothing is determined independently from the data. To deal with this issue, the spatial

behaviour of the fMRI data should be considered as a part of the model by incorporating

the spatial and temporal modelling into one encompassing model. The Bayesian frame-

work is the optimal way to naturally describe and model both the spatial and temporal

behaviours of fMRI data. It is a statistical inference method that employs Bayes’ theorem

to probabilistically infer the model’s parameters as a joint posterior distribution on the

parameters of interest.

p(Θ|Y ) =
p(Y |Θ)p(Θ)

p(Y )
, (3.1)

where Y the observed data, Θ the model’s parameters, p(Θ|Y ) the posterior distribution
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(the probability of the model’s parameters given the observed data), p(Y |Θ) the likelihood

of the observed data given model’s parameters, which can be considered as the generative

model, p(Θ) the prior probability of the parameters, and p(Y ) the probability of the

observed data.

Nowadays, Bayesian inference has become increasingly common in modelling and

analysing fMRI data. Prior probability helps in incorporating valuable information about

the model and its parameters in a principled manner.

Bayesian spatio-temporal modelling of fMRI data can be categorized as either spa-

tially regularized Bayesian spatio-temporal modelling or mixture based Bayesian spatio-

temporal modelling.

3.1.1 Spatially regularized Bayesian spatio-temporal modelling

In this approach of the Bayesian spatio-temporal modelling of fMRI data, a spatial prior

is adopted to spatially constrain the mass univariate method (modelling the fMRI data

in each voxel individually). This spatial prior implements adaptive spatial regularization

on the posterior probability to reflect prior knowledge that the neuronal responses are

spatially coherent. Recently, there have been several spatially regularized Bayesian meth-

ods in the literature for modelling fMRI data. These methods usually begin with a GLM

model. Activation localization results from these methods have shown that the inferences

produced by these methods have higher sensitivity compared to the standard modelling

of fMRI data based on image smoothing.

Single-subject spatially regularized Bayesian spatio-temporal modelling

The earliest work that applied this approach to fMRI data modelling is Gossl et al. [13].

Gossl and his colleagues proposed a Bayesian spatio-temporal framework based on a GLM

mass-univariate model to model fMRI data. They have utilized a Gaussian Markov Ran-

dom Field (GMRF) prior as the spatial prior on the regression coefficients to characterize
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the spatial dependencies of fMRI data. To infer from the posterior, Markov Chain Monte

Carlo (MCMC) has been used to draw samples for the parameters from the posterior dis-

tributions, which is time consuming and computationally expensive. Fharmier et al. [14]

replaced the GMRF prior with Markov Random Field (MRF) prior. The MRF improves

the performance by overcoming the problem of over-smoothing areas of high spatial cur-

vature, such as the border between the high and low activation areas. Woolrich et al. [15]

modelled the fMRI data using a Bayesian spatio-temporal framework but with a MRF

prior on the Auto-Regression model (AR) noise parameters. As in the previous stud-

ies, they utilized MCMC to perform the posterior inference using Gibbs sampling. For

the purpose of enhancing the efficiency of their model, in [106], they adopted Variational

Bayes (VB) to approximate the posterior densities by factorizing over voxels space , which

is computationally more efficient compared to the full Bayesian method (MCMC). Pen-

ney et al. [16] adopted a Laplacian spatial prior on the regression coefficients of a GLM,

which helps in penalizing the differences between adjacent voxels. They adopted VB to

infer from the posterior. In [2], Flandin and Penny have improved their previous work

[16] by replacing the Laplacian prior with sparse prior. Their main goal is to decompose

the fMRI data into spatial sets to easily separate the noise from the signal. They applied

wavelet transform on the resulting regression coefficients’ image to decompose it, and

then applied Sparse Spatial Basis Functions (SSBFs) prior on the wavelet coefficients.

They have used VB to approximate the posterior distributions. Compared to the previ-

ous Laplacian prior, this SSBFs prior is more robust to noise and computationally more

efficient, it allows for spatially variant smoothing. In [17], Harrison et al. have proposed

a Bayesian schema to analyse fMRI data with a spatial Gaussian process prior based on

a diffusion kernel, which helps in modelling spatial non-stationarities. Bowman et al.

[18] have modelled the spatial correlation between the voxels in a Bayesian framework

with a parcellation-based Gaussian prior (anatomically informed spatial prior). Groves

et al. [19] have developed a Bayesian method to combine adaptive spatial prior and fixed

informative shrinkage prior. The fixed informative shrinkage prior encodes the permitted
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values for the signal parameters. For the inference from the posterior, they applied VB.

Quir’os et al. [20] applied Bayesian spatio-temporal model with a GMRF prior on the

location and magnitude of the activation in each voxel. In this model, MCMC has been

utilized to sample from the posterior in order to infer the model’s parameters.

Mostly, the previous works imposed the spatial prior on the activation magnitudes

(regression coefficients). Therefore, they also derive the posterior probability of activa-

tion magnitudes. In order to derive the posterior probability of the activation itself, the

Bayesian variable selection approaches in the following works have imposed the spatial

prior on the activation indicator variables rather than imposing it on the activation mag-

nitudes. This method incorporates a binary indicator for each voxel to determine the

activation by identifying the non-zero indicator variables. Smith et al. [21] proposed

a Bayesian variable selection approach to detect the activation. They fit GLM voxel-

wise; then in order to represent whether the voxel is active or not, they detect whether

the corresponding GLM regression coefficient is non-zero based on the value of the cor-

responding latent indicator variable. To handle the spatial interaction between voxels,

they applied a spatial Ising prior on the indicator variables. The Ising prior is a special

type of the Markov Random Field prior (binary MRF), it clusters the variables that have

similar binary values together. This approach produces reliable inference, particularly

in the case of low SNR. However, it ignores the temporal correlation of the time series.

Lee et al. [22] have improved the spatio-temporal Bayesian variable selection approach of

Smith et al. [21] by capturing the temporal correlation of each voxel using a first-order

autoregressive model (AR). In [23], Zhang et al. have also provided a Bayesian variable

selection approach for modelling both brain activation patterns and brain connectivity.

The BOLD response has been modelled voxel-wise with a linear regression model and then

a spike-and-slab prior has been applied on the regression coefficients to detect activated

regions. They adopted a MRF prior on the indicator variables for capturing the spatial

connectivity. To account for the temporal correlation they employ wavelet transforms.

Li et al. [24] have proposed a joint Ising and Dirichlet Process (DP) prior in a Bayesian
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variable selection framework. They have applied the Ising prior on the indicator variable

to identify the spatial dependence between voxels; and the DP prior on the regression

coefficients to group the regression coefficients of the voxels that have similar intensity

effects together.

Multi-subjects spatially regularized Bayesian spatio-temporal modelling

Much of the multi-subject modelling of fMRI data has adopted a hierarchical two-stage

spatio-temporal approach. This approach separates the group-level inference from the

subject-level inference, in which summary statistics of the parameters estimation obtained

from the inference in the subject-level (first stage) are passed to the group-level inference

(second stage). Compared to the all-in-one approach [107] , this two-stage summary

statistics approach reduces the computational burden of analysing fMRI data.

The first stage includes voxel-specific and subject-specific modelling of fMRI data; in

which a temporal model, such as GLM, is fitted voxel-wise for each subject and then

the resulting summary statistics (regression parameters and their variance) are passed

to the second stage. The second stage relates the summary statistics to the group-level

parameters (e.g. activation level mean) in order to estimate the group-level parameters.

Woolrich et al. [35] is one of the first leading studies that applied the two-stage

spatio-temporal approach in a Bayesian framework. They applied GLM to the lower-level

of the hierarchy and inferred the group-level activation in the top-level in a Bayesian

reference analysis framework using a reference prior, i.e, a non-informative prior. They

employed both MCMC and a posterior approximation approach for the inference at the

group-level. In Bowman et al. [18], the GLM has also been fitted voxel-wise in the

first stage for each subject but in ROIs based analysis. In the second stage, the spatial

correlations in the BOLD signal between voxels within the ROIs have been calculated

in Markovian assumptions. These spatial correlations are then utilized to detect the

group level activation. The two-stage spatio-temporal approach of Derado et al. [37]

can consider both the spatial and temporal correlations at the group level. In the first
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stage, the GLM has been fitted voxel-wise to each subject’s fMRI data. In the second

stage, they have constructed an autoregressive model to model simultaneously the spatial

and temporal correlations. To infer the parameters, maximum likelihood (ML) has been

employed. In [38], Sanyal et al. have generalized the single-subject spatio-temporal model

of Flandin and Penny [2] to a multi-subject spatio-temporal model. In this generalization,

they assumed that the sparse spatial priors of the wavelet coefficients at the same locations

are common across the subjects. Zhang and his colleagues in [36] have developed a group-

level spatio-temporal model based on their single-subject model in [23]. For capturing the

spatial correlation within and between subjects, hierarchical Dirichlet process priors have

been applied on both the subject-level and group-level. They have also compared the

results of the single-subject model with the results of the multi-subject model and found

that a multi-subject modeling strategy leads to a more accurate detection of the activated

areas (more accurate activation maps)[36]. Musgrove et al.[39] have also extended the

single-subject Bayesian variable selection approaches proposed in [21] and [22] to model

group-level fMRI data. For modelling the spatial dependency in the regression coefficients

according to the values of the corresponding latent indicator variables, they adopted a

Spatial Generalized Linear Mixed Model (SGLMM) prior in conjunction with parcellation;

which is computationally more efficient compared to the Ising model. To account for the

temporal correlation, they have employed a second-order autoregressive AR(2), which

provides a trade-off between the complexity of the higher-order autoregressive model and

the simplicity of the first-order autoregressive model.

3.1.2 Mixture based Bayesian spatio-temporal modelling

A mixture model is a probabilistic model assuming that the observed data is generated

from a finite mixture of component models. Such model components could be given as

Gaussian probability distributions and it is referred as to Gaussian mixture model (GMM)

(for an example of GMM, see Fig. (3.1)).

Mathematically, given an observed data item y, the likelihood of a mixture model is
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Figure 3.1: Gaussian mixture model (GMM) (red) of three Gaussian components distri-
butions (Blue)

Source: Figure obtained from https://dirichletprocess.weebly.com/clustering.html

the weighted sum of (K) component densities:

p(y) =
K∑
k=1

πkp(y|k, θk) with
K∑
k=1

πk = 1 (3.2)

where y represents data, k the component index, K the number of components, πk the

k-th mixture weight, and θk the parameters of the k-th component model.

The drawback of this mixture model in modelling spatial data is that the mixture

weights are assumed to be constant across all observations. This assumption could be

invalid for spatial data. This is the case because such mixture models are used to explain

the data at individual locations and the distribution of mixture weights could be location-

dependent. To adapt the mixture approach to spatial modelling, so-called spatial mixture

model (SMM) has been formulated to account for this location-dependence. SMM is

mathematically defined as follows:

p(y(r)) =
K∑
k=1

π(k|r)p(y(r)|k, θk), (3.3)

where y(r) represents the observed data at location r, K the number of components,
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r the location, and π(k|r)
1 the k-th mixture weight for location r. SMM can be seen

as an instance of mixture-of-experts and the term π(k|r) can be interpreted as so-called

gate function. In a Bayesian setting, it can be interpreted as a spatial prior, that is,

p(k|r) is proportional to the probability of the data at r being generating by the k-th

component. More importantly, spatial correlations in the data can be modelled through

the spatial prior. For example, p(k|r) can be defined using a smooth parametrized function

of r so as to take into account the smoothness in changes of the weights between the

adjacent locations. In the fMRI data modelling literature, the activation map of individual

activation sources is often modelled as a Gaussian-shaped surface. This is because: (i)

It has a reasonable shape, being high in and around the activation centre and decreasing

from this centre; (ii) It is a simple, parametrized model; (iii) It has sufficient flexibility,

serving as the base shape for modelling a surface of complicated shape. By Bayes’ rule,

such a Gaussian spatial prior (gate function) is defined as follows:

p(k|r) =
N(r, µk,Σk)p(k)∑K
k=1N(r, µk,Σk)p(k)

, (3.4)

where N(r, µk,Σk) denote a three-dimensional Gaussian distribution over r with mean

µk and covariance matrix Σk. It is also worth noting that for the component represent-

ing background activity, its spatial prior is usually assumed to be uniform rather than

Gaussian.

The point estimates of Spatial Mixture Model (SMM) parameters could be learnt by

Maximum Likelihood (ML) or Maximum A Posteriori (MAP). In the cases where latent

variables are included in SMM, Expectation-Maximization (EM) can be employed. To

avoid local maxima, stochastic optimization algorithms such as simulated annealing can be

employed. For a fully Bayesian approach, the posterior distribution over SMM parameters

is to be inferred. To compute such a posterior distribution exactly in a statistical sense,

the workhorse algorithm is MCMC. For an approximate inference in SMM, VB or other

1Note that π(k) represents location-independent prior over component index k and π(k|r) the location
dependent one.
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variational approximation methods could be employed.

The spatial mixture model is a suitable spatial model for fMRI data modelling. This

is based on two assumptions about the fMRI data: (1) the activated regions are spatially

extended. (2) the activation pattern is smooth. Moreover, there are multiple activation

sources.

A spatial mixture model in fMRI data assumes that signals are generated from a mix-

ture of components distributions, and the activation is estimated by assigning the voxels

to the most likely components (the nearest component). Modelling fMRI data by the

spatial mixture model approach is more efficient the than spatially regularized Bayesian

approach. The spatial mixture model approach explicitly models the activation shape

and location, providing a more interpretable model in which each component corresponds

to an underlying neural activation source [27, 48]. It is computationally more efficient

with a small number of parameters. For group-level modelling of fMRI data, SMM ap-

proaches model the fMRI data at a higher level (feature level, such as activation location

and intensity) than the spatially regularized Bayesian approaches, which model the data

voxel-wise. This makes it less sensitive to the mis-registration problem in modelling group

data and makes it more adequate for group modelling.

Single-subject Mixture based Bayesian spatio-temporal modelling

A number of studies in the literature have utilized a mixture model to model fMRI data,

following the successful implementation of the mixture model on fMRI data by Everitt

and Bullmore in 1999 [25].

