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Abstract

The work presented in this thesis focusses on the development of a trans-

portable atom-interferometry experiment and a compact fibre laser system

towards precision measurements of gravitational acceleration. Interference

fringes are shown with clouds of cold 87Rb atoms using co-propagating

laser beams to drive stimulated Raman transitions. This is demonstrated

both inside and outside of laboratory environments for which an inte-

grated and transportable experiment is constructed. Further improve-

ments are presented that enable the generation of clouds containing 1.7 · 108

atoms at a rate of 2.5 Hz and having a temperature of (7 ± 1)µK. This is

largely due to the development of a compact laser system based on all-

fibre coupled components. It is demonstrated that the laser system de-

signed here can achieve fast frequency sweeps over 1.8 GHz within 2 ms,

making it widely applicable in compact atom-interferometry experiments

with rubidium atoms. This is shown by creating a Mach–Zehnder type in-

terferometer with counter-propagating Raman beams, thus enabling mea-

surements of gravitational acceleration. Since the laser system uses only

two lasers and one fibre amplifier, a significant reduction in size is achieved,

as well as a decrease in the total power consumption of the overall experi-

ment by a third to (162 ± 7)W.
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Chapter 1

Introduction

Many instruments in use today have started life in research laboratories.

However, the transition from a laboratory experiment to a piece of equip-

ment for everyday use brings an array of new challenges. One field of re-

search that has relatively recently began making this step, is found in the

area of cold-atoms physics. As many cold-atoms experiments currently

measure time, acceleration and rotation with record high precisions, the

logical development for these setups is towards compact and transportable

instruments for applications outside laboratory environments.

This thesis focusses on the development of an instrument that mea-

sures gravitational acceleration, also known as a gravity meter or gravime-

ter. An example of a high-precision gravimeter experiment at the Univer-

sity of Birmingham is shown in the top photograph in figure 1.1. The

integration of all components is required to make such cold-atoms based

instruments useful for gravity surveys outside laboratories. The iSense

setup, shown in a transportable case in the bottom photograph, aims to

achieve exactly that. The work presented here is the result of this integra-

tion and consecutive improvements of this instrument.
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Chapter 1 Introduction

Laser System ElectronicsVacuum Chamber

Integrated Gravimeter

Figure 1.1 Integrating all components of a high-precision experiment into a com-
pact and transportable apparatus makes surveys outside laboratories possible.
(Top) Gravimeter experiment in one of the laboratories at the University of Birm-
ingham. (Bottom) The iSense setup operating in a transportable case.
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1.1 A brief history of gravimeters

In order to put the scope of this work into perspective, this chapter

first presents a brief historical overview of gravimeters and their current

applications. Since there are many different methods of measuring gravi-

tational acceleration, section 1.3 will introduce the various types and state-

of-the-art gravimeters. A new type of gravimeter, namely those based

on the interference of free-falling atoms, is currently finding its way to-

wards field applications. Section 1.3.3 gives a simplified description of

these atom-interferometry based gravimeters with a more detailed expla-

nation followed in the next chapter. The scope of this work and the iSense

project are then introduced in section 1.4.

1.1 A brief history of gravimeters

Gravitational acceleration has been studied since Galileo Galilei’s first ex-

periments in the 16th century. He established, through rolling balls down

inclined planes, that free fall was a uniform accelerated motion, indepen-

dent of mass. This accelerated motion was later recognised by Isaac New-

ton to be a consequence of the gravitational force exerted by the earth, as

published in his Philosophiæ Naturalis Principia Mathematica of 1678.

The only scientific instrument at the time that could precisely measure

the gravitational acceleration was the pendulum clock. The oscillation

period of a pendulum relates the gravitational acceleration to the pendu-

lum’s length∗. The length of a seconds pendulum, whose period is exactly

two seconds, was proposed by Christiaan Huygens to define a unit of

length†. However, corrections to such a definition were necessary when in

∗ An ideal pendulum of length L has a period T = 2π
√

L/g where g is the absolute
value of the gravitational acceleration

† The length of a seconds pendulum L = g/π2 = 0.994 m would serve to define three
“clock feet”

3



Chapter 1 Introduction

1672 Jean Richer on his expedition to Cayenne was the first to observe a

shortening of the length of his seconds pendulum [1, 2]. This observation

of the positional variation of earth’s gravity was explained by Newton

and Huygens to be evidence of the ellipsoidal shape of the earth. Thus

was born the field of gravimetry [3].

A significant breakthrough in making the pendulum a valuable instru-

ment for field gravimetry came when Henry Kater constructed the first

reversible pendulum. By swinging a rigid pendulum from two opposing

pivot points, Kater could determine the length of the pendulum to a pre-

cision of one part in 134959 [4]. The increased precision and portability

of his design lead to a more widespread use and rapid development of

pendulum apparatus as gravimeters well into the 20th century [3, 5].

The introduction of other types of gravimeters enhanced the growth of

the available gravity data. The torsion balance and mass-spring gravime-

ters allowed building of detailed gravity networks and accelerated geo-

physical exploration [6]. The past few decades have seen superconducting

and free-fall gravimeters increase the precision and accuracy of gravita-

tional measurements beyond the part per billion level [7, 8]. How these

modern gravimeters work will be explained in section 1.3. Nowadays,

gravitational acceleration is still expressed in the field of gravimetry in

units of Gal∗ which is named in honour of Galilei.

1.2 Gravimetry

Gravimetry is the field of research that measures gravitational acceleration

and its gradient. Small changes in the gravitational acceleration on earth

are a result of its irregular mass distributions, thus detecting these vari-

∗ 1 Gal = 1 cm s−2

4



1.2 Gravimetry

ations allows studying the structure of the earth. The ellipsoidal shape

of the earth due to the rotation around its axis causes the gravitational

acceleration to vary from 9.78 m s−2 at the equator to about 9.83 m s−2 on

the poles [3]. However, there are many more sources of both spatial and

temporal changes to the gravitational acceleration, see table 1.1. Since

gravitational effects span many orders of magnitude, gravimeters find a

wide range of applications:

• On a local scale, gravimeters are used in mineral exploration [6],

detecting underground structures [9, 10] or cavities [11, 12].

• Monitoring changes in ground water storage [13–15] and volcanic or

seismic activity [16–20] are enhanced with gravimetric data.

• Geophysicists rely on gravity measurements for the construction of

tide models of the earth and oceans [21–23] as well as for the study

of tectonic deformations [24–26].

• In climate research gravity data allows for an additional method of

tracking changes in ice sheets [27–29].

• Global gravity measurements collected from satellites are employed

in building a reference model of the earth. This model is known

as the geoid and serves as a reference surface of the earth for geo-

physics, ocean circulation studies, navigation and aids in the unifi-

cation of height systems [3, 30, 31].

• The proposed redefinition of the kilogram, where a Watt balance

could link the unit of mass to the meter and second units, require an

accurate determination of the local gravitational acceleration [32–34].

5



Chapter 1 Introduction

Table 1.1 Approximate magnitudes of changes in the gravitational acceleration at
the surface of the earth from various sources, data from [3, 30].

Source Magnitude

absolute relative

Earth 9.8 m s−2 1

Latitudinal variation 0.05 m s−2 5 · 10−3

Mountain ranges/ocean trenches 2 mm s−2 2 · 10−4

Mineral anomalies 10 µm s−2 1 · 10−6

Elevation by 1 m 3 µm s−2 3 · 10−7

Solid earth tides 3 µm s−2 3 · 10−7

Volcanic/seismic activity 2 µm s−2 2 · 10−7

Sun/Moon tides 1 µm s−2 1 · 10−7

Mining/large constructions 1 µm s−2 1 · 10−7

Ocean tide loading 0.1 µm s−2 1 · 10−8

Ground water variations 0.1 µm s−2 1 · 10−8

Postglacial rebound 0.1 µm s−2 1 · 10−8

Polar motion 80 nm s−2 8 · 10−9

Glaciers/polar ice changes 50 nm s−2 5 · 10−9

Person at 1 m distance 5 nm s−2 5 · 10−10

6



1.3 Gravimeters

When only spatial changes in gravity are of interest, it is more suit-

able to measure the gradient of the gravitational acceleration with a grav-

ity gradiometer. The work presented here could be readily extended to

gravity gradiometer applications since these are based on the same princi-

ples and techniques. In summary, many fields are currently using gravity

measurements and benefit from both sensitive and portable gravimeter

instruments [5, 35].

