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                                      Abstract 

Large-scale complex systems have large numbers of variables, network structure of 

interconnected subsystems, nonlinearity, spatial distribution with several time scales in its 

dynamics, uncertainties and constrained. Decomposition of large-scale complex systems 

into smaller more manageable subsystems allowed for implementing distributed control and 

coordinations mechanisms.  

This thesis proposed the use of distributed softly switched robustly feasible model predictive 

controllers (DSSRFMPC) for the control of large-scale complex systems. Each DSSRFMPC 

is made up of reconfigurable robustly feasible model predictive controllers (RRFMPC) to 

adapt to different operational states or fault scenarios of the plant. RRFMPC reconfiguration 

to adapt to different operational states of the plant is achieved using the soft switching 

method between the RRFMPC controllers. 

The RRFMPC is designed by utilizing the off-line safety zones and the robustly feasible 

invariant sets in the state space which are established off-line using Karush Kuhn Tucker 

conditions. This is used to achieve robust feasibility and recursive feasibility for the 

RRFMPC under different operational states of the plant. The feasible adaptive cooperation 

among DSSRFMPC agents under different operational states are proposed. 

The proposed methodology is verified by applying it to a simulated benchmark drinking 

water distribution systems (DWDS) water quality control.  
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Chapter 1 

Introduction 

In this chapter, the motivation for this research work is presented in Section 1.1. The 

Research objectives and contributions are explained in Section 1.2. The organization of the 

thesis is outlined in Section 1.3. 

 

1.1 Motivation 

Control is the process of making a given physical plant or process behave in some ways so 

that the response of the plant is in conformity with the desired specifications. Control may 

be automatic or manual, open loop or closed loop. The physical plants are classified as large-

scale systems or small-scale systems, linear or nonlinear systems, constrained or 

unconstrained systems. Large-scale complex systems have multivariable parameters with 

large dimensions, nonlinearities, spatial distribution with several time scales in its dynamics, 

uncertainties, constrained and has network structure [1] [2]. 

Our rapidly growing modern society relies heavily on and is constantly being driven by the 

increasing number of the large-scale complex interconnected systems such as 

telecommunication networks, social networks, power networks and drinking water 

distribution systems. These systems are described as Critical Infrastructure Systems (CIS) 

due to their direct impact on the day to day running of the society [3] [4].  

For the CIS to meet the required operational and service delivery objectives under different 

operational conditions, advanced control structure and control technology are needed. The 



19 

 

control structure and the control technology must ensure the reliable and sustainable 

operation of the CIS under different operational conditions such as sensor faults, actuator 

faults, CIS components faults, failures of communication links or anomalies occurring in 

the technological operation of the CIS physical processes [2] 

The control structure is made up of control agents and it receives measurements from the 

CIS, computes its control actions and executes the control actions on the CIS to achieve the 

specified control objectives as illustrated in Figure 1.1.  

 

 

                                                                                                                    

                                                                                                                 

                                                                                                                                          

 

 

                     

 

Figure 1.1 The relationship between CIS (Large-Scale systems) and the control structure 

that controls the system 

 

The control structure in the CIS determines the following [5] [6]: 

• the number of control agents that executes control actions on the system and its 

subsystems 

• the arrangement or architecture of the control agents 

         Control structure   

         (Control Agents)    

CIS 

        (Large-Scale Systems) 

Monitoring and 

Measurements 
Control Actions 
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• the computation method the control agents will use to process the measurements to 

generate the control actions 

• the communication method and the coordination mechanisms that the control 

agents have among each other  

• the hierarchy or level of authority between the control agents  

 

Model Predictive control (MPC) is an advanced control technology in the Industry with the 

capabilities for the control of highly complex multivariable processes and handling of 

constrained linear systems or nonlinear systems [7]. This makes MPC an obvious choice as 

the control agent for the CIS. The MPC is a control technique which repetitively solves on-

line over the plant output prediction horizon the open loop MPC optimization task and 

applies the first part of the generated control sequence into the plant. At every time step, the 

initial output or state of the MPC is updated by measuring the output or state and using it as 

information feedback [8] [9] [10] [11]. Central to the implementation of MPC is the explicit 

use of the model of the plant to be controlled for prediction of optimal control inputs which 

influences the future behavior of the plant. It is therefore important that the model of the 

system to be used for MPC design be simple and accurate. The model must be accurate 

enough to capture the process dynamics, disturbance inputs and account for uncertainties in 

its parameter estimation.  

In the application of MPC, there is always a model-reality mismatch which must be 

considered and incorporated in the MPC design to ensure that the MPC is robustly feasible 

while satisfying the plant input, state or output constraints. Robust feasibility is defined at 

any time instant such that at the current state of the plant, the control input that satisfies the 
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plant input state or output constraints can be determined by the designed MPC. The designed 

Robustly Feasible MPC (RFMPC) must achieve robust feasibility or generate feasible 

control inputs under all allowable uncertainty scenarios of the plant over the whole control 

time horizon.  

CIS are typically distributed over a large geographical and are made up of several 

interconnected subnetworks controlled by a set of controllers or control agents organized in 

a multiagent architecture. The multiagent architecture can be hierarchical, decentralized or 

distributed. Each subnetwork is controlled by a controller or control agent or a set of 

controllers and may work cooperatively or in conflict with other control agents to achieve 

the system overall control objectives. It thus calls for the application of suitable control agent 

architectures for the given control task.  

Reliable operation of the CIS [2] under different range of operational conditions usually 

requires the following functions:  

• the use of fault detection and isolation (FDI) or fault detection and diagnosis (FDD) 

system [12] [13] 

•  distributed state observer mechanisms to predict or robustly estimate the operational 

state of the CIS [14] [15] 

• Fault-tolerant system or control agent adaptive or self-reconfiguration mechanisms 

in [16] [17] [18] [19] [20] [21] 

The current operational state (OS) of a CIS is determined by the states of the CIS processes, 

states of CIS components, states of all sensors, states of all actuators, disturbance inputs, 

states of the communication channels and current operating ranges of the processes [2]. The 
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knowledge of the current operational state of the CIS enables the control agents to use the 

most suitable control strategy to achieve the control objectives at this operational state.  

The operational state of CIS may change due to the following: 

• Faults in the CIS components 

• Faults in the sensors or actuators 

• Disturbance inputs not captured in the robust controller design 

• Faults in the communication channels used in the CIS 

The typical operational states [2] [22] are normal, disturbed and emergency operational 

states. In RFMPC design, the objective function and the prediction model is usually mapped 

to a specific control strategy that will achieve specific control objectives at a specific 

operational state of the CIS. This makes a single objective and single model RFMPC 

unsuitable for achieving a full range of control objectives under different operation states. It 

thus calls for the design of multiple RFMPCs for a variety of control objectives each suited 

for a specific operational state of the CIS. 

Given a control task, a suitable control strategy is chosen for the design of the RFMPC to 

accomplish this task. If there are no faults in the CIS, the RFMPC will continue to achieve 

the control tasks at this normal operational state. If there are faults in the CIS and there is a 

possibility of achieving the given control task at this disturbed operational state, there is a 

need to change the controller strategy to adapt to the disturbed operational state to achieve 

the control task. Being in the disturbed operational state, the controller receives the 

monitoring information on the current operational state to determine whether to move to the 

normal operational state or continue in the disturbed operational state. If there are faults in 

the system and there is no possibility of achieving the control task at this emergency 
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operational state, there is a need to change the controller strategy to adapt to the emergency 

operational state. Being in the emergency operational state, the controller receives the 

monitoring information on the current operational state to determine whether to move to the 

normal operational state or continue in the emergency operational state.  

Change of controller strategy may involve a change of constraints, change of objective 

function and change of model used for the design of the RFMPC [23] . Each operational 

state of the system may be described by different mathematical models and these models 

will be used to design multiple RFMPCs to achieve specific control strategy and control task 

at the operational states. The use of multiple models of the plant to achieve the same or 

different sets of control objectives is one of the techniques of fault tolerant control system 

design [16].  

This calls for the application of multiple RFMPCs that can be switched to each other and 

adapted to fit into the real time operational condition of the plant. The method of switching 

between the RFMPCs need to be done in a soft way to avoid infeasibility of the control 

actions, damage of the actuators and the impulsive or spike phenomenon associated with 

hard switching. The soft switching of RFMPC is a form of adaptive control or MPC 

reconfiguration technique [16]. 

Earlier work [23] [24] [25] on soft switching of MPC are for nonlinear and linear systems 

respectively. In  [26] , soft switching of MPC was used as a robust adaptive strategy for 

switching MPC with different models rather than the continuous parameter update. 

 In [27] [28] [29] soft switching of MPC was used to switch multiple linear MPC at different 

operational states of the plant instead of using a single nonlinear MPC. In all these 

applications, the soft switching of MPC was not done in a distributed MPC (DMPC) 
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framework where coordination of the DMPCs to achieve the control objectives is very 

important and the effects of soft switching of MPC in one subnetwork or subsystem may 

affect the states of other interconnected subnetworks or subsystems. 

The aim of this thesis is to develop a control approach utilizing multiple RFMPCs arranged 

in distributed architecture that incorporates distributed soft switching mechanisms between 

the RFMPCs in each subnetwork of the CIS for achieving the given control task for the CIS. 

Coordination of the distributed softly switched RFMPC (DSSRFMPC) and recursive 

feasibility of the control actions will be addressed in this research work.  

1.2 Research Objectives and Contributions 

1. Multiagent RFMPC architecture and control structure capable of handling all 

operational objectives of the controlled plant and the network is studied. In this case, 

one RFMPC represents one control task with a unique model and control strategy, 

and it is suitable for one operational state of the controlled plant and the network. 

DWDS water quality control is studied. A two-layer hierarchical structure of 

quantity and quality control in DWDS used in [30] [31] is modified. In Chapter 2 of 

the thesis, the lower level water quality controllers in [30] [32] are proposed to be 

implemented with Softly switched RFMPC (SSRFMPC) to handle pipe breaks, pipe 

leakages and valve faults. Pipe breaks, pipe leakages and valve faults are selected 

disturbance scenarios that can change the operational state of the DWDS. The 

designed RFMPCs are configured to operate in hierarchical distributed architecture 

for the control of each subnetwork in the DWDS. The hierarchical distributed 

multiagent architecture is proposed to achieve the water quality control tasks over 

the DWDS. The hierarchical distributed multiagent architecture are designed to work 
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cooperatively. The adaptive cooperation schemes are proposed in Chapter 4 and 

Chapter 5 of the thesis. 

2.  RFMPC with off-line safety zone is to be designed such that at any control time 

instant, the initial state of the plant is within the robustly feasible state and the 

recursive feasibility for the whole control duration is guaranteed for on-line 

applications. The off-line safety zone technique is a form of constraint restriction 

technique to account for the model-reality mismatch. The off-line safety zone is to 

be calculated off-line and applied such that the constraint satisfaction is guaranteed 

for the whole control duration time. In Chapter 4 of the thesis, the RRFMPC is 

designed by utilizing the off-line safety zones and the robustly feasible invariant sets 

in the state space which are calculated off-line using Karush Kuhn Tucker 

conditions. This is used to calculate the robustly feasible initial states over the 

prediction horizon under different operational states of the plant to achieve robust 

feasibility and recursive feasibility for the RFMPC. 

3. The distributed soft-switching systems for on-line reconfiguration of the multiagent 

RFMPCs to respond to failures or faults or operational conditions occurring in the 

controlled system and network, and adapting the control strategy to the new 

operational conditions is to be designed. Each RFMPC has its own robustly feasible 

invariant set. These robustly feasible invariant sets are used by the soft switching 

mechanism to softly switch from one RFMPC to another in each subnetwork. 

Distributed Soft switching system suitable for switching RFMPC based on the 

operational state of the system is proposed in Chapter 4 and Chapter 5 of the thesis. 

Each RFMPC is designed to fit a specific operational state and can be softly switched 

to another RFMPC if the current operational state changes. In Chapter 4 and Chapter 
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5 of the thesis, the soft switching is operated in a distributed architecture and the 

analysis of distributed soft switching for each operational state on other distributed 

agents is presented and discussed. Adaptive cooperative coordination strategies for 

softly switched distributed RFMPC are proposed in Chapter 4 and Chapter 5 of the 

thesis. 

4. DWDS water quality control is studied. In Chapter 3 of the thesis, the existing path 

analysis in [33] [34] with the backward tracking algorithm used for model structure 

acquisition in the DWDS is further modified to the proposed forward tracking 

algorithm to improve modeling accuracy. The proposed forward tracking algorithm 

is used for partitioning of the DWDS based on the principle of superposition and 

controllability of the monitored nodes by the injection nodes. The forward tracking 

algorithm is suitable for application to any flow-based delayed- input, reactive 

carrier load systems to acquire the model structure. Time-varying parameter models 

of chlorine residual are obtained via the proposed node-to-node analysis of the 

DWDS. The node-to-node analysis model is based on determining the model of each 

monitored node as a resultant impact of all the connecting nodes on the monitored 

node. In Chapter 3 of the thesis, the time-varying parameter models of chlorine 

residual control for a drinking water distribution system are proposed and are used 

to design the Robustly Feasible Model predictive control (RFMPC) for each 

operational state of the plant.  

5. Multi-monitored node output control using single injection node input control 

technique is proposed and applied on the DWDS water control in Chapter 6 of the 

thesis. This is a form of Single Input Multiple Output Control. This technique used 
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one RFMPC to generate robustly feasible control input for more than one monitored 

node at every time step. 

6. The proposed methodology is applied for water quality control of a benchmark 

drinking water distribution system. Simulation results are discussed in Chapter 6 of 

the thesis. 

 

1.3 Organization of the Thesis 

In Chapter 2, multi-agent MPC control structure design for large-scale systems is presented. 

DWDS operational control and control tasks are explained. A smart control structure for 

DWDS quantity and quality control is proposed. The switching of RFMPC under different 

operational states is presented. 

In Chapter 3, mathematical modeling of chlorine residuals in drinking water distribution 

system and the model parameter estimation is presented. The models of the drinking water 

distribution system components are explained and the physical laws in DWDS are presented. 

The hydraulic and quality simulation using EPANET is explained and the models used 

discussed. Control-based approach modeling of chlorine residuals in DWDS is explained. 

The operational faults and disturbance scenarios in DWDS water quality control are 

presented. Model parameter estimation approach for all considered operational states of the 

DWDS water quality control and the simulation experiment design are presented. 

In Chapter4, the basic MPC structure is explained. Robustly feasible MPC (RFMPC) design 

is discussed and the method for achieving robust feasibility and recursive feasibility using 

Karush Kuhn Tucker conditions and set invariance theory is proposed. Distributed RFMPC 
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design is presented. The limitations of the existing cooperative strategies for distributed 

MPCs are identified and the adaptive feasible cooperative strategies for DRFMPCs are 

proposed. 

In Chapter5, the soft switching of RFMPC is presented. Soft switching system, and the 

functionalities of the components are proposed. Soft switching scenarios for DSSRFMPC 

with the proposed adaptive cooperative strategies are presented. The soft switching analysis 

for the RFMPC under different operational states was proposed and the algorithm for its 

implementation presented. 

In Chapter6, the proposed control approach and methodologies are applied to the DWDS 

water quality control. The benchmark DWDS is used for the simulation and implementation 

of the proposed methodologies. The results are presented and discussed. 

In Chapter7, the conclusions of the research work are presented and recommendations for 

future research work proposed. 
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Chapter 2 

Multi-agent Model Predictive Control for 

DWDS 

In this chapter, model predictive control structure design for large-scale systems is presented 

in Section 2.1. The DWDS operational control and the water quality control tasks are 

explained in Section 2.2.  A smart control structure for DWDS water quality control is 

proposed and discussed in Section 2.3. The summary of Chapter 2 is presented in Section 

2.4  

 

2.1 Model predictive control structure design for large-

scale complex systems 

Control of large-scale systems is usually addressed in a multi-agent control framework. A 

single or centralized control agent-based control approach of large-scale systems may be 

difficult due to inherent computational complexity, communication bandwidth limitations, 

and reliability problems. For these reasons, many distributed control structures have been 

developed and applied for the control of large-scale systems [6]. The use of multiple MPC 

as control agents for a large-scale system is referred to as multi-agent model predictive 

control [5] [35].  The control design approach for these large-scale systems usually starts by 

specifying the control tasks to be executed on the system which may involve accomplishing 

a certain number of control objectives. The control tasks may be specified by a human or 
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some artificial entity or they may follow from some behavioural characteristics of the system 

[5]. 

The control tasks execute actions on the large-scale system such that the control tasks are 

accomplished while satisfying the constraints of the system. The control task may be 

tracking, regulation and economic. The control structure executes the control tasks for the 

large-scale system by determining the method of communication and the communication 

protocols between the control agents controlling the different subnetworks in the large-scale 

system. The way the control agents are arranged to communicate with each other in 

achieving the control tasks is referred to as the control agent architecture. This is illustrated 

in Figure 2.1.  The control architectures are centralized MPC, decentralized multi-agent 

MPC, distributed multi-agent MPC, and hierarchical multi-agent MPC. In Figure 2.1 (a) the 

centralized MPC consisting a single controller receives information about the system state 

X1   . . .  XN, computes the control actions and execute the control actions u1   . . .   uK  on the 

system to generate the desired system outputs Y1   . . .  YM . In Figure 2.1 (b) the decentralized 

multi-agent MPC consist of many local controllers that control each subnetwork by 

receiving information about their local states X1   . . .  XN,, computes control actions u1 . . .  uK 

without exchanging control information with other local controllers to generate the desired 

system outputs Y1   . . .  YM.  In Figure 2.1 (c) the distributed multi-agent MPC consist of many 

local controllers controlling each subnetwork by receiving information about their local 

states X1  . . .  XN, computes control actions u1  . . .  uK by exchanging control information  S 

with other local controllers to generate the desired system outputs Y1   . . .  YM. In Figure 2.1 

(d) the hierarchical distributed multi-agent MPC has an upper control layer that receives 

system-wide information about the systems states and provides local control goals for the 
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lower layer consisting of a set of local controllers that may exchange information to 

coordinate their control tasks            
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Figure 2.1 Control architectures (a) Centralized MPC architecture (b) Decentralized multi-

agent MPC architecture (c) Distributed multi-agent MPC architecture (d) Hierarchical multi-

agent MPC architecture [36]               
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Most Industrial large-scale systems are still being controlled by decentralized or distributed 

multi-agent control structures. The decentralized multi-agent MPC has an advantage over 

the distributed multi-agent MPC because there is no exchange of control information 

between the local MPC controllers and this results in lower communication costs and faster 

control. The decentralized multi-agent MPC has reduced overall performance compared to 

distributed multi-agent MPC because subnetwork interactions are neglected and there is no 

coordination between the local controllers in computing the control actions. There are few 

published decentralized MPC algorithms with guaranteed properties. In [37], it was reported 

that research ideas in the industrial automation in the 70’s focused mostly on decentralized 

linear control of interconnected systems. In [38], overview of the concepts of decentralized 

control is presented. Decentralized receding horizon control for large-scale dynamically 

coupled systems is in [39]. Decentralized adaptive control in [40]. In [41], Almost 

decentralized Lyapunov-based nonlinear MPC that uses the state information of neighboring 

systems for feedback only was presented. In [42], Partitioning approach oriented to the 

decentralized MPC of large-scale systems with application to water distribution networks 

was presented.  In [43], Plug-and-Play decentralized MPC with guaranteed robustness and 

applied to power networks was presented. 

Pioneering works in hierarchical control and coordination has been described in [44]. The 

last two decades has witnessed several applications of distributed and hierarchical multi-

agent MPC to large-scale systems and CIS because of rapid advancement in ICT and 

development of smart sensors, actuators, and onboard communication technology. In [36]  , 

it was reported that over 30 research groups worldwide are active in the development of 

distributed MPC approaches. In [45], The contributions of the research group are listed.  
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In [36] the distributed MPC approaches of the research groups was categorized into three 

groups of features: 1) Process features, 2) Control architecture features, and 3) theoretical 

property features. The process features include the type of system, the type of process, the 

type of model, the type of control goal and the type of coupling. The control architecture 

features include the type of architecture, the type of controller knowledge about the overall 

system, the type of control action computation, the type of controller’s attitude in achieving 

the control objectives, the type of communication, the type of communication protocol and 

the type of optimization variables considered. The theoretical features include optimality as 

compared to a centralized approach, guaranteed stability and robustness. In [46] [47], 

Comparison of distributed MPC schemes is described. In [48], A tutorial review and future 

research directions in distributed MPC is presented. Coordination of multiple DMPC is 

addressed in [49] [50]. Hierarchical MPC in [51] [52]. In [53], Comparison of centralized, 

distributed and hierarchical model predictive control schemes for electromechanical 

oscillations damping in large scale power systems is presented.  

   

2.2 Operational control of DWDS  

 DWDS is a large-scale complex network system comprising water pipes, water pumps, 

valves, water storage tanks, chlorine booster stations and water reservoirs connected to 

transport safe and clean water to the user nodes. The water transported to and received at 

the user nodes must: meet the water quality requirements, satisfy the time-varying water 

demands, minimize the operating costs and maintain prescribed water flows, maintain the 

prescribed water pressure and water head in the whole DWDS.  
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The physical structure of drinking water supply system as described in [54] consists of three 

main parts as illustrated in Figure 2.2: 

• Treatment works 

• Supply network of trunk mains and main reservoirs 

• Distribution networks of small diameter pipes and local reservoirs 

 

 

 

 

 

Figure 2.2 Physical structure of drinking water supply system  

Drinking water sources are usually taken from underground sources such as wells and 

springs or from ground sources such as lakes and rivers. The water sources are fed to the 

water treatment plants to filter out the unwanted materials and substances using physical and 

chemical methods to make the water clean, safe and healthy for users’ consumption. The 

treated water is then transported to the supply network of trunk mains and main reservoirs 

where it is pumped to the distribution networks of small diameter pipes and local reservoirs 

to service the needs of the users. This is illustrated in Figure 2.3 and Figure 2.4. 

 

 

                   Water Sources and water treatment 

Supply network for transporting treated water to distribution 

networks 

              Distribution networks to supply user nodes 
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Figure 2.3 Typical drinking water supply system [55] 

 

 

 

Figure 2.4 Schematic of drinking water distribution system [56] 
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2.2.1 Control tasks in DWDS 

There are two major control tasks in DWDS: quantity and quality. The quantity control tasks 

deal with control of water flows, water pressure, electrical pump schedules, valve schedules 

and minimizing the operating costs. The active and controllable components in quantity 

control are the electrical pumps and valves. The constraints to be considered in quantity 

control include the operating limits of the pumps and valves, the control objectives, the 

physical laws governing the hydraulics and relationships between water flows and water 

heads. Minimizing the electricity charges due to pumping of water is the main operational 

cost to be minimized in quantity control. The operational control of DWDS was addressed 

in [54] [32] 

In DWDS, chlorine is usually used as a disinfectant to kill the micro-organisms that cause 

water-borne diseases and it is usually applied at the last stage of water treatment in the water 

treatment plant. During the transportation of water in the DWDS, the chlorine residual 

decays and these micro-organisms can grow up on the pipe walls and tank walls in the 

DWDS as not all them are killed at the water treatment plant. It thus calls for Chlorine 

injection boosting to be carried out at certain nodes called chlorine injection nodes in the 

DWDS to maintain the chlorine residual within the specified bounds to reduce these water-

borne diseases causing micro-organisms in the DWDS to a harmless level for human 

consumption [31] 

The quality control tasks deal with maintaining the chlorine residual at the user nodes within 

prescribed lower and upper limits and maintaining other water quality standards. In this 

thesis, maintaining the chlorine residual at the user nodes within the prescribed lower and 

upper limits is the control task to be achieved. This is achieved by controlling the chlorine 
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booster stations in the network. The chlorine residuals at the user nodes are the mixed 

outputs of chlorine from the treatment plants and the chlorine booster station and are the 

control variables for water quality control. The designed controllers will control the chlorine 

residual values at the user nodes or monitored nodes within the output constraints described 

by: 

                   𝑦𝑚𝑖𝑛(𝑘) ≤ 𝑦(𝑘) ≤  𝑦𝑚𝑎𝑥(𝑘)                                                                          (2.1)                                                       

Over the time horizon 𝑘 ∈ [𝑘0 , 𝑘0 + 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ], where 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the control time horizon, 

𝑦𝑚𝑖𝑛(𝑘) is the minimum chlorine residual requirement at the user node and 𝑦𝑚𝑎𝑥(𝑘) is the 

maximum chlorine residual requirement at the user node.  For this design, 𝑦𝑚𝑖𝑛(𝑘) =

0.25𝑚𝑔/𝑙 and 𝑦𝑚𝑎𝑥(𝑘) = 0.35𝑚𝑔/𝑙.  

 

2.3 Multi-agent model predictive control of DWDS 

2.3.1 Features of DWDS water quality control problem 

The water quantity control has an impact on the water quality control and the formulation 

of control problem for the water quality control. The quality control depends on water flows 

and flow velocity for its modeling [57] [58]. The equations relating the water flow in the 

pipe and the chlorine concentration are presented in Chapter 3 of this Thesis. Water quality 

is determined by water transportation from one node to another, mixing of water of different 

chlorine residual values at junction nodes and tanks and chlorine residual decay. There are 

large time delays due to the transportation of chlorine from the chlorine injection nodes to 

the monitored nodes and long residence time of stored water in the tanks. 
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The features of the drinking water distribution system water quality control problem to be 

considered for the control structure design are: 

1) The quantity and quality control have different time-scales. For quantity control, the 

control problem is formulated based on a water demand prediction over the control 

horizon of typically 24 hours. The water demand varies hourly, daily and seasonally. 

The hydraulics is modeled and solved in discrete time steps called quantity steps 

which are typically 1 hour or 2 hours. The quality control is modeled and solved in 

discrete time steps called quality steps which are typically 5 minutes or 10 minutes.  

2) There are uncertainties in water demand predictions, chlorine reaction kinetics, 

hydraulic coefficients such as water flows, water flow velocity, pump characteristics 

and valve characteristics  

3) Faults such as pipe breaks, valve, pump, and chlorine booster malfunctions constitute 

disturbance scenarios that can change the operation state of the DWDS from normal 

to disturbed or emergency operational state. 

4) Conflict of operational goals of quantity and quality control.  There are multi-

objectives to be achieved in DWDS quantity and quality control and this includes 

the minimization of electricity costs of pumping, the minimization of cost of chlorine 

injection, the minimization of cost of raw water taken from the water sources and 

minimization of the cost of water treatment at the treatment plants. For example, one 

of the main goals of the water quality control can be achieved by reducing the 

retention of water from the treatment plant (the source of DWDS) to the user nodes. 

This means that more time will be allocated to pumping of water in the DWDS and 

this will increase the operational costs of the DWDS. It is therefore necessary to 
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solve the quantity and quality control in an integrated way to avoid conflict of control 

goals. 

These DWDS water quality control problem features are considered in the control structure 

design. 

 

2.3.2 Water quality control of DWDS 

DWDS is a large- scale complex system and it is spatially distributed. A centralized Control 

architecture for the DWDS will not be a good choice because of computational complexity, 

centralized communication complexity, and maintenance flexibility. It therefore needs to be 

partitioned or decomposed to several interacting subnetworks for achieving the water quality 

control tasks.  

The Chlorine booster stations are used to inject chlorine at certain nodes to achieve the water 

quality control at the monitored nodes and the Chlorine sensors are used at the monitored 

nodes to measure the chlorine residual.  The different on-line water quality monitoring and 

early warning systems in DWDS are described in [59]. The Chlorine booster station 

represents the actuator of the subnetwork and the monitored nodes controlled by the chlorine 

booster station represents the outputs of the subnetwork. The location of the Chlorine 

booster stations and Chlorine sensors is important to the achievement of the water quality 

control tasks. The partitioning of the DWDS for water quality control is usually based on 

the selection of chlorine booster or injection nodes and the associated monitored nodes 

controlled by the selected chlorine injection nodes. In [60], Chlorine booster location model 

which minimizes the number of chlorine booster stations installed was presented. Optimal 

location of chlorine booster stations was addressed in [61] [62] [63] [64]. In general, the 
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selection of the chlorine booster or injection nodes and the monitored nodes is based on the 

system controllability and observability respectively [65].  The value of the chlorine residual 

at the monitored node that is controllable by a given chlorine injection node is given by: 

                                                    𝑦(𝑘) = 𝐹(𝑢(𝑘), 𝑘 − 𝑖)                                                    (2.2) 

Where 𝑦(𝑘) is the value of chlorine residual at the monitored node controlled by the chlorine 

injected 𝑢(𝑘) at the injection node and operator 𝐹 is a function of the water flow velocity, 

rate of chlorine decay and chlorine transportation time. The monitored node is controllable 

by the injection node if the value of the chlorine residual at the monitored node 𝑦(𝑘) can be 

changed by the injected chlorine 𝑢(𝑘) at time instant 𝑘 − 𝑖, where 𝑖 is the delay time or 

chlorine transportation time to the monitored node. 

In the DWDS partitioning for water quality control, a selected chlorine booster station node 

may affect or have couplings or interactions with other monitored nodes outside its assigned 

subnetwork. These couplings or interactions are to be considered in the control design for 

water quality control.  In this thesis, the selection of the chlorine booster nodes and 

monitoring nodes is selected based on the controllability and the observability of the nodes 

respectively using the forward tracking algorithm developed to track the impact of the 

injected chlorine from each node to other nodes. This is achieved by using superposition 

principle to determine the controllability of each node used as injection node and the 

observability of the nodes used as monitored nodes.  

The forward tracking algorithm is further discussed in Chapter 3 of this thesis. The number 

of partitions of the DWDS is the number of Chlorine booster stations that controls the 

monitored nodes. The benchmark DWDS used in this thesis is partitioned using the forward 

tracking algorithm into distributed subnetworks or zones. 
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2.3.3 Smart Control structure with soft switching capabilities for water 

quality control of DWDS 

The hierarchical control structure is usually used for the real-time control of drinking water 

supply network [30] [32]. Figure 2.5 illustrate the proposed hierarchical structure of a 

nation-wide real-time control of drinking water supply network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Proposed Hierarchical structure of a nation-wide real-time control of drinking 

water supply network. [44] [30] 
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drinking water supply network control characterized by slower dynamics and the lower layer 

corresponds to the drinking water supply network control characterized by faster dynamics. 

In Figure 2.5, the functions of each level of the hierarchy are as follows: 

• National Drinking Water Supply Supervisory Board (National Control): this is the 

highest level in the hierarchy. Its functions are to provide supervisory controls, set 

water production targets based on predicted water demands for each region to all 

the regional water production and transport units in the nation. It also ensures 

optimal and sustainable utilization of the water resources in the nation. The output 

prediction and control time step may be monthly or yearly. The information 

feedback to the National Drinking Water Supply Supervisory Board (National 

Control) is the real-time information on the water production quantity, actual water 

demands and fault management information from each of the Regional Control 

Unit. The functions of the National Control may be implemented with MPC. The 

model is given as: 

                                𝑦𝑁(𝑘) = 𝐹𝑁(𝑢𝑁(𝑘), 𝑘)                                                    (2.3) 

where 𝑦𝑁(𝑘) is the National water production target at time instant 𝑘, operator  𝐹𝑁 

is a function of water demands and water production costs, 𝑢𝑁(𝑘) is the incentive 

such as increase or decrease in budget for National water production or water 

production regulatory policies to facilitate or reduce National water production. 