Everitt and Bullmore [25] have developed a two-component mixture model to represent

the surface of a statistic which is derived from fMRI data by using a mass-univariate

GLM model. One component uses a non-central χ2 distribution to model the probability

distribution which generates the statistics on those activated voxels and another one uses

a χ2 distribution for modelling the statistics on the non-active voxels. This accounts for

the pre-assumed fact that every voxel is either activated or not. Further, the maximum
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likelihood algorithm has been employed to learn the model parameters. Following this, the

posterior probabilities of being activated can be computed for all voxels, which effectively

results in a brain activation map. More importantly, the resulting activation map is

equivalent to a map of p-values derived from hypothesis testing on test statistics [25].

Hartvig and Jensen[26] extended the mixture model of Everitt and Bullmore [25] by

taking into account the spatial correlation between the statistics of the neighbouring

voxels, that is, a voxel has a higher chance to be active if its neighbouring voxels are all

active and vice versa. This is implemented by using both the statistic of a voxel and

those of its neighbouring voxels to compute the (marginal) posterior probability of that

voxel being activated. Also, note that they used a Gamma distribution as the probability

density for the activated voxels and a Gaussian distribution for the inactivated voxels.

In contrast to Hartvig and Jensen[26], Woolrich et al. [28] have developed a principled

way to incorporate the smoothness prior (MRF) into the fMRI models by introducing

a class label for each voxel (class of activated voxels versus that of inactivated ones)

and enforcing a smooth change of those class labels across the voxels. They modelled

the active components as Gamma distributions, and the inactive component as Gaussian

distribution. In [29], Woolrich and Behrens have improved their previous method by

adopting computationally more efficient inferential techniques, that is, VB instead of

MCMC.

Ggorgolewski et al. [108] have developed a mixture model that is similar to the one

in [28] but the mixture weights are defined at cluster level as in [26] .

Penny and Friston [27] have further developed the above methodologies. First, they

have integrated the mixture-based approach to spatial modelling of fMRI activation pat-

tern with a GLM-based approach to temporal modelling of fMRI time series, Second, more

than two components are allowed so as to account for the existence of multiple activation

sources. Third, they proposed a very flexible model for the mixture weights, a multinomial

distribution. At the same time, for each of the activation sources, the spatial variation

of their corresponding mixture weights is modelled by a Gaussian distribution function
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(that is a smooth function). This represents another principled approach to incorporate

the smoothness prior. It is worth noting that the number of the mixture components are

fixed a priory, and they modelled the temporal model by GLM on the component level

(for each cluster) rather than the voxel level, which reduces the number of the parameters

in the model because single time series represents the voxels within one cluster.

Oikonomou and Blekas [30] have analysed fMRI data by a spatial mixture of linear

regression with a sparse prior over the linear regression coefficients for model order se-

lection, and a spatial MRF prior over the mixing coefficients for the spatial correlation

between voxels.

In order to identify a procedure for brain lesion-segmentation, Ozenne and Subtil

[31] developed a spatial mixture of Gaussian and Gamma distributions that includes

adaptive large-range spatial prior. They employed the Potts model as a specification for

the spatial prior. However, Potts model is only able to consider the short-range spatial

dependencies (adjacent voxels belong to same spatial structure). Therefore they extended

the Potts model using multi-order regional potential to be able to consider the large-

range spatial dependencies. They have found that large-range regional regularization

significantly improves the accuracy of the lesion segmentation in the case of the white

matter disease compared to the short-range regional regularization.

In the interest of estimating the HRF and the within and between single-trial variabil-

ity (the variability in the brain’s response corresponding to different stimuli over specific

period of time), Brigne et al. [32] have modelled the fMRI data based on Gaussian mixture

model and applied maximum likelihood to infer the model.

Llera et al. [33] have developed methods to model fMRI data by a mixture of Gaus-

sian and inverse-Gamma components, or a mixture of Gaussian and Gamma components

learned by Variational Bayes (VB), in order to compare the performance of these methods

with the classical methods to model fMRI data by a mixture of Gaussian and Gamma

components or a mixture of Gaussian and inverse-Gamma components learned by Max-

imum Likelihood (ML). They found that the mixture of Gaussian and inverse-Gamma
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components learned by Variational Bayes (VB) is the most robust and computationally

efficient method.

Nguyen et al. [34] have proposed a two-stage mixture method for time-series data

modelling. In stage one, they adopted a Mixture of Auto-Regressions (MoAR) model

to perform temporal clustering. In stage two, they have fitted a MRF model to smooth

stage one’s clustering outcomes. The results of this approach show that the addition of

the second stage increases the performance accuracy. In [109], Nguyen and his colleagues

explained the importance of adopting a Maximum Pseudo-Likelihood (MPL) estimation

approach in fitting the model as an alternative to the Maximum Likelihood (ML) ap-

proach, which converges to zero in the case of long time series.

Multi-subjects Mixture based Bayesian spatio-temporal modelling

To the best of our knowledge, the first mixture-based methodology for modelling the

spatial activation patterns across multiple fMRI data sets was developed by Kim et al.

[40]. These data sets were obtained from a single subject during different visits and/or

at different imaging facilities. However, the methodologies developed for such so-called

multi-site fMRI data are applicable to multisubject fMRI data.

To model the variabilities of neural activation exhibited in these multi-site fMRI data,

they have developed a Gaussian mixture model similar to that of Penny and Friston

[27]. The difference between these two works are as follows: the model in [40] is a spatial

model of the β-map produced by individually inferring GLM from fMRI time series across

all voxels whereas the model in [27] is a spatio-temporal model inferred from the four-

dimensional fMRI data.

In [40], the model parameters were estimated in a fully Bayesian manner using Gibbs

sampling except that the number of mixture components (say K) is fixed a priori as in

[27]. In [41], Kim et al. have further developed their model by allowing for a full Bayesian

approach to infer K from the data. To achieve this, an infinite mixture model is adopted

for mixture-based spatial modelling while a Dirichlet process is used as a prior on those
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infinitely many mixture weights. The Dirichlet Process Prior (DPP) penalises large K

values and the posterior distribution over K is inferred from the data.

To infer a common activation pattern that consider the variations between different

multi-site fMRI data, in [42], Kim and his colleagues have developed a spatial mixture

model (SMM) based on a Hierarchical Dirichlet Process Prior (HDPP) with random

effects (RE) on the components’ shape parameters. HDPP allows the automatic inference

of the number of components from the data and the sharing of the mixture model across

a number of images. Random effects allow variations in the components of the mixture

model (activation intensity and location) across the images.

Thirion et al [43] have also performed group-level modelling for fMRI data based on

the Dirichlet process mixture model. Their spatial mixture model is dissimilar to [42] in

that they applied the Dirichlet process mixture model at the subject-level to extract the

spatial model activation pattern, and then matched the activation pattern across subjects

in a Bayesian framework.

The Bayesian hierarchical mixture model that has been developed by Xu and his

colleagues in [45] to model the fMRI data of groups of subjects differs from the previous

works in that Xu and his colleagues have modelled both the subject-level and group-level

variabilities by applying Gaussian mixture models on each level. This approach represents

the underlying structure perfectly and allows estimating the proportion of subjects who

have activation on a specific location. However, it is a complex method (large number of

parameters and slow estimation method, MCMC).

The Bayesian hierarchical mixture model that has been developed by Xu and his

colleagues in [45] to model the fMRI data of groups of subjects differs from the previous

works in that Xu and his colleagues have modelled both the subject-level and group-level

variabilities by applying Gaussian mixture models on each level. For this reason, this

model can represent the underlying structure (subject-level and group-level) perfectly

[45], can make inference on the activation patterns at all levels: the group-level, the

subject-level and the voxel-level, and can estimate the proportion of subjects who have
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activation on a specific location.

For the purpose of clustering the activation based on the haemodynamic features,

Fouque et al. [46] have applied a spatial mixture model on the haemodynamic features

(HRF shape, such as time to peak and width). They estimated the haemodynamic re-

sponse function voxel-wise and then applied a multivariate spatial Gaussian mixture model

on the extracted haemodynamic features.

Unlike the previous works, which have been interested in localizing brain activation,

Jbabdi and his colleagues in [47] applied a hierarchical infinite mixture of Gaussians with

DPP on the fMRI data of a group of subjects to study the group-level brain connectivity.

Gershman et al. [48] suppose that the fMRI data is generated by a superposition

(linear combination) of latent sources, such as Gaussian radial basis functions. This

superposition is covariate-dependent, which means that it relates the latent sources to

the covariate variables through the mixing weight to show how much each component is

activated responding to different covariates. This approach is different from the previous

approaches in that it is a mixture in signal space (mixing); while other approaches are a

mixture in model space. Mixing allows multiple components to contribute to the voxels,

whereas the mixture assigns a single component to each voxel. To model fMRI data of

a group of subjects, Gershman et al. applied a hierarchical model such that the latent

sources of each subject are considered as a spatial transformation of the group-level latent

sources (template).

Lashkari et al.[49] have proposed a hierarchical Bayesian mixture model with DPP

with the aim of defining the patterns of the functional specificity, which means that

different areas in the brain are specific for different functions, that appear consistently

across multi-subject fMRI data. In each subject, they model the response in each voxel to

each stimulus as a binary activation variable (activation profile). To identify the functional

specificity systems (group of voxels that become active responding to specific stimulus),

voxels with similar activation profiles are clustered together based on the assumption

that the activation profiles of the voxels are generated by a mixture model. To model the
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variabilities across groups of subjects, they applied DPP on the functional systems of the

group of subjects. The functional system resembles the active component on the previous

studies but it is for a specific stimulus type.

Roge and his colleagues [50] have localized the activation in multi-subject fMRI data

by a fully unsupervised method (no information is available about the task or the stimuli,

such as resting state fMRI) based on the assumption that active regions are consistent

across subjects. For this purpose, they developed non-parametric GMM with GPP to

smooth the activation, and a Chinese Restaurant Process (CRP) prior to determine the

clusters. MCMC with an enhanced split-merge procedure has been utilized for inferring

the model, which reduces the computation times significantly.

In [51], Churchill and his colleagues have improved the conventional Gaussian mix-

ture model, which is typically used in the clustering of the fMRI data, for the purpose of

investigating group-level functional connectivity. This improvement includes simultane-

ously estimating the active regions and the functional connectivity between them using

an expectation-maximization (EM) method.

Raman et al. [52] a proposed unified model to simultaneously infer the effective connec-

tivity for each subject by Dynamic Causal Modeling (DCM), and define the population-

based connectivity clusters using finite Gaussian mixture model. Parameter inference has

been accomplished by MCMC.

3.2 Summary

It has been shown from this review that Bayesian framework is the optimal way to natu-

rally describe and model both the spatial and temporal behaviour of fMRI data. Within

the Bayesian framework, the spatial behaviour of the fMRI data is considered as a part

of the model by incorporating the spatial and temporal modelling into one encompassing

model. Moreover , Prior probability helps in incorporating valuable information about

the model and its parameters in a principled manner. The literature identified two main

48



methods for the Bayesian based spatio-temporal modelling of fMRI data: spatially regu-

larized Bayesian spatio-temporal modelling; and mixture-based Bayesian spatio-temporal

modelling.

In the spatially regularized Bayesian spatio-temporal modelling, an adaptive

spatial prior regularizes the posterior probability to reflect prior knowledge that the neu-

ronal responses are spatially coherent. Different spatial priors have been used in the litera-

ture: Gaussian Markov random field (GMRF) prior [13, 20]; Markov random field (MRF)

prior [14, 15, 23, 36]; Laplacian spatial prior [16]; sparse spatial basis functions (SSBFs)

prior [2, 38]; Gaussian process priors (GPPs) [19]; Gaussian process priors based on diffu-

sion kernel [17]; parcellation-based Gaussian prior [18]; and Ising prior [21, 22, 24]. Most

of the studies applied the spatial prior on the regression coefficients of the GLM; excluding

[15], who applied it on the autoregressive (AR) noise parameters, and [21, 22, 23, 36, 24]

who provided a Bayesian variable selection approach by applying the spatial prior on the

activation indicator variables.

In the mixture based Bayesian spatio-temporal modelling, the spatial charac-

teristics of fMRI data are modelled explicitly in addition to the temporal characteristics.

As it appears from this review, modelling fMRI data by a mixture model approach is

more efficient than the spatially regularized Bayesian approach. In the literature, there

are a number of studies that have adopted mixture models to model multi-subject fMRI

data. Beside the variations between these methods in their objectives and data used,

the technical differences in their analysis methods can be discussed under the following

aspects:

• Specification of the number of the mixture components. There are three

different approaches to deal with this issue. In the first approach, the number of

mixture components is usually set to a fixed number [46]. For example, a model with

two components is formulated to account for two distinct states of brain activation,

namely active versus non-active states. In the second approach, an infinite mixture

approach has become very popular. In theory, the possible number of mixture
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components ranges from 1 to infinity but a prior is employed to penalize larger

numbers. Examples of the prior employed are the Dirichlet process prior (DPP)

[40, 41, 42, 43, 45, 47, 49] and the Chinese restaurant process (CRP) prior [50]. In

the third approach, which could be considered as a trade-off between the first two

approaches, instead of a fixed number of components or infinitely many components,

the optimal number of components is inferred from the data via a model selection

procedure [51, 52].

• The spatial distributions of the components. Almost all the studies have

adopted Gaussian mixture models to represent the spatial extent of the active and

non-active components [40, 41, 42, 45, 46, 47, 48, 49, 50, 51, 52]. However, [43]

have used Gamma distribution for active component and Gaussian distribution for

non-active component.

• One versus two stage approaches. In almost all of these studies[40, 41, 42, 43,

45, 47, 49, 50, 51], a two-stage approach was employed. At stage 1, a statistical

map (i.e., t-, F-, or Z-map) is first inferred. At stage 2, this map is modelled as

a Gaussian mixture. The exceptions are [46] and [27], where both the temporal

parameters and the parameters in the spatial mixture model are learned jointly

from the data.

• The computational methods for Bayesian inference. In addition to Maxi-

mum Likelihood and Maximum A Posterior approaches, there are three major com-

putational tools that have employed Bayesian spatio-temporal fMRI data analysis:

Markov Chain Monte Carlo (MCMC) [40, 41, 42, 45, 46, 47, 48, 50, 52], Variational

Bayes (VB) [49], and Expectation Maximization (EM) [43, 51].