1.3 Gravimeters

Gravimeters are generally categorised in two groups: absolute and relative

gravimeters. Absolute gravimeters measure gravitational acceleration di-

rectly in standard units of length and time (m s−2). An absolute gravimeter

can be made from a pendulum, but a higher precision is reached by tim-

ing the trajectory of free-falling objects. Relative gravimeters on the other

hand are based on counter balancing the gravitational force that is acting

on a proof mass, for instance by suspending the mass from a spring. By

monitoring in this case the displacement of the proof mass, the gravita-

tional acceleration can be indirectly measured.

The difference between these two types of gravimeters is that relative

gravimeters only measure changes in gravity, while absolute gravimeters

can also give an accurate value of the gravitational acceleration. The ac-

curacy of a gravimeter is how close its measured value is to the actual

gravitational acceleration, while its precision is the statistical scatter of re-

peated measurements [8].

A higher precision results in an increased sensitivity to changes in

gravity. However, both values depend on the measurement rate and usu-

ally increase by averaging multiple measurements. Sensitivity is the most

7
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1.3 Gravimeters

important figure of merit to compare the performance of gravimeters. It

can be specified as the smallest observable change of either a single mea-

surement (i.e. nm s−2 per shot) or after a certain averaging time [35], which

is also known as the integration or observation time. Averaging multiple

measurements can increase the sensitivity until the instrumental or envi-

ronmental noise floor is reached. For this reason an additional measure of

the achievable sensitivity is commonly specified in terms of the spectral

noise amplitude in units of nm s−2/
√

Hz. This is also referred to as the

short-term sensitivity or stability and can be estimated from extrapolat-

ing the measurement precision to an integration time of 1 s. It allows for

an easy comparison of the performance of gravimeters that have different

measurement rates or modes of operation.

In practice, the readings from relative gravimeters show instrumen-

tal drift and jumps or tares when the instrument has been moved. This

means that relative gravimeters require periodic calibration, while abso-

lute gravimeters are virtually free of drifts and tares. An absolute gravime-

ter is thus advantageous when it is difficult to distinguished the gravi-

metric data from these effects. However, relative gravimeters can reach

higher levels of sensitivity and are generally more compact than absolute

gravimeters.

1.3.1 Relative gravimeters

Relative gravimeters are based on various principles of operation. The cur-

rent state-of-the-art relative gravimeters and their reported specifications

are summarised in table 1.2.

Some of the most widely used gravimeters for field applications are

the CG-5 and CG-6 Autograv from Scintrex [36, 38]. These operate by

9



Chapter 1 Introduction

electro-statically stabilising a proof mass that is attached to a fused quartz

spring. Changes in gravity translate to variations in the voltage applied to

capacitor plates that keep the mass at its null position. The Autograv has a

compact size and high precision, but suffers from drifts due to relaxation

of the spring.

A similar principle of operation is used by the Chekan Shelf gravime-

ter developed by the CSRI Elektropribor [39] which uses pendulums sus-

pended by torsion quartz fibres. Deflections of the pendulums due to grav-

ity changes are monitored by optically tracking the movements of mirrors

on the pendulums. The stabilisation platform and large dynamic range

make the Chekan gravimeters suitable for air- and sea-borne gravimetry,

but at the cost of a low sensitivity and large instrumental drift.

One method to overcome the instability of mechanical springs is by

using a magnetically levitated proof mass. This principle is exploited

by superconducting gravimeters that inductively balance the gravitational

force acting on a superconducting sphere [44]. The iGrav superconduct-

ing gravimeter from GWR Instruments achieves one of the best sensitiv-

ities and long term stability to date [37, 41]. However, these gravimeters

have limited field applications as these could require days to set up and

the liquid-helium refrigeration unit causes it to be a power hungry instru-

ment [42].

A relatively new development are gravimeters based on microelec-

tromechanical systems (MEMS) technology [43, 45, 46]. These devices

show promising sensitivities down to 20 nm s−2/
√

Hz [47] in a small sen-

sor package, but are currently only applied as accelerometers since they

experience significant drifts.

10



1.3 Gravimeters

1.3.2 Absolute gravimeters

Absolute gravimeters that monitor the time and distance of an object in

free fall were introduced in the 1960’s [8]. Their principal method is based

on reflecting a laser beam from a free-falling mirror and comparing it

against the light reflected from a stationary mirror. By arranging the mir-

rors such that they form separate arms of an optical interferometer, the

differential acceleration of the two mirrors is precisely determined from

the interference between the two laser beams.

The most encountered gravimeters of this type are the commercially

available Micro-g LaCoste FG5 and its upgraded version the FG5-X [48]. It

has two retro-reflectors, also known as corner-cubes, in a Mach–Zehnder

(MZ) interferometer. One of the corner-cubes is dropped over a distance

of about 25 cm inside an evacuated tube while the other is stationary and

vibration isolated to remove environmental effects [18, 49]. The interfer-

ence fringes at the output of the MZ interferometer are accurately timed

using a rubidium clock and, together with an SI-traceable laser, make the

instrument accurate to within 31 nm s−2 [50].

The single shot sensitivity of the FG5 gravimeter could reach tens of

nm s−2, but practical measurement rates are only ∼0.1 Hz [51]. Besides

the large size of the FG5 gravimeters, foremost the wear and tear of the

corner-cube’s catch and release mechanism limits their use to campaign

modes [24, 26].

Recently a different type of absolute gravimeter is surpassing the per-

formance of corner-cube gravimeters. Instead of using a macroscopic

proof mass, cold atom gravimeters measure the gravitational acceleration

experienced by clouds of laser-cooled atoms. When employing atoms, an

absolute gravimeter can not only become more compact but also reach

11
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1.3 Gravimeters

measurement rates comparable to those of relative gravimeters. Addition-

ally, the absence of any moving mechanical parts makes such absolute

instruments better candidates for field applications [35].

Cold atom gravimeters use laser pulses to create interference between

atomic states, effectively making the laser beam the ruler with which the

atom’s acceleration is determined. After the first demonstration of this

technique by the pioneering work of Mark Kasevich and Steven Chu [70],

many research groups around the world have started developing gravime-

ters based on atom interferometry. These gravimeters have recorded short-

term sensitivities down to 4.2 nm s−2/
√

Hz in laboratory setups [71] and

57 nm s−2/
√

Hz in mobile experiments [58]. The current state-of-the-art

absolute gravimeters that are aimed towards transportability are listed in

table 1.3 including the specifications of the Micro-g LaCoste FG5-X for

comparison.

1.3.3 Atom-interferometry based gravimeters

To introduce the principle of measuring gravity with atom interferometry,

a simplified explanation is presented here that closely follows the reason-

ing of [72].

Assuming an atom is freely falling due to gravity as sketched in fig-

ure 1.2a, a vertical laser beam can be tuned to an atomic transition by, for

instance, measuring the fluorescence of the atom. However, the frequency

of the laser needs to be linearly ramped, known as frequency chirping,

to compensate the time-dependent Doppler shift of the accelerating atom.

The required chirp rate α is related to the gravitational acceleration g via

2πα = kL · g, (1.1)

13



Chapter 1 Introduction

z

z(t1)

z(t2)

z(t3)

g

|1〉

t

|1〉

|2〉

|2〉

|1〉

|1〉

|2〉

T T

t1 t2 t3t0

kL

(a) (b)

kL kL kL

Figure 1.2 Principle of measuring gravity using free-falling atoms in a laser beam.
(a) The Doppler shift of an atom could continuously be measured with a laser
beam that is resonantly probing an atomic transition to determine the atom’s
acceleration under gravity. However, this significantly perturbs the velocity of the
atom. (b) Position-time diagram of a sequence of short laser pulses that create a
Mach–Zehnder type atom-interferometer which can instead be used to measure
the gravitational acceleration g. A cloud of atoms initially in state |1〉 is split
in two states via a stimulated Raman transition. These states travel along two
different paths that converge and interfere by means of two more laser pulses,
leaving some of the atoms in state |2〉 at the output of the interferometer. The
ratio of the number of atoms between the output states is governed by the phase
shift imprinted by the laser beam, which in turn is related to the gravitational
acceleration g via the laser wavevector kL and the time T between the pulses.
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1.3 Gravimeters

with kL the wavevector of the laser beam. On the surface of the earth this

chirp rate is for optical transitions in the order of tens of MHz s−1.