 

• Regional water source, water treatment and transport unit (Regional Control Unit): 

Each region has its own water source, water treatment and transport unit to transport 

the treated water to its region. The water pumps and large reservoirs are in the 

Regional water source, water treatment, and transport unit. The water production at 
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each region follows the set-point or water production target set by the National 

Drinking Water Supply Supervisory Board. A region is made up of several Zonal 

distribution networks and each Zonal distribution network has its own total water 

demand. Each Regional water source, water treatment, and transport unit, transports 

water with the required water flow, pressure and water quality to match the water 

demand of each Zonal distribution network it supplies. The information feedback to 

the Regional water source, water treatment, and transport unit include real-time 

actual water demand in each Zonal distribution network, water flow, pressure and 

fault management information. Optimization of the water treatment costs and cost 

of transport of treated water are considered in this level. The control and output 

prediction horizon may be daily or weekly. The functions of the Regional Control 

may be implemented with MPC. The model is given as: 

                                    𝑦𝑅(𝑘) = 𝐹𝑅(𝑢𝑅(𝑘), 𝑘)                                                    (2.4) 

where 𝑦𝑅(𝑘) is the Regional water production target with the required quality, 

pressure and flow at time instant 𝑘, operator  𝐹𝑅 is a function of water demands and 

water treatment costs, electricity costs for pumping, and water transportation costs, 

𝑢𝑅(𝑘) is the valve schedules, pump schedules and chlorine injection schedules. 

 

• Zonal distribution networks (Zonal Control Unit): The Zonal distribution networks 

are to serve multiple water users in different areas. The water user grouping into 

zones may be done by partitioning the Regional distribution networks for water 

quality control. Tanks, pumps, and different valves are in the zonal distribution 

networks. Integrated drinking water quantity and quality control of the water 

supplied to each zonal distribution network is executed at this level [30]. The 
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quantity control and output prediction horizon may be 1 hour or 2 hours. Tank 

operations, pump schedules, valve schedules, water flow, flow velocity, pressure 

and chlorine injection schedules are optimized at this level. Feedback water quality 

control using the chlorine booster stations is executed at this level. The control 

prediction horizon of the water quality control may be 5 minutes or 10 minutes. 

Chlorine injection dosage optimization is considered at this level. Information 

feedback to the Zonal distribution networks includes actual real-time water demand 

for the users, water flow, flow velocity, water heads, pressure, valves status and 

fault management information. Interactions through pipe connections to other zonal 

networks are to be considered in water quality control at this level. The functions of 

the Zonal Control may be implemented with MPC. The coordination of the 

distributed MPC controllers for water quality control is executed at this level. The 

model is given as: 

 

                                   𝑦𝑍(𝑘) = 𝐹𝑍(𝑢𝑍(𝑘), 𝑘)                                                    (2.5) 

 

where 𝑦𝑍(𝑘) is the water quality at the monitored nodes at time instant 𝑘, operator 

 𝐹𝑍 is a function of water demands, water flow velocity and rate of chlorine decay 

𝑢𝑅(𝑘) is the chlorine injection at the injection nodes. 

 

In [30], a two-level hierarchical integrated quantity and quality control structure for DWDS 

was presented. In this thesis, a hierarchical multi-layer distributed integrated quantity and 

quality control structure for DWDS with additional capabilities of softly switching the 

controllers to adapt to the current operational conditions of the DWDS is proposed. The soft 
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switching of MPC will be implemented for DWDS water quality control at the Zonal control 

level in the proposed hierarchical structure in Figure 2.6. 

Real-time modeling and operations of the drinking water distribution system using a smart 

system was addressed in [66]. Drawing from the concept in [66], the smart system with 

integrated soft switching capabilities is proposed in Figure 2.6. The smart system functions 

can be divided into monitoring, control and fault management. The monitoring unit consists 

of on-line sensors and smart meters and Geographic Information system (GIS). The control 

unit consists of Supervisory control and data acquisition (SCADA) system, real-time 

network modeling system and real-time operations optimization system. The fault 

management unit consists of real-time event detection and early warning system, real-time 

network anomaly detection system and asset integrity management system.  

In Figure 2.6, the supervisory control unit at the Zonal distribution network (Zonal Control) 

collects real-time DWDS network parameters data from the monitoring unit and fault 

management unit to assess the current operational state of the DWDS. 

The Supervisory control unit softly switches to the most suitable quantity controller at the 

upper-level integrated quantity and quality control unit to generate optimized pump 

schedules, valve schedules and injection schedules for the Zonal drinking water distribution 

network after determining the current operational state of the DWDS. 

The Supervisory control unit also softly switch to the most suitable controller at the lower 

level quality control unit for the current operational state of the DWDS. The quantity and 

quality controllers are implemented using MPC controllers to execute its control actions. 
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The operation of the proposed Hierarchical multi-layer Structure for Optimizing Integrated 

Quantity-Quality Control with soft switching capabilities of RMPC Controllers in Figure 

2.7 is as follows: 

• At the beginning of a 24 hour-prediction horizon, the DWDS quantity and quality 

states are measured by the on-line sensors in the monitoring unit or estimated and 

sent to the supervisory control unit at the Zonal control level, integrated quantity 

and quality optimizer, lower level quality control optimizer and the fault 

management unit. 

 

 

 

 

                                                                                                                                                   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Proposed Smart Control structure for operational control of DWDS 
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• The area user water demand prediction and the electricity tariff are also sent to the 

integrated quantity and quality optimizer  

• The Integrated quantity-quality optimization problem is solved to produce optimized 

pump schedules, valve schedules, and chlorine injection schedules (for the chlorine 

booster stations) over the next 24 hour-prediction horizon. The chlorine injection 

schedules produced at the integrated quantity-quality controller are not accurate due 

to many uncertainties in the system. The correction is provided by the lower level 

quality controller [31] [30].  

• The pump and valve schedules are applied to the DWDS and maintained during the 

hydraulic time step of 1 hour or 2 hours. The quantity and quality states are measured, 

the user demand prediction and electricity tariff are sent to the integrated quantity and 

quality optimizer at the end of each hydraulic time step and new pump and valve 

schedules and chlorine injection schedules are produced and applied to the DWDS. 

The sequence is repeated at the end of the control time horizon. 

• The Optimized flow schedules and hydraulic information needed for quality control is 

sent from the Integrated quantity and quality optimizer to the Zonal Control Unit. The 

Zonal Control unit consist of the Supervisory control and Data Acquisition Unit 

(SCADA), real-time network modeling system and real-time operations optimization 

system. The fault management unit consists of fault detection and diagnosis (FDD) 

unit, state estimator unit for both quantity and quality operational states, real-time 

event detection and early warning system, real-time network anomaly detection 

system and asset integrity management system. The monitoring unit consists of on-

line sensors and smart meters and Geographic Information system (GIS). 
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• The Zonal Control unit receives the monitoring information and fault management 

information from the DWDS at quality time steps and compares it with the hydraulic 

information and Optimized flow schedules from the Integrated quantity and quality 

optimizer to assess the operational state of the DWDS to determine whether there is a 

fault in the DWDS or not. With the new operational state determined by the Zonal 

Control unit, the possibility of fulfilling the present control task is assessed based on 

the model used for the design of the operating MPC. If the present operating MPC 

cannot fulfill the control task, a new MPC which can fulfill the control task for the 

new operational state is identified by the Zonal Control unit and softly switched to by 

the soft switching unit. The soft switching unit softly switches the new MPC at the 

Lower level quality control of the structure.  

The detailed design and operation of the soft switching unit are presented in Chapter 5. The 

soft switching for the water quantity control is not addressed in this thesis. The Lower level 

control structure now consists of multiple MPC water quality controllers that can be softly 

switched depending on the assessed operational states by the Zonal Control unit. The 

operational states can be normal, disturbed and emergency as described in [2] . 

In this thesis, the normal operational state is a state of no fault in the DWDS. The disturbed 

operational state is a state when there is the possibility of still fulfilling the water quality 

control task despite the disturbance in the DWDS. The emergency operational state is a state 

when there is no possibility of fulfilling the water quality control task due to the disturbance 

in the DWDS. 

Under normal operational states of the DWDS, the lower level normal RFMPC controllers 

are engaged for the water quality control. This is illustrated in the flowchart Figure 2.7 



49 

 

 

                 

 

 

                                                                                                                                         

                                             YES                               YES 

 

 

                                                          NO 

 

                                                                                        YES 

 

 

                                                           NO 

                                               YES                                                                           YES  

 

                                                         NO                                          NO 

YES 

 

                     NO 

 

Figure 2.7 Soft switching among the operational states flow chart 
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At each quality time step, the monitored node chlorine residual level information is 

compared with the reference chlorine bounds. The correction is provided by the RFMPC to 

produce the accurate chlorine injection for the required monitored nodes chlorine residual 

level. 

Under the disturbed operational states, the lower level disturbed RFMPC are engaged for 

the water quality control. At each quality time step from the instance of softly switching 

from normal operational state to the disturbed operational state, the disturbed MPC uses a 

new model and modified constraints to produce accurate chlorine injections for the 

monitored nodes that are controllable at this operational state. 

Under the emergency operational states, the lower level emergency RFMPC controllers are 

engaged. At each quality time step from the instance of softly switching from normal 

operational state or disturbed operational state to the emergency operational state, the 

emergency RFMPC uses a new model and modified constraints to produce no chlorine 

injections. The soft switching among the operational states is shown in Figure 2.8. The fault-

clearing process brings the DWDS back to the normal operational state from disturbed or 

emergency operational state. When the fault in the DWDS is cleared, the Zonal Control unit 

assesses the operational state for no-fault and softly switches to the normal operational state 

MPC. 

The soft switching of RFMPC at the lower level RFMPC for the DWDS is proposed as a 

form of adaptive control to handle the disturbances that may affect the quantity control 

which has a direct impact on quality control. The quantity control operates in time steps of 

1 hour or 2 hours compared to the quality control time step of 5 minutes or 10 minutes; 

therefore, any disturbance scenario that affects the quantity control will impact the quality 
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control if an adaptive control approach is not put in the design to guaranty the quality control 

under these disturbance scenarios. 

 

 

 

 

 

 

   Figure 2.8 Soft switching among the operational states 

 

It is the author’s opinion that no single MPC can guaranty the achievement of the quality 

control under different disturbance scenarios. It thus calls for the application of multiple 

MPC controllers that can be softly switched to adapt to the current operational state of the 

plant. The control input which is the injected chlorine from the chlorine booster station may 

impact the monitored nodes in other zonal distribution networks if the water flow paths exist 

from this injection node to the monitored nodes. This is referred to as zonal network 

interactions. This is accounted for in each subnetwork modeling and by using a suitable 

communication protocol or coordination scheme between interacting area networks during 

the control input generation at each time step. The communication between control agents 

in different zonal networks is coordinated by the coordinator for communication. The 

coordinator determines the protocols for information exchange between agents. Information 

Normal 

Operational 

         State 

Emergency 

Operational state 

Disturbed 

Operational State 

Fault-clearing 

process 



52 

 

exchange between interacting control agents includes control input sequence generated by 

the interacting agents and the operational state of the interacting area networks.   

In this thesis, the design of the RFMPC, the soft switching unit, and coordination schemes 

is carried out under different disturbance scenarios that represent disturbed and emergency 

operational states. The disturbance scenarios considered in this thesis for simulation of 

change of operational states include pipe breaks or leakages and valve faults. The design of 

the fault detection and diagnosis mechanism and operational state estimator is not carried 

out in this thesis, which is assumed to be contained in the fault management unit. 

The mathematical models of Chlorine residual for DWDS under different disturbance 

scenarios, the model parameter estimation, the design of RFMPCs, the design of Soft 

switching mechanism and coordination schemes is presented in Chapter 3, chapter 4 and 

Chapter 5 of the thesis.  

 

2.4 Summary 

Multi-agent MPC Control structure design for DWDS has been presented. The hierarchical 

and distributed multi-agent MPC structure has been applied for the control of many large-

scale systems. Operational control of drinking water distribution systems (DWDS) has been 

presented and the control tasks identified. A hierarchical distributed multi-agent RFMPC 

structure was proposed for DWDS quantity and quality control. A smart and adaptive control 

structure for DWDS water quality control was also proposed and the functionalities of the 

components discussed. The soft switching system for RFMPC for different operational 

states of the DWDS was proposed.  
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Chapter 3 

Mathematical model of chlorine residuals in 

DWDS and model parameter estimation 

In this chapter, the physical models in DWDS is presented in Section 3.1. The physical laws 

in DWDS are explained in Section 3.2. In Section 3.3, control-design based chlorine residual 

modeling in DWDS is explained. Model structure determination for chlorine residual 

modeling is presented in Section 3.4. Uncertainties in chlorine residual modeling is 

presented in Section 3.5. Chlorine residual modeling in DWDS under different disturbance 

scenarios is presented in Section 3.6. Model parameter estimation is presented in Section 

3.7. The simulation experiment design is explained in Section 3.8. Time-varying model 

parameter estimation is presented in Section 3.9. The summary is presented in Section 3.10 

 

3.1 Physical models in DWDS 

DWDS consists of Reservoirs, Tanks, pumps, Pipes, Valves, Chlorine booster stations and 

the user nodes connected to transport safe and clean water to the users for domestic, 

industrial and economic purposes.  

There are two aspects of control in the DWDS; Quantity and Quality control. In this thesis, 

water quality control is considered. The water quality control task considered in this thesis 

is maintaining the chlorine residual at the user nodes within the specified lower and upper 

bounds. To achieve this water quality control task, a suitable mathematical model for 
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chlorine residual in the DWDS must be derived. This model is to be used for RFMPC design 

for water quality control in the DWDS. 

Chlorine is transported by water in the DWDS. The Chlorine residual modeling in the 

DWDS is governed by: 

• water flow 

• flow velocity 

•  mixing of water at the junction nodes and tanks  

• chlorine transport times in the pipes  

• water detention times in tanks  

•  the chemical reaction of chlorine in water and with the pipe walls  

The hydraulics, therefore, has a significant impact on chlorine residual modeling. Each 

component of the DWDS is to be modeled and the governing laws presented. The following 

general assumptions are made in the mathematical modeling for the DWDS [54] [67]: 

1) The inertial effect of the water in the pipe is neglected 

2) Water is treated as incompressible fluid 

3) Constant temperature and air pressure within the DWDS. In conditions of constant 

temperature and pressure, a liquid will assume the shape of its container and fill a 

portion equal to the liquid volume [68]. Water is considered incompressible; that is, 

their volume does not change appreciably under pressure or change in temperature 

[68].  

4) Constant density and viscosity. Changes caused by chlorine injections are neglected 
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5) Instantaneous dynamics of the water network components are neglected. For 

example, pump and valve on or off and water pressure propagation dynamics in long 

pipes. 

These assumptions clearly introduce modeling errors, but these errors are considered small 

and it is incorporated in the controller design. Systems approach to modeling [67] and 

operational control of DWDS is addressed in [54].  

 

3.1.1 Pipes 

Pipes are links through which water travels from one point to another in the DWDS. The 

water in a pipe flows from the higher node to the lower node of the pipe. This water flow is 

driven primarily by a water pressure difference or head difference in the pipe nodes. This is 

shown in Figure 3.1. The hydraulic input parameters for pipes are pipe length, pipe diameter 

and Roughness coefficient for headloss calculations. 

 

                                           

      hi                                                q ij                                                            hj 

                                Figure 3.1 Model of a pipe 

The water quality input parameters for pipes are wall reaction coefficient and bulk reaction 

coefficient. 

The outputs that can be computed for pipes includes [56]: 

• Flow rate 
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• Flow Velocity 

• Headloss 

• Average water quality over the pipe length 

The Hydraulic headloss by water flowing in a pipe is due to friction with the pipe walls and 

can be computed by using: 

• Hazen -Williams formula 

• Darcy-Weisbach formula 

• Chezy-Manning formula 

Each formula uses the following equation to calculate the headloss between the start and 

end node of the pipe [56]: 

 

ℎ𝐿 =  𝐴𝑞𝐵                                                                                                                        (3.1) 

 

Where ℎ𝐿 = headloss (length), 𝑞 = flow rate (Volume / Time), A = Resistance coefficient, 

and B = flow exponent. 

The head-flow relationship in [54] of water flowing in a pipe can be written as: 

 

                   𝑞𝑖𝑗 = ∅𝑖𝑗  (∆ℎ𝑖𝑗) =  ∅𝑖𝑗  (ℎ𝑖 −  ℎ𝑗)                                                                 (3.2) 
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Where 𝑞𝑖𝑗 is the flow from node i to node j. 𝑖 →   𝑗  is defined as the positive direction of 

the flow and 𝑞𝑖𝑗  ≤ 0 is when the flow is from 𝑗 →   𝑖 .  

 

∆ℎ𝑖𝑗 =  ℎ𝑖 −  ℎ𝑗 = 𝑔𝑖𝑗  (𝑞𝑖𝑗) =  𝑅𝑖𝑗𝑞𝑖𝑗 |𝑞𝑖𝑗|
𝛼−1                                                              (3.3) 

 

Where 𝑅𝑖𝑗 is the pipe resistance and 𝛼 is the flow exponent for calculating headloss due to 

friction losses. Hazen-Williams equation is most frequently used in modeling the DWDS 

because of its calculating simplicity and accuracy that satisfies operational control purposes. 

Applying Hazen-Williams equation, equation 3.3 can now be written as: 

 

∆ℎ𝑖𝑗 =  ℎ𝑖 −  ℎ𝑗 = 𝑔𝑖𝑗  (𝑞𝑖𝑗) =  𝑅𝑖𝑗𝑞𝑖𝑗 |𝑞𝑖𝑗|
0.852                                                             (3.4) 

𝑅𝑖𝑗 =  (1.21216 ×   1010  ×  𝐿𝑖𝑗  ) (𝐶𝑖𝑗
1.852  ×    𝐷𝑖𝑗

4.87 )⁄   

 

Where 𝐿𝑖𝑗  , 𝐷𝑖𝑗 and 𝐶𝑖𝑗 denote the pipe length, pipe diameter and Hazen-Williams roughness 

coefficients respectively. If the pipe length is in m and the diameter in mm and the heads are 

in m, then the flow is in litre/ sec. The Hazen-Williams roughness coefficient is determined 

by the material of the pipe and it changes considerably with age and manufacturer. The 

roughness coefficient must be calibrated regularly to establish an accurate dynamic 

hydraulic model [31] 

The roughness coefficient is a source of uncertainty in the hydraulic modeling of the DWDS 

and pipes are classified as passive elements of the DWDS. 
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3.1.2 Pumps 

Pumps are active elements of the DWDS. Pumps impart energy into the DWDS by 

increasing the hydraulic head of the water. Pumps are driven by electrical motors and it is 

the main electrical energy consumption in the DWDS. Pumps are also used as pressure 

booster devices to maintain the water head in the DWDS. The input parameters for a pump 

are its pump curve (the combination of heads and flows that the pump can produce) and its 

node in the DWDS. The output parameters are flow and head gain. The following types of 

pumps are used in the DWDS:  

• Fixed speed pumps 

• Variable speed pumps 

• Variable throttle pumps 

The models for each of the pump is in [54]. In this thesis, the fixed speed pump is used for 

the simulation of the DWDS. 

The pump stations usually consist of all the types of pumps arranged in parallel as presented 

in. Pumps are controlled actuators characterised by operating limits. The pump operating 

limits include the operating speed of the pump, and the water head limits deliverable by the 

pump. These limits are considered as model constraints.            

The head-flow relationship for a fixed speed pump connecting nodes “ i ” and “ j ” or the 

pump characteristic curve, is a nonlinear function which is written as: 

                                ∆ℎ𝑖𝑗 = 𝑔𝑓(𝑞𝑖𝑗)                                                                              (3.5)   

          

Where headloss ∆ℎ𝑖𝑗 is defined as  
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                          ∆ℎ𝑖𝑗 = ℎ𝑖  −   ℎ𝑗    where ℎ𝑖  ≥   ℎ𝑗                                                      (3.6) 

 

The nonlinear function 𝑔𝑓(𝑞𝑖𝑗) can be approximated by quadratic function: 

 

                     𝑔𝑓(𝑞𝑖𝑗) =  𝐴𝑖𝑗 𝑞𝑖𝑗
2  +  𝐵𝑖𝑗 𝑞𝑖𝑗  +  ℎ0,𝑖𝑗                                                     (3.7) 

 

where 𝐴𝑖𝑗  is the resistance coefficient and 𝐴𝑖𝑗  < 0, 𝐵𝑖𝑗  ≤ 0 and ℎ0,𝑖𝑗 is the shut-off head. 

 

3.1.3 Valves 

Valves are used to limit the pressure or flow at a specific point in the DWDS. Valves are 

pipe fittings, and they may be operated manually, either by using a hand wheel, lever or 

pedal. Valves may also be automatic, driven by changes in pressure or flow. More complex 

control systems using valves requiring automatic control based on an external input (i.e., 

regulating flow through a pipe to a changing set point) require an actuator [69].  The input 

parameters for the valve are [56]: 

• Diameter of the valve 

• Setting of the valve 

• Status of the valve 

• The node in the DWDS 
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The outputs for a valve are flow rate and headloss. There are different types of valves used 

for different functions and applications in the DWDS: 

• Flow control valves (FCV): Limit the flow rate at a specified value 

• Pressure sustaining valves (PSV): Maintain the pressure to some value 

• Pressure Reducing valves (PRV): Reduce water pressure 

• Pressure breaker valves (PBV): Create a specified headloss across the valve 

• Check valves (CV): Control the flow in one direction only 

• Throttle Control Valve (TCV): Headloss characteristics change with time 

Valves are controlled actuators and are characterised by operating limits. These limits are 

considered as model constraints. The model for each type of valve is in [54] [56] 

A continuous description for control valves is given by: 

 

                                             ∆ℎ𝑖𝑗 =  𝑅𝑖𝑗  𝑞𝑖𝑗|𝑞𝑖𝑗|                                                           (3.8) 

 

where 𝑅𝑖𝑗 is the resistance of the valve and 

  

                                         𝑅𝑖𝑗 = 
𝐾𝑣,𝑖𝑗

2𝑔 (𝐴𝑚𝑎𝑥,𝑖𝑗
2)

                                                                 (3.9) 

 

Where g is the gravitational acceleration, 𝐾𝑣,𝑖𝑗 is the minor headloss coefficient and 𝐴𝑚𝑎𝑥,𝑖𝑗 

is the maximum valve cross-section area. 
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3.1.4 Tanks 

Tanks stores the DWDS drinking water. They are the dynamic components in the DWDS 

because of their storage capabilities and properties. The input parameters for the tanks are 

[56]: 

• Bottom elevation (where water level is zero) 

• Initial, minimum and maximum water levels 

• Shape of the tank with its dimensions 

• Initial water quality 

The outputs of the tanks are water quality and hydraulic head. Tanks are also water quality 

source points. Reservoirs represent an infinite external water source to the DWDS. The input 

parameters for the reservoirs are [56]: 

• Its hydraulic head 

• Initial water quality 

The outputs of the reservoirs are its hydraulic head and water quality. The model of a tank 

is shown in Figure 3.2. 

                                                            𝑞𝑜𝑢𝑡  𝑑𝑢𝑒 𝑡𝑜 𝑤𝑎𝑡𝑒𝑟 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 

                                                               

 

                                                                                       𝑥𝑖 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟) 

                                           𝑞𝑖𝑛                       𝑞𝑜𝑢𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑𝑠  

                                                                         DWDS 

Figure 3.2 Model of a Tank 
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For the tank in Figure 3.2, the mass balance expression relating the initial volume of water 

stored, the manipulated inflows and outflows and the demands as presented in  can be written 

as: 

 

𝑥𝑖  (𝑘 + 1) =  𝑥𝑖 (𝑘) + ∆𝑡 (∑ 𝑞𝑖𝑛,𝑖𝑖  (𝑘)  −  ∑ 𝑞𝑜𝑢𝑡,𝑗𝑗  (𝑘) )                                            (3.10) 

 

Where 𝑞𝑖𝑛,𝑖 (𝑘) and 𝑞𝑜𝑢𝑡,𝑗 (𝑘) correspond to the i-th inflow and the j-th outflow respectively, 

𝑥𝑖 is the stored volume of water in the tank and ∆𝑡 is the sampling time. 

The maximum and the minimum tank volume are the model constraints. 

 

3.2 Physical laws in the DWDS 

3.2.1 Conservation of energy law 

The principle states that the difference in energy between two points must be the same 

regardless of the path that is taken [67]. Therefore, for any two points connected in a 

network, the difference in energy is equal to the energy gains from pumps and energy losses 

in pipes and fittings that occur in the path between them. The following holds: 

 

                   ∑ ℎ𝑖𝑗 = 𝜕𝐸𝑟                                                                                                     (3.11) 
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Where      ℎ𝑖𝑗 = ℎ𝑖 − ℎ𝑗    denotes the head change across a pipe in a path and 𝜕𝐸𝑟 the head 

difference between the start node and end node of a path. If the start node and the end node 

in a path are the same node, then the path is a loop. For a loop: 

 

                 ∑ℎ𝑖𝑗  =   0                                                                                                   (3.12)           

 

3.2.2 Conservation of Mass 

The principle of conservation of mass states that the fluid mass that enters any pipe will be 

equal to the mass leaving the pipe [67].  This can be written as: 

 

             ∑ 𝑄𝑖𝑃𝑖𝑝𝑒𝑠  −  𝑊𝑑,𝑖  −
𝑑𝑋

𝑑𝑡
  =   0                                                                             (3.13) 

Where ∑ 𝑄𝑖𝑃𝑖𝑝𝑒𝑠  is the sum of all pipe inflows to the node i, 𝑊𝑑,𝑖 is the water demand at 

node i and 
𝑑𝑋

𝑑𝑡
 is the change in the water storage in the tank. 

The conservation of mass equation is applied to all junction nodes and tanks in the DWDS 

and one equation is written for each of them [67]. 

 

3.2.3 Flow continuity law 

The flow continuity law states that the sum inflows and outflows is equal to zero for every 

non-reservoir node and holds for reservoir nodes that are in steady state [67]. For every 

junction node j, the following holds: 
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                      ∑ 𝑞𝑖𝑗𝑖 ∈ 𝐽𝑗
 =   𝑊𝑑𝑗

                                                                                      (3.14) 

 

Where   𝐽𝑗   denotes set of nodes linked to node j,  𝑊𝑑𝑗
 is the water demand allocated to the 

j-th node.                                   

 

3.2.4 Simulation model of DWDS  

In this chapter, EPANET software package is used for hydraulic and water quality model 

simulation for the DWDS. EPANET is widely used in the simulation of the water network. 

EPANET is a computer program that performs an extended period simulation of hydraulic 

and water quality behaviour within pressurized pipe networks [56]. EPANET tracks the flow 

of water in each pipe, the pressure at each node, the height of water in each tank, and the 

concentration of a chemical species throughout the network during a simulation period 

comprised of multiple time steps. EPANET is designed to be a research tool for improving 

our understanding of the movement and fate of drinking water constituents within 

distribution systems. It can be used for many kinds of applications in distribution systems 

analysis.  

 

In using the EPANET, the user draws the DWDS network, edit the properties for pipes, 

valves, tanks, reservoirs, chlorine boosters, pumps, hydraulic time steps, quality time steps, 

period of simulation, roughness coefficients, chemical reaction kinetics and energy usage, 



65 

 

and set the rules that determines how the system should be operated. The hydraulic / water 

quality analysis is run, and the results of the analysis viewed .  

EPANET’s water quality solver are based on the principles of conservation of mass and 

reaction kinetics. The following approaches were used in EPANET: 

• Advective transport in pipes 

• Mixing at pipe junctions 

• Mixing in storage facilities 

• Bulk flow reactions 

• Pipe wall reactions 

• Lagrangian time-based solver for water quality 

These approaches used by EPANET are discussed in section 3.2.4.1 to section 3.2.4.6 

3.2.4.1 Advective transport in pipes 

A dissolved substance will travel down the length of a pipe with the same average velocity 

as the carrier fluid while at the same time reacting at some given rate. The mass 

transportation of a single chemical is described by the advection-diffusion equation (ADE) 

in [31] [57] [58]. The ADE is derived from the law of mass conservation and Fick’s Law of 

diffusion, which states that the mass of a solute crossing a unit area per unit time in a given 

direction is proportional to the gradient of solute concentration in that direction [31]. This is 

given as: 

 

    
𝜕𝐶𝑖

𝜕𝑡
 +  𝑣𝑖

𝜕𝐶𝑖

𝜕𝑥
=   𝑟(𝐶𝑖) + 𝐷𝑖

𝜕2𝐶𝑖

𝜕𝑡2
+ 𝑆(𝐶𝑖)                                                                             (3.16) 
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Where 𝐶𝑖 = concentration (mass/volume) in pipe i as a function of distance x and time t, 𝑣𝑖 

= flow velocity in pipe i and r = rate of reaction as a function of concentration, 𝐷𝑖 is the 

diffusion matrix and 𝑆 is a function of sources of substances or sinks within the pipe. 

Longitudinal dispersion is usually not an important transport mechanism under most 

operating conditions, 𝑆 = 0. Neglecting the diffusion effects, 𝐷𝑖 = 0;  the advective 

transport within a pipe in (3.16) can be represented by the following equation: 

     
𝜕𝐶𝑖

𝜕𝑡
 +  𝑣𝑖

𝜕𝐶𝑖

𝜕𝑥
=   𝑟(𝐶𝑖)                                                                                         (3.17) 

The neglected longitudinal dispersion is considered as modeling error especially during low 

water consumption period when the flow velocity is low. The flow velocity 𝑣𝑖 in (3.17) is 

assumed constant during one hydraulic time step [56]. 

 

3.2.4.2 Mixing at Pipe Junctions 

A junction node is a point where two or more pipes are connected. At junction nodes 

receiving inflow from two or more pipes, the mixing of fluid is taken to be complete and 

instantaneous. Thus, the concentration of a substance in water leaving the junction is the 

flow-weighted sum of the concentrations from the inflowing pipes. For a node k, we can 

write: 

 

                𝐶𝑖\𝑥 =0 = 
∑ 𝑄𝑗 𝐶𝑗\𝑥 = 𝐿𝑗 𝑗 ∈ 𝐼𝑘

 +    𝑄𝑘 ,𝑒𝑥𝑡  𝐶𝑘,𝑒𝑥𝑡  

∑ 𝑄𝑗      +      𝑄𝑘 ,𝑒𝑥𝑡  𝑗 ∈ 𝐼𝑘

                                                         (3.18) 
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Where i = link with flow leaving node k, 𝐼𝑘 = set of links with flow into k,  𝐿𝑗 = length of 

link j, 𝑄𝑗 = flow in link j, 𝑄𝑘 ,𝑒𝑥𝑡  = external source flow entering the network at node k, 

𝐶𝑘,𝑒𝑥𝑡 = concentration of external flow entering at node k. 𝐶𝑖\𝑥 =0 represents the 

concentration at the start of link i, and 𝐶𝑗\𝑥 = 𝐿𝑗 
 is the concentration of the end link [56]. 