• Temporal model. All these studies model the temporal aspects of fMRI data by

a GLM.

In this thesis, the main goal is to build a group-level fMRI data model. Therefore, a

mixture-based Bayesian spatio-temporal modelling approach has been adopted to build a
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group-level fMRI data model. Shen et al. [1] have developed a regularized spatial mixture

model of hidden process models (SMM-HPM) to identify spatio-temporal patterns within

single ROI, while adopting a parametric approach to model the HRF. The aim of this

research is to extend the single-subject SMM-HPM to apply it in a population-based fMRI

data modelling.

In the next chapter, there is a detailed explanation of the single-subject SMM-HPM

and the modification that has been applied to it for the purpose of group-level modelling.

The extension of this model to group-level modelling is in Chapter (4).
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CHAPTER 4

SINGLE-SUBJECT SMM-HPM WITH
NORMALIZED HRF

This chapter first describes the SMM-HPM model [1] and then proposes its modifica-

tion based on a normalized HRF which is essential to extend the SMM-HPM model for

group fMRI data modelling. Section 4.1 provides a detailed explanation for the single-

subject SMM-HPM model. Section 4.2 describes the normalized HRF proposed for the

model. Learning the modified model is presented in section 4.3. Experiments to validate

this modification are given in sections 4.4 and 4.5. This Chapter’s contents corresponds

to the paper ”Prototype-Based Spatio-Temporal Probabilistic Modelling of fMRI Data”

published in the international conference ”11th Workshop on Self-Organizing Maps 2016”

(WSOM 2016), held at Rice University in Houston, Texas, 6-8 January 2016.
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CHAPTER 5

MULTI-SUBJECT SMM-HPM

The issues that need to be considered when defining a group level SMM-HPM include

variations in haemodynamic response and spatial extent of HPM prototypes among the

subjects. We will formulate the group level SMM-HPM as a hierarchy of model formations,

from the most constrained (except for response magnitudes, all subjects share the same

model parameters) to the most flexible (subjects can have different individual SMM-HPM

parameters, however, they are constrained by appropriate common group-level priors). In

particular we will consider three levels in the hierarchy. The first level model (L1G-

SMM-HPM) is the most constrained formulation in which different subjects share the

same prototypes, both in the spatial and temporal sense, i.e., the same spatial priors and

the same haemodynamic response shape. They only differ in haemodynamic response

magnitudes. In the second level model (L2G-SMM-HPM), we allow subjects to have

different haemodynamic response shapes. However, parameters of the normalized HRFs

of individual subjects are assumed to come from the same group-level prior. The same

spatial priors are shared by all subjects. In the third level model (L3G-SMM-HPM), the

constraint on spatial priors is relaxed. Now, besides individual response magnitudes and

HRF shapes, each subject can also have different spatial priors. As before, the spatial

prior shape parameters of individual subjects are constrained by stipulating that they

come from the same group-level prior.

Sections 5.1, 5.2, and 5.3 describe L1G-SMMHPM, L2G-SMM-HPM, and L3G-SMM-
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HPM, respectively. Results and discussion of both synthetic and real data experiments

are in section 5.4.

5.1 First level multi-subject SMM-HPM: L1G-SMM-

HPM

Given the noise-free signal, we assume that the observation on individual subject, voxel,

and volume are independent from each other (this is a conditional independence). The

L1G-SMM-HPM model likelihood is

p(Y) =
U∏
u=0

V∏
v=0

T∏
t=0

p
(
yuvt; ΘSTM

)
, (5.1)

where ΘSTM collects all group-level model parameters, u, v and t are the subject, voxel

and volume indices, respectively. p
(
yuvt; ΘSTM

)
is modelled as a spatial mixture model:

p
(
yuvt; ΘSTM

)
=

K∑
k=0

p(k|v; ΘS) · p
(
yuvt|k; ΘT

u

)
=

K∑
k=0

p(k|v; ΘS) · p(yuvt|k; ΘNRL
u ,ΘHRF ,ΘNIS) (5.2)

Spatial parameters ΘS = {µk,Σk} contain the prototype locations and shapes. Tem-

poral parameters ΘT
u = {ΘNRL

u ,ΘHRF ,ΘNIS}, contain haemodynamic response shape

parameters for each process p and prototype k, ΘHRF= {κk,p, θk,p}; and noise parameters

for each prototype k, ΘNIS= {σ2
k}. All these spatial and temporal parameters are shared

across subjects. On the other hand, the haemodynamic response magnitude parameters

ΘNRL
u = {au,k,p,s} are subject specific, per subject u, prototype k, process p and stim-

ulus s. That means that for each subject u in the active prototypes k = 1, 2, ..., K, the

haemodynamic response of each hidden cognitive process p, for each stimulus s at time t
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is

hu,k,p,s(t) = au,k,p,s · δ(t− (tp,s + τp,s))
⊗

gk,p(t) (5.3)

5.1.1 Learning of the L1G-SMM-HPM

The model parameters are fitted in the MAP estimation framework, maximising the

posterior

p(ΘSTM |Y) = p(Y|ΘSTM) · p(ΘSTM). (5.4)

The likelihood (L) can be expressed as:

p
(
Y|ΘSTM

)
(5.5)

=
U∏
u=1

V∏
v=1

T∏
t=1

1∑K
k=0 p(v|k; ΘS

k )

K∑
k=0

p(v|k; ΘS
k ) · p(yuvt|k; ΘT

u,k)

=
U∏
u=1

V∏
v=1

T∏
t=1

1∑K
k=1N (v|µk,Σk) + 1

N

{
K∑
k=1

N (v|µk,Σk)·

N
(
yuvt;x(t; au,k,p,s, κk,p, θk,p), σ

2
k

)
+

1

N
· N

(
yuvt; b, σ

2
0

)}
.

As in the single subject case, the prior is modelled as

p(ΘSTM) (5.6)

= p(N) · p(b) ·
K∏
k=1

p(µk) ·
K∏
k=1

p(Σk) ·
U∏
u=1

K∏
k=1

P∏
p=1

S∏
s=1

p(au,k,p,s)

·
K∏
k=1

P∏
p=1

p(κk,p, θk,p) ·
K∏
k=0

p(σ2
k).

We maximized the posterior by minimizing the negative log posterior using scaled

conjugate-gradient optimization. Below we list the relevant gradients.
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For each prototype k, we need to calculate

∇ΘSTMk

{
− log

(
p(yuvt|ΘSTM)

)
− log

(
p(ΘSTM)

)}
. (5.7)

In what follows we present the derivatives of the (negative log) likelihood L = − log
(
p(yuvt|ΘSTM)

)
.

The derivative of L (Eq. 5.5) with respect to the temporal parameters ΘT in the k−th

prototype:

∇ΘTk
{L} = ∇ΘTk

{
− log

(
K∑
k=0

p(k|v; ΘS
k ) · p(yuvt|k; ΘT

k )

)}

= −
U∑
u=1

V∑
v=1

T∑
t=1

1∑
k p(k|v).p(yuvt|k)

.∇ΘTk

{∑
k p(v|k).p(yuvt|k))∑

k p(v|k)

}

= −
U∑
u=1

V∑
v=1

T∑
t=1

p(k|v)∑
k p(k|v)p(yuvt|k)

.∇ΘTk
p(yuvt|k) (5.8)

The derivative of p(yuvt|k) with respect to the temporal parameters ΘT in the k− th proto-

type:

∇ΘTk

{
p(yuvt|k)

}
= ∇ΘTk

 1√
2πσ2

k

exp

(
−(yuvt − xkt (θ))2

2σ2
k

)
= p(yuvt|k).

yuvt − xkt
σ2
k

.∇ΘTk
xkt (5.9)

Substitute the value of ∇ΘTk
{p(yuvt|k)} in Eq.(5.8)

∇ΘTk
{L} = −

U∑
u=1

V∑
v=1

T∑
t=1

p(k|v, yuvt) ·
yuvt − xkt

σ2
k

· ∇ΘTk
xkt , (5.10)

where xkt is the haemodynamic response at each time step t for prototype k. The deriva-

tive of (Eq. 5.10) with respect to each of the temporal parameters is as follow:

Response magnitudes:

d L
d au,k,p,s

= −
U∑
u=1

V∑
v=1

T∑
t=1

p(k|v, yuvt).
yuvt − xkt

σ2
k

.
xkt

au,k,p,s
(5.11)

73



HRF scale parameter with constraint θk,p > 0 :

We suppose that αk,p = log(θk,p)

d L
d θk,p

=
d L

d αk,p
· d αk,p

d θk,p
(5.12)

= −
U∑
u=1

V∑
v=1

T∑
t=1

p(k|v, yuvt) ·
yuvt − xkt

σ2
k

· xkt ·
[
t

θk,p
− κk,p + 1

]
,

HRF shape parameter with constraint κk,p > 1:

We suppose that βk,p = log(κk,p − 1)

d L
d κk,p

=
d L

d βk,p
· d βk,p

d κk,p
(5.13)

= −
U∑
u=1

V∑
v=1

T∑
t=1

p(k|v, yuvt).
yuvt − xkt

σ2
k

· xkt · log
t

(κk,p − 1)θk,p

Noise with constraint σ2
k > 0 :

We suppose that rk = log(σ2
k)

d L
d σ2

k

=
d L
d rk

· d rk
d σ2

k

(5.14)

=
U∑
u=1

V∑
v=1

T∑
t=1

p(k|v, yuvt)
2

·
[
1− (yuvt − xkt )2

σ2
k

]

The derivative of L (Eq. 5.5) with respect to the spatial prior parameters ΘS in the
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k-th prototype:

∇ΘSk
{L} = ∇ΘSk

{
− log

(
K∑
k=0

p(k|v; ΘS
k ) · p(yuvt|k; ΘT

k )

)}

= −
U∑
u=1

V∑
v=1

T∑
t=1

1∑
k p(k|v).p(yuvt|k)

.∇ΘSk

{∑
k p(v|k).p(yuvt|k))∑

k p(v|k)

}

= −
U∑
u=1

V∑
v=1

T∑
t=1

1∑
k p(k|v).p(yuvt|k)

·
{
p(v|k) · p(yuvt|k)− p(v|k)

∑
k p(k|v)p(yuvt|k)∑

k p(v|k)

}
· ∇ΘSk

p(v|k)

= −
U∑
u=1

V∑
v=1

T∑
t=1

∇ΘSk
p(v|k) · {p(k|v)− p(k|v, yuvt)} (5.15)

The derivative of (Eq. 5.15) with respect to the prototype location:

∇Θµk
L =

U∑
u=1

V∑
v=1

T∑
t=1

p(v|k) · Σ−1
k · (rv − µk) · {p(k|v)− p(k|v, yuvt)} . (5.16)

The derivative of (Eq. 5.15) with respect to the prototype shape and with constraint

Σk is positive definite. We optimize Ik instead of Σk in which Σk = LkL
T
k (cholesky

decomposition) and Ik = L−1
k :

∇ΘIk
L =

U∑
u=1

V∑
v=1

T∑
t=1

p(v|k) · (I−1
k )T · Ik · (rv − µk) · (rv − µk)T

· {p(k|v)− p(k|v, yuvt)} (5.17)

We now show the derivatives of the (negative log) prior P = − log p(ΘSTM):

Derivative of the HRF prior p(κk,p, θk,p) ∝ explog((T p−T pmin)(T pmax−T p))+log((W−Wmin)(Wmax−W )),

where W = 2
√

2 ln 2 = 2.35 and W
2

= 1.175:

d P
d θk,p

= −2

[ 1
2
(T pmax + T pmin)− T p

(T p − T pmin)(T pmax − T p)
· κk,p − 1

+
1
2
(Wmax +Wmin)−W

(W −Wmin)(Wmax −W )
· 2.35

√
κk,p

]
, (5.18)
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d P
d κk,p

= −2

[ 1
2
(T pmax + T pmin)− T p

(T p − T pmin)(T pmax − T p)
· θk,p

+
1
2
(Wmax +Wmin)−W

(W −Wmin)(Wmax −W )
· 1.175θk,p√

κk,p

]
(5.19)

Derivative of the spatial prior p(Σk) = 1
|Σk|2

with constraint Σk is positive definite. We

optimize Ik instead of Σk in which Σk = LkL
T
k (cholesky decomposition) and Ik = L−1

k :

∇ΘIk
P = 4

1

ITk
(5.20)

Derivative of the noise parameters prior p(σ2
k) = 1

(σ2
k)2

with constraint σ2
k > 0 :

We suppose that rk = log(σ2
k)

d P
d σ2

k

=
d P
d rk

· d rk
d σ2

k

= 2
1

σ3
k

(5.21)

5.1.2 Initialization of the L1G-SMM-HPM

We have adopted a data-driven approach to initialize L1G-SMM-HPM. To initialize the

number of the prototypes (that is, K) for a given ROI, we employ ‘’Consensus Clustering1“

and proceed as follows:

1. Group-level functional clustering of fMRI time series using K-means methods for

a given K. The clustering distance D between voxels v1 and v2 for a group of U

subjects is defined as

D(v1, v2) = d(v1, v2)− λ ·
(

1

U

U∑
u=1

C2
0

(
yu,v1 , yu,v2

))
. (5.22)

1Consensus clustering is a method to represent the consensus across multiple runs of a clustering
algorithm (with random restart) by integrating the resulted clustering solutions. This method improve
the stability and the robustness of the clustering algorithms.
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where d(·, ·) denotes the Euclidean distance in the voxel space, C2
0

(
yu,v1 , yu,v2

)
de-

notes zero-lag cross-correlation between the fMRI time series on voxels v1 and v2

for subject u, and λ = 0.1 is a tuning parameter. This results in a voxel-cluster

configuration (with K clusters).

2. Use the resulting voxel-cluster configuration to construct the connectivity matrix

M (l). The entries of M (l) are specified as:

M (l)(i, j) =

 1 if items i and j belong to the same cluster,

0 otherwise.
(5.23)

3. Repeat this group-level functional clustering algorithm L times, each with an inde-

pendent random restart (resampling). This results in L connectivity matrices, say

{M (l) : l = 1, 2, ...,L}.

4. Use these L connectivity matrices to construct a consensus matrix C storing for each

pair of data items (in our case voxels’ fMRI time series) the proportion of times in

which these items are clustered together, that is,

C(i, j) =

∑
lM

(l)(i, j)

L
, (5.24)

As this consensus matrix is constructed with the number of clusters fixed to k, we

denote it by Ck.