The main complication is that the atom will be disturbed by the reso-

nant scattering force Fscatt from the laser light, causing a change in acceler-

ation of [73]

ascatt =
Fscatt

m
≈

h̄
⏐⏐kL

⏐⏐
m

Γ
2

. (1.2)

Here is m the mass of the atom, h̄ the reduced Planck constant and Γ

the linewidth of the atomic transition. For typical linewidths of several

MHz, the resulting acceleration ascatt is in the order of 105 m s−2. Probing

an atom this way thus disturbs it much more than the actual gravitational

acceleration one would like to measure.

A more precise method to find the atom’s acceleration is based on us-

ing short laser pulses, thus limiting the perturbing atom-light interactions,

as sketched in figure 1.2b. Here an atom is released in free fall at posi-

tion z(t0) with an initial velocity v(t0), the vertical position of the atom

is then z(t) = − 1
2 gt2 − v(t0)t − z(t0). The absolute value of the gravita-

tional acceleration g =
⏐⏐g⏐⏐ can be determined independent from the initial

position and velocity by taking the location of the atom at three separate

instances. When these instances, designated as t1 , t2 and t3 , are separated

by an equal free-fall time T, the second derivative of the trajectory can be

found by taking

[
z(t3)− z(t2)

]
−
[
z(t2)− z(t1)

]
T2 =

z(t1 + 2T)− 2z(t1 + T) + z(t1)

T2

=
− 1

2 g(t1 + 2T)2 + g(t1 + T)2 − 1
2 gt2

1

T2 = −g.

(1.3)
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Chapter 1 Introduction

Such a measurement can be performed using the phase of the laser

beam as a precise ruler. The total phase of a laser beam having angular

frequency ωL and phase offset φ0 , is

φ(t) = kL z(t)− ωL t + φ0 (1.4)

with kL =
⏐⏐kL

⏐⏐. Substituting the equation of the position of the atom z(t)

and calculating the phase of the laser beam at each of the three instances,

will result in the following relation equivalent to equation (1.3):

∆φ ≡
[
φ(t3)− φ(t2)

]
−
[
φ(t2)− φ(t1)

]
= −kL gT2. (1.5)

Measuring the phase difference ∆φ precisely requires an atom interfer-

ometer as sketched in figure 1.2b. This interferometer works in principle

the same as an optical Mach–Zehnder interferometer except the roles of

matter and light are interchanged. Here light pulses serve the role of split-

ting and recombining atoms the same way as beam splitters and mirrors

do for photons. The atom interferometer of figure 1.2b is thus referred to

as having a Mach–Zehnder geometry. It splits two states of an atom at

time t1 that start to travel along separate trajectories. The two states, la-

belled |1〉 and |2〉, are interchanged after a time T by a second laser pulse

in order for their trajectories to coincide again at time t3 . At that time,

a third pulse creates interference between the states resulting in a certain

probability of finding the atom at the output of the interferometer in ei-

ther state |1〉 or |2〉. This probability is dependent on the phase difference

imprinted in the atomic states by the laser beam and turns out to have

the same relation as equation (1.5). To be more exact, the wave vector kL

is in this case the effective wave vector of a stimulated Raman transition.
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1.3 Gravimeters

A detailed explaination of such an atom interferometer, including a more

accurate equation of the phase difference, is presented in chapter 2.

For a precise measure of the phase difference ∆φ, and thus g, many

atoms will have to take part in the interferometer. The ratio between the

number of atoms in the two output states can then be used to determine

the phase difference. The precision with which the phase difference can

be determined is limited by the total number of atoms N, since the atom

shot noise causes a standard deviation uncertainty in the measured phase

difference of σ∆φ
=

1√
N

[74]. From equation (1.5) it can be seen that the

atom shot noise thus limits an atom-interferometry based gravimeter to

measuring g with a root mean square (RMS) uncertainty

σg =
1

kL T2
√

N
. (1.6)

To illustate the sensitivity of this technique it is assumed that a million

atoms simultaneously take part in a MZ type atom-interferometer with

T = 0.5 s. This would then allow a determination of gravitational acceler-

ation from a single measurement with an uncertainty of σg ∼ 10−9 m s−2.

Almost all of the sources in table 1.1 could thus be studied with such a

gravimeter operating near its atom shot noise limit.

To enable many atoms to undergo the interferometer sequence requires

a controlled release of atoms in free fall. However, a cloud of atoms at a

certain temperature T has a Maxwell–Boltzmann velocity distribution with

an RMS velocity spread

σ|v| =

√
3kB T

m
, (1.7)

where kB is the Boltzmann constant. At room temperatures this velocity
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Chapter 1 Introduction

spread is typically hundreds of m s−1. That would only allow for a short

time to perform the interferometry sequence before most atoms have trav-

elled outside of the laser beam. An even more stringent limit to the atoms’

velocity spread comes from the narrow linewidth of the stimulated Ra-

man transition. As will be discussed in chapter 2, the Doppler sensitivity

of these transitions cause the laser to only address atoms within a fre-

quency band in the order of 104 Hz. The corresponding velocity spread is

in the range of a few mm s−1, which is according to equation (1.7) the case

for atom clouds at temperatures T < 10−6 K.

Creating clouds of atoms with these extremely low temperatures has

become possible since the advent of laser cooling and trapping of neutral

atoms in the 1980’s [75–77]. These days a source of cold atom clouds

is found in many research laboratories around the world in the form

of a magneto-optical trap (MOT). This is also the case with the atom-

interferometry based gravimeters in table 1.3 which typically reach atom

numbers of 108 in clouds at temperatures in the order of a few µK.

Atom interferometry is not only applicable for accurately measuring

gravitational acceleration. It has also demonstrated high sensitivities for

rotation sensing [78–81] and potential for inertial navigation [69]. In fun-

damental physics research atom interferometry is used for an accurate

determination of the Newtonian gravitational constant using gravity gra-

dient experiments [82, 83]. Several research groups are testing the weak

equivalence principle, also referred to as the universality of free fall, us-

ing cold atom experiments [84–88]. Such experiments are also performed

in microgravity environments [66, 89–91] and planned for space missions

[92, 93]. Future projects could see atom interferometers help in detect-

ing gravitational waves [94–96] or even putting constraints on dark energy

18



1.4 The iSense project and scope of this work

theories [97]. Many fields of research thus exploit atom interferometry for

its high sensitivity to inertial forces and benefit from compact and mobile

instruments based on this technique.

1.4 The iSense project and scope of this work

As the previous sections showed, cold atoms can be used as a highly sen-

sitive tool for gravimetry. Much effort is already being put into bring-

ing cold atom sensors outside laboratory environments [62, 68, 98–100].

Cold atom based gravimeters are even becoming commercially available

[101, 102]. However, the current mobile absolute gravimeters shown in

table 1.3 are not as compact and energy efficient as relative gravimeters.

The development of more compact atom-interferometry technologies is

the aim of the Integrated Quantum Sensors (iSense) project [103].

The iSense project enhances the research and development of cold

atom sensors by bringing together research groups and institutions from

across Europe. The main goal of this collaboration is to demonstrate

cold atom technologies outside laboratory environments by constructing a

transportable gravimeter based on atom interferometry. The expertise and

components contributed by the iSense partners are listed in table 1.4.

In order to shrink the size and power consumption of a cold-atoms

experiment such as the one in the top photograph in figure 1.1, the iSense

project integrates several state-of-the-art technologies. First, a compact

vacuum chamber is made possible through the application of a mirror-

MOT based on a low-power atom chip assembly designed and constructed

by the University of Nottingham. Robust and high-power lasers have

been developed at the Ferdinand-Braun-Institut and packaged by the Uni-

versität Hamburg for the iSense experiment. The entire experiment is
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öc

hs
fr

eq
ue

nz
te

ch
ni

k
im

Fo
rs

ch
un

gs
ve

rb
un

d
Be

rl
in

e.
V.