 

3.2.4.3 Mixing in storage facilities 

It is assumed that the contents of storage facilities (tanks and reservoirs) are completely 

mixed. This is a reasonable assumption for many tanks operating under fill-and-draw 

conditions if sufficient momentum flux is imparted to the inflow. Under completely mixed 

conditions the concentration throughout the tank is a blend of the current contents and that 

of any entering water. At the same time, the internal concentration could be changing due to 

reactions [56]. The following equation expresses these phenomena: 

 

                     
𝜕(𝑉𝑠 𝐶𝑠 )

𝜕𝑡
  =  ∑ 𝑄𝑖 𝐶𝑖\𝑥 = 𝐿𝑖 𝑖 ∈ 𝐼𝑠   −     ∑ 𝑄𝑗 𝐶𝑠 𝑗 ∈ 𝑂𝑠

  +    𝑟(𝐶𝑠)                      (3.19) 

 

Where 𝑉𝑠 = volume in storage at time t, 𝐶𝑠 = concentration within the storage facility, 𝐼𝑠 = 

set of links providing flow into the facility, and 𝑂𝑠 = set of links withdrawing flow from the 

facility. 
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3.2.4.4 Bulk flow reactions 

As the dissolved substance in water moves down in a pipe or resides in the storage tanks, it 

can undergo reaction with certain components in the water. The rate of reaction can 

generally be described as a power function of concentration [56]: 

                    𝑟 =   𝑘𝐶𝑛                                                                                                     (3.20) 

 

Where k = a reaction constant and n = the reaction order.  

The decay of many substances such as chlorine can be modeled adequately as a simple first-

order reaction. The details of all equations used for bulk reactions are in [56] 

 

3.2.4.5 Pipe wall reactions 

While water is flowing through pipes, dissolved substances can be transported to the pipe 

wall and react with material such as corrosion products or biofilm that are on or close to the 

wall. The amount of wall area available for reaction and the rate of mass transfer between 

the bulk fluid and the wall will also influence the overall rate of this reaction [56]   

The surface area per unit volume, which for a pipe equals 2 divided by the radius, determines 

the former factor. The latter factor can be represented by a mass transfer coefficient whose 

value depends on the molecular diffusivity of the reactive species and on the Reynolds 

number of the flow [56]. For first-order kinetics, the rate of a pipe wall reaction can be 

expressed as: 

 

                                           𝑟 =   
2𝑘𝑤 𝑘𝑓 𝐶

𝑅(𝑘𝑤  + 𝑘𝑓 ) 
                                                                  (3.21) 
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Where 𝑘𝑤  = wall reaction rate constant, 𝑘𝑓  = mass transfer coefficient, and R = pipe radius 

 

3.2.4.6 Lagrangian time-based solver for water quality 

The EPANET’s water quality simulator uses a Lagrangian time-based approach to tracking 

the rate of discrete parcels of water as they move along pipes and mix together at junctions 

between fixed-length time steps. The Lagrangian approach update the conditions in variable 

sized segments of water at either uniform time increments or only at times when a new 

segment reaches a downstream pipe junction [70].  

In, water quality modeling can be divided into two general categories: Eulerian and 

Lagrangian. Eulerian techniques divide the network into equally sized segments or volumes 

and track the chlorine residuals at the boundaries and within each segment [70]. The 

Lagrangian methods record and track each mass of chlorine that enters the DWDS by 

tracking parcels of water as they travel through the network. The techniques can be further 

classified as a time-driven method (TDM) and event-driven method (EDM). The time-

driven method updates the position and age of each slug of chlorine at fixed intervals of 

time. The event-driven method only updates the position and age of the chlorine at certain 

hydraulic event, such as the end of the hydraulic step, reach a junction node and flow 

velocity changes [70].  

Other research publications on water quality analysis, design, and operations are [71] [72] 

[73]. 
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3.3 Control-design based Chlorine Residual Modeling in DWDS 

The modeling and algorithms used in EPANET for simulations as presented in previous 

sections are adequate, useful and accurate for DWDS simulations and water network design. 

However, all the nodes and storage tanks in the DWDS are involved in the model and result 

in distributed models. These distributed models provide only an implicit input-output 

relationship that is not suitable for controller design.  

In control design-based approach to modeling, we need an explicit input-output relationship 

between the chlorine injected at the injection nodes and the chlorine residual concentration 

at the monitored nodes. Chlorine can be injected or added to the DWDS from many sources 

or nodes and transported to multiple user nodes through many pipe paths. The physical 

distance between the chlorine injection input nodes and the output nodes may be measured 

in feet or kilometres or miles.  Associated with the transport of chlorine from the point of 

injection to the user node is the variable time transportation time or delays.  

 

As Chlorine is transported in the DWDS, it reacts with substances in water, with the pipe 

walls and mixed with flows of different quality at the junction nodes. This is described by 

the impact coefficients in the obtained input-output model in [33]. The inputs for chlorine 

residual concentration modeling are the chlorine injected and added at the chlorine source 

nodes while the output is the chlorine residual concentration at the monitored node. The 

following are considered in the control design approach to modeling the chlorine residual 

concentration at the monitored nodes in the DWDS: 

• A suitable method to determine the chlorine transportation paths from the injection 

nodes to the monitored nodes in the DWDS. 



71 

 

• A suitable method to calculate the transportation time of the injected chlorine from 

the injection node to the monitored node. Calculating the transportation time is 

challenging due to the time varying user demands in the DWDS and the topology 

of the DWDS. The transportation time in the input-output model is continuous in 

time and time varying. The transportation time is affected by the tank dynamics and 

must be incorporated in the final model. 

• A suitable method to handle the continuous and time-varying transportation time.  

• A suitable method to calculate the impact factors or impact coefficients on the 

injected chlorine due to chlorine decay and mixing at junction nodes. 

In the next section, the Input-output model for chlorine residual modeling in [31] [33] [34]  

is further developed using the proposed flow-Path dependent forward tracking algorithm to 

acquire the model structure.  

 

3.3.1 Input-Output Model Formulation for Chlorine Residual in DWDS 

without Tanks 

3.3.1.1 Chlorine Residual Modeling in Pipes 

The model of chlorine residual in water through a pipe [33] [34]is given by: 

 

                             𝑦(𝑘)  =   𝛽(𝑘)𝑢(𝑘 − 𝑑(𝑘))                                                                     (3.22) 

 

where 𝑦(𝑘) is the chlorine residual of water exiting the pipe at the output node, 𝑢(𝑘) is the 

chlorine concentration of water enter entering the pipe at the input node, 𝑑(𝑘) is the transport 
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sampled time of chlorine from the input to the output node (the actual transport time 

is 𝑑(𝑘)𝑇), 𝑇  is the sampling interval time, 𝛽(𝑘) = 𝑒(−𝛼𝑑(𝑘)𝑇) is the decay factor for the pipe, 

𝛼 ≫ 0 is the reaction rate coefficient and characterizes how quickly the chlorine decays in 

water. Different types of pipes and water qualities results in different rates of decay of the 

chlorine in the water. 

The transport sampled time 𝑑(𝑘) is continuously time varying due to time varying water 

demands and should be discretized to eliminate this time variation. The range of the variation 

of transport time or time delay denoted by 𝑑  (maximum time delay) and 𝑑  (minimum time 

delay) over the modeling horizon [0, 𝑇ℎ] is considered and calculated numerically by [31]: 

 

               𝐼𝑖𝑗 ≜  {𝑛𝑚𝑖𝑛 , 𝑛𝑚𝑖𝑛 + 1 , …+ 𝑛𝑚𝑎𝑥 − 1 , 𝑛𝑚𝑎𝑥   }                                            (3.23) 

                           𝑛𝑚𝑖𝑛  =   𝑟𝑜𝑢𝑛𝑑 (
𝑑

∆𝑇𝑑
) 

                           𝑛𝑚𝑎𝑥  =   𝑟𝑜𝑢𝑛𝑑 (
𝑑 

∆𝑇𝑑
) 

 

where 𝑟𝑜𝑢𝑛𝑑 (∙) is the function that takes the integer that is closest to a real number∆𝑇𝑑 is 

the discretization time step and  𝐼𝑖𝑗 is the time delay number in pipe ij over the modeling 

horizon. 

The chlorine residual of water exiting the pipe in equation (3.22) is thus approximated by: 

 

               𝑦(𝑘) =   ∑ 𝑎𝑖𝑖(𝑘) ∈ 𝐼𝑖𝑗
(𝑘)𝑢(𝑘 − 𝑖(𝑘))   +    𝜀(𝑘) for  𝑘 ∈  [0, 𝑇ℎ]               (3.24)                              
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Where 𝑎𝑖(𝑘) is the impact coefficient associated with the transport time or time delay 

numbers,  𝐼𝑖𝑗 is the time delay number in pipe ij over the modeling horizon, 𝜀(𝑘) is the 

model error due discretization of the time delays, 𝑢(𝑘 − 𝑖(𝑘))  is the injected chlorine at the 

input node of the pipe and 𝑡 =   𝑘∆𝑇𝑑 , 𝑘 = 0,1,2, … 

The model equation in (3.24) now has time-varying parameters and no time varying time 

delays. 

In the DWDS, pipes are connected in series and in parallel. The model of pipes connected 

in series can be obtained by summing the transport time in each pipe and multiplying the 

decay factor in each pipe.  

For a network with any number of pipes in parallel, it is assumed that the mixing at the 

junction node is complete and instantaneous. Each pipe or set of pipes connected to a 

junction node (which is a monitored node) from the chlorine injection node forms a path 

that chlorine travels through to arrive at the junction node. Thus, the model is given by: 

 

𝑦(𝑘) =   ∑ 𝑎𝑖𝑖 ∈ 𝐼(𝑘)
(𝑘)𝑢(𝑡 − 𝑖(𝑘))   +    𝜀(𝑘)   for  𝑘 ∈  [0, 𝑇ℎ]                                         (3.25) 

Where  𝐼(𝑘) is the set of all the discrete time delay number of each path over the modeling 

time horizon. A path can be active if there is a flow path through it or inactive over certain 

time due to hydraulic dynamics in the DWDS. The model equation in (3.24) represents a 

single-input and single output situation.  

In DWDS, a single chlorine injection input may control multiple monitored nodes and a 

monitored node may be controlled by multiple chlorine injection nodes. Thus, we have 

single-input, single-output systems (SISO), single-input, multiple-output systems (SIMO) 
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and multiple-input, multiple-output systems (MIMO) in DWDS water quality control. The 

MIMO model for one output [31] is given by: 

 

𝑦(𝑘) =   ∑ ∑ 𝑎1,𝑚,𝑖𝑖 ∈ 𝐼1,𝑚 (𝑘) (𝑘)𝑢𝑚(𝑘 − 𝑖(𝑘))   +    𝜀(𝑘)
𝑛𝑀
𝑚=1    for  𝑘 ∈  [0, 𝑇ℎ]     (3.26)             

 

Where there are 𝑛𝑀 inputs, 𝑎1,𝑚,𝑖 is the ith impact coefficient of the first output under the mth 

input. 

3.3.1.2 Chlorine Residual Modeling in DWDS with Tanks 

Tanks are used to store water in the DWDS. They are used primarily to satisfy demand 

fluctuations and equalize operating pressures. Tanks add dynamics to chlorine residual 

modeling because of the long residence times of water in the tanks. There are two types of 

tanks in the DWDS and they are switching tank and continuous tank. In switching tank, it is 

operated in fill and drain cycles while the continuous tank is operated is fill and draw cycles 

simultaneously. 

In this thesis, the switching tank is considered in the modeling. The following general 

assumptions are used in chlorine residual modeling for tanks in the DWDS [56] [67]: 

• Tank contents are completely mixed instantaneously 

• The kinetics of chlorine reactions to substance in tank water is first-order with 

respect to the chlorine concentrations in tanks 

These assumptions contribute to model-reality mismatch and it is treated as modeling errors 

which are incorporated in the controller design.  
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In this thesis, it is assumed that the chlorine residual in the switching tank is measurable at 

the quality time steps using suitable sensors connected to the monitoring unit of the DWDS. 

It is also assumed that the chlorine booster station can be put in the tank node. The switching 

tank is therefore considered as chlorine source during the draining cycle in the chlorine 

residual modeling in this thesis. This is shown in Figure 3.3. 

 

                                                        

                                                      Water level in the tank 

                           c(k)                                                                                       y(k)  

                                                                            flow direction          

                 

Figure 3.3 Model of chlorine residual in DWDS with tank during the draining cycle of the 

tank  

The model of chlorine residual in the DWDS with a tank during the draining cycle is given 

by: 

 

𝑦(𝑘) =   ∑ 𝑎𝑖𝑖(𝑘) ∈ 𝐼𝑖𝑗
(𝑘)𝑐(𝑘 − 𝑖(𝑘))   +    𝜀(𝑘)   for  𝑘 ∈  [0, 𝑇ℎ]                       (3.27)                                              

Where 𝑦(𝑘) is the chlorine residual at the exit node of the pipe, 𝑎𝑖(𝑘) is the impact 

coefficient associated with the transport time or time delay numbers,  𝐼𝑖𝑗 is the time delay 

number in pipe ij over the modeling horizon, 𝜀(𝑘) is the model error due discretization of 

the time delays 𝑐(𝑘 − 𝑖(𝑘))  is the injected chlorine  or chlorine residual value from the tank 
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at the input node of the pipe  during the draining cycle of the tank and 𝑘 =   𝑘∆𝑇𝑑 , 𝑘 =

0,1,2, … 

 

3.4 Model structure determination for chlorine residual modeling in 

DWDS 

3.4.1 Path Analysis Algorithm 

In [31] [33] [34] [74]  the model structure information for chlorine residual modeling in 

DWDS is obtained using the Path analysis algorithm. The Path analysis algorithm provides 

the following information: 

• The chlorine transportation path from the chlorine injection nodes or chlorine source 

nodes to the monitored nodes 

• The transportation time of chlorine in each path 

• Chlorine injection inputs at certain nodes and their impacts at other nodes 

In the application of the Path analysis algorithm, it is assumed that the hydraulic information 

such as water flows, flow velocity, and pipe lengths are available. The Path analysis 

algorithm uses a backward tracking algorithm recursively through time and the topological 

space of the DWDS to track the path of the chlorine at the monitored node to the injection 

node. The questions answered by the backward tracking algorithm are: for the chlorine 

arriving now at a given junction node, which input did the chlorine originate at, what path 

did the water take through the pipes to get to the output junction node and how long did the 

water spend in each of those pipes.  
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In this thesis, the Path analysis algorithm developed by [33]  is further modified to use a 

forward tracking algorithm. The forward tracking algorithm tracks the path of injected 

chlorine from any node used as injection node through the network to the monitored node 

using the hydraulic information provided at the upper level of the hierarchical integrated 

quantity and quantity control structure presented in Chapter 2 of this thesis. 

The forward tracking algorithm works in a predictive manner using the predicted hydraulic 

information at the upper level of the hierarchical integrated quantity and quantity control 

structure. The forward tracking algorithm is suitable for online identification in chlorine 

residual modeling in the DWDS.  

 

3.4.1.1 Forward tracking Algorithm  

The proposed modified Path Analysis Algorithm is a forward tracking algorithm based on 

the concept of water head difference and time of arrival or time of impact of the injected 

chlorine. The concept of water head difference is based on the physical law that water in a 

pipe flows from the higher head node to the lower head node. The application of this concept 

is that at every quality time step, the water head difference is assessed, and the path of flow 

is determined for each pipe and for each path (set of pipes) that the injected chlorine travels 

through to the monitored node. This is shown in Figure 3.4 

                                                                                        𝑣𝑖𝑗  

                                     ℎ𝑖                                                                    ℎ𝑗        

                                                                   𝐿𝑖𝑗        

                       Figure 3.4 Water flow in a pipe from node i to node j 
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The time of arrival or the time of impact of the injected chlorine at the monitored node is 

based on a calculation of the detention or transportation time of the injected chlorine through 

the paths to the monitored node and assessing whether the injected chlorine will arrive at 

the monitored node at the time of monitoring. This is illustrated in Figure 3.5 by the flow 

chart. The transportation time is calculated by using a tracking time 𝜏 step given by the 

following relationship: 

 

         𝜏 ≤   ∆𝑇𝑐                                                                                                                 (3.28) 

 

        𝜏  𝑣𝑖𝑗(𝑘) ≤    𝐿𝑖𝑗 ,   𝑎𝑛𝑦 𝑘,  𝐿𝑖𝑗                                                                                    (3.29) 

 

For computational efficiency, the tracking time can be selected to be as: 

 

        
∆𝑇𝑐

5
≤   𝜏  ≤  

∆𝑇𝑐

2
                                                                                                       (3.30) 

 

Where ∆𝑇𝑐 is the quality time step,  𝐿𝑖𝑗 is the length of pipe or pipes in cascade, and  𝑣𝑖𝑗 is 

the flow velocity. 

 

 

 

 

 

 

 



79 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                               No 

 

 

                                 Yes 

 

 

 

 

 

Figure 3.5 Modified path analysis algorithm flow chart 
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The developed modified Path analysis forward tracking algorithm is as follows: 

 

Algorithm 3.0: Modified Path analysis forward tracking Algorithm as illustrated in Figure 

3.5 

Obtain the predicted hydraulic information from the upper level of the integrated quantity 

and quality control structure at the hydraulic time step 

i. For all quality time step, ∆𝑇𝑐  at monitored node j in the DWDS, obtain the water 

head difference ℎ𝑖  −   ℎ𝑗   and find the direction of flow between the injection 

node and the monitored node.  

ii. If there is a flow from the chlorine injection node to the monitored node under 

consideration at any quality time step, ∆𝑇𝑐 over the modeling horizon, the flow 

counter for this Path is set to 1, else it is set to 0. 

iii. Calculate the transportation or detention time for this path using as follows: 

The transportation time is a relationship between the water flow velocity and the 

length of the pipe or the path (set of pipes in cascade). The transportation time 

or detention time, Td of the injected chlorine is the time it will take for the 

injected chlorine to arrive at the monitored node.  

 

             𝑇𝑑 =   
 𝐿𝑖𝑗

 𝑣𝑖𝑗
                                                                                        (3.31) 

                   

Where 𝑇𝑑 is the detention time,  𝐿𝑖𝑗 is the length of pipe or pipes in cascade 

and 𝑣𝑖𝑗 is the flow velocity for the hydraulic time step. 
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iv. Using the flow counter obtained in (iii) and the detention time in (iv), determine 

whether a Path of flow exist at each quality time step from the injection node to 

the considered monitored node. The detention or transportation time at each 

quality time step and the flow counter is used to determine the arrival time or 

time of impact of the injected chlorine at the considered monitored node. The 

injected chlorine will arrive if there exist a flow-path from the time of injection 

to the time it arrives (detention time) at the monitored node or else it will not 

arrive at the monitored node. 

v. Repeat step (i) to (v) for each injection node or chlorine source node to each 

monitored node in the DWDS to obtain the nodes controlled by each injection 

nodes and the time step the monitored node is impacted by the injected chlorine 

from the injection node. 

 

Performing the modified Path analysis forward tracking algorithm from the injection node 

to the monitored nodes produced the model structure information which are chlorine inputs 

to the monitored nodes, the Paths and the detention time in each path. The tanks in the 

DWDS are treated as chlorine sources during their draining periods and the extended Path 

analysis forward tracking algorithm was applied to determine the monitored nodes impacted 

by the tank outputs during the draining periods. This improved the modeling accuracy and 

speed of modeling.  

 

The developed modified Path analysis forward tracking algorithm is used to partition the 

DWDS into subnetworks for distributed water quality control. Each node in the DWDS is 

used as chlorine injection node while other nodes are used as monitored nodes to test the 
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controllability and observability of the nodes (this is superposition principle approach).  This 

is illustrated in Figure 3.6 with a benchmark DWDS. The node circled with red is the 

chlorine injection node and the nodes circled with blue are the monitored nodes. The 

modified Path analysis forward tracking algorithm is used to find the flow paths (indicated 

by red arrows) and determine the controllable nodes. From Figure 3.6, only six nodes are 

controllable by this injection node acting alone.  

 

Each node in the DWDS is used as chlorine injection node acting alone while other nodes 

are used as monitored nodes to determine their controllability by the injection node. This 

procedure is repeated until the DWDS is partitioned into areas based on the controllability 

and observability of the nodes.  

The water flows used for the DWDS partitioning is the average water flows under a normal 

operational state of the DWDS. In this thesis, the choice of the number of partitioned areas 

in the DWDS is based on analysis and design of RFMPC controllers.  

The modified Path analysis forward tracking algorithm can be used for more complex 

DWDS network and can be adapted for application to any flow-based systems modeling. 

 

 

 

 

 

 

 

 



83 

 

 

LEGEND 

 Reservoir 

 Pump 

 Junction node 

 Tank 

 Valve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 DWDS partitioning using the modified Path analysis algorithm and superposition 

principle  
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3.4.1.2 Chlorine Residual Modeling by node-to-node analysis 

The Path analysis algorithm and the modified Path analysis forward tracking algorithm is 

suitable for model structure and transport time of chlorine determination from chlorine 

injection node to the monitored nodes. In this thesis, a node-to-node analysis method for 

calculating the chlorine residual model of the injected chlorine from the injection node to 

the monitored node is proposed. Each node is considered as an active or passive chlorine 

source to the nearest connecting node. A chlorine booster node is an active chlorine source 

node while other nodes are passive chlorine source nodes. The chlorine injection node is the 

source node and the nearest connecting nodes are the monitored nodes. For example, in 

Figure 3.6, node 5 is selected as the chlorine injection node, the nearest connecting nodes 

are node 4, node 6 and node 13 are selected as the monitored nodes. The transport time of 

chlorine in the pipes connecting node 5 to node 4, node 5 and node 6, node 5 and node 13 

are calculated and the impact coefficients estimated to obtain the chlorine residual model 

for injected chlorine from node 5 to the nearest connecting node. The model for the chlorine 

injected at node 5 and monitored at node 13 is given as: 

 

𝑦13(𝑘) =   ∑ 𝑎𝑖5_13𝑖5_13 ∈ 𝐼𝑖𝑗5_13
(𝑘)𝑢5(𝑘 − 𝑖513

(𝑘))   + 𝑢13(𝑘)  +    𝜀(𝑘)                           (3.32) 

 

Where 𝑦13(𝑘) is the chlorine residual value at node 13 at discrete time 𝑘, 𝐼𝑖𝑗5_13
 is the set of 

the transport time for chlorine between node 5 and node 13, 𝑖513
(𝑘)  is the transport time of 

chlorine at discrete time 𝑘 from node 5 to node 13 at discrete time 𝑘, 𝑎𝑖5_13
(𝑘) is the impact 

coefficient on the injected chlorine from node 5 to node 13, 𝑢5(𝑘 − 𝑖513
(𝑘)  ) is the injected 
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chlorine from node 5 at time (𝑘 − 𝑖513
(𝑘)), 𝑢13(𝑘) is the initial chlorine residual value at 

node 13 at discrete time 𝑘, and 𝜀(𝑘) is the model error. 

To calculate the impact of the injected chlorine from node 13 to the nearest connected node 

to node 13 is node 14. The model is given as: 

 

 𝑦14(𝑘) =   ∑ 𝑎𝑖13_14𝑖13_14 ∈ 𝐼𝑖𝑗13_14
(𝑘)𝑢13(𝑘 − 𝑖1314

(𝑘))   + 𝑢14(𝑘)  +    𝜀(𝑘)         (3.33)           

𝑢13(𝑘 − 𝑖1314
(𝑘)) =  𝑦13(𝑘 − 𝑖1314

(𝑘))                                                                                               (3.34) 

Substituting Equation (3.32) and (3.34) in (3.33) gives: 

 

𝑦14(𝑘) =   ∑ 𝑎𝑖13_14𝑖13_14 ∈ 𝐼𝑖𝑗13_14
(𝑘)𝑦13(𝑘 − 𝑖1314

(𝑘))   + 𝑢14(𝑘)  +    𝜀(𝑘)     (3.35)                

 

Where 𝑦14(𝑘) is the chlorine residual value of node14 at discrete time 𝑘, 𝐼𝑖𝑗13_14
 is the set of 

the transport time for chlorine between node 13 and node 14, 𝑖1314
(𝑘)  is the transport time 

of chlorine at discrete time 𝑘, 𝑎𝑖13_14
(𝑘) is the impact coefficient on the injected chlorine 

from node 13 to node 14, 𝑦13(𝑘 − 𝑖1314
(𝑘)) is the chlorine flowing from node 13 at time 

(𝑘 − 𝑖1314
(𝑘)) to node 14,  𝑢14(𝑘) is the initial chlorine residual value at node 14 at discrete 

time 𝑘, and 𝜀(𝑘) is the model error. The impact of the injected chlorine from node 5 on node 

14 is in 𝑦13(𝑘 − 𝑖1314
(𝑘)) which is given in equation (3.32) and (3.35). 
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The node-to-node analysis for chlorine residual modeling is proposed. The procedure for 

application is as follows: 

• Determine the chlorine injection nodes and monitored nodes using the Path analysis 

forward tracking algorithm and superposition principle 

• Determine the paths from the injected node to the monitored node 

• Identify the nearest connecting nodes in each path, starting from the injection node 

and through all the nodes to the monitored node 

• Derive the chlorine residual model for each connecting node 

• Get the overall model and estimate the parameters 

The application of the node-to-node chlorine residual modeling is presented in detail in 

chapter 6 of this thesis. 

 

3.5 Uncertainties in Chlorine Residual Modeling in 

DWDS 

The uncertainties in DWDS from viewpoint of chlorine residual modeling for control has 

been addressed in [31].  These uncertainties must be incorporated in the models of chlorine 

residuals in DWDS. The uncertainties are caused by the following: 

1) Time-varying water demand: the operational control of DWDS uses nominal water 

demand prediction to generate optimized pump and valve schedules. The optimized 

pump and valve schedules are applied to the EPANET or numerical simulator to 

generate the hydraulic information that is used for chlorine residual modeling. The 

difference between the real-time water demand and the predicted water demand will 
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generate inaccurate water flow, flow velocity, heads and pressure in the EPANET or 

numerical simulator. The uncertainties in the hydraulic information caused by 

uncertain water demand will affect the chlorine transportation time calculated and 

the mixing at the junction nodes in the final chlorine residual model. 

2) Pump hydraulic characteristic curve: the pump characteristic curve is approximated 

by a nonlinear function as shown in (3.7). The actual speed of the pump motor is 

different from the nominal speed and this generates inaccurate hydraulic 

characteristic curve, inaccurate head-flow relationship, and inaccurate flow velocity. 

3) Roughness Coefficient of the pipes: the roughness coefficient of the pipe depends on 

the material of the pipe, the manufacturer of the pipe and varies with the age of the 

pipe. The difference between the actual roughness coefficient of each pipe and the 

one used for modeling will result in inaccurate water flows, flow velocity, and water 

heads. 

4) Chlorine reaction kinetics: the first-order chlorine reaction kinetics has been used in 

EPANET for describing the chlorine decay in DWDS. The chlorine reaction depends 

on the temperature of the water, the quality of the water, pipe age and pipe material. 

The difference between the actual reaction kinetics and the assumed first-order 

reaction kinetics will result in simulator error and this will cause the actual chlorine 

residual measured to be different from the simulation result. 

All these uncertainties must be accounted for in the robust controller design. 
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3.6 Chlorine residual modeling in DWDS under different 

disturbance scenarios 

The chlorine residual modeling in [31] [33] [34]  used the hydraulic information already 

available and did not consider the disturbance scenarios that could change the operational 

state of the hydraulics of the DWDS in its daily operation. This change in operational state 

may affect the model structure for the chlorine residual modeling for the DWDS.  

In this thesis, these disturbance scenarios are considered and incorporated in the controller 

design. These disturbance scenarios in the DWDS can be caused by the following: 

• Pipe breaks or leakages in the DWDS 

• Valve faults 

• Pump faults 

• Sensor faults 

• Deliberate attacks on the DWDS or accidental damage of the DWDS components 

In this thesis, pipe breaks and valve faults are considered as disturbance scenarios. The pipe 

breaks are simulated by breaking or removing the links between two junction nodes and 

modelled. These disturbance scenarios create three types of operational states [2]  which are 

Normal, Disturbed and Emergency operational states. The normal operational state is a state 

of no fault in the DWDS and the water quality control task can be achieved by the designed 

controller. The disturbed operational state is a state such that there are pipe breaks and valve 

faults, but some monitored nodes are still controllable by the injection nodes.  

The emergency operational state is a state such there are pipe breaks and pipe faults and no 

monitored node is controllable at all by the injection node.  
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Figure 3.7 Simulation of pipe breaks by removing the link between node 5 and node 13 
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Figure 3.8 Simulation of pipe leakage and valve faults using flow control valve between 

node 5 and node 13 
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For simulation using EPANET, the pipe breaks are simulated by removing the links between 

the nodes to be modelled as illustrated in Figure 3.7. The flow control valve (FCV) and 

emitter are used to simulate pipe leakage and valve faults as illustrated in Figure 3.8.  

Different settings of the flow control valve are used to simulate pipe breaks, pipe leakages, 

and valve faults. The model of pipe break in Figure 3.7 is given as: 

𝑦13(𝑘) =   ∑ 𝑎𝑖6_13𝑖6_13 ∈ 𝐼𝑖𝑗6_13
(𝑘)𝑢6(𝑘 − 𝑖613

(𝑘))   + 𝑢13(𝑘)  +    𝜀(𝑘)                           (3.36) 

The impact on node 13 is from node 6 as given in (3.36) 

The model of valve faults and pipe leakage in Figure 3.8 is given as: 

𝑦13(𝑘) =   ∑ 𝑎𝑖5_13𝑖5_13 ∈ 𝐼𝑖𝑗5_13
(𝑘)𝑢5(𝑘 − 𝑖513

(𝑘))   + 𝑢13(𝑘)  +    𝜀(𝑘)                           (3.37) 

The impact on node 13 is from node 5 as given in (3.37) 

 

3.6.1 Chlorine residual modeling in DWDS under Normal Operational 

State 

The normal operational state is the most desirable operational state for the DWDS. It is a 

state of no fault in the DWDS (this is applicable to each partitioned Region in the DWDS) 

which includes: 

• No pipe breaks 

• No pipe leakage 

• No valve faults (the flow rate is per the settings) 
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The control task of water quality control for all the monitored nodes in the DWDS can be 

achieved by the designed RFMPC controller. The chlorine residual model derived for the 

normal operational state of the DWDS is to be used to design the normal operational state 

RFMPC controller. 

 

3.6.2 Chlorine residual modeling in DWDS under Disturbed Operational 

State 

The disturbed operational state is a state of faults in the DWDS but not in the critical pipes 

such that the control task of water quality control can be achieved for some monitored nodes 

in the DWDS or partitioned areas in the DWDS. The critical pipes are the pipes that supply 

water to the chlorine injection nodes in the DWDS.  