5. We reconstruct ten such consensus matrices with their k-values ranging from k = 1

to k = 10. The optimal number of prototypes kopt is determined such that Ckopt is

a perfect consensus matrix with entries equal to one or zero only [112] .

To initialize the spatial prior parameters ΘS = {µk,Σk} for the active prototypes

within a given ROI, we performed re-clustering of the voxels in that ROI using an agglom-

erative hierarchical clustering algorithm. The similarity measure (with average linkage)

used in this algorithm is 1−Ckopt where C(kopt) is the consensus matrix with the optimal
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number of the clusters, that is, kopt. The agglomerative hierarchical clustering algorithm

stops when the number of branches equals to K. The resulting sub-trees determine the

cluster members. For each cluster, we fit a three-dimensional Gaussian distribution to

the location of all voxels in this cluster and use its µ and Σ to initialize the spatial prior

parameters of the corresponding prototype.

To initialize the HRF shape parameters ΘHRF = {κk,p, θk,p}, the haemodynamic re-

sponse magnitudes ΘNRL
u = {au,k,p,s}, and the noise parameter ΘNIS = {σ2

k} in active

prototypes, we determine the most representative voxels for each active prototype k by

ranking all voxels by p(v|k). We take the first n voxels by rank with
∑n

i=1 p(vi|k) = 20%.

Following this, fMRI data on these voxels Y m are used to initialize the corresponding HPM

model. We construct a grid of all permissible combinations of the values of HRF shape

parameters (θ, κ), as seen in Fig. (5.1). HRF shape parameters (θ, κ) are permissible

Figure 5.1: HRF shape parameters (θ, κ) permissible range grid

if the corresponding time-to-peak (T = (κ− 1)θ) and peak width
(
W = 2

√
2 ln 2 ·

√
κθ
)

are both within their permissible ranges. The permissible range1 are given by [Wmin =

3s,Wmax = 6s] and [Tmin = 3s, Tmax = 7s], respectively.

For each combination of HRF shape parameters (θ, κ) in the grid and using the fMRI

data of the most representative voxels, we proceed as follows

1This permissible range has been artificially cut. We removed the narrow corners of the grid (increase
the lower bound and decrease the upper bound ) to make a finer grid with number of points that is
sufficient for our experiment.
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1. For each subject, the haemodynamic response magnitudes is computed by applying

GLM. We define a regressor in the design matrix X for each pair of stimulus s and

process p using the values of the HRF shape parameters. The resulting X is a matrix

of size T × P · S. The regression coefficient vector βu contains all haemodynamic

response magnitude parameters for subject u. A (least-squares) estimate of βu is

given by β̂u = (XTX)−1XTY m
u where Y m

u is the fMRI data in the selected voxels of

subject u.

2. For each subject, we computed the variance of the difference between the fMRI data

Y m
u of the most representative voxels and the estimated signal Ŷu = β×X from the

GLM method that was applied to the computation of the haemodynamic response

magnitude. The noise is the mean of these variances.

3. Using the HRF shape parameters value that we have from the grid, the haemody-

namic response magnitude parameter value that we have from step (1), and the

noise parameter value that we have from step (2) , we optimize the HRF shape

parameters, the haemodynamic response magnitude parameter, and the noise pa-

rameter iteratively by minimizing L in the same way as for the full model but using

the HPM model.

Because the model that we fit here to the data is not a mixture model but a HPM, this

makes the initializing and learning much simpler (when compared to the full model), which

in turn allows us to use a large number of combination of HRF shape parameters (θ, κ) in

the grid to initialize the HRF shape parameters and computing the corresponding haemo-

dynamic response magnitude parameters and noise. The best solutions (initializations)

for the HRF shape parameters, the haemodynamic response magnitudes parameters, and

the noise parameter are the ones with the least L.

For the null prototype, we initialize its parameters N, b, σ2
0 as follow:

• N is initialized by the number of voxels within the ROI.
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• To initialize b, for each subject, we compute the mean of the fMRI data of the

least representative voxels Y l
u. These voxels are again ranked by p(v|k). This time

we take the last n voxels in the rank with
∑n

i=1 p(vi|k) = 20%. b is initialized as

the average of the means of the subject level fMRI data of the least representative

voxels.

• To initialize the noise {σ2
0}, for each subject, we compute the variance of the fMRI

data of the least representative voxels Y l
u. The noise {σ2

0} is initialized as the mean

of the variance of the subject level fMRI data of the least representative voxels.

5.2 Second level multi-subject SMM-HPM: L2G-SMM-

HPM

Compared to L1G-SMM-HPM, L2G-SMM-HPM allows different subjects to have differ-

ent haemodynamic response shapes for each process and prototype. Variations in the

individual HRF shape parameters ΘHRF
u = {κu,k,p, θu,k,p} are controlled by two factors:

(1) a group level local spherical Gaussian N (κu,k,p, θu,k,p|µκk,p, σ2κ

k,p, µ
θ
k,p, σ

2θ

k,p) and (2) the

distribution p(κu,k,p, θu,k,p) (see Eq. (4.15) in chapter (4)) controlling the admissible range

of HRF shape parameters:

p(ΘHRF
u |ΘHRF ) ∝ N (κu,k,p, θu,k,p|µκk,p, σ2κ

k,p, µ
θ
k,p, σ

2θ

k,p) · p(κu,k,p, θu,k,p). (5.25)

The group-level HRF shape parameters ΘHRF include

ΘHRF = {µκk,p, σ2κ

k,p, µ
θ
k,p, σ

2θ

k,p},

where µκk,p and σ2κ
k,p are the mean and the variance of the subject-level HRF shape

parameters κu,k,p, respectively; and µθk,p and σ2θ
k,p are the mean and the variance of the

subject-level HRF scale parameters θu,k,p, respectively.

Assuming that the observations are independent over subjects, voxels and volumes,
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the model likelihood of L2G-SMM-HPM given fMRI time series (Y) of a group of subjects

reads:

p(y) =
U∏
u=0

V∏
v=0

T∏
t=0

p
(
yuvt; ΘSTM

)
(5.26)

p
(
yuvt; ΘSTM

)
is modelled by a spatial mixture model:

p
(
yuvt; ΘSTM

)
(5.27)

=
K∑
k=0

p(k|v; ΘS) · p
(
yuvt|k; ΘT

)
=

K∑
k=0

p(k|v; ΘS) · p(yuvt|k; ΘNRL
u ,ΘHRF

u ,ΘNIS)

All the parameters {ΘS,ΘNRL
u ,ΘNIS} are the same as the parameters of L1G-SMM-

HPM except for the HRF shape parameters. For active prototypes k = 1, 2, ..., K, the

haemodynamic response shape function (HRF) (normalized gamma function) of each

hidden cognitive process p, for each stimulus s is subject specific as:

g̃u,k,p(t) =

(
t

tmax

)κu,k,p−1

exp

(
−t− tmax

θu,k,p

)
, (5.28)

where tmax = (κu,k,p − 1)θu,k,p.

5.2.1 Learning of the L2G-SMM-HPM

As in L1G-SMM-HPM, we learn the L2G-SMM-HPM parameters ΘSTM in a Bayesian

manner (MAP estimation), by maximizing the posterior p(ΘSTM |Y). The difference is

that in L2G-SMM-HPM the posterior is also maximized with respect to the haemody-

namic response shape of each subject ΘHRF
u . The model posterior

p(ΘSTM |Y) = p(Y|ΘSTM) · p(ΘSTM) (5.29)
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is calculated using the likelihood L

p
(
Y|ΘSTM

)
(5.30)

=
U∏
u=1

V∏
v=1

T∏
t=1

1∑K
k=0 p(v|k; ΘS

k )

K∑
k=0

p(v|k; ΘS
k ) · p(yuvt|k; ΘT

u,k)

=
U∏
u=1

V∏
v=1

T∏
t=1

1∑K
k=1N (v|µk,Σk) + 1

N

{
K∑
k=1

N (v|µk,Σk)·

N
(
yuvt;x(t; au,k,p,s, κu,k,p, θu,k,p), σ

2
k

)
+

1

N
· N

(
yuvt; b, σ

2
0

)}
.

The prior is factorized as:

p(ΘSTM) (5.31)

= p(N) · p(b) ·
K∏
k=1

p(µk) ·
K∏
k=1

p(Σk) ·
U∏
u=1

K∏
k=1

P∏
p=1

S∏
s=1

p(au,k,p,s)

·
U∏
u=1

K∏
k=1

P∏
p=1

p(κu,k,p, θu,k,p) ·
U∏
u=1

K∏
k=1

P∏
p=1

p(κu,k,p, θu,k,p|µκk,p, σ2κ

k,p, µ
θ
k,p, σ

2θ

k,p)

·
K∏
k=0

p(σ2
k),

where p(κu,k,p, θu,k,p|µκk,p, σ2κ

k,p, µ
θ
k,p, σ

2θ

k,p) = N (κu,k,p, θu,k,p|µκk,p, σ2κ

k,p, µ
θ
k,p, σ

2θ

k,p). All the other

priors are the same as in L1G-SMM-HPM.

As with L1G-SMM-HPM, scaled conjugate-gradient optimization algorithms are ap-

plied to optimize L2G-SMM-HPM parameters iteratively. The gradients of model L2G-

SMM-HPM with respect to the haemodynamic response magnitude, noise and spatial

prior parameters are the same as in L1G-SMM-HPM. The difference is in the gradient

of L2G-SMM-HPM with respect to the subject specific haemodynamic response shape

parameters.

The derivatives of the (negative log) likelihood L = − log
(
p(yuvt|ΘSTM)

)
(Eq. 5.30)

with respect to HRF scale parameter and with constraint θu,k,p > 0 :

We suppose that αu,k,p = log(θu,k,p)
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d L
d θu,k,p

=
d L

d αu,k,p
· d αu,k,p

d θu,k,p
(5.32)

= −
U∑
u=1

V∑
v=1

T∑
t=1

p(k|v, yuvt) ·
yuvt − xkt

σ2
k

· xkt ·
[

t

θu,k,p
− κu,k,p + 1

]
,

The derivatives of the (negative log) likelihood L = − log
(
p(yuvt|ΘSTM)

)
(Eq. 5.30)

with respect to HRF shape parameter and with constraint κu,k,p > 1:

We suppose that βu,k,p = log(κu,k,p − 1)

d L
d κu,k,p

=
d L

d βu,k,p
· d βu,k,p

d κu,k,p
(5.33)

= −
U∑
u=1

V∑
v=1

T∑
t=1

p(k|v, yuvt).
yuvt − xkt

σ2
k

· xkt · log
t

(κu,k,p − 1)θu,k,p

The model L2G-SMM-HPM has extra terms

Pu,k,p = − logN (κu,k,p, θu,k,p|µκk,p, σ2κ

k,p, µ
θ
k,p, σ

2θ

k,p)

in the HRF shape prior. The derivatives read:

d Pu,k,p
d κu,k,p

=
κu,k,p − µκk,p

σ2κ
k,p

· (κu,k,p − 1), (5.34)

d Pu,k,p
d θu,k,p

=
θu,k,p − µθk,p

σ2θ
k,p

· (θu,k,p) (5.35)
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5.2.2 Initialization of the L2G-SMM-HPM

In L2G-SMM-HPM, all the parameters are initialized as in L1G-SMM-HPM except the

subject specific HRF shape parameters of the active prototypes. HRF shape parameters

of individual subjects are initialized separately by applying the procedure described in

Section 5.1.2 for initializing L1G-SMM-HPM. Group level HRF shape parameters ΘHRF =

µκk,p, σ
2κ

k,p, µ
θ
k,p, σ

2θ

k,p are then initialized as the mean and variance of those subject specific

initial HRF shape parameters.

5.3 Third level multi-subject SMM-HPM: L3G-SMM-

HPM

Compared to L2G-SMM-HPM, L3G-SMM-HPM further allows different subjects to have

different spatial priors (prototype location µu,k and shape Σu,k). Variations in the haemo-

dynamic response shapes and haemodynamic response magnitudes are modelled as in

L2G-SMM-HPM. Variations in the prototype locations µu,k among the subjects are con-

trolled by a group level Gaussian prior

p(µu,k) = N
(
µsk, σ

2s

k

)
. (5.36)

As for the prototype shape Σu,k, there are two factors contributing to the prior:

1. A group level Inverse Wishart distribution IW
(
Ψk, dfk

)
to prevent shrinking shapes

to small regions (IW is a multivariate counterpart of inverse-gamma (IG) dis-

tribution. For IW(x), IW penalizes both small and larger x.) Here, Ψk =

Σk · (dfk − d∗ − 1) is the scale matrix, where Σk is the mean prototype shape of

Σu,k, dfk is the degree of freedom (in our case the number of subjects), and d∗= 3

is the voxel space dimensionality.

2. Subject specific Jeffrey’s priors 1
|Σ2
u,k|

to prevent extending shape to large regions.
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Hence, the prior for the prototype shape has the form

p(Σu,k) ∝ IW
(
Ψk, dfk

)
· 1

|Σ2
u,k|

(5.37)

To summarize, the group level spatial parameters ΘS are:

ΘS = {µsk, σ2s

k ,Ψk}.

Assuming independent observations over subjects, voxels and volumes, the formula of

model L3G-SMM-HPM for modelling the fMRI time series (Y) of group of subjects:

p(Y ) =
U∏
u=0

V∏
v=0

T∏
t=0

p
(
yuvt; ΘSTM

)
, (5.38)

where p
(
yuvt; ΘSTM

)
is modelled by a spatial mixture model:

p
(
yuvt; ΘSTM

)
=

K∑
k=0

p(k|v; ΘS
u) · p

(
yuvt|k; ΘT

u

)
(5.39)

=
K∑
k=0

p(k|v; ΘS
u) · p(yuvt|k; ΘNRL

u ,ΘHRF
u ,ΘNIS)

L3G-SMM-HPM has the same parameters of L2G-SMM-HPM, except the spatial prior

parameters, which are subject specific ΘS
u = {µu,k,Σu,k} (location and shape of prototype

k at subject u). That means that p(k|v; ΘSu) denotes the probability that the k-th proto-

type generates the fMRI time series Y in voxel v for subject u.

p(k|v; ΘS
u) =

p(v|k; ΘS
u,k)∑K

k=0 p(v|k; ΘS
u,k)

, (5.40)

For active prototypes k = 1, 2, ..., K, p(v|k) modelled as a multivariate Gaussian:

p(v|k) = N (rv|µu,k,Σu,k), (5.41)
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5.3.1 Learning of the L3G-SMM-HPM

As in L1G-SMM-HPM and L2G-SMM-HPM, we learn the L3G-SMM-HPM parameters

ΘSTM in a Bayesian manner (MAP estimation) by maximizing the posterior p(ΘSTM |Y).