FB
H

G
er

m
an

y
M

ic
ro

-i
nt

eg
ra

te
d

di
od

e
la

se
rs

U
ni

ve
rs

it
y

of
N

ot
ti

ng
ha

m
U

N
O

TT
U

K
Lo

w
po

w
er

at
om

ch
ip

as
se

m
bl

y

O
ffi

ce
N

at
io

na
ld

’E
tu

de
s

et
de

R
ec

he
rc

he
s

A
ér

os
pa

ti
al

es
O

N
ER

A
Fr

an
ce

A
to

m
in

te
rf

er
om

et
ry

sc
he

m
es

20



1.4 The iSense project and scope of this work

controlled with small form-factor electronics from the Leibniz Universität

Hannover with a custom microwave frequency reference developed by

Systèmes de Référence Temps-Espace. All these components were inte-

grated into a single atom-interferometry setup at the University of Birm-

ingham and demonstrated operation in the transportable case shown in

the bottom photograph in figure 1.1.

This thesis describes the work at the University of Birmingham lead-

ing up to the integrated iSense experiment. The first part of this work

is from a team of three PhD students with guidance of two consecutive

post-doctoral researchers. The senior PhD student on the iSense project,

Jonathan Malcolm, started the testing and integration of the components

that have been contributed to the project by the iSense collaborators. He

also designed and constructed the optical fibre network that controls and

distributes the laser light from the lasers to the vacuum chamber. The opti-

misation of the cold-atoms source and interferometry sequence has mostly

been part of Lingxiao Zhu’s work. The work of the author was focussed

on the frequency stabilisation of the laser system and the packaging of the

experiment in a transportable setup.

The iSense setup and its performance as a mobile atom-interferometry

experiment are described in chapter 3. Preliminary results show that

clouds of 107 rubidium atoms every ∼0.5 s can be generated. At an ob-

served cloud temperature of 5 µK, it is estimated that about 105 atoms

could take part in the interferometry sequence [104]. This means that

when used as an gravimeter with a free-fall time of 2T = 100 ms, the

iSense setup would have an atom shot noise limited sensitivity according

to equation (1.6) of 56 nm s−2/
√

Hz.

Despite these promising results, technical factors reduce the achievable
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Chapter 1 Introduction

sensitivity and the performance of the iSense setup as a cold-atoms source.

This work builds upon the legacy of the iSense project and modifies sev-

eral parts of the experimental setup to increase the number of atoms in

the generated atom clouds. A major part of this work includes a new

laser system. Two compact fibre laser systems are presented in chapter 4

that are widely applicable to atom-interferometry experiments with rubid-

ium atoms. The aim is to reduce the size and power consumption of the

overall experiment, while maintaining the functionality and performance

required for atom interferometry.

To demonstrate the capability of the new laser system and the up-

graded experimental setup, the generation of cold atom-clouds is charac-

terised in chapter 5. It is also shown that the interference between atoms

is maintained over increased free-fall times, thus advancing the capabili-

ties of the original iSense setup. The results of the new configuration are

summarised in chapter 6, including an outlook on the future use of the

experimental setup.
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Chapter 2

Theory

The principle of measuring gravitational acceleration with atoms has been

around for 30 years [105, 106]. This is driven by the fact that the motion

of neutral atoms is relatively insensitive to disturbing electric or magnetic

fields and is associated with small de Broglie wavelengths. Minute forces

can thus be probed through the interference of coherent matter-waves.†

The principal method relies on the interference of atomic states that

follow separate free-fall trajectories as was shown in figure 1.2b. Splitting

and recombining the atomic states is made possible by stimulated Raman

transitions. As originally proposed by Bordé [108], this two-photon pro-

cess imparts a momentum to an atom that causes a spatial separation of

the internal quantum states over time. When the states are made to re-

combine again, their path difference is imprinted in the state populations

which can be measured using spectroscopic techniques. The first exper-

imental realisations of this method enabled the measurement of rotation

[109] and gravitational acceleration [70]. A theoretical description of stim-

ulated Raman transitions and their application in gravity sensing are pre-

†For an extensive review of the field of atom interferometry see [107].
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Chapter 2 Theory

sented in the first sections of this chapter. The descriptions presented in

this chapter are based on more detailed works as [53, 72, 110, 111].

The success of atom-interferometry schemes using stimulated Raman

transitions comes from the large momentum recoil and the ability to cou-

ple stable atomic states. Because the two-photon transition results in a

large separation between the paths of the interferometer, as discussed in

section 2.2, it results in an increased sensitivity to acceleration. Long-lived

atomic states are required because the sensitivity scales with the square of

the free-fall time, as seen in equation (1.6). Such states are found in the

hyperfine split ground states of alkali atoms due to their single valence

electron. For this reason, the test mass used in this work is the rubidium-

87 isotope as explained in section 2.4. Of equal importance is the relative

ease of generating laser-cooled clouds of rubidium atoms. Section 2.4.1

summarises the principles of laser-cooling and trapping 87Rb atoms and

the implications these have for the experiment.

The sensitivity of a gravimeter based on atom interferometry has a

theoretical limit imposed by the atom shot noise limit, however other fac-

tors limit the precision achievable in practice. The noise sources that most

significantly impact the sensitivity are discussed in section 2.5.

2.1 Stimulated Raman transitions

The building block of the atom interferometry experiment here is the two-

photon process sketched in figure 2.1a. A stimulated Raman transition

couples two long-lived states of an atom labelled |a〉 and |b〉. When these

states are a set of hyperfine split ground states their separation, indicated

by the angular frequency ωba , is in the order of GHz. Because this is

much smaller than visible wavelengths, the coupling between the states
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2.1 Stimulated Raman transitions

|a〉

|b〉

ω
ba

ω
1

|e〉

ω
2

∆
R

δ
R

ω
ea

(a)

h̄k1

p

h̄k2 p + h̄keff

h̄k2h̄k2

Before After

|a〉 |b〉

(b)

Figure 2.1 A stimulated Raman transition couples stable atomic states |a〉 and |b〉
via two light fields and an excited state |e〉. (a) Internal energy level diagram of
the atom with optical frequencies ω1 and ω2 detuned by an amount ∆ from |e〉
to prevent population of the excited state. The stimulated Raman transition is
most efficient when δ accounting for the Doppler shift and photon momentum
recoil. (b) Conservation of momentum shows that an atom transitioning from
state |a〉 to |b〉 in this two photon process will receive a change in its momentum
of h̄keff = h̄(k1 − k2).

is achieved by two laser light fields. The angular frequencies ω1 and ω2

of the two laser beams are close to the optical transition with a common

excited state |e〉, but differ by an amount close to ωba . This allows the

transition of an atom from state |a〉 to |b〉 by absorption of a photon of

energy h̄ω1 from the first light field and stimulated emission of a photon

with energy h̄ω2 in the second light field. To prevent population of the

excited state, and thus limiting decoherence from spontaneous emission,

the light fields are detuned from the level separation ωea . Note that the

energy levels in figure 2.1a are not drawn to scale since ωea is in the range

of hundreds of THz.