This is illustrated in Figure 3.9. In Figure 3.9, the red circled nodes are the chlorine injection 

nodes, the blue circled nodes are the monitored nodes and the red arrows shows the critical 

pipes. The normal operational state model structure and model for chlorine residual 

modeling is affected and may not be suitable for the disturbed operational state.  

A new model structure and model for chlorine residual modeling is to be derived and used 

to design the disturbed operational state RFMPC controller. The simulations and analysis of 

the disturbed operational state of the DWDS are presented in detail in chapter 6 of this thesis. 
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Figure 3.9 Critical pipes in the benchmark DWDS 
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3.6.3 Chlorine residual modeling in DWDS under Emergency Operational 

State 

The emergency operational state of faults in the critical pipes of the DWDS such that the 

control task of water quality control cannot be achieved for all the monitored nodes in the 

DWDS or partitioned zones in the DWDS. A new model structure and model for chlorine 

residual modeling is to be derived and used to design the emergency operational state 

RFMPC controller. The control strategy may need to be changed to adapt to the emergency 

operational state. In Figure 3.9, a pipe break in the critical pipe 25 (red arrow) feeding the 

chlorine injection node 14 (red circled node) affects water flow to node 15 and node 16 

monitored nodes; thus, the controllability of the monitored nodes 15 and 16, cannot be 

achieved by the chlorine injection from node14.  

 

3.7 Model Parameter Estimation 

The chlorine residuals input-output models in section 3.3.1 are suitable for MPC controller 

design and the parameters need to be estimated. The chlorine residuals at the monitored 

nodes are governed by water flows, flow velocity, mixing at junction nodes, chlorine decay 

injected chlorine from injection nodes and detention times of water in tanks. The hydraulic 

information needed for chlorine residual modeling is generated at the upper level of the 

hierarchical integrated quantity and quality control structure presented in chapter 2 of this 

thesis.  

Water flows, flow velocity, water heads, and pressure are driven by water demands. Water 

demands are time-varying and can change hourly, daily, monthly and seasonally.  The water 
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demand needs to be predicted to obtain the water flow, flow velocity, heads and pressure for 

chlorine residual modeling. There are different types of parameters to consider for chlorine 

residual modeling and they are constant parameters, slowly varying parameters, varying 

parameters and fast varying parameters [31]  For example, the length of the pipes is a 

constant parameter, the roughness coefficient of the pipe is a slowly varying parameter and 

needs to be calibrated at certain periods, the chlorine reaction constant is a varying parameter 

and needs to be calibrated regularly and water demand is a fast-varying parameter and needs 

to be predicted. The procedure for chlorine residual model parameter estimation is illustrated 

in Figure 3.10. 

 

                                                                                                                                                       

 

 

 

 

 

 

 

 

Figure 3.10 Procedure for chlorine residual model parameter estimation 
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In Figure 3.10, the hydraulic information for setting up the EPANET simulator is supplied. 

The hydraulic information includes the length and diameter of each pipe in the DWDS, the 

pump characteristic curve, the pump and valve schedules, the elevation of the storage tanks, 

the diameter and the volume of each storage tank, and the elevation at each node. The 

predicted water demand and water usage pattern for each node are supplied to EPANET 

simulator. The chlorine reaction constant and the roughness coefficient is supplied to the 

EPANET and it is obtained from the auto-calibration unit. The auto-calibration unit 

calibrates the measurements from the online monitoring unit. The chlorine injection nodes 

and the monitored nodes are selected in the EPANET. The initial quality of water in each 

storage tank is selected in the EPANET. 

The EPANET simulates the water network to generate flows, flow velocity, heads, pressure, 

chlorine residual values at each node, the volume of water in each tank and other hydraulic 

information. The model structure is determined by the modified Path analysis forward 

tracking algorithm presented in section 3.4.1.1. The parameters of the models obtained by 

the model structure are estimated by the model parameter estimation algorithms. Finally, the 

explicit input-output model suitable for MPC design is generated. 

Remarks 3.1: 

• Water demands vary hourly, daily, monthly and seasonally, therefore the water flow 

patterns for each day of the week are not the same. The chlorine residual models will 

also vary with the water demands 

• There is need for real-time online modeling of the chlorine residual to update the 

chlorine residual models used by the MPC to improve the performance of the MPC 
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• The chlorine residual models obtained in the normal operational state of the DWDS 

may not be suitable for Model Predictive Control of the disturbed or emergency 

operational state of the DWDS. 

 

3.7.1 Parameter estimation  

 Consider the Equation (3.24) given as: 

 𝑦(𝑘) =   ∑ 𝑎𝑖𝑖 (𝑘)∈ 𝐼𝑖𝑗
(𝑘)𝑢(𝑘 − 𝑖(𝑘))   +    𝜀(𝑘)   for  𝑘 ∈  [0, 𝑇ℎ] 

It can be written in a compact form as: 

 

                      𝑦𝑛(𝑘) =   ∅𝑦𝑛
(𝑡)𝑇𝜃𝑦𝑛

(𝑘)   +    𝜀𝑦𝑛
(𝑘)     for  𝑘 ∈  [0, 𝑇ℎ]                    (3.38)                              

 

Where 𝑦(𝑡)  is the chlorine residual output observations at the monitored node over the 

modeling time horizon,  

 

           ∅𝑦𝑛
(𝑘)𝑇 =  [𝑢𝑛 (𝑘 − 𝑖𝑛,1,𝑙𝑜𝑤𝑒𝑟 (𝑘)) .  .  . 𝑢𝑛 (𝑡 − 𝑖𝑛,1,𝑢𝑝𝑝𝑒𝑟 (𝑘))]                (3.39)                         

 

            𝜃𝑦𝑛
(𝑘) =   [ 𝑎𝑛,1,𝑙 (𝑘) .  .  . 𝑎𝑛,1,𝑢 (𝑘) ]                                                               (3.40) 
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𝜀𝑦𝑛
(𝑘) is the time-varying model error, ∅𝑦𝑛

(𝑘)𝑇 is the regressor vector and 𝜃𝑦𝑛
(𝑘) is the 

parameter vector. 

 

Equation (3.38) can be written as: 

𝑦(𝑘)  =  ∅(𝑘)𝑇𝜃(𝑘)   +    𝜀(𝑘)     for  𝑘 ∈  [0, 𝑇ℎ]                                                       (3.41) 

 

3.7.2 Set-membership and Point-parametric approach to model 

parameter estimation 

Parameters map the input to the output space to make the model output equal to the real 

plant output. There is always a model-reality mismatch as no model is exactly equal to the 

real plant model. 

In equation (3.41), the time-invariant system can be written as: 

𝑦(𝑘)  =  ∅(𝑘)𝑇𝜃 +    𝜀(𝑘)     for  𝑘 ∈  [0, 𝑇ℎ]                                                          (3.42) 

From equations (3.41) and (3.42), 

Parameter set 𝜃(𝑘) and 𝜃 for which the equations (3.41) and (3.42) holds at every time 

instant over the modeling horizon is the feasible parameter set [75] [76] and it is bounded 

over each time instant over the modeling horizon. 

In this thesis, the time- varying system (3.41) is used. In [31] [77],it has been shown that 

there is an internal link between the input and the uncertainty in parameters and the model 

errors under the point-parametric model concept. The point-parametric model concept for 

time- varying parameter vector including if necessary, dedicated parameter representing 
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model error is defined; for any plant input 𝑢(𝑘),under predicted disturbance d(k) , there 

exists {∅(𝑘), 𝜽𝑝(𝑘)} that the model output for the plant equals the real plant output.  

Different inputs 𝑢(𝑘) require different trajectories of 𝜽𝑝(𝑘) in order to produce the real 

plant output for all time instants over the considered time horizon. 

Consider a time-varying system: 

                   𝑦(𝑘) = 𝑬(𝑢, 𝜽𝑝(𝑢, 𝑘), 𝑘) +  ℰ𝑝(𝑢, 𝑘)                                                (3.43)                                                          

where: 𝑬 is the model of the system (linear or nonlinear); 𝑢 represents the input function of 

time; 𝜽𝑝 and ℰ𝑝  are input generated model parameter and input generated model error. The 

uncertainties in the system may be in the parameters 𝜽𝑝 and or model error  ℰ𝑝. 

We consider the type of model in which all uncertainties and model errors are allocated to 

the model parameters yielding: 

                  𝑦(𝑘) = 𝑬(𝑢, 𝜽𝑝(𝑢, 𝑘), 𝑘)                                                                  (3.44)                 

where the model parameters 𝜽𝑝 must be time-varying for the model to be suitable. For any 

plant input 𝑢(𝑡) , there exists {𝜽𝑝(𝑘), ∅(𝑘)} associated with this input that yields the system 

output 𝑦(𝑘) for all 𝑘 ∈ [𝑘0, 𝑘0 + 𝑇𝑚 ] over the considered modeling time horizon. There 

exist trajectories of 𝜽𝑝 that yields the system output 𝑦(𝑘) in (3.44). where 𝑇𝑚 is the modeling 

time horizon. 
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3.8 Simulation Experiment Design  

The goal of the experiment design is to design the special inputs to generate the required 

data for parameter estimation. System inputs are hard constraints due to actuator operational 

limits which can be expressed at each time instant 𝑘 ∈ [𝑘0, 𝑘0 + 𝑇𝑚] as:    

                             0 ≤  𝑢𝑚𝑖𝑛(𝑘)  ≤ 𝑢(𝑘) ≤  𝑢𝑚𝑎𝑥(𝑘)                                                     (3.45)                                     

The input sequence over the modeling time horizon is given by:      

𝑢𝑇𝑚
= [ 𝑢(𝑘0), 𝑢( 𝑘0 + 1),.  .  . , 𝑢(𝑘0 + 𝑇𝑚)]                                                    (3.46) 

The observed output sequence over the modeling time horizon is given by:  

𝑦𝑇𝑚
= [ 𝑦(𝑘0), 𝑦( 𝑘0 + 1),.  .  . , 𝑦(𝑘0 + 𝑇𝑚)]                                                     (3.47) 

under the predicted disturbance (water demands) given by: 

𝑑𝑇𝑚
= [ 𝑑(𝑘0), 𝑑( 𝑘0 + 1),.  .  . , 𝑑(𝑘0 + 𝑇𝑚)]                                                     (3.48) 

The representation of inputs for the experiment design and the theorem guiding the 

experiment design is in [31]. The experiment design process is guided by the theorem in 

[31]. The number of experiments, 𝑁𝐸 that are needed to solve the robust parameter 

estimation task is given by  therefore the numerical complexity of the task scales 

exponentially with the length of prediction horizon. It is possible to excite the plant with a 

finite number of inputs for the experiment using the minimum and the maximum input limits 

[31].  For each experiment under predicted disturbance, excite the plant with 𝑢𝑗  

where:  𝑢𝑗 = [𝑢𝑗(1), .  .  . , 𝑢𝑗(𝑇𝑚)] is the j-th experiment input sequence and 𝑢𝑗(𝑘) have 

either a value of 𝑢𝑚𝑖𝑛 or 𝑢𝑚𝑎𝑥  

2 mT

EN =
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Each experiment with 𝑢𝑗 produces an output sequence 𝑦𝑗 based on (3.47) and (3.48) 

yielding: 

𝑦𝑗 = ∅𝑗(𝑘)𝑇 𝜽𝑝
𝑗(𝑘)                                                                                           (3.49) 

where: 

𝑦𝑗 = [𝑦𝑗(1), .  .  . , 𝑦𝑗(𝑇𝑚)] is the j-th experiment output sequence; 

∅𝑗(𝑘) = [∅𝑗(𝑘)(1),.  .  . , ∅𝑗(𝑘)(𝑇𝑚)] is the j-th experiment regressor sequence, 

𝜽𝑝
𝑗 = [𝜽𝑝

𝑗(1),.  .  . , 𝜽𝑝
𝑗(𝑇𝑚)] is the j-th experiment parameter vector sequence  

Let { 𝑢(𝑘), 𝑦(𝑘)} be input-output pairs corresponding to a system in (3.46) and (3.49), there 

exists point-parametric model parameter 𝜽𝑝(𝑘) such that 𝑦(𝑘) =  ∅(𝑘)𝑇  𝜽𝑝(𝑘) for each 

time instant    𝑘 ∈ [𝑘0, 𝑘0 + 𝑇𝑚] where all uncertainties and model error are allocated to the 

model parameter 𝜽𝑝. The point-parametric approach is to obtain the parameter bounds for 

each operating point of the plant in the modeling time horizon. The simulation experiment 

using EPANET was carried out using different combinations of 𝑢𝑚𝑖𝑛(𝑘) and 𝑢𝑚𝑎𝑥(𝑘) as in 

(3.46) to obtain (3.49) on the benchmark DWDS. The details of the experiment are explained 

in Chapter 6 of this thesis. 

 

3.9 Time-varying Model Parameter Estimation 

The parameter estimation process is performed based on the observed input-output data pairs 

and the overall number of the pairs is determined by the total number of experiments.  

A feasible parameter set due to the E experimental inputs over N time modeling horizon in 

[31] [77] [78]  can be defined as: 
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𝜽𝑝
𝑗(𝑘)  ∈  Ω (𝜽𝑝

𝑙(𝑘), 𝜽𝑝
𝑢(𝑘))   

Ω (𝜽𝑝
𝑙(𝑘), 𝜽𝑝

𝑢(𝑘))  ≜ {

𝜽𝑝
𝑗(𝑘) ∈  ℝ𝑀 ∶  𝑦𝑗 = ∅𝑗(𝑘)𝑇 𝜽𝑝

𝑗(𝑘)

 𝜽𝑝
𝑙(𝑘)  ≤  𝜽𝑝

𝑗(𝑘) ≤  𝜽𝑝
𝑢(𝑘)

𝑗 = 1, . . . , 𝐸 , 𝑘 = 1,… ,𝑁

}                               (3.50) 

where  Ω (𝜽𝑝
𝑙(𝑘), 𝜽𝑝

𝑢(𝑘)) is the union of the parameter sets that corresponds to the 

experimental inputs; 𝜽𝑝
𝑙(𝑘), 𝜽𝑝

𝑢(𝑘) are the union bounds at k; M is the dimension of the 

parameter vector and E is the experiment number. 

The least conservative estimation for set  Ω (𝜽𝑝
𝑙(𝑘), 𝜽𝑝

𝑢(𝑘)) is carried out by solving the 

following optimization task: 

[𝜽𝑝
𝑙(𝑘), 𝜽𝑝

𝑢(𝑘)] = 𝑎𝑟𝑔𝑚𝑖𝑛{ 𝐽(𝜽𝑝
𝑙(𝑘), 𝜽𝑝

𝑢(𝑘))}                                                                  (3.51) 

                           [𝜽𝑝
𝑙(𝑘), 𝜽𝑝

𝑢(𝑘), 𝜽𝑝
𝑗(𝑘) ] 

                           Subject to 𝜽𝑝
𝑗(𝑘)  ∈  Ω (𝜽𝑝

𝑙(𝑘), 𝜽𝑝
𝑢(𝑘))   

where: 

𝐽(𝜽𝑝
𝑙(𝑘), 𝜽𝑝

𝑢(𝑘)) =   (𝜽𝑝
𝑢(𝑘) − 𝜽𝑝

𝑙(𝑘))𝑇 𝑃 (𝜽𝑝
𝑢(𝑘) − 𝜽𝑝

𝑙(𝑘))                           (3.52)                      

The choice of 𝑃 could be an identity matrix of dimension of the parameter vector. From 

(3.46) we considered the type of model where all model uncertainties are allocated to the 

parameter and the parameter 𝜽𝑝(𝑘) is time-varying for the model to work.  

This modeling approach is used in this thesis to estimate the model parameters for the 

DWDS under different operational states. The simulation is discussed in detail in chapter 6 

of this thesis. 
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3.10 Summary 

The drinking water distribution systems (DWDS) hydraulic laws and model of the DWDS 

components is presented. The control-design based approach to chlorine residual control is 

explained. The existing Path analysis backward tracking algorithm for model structure 

acquisition is further modified to Path analysis forward tracking algorithm to account for 

changing operational states of the DWDS and improve the modeling accuracy. The node-

to-node analysis for chlorine residual modeling is proposed and discussed. Model parameter 

estimation using set-membership and point parametric approach is presented. The 

simulation experiment design and model parameter estimation for time-varying parameter 

system is presented and discussed. The model parameter bounding at each time instant over 

the modeling horizon is presented. The time-varying parameter model developed is suitable 

for RFMPC design for DWDS water quality control. 
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Chapter 4 

Robustly Feasible Model Predictive Control 

Design 

In this Chapter, basic MPC structure is presented in Section 4.1. RFMPC design with 

recursive properties using the Karush Kuhn Tucker conditions was proposed in Section 4.2. 

Distributed robustly feasible MPC (DRFMPC) with the proposed adaptive feasible 

cooperation is presented in section 4.3. The summary is presented in section 4.4. 

 

4.1 Model Predictive Control (MPC) 

4.1.1 Introduction  

 MPC is an advanced control technology in the Industry. It is also referred to as receding 

horizon control (RHC). MPC uses an explicit process model to predict the future response 

of a plant [79]. At each control time step or sampling interval, the MPC algorithm optimizes 

the future plant behaviour by computing a control sequence of future manipulation of the 

plant using the current state of the plant as the initial state. The first input in the control 

sequence is applied to the plant, and the prediction horizon moves forward, and the entire 

calculation is repeated at the next control time steps. 

The pioneering ideas of MPC started in the 1960s [80]. The applications of MPC began to 

increase rapidly in the 1980s after publication of the papers of [81] on IDCOM, Dynamic 

Matrix Control (DMC) by [82]  and Generalized Predictive Control (GPC) by [83] [84]. The 
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survey of industrial MPC is in [85] [86] . The major selling points of MPC technology [10]  

includes: 

•  Ability to handle multivariable parameters for system control 

• Constraint handling and management capabilities 

• Its ability to control unstable processes 

• Flexibility in online computation 

• Easy to tune  

• Ability to handle structural changes in the plant 

The MPC technology has been developed to maturity and many types of MPC and 

applications has been developed. The basic components of MPC technique are still the same. 

The components of MPC are prediction model, objective function, receding horizon, 

constraints handling, optimization and manipulated variables which are the degrees of 

freedom of control. The robustness, stability and performance properties of MPC has been 

investigated and published in the literature over the years. Robustness is the ability of the 

MPC to satisfy the system constraints and achieve the control objectives under uncertainty 

scenarios in the system.  

MPC have been developed according to the certain process features [87], control features 

[88]and with the guaranty of robustness and stability [89] [90]. MPC technology is now 

mature but still faces a major challenge of guaranteeing stability and robustness against 

uncertainty in the control of uncertain systems [79]. The uncertainty includes model-reality 

mismatch, disturbances, and state estimation error. Guaranteeing stability, robustness, and 

performance in the systems while satisfying the system constraints is important in MPC 

design. 
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With the increasing use of MPC as a control agent in many applications [91], many 

published papers have been presented with stability and robust properties on decentralized 

MPC, distributed MPC and hierarchical decentralized and hierarchical distributed MPC [92] 

[93] [94] [95]. One of the research trends now is the development of MPC with self-

reconfiguration feature [96] [97].  

 

4.1.2 Model Predictive Control Architecture 

Model Predictive Control (MPC) is a model-based controller design concept. The model of 

the plant is used to predict the future response of the plant. The optimal control actions for 

the plant is determined by minimizing a user-defined objective function which penalizes the 

difference between the predicted output trajectories and the reference trajectories over a 

finite prediction and control horizon. At each control time step, the initial state of the plant 

is measured, a finite-horizon open-loop optimization problem is solved to calculate the 

current control action. A control action sequence over the control horizon is generated and 

the first part of the control action sequence is applied to the plant. The prediction horizon 

moves forward, and the same procedure is repeated at each control time step. Figure 4.1 

illustrates the idea of MPC in [8]  Figure 4.1 is adapted from [98]. 

 

 𝐻𝑝 and 𝐻𝑐 denotes the finite time prediction horizon and control horizon. The current time 

instant is k and the present output is 𝑦𝑘. 𝑢.|𝑘 denote the control input and 𝑦.|𝑘 denote the 

predicted output. The set- point trajectory may be fixed or time varying depending on the 

operation of the plant process. A reference trajectory considering an ideal or desired tracking 

trajectory from the current output to the set-point trajectory can be defined over the 
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prediction horizon 𝐻𝑝 before running the MPC. In a receding horizon operation, only the 

first control action 𝑢𝑘|𝑘  from the control sequence is applied to the plant process over the 

control step. Next, the process output or state variables are measured, and the optimization 

problem is solved again over the prediction horizon with the initial conditions updated from 

the measurements [8] [98].  

 

 

Figure 4.1 Basic Model Predictive Control: operational concept [98] 

 

The generalized basic MPC algorithm for the operation of a basic MPC controller is as 

follows: 
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Basic Algorithm of MPC  

1. At time k, obtain or measure the current state 𝑥𝑘 of the plant; 

2. Determine the control sequence 𝑢.|𝑘 by solving a finite horizon optimal control problem; 

3. Apply the first element in the control sequence, 𝑢𝑘 = 𝑢𝑘|𝑘 to the plant; 

4. 𝑘 ← 𝑘 + 1. Go to step 1. 

The basic structure of MPC is illustrated in Figure 4.2. 

 

                                                                   predicted outputs                                                            

                                                                                                                                                                       

                                                    Control sequence                                                   

                                                                          Predicted future errors                          

 

 

 

Figure 4.2 MPC basic structure 

 

We assume that the output prediction and control horizon are equal such that: 

                  𝐻𝑝 =  𝐻𝑐   

The vector of predicted outputs over the prediction horizon is defined as: 

 

𝑦.|𝑘 = [𝑦(𝑘|𝑘)  .  .  .    𝑦(𝑘 + 𝐻𝑝 − 1|𝑘) ]𝑇                                                                  (4.1) 

 

Past inputs, 

states and 

outputs 

Prediction 

Model 

MPC 

Optimizer 

Constraints User-defined Objective function 

Reference trajectory 
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Where 𝑦(𝑘 + 𝑖|𝑘) is the predicted model output at 𝑘 + 𝑖, 𝑖 = 0 .  .  . 𝐻𝑝 and the predicted 

model output is executed at time instant k. 

The vectors of predicted control input, state, and disturbance over the prediction are 

respectively defined as: 

 

𝑢.|𝑘 = [𝑢(𝑘|𝑘)  .  .  .    𝑢(𝑘 + 𝐻𝑝 − 1|𝑘) ]𝑇                                                                  (4.2) 

𝑥.|𝑘 = [𝑥(𝑘|𝑘)  .  .  .    𝑥(𝑘 + 𝐻𝑝 − 1|𝑘) ]𝑇                                                                  (4.3) 

𝑑.|𝑘 = [𝑑(𝑘|𝑘)  .  .  .    𝑑(𝑘 + 𝐻𝑝 − 1|𝑘) ]𝑇                                                                  (4.4) 

 

The reference values over the prediction horizon are given as: 

 

𝑟.|𝑘 = [𝑟(𝑘|𝑘)  .  .  .   𝑟(𝑘 + 𝐻𝑝 − 1|𝑘) ]𝑇                                                                   (4.5) 

 

In dynamic network systems, there are vectors of inputs u, states x and outputs y and they 

are constrained as follows: 

 

𝑢 ∈ 𝕌 = [ 𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥]  ⊂  ℝ𝑙                                                                                        (4.6) 

𝑦 ∈ 𝕐 = [ 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥]  ⊂  ℝ𝑚                                                                                     (4.7) 

𝑥 ∈ 𝕏 = [ 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]  ⊂  ℝ𝑛                                                                                      (4.8) 

The disturbance 𝑤 is unknown but is assumed bounded in a closed set 𝕎 such that  

                               𝑤  ∈   𝕎 ⊂  ℝ𝑝 
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By using the model of the plant explicitly, the predicted output over the prediction horizon 

can be calculated with the information of the current and past states 𝑥(𝑘), past inputs 𝑢(𝑘)  

and the disturbance 𝑤(𝑘) is given as: 

 

𝑦.|𝑘 = 𝐺 (𝑥(𝑘), 𝑢(𝑘), 𝑢.|𝑘, 𝜃, 𝑤.|𝑘)                                                                                (4.9) 

 

 

Where 𝐺 (∙) denotes the plant model and 𝜃 denotes the plant model parameters. The model 

could be linear or non-linear, time-varying or time invariant.  

The user-defined objective function,  𝐽 (∙) which can be defined using 𝐿1, 𝐿2, or 𝐿∞ norms 

is used to measure the distance between the reference trajectories and the predicted output 

trajectories. If the model 𝐺 (∙) is linear and 𝐿2 norm is used, the optimization problem is a 

quadratic programming problem [10] given as: 

𝑢.|𝑘  = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢.|𝑘
 𝐽(𝑢.|𝑘) =   ( 𝑟.|𝑘  −  𝑦.|𝑘)

𝑇  𝑃 (𝑟.|𝑘  −  𝑦.|𝑘)  + (∆𝑢.|𝑘
𝑇 𝑄 𝑢.|𝑘)      (4.10) 

                      Subject to: 𝐶𝑦(𝑦.|𝑘)  ≤ 0  

                                         𝐶𝑢(𝑢.|𝑘)  ≤ 0 

Where 𝐶𝑦(∙) denotes constraints on the outputs and 𝐶𝑢(∙) denotes constraints on the inputs. 

In (4.10), at time instant 𝑘 , the minimum control input sequence that achieves the minimum 

error between the reference output and the actual plant output over the prediction horizon 

and satisfies the input and output constraints is determined. This approach can be used in 

many reference tracking applications [10] . 
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4.2 Robustly Feasible Model Predictive Control     

(RFMPC)  

There are different approaches to designing the robustly feasible MPC. The safe feasibility 

tubes in the state space were used to design the RFMPC in [99] [100]. Min-Max approach 

where the worst-case scenario of the system uncertainty is used to generate the control 

actions and design the RFMPC is in [101]. Reference governor approach is used in [102]  to 

generate a reference trajectory over the prediction horizon and the control inputs generated 

under the reference trajectory steers the system to the desired state without violating the 

constraints under uncertain scenarios in the system. The constraint restriction approach is 

used in [103] to restrain the input constraints and design RFMPC. Iterative safety zone 

method is used in [104]  and was applied for robust predictive control of chlorine residuals 

in DWDS. Non-iterative safety zone that utilized Lipschitz constants of the nonlinear 

network mappings for the design of RFMPC was proposed in [105]. RFMPC based on 

calculated robust invariant set is used in [106] [107] [108]. Off-line formulation of RMPC 

is used in [109]. 

In this thesis, the off-line or non-iterative safety zone approach that utilizes robustly feasible 

invariant sets is proposed for the design of the RFMPC. The recursive feasibility is 

guaranteed with this approach. There are three operational states for the DWDS considered 

in this thesis and the feasibility of control actions must be guaranteed in any of the 

operational states. The RFMPC controllers used in this thesis are arranged in a distributed 

architecture; it therefore needs proper coordination schemes to ensure recursive feasibility 

in all the RFMPC controllers. 
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4.2.1 Robust Feasibility of a Nominal Model 

The main source of uncertainty in MPC design is the model uncertainty due to model-reality 

mismatch. The MPC uses the prediction model for predicting the future behaviour of the 

plant and if the predicted state or output is different from the real plant state or output, the 

MPC optimizer may not be able to generate control actions that will satisfy the system 

constraints. With model uncertainty, the plant state or output may be driven to a dangerous 

region where feasible control actions cannot be generated by the MPC. In safety-critical 

applications, infeasibility of control actions must never happen and recursive feasibility 

under uncertainty scenarios must be guaranteed [106]  

Consider this MPC optimization task: 

                                         𝑢.|𝑘  = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢.|𝑘
 𝐽(𝑢.|𝑘 , 𝑥𝑘|𝑘 , 𝑤.|𝑘 )                               (4.11)                           

                                         Subject to: 𝑥𝑘|𝑘  = 𝑥(𝑘)  

                                        𝐶(𝑥.|𝑘 , 𝑢.|𝑘, 𝑑.|𝑘 )  ≤ 0 

                                         𝐶𝑢(𝑢.|𝑘)  ≤ 0 

                                          𝐶𝑦(𝑦.|𝑘)  ≤ 0 

The solution of equation (4.11) is determined by the initial state 𝑥𝑘|𝑘 . The MPC uses 

explicitly the model of the plant and the initial state of the plant at every control time step 

to generate the control sequence. For some values of initial states over the prediction horizon 

the MPC optimizer will not be able to generate control actions 𝑢.|𝑘  and this causes 

infeasibility [98]. Due to model-reality mismatch, the control actions generated in (4.11) 

may satisfy the model constraints but may violate the real plant constraints [98]. To avoid 
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infeasibility at any time instant k over the prediction horizon, the plant is steered away from 

the infeasible initial states or steered into feasible initial states. The feasible initial states are 

an invariant set. We shall distinguish between the various types of feasible states. Using the 

nominal model of the plant, we shall determine the sets of feasible initial states over the 

prediction horizon. Earlier work by [98]  used Karush Kuhn Tucker (KKT) optimality 

conditions to determine the feasible initial states. 

Using KKT optimality conditions, 𝑢.|𝑘 is a local minimizer of (4.11) and must satisfy the 

KKT conditions such that: 

• 𝐶(𝑥.|𝑘 , 𝑢.|𝑘, 𝑤.|𝑘 )  ≤ 0 

• There exists a vector of Lagrangian multipliers 𝜇𝑖 such that 

           ∇ 𝐽(𝑢.|𝑘 , 𝑥𝑘|𝑘 , 𝑤.|𝑘 )  −   ∑ 𝜇𝑖
𝑁𝑀
𝑖=1  ∇𝐶𝑖 =   0                                          (4.12) 

• 𝜇𝑖𝐶𝑖 = 0  𝑓𝑜𝑟 1 ≪ 𝑖 ≪ 𝑀                                                                               (4.13) 

• 𝜇𝑖 ≥ 0  𝑓𝑜𝑟 1 ≪ 𝑖 ≪ 𝑀                                                                                   (4.14) 

The set of feasible initial states 𝑥𝑘|𝑘 that 𝑢.|𝑘 exists that satisfies the KKT conditions is 

denoted by 𝕏𝑓 (𝑘)  ≜  {𝑥𝑘|𝑘  ∈   𝕏 ∶  ∃ 𝑢.|𝑘  ∈  𝕌} . [98] 

Calculating 𝕏𝑓 (𝑘) is computationally demanding and a box approximation was proposed 

in  [98] 

 𝕏𝑓 (𝑘) = [ 𝕏𝑓
𝑚𝑖𝑛 (𝑘), 𝕏𝑓

𝑚𝑎𝑥 (𝑘)]   ⊂  𝕏𝑓 (𝑘) over each time instant in the prediction 

horizon. 