The difference is that in L3G-SMM-HPM the posterior is also maximized with respect to

the spatial prior of each subject ΘS
u . The model posterior

p(ΘSTM |Y) = p(Y|ΘSTM) · p(ΘSTM), (5.42)

where the likeliood and the prior are specified as follow:

The likelihood L:

p
(
Y|ΘSTM

)
(5.43)

=
U∏
u=1

V∏
v=1

T∏
t=1

1∑K
k=0 p(v|k; ΘS

u,k)

K∑
k=0

p(v|k; ΘS
u,k) · p(yuvt|k; ΘT

u,k)

=
U∏
u=1

V∏
v=1

T∏
t=1

1∑K
k=1N (v|µu,k,Σu,k) + 1

N

{
K∑
k=1

N (v|µu,k,Σu,k)·

N
(
yuvt;x(t; au,k,p,s, κu,k,p, θu,k,p), σ

2
k

)
+

1

N
· N

(
yuvt; b, σ

2
0

)}
.

The prior is factorized as:

p(ΘSTM) (5.44)

= p(N) · p(b) ·
U∏
u=1

K∏
k=1

p(µu,k|µsk, σ2s

k ) ·
U∏
u=1

K∏
k=1

p(Σu,k)

·
U∏
u=1

K∏
k=1

p(Σu,k|Ψk, dfk) ·
U∏
u=1

K∏
k=1

P∏
p=1

S∏
s=1

p(au,k,p,s)

·
U∏
u=1

K∏
k=1

P∏
p=1

p(κu,k,p, θu,k,p) ·
U∏
u=1

K∏
k=1

P∏
p=1

p(κu,k,p, θu,k,p|µκk,p, σ2κ

k,p, µ
θ
k,p, σ

2θ

k,p)

·
K∏
k=0

p(σ2
k),

where p(µu,k| µsk, σ2s
k) = N

(
µu,k|µsk, σ2s

k

)
and p(Σu,k|Ψk, dfk) = IW

(
Σu,k|Ψk, dfk

)
. All
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the other priors are the same as in L2G-SMM-HPM.

Scaled conjugate-gradient optimization algorithms are employed to optimize L3G-

SMM-HPM parameters iteratively. The gradients of L3G-SMM-HPM with respect to the

haemodynamic response magnitudes, HRF shape, and noise parameters are the same as

in L2G-SMM-HPM. The difference is in the gradient of L3G-SMM-HPM with respect to

the subject specific spatial prior parameters.

The derivatives of the (negative log) likelihood L = − log p(yuvt|ΘSTM) (Eq. 5.43)

with respect to spatial prior location:

∇Θµu,k
L =

U∑
u=1

V∑
v=1

T∑
t=1

p(v|k) · Σ−1
u,k · (rv − µu,k) · {p(k|v)− p(k|v, yuvt)} , (5.45)

The derivatives of the (negative log) likelihood L = − log p(yuvt|ΘSTM) (Eq. 5.43) with

respect to spatial prior shape and with constraint Σu,k is positive definite. We optimize

Iu,k instead of Σu,k in which Σu,k = Lu,kL
T
u,k (cholesky decomposition) and Iu,k = L−1

u,k:

∇ΘIu,k
L =

U∑
u=1

V∑
v=1

T∑
t=1

p(v|k) · (I−1
u,k)

T · Iu,k · (rv − µu,k) · (rv − µu,k)T

· {p(k|v)− p(k|v, yuvt)} (5.46)

Compare to L2G-SMM-HPM, L3G-SMM-HPM has extra terms in the spatial prior:

P1u,k = − logN
(
µu,k|µsk, σ2s

k

)
and P2u,k = − log IW

(
Σu,k|Ψk, dfk

)
.

The derivative of P1u,k = − logN
(
µu,k|µsk, σ2s

k

)
with respect to µu,k:

∇Θµu,k
P1u,k =

µu,k − µsk
σ2s
k

. (5.47)

The derivative of P2u,k = − log IW
(
Σu,k|Ψk, dfk

)
with respect to Σu,k and with con-

straint Σu,k is positive definite. We optimize Iu,k instead of Σu,k in which Σu,k = Lu,kL
T
u,k
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(cholesky decomposition) and Iu,k = L−1
u,k:

∇ΘIu,k
P2u,k = −(dfk + d∗ + 1) · (I−1

u,k)
T − (Ψk) · Iu,k, (5.48)

5.3.2 Initialization of the L3G-SMM-HPM

For Model L3G-SMM-HPM, all of model parameters are initialized as in L2-SMM-HPM,

except for the spatial parameters. Spatial parameters of individual subjects are first

initialized separately by applying the procedure employed to initialize L1-SMM-HPM

(described in Section 5.1.2). Based on these individual estimates we initialise the group-

level prior for the spatial parameters.

Individual prototype locations are considered as random samples from a group level

prior on the location vectors. The location prior is given as a spherical Gaussian distri-

bution specified by {µsk, σ2
k} for prototype k. The group-level hyperparameters µsk and σ2

k

are computed as the empirical mean and variance of the individually estimated location

vectors.

Similarly, individual prototype covariance matrices are considered random samples

from a group level prior given as an Inverse Wishart distribution specified by {Ψk, dfk}

for prototype k. Its hyperparameters ΘS = {Ψk, dfk} are initialized as follow: df is the

degree of freedom resembling the degree of freedom of a student’s t test distribution that

sets the certainty of the prior. The initialization value of df is equal to the number of

subjects. Ψ is the scale matrix describing the position of the Inverse Wishart distribution

in the parameter space in which the average of the subjects-specific covariance matrices

Σu,k. is equal to Ψ
df−d∗−1

, and hence Ψ = Σk · (df − d∗ − 1). To initialize the scale matrix

we first need to average the subjects-specific covariance matrices Σu,k and then multiply

the average Σk by (df − d∗ − 1). Since the covariance matrices live on the Riemannian

manifold of (semi-)definite matrices, the mean of Σu,k has to be computed e.g. using the

method of Smake and Kawanabe [113] that robustly estimates the mean of covariance

matrices by minimizing the Beta divergence iteratively by
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Σ
(j+1)
k =

∑U
u=1 ψρ(Σu,k; Σj

k, ν)Σu,k

ν
∑U

u=1 ψρ(Σu,k; Σj
k, ν)− γ|Σj

k|
(ν−d∗−1)ρ

2

(5.49)

Σ
(j+1)
k : prototype shape matrices mean at (j + 1) for prototype k.

Σj
k: prototype shape matrices mean at j. We initialize it by the group level prototype

shape that we computed using our clustering method described in section (5.1.2).

Σu,k: prototype shape of subject u in prototype k .

ν: a fraction (1/20) of the number of samples (Σu,k).

ρ: tuning parameters takes a value from {0, 2−20, ..., 21, 1}.

d∗: matrix dimension.

ψρ(Σu,k; Σj
k, ν) defined as:

ψρ(Σu,k; Σk, ν) = |Σu,k|
(ν−d∗−1)ρ

2 exp
{
−tr

(ρ
2

Σ−1
k Σu,k

)}
(5.50)

γ defined as:

γ =
Uρ(d∗ + 1)

2
νd∗
2 Γd∗(

ν
2
)(ρ+ 1)

(
2

ρ+ 1

) νd∗(ρ+1)
2

− d
∗(d∗+1)ρ

2

×Γd∗

(
ν(ρ+ 1)

2
− (d∗ + 1)ρ

2

)
, (5.51)

where Γd∗ is multivariate Gamma function defined as:

Γd∗(X) = π
d∗(d∗−1)

4

d∗∏
j=1

Γ

[
X +

(1− j)
2

]
(5.52)

In each iteration, we compute the difference between Σ
(j+1)
k and Σj

k:

Dd∗

k =

∑d∗

l=1

∑d∗

m=1 |Σ
(j+1)
k,l,m − Σj

k,l,m|
d∗2

(5.53)

If the difference Dd∗

k is sufficiently small, we stop the method and Σ
(j+1)
k is the resulting
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mean of subject-level prototype shape Σu,k.

5.4 Results and discussion

To validate the three group-level spatio-temporal fMRI models from the hierarchy devel-

oped in the previous section, we have conducted extensive numerical experiments using

both synthetic and real fMRI data. The real fMRI data were generated by a joint be-

havioural and fMRI experiment studying how humans learn probabilistic sequential struc-

tures encoded in visual stimulus sequences. Based on the analysis of those behavioural

data, a cohort of participants can be categorized into two subgroups, namely groups of

fast and slow learners.

5.4.1 Synthetic data

In this validation experiment, we generated synthetic fMRI data sets of 18 virtual subjects.

Each data set emulates fMRI data from a single ROI, because the methodology developed

here is tailored for ROI-based analysis rather than whole-brain analysis. Such virtual ROIs

consists of 1000 voxels arranged on a three-dimensional regular grid (i.e., 10 × 10 × 10).

This size is comparable with that of a large ROI. The synthetic fMRI time series on

individual voxels were generated using a two-prototype SMM-HPM model as follow:

1. For each of the two prototypes, generate the fMRI signal xk(t), k ∈ {1, 2}, for the

k-th prototype with the corresponding HPM.

2. For each voxel v, compute the corresponding weight distribution p(k|v).

3. Generate synthetic fMRI time series for subject u, voxel v and time t as

yuvt = xk∗(t) + ε(t),
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where prototype index k∗ is the k-value of the prototype with the highest p(k|v)

value.

For L1G-SMM-HPM, we assume two prototypes with distinct HPMs representing two

separate neural activations. The spatial prior of these two prototypes are computed using

Eq. (4.3) and Eq.(4.4) with µ1 = (3, 5, 5), µ2 = (7, 5, 5), and Σ1 = Σ2 = 1.5 · I3, where I

denotes an identity matrix. The two HPM models are set up as follows:

• The haemodynamic responses were evoked by a sequence of 50 stimuli with inter-

stimulus interval (ISI) equal to 3.0 time units.

• Each of these stimuli triggers two virtual cognitive processes, which are separated

in time by 1.5 time units.

• These two processes evoke haemodynamic responses with distinct HRFs. The

HRF shape parameters {κk,p, θk,p} for the two processes in the two prototypes

are parametrized as κ1,1 = κ2,1 = 4.7348, θ1,1 = θ2,1 = 1.0431, κ1,2 = κ2,2 =

18.6742, θ1,2 = θ2,2 = 0.3409. These values of the κ and θ give two quite differ-

ent HRFs for the two prototypes.

• The haemodynamic response of process p evoked by stimulus s is modelled as the

product of the HRF shape function gp and the response magnitude au,k,p,s using

Eq.(4.9).

• The data was generated by regularly measuring the fMRI signal at a frequency of

two volumes per time unit. This yields 300 fMRI volumes.

We assume that the shape function is constant in time. Thus, the HRF shape parameters

are the same for all stimuli. The variation in the haemodynamic response across stimuli

come from the variation in the response magnitude.

We generated different haemodynamic response magnitudes for individual subjects

while keeping everything else fixed across the subjects. The haemodynamic response
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magnitude a for subjects u = 1, 2, ..., 18 as function of stimulus s = 1, ..., 50 for process

p = 1, 2 in prototype k = 1, 2 is defined as:

au,k,p,s = hp ∗ fu,k
(

2π

8
· s · ISI + δu

)
∗ ik, (5.54)

where (1) h denotes the maximum response magnitude. Its value is set to 1 for process

1 and 0.8 for process 2, that is, h1 = 1 and h2 = 0.8. For each of the two processes,

the h value remains unchanged across subjects, prototypes and stimuli; (2) f specifies

how the response magnitudes evolve over time, in the form of a sine function or a unit

square function (‘square’); Further, we divide 18 subjects into three subgroups, namely

{u: fu,1 = fu,2 = ‘sine’}, {u: fu,1 = fu,2 = ‘square’} and {u: fu,1 = ‘sine’, fu,2 = ‘square’}.

(3) δ ∈ [0, π) and i ∈ {1,−1} together specify the phase shift of f . Note that δ varies

randomly across the subjects, while i differs between the two prototypes.

Note that for L1G-SMM-HPM, we keep both HRF shape parameters and SMM loca-

tion and spread of the two prototypes fixed across the 18 subjects.

The synthetic data of L2G-SMM-HPM has been generated in the same way as the

generation of the data of L1G-SMM-HPM, except that HRF shape varies from subject to

subject. Thus, we sample the HRF shape parameters for each subject from a group-level

prior on these parameters given as N (κu,k,p, θu,k,p|µκk,p, σ2κ

k,p, µ
θ
k,p, σ

2θ

k,p) using Eq. (5.55).

κu,k,p = µκk,p + σ2κ

k,p · χ, (5.55)

θu,k,p = µθk,p + σ2θ

k,p · χ,

where χ is a sample from the standard normal distribution (zero mean and unit vari-

ance normal distribution); µκ1,1 = µκ2,1 = 4.7348, µθ1,1 = µθ2,1 = 1.0431, µκ1,2 = µκ2,2 =

18.6742, µθ1,2 = µθ2,2 = 0.3409 (these values give two quite different HRFs for the two

prototypes); and σκ1,1 = σκ1,2 = σκ2,1 = σκ2,1 = 0.25, σθ1,1 = σθ1,2 = σθ2,1 = σθ2,1 = 0.025. We

choose σκ bigger than σθ because the range of κ is bigger than the range of θ.