The resonance condition for efficient coupling between |a〉 and |b〉 can

be found from energy conservation of the process depicted in figure 2.1b.
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When an atom that is initially in state |a〉 has a momentum p, then the

absorption of a photon from the first laser beam with wavevector k1 will

impart a momentum h̄k1 . Stimulated emission of a photon with wavevec-

tor k2 in the second light field will result in an additional momentum

recoil of h̄k2 . The two-photon transition to state |b〉 can thus be described

with an effective wavevector keff ≡ k1 − k2 . Taking the momentum change

h̄keff into account, it is seen that the resonance condition for the stimulated

Raman transition is then ω1 − ω2 − ωba =

⏐⏐p + h̄keff

⏐⏐2
2mh̄

−
⏐⏐p⏐⏐2
2mh̄

. Therefore,

the detuning δR from resonance is given by

δR = ω1 − ω2 − ωba +

⏐⏐p⏐⏐2
2mh̄

−
⏐⏐p + h̄keff

⏐⏐2
2mh̄

, (2.1)

which is also known as the two-photon detuning. Similarly, the detuning

from the excited state ∆R , or one-photon detuning, is defined as

∆R = ωea − ω1 +

⏐⏐p⏐⏐2
2mh̄

−
⏐⏐p + h̄k1

⏐⏐2
2mh̄

. (2.2)

The stimulated Raman transition is generally described in a semi-

quantum mechanical approach [72, 112]. Because the required laser beams

have a high intensity, these so-called Raman beams are represented as clas-

sical plane waves given by the electric field

E(r, t) = E1 cos
(
k1 ·r − ω1 t + φL1

)
+ E2 cos

(
k2 ·r − ω2 t + φL2

)
. (2.3)

Here E1 and E2 indicate the amplitude and polarisation of the two laser

beams. Their phase offsets φL1 and φL2 are with respect to a common refer-

ence and assumed constant during the interaction with the atom. Because

the detuning ∆R is small relative to the level separation ωba , it is safe to
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2.1 Stimulated Raman transitions

assume that the first term in equation (2.3) only couples |a〉 to the excited

state and the second term only couples state |b〉 to |e〉. In any case, the

inclusion of other possible couplings leads in good approximation to the

same results for the evolution of the states |a〉 and |b〉 [110, 113].

The atom is characterised in a three-level model by the time-dependent

wavefunction |Ψp(t)〉 = ∑
i=a,b,e

Ci(p, t) |i〉. The coefficients Ci(p, t) depen-

dent on the energy and momentum p of each basis state, thus the state |i〉

is labelled with a combination of its internal state and external momen-

tum. This allows the wavefunction to be expressed in the following three

basis states with their corresponding energies h̄ωi [114]:

|a; p〉 h̄ωa =

⏐⏐p⏐⏐2
2m

(2.4a)

|b; p + h̄keff〉 h̄ωb =

⏐⏐p + h̄keff

⏐⏐2
2m

+ ωba (2.4b)

|e; p + h̄k1〉 h̄ωe =

⏐⏐p + h̄k1

⏐⏐2
2m

+ ωea . (2.4c)

The evolution of the above states is expressed in the time-dependent wave-

function using slowly varying coefficients ci(t) as

|Ψp(t)〉 = ca(t) exp

⎡⎣−i

⏐⏐p⏐⏐2
2mh̄

t

⎤⎦ |a; p〉

+ cb(t) exp

⎡⎢⎣−i

⎛⎝⏐⏐p + h̄keff

⏐⏐2
2mh̄

+ ωba

⎞⎠ t

⎤⎥⎦ |b; p + h̄keff〉

+ ce(t) exp

⎡⎢⎣−i

⎛⎝⏐⏐p + h̄k1

⏐⏐2
2mh̄

+ ωea

⎞⎠ t

⎤⎥⎦ |e; p + h̄k1〉 .

(2.5)

The coefficients ci(t) are also a function of the momentum p, but this

explicit dependency is omitted for ease of writing.
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The evolution of the atomic states is in the absence of spontaneous

emission governed by the Hamiltonian

H =
p̂2

2m
+ h̄ωba |b〉〈b|+ h̄ωea |e〉〈e| − d̂·E(r, t), (2.6)

where p̂ is the momentum operator. The last term in the Hamiltonian is

the electric dipole approximation of the interaction between the atom and

the light field of equation (2.3), with d̂ the electric dipole moment operator.

Applying both the wavefunction (2.5) and the Hamiltonian from equa-

tion (2.6) in the Schrödinger equation

ih̄ d
dt |Ψp(t)〉 = H |Ψp(t)〉 , (2.7)

enables finding expressions for the coefficients ci(t) of the atomic wave-

function. The first steps towards these solutions are described in various

works [72, 112] and take the rotating wave approximation to find the cou-

pled set of differential equations

i d
dt ca(t) = ce(t)Ω1e−i∆R t−iφL1 (2.8a)

i d
dt cb(t) = ce(t)Ω2e−i(∆R+δR )t−iφL2 (2.8b)

i d
dt ce(t) = ca(t)Ω

∗
1
ei∆R t+iφL1 + cb(t)Ω

∗
2
ei(∆R+δR )t+iφL2 . (2.8c)

Here are Ω1 and Ω2 the Rabi frequencies defined as

Ω1 ≡ −〈a| d̂·E1 |e〉
2h̄

(2.9a)

Ω2 ≡ −〈b| d̂·E2 |e〉
2h̄

, (2.9b)

and represent the coupling between each of the ground states |a〉,|b〉 and
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2.1 Stimulated Raman transitions

the excited state |e〉 by the respective laser beams.

The set of equations (2.8) can be simplified via the process of adia-

batic elimination of the excited state coefficient ce(t) [112]. The process

assumes that the coefficients vary slower than the exponential terms and

is the case when ∆ �
⏐⏐Ω1

⏐⏐ ,
⏐⏐Ω2

⏐⏐. This allows independent integration of

equation (2.8c) and reduces the problem to the two level system

d
dt ca(t) = i

⏐⏐Ω1

⏐⏐2
∆

ca(t) + i
Ω1 Ω∗

2

∆
cb(t)e

i(δR t+φL2−φL1) (2.10a)

d
dt cb(t) = i

Ω∗
1
Ω2

∆
ca(t)e

−i(δR t+φL2−φL1) + i

⏐⏐Ω2

⏐⏐2
∆

cb(t). (2.10b)

The stimulated Raman transition of figure 2.1a can thus be described un-

der the previous conditions as a two-level system.

Before solving the set of differential equations (2.10), the following

variables are introduced:

Ωeff ≡ 2
Ω1 Ω∗

2

∆R

(2.11a)

δφL ≡ φL2 − φL1 (2.11b)

ΩAC ≡
⏐⏐Ω1

⏐⏐2
∆R

+

⏐⏐Ω2

⏐⏐2
∆R

(2.11c)

δAC ≡
⏐⏐Ω1

⏐⏐2
∆R

−
⏐⏐Ω2

⏐⏐2
∆R

, (2.11d)

where Ωeff is the effective Rabi frequency of the two level system, δφL is

the phase difference between the two light fields, ΩAC is the sum of the

light shifts of the two energy levels due to the AC-Stark effect and δAC is

the corresponding differential energy shift.
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Using these definitions, equations (2.10) are recast into

d
dt ca(t) = i

1
2
(
ΩAC + δAC

)
ca(t) + i

1
2

Ωeff cb(t)e
i(δR t+δφL) (2.12a)

d
dt cb(t) = i

1
2

Ω∗
eff

ca(t)e
−i(δR t+δφL) + i

1
2
(
ΩAC − δAC

)
cb(t). (2.12b)

The two-level system can now be solved with the help of a change of

variables;

ca(t) = c̃a(t) exp
(

i
ΩAC + δR

2
t
)

(2.13a)

cb(t) = c̃b(t) exp
(

i
ΩAC − δR

2
t
)

, (2.13b)

in order to eliminate the time-dependent factors [110]. The coefficients

c̃a(t) and c̃b(t) are then governed by the following relations written in

vector form:

d
dt

⎛⎜⎝c̃a(t)

c̃b(t)

⎞⎟⎠ =
i
2

⎛⎜⎝ δAC − δR Ωeffe
iδφL

Ω∗
eff

e−iδφL −
(
δAC − δR

)
⎞⎟⎠
⎛⎜⎝c̃a(t)

c̃b(t)

⎞⎟⎠ , (2.14)

which has solutions of the form

c̃a(t) = A+eiΩR t/2 + A−e−iΩR t/2 (2.15a)

c̃b(t) = B+eiΩR t/2 + B−e−iΩR t/2. (2.15b)

Substitution of the above expressions in (2.14) leads to the equation for the

eigenvalues ±ΩR⏐⏐⏐⏐⏐⏐⏐
δAC − δR − ΩR Ωeffe

iδφL

Ω∗
eff

e−iδφL −
(
δAC − δR

)
− ΩR

⏐⏐⏐⏐⏐⏐⏐ = 0. (2.16)
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Solving equation (2.16) gives

ΩR =

√⏐⏐Ωeff

⏐⏐2 + (δAC − δR

)2

=

√4

⏐⏐⏐Ω1 Ω∗
2

⏐⏐⏐2
∆2

R

+

⎛⎝⏐⏐Ω1

⏐⏐2
∆R

−
⏐⏐Ω2

⏐⏐2
∆R

− δR

⎞⎠2

,
(2.17)

and is referred to as the generalised, two-photon Rabi frequency.