             𝕏𝑓
𝑚𝑖𝑛 (𝑘) = [x𝑓

𝑚𝑖𝑛 (𝑘) .  .  .  x𝑓
𝑚𝑖𝑛 (𝑘 + 𝐻𝑝 − 1)]                                        (4.15) 
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              𝕏𝑓
𝑚𝑎𝑥 (𝑘) = [x𝑓

𝑚𝑎𝑥  (𝑘) .  .  .  x𝑓
𝑚𝑎𝑥 (𝑘 + 𝐻𝑝 − 1)]                                   (4.16) 

 

In this thesis, the output or state constraints are tightened by safety zones. The safety zones 

ℇ ≜   [ ℇ𝑚𝑖𝑛 , ℇ𝑚𝑎𝑥  ] are chosen to tighten the output or state constraints such that if the 

tightened constraints are violated, in real plant the real plant output or state constraints are 

not violated. With safety zones used to tighten the feasible initial states and using the 

nominal model, the KKT optimality conditions is used as in (4.15) and (4.16), we calculate 

 a set of robustly feasible tightened initial states denoted by: 

 𝕏𝑅𝑓,𝑆 (𝑘)  ≜  {𝑥𝑘|𝑘  ∈   𝕏𝑅𝑓,𝑆 ∶  ∃ 𝑢.|𝑘  ∈  𝕌} 

 

 𝑥𝑘|𝑘 + ℇ𝑚𝑖𝑛  ≪  𝑥𝑘+𝑖|𝑘   ≪  𝑥𝑘|𝑘 − ℇ𝑚𝑎𝑥  

 

𝕏𝑅𝑓,𝑆 (𝑘) = [ 𝕏𝑅𝑓,𝑆
𝑚𝑖𝑛 (𝑘), 𝕏𝑅𝑓,𝑆

𝑚𝑎𝑥  (𝑘)]   ⊂  𝕏𝑅𝑓,𝑆 (𝑘) over each time instant in the 

prediction horizon. 

            𝕏𝑅𝑓,𝑆
𝑚𝑖𝑛 (𝑘) = [x𝑅𝑓,𝑆

𝑚𝑖𝑛 (𝑘) .  .  .  x𝑅𝑓,𝑆
𝑚𝑖𝑛 (𝑘 + 𝐻𝑝 − 1)]                      (4.17) 

 

              𝕏𝑅𝑓,𝑆
𝑚𝑎𝑥  (𝑘) = [x𝑅𝑓,𝑆

𝑚𝑎𝑥  (𝑘) .  .  .  x𝑅𝑓,𝑆
𝑚𝑎𝑥 (𝑘 + 𝐻𝑝 − 1)]                 (4.18) 

The choice of the value of the safety zone is done offline via simulations and it is used 

explicitly in the RFMPC design. Robust feasibility is achieved by steering the system state 

to the tightened robustly feasible state at every control time step. This is called one step 
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robust feasibility. For different operational states of the plant, the robustly feasible states 

must be calculated.  

The set of normal operational state robustly feasible states is denoted by: 

𝕏𝑅𝑓,𝑆,𝑁 (𝑘)  ≜  {𝑥𝑘|𝑘  ∈   𝕏𝑅𝑓,𝑆,𝑁 ∶  ∃ 𝑢.|𝑘  ∈  𝕌} 

 

𝕏𝑅𝑓,𝑆,𝑁 (𝑘) = [ 𝕏𝑅𝑓,𝑆,𝑁
𝑚𝑖𝑛 (𝑘), 𝕏𝑅𝑓,𝑆,𝑁

𝑚𝑎𝑥 (𝑘)]   ⊂  𝕏𝑅𝑓,𝑆,𝑁 (𝑘) over each time instant in 

the prediction horizon. 

                   𝕏𝑅𝑓,𝑆,𝑁
𝑚𝑖𝑛 (𝑘) = [x𝑅𝑓,𝑆,𝑁

𝑚𝑖𝑛 (𝑘) .  .  .  x𝑅𝑓,𝑆,𝑁
𝑚𝑖𝑛 (𝑘 + 𝐻𝑝 − 1)]              (4.19) 

 

              𝕏𝑅𝑓,𝑆,𝑁
𝑚𝑎𝑥 (𝑘) = [x𝑅𝑓,𝑆,𝑁

𝑚𝑎𝑥 (𝑘) .  .  .  x𝑅𝑓,𝑆,𝑁
𝑚𝑎𝑥 (𝑘 + 𝐻𝑝 − 1)]                   (4.20) 

 

This is the set of robustly feasible initial states in the normal operational state of the plant. 

The set of disturbed operational state robustly feasible states is denoted by: 

𝕏𝑅𝑓,𝑆,𝐷 (𝑘)  ≜  {𝑥𝑘|𝑘  ∈   𝕏𝑅𝑓,𝑆,𝐷 ∶  ∃ 𝑢.|𝑘  ∈  𝕌} 

𝕏𝑅𝑓,𝑆,𝐷 (𝑘) = [ 𝕏𝑅𝑓,𝑆,𝐷
𝑚𝑖𝑛 (𝑘), 𝕏𝑅𝑓,𝑆,𝐷

𝑚𝑎𝑥 (𝑘)]   ⊂  𝕏𝑅𝑓,𝑆,𝐷 (𝑘) over each time instant in 

the prediction horizon. 

             𝕏𝑅𝑓,𝑆,𝐷
𝑚𝑖𝑛 (𝑘) = [x𝑅𝑓,𝑆,𝐷

𝑚𝑖𝑛 (𝑘) .  .  .  x𝑅𝑓,𝑆,𝐷
𝑚𝑖𝑛 (𝑘 + 𝐻𝑝 − 1)]                       (4.21) 

 

              𝕏𝑅𝑓,𝑆,𝐷
𝑚𝑎𝑥 (𝑘) = [x𝑅𝑓,𝑆,𝐷

𝑚𝑎𝑥 (𝑘) .  .  .  x𝑅𝑓,𝑆,𝐷
𝑚𝑎𝑥 (𝑘 + 𝐻𝑝 − 1)]                 (4.22) 
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This is the set of robustly feasible initial states in the disturbed operational state of the plant. 

The set of emergency operational state robustly feasible states is denoted by: 

𝕏𝑅𝑓,𝑆,𝐸  (𝑘)  ≜  {𝑥𝑘|𝑘  ∈   𝕏𝑅𝑓,𝑆,𝐸 ∶  ∃ 𝑢.|𝑘  ∈  𝕌} 

𝕏𝑅𝑓,𝑆,𝐸  (𝑘) = [ 𝕏𝑅𝑓,𝑆,𝐸
𝑚𝑖𝑛 (𝑘), 𝕏𝑅𝑓,𝑆,𝐸

𝑚𝑎𝑥 (𝑘)]   ⊂  𝕏𝑅𝑓,𝑆,𝐸  (𝑘) over each time instant in 

the prediction horizon. 

             𝕏𝑅𝑓,𝑆,𝐸
𝑚𝑖𝑛 (𝑘) = [x𝑅𝑓,𝑆,𝐸

𝑚𝑖𝑛 (𝑘) .  .  .  x𝑅𝑓,𝑆,𝐸
𝑚𝑖𝑛 (𝑘 + 𝐻𝑝 − 1)]                        (4.23) 

 

              𝕏𝑅𝑓,𝑆,𝐸
𝑚𝑎𝑥 (𝑘) = [x𝑅𝑓,𝑆,𝐸

𝑚𝑎𝑥 (𝑘) .  .  .  x𝑅𝑓,𝑆,𝐸
𝑚𝑎𝑥 (𝑘 + 𝐻𝑝 − 1)]              (4.24) 

 

This is the set of robustly feasible initial states in the emergency operational state of the 

plant. 

It is usually desired that a controlled plant operates reliably under wide ranges of operational 

states. To guaranty, the feasibility of control actions when there is a change of operational 

state in the plant, the initial state of the plant in the new operational state must be within the 

robustly feasible states of the operational state. We shall establish the following to determine 

the appropriate switching method for the RFMPC controllers: 

• 𝕏𝑅𝑓,𝑆,𝑁 (𝑘)   ∩      𝕏𝑅𝑓,𝑆,𝐷 (𝑘) ; if it is nonempty at time instant k for the switching, 

then hard switching of the RFMPC controllers can be done otherwise soft switching 

of the RFMPC controllers will be done 
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• 𝕏𝑅𝑓,𝑆,𝑁 (𝑘)   ∩      𝕏𝑅𝑓,𝑆,𝐸  (𝑘); if it is nonempty at time instant k for the switching, 

then hard switching of the RFMPC controllers can be done otherwise soft switching 

of the RFMPC controllers will be done 

• 𝕏𝑅𝑓,𝑆,𝐷 (𝑘)   ∩      𝕏𝑅𝑓,𝑆,𝐸  (𝑘) ; if it is nonempty at time instant k for the switching, 

then hard switching of the RFMPC controllers can be done otherwise soft switching 

of the RFMPC controllers will be done. 

 

4.2.2 Invariant sets 

Set invariance plays a fundamental role in the design of control systems for constrained 

systems since the constraints can be satisfied for all time if and only if the initial state is 

contained inside an invariant set [106] [110].  The invariant set theory will be used to proof 

the concept of recursive feasibility and recursive robust feasibility. The following definitions 

from [98] [106] [110]  are useful for understanding the concept of recursive feasibility.  

Definition 1.0 (Positively Invariant set): The set Ω ∈  ℝ𝑛 is a positively invariant 

set for the autonomous system 𝑥𝑘+1 = 𝑓(𝑥𝑘) if and only if ⩝ 𝑥0  ∈  Ω the system state 

evolution satisfies 𝑥𝑘  ∈  Ω , ⩝ 𝑘 ∈ [1,∞] . The set Ω is invariant if and only if  

 𝑥0  ∈  Ω implies 𝑥𝑘  ∈  Ω , ⩝ 𝑘 ∈ [0,∞]    

 

Definition 1.1 (Maximal Positively Invariant set): The set 𝒪∞ (Ω) is the maximal positively 

invariant set contained in  for the autonomous system 𝑥𝑘+1 = 𝑓(𝑥𝑘)  if and only if 𝒪∞ (Ω)  

 is positively invariant and contains all positively invariant sets contained in , that is  is 

positively invariant only if  𝒪∞ (Ω)  . 
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Definition 1.2 (Control Invariant set): The set 𝛩 ∈  ℝ𝑛 is a control invariant set for the 

system 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘  ) if and only if there exists a feedback control law 𝑢𝑘 = 𝑔(𝑥𝑘) 

such that 𝛩  is a positively invariant set for the closed-loop system 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑔(𝑥𝑘)) and 

𝑢𝑘 is an admissible control input for ⩝ 𝑥𝑘  ∈  𝛩. 

 

Definition 1.3 (Maximal Control Invariant set): The set 𝒞∞ (𝛩)  is the maximal control 

invariant set contained in 𝛩  for the system 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘 )  if and only if 𝒞∞ (𝛩)  is 

control invariant and contains all control invariant sets contained in 𝛩  , that is,  γ
∞

 is control 

invariant only if γ
∞

  𝒞∞ (𝛩)  𝛩. 

 

Definition 1.4 (Robust Positively Invariant set): The set 𝛤 ∈  ℝ𝑛 is robust positively 

invariant for the system 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑤𝑘 )  if and only if ⩝ 𝑥0  ∈   𝛤 and ⩝ 𝑤𝑘  ∈  𝕎 , the 

system evolution satisfies 𝑥𝑘  ∈   𝛤 , ⩝ 𝑘 ∈ [1,∞]. Where 𝑤𝑘  ∈  𝕎 is the disturbance set. 

 

Definition 1.5 (Maximal Robust Positively Invariant set): The set Ѵ∞ (𝛤) is the maximal 

robust positively invariant set contained in 𝛤 for the system 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑤𝑘 )  if and only 

if Ѵ∞ (𝛤) is robust positively invariant and contains all the robust positively invariant sets 

contained in 𝛤. 

 

Definition 1.6 (Robust control Invariant set): The set 𝛺 ∈  ℝ𝑛 is a robust control invariant 

set for the system 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘  , 𝑤𝑘 ) if and only if there exists a feedback control law 

𝑢𝑘 = 𝑔(𝑥𝑘) such that 𝛺 is a robust positively invariant set for the closed-loop system 

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑔(𝑥𝑘) , 𝑤𝑘 ) and 𝑢𝑘  ∈  𝕌,  ⩝ 𝑥𝑘  ∈  𝛺 
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Definition 1.7 (Maximal Robust Control Invariant set): The set 𝛤∞ (𝛺)  is the maximal 

robust control invariant set contained in 𝛺 for the system 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘  , 𝑤𝑘 ) if and only 

if 𝛤∞ (𝛺)   is robust control invariant and contains all the robust control invariant sets 

contained in 𝛺. 

 

In [111], the concept of operability index was presented. The operability index describes the 

input-output relationships rather than the system dynamic states. Input and output values are 

defined by spaces in ℝ𝑚   and ℝ𝑛. These spaces are the feasible regions which are bounded 

by the inequalities describing the ranges of the inputs or outputs. The following definition 

of spaces in [111]  are of relevance to RFMPC design: 

 

Definition 1.8 (Available Input Space (AIS)): the set of attainable values of the process 

inputs. These are the values of the constraints on the inputs. 

 

Definition 1.9 (Achievable Output Space (AOS)): this is the set of values which the process 

outputs can obtain given the available input space (AIS). 

 

Definition 1.10 (Desired Output Space (DOS)): this represents the desired output values of 

a process. 

 

Definition 1.11 (Expected Disturbance Space (EDS)): all the values of the expected 

disturbances to the system. 
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The recursive robust feasibility is achieved based on the set invariance and operability index. 

The complete theory is in [106] [110] [111]. 

 

4.2.3 Recursive Robust Feasibility for Robustly Feasible MPC 

It has been established that at every control time step, the initial state of the plant must be 

inside the robustly feasible or robust control invariant set to guaranty the feasibility of the 

control actions at the control time step. In this thesis, the off-line safety zones have been 

used to tighten the state and output constraints and the robust feasible initial states 

calculated. The achievable output space is now shrunk to the tightened desired output space. 

Other recursive feasibility approaches are in [112] which uses a finite number of possible 

values for the uncertainties and model their combinations in a scenario tree. Recursive 

feasibility guarantees in move-blocking MPC is addressed in [113]. Recursive feasibility 

testing in [114] In [115], design and implementation of recursive MPC have been presented. 

Extended recursively feasible MPC using two-stage online optimization is addressed in 

[116].  Methods for computation of invariant sets using interval arithmetic approach is in 

[117].  

In this thesis, robust feasibility must be guaranteed for different operational states of the 

plant to be controlled at all time steps. Recursive robust feasibility implies that at all time 

steps, the system state is inside the robustly feasible control set. 

For the normal operational state of the plant, the recursive robust feasibility is defined as: 

⩝ 𝑥𝑘  ∈  𝕏𝑅𝑓,𝑆,𝑁 (𝑘) for a system 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘  , 𝑤𝑘,𝑁 ) , ⩝ 𝑘 ∈ [1,∞] and  

𝑢𝑘  ∈ 𝕌 , 𝑤𝑘,𝑁  ∈  𝕎𝑁  ,where 𝕎𝑁 is the expected disturbance set for the normal operational 

state of the plant. 
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For disturbed operational state of the plant, the recursive robust feasibility is defined as: 

⩝ 𝑥𝑘  ∈  𝕏𝑅𝑓,𝑆,𝐷 (𝑘) for a system 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘,𝐷 ) , ⩝ 𝑘 ∈ [1,∞] and  

𝑢𝑘  ∈ 𝕌 , 𝑤𝑘,𝐷  ∈  𝕎𝐷  ,where 𝕎𝐷 is the expected disturbance set for the disturbed 

operational state of the plant. 

 

For the emergency operational state of the plant, the recursive robust feasibility is defined 

as: 

⩝ 𝑥𝑘  ∈  𝕏𝑅𝑓,𝑆,𝐸  (𝑘) for a system 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘  , 𝑤𝑘,𝐸  ) , ⩝ 𝑘 ∈ [1,∞] and  

𝑢𝑘  ∈ 𝕌 , 𝑤𝑘,𝐸  ∈  𝕎𝐸   ,where 𝕎𝑁 is the expected disturbance set for the emergency 

operational state of the plant.  

We assume the output prediction horizon is the same as the control horizon 

𝐻𝑝  =  𝐻𝑐 = 𝑁 

The algorithm is given as follows: 

Algorithm 4.1 

For 𝑘 =  1:𝑁   

1. Use the KKT optimality conditions to calculate the set of all feasible initial states at 

all time instants over the prediction horizon [98]   𝕏𝑓 (𝑘)  ≜  {𝑥𝑘|𝑘  ∈   𝕏 ∶  ∃ 𝑢.|𝑘  ∈

 𝕌} 

Let the vector of all decision variables be denoted by 

𝛤 = [𝑢.|𝑘
𝑇 , 𝑥𝑘|𝑘 , 𝜇1,    .  .  .  𝜇𝑁𝑀]𝑇                                                                  (4.25) 

 

           X𝑓
𝑚𝑖𝑛 (𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛤𝑥(𝑘) 
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                                 Subject to: 

                                  𝑥𝑘|𝑘  ∈   𝕏  

                                 𝐶(𝑥.|𝑘 , 𝑢.|𝑘, 𝑤.|𝑘 )  ≤ 0 

                                        ∇ 𝐽(𝑢.|𝑘 , 𝑥𝑘|𝑘  , 𝑤.|𝑘  )  −   ∑ 𝜇𝑖
𝑁𝑀
𝑖=1  ∇𝐶𝑖 =   0                                           

                       𝜇𝑖𝐶𝑖 = 0  𝑓𝑜𝑟 1 ≪ 𝑖 ≪ 𝑀                                                                                

                                𝜇𝑖 ≥ 0  𝑓𝑜𝑟 1 ≪ 𝑖 ≪ 𝑀                                                                                    

 

This is done for all the operational states of the plant, that is normal, disturbed and 

emergency operational states. 

 

         

   X𝑓
𝑚𝑎𝑥 (𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥𝛤𝑥(𝑘) 

                                 Subject to: 

                                  𝑥𝑘|𝑘  ∈   𝕏  

                                 𝐶(𝑥.|𝑘 , 𝑢.|𝑘, 𝑤.|𝑘 )  ≤ 0 

                                        ∇ 𝐽(𝑢.|𝑘 , 𝑥𝑘|𝑘  , 𝑤.|𝑘  )  −   ∑ 𝜇𝑖
𝑁𝑀
𝑖=1  ∇𝐶𝑖 =   0                                           

                       𝜇𝑖𝐶𝑖 = 0  𝑓𝑜𝑟 1 ≪ 𝑖 ≪ 𝑀                                                                                

                                𝜇𝑖 ≥ 0  𝑓𝑜𝑟 1 ≪ 𝑖 ≪ 𝑀                                                                                    

 

This is done for all the operational states of the plant that is normal, disturbed and emergency 

operational states. 

 

 



123 

 

2. Use the KKT optimality conditions to calculate the set of all robustly feasible initial 

states obtained by tightening the state or output constraints with the safety zones ℇ ≜

  [ ℇ𝑚𝑖𝑛 , ℇ𝑚𝑎𝑥  ] at all-time instants over the prediction horizon. 𝕏𝑅𝑓 (𝑘)  ≜

 {𝑥𝑘|𝑘  ∈   𝕏𝑅𝑓 ∶  ∃ 𝑢.|𝑘  ∈  𝕌}  

The tightened state constraints are now added to the set of constraints as follows: 

           X𝑅𝑓
𝑚𝑖𝑛 (𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛤𝑥(𝑘) 

                                 Subject to: 

                                  𝑥𝑘|𝑘  ∈   𝕏  

                                  𝑥𝑓  
𝑚𝑖𝑛(𝑘) + ℇ𝑚𝑖𝑛  ≪ 𝑥(𝑘 + 1)   ≪   𝑥𝑓  

𝑚𝑎𝑥(𝑘) − ℇ𝑚𝑖𝑛   

                                 𝐶(𝑥.|𝑘 , 𝑢.|𝑘, 𝑤.|𝑘 )  ≤ 0 

                                        ∇ 𝐽(𝑢.|𝑘 , 𝑥𝑘|𝑘  , 𝑤.|𝑘  )  −   ∑ 𝜇𝑖
𝑁𝑀
𝑖=1  ∇𝐶𝑖 =   0                                           

                       𝜇𝑖𝐶𝑖 = 0  𝑓𝑜𝑟 1 ≪ 𝑖 ≪ 𝑀                                                                                

                                𝜇𝑖 ≥ 0  𝑓𝑜𝑟 1 ≪ 𝑖 ≪ 𝑀                                                                                    

This done for all the operational states of the plant 

 

           X𝑅𝑓
𝑚𝑎𝑥 (𝑘) = 𝑎𝑟𝑔𝑚𝑎𝑥𝛤𝑥(𝑘) 

                                 Subject to: 

                                  𝑥𝑘|𝑘  ∈   𝕏  

                                  𝑥𝑓  
𝑚𝑎𝑥(𝑘) + ℇ𝑚𝑎𝑥  ≪ 𝑥(𝑘 + 1)   ≪   𝑥𝑓  

𝑚𝑎𝑥(𝑘) − ℇ𝑚𝑎𝑥   

                                 𝐶(𝑥.|𝑘 , 𝑢.|𝑘, 𝑤.|𝑘 )  ≤ 0 

                                        ∇ 𝐽(𝑢.|𝑘 , 𝑥𝑘|𝑘  , 𝑤.|𝑘  )  −   ∑ 𝜇𝑖
𝑁𝑀
𝑖=1  ∇𝐶𝑖 =   0                                           

                       𝜇𝑖𝐶𝑖 = 0  𝑓𝑜𝑟 1 ≪ 𝑖 ≪ 𝑀                                                                                

                                𝜇𝑖 ≥ 0  𝑓𝑜𝑟 1 ≪ 𝑖 ≪ 𝑀                                                                                    
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This is done for all the operational states of the plant. 

3. The Recursively Robustly Feasible MPC (RCRFMPC) optimization formulation is 

given as:         𝑢.|𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢.|𝑘
 𝐽(𝑢.|𝑘 , 𝑥𝑘|𝑘 , 𝑤.|𝑘 ) 

                                 Subject to: 

                                  𝑥𝑘|𝑘  ∈   𝕏R𝑓 

                                 𝐶(𝑥.|𝑘 , 𝑢.|𝑘, 𝑤.|𝑘 )  ≤ 0 

                                             

The RCRFMPC controllers are designed for all the operational states of the plant. The 

requirements for selecting the type of switching between the RRFMPC controllers is already 

discussed. The softly switched RCRFMPC is described as softly switched recursively 

feasible MPC (SSRCRFMPC).  

The simulation of the RCRFMPC is presented in chapter 6 of this thesis. 

 

4.3 Distributed Robustly Feasible MPC (DRFMPC) 

Design 

Model Predictive Control is typically implemented in a centralized architecture where all 

the system measurements are sent a central MPC controller and the control outputs are used 

to drive the actuators in the system.  In large-scale systems, centralized control by MPC is 

not suitable due to computation complexity, communication limitations, and flexibility in 

maintenance and management. For these reasons, many decentralized, distributed and 

hierarchical MPC architectures have been proposed and applied in the industry [6] . The 

decentralized, distributed and hierarchical MPC structure is designed to achieve the control 
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goals for the system as a centralized MPC structure with reduced communication costs, 

reduced computation complexity and provide flexibility of maintenance or management of 

the system.  

The decentralized MPC control structure has lower communication costs and faster control 

but has overall reduced performance compared to the distributed MPC control structure. 

Interactions between the subnetworks are neglected in the computation of control actions as 

each decentralized MPC computes its own local network control actions. In distributed MPC 

structure, there is communication between interacting MPC controllers to compute their 

control actions. This results in better performance than the decentralized MPC control 

approach. Coordination is very important in distributed MPC architecture. 

Different distributed MPC control approaches are compared in [118]. Coordination of 

distributed MPC is in [119] [120] [121] . Robust distributed MPC has been addressed in 

[122]. An iterative scheme for distributed MPC is used in [123] [124] . Distributed economic 

MPC is addressed in [125]. Distributed MPC based on agent negotiation is presented in 

[126]. Distributed MPC for Fault-tolerant cooperative control is presented in [127]. Non-

iterative distributed MPC is presented in [128]. 

 

In this thesis, the designed recursively robustly feasible MPC (RCRFMPC) is used to 

implement the distributed robustly feasible MPC. One of the aims of this thesis is to 

formulate coordination approach to distributed RFMPC working cooperatively to achieve a 

set of control objectives under a wide range of operational states of the plant. 
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4.3.1 Distributed Model Predictive Control Problem 

In distributed MPC [129], each MPC controls a subnetwork of the overall network. There 

are three types of decision variables to be considered: local variables, interaction variables, 

and remote variables. The local variables are strictly variables within the local subnetwork 

allocated to the local controller. The interaction variables are the variables allocated to the 

controller neighbours for information exchange. The remote variables are other variables in 

the overall network [129]. 

The standard MPC formulation [129]  can be written as: 

                                                                                        minS 𝐽 (𝑆)                                  (4.26)                                                                                                  

                                                                     Subject to: 𝐺 (𝑆)   ≪ 0 

                                                                                        𝐻 (𝑆)  = 0 

Where 𝑆 is the vector of the decision variables including control variables 𝑈 and state 

variables 𝑋 over the prediction horizon, 𝐺 (𝑆) are the inequality constraints in the system 

and 𝐻 (𝑆) are the equality constraints that must be satisfied. 

For ith MPC controller, where 𝑖 = 1,2,.  .  . , 𝑀, 

𝑆 =  𝑆𝑖
𝑙𝑜𝑐𝑎𝑙  ∪    𝑆𝑖

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  ∪   𝑆𝑖
𝑟𝑒𝑚𝑜𝑡𝑒  

The MPC formulation for each MPC [129]  is written as: 

                                                          min𝑆𝑖
𝐽𝑖  (𝑆𝑖

𝑙𝑜𝑐𝑎𝑙 , 𝑆𝑖
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 )                                  (4.27)                                                                                                  

                                                          Subject to: 𝐺𝑖 (𝑆𝑖
𝑙𝑜𝑐𝑎𝑙 , 𝑆𝑖

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛)   ≪ 0 

                                                                             𝐻𝑖 (𝑆𝑖
𝑙𝑜𝑐𝑎𝑙 , 𝑆𝑖

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛)  = 0 
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4.3.2 Cooperative Distributed RFMPC 

Cooperative Distributed MPC (DMPC) was first proposed in [130] and later developed in 

[49]. Cooperative Distributed MPC (DMPC) is presented in [48] [131] [132] [133] [134] . 

In cooperative DMPC (CDMPC) or cooperative distributed RFMPC (CDRFMPC) there is 

a communication network for exchange of information among the MPC. In CDMPC 

approach, each controller considers the effects of its inputs on the entire system using the 

global objective function or centralized objective function. Iteratively, each controller 

optimizes its own set of inputs if the rest of the inputs of its neighbours are fixed to the last 

agreed value and share the resulting optimal trajectories and a final optimal trajectory is 

computed at each sampling time as a weighted sum of the most recent optimal trajectories 

with the optimal trajectories computed at the last sampling time [48] 

The CDMPC controllers use the following implementation strategy [48]: 

1. At k, all the DMPC controllers receive the local full state measurement 𝑥𝑖(𝑘) from the 

local monitoring units. 

2. Each controller evaluates its own future input trajectory based on 𝑥𝑖(𝑘) and the latest 

received input trajectories of all the other controllers at iteration c = 1. Iteration number is 

denoted by c. 

3.  At iteration (c ≥1): the controllers exchange their future input trajectories 𝑢𝑖,𝑓(𝑘 + 𝑗|𝑘). 

Each controller calculates the current set of inputs trajectories 𝑢𝑖,𝑐(𝑘 + 𝑗|𝑘) based on the 

received future input trajectories from other controllers. 

4. If a convergence condition is satisfied, each controller sends its entire future input 

trajectory to control its local network or if the convergence condition is not satisfied, go to 

Step 3 at iteration (c←c + 1). 
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4. When a new measurement is received, go to Step 1 (k←k + 1). 

At each iteration, each controller solves the following optimization problem in (4.27). 

 

The CDMPC implementation strategy presented above [48]  has some limitations and issues 

to be addressed. In this thesis, the limitations of the cooperative implementation strategy are 

identified, and solutions are proposed for implementation. 

A typical plant is subjected to different disturbance scenarios and faults that may change its 

operational state. Normal, disturbed and emergency operational states were proposed in [2] 

A change of the operational state of the plant may imply the following: 

• change of control strategy to adapt to the operational state 

• change of model structure and a need to use a suitable model for the current 

operational state 

• change of constraints considered in the MPC design 

 

In a distributed RFMPC-controlled network, each subnetwork may be subjected to different 

disturbance scenarios and faults. The disturbance scenarios or faults in one subnetwork may 

propagate to other subnetworks and eventually degrade the performance of the overall 

network. It thus calls for a cooperative DRFMPC implementation strategy that incorporates 

the changing operational state of the plant in its operation and iteration process. 

Changing the control strategy of the local RFMPC for a subnetwork to adapt to its current 

operational state may make this local RFMPC operate non-cooperatively with other 

DRFMPC in the network. It thus calls for techniques to achieve cooperation among the 

DRFMPC when any of the controllers is changing its control strategy. 
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The question of how to guaranty feasibility, stability, performance and optimality of each 

subnetwork during the change of operational state in any of the subnetwork needs to be 

addressed in the CDMPC implementation.  

 

In this thesis, conditions that must be established and the proposed solutions for this CDMPC 

strategy is presented. 

 

4.3.2.1 Conditions for adaptive cooperative DMPC implementation 

The idea for the adaptive cooperation of DMPC presented in [135]. Fault-tolerant 

cooperative control using DMPC was proposed in [14]. In this thesis, the CDMPC 

implementation that adapts to the changing operational state of the subnetworks is described 

as adaptive cooperative DMPC. The conditions that must be put in place for adaptive 

cooperative DMPC implementation are: 

1) Models of each operational state of the subnetworks must be available. This is to be 

acquired through comprehensive system identification process which simulates all 

possible disturbance scenarios and faults and the effects on other subnetworks. The 

models must be available or known to all interacting subnetworks. 

2) The sets of robustly feasible states for each operational state of the subnetworks must 

be available. The intersection of the sets should be determined if it is nonempty. 

3) A local monitoring unit with fault detection and diagnosis mechanisms for each 

subnetwork to identify the operational state of each subnetwork must be available. 

4) The most suitable Control strategy to be used at each operational state of each 

subnetwork must be available 
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5) A mechanism for switching from one control strategy to another one in each 

subnetwork without degrading the guaranteed properties such as robust feasibility, 

stability, performance, and optimality must be available. 

6) A supervisory control to initiate the change of control strategy during the change of 

operational state in each subnetwork must be available. 

7) A communication protocol to indicate the specific operational state of each 

subnetwork must be available. 

The conditions listed above are used to develop the adaptive CDMPC (ACDMPC) 

implementation strategy. 