The synthetic data of L3G-SMM-HPM has been generated in the same way of the
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generation of the data of L2G-SMM-HPM except that the spatial prior varies across the

subjects. This means that for each of the two prototypes, location and spread (that

is mean vector and covariance matrix) differs between the subjects. We sampled the

prototype location of each subject from the group level prototype location prior given as

N
(
µu,k|µsk, σ2s

k

)
with µs1 = (3, 5, 5), µs2 = (7, 5, 5), and σ2s

1 = σ2s

2 = 0.01. Similarly, we

sampled individual prototype covariance matrices from their group level prior given as an

Inverse Wishart distribution prior IW
(
Σu,k|Ψk, dfk

)
with Ψk = 1.5 · I3 · (df − d∗ − 1).

For each level of model, the generated data have been divided into a training set and

a test set: training set to learn model parameters ΘSTM , and test set to validate the

models.

Synthetic data experiments results

To examine how accurate these three levels multi-subject fMRI models can be learned

from the data, we conducted an extensive numerical experiment using synthetic data.

Fig.(5.2) shows the synthetic data experiment. The design of this validation experiment

is given as follows:

1. Primarily, we infer each of the three models from the data generated by the same

model, for example, we learn L1G-SMM-HPM model parameters from the synthetic

data generated by L1G-SMM-HPM. But we also examine how well each of the three

models can be learned from the data when there exists discrepancy between the

inferential and data-generating model (so-called model misfit).

2. To quantify how well the inferred model fits the data, we use out-of-sample negative

log likelihood 1. To this end, we split each synthetic data set into a training set and

a testing set. The training set is used to learn model parameters ΘSTM , while the

testing is used to calculate the negative log likelihood. The original data set is split

according to both voxels and volumes.

1We used the natural log
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3. To account for the uncertainty arising from the optimization process, we repeat

the experiment1 with ten independent random run (each run with different split of

the data into training-set and test-set) and obtain ten measurements of the out-of-

sample negative log likelihood. The mean and standard deviation are subsequently

computed.

Figure 5.2: Controlled experiments using synthetic fMRI data.

The results for out-of-sample negative log likelihood (mean ± standard deviation) is

summarized in table 5.1. It shows that for any of the three data sets, the lowest out-

of-sample negative log likelihood is always observed in the case where we do not have

the model misfit (the diagonal in the Table 5.1). The same is true for any of the three

inference models (see each of the three columns in the table). Moreover, in term of both

the bias and the variance, the negative log likelihood of all the models with all the datasets

is low, which show how robust our learning method is.

Table 5.1: Out of sample negative log Likelihood. The best results are marked with bold
font.

L1G-SMM-HPM L2G-SMM-HPM L3G-SMM-HPM
L1G-SMM-HPM data 1.1934 ± [0.0398] 1.3275 ±[0.0555] 1.3494 ± [0.0464]
L2G-SMM-HPM data 1.3357 ± [0.0401] 1.2302 ±[0.0416] 1.3546 ± [0.0429]
L3G-SMM-HPM data 1.3997 ± [0.0312] 1.3761 ±[0.0466] 1.2905 ± [0.0518]

In addition to out-of-sample negative log likelihood, we also used other quantities to

1One experiment takes on average two days to produce the results.
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test the learning performance. Such measures are based on the absolute difference between

the ground truth and the estimated model parameters In the following, we describe the

definition of these measures in detail.

The accuracy of spatial prior parameters (µk,Σk) for prototype k was measured through

the symmetrized Kullback–Leibler divergence between the ground-truth spatial prior mul-

tivariate Gaussian distributions N g
k (µgk,Σ

g
k) and the estimated one N e

k (µek,Σ
e
k) using Eq.

(4.24). The accuracy of the subject-level spatial prior parameters (µu,k,Σu,k) is measured

through:

ASu,k = Tr
((Σg

u,k

)−1
Σe
u,k +

(
Σe
u,k

)−1
Σg
u,k

2

)
+ (µeu,k − µ

g
u,k)

ᵀ

(
Σe
u,k

)−1
+
(
Σg
u,k

)−1

2
(µeu,k − µ

g
u,k)− 3, (5.56)

where the average error of the spatial prior estimation: AS = 1
U ·K

∑
u

∑
k ASu,k .

The accuracy of the haemodynamic response shape parameters κk,p and θk,p for pro-

totype k and process p was measured through the L1 distance between the ground truth

HRF ggk,p and the estimated HRF gek,p using Eq. (4.25). Subject-level haemodynamic

response shape parameters κu,k,p and θu,k,p accuracy is measured through:

Agu,k,p =
1

n

n∑
i=1

∣∣∣ggu,k,p(i∆t)− geu,k,p(i∆t)∣∣∣, (5.57)

where n is the number of sample points (n = 2000) and ∆t = 0.01, and the overall error

of the haemodynamic response shape estimation: Ag = 1
U ·K·P

∑
u

∑
k

∑
pAgu,k,p .

The accuracy of the subject level haemodynamic response magnitude (au,k,p,s) estima-

tion was measured through two summary statistics:

(i) L1 difference between the ground truth and the estimated response magnitudes:

Aau,k,p =
1

S

S∑
s=1

∣∣∣agu,k,p,s − aeu,k,p,s∣∣∣ (5.58)

Where S is the number of stimuli. The average error of response magnitude estimation
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is given by Aa = 1
U ·K·P

∑
u

∑
k

∑
pAau,k,p ;

(ii) Zero-lag cross correlation between the estimated time series of haemodynamic re-

sponse magnitudes of the two prototypes for specific process, denoted by eCp
0 . Due to the

way the synthetic data is generated, the ground truth value of gCp
0 is -1:

eCp
0 =

1

u

U∑
u=1

eCu,p
0

(
au,k1,p, au,k2,p

)
(5.59)

where eCu,p
0 (·, ·) denotes the estimated value of zero-lag cross-correlation between the

haemodynamic response magnitude a of subject u for particular process p in the the two

prototypes. The average value of zero-lag cross-correlation eC0 = 1
P

∑
p eC

p
0 .

Table 5.2 display the performance of parameters estimation in the inferential model

L1G-SMM-HPM from the data generated by L1G-SMM-HPM, L2G-SMM-HPM, and

L3G-SMM-HPM (Row 2 to Row 4). Tables 5.3 and 5.4 show the same results but for the

inferential model L2G-SMM-HPM and L3G-SMM-HPM, respectively. For all the models,

both the bias and the variance are low, which show how accurate and robust our model

optimization is. As expected, in each table the highest accuracy of the parameter learning

is observed when there is a match between the dataset and the inferential model. However,

if we look carefully at the results in these tables 5.2, 5.3 and 5.4, we can see that there

is no big difference between the results when there is a match between the dataset and

the inferential model (Bold entries) and the results when there is a miss-match between

the dataset and the inferential model, but the consistency of that the highest accuracy

is observed when there is a matching is reassuring (given that our model is a complex

latent variable model operating on quite limited noisy observations). Furthermore, it is

also notable to mention that although the standard deviations are small, they are some-

times larger than the means. This is maybe because we repeated the experiments only

ten times and maybe there are outliers but with this small number of measurements (10

measurements), it is hard to claim that these are real outliers.
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Table 5.2: L1G-SMM-HPM parameters estimation performance. The best results are
marked with bold font.

Data AS Ag eC0 Aa
L1-Data 0.0044±[0.0121] 0.0254±[0.0381] -0.9185±[0.0223] 0.0406±[0.0415]
L2-Data 0.0063±[0.0315] 0.0267±[0.0367] -0.8751±[0.0559] 0.0458±[0.0758]
L3-Data 0.0078±[0.0271] 0.0319±[0.0588] -0.8721±[0.0451] 0.0461±[0.0594]

Table 5.3: L2G-SMM-HPM parameters estimation performance. The best results are
marked with bold font.

Data AS Ag eC0 Aa
L1-Data 0.0053±[0.0640] 0.0326±[0.0546] -0.8785±[0.0479] 0.0489±[0.0778]
L2-Data 0.0049±[0.0417] 0.0224±[0.0319] -0.8976±[0.0571] 0.0434±[0.0645]
L3-Data 0.0079±[0.0981] 0.0373±[0.0736] -0.8724±[0.0321] 0.0467±[0.0743]

Table 5.4: L3G-SMM-HPM parameters estimation performance. The best results are
marked with bold font.

Data AS Ag eC0 Aa
L1-Data 0.0072±[0.0784] 0.0331±[0.0325] -0.8752±[0.0442] 0.0491±[0.0567]
L2-Data 0.0066±[0.0465] 0.0346±[0.0341] -0.8732±[0.0329] 0.0475±[0.0141]
L3-Data 0.0060±[0.0648] 0.0318±[0.0554] -0.8769±[0.0541] 0.0451±[0.0546]

5.4.2 Real data

Two-session fMRI data of 21 participants (mean age = 21 years) were used in this work.

These data are taken from a fMRI study investigating how humans learn probabilistic

sequential structures [114].

To investigate the humans’ sequence learning, two types of probabilistic sequences

of different complexity level were generated (labeled as Level 0 or Level 1 sequences).

The process underlying the Level 0 sequences is an i.i.d. process and the probability

distribution used to specify this i.i.d. process is a multinomial distribution over symbols

from an alphabet ({A, B, C, D} in this study). Note that it is a memory-less process. In

contrast, the process underlying Level 1 sequences is a first-order Markov process. Each

symbol in this process is a random sample from a multinomial distribution conditional on

its previous symbol. Therefore, a memory structure of length 1 is introduced into those

Level 1 sequences.

The first session fMRI data set was acquired before any training, whereas the second
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one was acquired after the participants had been trained with both Level 0 and Level 1

sequences. They are referred as pre- and post training sessions, respectively. Each fMRI

session comprised nine runs. Each run included ten blocks with two trials per block, and

two fixation blocks at the beginning and the end of each run. In each trial, a sequence

of 10 symbols was presented to the participants in the screen center one at a time. Each

symbol is shown for 250ms followed by a white fixation dot for 250ms. At the end of each

trial, a response cue appeared on the screen before a test comprising 4 stimuli appeared

for 1.5s. Participants were asked to predict which symbol they expected to appear next.

After the response of the participants by pressing the key corresponding to the symbol

location on the screen, a white fixation dot appeared for 5.5s before the next trial. All

trials except fixation trials involve three processes: (1) a visual analysis process (2) a

perceptual judgement process and (3) a motor response process. The fMRI data sets

were acquired at the Birmingham University Imaging Centre with a 3-T Philips Achieva

MRI scanner. In each scanning session, Echo Planar Imaging (EPI) data were acquired

from 32 slices (whole brain coverage, TR: 2000 ms, TE: 35 ms, 2.5×2.5×4 mm resolution).

Each participant from the cohort involved in this study can be categorized either

as fast or slow learners based on their behavioural performance1. This results in two

subgroups of the cohort: a fast learner and a slow learner group. Alongside the fMRI

data, we also obtained a group of identified ROIs with statistically significant three-way

interactions between session (pre versus post training), structure (random guess versus

probabilistically structured sequences), and learning (fast versus slow learners). However,

not all activation patterns shown by these ROIs are related to learning. Therefore, they

are further divided into two subgroups of ROIs: one with a statistically significant shift

of Percent signal change (PSC) from pre to post session and the one without it. For

this work, we have choose four ROIs (MFG, SFG, CG, and Pu) from the first group and

three ROIs (MOG, IOG, and LiG) from the second one. The last three ROIs are used as

controls for a sanity check.

1Rui Wang, Yuan Shen, Peter Tino, A. Welchman, Z. Kourtzi, Learning predictive statistics: dynamics
and strategies, Journal of Vision, Accepted for publication.
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The first ROI group consists of Middle Frontal Gyrus (MFG) of 480 voxels, Superior

Frontal Gyrus (SFG) of 349 voxels, Cingulate Gyrus (CG) of 134 voxels, and Putamen

(Pu) of 44 voxels. The second group consists of Medial Occipital Gyrus (MOG) of 175

voxels, Inferior Occipital Gyrus (IOG) of 448 voxels, and Limbic Gyrus (LiG) of 303

voxels.

Real data experiments results

We applied our hierarchical multi-subject SMM-HPM model on the fMRI data of each

group separately, in order to examine the ability of our model in (1) jointly describing

multiple fMRI data sets from a precisely defined group of subjects and (2) in discrim-

inating between different groups of subjects based on their fMRI data. For each ROI,

we applied our models (L1G-SMM-HPM, L2G-SMM-HPM, and L3G-SMM-HPM) to the

fMRI data of two different groups, fast learners and slow learners. We repeated the exper-

iment1 ten times, with random independent initialization in each repetition (the results

shown below are the mean along with the standard deviation ± across the ten repetitions

of the experiment for each model).

In order to find the optimal model, for each model in the hierarchy, we compute the

out-of-sample negative log Likelihood (both spatially and temporally). Fig.(5.3) shows

the real data experiment.

Figure 5.3: Real data experiment using real fMRI data of one session and one ROI .

The results show that there is no different between these three level models in the
1One experiment takes on average two days to produce the results.
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hierarchy but the second-level model have the lowest out-of-sample negative log likelihood.

In our experiment, we use the second-level multi-subject SMM-HPM: L2G-SMM-HPM for

discriminating between the fast learners group GrF and slow learners group GrS within

each ROI using three different features: spatial feature, temporal feature, and spatio-

temporal feature (actually, the results of the extracted features are consistent over the

three levels). We derive a summary statistic from those features. For the spatial feature

and the temporal feature, for each of four session-prototype pairs, we plot this statistic

(mean ± std). Recall that ‘session’ could be either pre- or post training, while ‘prototype’

is indexed either by 1 or 2. For the spatio-temporal features, for each session (either

pre- or post learning), we plot the statistics (mean ± std). To examine the statistical

significance of the result of each feature, we use a t-test1 and a rank test (Wilcoxon rank

test) 2. To examine the effect of the learning, we compute the relative percent reduction

(RPR)3 in the p-value of the pre-learning session and post-learning session.

RPR =
Ppre − Ppost

Ppre
· 100, (5.60)

where Ppre is the p-value of pre-learning session, and Ppostis the p-value of post-learning

session. It is worth mentioning that there is no limit on the value of the RPR results

( it can be very large or very small). In general, positive results means that there is

an effect for the learning (learning increase the separation between the two groups), and

negative results means that there is no effect for the learning (learning does not increase

the separation between the two groups).

Spatial feature To perform the outlined analysis based on the spatial features, we use

the so-called prototype volume as a summary statistic of the spatial prior for those

prototypes inferred individually for different subjects, groups, and/or ROIs. For

1Student’s-t test is used to compare the mean of two normally distributed samples, preferably of equal
size and variance.