The factors A± and B± can be found via substitution of the expressions

for ca(t) and cb(t) into equations (2.12), together with the initial conditions

of the coefficients ca(t0) and cb(t0) at a time t0 . The solutions for the co-

efficients at a time t0 + τ are then obtained in accordance with [112, 115]:

ca(t0 + τ) = exp
[

i
ΩAC + δR

2
τ

]{
i
Ωeff

ΩR

ei(δR t0+δφL) sin
(

ΩR

2
τ

)
cb(t0)

+

[
cos
(

ΩR

2
t
)
+ i

δAC − δR

ΩR

sin
(

ΩR

2
τ

)]
ca(t0)

}
(2.18a)

cb(t0 + τ) = exp
[

i
ΩAC − δR

2
τ

]{
i
Ω∗

eff

ΩR

e−i(δR t0+δφL) sin
(

ΩR

2
t
)

ca(t0)

+

[
cos
(

ΩR

2
τ

)
− i

δAC − δR

ΩR

sin
(

ΩR

2
τ

)]
cb(t0)

}
. (2.18b)

Referring to the wavefunction of equation (2.5), the complete evolution

of the states |a, p〉 and |b, p + h̄keff〉 is found by inclusion of the energy
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terms, yielding the coefficients

Ca(p, t0 + τ) = exp

⎡⎢⎣−i

⎛⎝⏐⏐p⏐⏐2
2mh̄

− ΩAC + δR

2

⎞⎠τ

⎤⎥⎦
×
{[

cos
(

ΩR

2
t
)
+ i

δAC − δR

ΩR

sin
(

ΩR

2
τ

)]
Ca(p, t0)

+ i
Ωeff

ΩR

ei(δωL t0+δφL) sin
(

ΩR

2
τ

)
Cb(p, t0)

}
(2.19a)

Cb(p, t0 + τ) = exp

⎡⎢⎣−i

⎛⎝⏐⏐p + h̄keff

⏐⏐2
2mh̄

+ ωba −
ΩAC − δR

2

⎞⎠τ

⎤⎥⎦
×
{

i
Ω∗

eff

ΩR

e−i(δωL t0+δφL) sin
(

ΩR

2
t
)

Ca(p, t0)

+

[
cos
(

ΩR

2
τ

)
− i

δAC − δR

ΩR

sin
(

ΩR

2
τ

)]
Cb(p, t0)

}
.

(2.19b)

Here is the frequency difference δωL ≡ ω1 − ω2 between the light fields

introduced. The lengthy expressions of equations (2.19) will be converted

into a more compact notation in section 2.3.

When an atom starts at t0 in the lower ground state, i.e. Ca(p, t0) = 1

and Cb(p, t0) = 0, the probability of detecting the atom in each of the states

at a time t = t0 + τ follows from

Pa(p, t0 + τ) =
⏐⏐Ca(p, t0 + τ)

⏐⏐2
= cos2

(
ΩR

2
τ

)
+

⏐⏐⏐⏐⏐δAC − δR

ΩR

⏐⏐⏐⏐⏐
2

sin2
(

ΩR

2
τ

)
(2.20a)

Pb(p, t0 + τ) =
⏐⏐Cb(p, t0 + τ)

⏐⏐2
=

⏐⏐⏐⏐⏐Ωeff

ΩR

⏐⏐⏐⏐⏐
2

sin2
(

ΩR

2
τ

)
=

⏐⏐⏐⏐⏐Ωeff

ΩR

⏐⏐⏐⏐⏐
2

1 − cos
(
ΩR τ

)
2

. (2.20b)
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Figure 2.2 Rabi oscillations of probability of state |b〉 at different detunings δR
from the stimulated Raman transition resonance for an atom in state |a〉 at τ = 0.

The oscillations in the population of states |a〉 and |b〉 are the well-

known Rabi oscillations [116], except the oscillation frequency ΩR is here

the result of a two-photon transition.

It can be seen from equations (2.20) that a complete population transfer

is only possible in the case if δR = δAC and thus ΩR = Ωeff . This means that

the differential light shift from the AC-Stark effect would be compensated

by detuning from the resonance condition [114]. However, δAC could be

made to vanish by setting the ratio of the laser intensities such that the

Rabi frequencies of equation (2.9) are equal. This is common practice in

atom-interferometry experiments, because it enables performing an effec-

tive stimulated Raman transition on resonance. In the remainder of this

chapter it is therefore assumed that δAC = 0.

The Rabi oscillations of state |b〉 from equation (2.20b) are plotted as

a function of the time τ, normalised with Ωeff , in figure 2.2. The largest
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population transfer is found after a time

τπ =
π

Ωeff

. (2.21)

Therefore, a laser pulse with this characteristic time is generally referred

to as a π-pulse. The atom can be brought into an equal superposition of

states by the application of half a π-pulse, defined by a time τπ
2
=

π

2Ωeff

. A

π
2 -pulse thus acts as a beam splitter for the atom, while a π-pulse inverts

the state the atom is in. The latter is also known as a matter-wave reflector

or mirror pulse in analogy with an optical mirror. Such laser pulses that

drive stimulated Raman transitions, in short called Raman pulses, are the

tools in this work for creating an atom interferometer.

2.2 Velocity selection

The previous derivations have been performed in the frame of reference

of a single atom. The next step involves understanding stimulated Raman

transitions in a cloud of atoms having a finite velocity distribution. Before

this is discussed, it is necessary to specify the direction of the laser beams.

The results in section 2.1 are valid for any combination of the wavevec-

tors k1 and k2 . However, the counter-propagating configuration in fig-

ure 2.1b gives the largest possible change in momentum since in that case⏐⏐keff

⏐⏐ = ⏐⏐k1

⏐⏐+⏐⏐k2

⏐⏐. Because the light fields have opposite wavevectors and

only a small difference in frequency, the momentum kick is approximately

twice the momentum recoil from a single photon. The other limit is the

co-propagating configuration where
⏐⏐keff

⏐⏐ = ⏐⏐k1

⏐⏐−⏐⏐k2

⏐⏐ and the momentum

kick becomes negligible. As seen in equation (1.6) and in the next section,

the counter-propagating configuration is therefore a necessity for a high-
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Table 2.1 Raman beam configurations and related properties of the stimulated
Raman transitions with typical values for the experiment in this work.

Raman beam configuration Co-propagating Counter-propagating

k1 k2
ω1 ω2

k1 k2
ω1 ω2

Momentum kick h̄
⏐⏐k1

⏐⏐− h̄
⏐⏐k2

⏐⏐ h̄
⏐⏐k1

⏐⏐+ h̄
⏐⏐k2

⏐⏐
Recoil velocity 0.10 µm s−1 12 mm s−1

Doppler shift k1 · v − k2 · v k1 · v + k2 · v

Velocity selection Doppler insensitive Doppler sensitive

Effective wavelength 46 mm 0.39 µm

precision gravimeter. This can be understood intuitively when considering

that the optical “ruler” used here to determine the atom’s trajectory, is the

effective wavelength corresponding to
2π

keff

. This effective wavelength is

for co-propagating laser beams in the microwave region. With a counter-

propagating configuration on the other hand, the effective wavelength is

about half the (optical) wavelength of the laser beams.

The choice of the Raman beam configuration also has an impact on the

coherence of the stimulated Raman transitions in a cloud of atoms. Due

to the finite velocity spread of the atoms, the resonance condition can-

not simultaneously be met for all atoms when using counter-propagating

laser beams. In the co-propagating configuration the Doppler shifts ex-

perienced by the atoms will be almost the same for the two light fields,

thus making the stimulated Raman transition virtually insensitive to the

velocity spread. The properties of each configuration are summarised in

table 2.1. Unless stated otherwise, it is assumed from here on that the
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Raman laser beams are parallel.