 

4.3.2.2 Adaptive Cooperative DMPC implementation strategy 

The proposed ACDMPC used the following implementation strategy: 

1. At k, each DMPC controller receives the local full state measurement with the type of 

operational state from its local monitoring unit and the interacting subnetwork local 

monitoring unit. The state information received at k is  

                    𝑋𝑖(𝑘) = ( 𝑋𝑖
𝑙𝑜𝑐𝑎𝑙, 𝑋𝑖

𝑜𝑝𝑒𝑟, 𝑋𝑚,𝑖𝑛𝑡𝑒𝑟
𝑙𝑜𝑐𝑎𝑙, 𝑋𝑚,𝑖𝑛𝑡𝑒𝑟

𝑜𝑝𝑒𝑟)  

Where 𝑋𝑖(𝑘) is the full state measurements received by ith local MPC at time instant k, 

 𝑋𝑖
𝑙𝑜𝑐𝑎𝑙 is the local state measurements of ith local MPC, 𝑋𝑖

𝑜𝑝𝑒𝑟 is the type of operational 

state of the ith local network which may be normal, disturbed or emergency, 𝑋𝑚,𝑖𝑛𝑡𝑒𝑟
𝑙𝑜𝑐𝑎𝑙 is 

the local state measurements of the interacting mth subnetwork and 𝑋𝑚,𝑖𝑛𝑡𝑒𝑟
𝑜𝑝𝑒𝑟 is the type 

of operational state of the mth interacting local network which may be normal, disturbed or 

emergency. 

2. Each controller evaluates its own future input trajectory based on 𝑋𝑖(𝑘) and: 
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(i) the latest received input trajectories of all the other controllers at iteration c = 1, if the 

operational state of the local network and the interacting subnetworks has not changed 

from the previous time step or 

(ii) the predicted input trajectories of all the other controllers at iteration c = 1, if the 

operational state of the local network has not changed but the operational state of the 

interacting subnetworks has changed from the previous time step or 

(iii) the predicted input trajectories of all the other controllers at iteration c = 1, if the 

operational state of the local network has changed but the operational state of the 

interacting subnetworks has not changed from the previous time step  

(iv)  the control strategy that is most suitable to adapt current operational state. Soft 

switching of the MPC controllers to change to the new control strategy implies the old 

controller strategy is gradually reduced while the new controller strategy is increased 

 

3.  At iteration (c ≥1): the controllers exchange their future input trajectories 𝑢𝑖,𝑓(𝑘 + 𝑗|𝑘). 

Each controller calculates the current set of inputs trajectories 𝑢𝑖,𝑐(𝑘 + 𝑗|𝑘) based on the 

received future input trajectories from other controllers. 

 

4. If a convergence condition is satisfied, each controller sends its entire future input 

trajectory to control its local network or if the convergence condition is not satisfied, go to 

Step 3 at iteration (c←c + 1). 

5. When a new measurement is received, go to Step 1 (k←k + 1). 

The new adaptive cooperative implementation strategy has been proposed. It is validated by 

simulation in chapter 6 of this thesis. The recursively robustly feasible MPC (RRFMPC) 
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already designed is used to implement the distributed Recursively Robustly Feasible MPC 

utilizing the adaptive cooperative MPC implementation strategy presented. 

The soft switching mechanism is designed in chapter 5 of this thesis to achieve soft 

switching between two recursively robustly feasible MPC controllers. The arrangement is 

described as Distributed Softly Switched Robustly Feasible MPC (DSSRFMPC). The 

design of DSSRFMPC is presented in Chapter 5 of this thesis. 

 

4.4 Summary 

Robustly Feasible Model Predictive Control (RFMPC) design was presented in this chapter. 

The architecture and basic control structure of a basic MPC was presented. Different 

approaches to RFMPC design was discussed. Robust feasibility of a nominal model was 

presented, robust feasibility and recursive feasibility of a nominal model were established 

by using KKT conditions to calculate robustly feasible and recursive feasible initial states 

for all operational states of the plant over the prediction horizon. Robustly feasible invariant 

sets were presented based on set invariance theory. DRFMPC design was presented. The 

existing CDMPC coordination strategy was discussed and the limitations identified. The 

proposed implementation strategy for adaptive cooperative MPC that addressed the 

limitations of the existing CDMPC coordination strategy was presented. 
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Chapter 5 

Soft Switching for Distributed Robustly 

Feasible Model Predictive Control  

In this Chapter, Soft switching for Distributed Robustly Feasible Model Predictive Control 

design is presented in section 5.1. The distributed softly switched robustly feasible MPC 

(DSSRFMPC) components and the soft switching operation scenarios are presented in 

section 5.2. The soft switching design and analysis is presented in section 5.3. The summary 

is presented in section 5.4 

 

5.1 Soft Switching of Robustly Feasible Model Predictive 

Controllers 

The reliable and sustainable operation of the CIS or large-scale systems under different 

operational conditions such as sensor faults, actuator faults, CIS components faults, failures 

of communication links or anomalies occurring in the technological operation of the CIS 

physical processes is desirable [2]. The CIS operational state may change due to the faults 

in the CIS components, faults in the sensors or actuators, disturbance inputs not captured in 

the robust controller design and faults in the communication channels used in the CIS. 

A given plant may be required to meet different sets of control objectives under different 

disturbance scenarios. This calls for the application of multiple MPC controllers each with 

a specific control strategy and model to achieve different control objectives for a specific 
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operational state of the plant. The MPC with the most suitable control strategy and 

components for the current operational state of the plant is now switched to from the MPC 

that is been used before. 

The current operational state (OS) of a CIS is determined by the states of the CIS processes, 

states of CIS components, states of all sensors, states of all actuators, disturbance inputs, 

states of the communication channels and current operating ranges of the processes [2]. The 

knowledge of the current operational state of the CIS enables the controllers to use the most 

suitable control strategy to achieve the control objectives at this operational state.  

The switching of MPC from the old to the new one can be done in two ways: hard or soft. 

Hard switching implies engaging the new MPC instantly and putting it to use. The effects 

of hard switching are a generation of impulsive transients and spikes that may damage the 

actuators. In hard switching, the new MPC may not generate feasible control actions if the 

initial state of the plant at the time of switching is not inside the robustly feasible set of the 

new MPC [24]. 

Soft switching is a gradual process of engaging the new MPC while disengaging the old 

MPC. The effects of soft switching are smoothening of impulsive transients and 

achievement of robust feasibility [98]. 

The idea of using soft switching for MPC is presented in [22] [24] [98]. Three operational 

states were proposed, and they are normal, disturbed and emergency operational states. In 

[24], supervised soft switching of RFMPC is presented using the linear time-invariant 

system with bounded additive disturbances. In [23], the earlier work by [24]  was further 

improved to soft switching for nonlinear systems.  
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In this thesis, the approach to the soft switching of RFMPCs is different from the earlier 

work done by [23] [24]. This thesis considers soft switching of RFMPCs in a distributed 

RFMPC framework working cooperatively and utilizing iterative coordination algorithms 

for computation of its control actions. The following factors are considered in the soft 

switching design for distributed robustly feasible model predictive controllers: 

• The effects of disturbances and faults on a local network and the interacting 

subnetworks. The effects of faults or disturbances may propagate from one local 

network to the interacting local networks 

• The coordination strategy to be used during the soft switching process 

• The effect of change of control strategy by a distributed RFMPC controller 

• The duration of the soft switching process and how robust feasibility is guaranteed 

in the local network other interacting local networks 

• What initiates the soft switching process and terminates it 

 

5.1.1 Soft Switching system components 

The soft switching system is made up of different components and they are:  

• fault management unit 

• supervisory control unit 

• switching box 

• Softly switched RFMPC controllers 

The soft switching system is illustrated in Figure 5.1. 
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In this thesis, the soft switching system is distributed, that is each subnetwork of the overall 

network has its own soft switching system. 

 

 

 

 

 

 

 

 

Figure 5.1 Soft switching system components 

 

In Figure 5.1, the monitoring unit delivers all measurement information to the fault 

management unit and the supervisory control. The fault management unit consists of the 

fault detection and isolation system which access the faults and disturbances in the local 

network based on the monitoring information. The fault management unit delivers the 

information on the faults in the network to the supervisory control. The supervisory control 

uses the information from the fault management unit and the monitoring unit to determine 

the operational state of the local network. The supervisory control selects the most suitable 

RFMPC controllers and activates the soft switching box to execute the soft switching 

process. 
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The question to be answered is what makes a specific RFMPC controller suitable for a 

specific operational state.  

1) The RFMPC must have the suitable model for the RFMPC to use for prediction of 

the future behaviour of the plant at this operational state. This implies that different 

models must be used for different operational states of the plant.  

2) The RFMPC must have the suitable control strategy which is defined by the objective 

function of the RFMPC controller to achieve the possible control objective at this 

operational state. It is worth noting that some operational states may require a new 

control strategy different from the old RFMPC to achieve new control objectives if 

there is no possibility of achieving the old control objectives. 

3) The RFMPC must have the suitable constraints formulation for the operational state 

and satisfy the system’s constraints in computing its control actions. 

4) The RFMPC must guaranty certain properties such as robust feasibility and stability 

of the plant at this operational state.  

 

5.2 Soft Switching of Distributed Robustly Feasible 

Model Predictive Controllers 

Large-scale systems control is usually addressed in multi-agent distributed MPC framework. 

The entire large-scale system is decomposed or partitioned into interacting subnetworks and 

each subnetwork or local network is controlled by an MPC or RFMPC. For large-scale 

systems incorporating distributed soft switching of RFMPC controllers, different scenarios 

of soft switching procedures are proposed in this thesis. 
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In presenting these soft switching scenarios for distributed RFMPC controllers, two 

interacting local networks are used as examples. The interaction between the local networks 

may be through the flow of materials and energy or through inputs or states. Strong 

interactions between the local networks imply there are interaction or shared variables 

between the local networks and cannot be neglected when the control actions for the local 

networks is computed by the RFMPC controllers. The scenarios present soft switching of 

distributed RFMPC controllers at different operational states of each of the local network. 

We consider Local network 1 and Local network 2 as interacting subnetworks of an overall 

network. 

 

Soft switching of distributed RFMPC controllers Scenario 1: Local network 1 is in normal 

operational state and Local network 2 is in the normal operational state. There is no soft 

switching because there is no change of operational state in the local networks. The 

coordination strategy is: 

 

1. At k, Local network 1 and Local network 2 DRFMPC controllers receive the local full 

state measurements. The state information received at k is  

                    𝑋1(𝑘) = ( 𝑋1
𝑙𝑜𝑐𝑎𝑙, 𝑋1

𝑛𝑜𝑟𝑚𝑎𝑙, 𝑋2
𝑙𝑜𝑐𝑎𝑙, 𝑋2

𝑛𝑜𝑟𝑚𝑎𝑙)  

 

                 𝑋2(𝑘) = ( 𝑋2
𝑙𝑜𝑐𝑎𝑙, 𝑋2

𝑛𝑜𝑟𝑚𝑎𝑙, 𝑋1
𝑙𝑜𝑐𝑎𝑙, 𝑋1

𝑛𝑜𝑟𝑚𝑎𝑙) 

 

Where 𝑋1(𝑘) is the full state measurements received by local network 1 RFMPC at time 

instant k, and 𝑋2(𝑘) is the full state measurements received by local network 2 RFMPC at 
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time instant k,  𝑋1
𝑙𝑜𝑐𝑎𝑙 is the local state measurements of  local network 1, 𝑋1

𝑛𝑜𝑟𝑚𝑎𝑙 is the 

normal operational state of the local network 1, 𝑋2
𝑙𝑜𝑐𝑎𝑙 is the local state measurements of  

local network 2, 𝑋2
𝑛𝑜𝑟𝑚𝑎𝑙 is the normal operational state of the local network 2. 

 

2.  Local network 1 RFMPC controller evaluates its own future input trajectory based on 

𝑋1(𝑘),  𝐺1,𝑛(𝑘),  𝐽1,𝑛(𝑘)   and the latest received input trajectories of Local network 2 

RFMPC controller at iteration c = 1; Local network 2 RFMPC controller evaluates its own 

future input trajectory based on 𝑋2(𝑘),  𝐺2,𝑛(𝑘),  𝐽2,𝑛(𝑘) and the latest received input 

trajectories of Local network 1 RFMPC controller at iteration c = 1, where c is the iteration 

number,  𝐺1,𝑛(𝑘) is the normal operational state model of local network 1,  𝐽1,𝑛(𝑘) is the 

control strategy and objective function for local network 1 normal operational state,  𝐺2,𝑛(𝑘) 

is the normal operational state model of local network 2 and  𝐽2,𝑛(𝑘) is the control strategy 

and objective function for local network 2 normal operational state 

 

 

3.  At iteration (c ≥1): the local network controllers RFMPC 1 and RFMPC 2 exchange their 

future input trajectories 𝑢1,𝑓(𝑘 + 𝑗|𝑘) and  𝑢2,𝑓(𝑘 + 𝑗|𝑘) . RFMPC 1 controller calculates 

the current set of inputs trajectories 𝑢1,𝑐(𝑘 + 𝑗|𝑘) based on the received future input 

trajectories 𝑢2,𝑓(𝑘 + 𝑗|𝑘) from RFMPC 2 controller and RFMPC 2 controller calculates the 

current set of inputs trajectories 𝑢2,𝑐(𝑘 + 𝑗|𝑘) based on the received future input trajectories 

𝑢1,𝑓(𝑘 + 𝑗|𝑘) from RFMPC 1 controller. 
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4. If a convergence condition is satisfied, the RFMPC1 controller sends its entire future input 

trajectory to control local network 1 actuators and the RFMPC2 controller sends its entire 

future input trajectory to control local network 2 actuators or if the convergence condition 

is not satisfied, go to Step 3 at iteration (c←c + 1). 

 

5. When a new measurement is received, go to Step 1 (k←k + 1). 

 

 

Soft switching of distributed RFMPC controllers Scenario 2: Local network 1 is in normal 

operational state and Local network 2 is in disturbed operational state. There is soft 

switching in local network 2 because there is a change of operational state in the local 

network 2 from normal to disturbed operational state. The coordination strategy is: 

 

1. At k, Local network 1 and Local network 2 DRFMPC controllers receive the local full 

state measurements. The state information received at k is  

                    𝑋1(𝑘) = ( 𝑋1
𝑙𝑜𝑐𝑎𝑙, 𝑋1

𝑛𝑜𝑟𝑚𝑎𝑙, 𝑋2
𝑙𝑜𝑐𝑎𝑙, 𝑋2

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑)  

 

                 𝑋2(𝑘) = ( 𝑋2
𝑙𝑜𝑐𝑎𝑙, 𝑋2

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑, 𝑋1
𝑙𝑜𝑐𝑎𝑙, 𝑋1

𝑛𝑜𝑟𝑚𝑎𝑙) 

 

Where 𝑋1(𝑘) is the full state measurements received by local network 1 RFMPC at time 

instant k, and 𝑋2(𝑘) is the full state measurements received by local network 2 RFMPC at 

time instant k,  𝑋1
𝑙𝑜𝑐𝑎𝑙 is the local state measurements of  local network 1, 𝑋1

𝑛𝑜𝑟𝑚𝑎𝑙 is the 
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normal operational state of the local network 1, 𝑋2
𝑙𝑜𝑐𝑎𝑙 is the local state measurements of  

local network 2, 𝑋2
𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 is the disturbed operational state of the local network 2. 

 

2.   Local network 1 RFMPC controller evaluates its own future input trajectory based on 

𝑋1(𝑘),  𝐺1,𝑛(𝑘),  𝐽1,𝑛(𝑘)   and the predicted input trajectories of Local network 2 RFMPC 

controller based on available disturbed operational state model and objective function 

𝐺2,𝑑(𝑘), 𝐽2,𝑑(𝑘) at iteration c = 1; Local network 2 RFMPC controller evaluates its own 

future input trajectory based on 𝑋2(𝑘),  𝐺2,𝑑(𝑘),  𝐽2,𝑑(𝑘) and the latest received input 

trajectories of Local network 1 RFMPC controller at iteration c = 1, where c is the iteration 

number,  𝐺1,𝑛(𝑘) is the normal operational state model of local network 1,  𝐽1,𝑛(𝑘) is the 

control strategy and objective function for local network 1 normal operational state,  𝐺2,𝑑(𝑘) 

is the disturbed operational state model of local network 2 and  𝐽2,𝑑(𝑘) is the control strategy 

and objective function for local network 2 for the disturbed operational state 

 

3.  At iteration (c ≥1): the local network controllers RFMPC 1 and RFMPC 2 exchange their 

future input trajectories 𝑢1,𝑓(𝑘 + 𝑗|𝑘) and  𝑢2,𝑓(𝑘 + 𝑗|𝑘) . RFMPC 1 controller calculates 

the current set of inputs trajectories 𝑢1,𝑐(𝑘 + 𝑗|𝑘) based on the received future input 

trajectories 𝑢2,𝑓(𝑘 + 𝑗|𝑘) from RFMPC 2 controller and RFMPC 2 controller calculates the 

current set of inputs trajectories 𝑢2,𝑐(𝑘 + 𝑗|𝑘) based on the received future input trajectories 

𝑢1,𝑓(𝑘 + 𝑗|𝑘) from RFMPC 1 controller. 

 

4. If a convergence condition is satisfied, the RFMPC1 controller sends its entire future input 

trajectory to control local network 1 actuators and the RFMPC2 controller sends its entire 
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future input trajectory to control local network 2 actuators or if the convergence condition 

is not satisfied, go to Step 3 at iteration (c←c + 1). 

 

5. When a new measurement is received, go to Step 1 (k←k + 1). 

 

Soft switching of distributed RFMPC controllers Scenario 3: Local network 1 is in normal 

operational state and Local network 2 is in the emergency operational state. There is soft 

switching in local network 2 because there is a change of operational state in the local 

network 2 from normal to emergency operational state. The coordination strategy is: 

 

1. At k, Local network 1 and Local network 2 DRFMPC controllers receive the local full 

state measurements. The state information received at k is  

                    𝑋1(𝑘) = ( 𝑋1
𝑙𝑜𝑐𝑎𝑙, 𝑋1

𝑛𝑜𝑟𝑚𝑎𝑙, 𝑋2
𝑙𝑜𝑐𝑎𝑙, 𝑋2

𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦)  

 

                 𝑋2(𝑘) = ( 𝑋2
𝑙𝑜𝑐𝑎𝑙, 𝑋2

𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦, 𝑋1
𝑙𝑜𝑐𝑎𝑙, 𝑋1

𝑛𝑜𝑟𝑚𝑎𝑙) 

 

Where 𝑋1(𝑘) is the full state measurements received by local network 1 RFMPC at time 

instant k, and 𝑋2(𝑘) is the full state measurements received by local network 2 RFMPC at 

time instant k,  𝑋1
𝑙𝑜𝑐𝑎𝑙 is the local state measurements of  local network 1, 𝑋1

𝑛𝑜𝑟𝑚𝑎𝑙 is the 

normal operational state of the local network 1, 𝑋2
𝑙𝑜𝑐𝑎𝑙 is the local state measurements of  

local network 2, 𝑋2
𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 is the disturbed operational state of the local network 2. 
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2.  Local network 1 RFMPC controller evaluates its own future input trajectory based on 

𝑋1(𝑘),  𝐺1,𝑛(𝑘),  𝐽1,𝑛(𝑘)   and the predicted input trajectories of Local network 2 RFMPC 

controller based on available emergency operational state model and objective function 

𝐺2,𝑒(𝑘), 𝐽2,𝑒(𝑘) at iteration c = 1; Local network 2 RFMPC controller evaluates its own 

future input trajectory based on 𝑋2(𝑘),  𝐺2,𝑒(𝑘),  𝐽2,𝑒(𝑘) and the latest received input 

trajectories of Local network 1 RFMPC controller at iteration c = 1, where c is the iteration 

number,  𝐺1,𝑛(𝑘) is the normal operational state model of local network 1,  𝐽1,𝑛(𝑘) is the 

control strategy and objective function for local network 1 normal operational state,  𝐺2,𝑒(𝑘) 

is the emergency operational state model of local network 2 and  𝐽2,𝑒(𝑘) is the control 

strategy and objective function for local network 2 for the emergency operational state 

 

3.  At iteration (c ≥1): the local network controllers RFMPC 1 and RFMPC 2 exchange their 

future input trajectories 𝑢1,𝑓(𝑘 + 𝑗|𝑘) and  𝑢2,𝑓(𝑘 + 𝑗|𝑘) . RFMPC 1 controller calculates 

the current set of inputs trajectories 𝑢1,𝑐(𝑘 + 𝑗|𝑘) based on the received future input 

trajectories 𝑢2,𝑓(𝑘 + 𝑗|𝑘) from RFMPC 2 controller and RFMPC 2 controller calculates the 

current set of inputs trajectories 𝑢2,𝑐(𝑘 + 𝑗|𝑘) based on the received future input trajectories 

𝑢1,𝑓(𝑘 + 𝑗|𝑘) from RFMPC 1 controller. 

 

4. If a convergence condition is satisfied, the RFMPC1 controller sends its entire future input 

trajectory to control local network 1 actuators and the RFMPC2 controller sends its entire 

future input trajectory to control local network 2 actuators or if the convergence condition 

is not satisfied, go to Step 3 at iteration (c←c + 1). 
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5. When a new measurement is received, go to Step 1 (k←k + 1). 

Soft switching of distributed RFMPC controllers Scenario 4: Local network 1 is in 

disturbed operational state and Local network 2 is in disturbed operational state. There is 

soft switching in local network 1 and local network 2 because there is a change of operational 

state in the local network 1 and local network 2 from normal to disturbed operational state. 

The coordination strategy is: 

 

1. At k, Local network 1 and Local network 2 DRFMPC controllers receive the local full 

state measurements. The state information received at k is  

                    𝑋1(𝑘) = ( 𝑋1
𝑙𝑜𝑐𝑎𝑙, 𝑋1

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑, 𝑋2
𝑙𝑜𝑐𝑎𝑙, 𝑋2

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑)  

 

                 𝑋2(𝑘) = ( 𝑋2
𝑙𝑜𝑐𝑎𝑙, 𝑋2

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑, 𝑋1
𝑙𝑜𝑐𝑎𝑙, 𝑋1

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑) 

 

Where 𝑋1(𝑘) is the full state measurements received by local network 1 RFMPC at time 

instant k, and 𝑋2(𝑘) is the full state measurements received by local network 2 RFMPC at 

time instant k,  𝑋1
𝑙𝑜𝑐𝑎𝑙 is the local state measurements of  local network 1, 𝑋1

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 is the 

disturbed operational state of the local network 1, 𝑋2
𝑙𝑜𝑐𝑎𝑙 is the local state measurements of  

local network 2, 𝑋2
𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 is the disturbed operational state of the local network 2. 

 

2.  Local network 1 RFMPC controller evaluates its own future input trajectory based on 

𝑋1(𝑘),  𝐺1,𝑑(𝑘),  𝐽1,𝑑(𝑘)   and the predicted input trajectories of Local network 2 RFMPC 

controller based on available disturbed operational state model and objective function 
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𝐺2,𝑑(𝑘), 𝐽2,𝑑(𝑘) at iteration c = 1; Local network 2 RFMPC controller evaluates its own 

future input trajectory based on 𝑋2(𝑘),  𝐺2,𝑑(𝑘),  𝐽2,𝑑(𝑘) and the predicted input trajectories 

of Local network 1 RFMPC controller based on  𝐺1,𝑑(𝑘),  𝐽1,𝑑(𝑘) at iteration c = 1, where c 

is the iteration number,  𝐺1,𝑑(𝑘) is the disturbed operational state model of local network 1, 

 𝐽1,𝑑(𝑘) is the control strategy and objective function for local network 1 disturbed 

operational state,  𝐺2,𝑑(𝑘) is the disturbed operational state model of local network 2 and 

 𝐽2,𝑑(𝑘) is the control strategy and objective function for local network 2 for the disturbed 

operational state 

 

3.  At iteration (c ≥1): the local network controllers RFMPC 1 and RFMPC 2 exchange their 

future input trajectories 𝑢1,𝑓(𝑘 + 𝑗|𝑘) and  𝑢2,𝑓(𝑘 + 𝑗|𝑘) . RFMPC 1 controller calculates 

the current set of inputs trajectories 𝑢1,𝑐(𝑘 + 𝑗|𝑘) based on the received future input 

trajectories 𝑢2,𝑓(𝑘 + 𝑗|𝑘) from RFMPC 2 controller and RFMPC 2 controller calculates the 

current set of inputs trajectories 𝑢2,𝑐(𝑘 + 𝑗|𝑘) based on the received future input trajectories 

𝑢1,𝑓(𝑘 + 𝑗|𝑘) from RFMPC 1 controller. 

 

4. If a convergence condition is satisfied, the RFMPC1 controller sends its entire future input 

trajectory to control local network 1 actuators and the RFMPC2 controller sends its entire 

future input trajectory to control local network 2 actuators or if the convergence condition 

is not satisfied, go to Step 3 at iteration (c←c + 1). 

 

5. When a new measurement is received, go to Step 1 (k←k + 1). 
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Soft switching of distributed RFMPC controllers Scenario 5: Local network 1 is in 

disturbed operational state and Local network 2 is in the emergency operational state. There 

is soft switching in local network 1 and local network 2 because there is a change of 

operational state in the local network 1 from normal to disturbed operational state and local 

network 2 from normal to emergency operational state. The coordination strategy is: 

 

1. At k, Local network 1 and Local network 2 DRFMPC controllers receive the local full 

state measurements. The state information received at k is  

                    𝑋1(𝑘) = ( 𝑋1
𝑙𝑜𝑐𝑎𝑙, 𝑋1

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑, 𝑋2
𝑙𝑜𝑐𝑎𝑙, 𝑋2

𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦)  

 

                 𝑋2(𝑘) = ( 𝑋2
𝑙𝑜𝑐𝑎𝑙, 𝑋2

𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦, 𝑋1
𝑙𝑜𝑐𝑎𝑙, 𝑋1

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑) 

 

Where 𝑋1(𝑘) is the full state measurements received by local network 1 RFMPC at time 

instant k, and 𝑋2(𝑘) is the full state measurements received by local network 2 RFMPC at 

time instant k,  𝑋1
𝑙𝑜𝑐𝑎𝑙 is the local state measurements of  local network 1, 𝑋1

𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 is the 

disturbed operational state of the local network 1, 𝑋2
𝑙𝑜𝑐𝑎𝑙 is the local state measurements of  

local network 2, 𝑋2
𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 is the emergency operational state of the local network 2. 

 

2.  Local network 1 RFMPC controller evaluates its own future input trajectory based on 

𝑋1(𝑘),  𝐺1,𝑑(𝑘),  𝐽1,𝑑(𝑘)   and the predicted input trajectories of Local network 2 RFMPC 

controller based on available emergency operational state model and objective function 

𝐺2,𝑒(𝑘), 𝐽2,𝑒(𝑘) at iteration c = 1; Local network 2 RFMPC controller evaluates its own 

future input trajectory based on 𝑋2(𝑘),  𝐺2,𝑒(𝑘),  𝐽2,𝑒(𝑘) and the predicted input trajectories 
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of Local network 1 RFMPC controller based on  𝐺1,𝑑(𝑘),  𝐽1,𝑑(𝑘) at iteration c = 1, where c 

is the iteration number,  𝐺1,𝑑(𝑘) is the disturbed operational state model of local network 1, 

 𝐽1,𝑑(𝑘) is the control strategy and objective function for local network 1 disturbed 

operational state,  𝐺2,𝑒(𝑘) is the disturbed operational state model of local network 2 and 

 𝐽2,𝑒(𝑘) is the control strategy and objective function for local network 2 for the emergency 

operational state 

 

3.  At iteration (c ≥1): the local network controllers RFMPC 1 and RFMPC 2 exchange their 

future input trajectories 𝑢1,𝑓(𝑘 + 𝑗|𝑘) and  𝑢2,𝑓(𝑘 + 𝑗|𝑘) . RFMPC 1 controller calculates 

the current set of inputs trajectories 𝑢1,𝑐(𝑘 + 𝑗|𝑘) based on the received future input 

trajectories 𝑢2,𝑓(𝑘 + 𝑗|𝑘) from RFMPC 2 controller and RFMPC 2 controller calculates the 

current set of inputs trajectories 𝑢2,𝑐(𝑘 + 𝑗|𝑘) based on the received future input trajectories 

𝑢1,𝑓(𝑘 + 𝑗|𝑘) from RFMPC 1 controller. 

 

4. If a convergence condition is satisfied, the RFMPC1 controller sends its entire future input 

trajectory to control local network 1 actuators and the RFMPC2 controller sends its entire 

future input trajectory to control local network 2 actuators or if the convergence condition 

is not satisfied, go to Step 3 at iteration (c←c + 1). 

 

5. When a new measurement is received, go to Step 1 (k←k + 1). 

 

 



148 

 

Soft switching of distributed RFMPC controllers Scenario 6: Local network 1 is in 

emergency operational state and Local network 2 is in the emergency operational state. 

There is soft switching in local network 1 and local network 2 because there is a change of 

operational state in the local network 1 from normal to emergency operational state and local 

network 2 from normal to emergency operational state. The coordination strategy is: 

 

1. At k, Local network 1 and Local network 2 DRFMPC controllers receive the local full 

state measurements. The state information received at k is  

                    𝑋1(𝑘) = ( 𝑋1
𝑙𝑜𝑐𝑎𝑙, 𝑋1

𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 , 𝑋2
𝑙𝑜𝑐𝑎𝑙, 𝑋2

𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦)  

 

                 𝑋2(𝑘) = ( 𝑋2
𝑙𝑜𝑐𝑎𝑙, 𝑋2

𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦, 𝑋1
𝑙𝑜𝑐𝑎𝑙, 𝑋1

𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦) 

 

Where 𝑋1(𝑘) is the full state measurements received by local network 1 RFMPC at time 

instant k, and 𝑋2(𝑘) is the full state measurements received by local network 2 RFMPC at 

time instant k,  𝑋1
𝑙𝑜𝑐𝑎𝑙 is the local state measurements of  local network 1, 𝑋1

𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 is 

the emergency operational state of the local network 1, 𝑋2
𝑙𝑜𝑐𝑎𝑙 is the local state 

measurements of  local network 2, 𝑋2
𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 is the emergency operational state of the 

local network 2. 

 

2.  Local network 1 RFMPC controller evaluates its own future input trajectory based on 

𝑋1(𝑘),  𝐺1,𝑒(𝑘),  𝐽1,𝑒(𝑘)   and the predicted input trajectories of Local network 2 RFMPC 

controller based on available emergency operational state model and objective function 

𝐺2,𝑒(𝑘), 𝐽2,𝑒(𝑘) at iteration c = 1; Local network 2 RFMPC controller evaluates its own 
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future input trajectory based on 𝑋2(𝑘),  𝐺2,𝑒(𝑘),  𝐽2,𝑒(𝑘) and the predicted input trajectories 

of Local network 1 RFMPC controller based on  𝐺1,𝑒(𝑘),  𝐽1,𝑒(𝑘) at iteration c = 1, where c 

is the iteration number,  𝐺1,𝑒(𝑘) is the emergency operational state model of local network 

1,  𝐽1,𝑒(𝑘) is the control strategy and objective function for local network 1 emergency 

operational state,  𝐺2,𝑒(𝑘) is the emergency operational state model of local network 2 and 

 𝐽2,𝑒(𝑘) is the control strategy and objective function for local network 2 for the emergency 

operational state 

 

3.  At iteration (c ≥1): the local network controllers RFMPC 1 and RFMPC 2 exchange their 

future input trajectories 𝑢1,𝑓(𝑘 + 𝑗|𝑘) and  𝑢2,𝑓(𝑘 + 𝑗|𝑘) . RFMPC 1 controller calculates 

the current set of inputs trajectories 𝑢1,𝑐(𝑘 + 𝑗|𝑘) based on the received future input 

trajectories 𝑢2,𝑓(𝑘 + 𝑗|𝑘) from RFMPC 2 controller and RFMPC 2 controller calculates the 

current set of inputs trajectories 𝑢2,𝑐(𝑘 + 𝑗|𝑘) based on the received future input trajectories 

𝑢1,𝑓(𝑘 + 𝑗|𝑘) from RFMPC 1 controller. 