2The rank test (Wilcoxon) is used to compare the median of tow samples without any assumption
about the samples distribution (it is a nonparametric test which is based solely on the order in which the
observations from the two samples fall)

3We computed the relative difference (relative percent reduction (RPR)) instead of the absolute dif-
ference because the absolute difference is less informative in the case of small p-values.
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each of these prototypes, its volume is computed as a product of the eigenvalues

of the corresponding shape matrix (Covariance matrix of the multivariate Gaussian

distribution that describe the spatial prior).

The computed prototype volumes are displayed in Fig.(5.4) for MFG, SFG, CG, Pu

and in Fig.(5.4) for IOG, MOG, LiG. In Table(5.5), for the frontal ROIs (MFG and

SFG), we found that there existed a statistically significant difference in prototype

volume between fast and slow learners for the two prototypes with larger spatial

extent (shaded cells in Table(5.5)). RPR values for the large prototypes (Bold entries

in Table(5.5)) show that there is an effect for the learning in increasing the separation

between the two groups in term of the volume of the prototypes. Moreover, from

Fig.(5.4), we see that for the larger prototypes (prototype 1 for MFG and prototype

2 for SFG) in both frontal ROIs, the fast learners prototype volumes are on average

larger than those of slow learners across the sessions. For all prototypes in the small

ROIs (CG and Pu) as well as for the small prototype in MFG (prototype 2) and

small prototype in SFG (prototype 1), such difference is insignificant. The above

observation suggests that we may explain away the observed difference by large size

of those prototypes and/or ROI. To test this suggestion, we performed the same

analysis for the three control ROIs. Note that the neural activation of these ROIs is

not related to the learning. Even though these ROIs are large and the prototypes in

them also have large spatial extent, there is no statistically significant difference in

volume between fast and slow learns (see Fig.(5.5) and Table(5.6)). As a result, we

may now claim that fast learners have larger homogeneous sub-ROIs (prototypes)

than slow learners and this difference is related to learning.
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Figure 5.4: The volume of the two prototypes (prot1 and prot2) on the interesting ROIs
((a) ROI-MFG, (b) ROI-SFG, (c) ROI-CG, and (d) ROI-Pu) for both the fast learners
(blue) and slow learners (red) groups in the pre-learning (pre) and post-learning (post)
sessions.

102



Table 5.5: Prototypes volume statistics for interesting ROIs ( ROI-MFG, ROI-SFG, ROI-
CG, and ROI-Pu) for the two prototypes (prot1 and prot2) in the pre-learning (pre) and
post-learning (post) sessions

Pre-learning p-value Post-learning p-value RPR

Prot-1 Prot-2 Prot-1 Prot-2 Prot-1 Prot-2

ROI-MFG t-test 0.0085 0.1976 0.0069 0.2908 19% -47%

ROI-MFG rank test 0.0207 0.3147 0.003 0.2241 86% 29%

ROI-SFG t-test 0.0587 2.30E-06 0.0613 1.10E-09 -4% 99%

ROI-SFG rank test 0.1712 0.0003 0.1841 0.0002 -7% 33%

ROI-CG t-test 0.51 0.7693 0.6743 0.4911 -32% 36%

ROI-CG rank test 0.9231 1 0.7362 0.951 20% 5%

ROI-Pu t-test 0.3252 0.0891 0.3503 0.5175 -8% -481%

ROI-Pu rank test 0.1447 0.0778 0.4376 1 -202% -1e+03%
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Figure 5.5: The volume of the two prototypes (prot1 and prot2) on the control ROIs ((a)
ROI-MOG, (b) ROI-IOG, and (c) ROI-LiG) for both the fast learners (blue) and slow
learners (red) groups in the pre-learning (pre) and post-learning (post) sessions.

Table 5.6: Prototype volume statistics for control ROIs (ROI-MOG, ROI-IOG, and ROI-
LiG) for the two prototypes (prot1 and prot2) in the pre-learning (pre) and post-learning
(post) sessions

Pre-learning p-value Post-learning p-value RPR

Prot-1 Prot-2 Prot-1 Prot-2 Prot-1 Prot-2

ROI-MOG t-test 0.3106 0.1571 0.1746 0.5512 44% -251%

ROI-MOG rank test 0.3747 0.1323 0.1031 0.1257 72% 5%

ROI-IOG t-test 0.2438 0.2746 0.2782 0.8378 -14% -205%

ROI-IOG rank test 0.4363 0.2224 0.1963 0.9314 55% -319%

ROI-LiG t-test 0.0927 0.6829 0.7664 0.5793 -727% 15%

ROI-LiG rank test 0.1304 0.5743 1 0.6126 -667% -7%
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Temporal feature From the estimated HRF parameters, we reconstructed the haemo-

dynamic response time to peak T p = (κk,p2 − 1) · θk,p2 to quantify how fast the

response is. This statistic was computed only for the perceptual judgement process

(i.e. Process 2 (p2) in the model) because it is the process of most interest. Fig.

(5.6) shows that for all interesting ROIs, fast learners have earlier time to peak re-

sponse than slow learners after the training session. This is statistically significant

(shaded cells in Table (5.7)). Moreover, RPR values show that in general there is an

effect on the learning in increasing the separation between the fast and slow learners

in terms of their haemodynamic response time to peak (Bold entries in Table (5.7)).

As in the spatial features, to test this suggestion, we performed the same analysis

for the three control ROIs. The results (Fig(5.7) and shaded cells and Bold entries

in Table (5.8) ) show that the same significant results appeared in the control ROIs.

As a consequence, we may claim that fast learners have earlier time to peak response

than slow learners but this difference is not related to learning.
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Figure 5.6: Haemodynamic response time to peak of the perceptual judgement process
for the two prototypes (prot1) and (prot2) on the interesting ROIs ((a) ROI-MFG, (b)
ROI-SFG, (c) ROI-CG, and (d) ROI-Pu) for both the fast learners (blue) and slow learners
(red) groups in the pre-learning (pre) session and post-learning (post) session.
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Table 5.7: HRF time to peak statistics for interesting ROIs ( ROI-MFG, ROI-SFG, ROI-
CG, and ROI-Pu) for the two prototypes (prot1 and prot2) in the pre-learning (pre) and
post-learning (post) sessions

Pre-learning p-value Post-learning p-value RPR

Prot-1 Prot-2 Prot-1 Prot-2 Prot-1 Prot-2

ROI-MFG t-test 0.2189 0.0006 7.80E-11 2.81E-20 100% 100%

ROI-MFG rank test 0.14 0.0114 1.39E-08 2.04E-12 100% 100%

ROI-SFG t-test 0.1311 0.1445 3.80E-36 1.12E-31 100% 100%

ROI-SFG rank test 0.1352 0.1211 2.30E-22 2.90E-20 100% 100%

ROI-CG t-test 0.4754 0.0045 0.0003 1.20E-06 99% 99%

ROI-CG rank test 0.7273 0.0052 0.0008 1.50E-05 99% 99%

ROI-Pu t-test 0.0363 0.0141 0.0465 0.0017 -28% 88%

ROI-Pu rank test 0.0075 0.0184 0.0255 0.0032 -240% 83%
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Figure 5.7: Haemodynamic response time to peak of the perceptual judgement process
for the two prototypes (prot1) and (prot2) on the control ROIs ((a) ROI-MOG, (b) ROI-
IOG, and (c) ROI-LiG) for both the fast learners (blue) and slow learners (red) groups
in the pre-learning (pre) session and post-learning (post) session.

Table 5.8: HRF time to peak statistics for control ROIs (ROI-MOG, ROI-IOG, and ROI-
LiG) for the two prototypes (prot1 and prot2) in the pre-learning (pre) and post-learning
(post) sessions

Pre-learning p-value Post-learning p-value RPR

Prot-1 Prot-2 Prot-1 Prot-2 Prot-1 Prot-2

ROI-MOG t-test 0.1326 0.0654 2.64E-10 3.00E-06 100% 99%

ROI-MOG rank test 0.1734 0.1124 4.31E-07 5.91E-06 99% 99%

ROI-IOG t-test 9.56E-08 0.0034 1.67E-02 1.30E-03 -1.7e+07% 62%

ROI-IOG rank test 2.22E-07 0.048 1.27E-02 3.00E-04 -5.7e+06% 99%

ROI-LiG t-test 0.6269 0.6990 1.40E-03 1.66E-07 99% 100%

ROI-LiG rank test 0.967 0.5412 4.38E-06 2.92E-10 99% 100%
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Spatio-temporal feature which is described by zero lag cross-correlation of temporal

evolution of response magnitudes of the two prototypes k1 and k2 for a particular

process (perceptual judgement process p2, which we are interested in) within a

specific ROI:

C2
0 =

1

u

U∑
u=1

C2u
0 (au,k1,p2 , au,k2,p2) (5.61)

High cross-correlation indicates that the ROI is homogeneous and one prototype

(along with the null prototype) is sufficient for characterising that ROI. Low cross-

correlation means that the ROI is heterogeneous and there is a need for more than

one prototype. The computed correlation coefficients are displayed with error bars

(mean ± std). The results show that in the all interesting ROIs (Fig. (5.8)), the

two prototypical patterns of response magnitudes are more positively correlated for

the slow learners group than for the fast learners group in the after training session.

This observation is statistically significant for all ROIs except the smallest ROI-Pu

(shaded cells in Table (5.9)). Moreover, RPR values show that there is an effect

of the learning in increasing the separation between the two groups in term of the

zero lag cross-correlation of temporal evolution of response magnitudes of the two

prototypes in all ROIs except the smallest one (Bold entries in Table (5.9)). As in

the previous features, to test this suggestion, we performed the same analysis for

the three control ROIs. The results (Fig(5.9) and Table (5.10) ) show that there is

no statistically significant difference in the term of the cross-correlation of temporal

evolution of response magnitudes between fast and slow learns. Moreover, negative

results in the RPR means that there is no effect for the learning and learning does

not increase the separation between the two groups (this is what we expect for

the control ROIs). As a consequence, we may claim that fast learners have more

heterogeneous ROIs than slow learners and this difference is related to learning.
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Figure 5.8: Zero-lag cross correlation between the estimated haemodynamic response
magnitudes time series of the two prototypes on the interesting ROIs ((a) ROI-MFG,
(b) ROI-SFG, (c) ROI-CG, and (d) ROI-Pu)) for both the fast learners (blue) and slow
learners (red) groups in the pre-learning session (Pre-Sess) and post-learning (Post-Sess)
session.
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Table 5.9: Statistics of the zero-lag cross correlation between the estimated haemodynamic
response magnitudes time series of the two prototypes for interesting ROIs ( ROI-MFG,
ROI-SFG, ROI-CG, and ROI-Pu)

Pre-learning p-value Post-learning p-value RPR

ROI-MFG t-test 0.0079 1.38E-05 99%

ROI-MFG rank test 0.0056 2.11E-06 99%

ROI-SFG t-test 0.2774 2.74E-09 100%

ROI-SFG rank test 0.1136 3.18E-09 100%

ROI-CG t-test 0.4161 1.05E-03 99%

ROI-CG rank test 0.5812 3.47E-03 99%

ROI-Pu t-test 0.0019 0.205 -1e+04%

ROI-Pu rank test 0.001 0.1734 -17240%
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Figure 5.9: Zero-lag cross correlation between the estimated haemodynamic response
magnitudes time series of the two prototypes on the control ROIs ((a) ROI-MOG, (b)
ROI-IOG, and (c) ROI-LiG) for both the fast learners (blue) and slow learners (red)
groups pre-learning session (Pre-Sess) and post-learning (Post-Sess) session.

Table 5.10: Statistics of the zero-lag cross correlation between the estimated haemody-
namic response magnitudes time series of the two prototypes for control ROIs (ROI-MOG,
ROI-IOG, and ROI-LiG)

Pre-learning p-value Post-learning p-value RPR

ROI-MOG t-test 0.0151 0.3765 -2e+03%

ROI-MOG rank test 0.0352 0.7601 -2e+03%

ROI-IOG t-test 0.5241 0.5612 -7%

ROI-IOG rank test 0.2118 0.4878 -130%

ROI-LiG t-test 0.7077 0.4526 36%

ROI-LiG rank test 0.269 0.3828 -42%
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5.5 Summary

In this chapter, we developed the multi-subject version of the SMM-HPM as a hierarchical

model formations (L1G-SMM-HPM, L2G-SMM-HPM, and L3G-SMM-HPM). Such hier-

archical formations enabled us to identify the optimal common model (the one that has

the lowest negative log likelihood) that can describe any population and can discriminate

between different populations.

In the synthetic data experiments, both the out-of-sample negative log likelihood, and

the absolute difference between the ground truth and the estimated model parameters

show how robust and accurate our model is.

Our multi-subject SMM-HPM is a prototype based spatio-temporal model. This fact

enabled us to extract three novel features (a spatial feature, a temporal feature, and a

spatio-temporal feature) and use them to discriminate between different groups of sub-

jects. In the real data experiments, the results of extracting these features for each groups

show that the temporal features, and the spatio-temporal features can be used to discrim-

inate between different populations. However, the spatial features can be used only in the

case of large ROIs.
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CHAPTER 6

CONCLUSION

This chapter presents the general conclusions of the work presented in this thesis and

suggests several directions for future work.

6.1 Thesis Reflections

This thesis was a result of our quest to find the optimal multi-subject fMRI data model

that can describe the fMRI data of any population. The scientific method consists of

asking questions, and trying to systematically work towards the answer. In this thesis we

introduced the following research questions:

1. How can the idea of the population-based fMRI data model be formulated?

2. What is the most constrained model that still can describe the population based

fMRI data and what can be learnt from it?

To answer these questions, we formulated (in chapter 5) the multi-subject fMRI data

model as a hierarchy of model formations, from the most constrained model to the most

flexible one. The models in this hierarchy differ in which degree the spatio-temporal

features of fMRI data are allowed to vary between subjects. Such hierarchical formations

enabled us to identify the optimal common model (the one that has the lowest out-

ofsample negative log likelihood). From the optimal common model, we can extract
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informative features and use them to discriminate between the fMRI data of different

populations.