To quantify the Doppler sensitivity of the stimulated Raman transition,

first the direction of the Raman laser beams is defined as the z-axis. The

velocity component vz of an atom satisfies the resonance condition of the

stimulated Raman transition at a certain velocity vR . Inserting this defini-

tion into equation (2.1) allows the two-photon detuning to be rewritten as

a Doppler shift:

δR = δωL − ωba −
h̄
⏐⏐keff

⏐⏐2
2m

−
pz

⏐⏐keff

⏐⏐
m

=
(
vR − vz

)⏐⏐keff

⏐⏐ . (2.22)

The resonant velocity class thus adheres to a velocity component along the

Raman beams of

vR =
δωL − ωba⏐⏐keff

⏐⏐ −
h̄
⏐⏐keff

⏐⏐
2m

. (2.23)

The last term in equation (2.23) can be recognised as half the recoil velocity

vrecoil , which is experienced by an atom undergoing a stimulated Raman

transition and is given by

vrecoil =
h̄
⏐⏐keff

⏐⏐
m

. (2.24)

The generalised Rabi frequency becomes with relation (2.22)

ΩR(vz) =
⏐⏐Ωeff

⏐⏐√1 +

(
vz − vR

)2⏐⏐keff

⏐⏐2⏐⏐Ωeff

⏐⏐2 . (2.25)

Atoms with different velocity components along the laser beams thus ex-

perience a different Rabi frequency, equivalent to the effect from a varying

detuning as illustrated in figure 2.2.
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vzvR

σv,z

fv

〈vz〉

σv,π

Figure 2.3 Velocity distribution along Raman beams addressed by a Raman π-
pulse (solid line) for an atom cloud with a Maxwell–Boltzmann distribution
(dashed line).

The application of a π-pulse causes a maximum population transfer

only for atoms in the velocity class around vR . The velocity dependence

of the state population after a pulse of duration τπ can be found by sub-

stitution of equation (2.25) into (2.20b). The result is the following sinc2

dependence on velocity for the population of state |b〉:

Pb

(
vz , t0 +

π⏐⏐Ωeff

⏐⏐
)

=
π2

4
sinc2

⎛⎜⎝π

2

√1 +

(
vz − vR

)2⏐⏐keff

⏐⏐2⏐⏐Ωeff

⏐⏐2
⎞⎟⎠. (2.26)

Next, the atom cloud is assumed to have a Maxwell–Boltzmann distri-

bution of velocities vz given by

fv(vz) =
1

σv,z

√
2π

exp

[
− (vz − 〈vz〉)

2

2σv,z
2

]
. (2.27)

Here is σv,z the one-dimensional velocity spread around the cloud’s mean

velocity 〈vz〉 along the Raman beams.

After the π-pulse, the distribution of the atoms that are found in state

|b〉 as plotted in figure 2.3, is the product of equations (2.26) and (2.27).

The total number of atoms in state |b〉 can be estimated by integration
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over vz , which gives the ensemble averaged probability

⟨
Pb,π

⟩
=

∞̂

−∞

fv(vz)Pb

(
vz , t0 +

π⏐⏐Ωeff

⏐⏐
)

dvz . (2.28)

Note that here the transverse spread of the atom cloud is assumed to be

small compared to the Raman beam width. A more general derivation

includes the spatial dependence of Ωeff and integrates over the total three-

dimensional ensemble of atoms [117].

Equation (2.28) is evaluated by approximating the central peak of equa-

tion (2.26) with a Gaussian function. The RMS spread of this function is

in the case of a π-pulse the velocity spread ∼
⏐⏐Ωeff

⏐⏐⏐⏐keff

⏐⏐ . Using this approxima-

tion, the averaged probability is expressed as

⟨
Pb,π

⟩
≈ 1

σv,z

√
2π

∞̂

−∞

exp

[
− (vz − 〈vz〉)2

2σv,z
2

]
exp

⎡⎣−⏐⏐keff

⏐⏐2 (vz − vR)
2

2
⏐⏐Ωeff

⏐⏐2
⎤⎦dvz

=
σv,π

σv,z

exp

⎡⎣−1
2

⏐⏐keff

⏐⏐2⏐⏐keff

⏐⏐2 σv,z
2 +
⏐⏐Ωeff

⏐⏐2 (〈vz〉 − vR

)2

⎤⎦,

(2.29)

where

σv,π =
σv,z

⏐⏐Ωeff

⏐⏐√⏐⏐keff

⏐⏐2 σv,z
2 +
⏐⏐Ωeff

⏐⏐2 . (2.30)

Finally, it can be seen from equation (2.29) that the largest fraction of the

velocity distribution is addressed if the Raman laser frequencies are ob-

viously tuned to the centre of the velocity distribution where vR = 〈vz〉.

Under this condition, the total fraction of atoms that underwent a state

transfer is approximately σv,π
σv,z

. By measuring the fraction of transferred

38



2.2 Velocity selection

atoms as a function of the laser detuning, it is possible to determine both

〈vz〉 and the temperature of the atom cloud.

A parameter regime that enables stimulated Raman transitions with

a large part of the initial atom-cloud, needs to satisfy according to equa-

tion (2.30) the condition
⏐⏐keff

⏐⏐ σv,z <
⏐⏐Ωeff

⏐⏐. In the case of counter-propagating

Raman beams, the addressed velocity spread for a typical effective Rabi

frequency in the order of 10 kHz (see section 2.4) is several mm s−1. This

means for an atom cloud with a temperature in the order of 5 µK, that a

state transfer will be performed by only about 20 % of the atoms. A possi-

ble solution is to sweep the Raman laser frequencies such that it transfers

atoms in a larger range of velocity classes. This process is known as rapid

adiabatic passage and requires careful Raman pulse shaping [118, 119].

The increased number of atoms undergoing an atom interferometry se-

quence with this method allows for improved single shot sensitivity to ac-

celerations [120]. When using co-propagating Raman beams, on the other

hand, the addressed velocity spread becomes in the order of 102 m s−1 and

the previous condition is even satisfied for atom clouds at room tempera-

ture.

The conclusion that can be drawn from this section, is that counter-

propagating Raman beams address atoms within a narrow velocity class.

This feature is exploited in experiments that create clouds of atoms below

single-photon recoil temperatures [121, 122]. It is also common in the atom

interferometry setups of table 1.3 to apply a velocity selection pulse that

prepares a cold sample of atoms before the atom interferometry sequence.

Moreover, it highlights the need of a cold atom-cloud in order to simulta-

neously perform stimulated Raman transitions on a significant number of

atoms with counter-propagating Raman beams.

39



Chapter 2 Theory

2.3 Atom interferometry with Raman pulses

The two pulse sequences for atom interferometry applied in this work are

the Ramsey and Mach–Zehnder type. A Ramsey sequence consists of two

π
2 -pulses separated by a time T during which there is no light field present.

The Mach–Zehnder type is in principle two repeated Ramsey sequences,

making a π
2 -π-π2 -pulse sequence. It will be shown how such a sequence can

be used to measure gravitational acceleration. The strategy for this is the

same as the derivation in the previous section for a single π-pulse. Firstly,

the state probability after a certain pulse sequence is derived while taking

the Doppler shift into account. Secondly, the result is then integrated over

the velocity distribution to estimate the number of atoms in each of the

states at the output.

It must be noted that other approaches exists to derive the effects of

inertial forces on the output of an atom interferometer. The Feynmann

path integral approach [123] considers the accumulated phase for each

path along the interferometer separately and subtracts these at the output

of the interferometer. The derivation used here evaluates the sequential

phase changes through the use of transformation matrices in close anal-

ogy to geometrical optics, as found in for instance [110, 111]. This method

is applicable in the case of the gravity sensor in this work, but other ap-

proaches need to be considered when calculating the effects of gravity

gradients or rotations [124, 125].