 

4. If a convergence condition is satisfied, the RFMPC1 controller sends its entire future input 

trajectory to control local network 1 actuators and the RFMPC2 controller sends its entire 

future input trajectory to control local network 2 actuators or if the convergence condition 

is not satisfied, go to Step 3 at iteration (c←c + 1). 

 

5. When a new measurement is received, go to Step 1 (k←k + 1). 
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The coordination strategy for all the distributed RFMPC soft switching scenarios is verified 

through simulation study in chapter 6 of this thesis. 

 

5.3 Soft switching analysis  

Consider a system 

                                                   𝑥(𝑘 + 1) =   𝑓(𝑥(𝑘), 𝑢(𝑘),𝑤(𝑘))                                   (5.1) 

                                             𝑦(𝑘)  = ℎ (𝑥(𝑘))  

With 𝑓 ∶  ℝ𝑛  ×   ℝ𝑙  ×  ℝ𝑝  →  ℝ𝑞  , 𝑥(𝑘)  ∈   ℝ𝑛 , 𝑢(𝑘)  ∈   ℝ𝑙  , 𝑦(𝑘)  ∈   ℝ𝑚  , 𝑤(𝑘)  ∈

  ℝ𝑝 , 𝑥(𝑘) denotes the state of the system, 𝑢(𝑘) denotes the control input, 𝑦(𝑘)  denotes the 

plant output and 𝑤(𝑘) is an unknown disturbance. The system constraints are convex sets 

containing the origin in their interior:  

 𝑥(𝑘)   ∈  𝕏, 𝑢(𝑘) ∈   𝕌, 𝑦(𝑘) ∈   𝕐, 𝑤(𝑘)  ∈  𝕎; Assuming the output and control 

prediction horizon is the same 

𝐻𝑝 = 𝐻𝑐 

Let 𝛤.|𝑘 = [ 𝑢.|𝑘
𝑇 , 𝑥.|𝑘

𝑇 , 𝑦.|𝑘
𝑇 ] be the set of all decision variables where 

𝑢.|𝑘 = [ 𝑢(𝑘) .  .  . 𝑢(𝑘 + 𝐻𝑝 − 1)] 

𝑥.|𝑘 = [ 𝑥(𝑘) .  .  . 𝑥(𝑘 + 𝐻𝑝 − 1)] 

𝑦.|𝑘 = [ 𝑦(𝑘) .  .  . 𝑦(𝑘 + 𝐻𝑝 − 1)] 

Let the objective function be: 
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      𝐽( 𝛤.|𝑘 , 𝑥(𝑘 + 𝐻𝑝|𝑘 )  )                                                                                (5.2) 

 𝕏𝑅𝑓,𝑆 (𝑘) is the robustly feasible initial states at each time instant k 

Consider the finite horizon RFMPC optimization task at time instant k: 

                               𝑚𝑖𝑛𝛤.|𝑘 ,𝑥(𝑘+ 𝐻𝑝|𝑘 )𝐽( 𝛤.|𝑘 , 𝑥(𝑘 + 𝐻𝑝|𝑘 )  )                               (5.3) 

                           Subject to: 𝑥(𝑘|𝑘) = 𝑥(𝑘)  ∈  𝕏𝑅𝑓,𝑆  

                           𝐹( 𝛤(𝑘 + 𝑖|𝑘), 𝑤(𝑘 + 𝑖|𝑘)) = 0 

𝑥(𝑘 + 1 + 𝑖|𝑘) =   𝑓(𝑥(𝑘 + 𝑖|𝑘), 𝛤(𝑘 + 𝑖|𝑘), 𝑤(𝑘 + 𝑖|𝑘) ) 

                         𝑥(𝑘 + 𝑖|𝑘)  + ℇ𝑚𝑖𝑛   ≪  𝑥(𝑘 + 1 + 𝑖|𝑘)  ≪   𝑥(𝑘 + 𝑖|𝑘) − ℇ𝑚𝑎𝑥 

                        𝑥(𝑘 + 1 + 𝑖|𝑘)   ∈  𝕏𝑅𝑓,𝑆 , 𝑖 = 0: 𝐻𝑝
̅̅ ̅̅ ̅̅ ̅ 

                        𝑢(𝑘 + 1 + 𝑖|𝑘)   ∈  𝕌 , 𝑖 = 0: 𝐻𝑝
̅̅ ̅̅ ̅̅ ̅ 

                         𝑦(𝑘 + 1 + 𝑖|𝑘)   ∈  𝕐 , 𝑖 = 0: 𝐻𝑝
̅̅ ̅̅ ̅̅ ̅                      

Where ℇ = [ℇ𝑚𝑖𝑛, ℇ𝑚𝑎𝑥] denotes the safety zones. 

 

Let 𝐽( 𝛤.|𝑘 , 𝑥(𝑘 + 𝐻𝑝|𝑘 )  ) = (𝑌𝑟𝑒𝑓 − 𝑌𝑜𝑢𝑡)𝑇(𝑌𝑟𝑒𝑓 − 𝑌𝑜𝑢𝑡)  +   ∆𝑢𝑇∆𝑢         (5.4) 

 

Where 𝑌𝑟𝑒𝑓 = Reference output; 𝑌𝑜𝑢𝑡 is the real plant output and it is predicted using the 

model of the plant; ∆𝑢 is the incremental input that is used to steer the system to the desired 

state. 
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For a plant where the state is the output of the system: 

Let      𝑢(𝑘|𝑘) =  𝑢(𝑘)  +  ∆𝑢(𝑘|𝑘)                                                                           (5.5) 

Where 𝑢(𝑘|𝑘) is the input value at time instant k; 𝑢(𝑘) is the initial value of input at time 

instant k; and ∆𝑢(𝑘|𝑘)  is the calculated incremental input at time instant k. 

Let  𝑌𝑜𝑢𝑡(𝑘|𝑘) =  𝑦(𝑘)  +  ∆𝑦(𝑘|𝑘)                                                                        (5.6) 

Where 𝑌𝑜𝑢𝑡(𝑘|𝑘) is the predicted plant output at time instant k; 𝑦(𝑘) is the initial value of 

output at time instant k; and ∆𝑦(𝑘|𝑘)  is the calculated incremental output at time instant k. 

∆𝑦(𝑘|𝑘) =  𝐴𝑚𝑜𝑑𝑒𝑙(𝑘)   ×  ∆𝑢(𝑘|𝑘)                                                                         (5.7)      

𝑦(𝑘) =   𝐴𝑚𝑜𝑑𝑒𝑙(𝑘)  ×   𝑢(𝑘|𝑘)                                                                                (5.8) 

𝑌𝑜𝑢𝑡(𝑘|𝑘) =  𝐴𝑚𝑜𝑑𝑒𝑙(𝑘)  ×   𝑢(𝑘)  +  𝐴𝑚𝑜𝑑𝑒𝑙(𝑘)   ×  ∆𝑢(𝑘|𝑘)                              (5.9) 

Where  𝐴𝑚𝑜𝑑𝑒𝑙(𝑘)   is the time-varying model of the plant. 

Equation (5.4) can now be written as: 

𝐽( 𝛤.|𝑘 , 𝑦(𝑘 + 𝐻𝑝|𝑘 )  ) = (𝑌𝑟𝑒𝑓 − 𝑌𝑜𝑢𝑡)𝑇(𝑌𝑟𝑒𝑓 − 𝑌𝑜𝑢𝑡)  +   ∆𝑢𝑇∆𝑢                 (5.10) 

𝑚𝑖𝑛𝛤.|𝑘 ,𝑦(𝑘+ 𝐻𝑝|𝑘 )𝐽( 𝛤.|𝑘 , 𝑦(𝑘 + 𝐻𝑝|𝑘 )  ) 

 = ∆𝑢𝑇(𝐴𝑚𝑜𝑑𝑒𝑙(𝑘)𝑇𝐴𝑚𝑜𝑑𝑒𝑙(𝑘)  +  𝐼) ∆𝑢   +    2𝐴𝑚𝑜𝑑𝑒𝑙(𝑘)𝑇∆𝑢𝑇(𝑌𝑜𝑢𝑡(𝑘|𝑘) − 𝑌𝑟𝑒𝑓) 

Where I am the identity matrix;  𝐴𝑚𝑜𝑑𝑒𝑙(𝑘) is the time-varying prediction model of the plant 

and is determined by the operational state of the plant and 𝑌𝑟𝑒𝑓 is the reference output. 

Let the time instant of change of operational state of the plant be k, the approach in the 

adaptive cooperative strategy is to use the last values of the agreed control trajectories of the 
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other RFMPC controllers at this time instant while the fault management system and the 

supervisory control of the subnetwork determines the type of operational state that the plant 

is in and the type of switching required (hard or soft). At time instant (𝑘 + 1), for soft 

switching process, a convex combination of the old RFMPC and the new RFMPC is 

performed [24] [98]  over a switching time from (𝑘 + 1): (𝑘 + 1 + 𝑇𝑠) and the generated 

control trajectories are used by the other DRFMPC controllers all through the soft switching 

duration. Where 𝑇𝑠 is the soft switching time duration. 

Let the old RFMPC Objective function be  𝐽1,𝑁𝑜𝑟𝑚𝑎𝑙 for normal operational state and the 

new RFMPC Objective function be  𝐽2,𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 for disturbed operational state. 

The convex combination of  𝐽1,𝑁𝑜𝑟𝑚𝑎𝑙 RFMPC and 𝐽2,𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 RFMPC is given as: 

𝐽𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = (1 −  𝜔(𝑘)) 𝐽1,𝑁𝑜𝑟𝑚𝑎𝑙    +    (𝜔 (𝑘))  𝐽2,𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑                                         (5.11) 

Where 𝜔(𝑘) is a time varying scalar and a weighting factor used in the convex combination 

of the RFMPC during the soft switching process. It changes from 0 to 1 as time increases. 

At (𝑘 + 1 + 𝑇𝑠) the soft switching stops and the new RFMPC is now fully engaged. 

In this thesis, two scenarios of soft-switching are considered as follows: 

Scenario 1: Let the objective function 𝐽1,𝑁𝑜𝑟𝑚𝑎𝑙 and 𝐽2,𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑, the constraints and the 

reference output be the same, but the prediction models used are different: 

𝑌𝑁
𝑜𝑢𝑡(𝑘|𝑘) =  𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)  ×   𝑢(𝑘)  +  𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)   ×   ∆𝑢(𝑘|𝑘)                         (5.12) 

Where 𝑌𝑁
𝑜𝑢𝑡(𝑘|𝑘) is the Normal operational state plant output and 𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘) is the 

Normal operational state prediction model 

𝑌𝐷
𝑜𝑢𝑡(𝑘|𝑘) =  𝐴𝑚𝑜𝑑𝑒𝑙,𝐷(𝑘) ×   𝑢(𝑘)  +  𝐴𝑚𝑜𝑑𝑒𝑙,𝐷(𝑘)   ×   ∆𝑢(𝑘|𝑘)                         (5.13) 
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Where 𝑌𝐷
𝑜𝑢𝑡(𝑘|𝑘) is the Disturbed operational state plant output and 𝐴𝑚𝑜𝑑𝑒𝑙,𝐷(𝑘) is the 

Disturbed operational state prediction model 

𝑚𝑖𝑛𝛤.|𝑘 ,𝑦(𝑘+ 𝐻𝑝|𝑘 )𝐽𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑( 𝛤.|𝑘 , 𝑦(𝑘 + 𝐻𝑝|𝑘 )  )                                                     (5.14) 

 = ∆𝑢𝑇(𝜔(𝑘)𝐴𝑚𝑜𝑑𝑒𝑙,𝐷(𝑘)𝑇𝐴𝑚𝑜𝑑𝑒𝑙,𝐷(𝑘) + 𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)𝑇𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘) −

𝜔(𝑘)𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)𝑇𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘) +   𝐼) ∆𝑢   +    2∆𝑢𝑇(𝜔(𝑘)𝐴𝑚𝑜𝑑𝑒𝑙,𝐷(𝑘)𝑇𝑌𝐷
𝑜𝑢𝑡(𝑘|𝑘) −

 𝜔(𝑘)𝐴𝑚𝑜𝑑𝑒𝑙,𝐷(𝑘)𝑇𝑌𝑟𝑒𝑓 − 𝜔(𝑘)𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)𝑇𝑌𝑁
𝑜𝑢𝑡(𝑘|𝑘)  − 𝜔(𝑘)𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)𝑇𝑌𝑟𝑒𝑓 +

 𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)𝑇𝑌𝑁
𝑜𝑢𝑡(𝑘|𝑘)  −  𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)𝑇𝑌𝑟𝑒𝑓  ) 

Using quadratic programming; 

𝑚𝑖𝑛𝛤.|𝑘 ,𝑦(𝑘+ 𝐻𝑝|𝑘 )𝐽𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑( 𝛤.|𝑘 , 𝑦(𝑘 + 𝐻𝑝|𝑘 )  ) =   0.5 𝑋𝑇𝐻 𝑋 +  𝑓𝑇𝑋  

H =   2(𝜔(𝑘)𝐴𝑚𝑜𝑑𝑒𝑙,𝐷(𝑘)𝑇𝐴𝑚𝑜𝑑𝑒𝑙,𝐷(𝑘) + 𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)𝑇𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘) −

𝜔(𝑘)𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)𝑇𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘) +   𝐼) 

𝑓𝑇 =  2∆𝑢𝑇(𝜔(𝑘)𝐴𝑚𝑜𝑑𝑒𝑙,𝐷(𝑘)𝑇𝑌𝐷
𝑜𝑢𝑡(𝑘|𝑘) − 𝜔(𝑘)𝐴𝑚𝑜𝑑𝑒𝑙,𝐷(𝑘)𝑇𝑌𝑟𝑒𝑓

− 𝜔(𝑘)𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)𝑇𝑌𝑁
𝑜𝑢𝑡(𝑘|𝑘)  − 𝜔(𝑘)𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)𝑇𝑌𝑟𝑒𝑓

+ 𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)𝑇𝑌𝑁
𝑜𝑢𝑡(𝑘|𝑘)  −  𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘)𝑇𝑌𝑟𝑒𝑓  )  

Where 𝐴𝑚𝑜𝑑𝑒𝑙,𝑁(𝑘) is the time varying prediction model for the Normal operational state of 

the plant; 𝐴𝑚𝑜𝑑𝑒𝑙,𝐷(𝑘) is the time varying prediction model for the Disturbed operational 

state of the plant, 𝑌𝑁
𝑜𝑢𝑡(𝑘|𝑘) is the predicted output at time instant k of the plant at Normal 

operational state and 𝑌𝐷
𝑜𝑢𝑡(𝑘|𝑘) is the predicted output at time instant k of the plant at 

Disturbed operational state. 
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The approach in Equation (5.11) and (5.14) can be used for soft switching from disturbed 

operational state to emergency operational state, disturbed to normal operational state and 

emergency to normal operational state. 

Scenario 2: Let the objective function 𝐽1,𝑁𝑜𝑟𝑚𝑎𝑙 and 𝐽2,𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑, the reference output be the 

same, but the prediction models used, and the constraints are different: 

(5.14) still holds but the constraints are modified by: 

𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = (1 −  𝜔(𝑘)) 𝐶1,𝑁𝑜𝑟𝑚𝑎𝑙    +   (𝜔 (𝑘))  𝐶2,𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑                                         (5.15) 

Where 𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 is the combined constraints of the Normal and disturbed operational states, 

𝐶1,𝑁𝑜𝑟𝑚𝑎𝑙 is the constraints expression for the Normal operational state of the plant and 

𝐶2,𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑 is the constraints expression for the Disturbed operational state of the plant. 

The algorithm for the soft switching is as follows: 

Algorithm 5.1: Soft switching 

1) At time instant k when there is a change of operational state; the monitoring unit 

sends the information to the supervisory control and the fault management unit. The 

new operational state is determined. The last agreed values of the optimal control 

trajectories are exchanged with other interacting DRFMPC controllers 

2) At time instant (𝑘 + 1); the type of switching is determined by the supervisory 

control. For hard switching, the new RFMPC for the operational state is engaged 

immediately 𝜔(𝑘)  is set to 1 in Equation (5.11). For soft switching, different values 

of 𝜔(𝑘) is used where 0 ≤  𝜔(𝑘)  ≤ 1 in Equation (5.10) and (5.11) 

3) For smooth and fast soft switching; 𝑇𝑠 is chosen to be 2 and 4 control time steps and  
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𝜔(𝑘)  values are evenly increased over the switching duration from (𝑘 + 1): (𝑘 +

1 + 𝑇𝑠) 

Equations (5.10) and (5.11) is adapted to be used to calculate the feasible control 

inputs over the switching duration from  (𝑘 + 1): (𝑘 + 1 + 𝑇𝑠) and the optimal 

control trajectories generated is exchanged with other DRMPCs during the soft 

switching duration 

4) At (𝑘 + 1 + 𝑇𝑠); the new RFMPC for the new operational state is now fully engaged. 

5) If any of the interacting DRFMPC is changing its operational state during the soft 

switching process of the DRFMPC under consideration, steps 1 to step 4 is also 

repeated for the interacting DRFMPC. 

The soft switching presented here is part of the proposed adaptive cooperative strategy for 

DRFMPC earlier presented in Chapter 4 and section 5.3 of this chapter. The soft switching 

application is illustrated in Chapter 6 of this thesis. 

 

5.4 Summary 

The soft switching for RFMPC and DRFMPC has been presented. The soft switching system 

components and functionalities have been presented. Adaptive cooperative strategy for 

DRFMPC under different operational states and reconfiguration has been presented. 

Different scenarios of adaptive cooperation during soft switching of DRFMPC controllers 

was proposed. Soft switching analysis was presented for switching from one RFMPC to 

another and the conditions for the operations presented and discussed. The reconfiguration 

of the RFMPC and the adaptive cooperation of the DRFMPC was proposed and the 

algorithm for its implementation presented. 
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Chapter 6 

Application to Water quality control of DWDS  

In this Chapter, Distributed Softly Switched Robustly Feasible Model Predictive Control 

application to drinking water distribution system water quality control is presented. In 

section 6.1, the simulation environment is presented and discussed. The benchmark DWDS 

water quality control by the distributed softly switched robustly feasible MPC 

(DSSRFMPC) is presented and the simulation results discussed in section 6.2 In section 6.3, 

the RFMPC design is presented. In section 6.4, the DSSRFMPC and soft switching 

applications is presented. In section 6.5, the summary of the chapter is presented. 

 

6.1 Simulation Environment Setup 

6.1.1 EPANET 

EPANET software package was published in the year 2000 by the National Risk 

Management Research Laboratory of United States Environment Protection Agency 

(USEPA) [56]. 

EPANET is widely used in the simulation of the water network. EPANET is a computer 

program that performs an extended period simulation of hydraulic and water quality 

behaviour within pressurized pipe networks. EPANET tracks the flow of water in each pipe, 

the pressure at each node, the height of water in each tank, and the concentration of a 

chemical species throughout the network during a simulation period comprised of multiple 

time steps. EPANET is designed to be a research tool for improving our understanding of 
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the movement and fate of drinking water constituents within distribution systems. It is 

packaged in two parts: as graphic interface and as algorithm part. The algorithm part is 

embedded into other applications by inserting the source codes of the simulation algorithms 

of hydraulics and quality directly [31]. The graphic interface is used to construct the water 

distribution network, calibrate and input the coefficients of the network, run the simulation 

and obtain the result data in Microsoft windows platform. The network files are stored as 

flat files and can be accessed by other applications such as MATLAB. 

 

6.1.2 EPANET-MATLAB Toolkit 

The EPANET-Matlab Toolkit is an open-source software, originally developed by the KIOS 

Research Centre for Intelligent Systems and Networks of the University of Cyprus which 

operates within the Matlab environment, for providing a programming interface for the latest 

version of EPANET, a hydraulic and quality modeling software created by the US EPA, 

with Matlab, a high-level technical computing software. The goal of the EPANET Matlab 

Toolkit is to serve as a common programming framework for research and development in 

the growing field of smart water networks. The EPANET-Matlab Toolkit features easy to 

use commands/wrappers for viewing, modifying, simulating and plotting results produced 

by the EPANET libraries [136]. The EPANET-Matlab Toolkit is used in this thesis as the 

EPANET-MATLAB interface to provide the hydraulic and quality data from the benchmark 

DWDS used in this thesis. 
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6.1.3 MATLAB and Quadratic Programming 

In this thesis, MATLAB codes were written to calculate the chlorine transportation time, the 

chlorine path analysis, forward tracking, execute experiments, implement parameter 

estimation and the DRFMPC design. The quadratic programming tool is used for parameter 

estimation and RFMPC design. The RFMPC, SSRFMPC and DSSRFMPC were designed 

using MATLAB Codes written to implement the controller actions. 

6.1.4 Hardware and Software Specification 

The hardware and software specification of the simulation platform are listed as follows: 

Microsoft Windows:                Windows 7 Professional 

CPU                      :                   Intel ® core ™ 2 Duo CPU 2.93GHZ, 2.93GHZ 

Memory                :                  4GB 

System type          :                  64-bit OS 

Manufacturer        :                  Driver Pack Solution 

Model                   :                  Dell Optiplex780 

MATLAB            :                  R2014a 

EPANET             :                  version 2.0 
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6.2 Benchmark Drinking Water Distribution System 

6.2.1 Benchmark DWDS 

The benchmark DWDS used in this thesis is presented in Figure 6.1. 

 

Figure 6.1 Benchmark DWDS used in this thesis 

 

A benchmark drinking water distribution system was considered in this thesis for verifying 

the proposed methodologies. The network structure is illustrated in Figure 6.1 using 

EPANET.  The benchmark DWDS is shown clearly in Figure 6.2.  
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Figure 6.2 Benchmark DWDS with the injection nodes and monitored nodes 
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The network file is attached in Appendix B. There are 27 network nodes, 39 pipes, and 4 

storage tanks in the system in Figure 6.1. Figure 6.2 is equivalent to Figure 6.1. The nodes 

are compared below: 

Table 1.1 Comparing the nodes in Figure6.1 with nodes in Figure 6.2 

Nodes in Figure 6.1 Nodes in Figure 6.2 Remarks 

100 R1- Reservoir1  

200 R2- Reservoir2  

300 R3- Reservoir3  

101 P1-Pump1  

201 P2-Pump2  

301 P3-Pump3  

17 T1-Tank1  

18 T2-Tank2  

19 T3-Tank3  

26 T4-Tank4  

20 19  

22 20  

25 22  

24 23  

23 21  

27 25  
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In Figure 6.2, the water is pumped from the water sources at node R1, node R2 and node R3 

and pumped by three variable speed pumps; pump 1, pump 2 and pump 3. It is also supplied 

by the switching tanks, tank1, tank2, tank3 and tank4. Node 2, node 5, node 8, node 10, node 

14, node 19, node 22 and node 23 are selected as chlorine injection nodes (with red circles).  

Nodes 3, 4, 6, 7, 9, 11, 12, 13, 15, 16, 20, 21 and 25 are selected as the chlorine monitored 

nodes (with blue circles). The Benchmark DWDS has 3 Regions. Each Region is partitioned 

into zones using the normal operational state of the DWDS and the chlorine controllability 

and observability presented in section 2.3.2.  

Region 1 consists of three chlorine injection nodes (node 5, node 14 and node 8) as 

illustrated in Figure 6.3. Node 5 controls monitored nodes 4, 6 and 13. Node 14 controls 

monitored nodes 15 and 16. Node 8 controls node 7. 

Region 2 consists of two chlorine injection nodes (node2 and node 10) as illustrated in 

Figure 6.4. Node 2 controls the monitored node 3 and node 7.  

Node 10 controls the monitored node 11, node 9 and node 12. The monitored nodes in 

Region 2 are node 7, node 9, node 11 and node 12.  

Region 3 consists of three chlorine injection nodes (node19, node 22 and node 23) as 

illustrated in Figure 6.5. Node 19 controls the monitored node 3, node 4, node 20 and node 

25.  

Node 22 controls the monitored node 22. Node 23 controls the monitored node 23 and node 

23. The monitored nodes in Zone 3 are node 3, node 4, node 20, node 21 and node 25.  
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Figure 6.3 Benchmark DWDS Zone 1 consisting of node 5, node 8 and node 14 as chlorine 

injection nodes 
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Figure 6.4 Benchmark DWDS Zone 2 consisting of node 2, node 8 and node 10 as chlorine 

injection nodes 
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Figure 6.5 Benchmark DWDS Zone 3 consisting of node 19, node 22 and node 23 as 

chlorine injection nodes 
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6.2.2 DWDS hydraulic and quality time steps 

The DWDS hydraulic time step used in this thesis is one hour (1 hour) and the quality time 

step is 5minutes. The DWDS hydraulics control is usually done on a 24hours prediction 

horizon. In this thesis, the hydraulics control at the upper level of the hierarchical control 

structure is done on a 24 hydraulic time steps and the quality control at the lower level of 

the hierarchical control structure is done with a 288 quality time steps. 

The simulation of the DWDS quantity and quality control is done on a time horizon of 

48hours or 576 quality time steps. The water head at node 5 and node 13 in the normal 

operational state is illustrated in Figure 6.6 and Figure 6.7 respectively. 

 

Figure 6.6 The water head (in feet) at node 5 in the normal operational state 
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Figure 6.7 The water head (in feet) at node 13 in the normal operational state 

 

Figure 6.8 Flow in million gallons per day (MGD) at link 14 connecting node 5 and node 

13 
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The water flow between node 5 and node 13 at hydraulic time step of I hour is illustrated in 

Figure 6.8. 

The chlorine injections at node 5 at quality time steps of 5 minutes over the modeling horizon 

of 48 hours is illustrated in Figure 6.9  

 

Figure 6.9 Chlorine injections at node 5 at quality time steps of 5 minutes over the modeling 

horizon of 48 hours 
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at the monitored nodes. Figure 6.9 also illustrates one of the experiments at node5. The 

chlorine values monitored at node 13 is illustrated in Figure 6.10. The experiments were 

carried out for modeling and parameter estimation as presented in Chapter 3 of the thesis. 

The modeling horizon is 48 hours to ensure all the transient effects are out from [0,3] [hour] 

before the parameter estimation is carried out. The output prediction is carried out between 

[5,31][hour] and the control prediction is carried out between [4,31][hour]. 

 

Figure 6.10 Chlorine residual values at node 13  
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state of the plant. The length L, of pipe 14 connecting node 5 and node 13 is 4500ft and the 

tracking time 𝜏 is 1 minute. The water head at node 5 at [10,11] [hour] is shown in Figure 

6.10, the water head at node 13 at [10,11] [hour] is shown in Figure 6.11. The time of impact 

of the chlorine injected at node 13 at [10,11] [hour] is shown in Figure 6.12. The flow 

velocity at pipe 14 at [10,11] [hour] is shown in Figure 6. 13 and the chlorine transport time 

from node 5 to node 13 at [10,11] [hour] is shown in Figure 6.14. 

 

Figure 6.11 Water head at node 5 

The water head dropped at node 5 and node 13 in Figure 6.11 and Figure 6.12 resulting in 

the drop in water flow velocity in Figure 6.14. There is continuous water flow from node 5 
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Figure 6.12 Water head at node 13 

 

Figure 6.13 The time of impact of the chlorine injected at node 13 at [10,11] [hour] 
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Figure 6.14 Water flow velocity at pipe 14 

 

Figure 6.15 Chlorine transport time in pipe 14 at [10,11] [hour]  
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6.2.4 Model Parameter estimation 

The model parameter estimation has been presented in chapter 3 section 3.6. and section 3.7. 

The parameters to be estimated are the impact coefficients on the injected chlorine from the 

injection nodes to the monitored nodes. The set bounded parameters as presented in section 

3.7 are illustrated in Figure 6.16, Figure 6.17, Figure 6.18 and Figure 6.19 for normal 

operational state of the plant. Figure 6.16 illustrates the parameter bounds for the impact 

coefficients 𝑎𝑖 for injected chlorine from node 5 to node 13 at [10,11] [hour]. 

Figure 6.17 illustrates the parameter bounds for the impact coefficients 𝑎𝑖 for injected 

chlorine from node 19 to node 20 at [10,11] [hour]. 

Figure 6.18 illustrates the parameter bounds for the impact coefficients 𝑎𝑖 for injected 

chlorine from node 9 to node 12 at [10,11] [hour]. Figure 6.19 illustrates the parameter 

bounds for the impact coefficients 𝑎𝑖 for injected chlorine from node 10 to node 11 at [10,11] 

[hour]. The Chebyshev parameter is the half or bound centre of the parameter bound and it 

is used for RFMPC design. 
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Figure 6.16 Parameter bounds for the impact coefficients 𝑎𝑖 for injected chlorine from node 

5 to node 13 at [10,11] [hour]. 
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Figure 6.17 Parameter bounds for the impact coefficients 𝑎𝑖 for injected chlorine from node 

19 to node 20 at [10,11] [hour]. 

 

Figure 6.18 Parameter bounds for the impact coefficients 𝑎𝑖 for injected chlorine from node 

9 to node 12 at [10,11] [hour]. 
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Figure 6.19 Parameter bounds for the impact coefficients 𝑎𝑖 for injected chlorine from node 

19 to node 20 at [10,11] [hour]. 

 

6.2.4.1 Disturbed operational state of the Benchmark DWDS 

The disturbed operational state of the Benchmark DWDS is simulated by the pipe break of 

the pipe 17 connecting node 2 and node 10. A water flow path now exists between node 8 

and node 9. Node 10 no longer controls node 9, it only controls node 11. Node 8 controls 

node 9 and node 12. Node 11 is now controlled by node 10 and node 8. 

The Parameter bounds for the impact coefficients 𝑎𝑖 for injected chlorine from node 9 to 

node 12 at [10,11] [hour] under the disturbed operational state is illustrated in Figure 6.20. 

The model parameters are different from the model parameters presented in Figure 6.18 for 

node 9 to node 12 under normal operational state of the plant. 
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Figure 6.20 Parameter bounds for the impact coefficients 𝑎𝑖 for injected chlorine from node 

9 to node 12 at [10,11] [hour] under the disturbed operational state of the plant 

 

6.3 Robustly Feasible MPC (RFMPC) Design 

Robustly feasible Model Predictive Control (RFMPC) design has been presented in chapter 

4 of this thesis. The prediction models, the reference zone for water quality control, the 

constraints for RFMPC design and the safety zones for RFMPC design are presented in the 

following sections. 
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6.3.1 Prediction Models 

Prediction models are needed to predict the plant outputs and for RFMPC design.  