6.2 Work summary

The main contribution of this thesis is to extend the single-subject SMM-HPM model to a

population-based one in a principled way (a hierarchy of model formations with increasing

complexity in each level of the hierarchy), and to define the optimal common model that

can discriminate between fMRI data of different populations.

The first step of extending single-subject SMM-HPM to multi-subject is to normalize

the HRF model (that is, the gamma function with two shape parameters κ and θ). This

modification is essential for building a population based model because the variations

of κ and θ not only lead to variations in the haemodynamic response shape but also to

variations in its peak height. Normalization of the HRF shape to one with unit peak

height can make sure that all variations in the intensity of haemodynamic response are

solely captured by the haemodynamic response magnitude parameters. In Chapter (4), we

demonstrate through numerical experiments that such a modification not only constitutes

a more natural model formulation, but also makes the parameter estimation more robust.

Then, we proceeded to the multi-subject extension of the single-subject SMM-HPM

and have developed a hierarchy of multi-subject SMM-HPM models ranging from the

most constrained model, where the subjects share all the model parameters except the

heamodynamic response magnitudes (L1G-SMM-HPM), to the most flexible one, where

the subjects have different individual parameters controlled by group-level priors (L3G-

SMM-HPM). The intermediate level of multi-subject SMM-HPM (that is, L2G-SMM-

HPM) allows for variation of the HRF shape but keeps the spatial prior fixed. Such

hierarchical formations enabled us to identify the optimal common model using the out-

of-sample negative log likelihood, and to examine the impact of the model flexibility on

identification of spatio-temporal patterns for a given population.
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To validate these three multi-subject models in the hierarchical framework, we con-

ducted an extensive numerical experiment using synthetic data (section 5.4.1). We first

used these models as data-generating models to generate three corresponding synthetic

datasets with known ground-truth model setting. Then, each of these three models are

used as inferential models to fit all of the three synthetic datasets individually. The qual-

ity of model fitting is tested by (1) the out-of-sample negative log likelihood and (2) the

absolute difference between the ground truth and the estimated model parameters. For

(2), we used (i) a symmetrized Kullback-Leibler divergence between two Gaussian distri-

butions (that is, the ground-truth spatial prior and the estimated one), (ii) a L1 distance

between the ground truth HRF and the estimated HRF, (iii) a L1 difference between the

ground truth and the estimated response magnitudes, and (iv) a zero-lag cross correlation

between the estimated time series of haemodynamic response magnitudes of the two pro-

totypes. To quantify the uncertainty arising from the parameter estimation, we repeated

the experiment with ten independent, random initialisation and summarize all results in

mean ± standard deviation, These experiments demonstrates how robust and accurate

our model is.

To assess the performance of these three multi-subject models of the hierarchical frame-

work in describing multiple fMRI data and in discriminating between different groups of

subjects based on their fMRI data, we applied them to real data comprises the fMRI

data of two different groups of learners (fast learners and slow learners) from two different

sessions (pre-learning session and post-learning session) on specific ROIs (section 5.4.2).

As in the synthetic data experiments, we repeated the real data experiment ten times

with new initialization each time. The results (mean ± standard deviation) of comput-

ing the out-of-sample negative log likelihood enabled us to identify the optimal common

model (the model with the lowest out-of-sample negative log likelihood). The fact that

the proposed multi-subject model is a prototype based spatio-temporal model enabled

us to extract three informative novel features from the optimal model: a spatial feature

(prototypes volume); a temporal feature (haemodynamic response time to peak); and a
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spatio-temporal feature (zero lag cross-correlation between the haemodynamic response

magnitudes time series of the two prototypes). In general, the results of extracting these

features for each group show that both the temporal feature and spatio-temporal feature

can be used to discriminate between different populations. However, the spatial features

can be used only in the case of large ROIs. Moreover, for the temporal and spatio-

temporal features, learning increase the separation between these two groups regardless

of the ROIs size, but for the spatial features, learning increases the separation only in the

case of the large ROIs.

6.3 Future work

The work presented in this thesis opens up several new directions for further work. We

have started to explore some of them.

• Adopt the proposed multi-subject SMM-HPM to predict the group membership of

new subjects.

• Extend the multi-subject SMM-HPM to model the interaction between the cognitive

processes (visual analysis process, perceptual judgement process and motor response

process) and examine if there is an overlapping between the cognitive processes

trigged by the same stimulus. This overlapping can be detected by determining the

appropriate number of the cognitive processes, which can be one, two or three, using

model selection approach.

• Improve the optimization method that was employed to learn the parameters in the

second level multi-subject SMM-HPM (L2G-SMM-HPM) and the third level multi-

subject SMM-HPM (L3G-SMM-HPM) by optimizing the HRF shape parameters

with marginalization over all possible values, and optimizing the spatial prior pa-

rameters with marginalization over the neighbouring voxels, respectively. We have

already started to work on this improvement (see Appendix A).
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APPENDIX A

MARGINALIZATION METHOD

This appendix explains the optimization of the second level multi-subject SMM-HPM

(L2G-SMM-HPM) with a marginalization method.

A.0.1 Second level model with marginalization: MargL2G-SMM-
HPM

As in L2G-SMM-HPM, this model allows different subjects to have different haemody-

namic response shapes beside different haemodynamic response magnitudes. The spatial

prior and the number of the prototypes are fixed across subjects. However, we learn the

group-level HRF shape parameters instead of the subject-level HRF shape parameters by

optimizing them with marginalization over the possible values h. We know the permissible

range of the HRF response shape parameters (κ, θ). (θ, κ) is permissible if the correspond-

ing time-to-peak T p = (κ− 1)θ and peak width W = 2
√

2 ln 2 ·
√
κθ are both within their

permissible ranges. The permissible ranges are given by [Wmin = 3s,Wmax = 6s] and

[T pmin = 3s, T pmax = 7s], respectively. We built a grid of all permissible combination of the

values of HRF response shape parameters (κ, θ), as seen in Fig.(A.1). We marginalize

over this grid’s values.

Assuming that the observations are independent over subjects, voxels and volumes,

the model likelihood of MargL2G-SMM-HPM given fMRI time series (Y) of a group of
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Figure A.1: HRF response shape parameters (κ, θ) permissible rang grid

subjects reads:

p(y) =
U∏
u=0

V∏
v=0

T∏
t=0

p
(
yuvt; ΘSTM

)
(A.1)

With marginalization over the permissible values of the HRF shape parameters (κ, θ),

p
(
yuvt; ΘSTM

)
is modelled as:

p
(
yuvt; ΘSTM

)
=

H∑
h∈G

p
(
yuvt; ΘSTM

)
· p(h|ΘHRF )

=
H∑
h∈G

{
p
(
yuvt|ΘS, h,ΘNRL

u ,ΘNIS) ·
K∏
k=1

P∏
p=1

p(hk,p|ΘHRF )

}

=
H∑
h∈G

{
K∑
k=0

p(k|v; ΘS) · p(yuvt|k;h,ΘNRL
u ,ΘNIS) ·

K∏
k=1

P∏
p=1

p(hk,p|ΘHRF )

}
,

where h = hk,p = (κk,p, θk,p), H = all possible h ∈ G, G is a grid of permissible values of

κ and θ, p(k|v; ΘS) denotes the prior probability for the k-th prototype generating fMRI

time series at voxel v. p
(
yuvt|k;h,ΘNRL

u ,ΘNIS
)

is the likelihood of yuvt being generated

by the k-th prototype. The probability p(hk,p|ΘHRF ) is given as normalized Gaussian:

p(hk,p|ΘHRF ) =
N (hk,p|µκk, σ2κ

k , µ
θ
k, σ

2θ

k )∑
h̃k,p∈GN (h̃k,p|µκk, σ2κ

k , µ
θ
k, σ

2θ
k )

(A.2)

=
N (κk,p;µ

κ
k,p, σ

2κ

k,p) · N (θk,p;µ
θ
k,p, σ

2θ

k,p)∑
(κ̃k,p,θ̃k,p)∈GN (κ̃k,p;µκk,p, σ

2κ
k,p) · N (θ̃k,p;µθk,p, σ

2θ
k,p)

,

where µκk,p and σ2κ

k,p are the mean and the variance of the subject-level HRF shape param-
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eters, respectively; and µθk,p and σ2θ

k,p are the mean and the variance of the subject-level

HRF scale parameters, respectively.

Learning the Model MargL2G-SMM-HPM

We learn MargL2G-SMM-HPM parameters ΘSTM in the usual Bayesian manner (MAP

estimation), posterior:

p(ΘSTM |Y) = p(Y|ΘSTM) · p(ΘSTM).

Model likelihood:

p(Y|ΘSTM) =
∏
u

∏
v

∏
t

p(yuvt|ΘSTM)

=
∏
u

∏
v

∏
t

∑
h

{
p(yuvt|ΘS, h,ΘNRL

u ,ΘNIS) · p(h|ΘHRF )
}

The prior is factorized as:

p(ΘSTM) (A.3)

= p(N) · p(b) ·
K∏
k=1

p(µk) ·
K∏
k=1

p(Σk) ·
U∏
u=1

K∏
k=1

P∏
p=1

S∏
s=1

p(au,k,p,s)

·
K∏
k=1

P∏
p=1

p(µκk,p, µ
θ
k,p) ·

K∏
k=1

P∏
p=1

p(σ2κ

k,p) ·
K∏
k=1

P∏
p=1

p(σ2θ

k,p)

·
K∏
k=0

p(σ2
k),

where p(µκk,p, µ
θ
k,p) ∝ exp+ log((T p−T pmin)(T pmax−T p))+log((W−Wmin)(Wmax−W )), p(σ2κ

k,p) = 1
(σ2κ
k,p)2

,

and p(σ2θ

k,p) = 1

(σ2θ
k,p)2

. All the other priors are the same as in L2G-SMM-HPM.

Scaled conjugate-gradient optimization algorithms are used to optimize these parame-

ters iteratively. The gradient of the negative log likelihood − log p(Y|ΘSTM) with respect

120



to the MargL2G-SMM-HPM parametersis ΘSTM :

∇ΘSTM
{
− log p(Y |ΘSTM)

}
= ∇ΘSTM

{
− log

(∏
u

∏
v

∏
t

∑
h

p(yuvt|ΘSTM) · p(h|ΘHRF )

)}

= ∇ΘSTM

{∑
u

∑
v

∑
t

− log

(∑
h

p(yuvt|ΘSTM) · p(h|ΘHRF )

)}
(A.4)

In this marginalization optimization method, we sum over the all possible haemody-

namic response shape values, which produce a very small probability and the logarithm

of small number approaches infinity. To solve this problem we employ Jensen’s inequality

and optimize the lower bound:

6 ∇ΘSTM

{∑
u

∑
v

∑
t

∑
h

− log
(
p(yuvt|ΘSTM) · p(h|ΘHRF )

)}

6 ∇ΘSTM

{∑
h

∑
u

∑
v

∑
t

− log
(
p(yuvt|ΘSTM)

)
−
∑
u

∑
h

log
(
p(h|ΘHRF )

)}
6

∑
h

∇ΘSTM
{
− log

(
p(Y |ΘSTM)

)}
−N

∑
h

∇ΘSTM
{

log
(
p(h|ΘHRF )

)}
(A.5)

As apparent in Eq. (A.5), we marginalize over all the possible values of h = (κ, θ) ∈ G.

This is very time consuming, particularly because of the summation over subjects, voxels,

volumes and prototypes. In order to reduce the computational time, we built a small

grid for the permissible range of the HRF shape parameters. To build this grid, we use

functional k-means clustering based on the L2-Distance between the HRF signals of the

original grid points, see Fig. (A.2).

In Eq. (A.5), {− log p(Y |ΘSTM)} is the likelihood of Model L1G-SMM-HPM. Its

derivatives with respect to (ΘSMM ,ΘNRL
u ,ΘNIS) has not changed. Its derivatives with re-

spect to (ΘHRF ) is zero, because h here is a constant value from the grid of the permissible

values.

The derivatives of Lh = log p(h|ΘHRF ) = log

{
N (κk,p;µκk,p,σ
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}
with respect to (ΘSMM ,ΘNRL

u ,ΘNIS) equal to zero, and with respect to (ΘHRF = µκk,p, σ
2κ

k,p, µ
θ
k,p, σ

2θ

k,p)
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Figure A.2: Small permissible range grid based on L2-Distance between the HRF signals
of the original grid points (κ, θ)

is the following:
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We now show the derivatives of the (negative log) prior P = − log p(ΘSTM):

For p(µκk,p, µ
θ
k,p) ∝ exp+ log((T p−T pmin)(T pmax−T p))+log((W−Wmin)(Wmax−W )):
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All the other priors have the same derivative as in L2G-SMM-HPM.

Initialization of the MargL2G-SMM-HPM

Initialization of the MargL2G-SMM-HPM is the same as the initialization of the L2G-

SMM-HPM.

Results

We applied the same synthetic experiments that have been used for the L2G-SMM-HPM

in section (5.4.1), and using the same synthetic data (only L2-data ) and the same statis-
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tics. Compared to the results of optimizing the L2G-SMM-HPM, MargL2G-SMM-HPM

provides better results:

Table A.1: Out-of-sample negative log likelihood

MargL2G-SMM-HPM

L2-Data 1.015±[0.0211]

Table A.2: MargL2G-SMM-HPM parameters estimation performance

Data AS Ag eC0 Aa

L2-Data 0.0007 ±[0.0325] 0.01124±[0.0387] -0.9511±[0.0455] 0.0036±[0.0298]
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[70] Richard B Buxton, Kâmil Uludağ, David J Dubowitz, and Thomas T Liu. Modeling
the hemodynamic response to brain activation. Neuroimage, 23:S220–S233, 2004.

[71] Massimo Filippi, Roberta Messina, and Maria A Rocca. fMRI of the sensorimotor
system. fMRI Techniques and Protocols, pages 523–543, 2016.

[72] Karl J Friston. Functional and effective connectivity: a review. Brain connectivity,
1(1):13–36, 2011.

[73] Massimo Filippi. fMRI techniques and protocols. Springer, 2009.

[74] Martin J McKeown, Scott Makeig, Greg G Brown, Tzyy-Ping Jung, Sandra S Kin-
dermann, Anthony J Bell, and Terrence J Sejnowski. Analysis of fMRI data by blind
separation into independent spatial components. Technical report, DTIC Document,
1997.
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