𝑦(𝑘) =   ∑ 𝑎𝑖𝑖(𝑘) ∈ 𝐼𝑖𝑗
(𝑘)𝑢(𝑘 − 𝑖(𝑘))                                                                       (6.1) 

Where  𝑦(𝑘) is the monitored chlorine residual value at the monitored node, 𝑎𝑖 (𝑘) is the 

time-varying impact coefficient parameter, 𝑢(𝑘) is the injected chlorine at the injection node 

and  𝑖(𝑘) is the chlorine transportation time number or discretized delay number. The output 

prediction over the prediction horizon at time instant k is written as: 

𝑌(𝑘|𝑘) =  

[
 
 
 
 
 
 
 

𝑦(𝑘|𝑘)

𝑦(𝑘 + 1|𝑘)

𝑦(𝑘 + 2|𝑘)
.
.
.

𝑦(𝑘 + 𝐻𝑝 − 1|𝑘)]
 
 
 
 
 
 
 

𝐻𝑝 ×1

                                                                          (6.2) 

The control inputs over the control horizon at time instant k is written as: 

 𝑈(𝑘|𝑘) =  

[
 
 
 
 
 
 

𝑢(𝑘|𝑘)

𝑢(𝑘 + 1|𝑘)

𝑢(𝑘 + 2|𝑘)
.
.
.

𝑢(𝑘 + 𝐻𝑐 − 1|𝑘)]
 
 
 
 
 
 

𝐻𝑐 ×1

=

 

[
 
 
 
 
 
 

𝑢(𝑘 −  𝑖(𝑘) |𝑘)  +  ∆𝑢(𝑘|𝑘)

𝑢(𝑘 −  𝑖(𝑘 + 1) + 1|𝑘) + ∆𝑢(𝑘 + 1|𝑘) 

𝑢(𝑘 −  𝑖(𝑘 + 2) + 2|𝑘) + ∆𝑢(𝑘 + 2|𝑘)
.
.
.

𝑢(𝑘 − 𝑖(𝑘 + 𝐻𝑐 − 1)  + 𝐻𝑐 − 1|𝑘) +  ∆𝑢(𝑘 + 𝐻𝑐 − 1|𝑘)]
 
 
 
 
 
 

𝐻𝑐 ×1

                         (6.3)                                            
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Where 𝑢(𝑘 −  𝑖(𝑘) |𝑘) is the initial chlorine residual value at the injection node at time 

instant (𝑘 −  𝑖(𝑘) |𝑘) and ∆𝑢(𝑘|𝑘) is the calculated incremental input by the RFMPC to 

steer the output at the monitored node to the desired reference zone. 

The output prediction and the control prediction horizon is equal to 24 hours as used in the 

DWDS. 

   𝐻𝑝  =   𝐻𝑐  = 24 ℎ𝑜𝑢𝑟𝑠           

                                  

The time-varying impact coefficients parameters over the prediction horizon at time instant 

k is written as: 

𝐴𝑚𝑜𝑑𝑒𝑙(𝑘|𝑘) =  

[
 
 
 
 
 

𝑎𝑖 (𝑘|𝑘)        0 0 0 .  .  .  0

0   𝑎𝑖 (𝑘 + 1|𝑘)0 0 .  .  .  0
.
.
.

0  0 0 0 .  .  .   𝑎𝑖 (𝑘 + 𝐻𝑝 − 1|𝑘)]
 
 
 
 
 

𝐻𝑝 × 𝐻𝑝

                                            (6.4) 

The output prediction matrix is now written as: 

𝑌(𝑘|𝑘) = 𝐴𝑚𝑜𝑑𝑒𝑙(𝑘|𝑘)  ×   𝑈(𝑘|𝑘)                                                                                   (6.5) 

𝑌(𝑘|𝑘) = 𝐴𝑚𝑜𝑑𝑒𝑙(𝑘|𝑘)  ×   𝑢(𝑘 −  𝑖(𝑘) |𝑘)   +   𝐴𝑚𝑜𝑑𝑒𝑙(𝑘|𝑘)  ×  ∆𝑢(𝑘|𝑘)                     (6.6) 

 

6.3.2 Reference Zone for water quality control 

The designed controllers will control the chlorine residual values at the user nodes or 

monitored nodes within the output constraints described by: 

                   𝑌𝑚𝑖𝑛(𝑘|𝑘) ≤ 𝑌(𝑘|𝑘) ≤  𝑌𝑚𝑎𝑥(𝑘|𝑘)                                                                       (6.7)                                                       
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Over the time horizon 𝑘 ∈ [𝑘0 , 𝑘0 + 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ], where 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the control time horizon, 

𝑌𝑚𝑖𝑛(𝑘) is the minimum chlorine residual requirement at the user node and 𝑌𝑚𝑎𝑥(𝑘) is the 

maximum chlorine residual requirement at the user node.  For this design, 𝑌𝑚𝑖𝑛(𝑘) =

0.25𝑚𝑔/𝑙 and 𝑌𝑚𝑎𝑥(𝑘) = 0.35𝑚𝑔/𝑙.  

 

6.3.3 Input Constraints 

The input constraints are due to the limitations of the chlorine injection actuators. The input 

constraints are written as; 

𝑈𝑚𝑖𝑛(𝑘|𝑘) ≤ 𝑈(𝑘|𝑘) ≤  𝑈𝑚𝑎𝑥(𝑘|𝑘)                                                                           (6.8) 

For this design, 𝑈𝑚𝑖𝑛(𝑘) = 0𝑚𝑔/𝑙 and 𝑈𝑚𝑎𝑥(𝑘) = 1.0𝑚𝑔/𝑙.  

 

6.3.4 Output Constraints 

The output constraints are the bounds or reference zone presented in section 6.3.2 but now 

tightened by safety zones as presented in chapter 4 section 4.2 for robust feasibility. The 

safety zones are chosen arbitrarily offline such that if the tightened output constraints are 

violated, the real plant output constraints are not violated. For this design, the offline safety 

zones used is written as;  

ℇ ≜   [ ℇ𝑚𝑖𝑛 , ℇ𝑚𝑎𝑥  ] =  [0.03, 0.03 ]                                                                         (6.9) 

The safety zones are chosen to be equal for minimum and maximum value of the safety 

zones. Different values could be chosen for ℇ𝑚𝑖𝑛 , ℇ𝑚𝑎𝑥  

The output constraints tightened with the safety zones is written as: 
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 𝑌𝑚𝑖𝑛(𝑘|𝑘)  + ℇ𝑚𝑖𝑛   ≤ 𝑌(𝑘|𝑘) ≤  𝑌𝑚𝑎𝑥(𝑘|𝑘)  −   ℇ𝑚𝑎𝑥                                      (6.10)   

For monitored nodes controlled by an injection node, the predicted outputs of the monitored 

nodes tightened by the safety zones are used as output constraints in the RFMPC 

optimization task.                                          

 

6.3.5 Performance Index 

The performance index for the RFMPC design for water quality control is written as: 

𝐽( 𝛤.|𝑘 , 𝑦(𝑘 + 𝐻𝑝|𝑘 )  ) = (𝑌𝑟𝑒𝑓 − 𝑌𝑜𝑢𝑡)𝑇(𝑌𝑟𝑒𝑓 − 𝑌𝑜𝑢𝑡)  +   ∆𝑢(𝑘)𝑇∆𝑢(𝑘)            (6.10)         

𝑚𝑖𝑛𝛤.|𝑘 ,𝑦(𝑘+ 𝐻𝑝|𝑘 )𝐽( 𝛤.|𝑘 , 𝑦(𝑘 + 𝐻𝑝|𝑘 )  ) 

Subject to: 𝑈𝑚𝑖𝑛(𝑘|𝑘) ≤ 𝑈(𝑘|𝑘) ≤  𝑈𝑚𝑎𝑥(𝑘|𝑘) 

                   𝑌𝑚𝑖𝑛(𝑘|𝑘)  + ℇ𝑚𝑖𝑛   ≤ 𝑌(𝑘|𝑘) ≤  𝑌𝑚𝑎𝑥(𝑘|𝑘)  −   ℇ𝑚𝑎𝑥                    

 = ∆𝑢𝑇(𝐴𝑚𝑜𝑑𝑒𝑙(𝑘)𝑇𝐴𝑚𝑜𝑑𝑒𝑙(𝑘)  +  𝐼) ∆𝑢(𝑘)    +    2𝐴𝑚𝑜𝑑𝑒𝑙(𝑘)𝑇∆𝑢(𝑘)𝑇(𝑌𝑜𝑢𝑡(𝑘|𝑘) −

 𝑌𝑟𝑒𝑓) 

Where 𝑌𝑟𝑒𝑓 is the reference chlorine residual value, 𝑌𝑜𝑢𝑡 is the predicted output over the 

prediction horizon, 𝐴𝑚𝑜𝑑𝑒𝑙(𝑘) is the prediction model and  ∆𝑢(𝑘)   is the incremental input 

matrix calculated by the RFMPC. 

Equation (6.10) is a quadratic programming task to minimize the error between the reference 

chlorine output and the predicted chlorine outputs over the prediction horizon. 
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The Recursive feasibility is achieved by steering the output to the robustly feasible output 

states as presented in chapter 4 of this thesis. The RFMPC at node 5 controlling monitored 

node 13 under normal operational state is illustrated in Figure 6.21 and Figure 6.22.  

 

Figure 6.21 RFMPC at node 5 for chlorine residual control under the normal operational 

state of the plant  

The injections at node 5 starts at 4.8 hours in Figure 6.21 because injections earlier than 4.8 

hours will not have impact on the monitored node 13 due to transients and chlorine 

transportation time at this time of injection. Nothing can be observed at monitored node 13 

for injections from node 5 before 4.8 hours as illustrated in Figure 6.22 from [0, 3] [hour] 
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Figure 6.22 With RFMPC at node5: Chlorine residual values monitored at node 13 under 

the normal operational state of the plant at [7,31] [hour]   

 

6.3.6 RFMPC for multiple output node control 

The RFMPC at node 10 controlling monitored node 9, node 11 and node 12 under normal 

operational state is illustrated in Figure 6.23, Figure 6.24, Figure 6.25 and Figure 6.26. The 

multiple output node control was achieved by using the tightened predicted outputs of node 

9, node 11 and node 12 as constraints in the optimization task of the RFMPC for node 12 

control. 
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Figure 6.23 RFMPC at node 10 for chlorine residual control of multiple monitored node 9, 

node 11 and node 12 under the normal operational state of the plant  

 

 

The variations of injected chlorine at node 10 in Figure 6.23 are due to varying demands and 

varying water flow velocity which demand more chlorine to be injected by the RFMPC to 

keep the chlorine level at the monitored nodes within the designed chlorine bounds. 

The monitored nodes for node 10 chlorine injections are illustrated in Figure 6.24, Figure 

6.25 and Figure 6.26. 
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Figure 6.24 Chlorine residual values monitored at node 9 under the normal operational state 

of the plant at [6,30] [hour]   

 

Figure 6.25 Chlorine residual values monitored at node 9 under the normal operational state 

of the plant at [6,30] [hour]   
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Figure 6.26 Chlorine residual values monitored at node 9 under the normal operational state 

of the plant at [8,32] [hour]   

 

6.3.7 Distributed Robustly Feasible MPC (DRFMPC) Design 

The DRFMPC has been presented in Chapter 4 of this thesis. The CDMPC has been 

presented in Chapter 4 of this thesis. The implementation is applied for the chlorine residual 

control of node 3 and node 4 of the benchmark DWDS. Node 3 is in the Region 3 of the 

benchmark DWDS and it is controlled by injections from node 19, node 2 and tank 1. The 

output prediction for node 3 is written as: 

𝑌3(𝑘|𝑘) = [

𝐴203𝑀𝑜𝑑𝑒𝑙(𝑘|𝑘)                       0                                        0

0                           𝐴23𝑀𝑜𝑑𝑒𝑙(𝑘|𝑘)                                    0

    0                                             0                 𝐴293𝑀𝑜𝑑𝑒𝑙(𝑘|𝑘)    

]  ×   [

𝑈20 (𝑘|𝑘)

𝑈2 (𝑘|𝑘)

𝑈29 (𝑘|𝑘)
]   

The output prediction for node 4 is written as: 
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𝑌4(𝑘|𝑘)

=

[
 
 
 
 

𝐴204𝑀𝑜𝑑𝑒𝑙(𝑘|𝑘)                                    0                                        0                      0

  0                                                   𝐴54𝑀𝑜𝑑𝑒𝑙(𝑘|𝑘)                      0                      0

 0                                                           0                              𝐴24𝑀𝑜𝑑𝑒𝑙(𝑘|𝑘)       0

            0                                                         0                                         𝐴294𝑀𝑜𝑑𝑒𝑙(𝑘|𝑘)         
  ]

 
 
 
 

 

×   

[
 
 
 
𝑈20 (𝑘|𝑘)

𝑈5 (𝑘|𝑘)

𝑈2 (𝑘|𝑘)

𝑈29 (𝑘|𝑘)]
 
 
 

 

The RFMPC at node 19 and node 2 for chlorine residual control of node 3, node 4 and node 

20 under normal operational state are illustrated in Figure 6.27, Figure 6.28, Figure 6.29, 

Figure 6.30 and Figure 6.31 

 

Figure 6.27 RFMPC at node 19 for chlorine residual control of monitored node 22, node 

25, node 3 and node 4 under the normal operational state of the plant 
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Figure 6.28 RFMPC at node 2 for chlorine residual control of monitored node 7, node 3 and 

node 4 under the normal operational state of the plant 

 

Figure 6.29 Chlorine residual values monitored at node 3 under the normal operational state 

of the plant at [6,30] [hour]   
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Figure 6.30 Chlorine residual values monitored at node 4 under the normal operational state 

of the plant at [6,30] [hour]   

 

Figure 6.31 Chlorine residual values monitored at node 22 under the normal operational 

state of the plant at [6,30] [hour]   
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6.4 Distributed Softly Switched RFMPC (DSSRFMPC) 

The need for soft switching of RFMPCs has been presented in all the chapters of this thesis. 

The soft switching may involve the change of prediction models used by the RFMPCs, 

change of constraints and change of control strategy. In this application, the change of 

prediction model is considered, while the control strategy is the same for the RFMPCs. 

In simulating this, the pipe 17 connecting node 2 and node in the benchmark DWDS is 

assumed to be broken such that no water flow exists between node 2 and node 10. The time 

instant k that this pipe break occurred is at [10] [hour] on the output and control prediction 

horizon. At the next quality time step [10.05] [hour] the operational state of the plant is fully 

assessed by the fault management unit and the need for soft switching determined by the 

supervisory controller unit. At the next quality time step [10.10] [hour] the soft switching 

process starts and at [10.20] [hour] the new RFMPC is fully engaged.  

The DWDS is operating at normal operational state up till [10] [hour] when the pipe break 

occurred. The new operational state is the disturbed operational state as no water flow exists 

between node 2 and node 10. Node 9 and node 12 are no longer controlled by node 10 but 

by node 8 from Region 1. The soft switching is used to engage node 8 RFMPC. Node 11 is 

now controlled by node RFMPC and node 8 RFMPC.  

At [12.00] [hour] the pipe break is repaired, and the fault is cleared and the DWDS is 

restored back to the normal operational state from the disturbed operational state. Soft 

switching process is engaged according to algorithm 5.1 in chapter 5 of this thesis. Figure 

6.31 and Figure 6.32 illustrates the two scenarios. 
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Figure 6.32 Chlorine residual values monitored at node 9 (Figure 6.26) under the soft 

switching conditions from normal operational to disturbed operational state of the plant and 

from disturbed to normal operational state  

The Chlorine injections at node 8 under the soft switching conditions is illustrated in Figure 

6.32 
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Figure 6.33 Chlorine injections at node 8 under the soft switching conditions from normal 

operational to disturbed operational state of the plant and from disturbed to normal 

operational state  

6.5 Summary 

The application of the control approach presented in this thesis has been applied to water 

quality control in this chapter. The existing path analysis algorithm has been extended by 

the proposed forward tracking algorithm and validated. The multiple nodes control using 

one RFMPC is validated. The proposed adaptive cooperation scheme is implemented and 

validated. The soft switching is also implemented and validated.  
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Chapter 7 

Conclusions and recommendations for future 

works 

7.1 Conclusions 

Control of large-scale complex systems is the focus of this research work. CIS are large-

scale complex systems. The reliable and sustainable operations of the CIS under different 

disturbance scenarios or operational states is desirable. The proposed methods of achieving 

the reliable and sustainable operations of the CIS under different operational states in this 

thesis includes: 

1. The choice of a suitable control structure and control agents for the CIS. MPC was 

chosen as the control agent suitable for the CIS 

2. The MPC is designed to be robustly feasible as RFMPC. This robust feasibility 

capabilities of the MPC is to ensure that the control inputs that satisfies the input, state 

and output constraints of the CIS are determined by the optimizer in the MPC under 

uncertainties in the CIS.  

3. The RFMPC is designed to be recursively feasible over the whole control time steps. 

4. The recursively RFMPC (RCRFMPC) is designed to be reconfigurable to adapt to the 

different operational states of the CIS.  

5. The reconfiguration of the RCRFMPC is achieved by softly switching from one 

RCRFMPC used for one operational state of the CIS to the RCRFMPC used for another 

operational state. This is the softly switched RRFMPC (SSRRFMPC). CIS can be 
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decomposed into smaller and manageable subsystems. The decomposition of the CIS 

into smaller manageable subsystems allows the use of distributed control structures and 

coordination mechanisms between the distributed controllers for the CIS. The 

distributed arrangement of the designed SSRRFMPC is the distributed SSRRFMPC 

(DSSRRFMPC).  

6. The change of operational state in one subsystem in the CIS may impact the operational 

state of the other subsystem in the CIS. Adaptive cooperative strategies for the 

DSSRRFMPC under different operational states of the CIS is proposed to achieve a 

coordinated control. 

The CIS studied in this thesis was the DWDS. The operational control of DWDS was 

studied. A smart control structure for the reliable and sustainable operation DWDS was 

proposed in this thesis. A modified two-layer hierarchical structure with the lower level 

implemented with SSRRFMPC was proposed for DWDS water quality control. DWDS 

water quality control modeling involved chlorine residual modeling. This thesis proposed 

path analysis with forward tracking algorithm and node-to-node analysis method for 

improved modeling accuracy for chlorine residual in the DWDS. Time-varying models of 

chlorine residual control for DWDS which are suitable for designing RFMPC was developed 

in this thesis.  

KKT conditions and set invariance theory were used to calculate the robustly feasible and 

recursive feasible initial states for all operational states of the CIS over the prediction 

horizon. The design of RFMPC and RRFMPC was achieved. Reconfiguration of the 

RRFMPC through soft switching under different operational states of the CIS was achieved. 

The soft switching was achieved using the convex combination of the RRFMPC strategies. 

The soft switching system components, functionalities and analysis were presented. The 
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limitations of the existing Cooperative DRFMPC coordination strategy were identified. 

Adaptive cooperative strategy for DSSRFMPC under different operational states and 

reconfiguration was proposed. Different scenarios of adaptive cooperation during soft 

switching of DSSRFMPC were proposed. The application of the control approach and 

methods proposed in this thesis was applied to DWDS water quality control. The results 

verified the proposed control approach and methods. The proposed control approach and 

methods in this thesis is recommended for reliable and sustainable operation of the CIS.  

 

7.2 Future works 

Based on the research work presented in this thesis, the proposed future research directions 

and future works are as follows: 

1. Fault and risk analysis is proposed to be included in the system modeling for Softly 

Switched RFMPC design. A comprehensive modeling or models should be done for 

every possible operational state of the system based on faults and risk analysis for 

the system 

2. Improved DWDS simulator for fault detections and simulations. The existing 

DWDS simulator should be upgraded to simulate all possible faults in the DWDS. 

3. Uncertainty handling in DWDS quality control. Further research work is 

recommended in modeling the uncertainties associated with DWDS water quality 

control 

4. The use of more zones and multiple DSSRFMPC for DWDS quality control 

5. Application of DSSRFMPC to other CIS such as power system networks, traffic 

networks and smart grid systems. 
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APPENDIX A 

Network file of the Benchmark DWDS 

[JUNCTIONS] 

;ID               Elevation         Demand       Pattern          

 1                90           0            1                ; 

 2                110          1            1                ; 
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 3                95           1            1                ; 

 4                110          3            1                ; 

 5                100          1            1                ; 

 6                103          3.5          1                ; 

 7                97           3            1                ; 

 8                103          1.5          1                ; 

 9                107          0.25         1                ; 

 10               112          0.25         1                ; 

 11               115          0.5          1                ; 

 12               112          0.5          1                ; 

 13               110          0.25         1                ; 

 14               120          0.25         1                ; 

 15               135          0.25         1                ; 

 16               130          0.25         1                ; 

 101              90           0            1                ; 

 201              100          0            1                ; 

 20               100          1            1                ; 

 22               95           2            1                ; 

 23               80           0.5          1                ; 

 25               90           0.5          1                ; 

 24               87           1            1                ; 

 21               100          0            1                ; 

 27               100          2            1                ; 

 

[RESERVOIRS] 

;ID               Head         Pattern          

 100              90                            ; 

 200              90                            ; 
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 300              90                            ; 

 

[TANKS] 

;ID          Elevation   InitLevel   MinLevel    MaxLevel Diameter  MinVol          VolCurve 

 17            240          90          50           150          30          0                            

  

 18           240          78          50           150          30          0                            

  

 19          240          78          40           150          30          0                            

  

 26          240          78          40           150          50          0                            

 ; 

 

[PIPES] 

;ID         Node1       Node2     Length      Diameter   Roughness    Minor Loss       Status      

 1             101              1               2000         20           100         0                 Open         

 2              1                2               800          18           100         0                 Open    

 3              2                3               5000         16           100         0                 Open    

 4              3                17              700          10           100         0                 Open    

 5              3                4               3700         12           100         0                 Open    

 6             4                5               3900         15           100         0                 Open   ; 

 7               5                201              2100         16           100         0         Open  

  

 8               4                6                2500         10           100            0           Open  

  

 9               3                7                3100         10           100            0           Open  

  

 10              2               7                5500         15           100            0           Open  

  

 11              7               6                3700         12           100          0          Open  
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 12              6               18               900          8            100         0           Open  

  

 13               6               5               2900         12           100         0           Open  

  

 14               5               13              4500         15           100         0           Open  

  

 15               6               13              2500         10           100         0           Open  

  

 16               7               8               2700         10           100         0           Open  

  

 17               2               10              3100         12           100         0           Open  

  

 18               10              9                1900         12           100         0           Open  

  

 19               10              11              1600         8            100         0           Open  

  

 20               11              12              1500         6            100         0           Open  

  

 21               9               12              1650         8            100         0           Open  

  

 22               9               8               2900         8            100         0           Open  

  

 23               8               19              1900         12           100         0           Open  

  

 24               8               13               3100         12           100         0           Open  

 ; 

 25               13              14              1600         8            100         0           Open  

  

 26               14              16              1750         6            100         0           Open  

  

 27               14              15              1500         6            100         0           Open  

  

 30               21              20              800          18           100         0           Open  
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 29               20              4                2500         12           100         0           Open  

  

 31               20              22              3000         12           100         0           Open  

  

 32               22              23              5000         12           100         0           Open  

  

 33               23              24              1000         8            100         0           Open  

  

 36               24              26              1000         12           100         0           Open  

  

 34               22              25              5000         12           100         0           Open  

  

 35               25              24              2000         8            100         0           Open  

  

 28               20              3                1000         12           100        0           Open  

  

 37               20              27              4000         12           100         0           Open  

  

 38               27              23              1000         12           100         0          Open  

  

 39                   27              3                1000         12           100        0          Open  

  

 

[PUMPS] 

;ID               Node1            Node2            Parameters 

 101              100              101              HEAD 1 PATTERN 2 ; 

 201              200              201              HEAD 1 PATTERN 3 ; 

 301              300              21               HEAD 1 PATTERN 3 ; 

 

[VALVES] 

;ID               Node1            Node2            Diameter     Type Setting     Minor Loss    
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[TAGS] 

 

[DEMANDS] 

;Junction         Demand       Pattern          Category 

 

[STATUS] 

;ID               Status/Setting 

 

[PATTERNS] 

;ID               Multipliers 

; 

 1             0.7          0.6          0.5          0.5          0.5          0.6          

 1             0.8          1            1.1          1.25         1.25                 1.2          

 1            1.15            1.15         1.1          1            1.1                   1.15         

 1           1.25         1.4          1.25         1.2          1.1          1            

; 

 2              1            1            1            1            1            1            

 2              1            1            1            1.25         1.25         1.25         

 2             1.2          1.2          1.2          1.2          1.3          1.3          

 2             1.3          1.4          1.3          0.98         0.98         0.98         

; 

 3               1            1            1            1            1            1            

 3               1            1            1            0.95         0.95         0.95         

 3               1.2          1.2          1.2          1.3          1.3          1.3          

 3               1.3          1.3          1.3          1.05         1.05         1.05         

; 

 4                1            1            1            1            1            1            

 4                1            1            1            1            1            1            
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 4                1            1            1            1            1            1            

 4                1            1            1            1            1            1            

; 

 5                1            1            1            1            1            1            

 5                1            1            1            1            1            1            

 5                1            1            1            1            1            1            

 5                1            1            1            1            1            1            

; 

 6                1            1            1            1            1            1            

 6                1            1            1            1            1            1            

 6                1            1            1            1            1            1            

 6                1            1            1            1            1            1            

 

[CURVES] 

;ID               X-Value      Y-Value 

;PUMP:  

 1                6            280          

 

 

[CONTROLS] 

 

[RULES] 

 

[ENERGY] 

 Global Efficiency   75 

 Global Price        0 

 Demand Charge       0 
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[EMITTERS] 

;Junction         Coefficient 

 

[QUALITY] 

;Node             InitQual 

 100              0.27 

 200              0.27 

 300              0.27 

 17               0.27 

 18               0.27 

 19               0.27 

 26               0.27 

 

[SOURCES] 

;Node             Type         Quality      Pattern 

 5                SETPOINT     0.3          4 

 8                SETPOINT     0.27         5 

 10               SETPOINT     0.27          5 

 14               SETPOINT     0.27          4 

 20               SETPOINT     0.27          6 

 25               SETPOINT     0.27         6 

 24               SETPOINT     0.26         6 

 17               SETPOINT     0.29         6 

 18               SETPOINT     0.27         4 

 

[REACTIONS] 

;Type      Pipe/Tank        Coefficient 
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[REACTIONS] 

 Order Bulk             1 

 Order Tank             1 

 Order Wall             1 

 Global Bulk            -0.5 

 Global Wall            -1 

 Limiting Potential     0 

 Roughness Correlation  0 

 

[MIXING] 

;Tank             Model 

 

[TIMES] 

 Duration            48 

 Hydraulic Timestep  1:00 

 Quality Timestep    0:05 

 Pattern Timestep    0:05 

 Pattern Start       0:00 

 Report Timestep     0:01 

 Report Start        0:00 

 Start ClockTime     12 am 

 Statistic           None 

 

[REPORT] 

 Status              No 

 Summary       No 

 Page                0 
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[OPTIONS] 

 Units                           MGD 

 Headloss            H-W 

 Specific Gravity    1 

 Viscosity           1 

 Trials                          40 

 Accuracy            0.001 

 CHECKFREQ           2 

 MAXCHECK            10 

 DAMPLIMIT           0 

 Unbalanced          Continue 10 

 Pattern             1 

 Demand Multiplier   1.0 

 Emitter Exponent    0.5 

 Quality             Chlorine mg/L 

 Diffusivity         1 

 Tolerance           0.01 

 

[COORDINATES] 

;Node             X-Coord          Y-Coord 

 1                1409.95          1255.92          

 2                3992.89          1682.46          

 3                2618.48          4383.89          

 4                2997.63          6824.64          

 5                4300.95          8767.77          

 6                6220.38          7440.76          

 7                6291.47          4810.43          
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 8                9016.59          4763.03          

 9                9063.98          3056.87          

 10               9135.07          1682.46          

 11               11101.90         1658.77          

 12               10983.41         3222.75          

 13               8803.32          7677.73          

 14               11078.20         7748.82          

 15               11172.99         6184.83          

 16               12997.63         8127.96          

 101              -533.18          1255.92          

 201              5983.41          9194.31          

 20               1058.76          6130.82          

 22               -1258.31         6363.64          

 23               -415.74          2993.35          

 25               -3165.19         4811.53          

 24               -1934.59         3514.41          

 21               349.22           6895.79          

 27               1025.50          4523.28          

 100              -3234.60         1232.23          

 200              8684.83          9549.76          

 300              1934.59          8104.21          

 17               1291.57          2560.98          

 18               4514.22          7748.82          

 19               10509.48         4857.82          

 26               -2389.14         2461.20          

 

[VERTICES] 

;Link             X-Coord          Y-Coord 
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[LABELS] 

;X-Coord           Y-Coord          Label & Anchor Node 

 

[BACKDROP] 

 DIMENSIONS      0.00             0.00             10000.00         10000.00         

 UNITS           None 

 FILE             

 OFFSET          0.00             0.00             

[END] 
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APPENDIX B 

Sample MATLAB Program for calculating the Transport or Detention 

time of Chlorine in the DWDS 

%% Paths delay calculations 

 
%% Path delay for Fp14_15 
% Links 27 involved 
C_PathFp14_15 = zeros(576,1); % memory location to store the Paths data 
for k = 576:-1:1 % This path is active between time 1 to 576 for all 

time instants in minutes which starts from the total sum of time when 

the flow starts in the last pipe 
    P_ath1Fp14_15 = ([W27_14_15(k,1)]  )* Fp14_15(k,1)  ; 
    disp(P_ath1Fp14_15) 
    C_PathFp14_15(k,1) = P_ath1Fp14_15; % store in memory location for 

TDlink 

     
end 

  
% Path delay for Fp14_16 
% Links 26  involved 
C_PathFp14_16 = zeros(576,1); % memory location to store the Paths data 
for k = 576:-1:1 % This path is active between time 1 to 576 for all 

time instants in minutes which starts from the total sum of time when 

the flow starts in the last pipe 
    P_ath1Fp14_16 = ([W26_14_16(k,1)]  )* Fp14_16(k,1)  ; 
    disp(P_ath1Fp14_16) 
    C_PathFp14_16(k,1) = P_ath1Fp14_16; % store in memory location for 

TDlink 

     
end 

  
% Path delay for Fp14_13 
% Links 25  involved 
C_PathFp14_13 = zeros(576,1); % memory location to store the Paths data 
for k = 576:-1:1 % This path is active between time 1 to 576 for all 

time instants in minutes which starts from the total sum of time when 

the flow starts in the last pipe 
    P_ath1Fp14_13 = ([W25_14_13(k,1)]  )* Fp14_13(k,1)  ; 
    disp(P_ath1Fp14_13) 
    C_PathFp14_13(k,1) = P_ath1Fp14_13; % store in memory location for 

TDlink 

     
end 

  
%% Path delay for Fp20_22 
% Links 34  involved 
C_PathFp20_22 = zeros(576,1); % memory location to store the Paths data 
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