For an atom in free fall the light field of equation (2.3) will depend

on the trajectory of its centre of mass. The Raman beams in the frame

of reference of the atom therefore have a time dependent position vector

r′(t) = r − 1
2 gt2 [111]. This transformation depends on the local gravita-
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2.3 Atom interferometry with Raman pulses

tional acceleration g. The acceleration also causes the laser frequencies to

be Doppler shifted over time. To keep the stimulated Raman transition on

resonance, a chirp has to be applied to one of the laser frequencies. If a

linear chirp with rate α in units of Hz s−1 is added to the first laser beam,

its angular frequency becomes ω1(t) = ω1 + 2παt. The expression for the

electric field of the Raman beams is with these modifications

E
(
r′(t), t

)
= E1 cos

[
k1 ·
(

r − 1
2

gt2
)
− ω1(t)t + φL1

]

+ E2 cos

[
k2 ·
(

r − 1
2

gt2
)
− ω2 t + φL2

]
.

(2.31)

The new time-dependent factors can be absorbed into the phase of each

laser beam. This allows the phase difference of equation (2.11b) to become

a function of time:

δφL(t) =
1
2
(
2πα − keff ·g

)
t2 + φL2 − φL1 . (2.32)

From the above expression it is seen that the gravitational acceleration

induces a phase shift of the laser beams as observed by the atom. However,

there is a chirp rate α0 =
1

2π
keff ·g which cancels this effect. It is thus

possible to deduce the gravitational acceleration from the applied chirp

rate as will be shown in section 2.3.2.

In order to ease the derivation of the state evolution, the expressions

of equations (2.19) are written as a matrix multiplication:

⎛⎜⎝Ca(p, t0 + τ)

Cb(p, t0 + τ)

⎞⎟⎠ = M(p, t0 , τ)

⎛⎜⎝Ca(p, t0)

Cb(p, t0)

⎞⎟⎠ . (2.33)

The matrix M(p, t0 , τ) is here cast in the following form, that is equivalent
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to an optical beam splitter [111]:

M(p, t0 , τ) = exp

⎡⎢⎣−i

⎛⎝⏐⏐p⏐⏐2
2mh̄

+

⏐⏐p + h̄keff

⏐⏐2
2mh̄

+ ωba − ΩAC

⎞⎠τ

2

⎤⎥⎦
×

⎛⎜⎝ T (p, τ) R(p, t0 , τ)

−R∗(p, t0 , τ) T ∗(p, τ)

⎞⎟⎠ .

(2.34)

The transmission function T (p, τ) and reflection function R(p, t0 , τ) are

defined under the condition δAC = 0 as

T (p, τ) =

[
cos
(

ΩR

2
τ

)
− i

δR

ΩR

sin
(

ΩR

2
τ

)]
exp

[
i
δωL

2
τ

]
(2.35a)

R(p, t0 , τ) = i
Ωeff

ΩR

sin
(

ΩR

2
τ

)
eiδωL t0+iδφL(t0 ) exp

[
i
δωL

2
τ

]
. (2.35b)

Without any light field present there is no coupling between the states,

thus the evolution of each state is purely governed by its energy. In that

case the coefficients Ca(p, t) and Cb(p, t) can be determined from equa-

tions (2.19) and noting Ω1 = Ω2 = 0. This results in the transformation

matrix M(p, T) for a free evolution time T

M(p, T) =

⎛⎜⎝e−iωa T 0

0 e−iωb T

⎞⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
exp

[
−i|p|

2

2mh̄ T

]
0

0 exp

⎡⎣−i

(
|p+h̄keff |

2

2mh̄ + ωba

)
T

⎤⎦

⎞⎟⎟⎟⎟⎟⎠ .

(2.36)

With the help of the above notations it is now possible to find ex-

pressions for the output states of Ramsey and Mach–Zehnder type atom-

interferometers.
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τπ
2

τπ
2

keff

T

|b〉

|a〉

vz

|a〉

Figure 2.4 Ramsey type pulse sequence on an atom in free fall with initial velocity
vz . Two π

2 -pulses from a light field with effective wavevector keff drive stimulated
Raman transitions in an atom that is initially in state |a〉. The probability to find
the atom in either state |a〉 or |b〉 after the sequence is periodic in both detuning
and pulse separation time T, which is exhibited as Ramsey fringes.

2.3.1 Ramsey sequence

The method of separated oscillating fields was first applied by Norman

Ramsey to study the spectra of molecules [115]. He established that the

linewidth of resonance peaks could be reduced by using, instead of a sin-

gle interaction with radiation, two separate periods of interaction. For ex-

ample, the π-pulse discussed in section 2.2 could be used to determine the

level separation of the ground states by measuring the population transfer

as a function of the detuning from ωba . However, the width of the reso-

nance peak is limited by the effective Rabi frequency Ωeff as was shown by

equations (2.29) and (2.30). A more precise determination of ωba is instead

possible by separating the π-pulse in two π
2 -pulses.

The Ramsey sequence is sketched in the position-time diagram in fig-

ure 2.4, where an atom in free fall is exposed to two Raman pulses of

duration τπ
2

at a time t1 and t2 = t1 + T + τπ
2

. When the atom is initially
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in state |a〉, its wavefunction after the Ramsey sequence is found via the

matrix multiplication

⎛⎜⎝Ca(p, t2 + τπ
2
)

Cb(p, t2 + τπ
2
)

⎞⎟⎠ = M(p, t2 , τπ
2
)M(p, T)M(p, t1 , τπ

2
)

⎛⎜⎝Ca(p, t0)

Cb(p, t0)

⎞⎟⎠ . (2.37)

The population of the states |a〉 and |b〉 at the output is then derived using

equations (2.34) and (2.36). Together with the initial condition Ca(p, t0) = 1

and Cb(p, t0) = 0, the probability to find the atom in state |b〉 is

Pb,Ramsey(p, T) =
⏐⏐⏐Cb(p, t2 + τπ

2
)
⏐⏐⏐2

=
⏐⏐⏐R∗(p, τπ

2
, t2)T (p, τπ

2
)e−iωa T +R∗(p, τπ

2
, t1)T ∗(p, τπ

2
)e−iωb T

⏐⏐⏐2.

(2.38)

After substituting equations (2.35) and recalling that τπ
2
=

π

2Ωeff

, the prob-

ability function after the Ramsey sequence becomes

Pb,Ramsey(p, T) =
π2

4
sinc2

(
πΩR

4Ωeff

)

×

⎡⎣ cos

(
πΩR

4Ωeff

)
cos

(
δR T

2
+

δφL(t2)− δφL(t1)

2

)

− δR

ΩR

sin

(
πΩR

4Ωeff

)
sin

(
δR T

2
+

δφL(t2)− δφL(t1)

2

)⎤⎦2

.

(2.39)

This equation is plotted as a function of detuning normalised to Ωeff in

figure 2.5. The sinc2 amplitude of the probability function is a result of the

finite duration of the π
2 -pulses. The probability distribution after a single

π
2 -pulse, indicated by the dashed line in figure 2.5, has a width double that

of the π-pulse of equation (2.26).
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Figure 2.5 Probability of state |b〉 as a function of normalised detuning after a
Ramsey sequence consisting of two π

2 -pulses separated by a time T = 6τπ
2

and

after a single π
2 -pulse. The period of the Ramsey fringes is determined by the

pulse separation time T, while the envelope is governed by the duration of the
π
2 -pulses. The Ramsey fringes will be shifted depending on the changes in the
laser phase difference δφL during the pulse sequence.

Where the sinc2 envelope can be understood as the Fourier transform

of the π
2 -pulse, so can the oscillations be explained as the pulse separa-

tion time T in the frequency domain. The periodic features are the result

of interference between the two atomic states and referred to as Ramsey

fringes. These fringes can be approximated in the case of a small detuning,

i.e. δR �
⏐⏐Ωeff

⏐⏐. In this regime, equation (2.39) reduces to

Pb,Ramsey(p, T) ≈ 1
2
+

1
2

cos
[
δR T + δφL(t2)− δφL(t1)

]
. (2.40)

The position of the fringes, having a period 2π
T , depends on the difference

between the laser phases at time t2 and t1 , see figure 2.5. For a constant

laser phase difference, it can now be seen that the full width at half max-

imum (FWHM) of the central resonance peak is δωRamsey = π
T . Thus, by
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lengthening the time T it is possible to determine the atomic level separa-

tion with increasing precision. This property made Ramsey’s method the

basis of atomic clocks.

The number of atoms in state |b〉 after a Ramsey sequence can be esti-

mated by integration of Pb,Ramsey(vz , T) over the velocity distribution,

⟨
Pb,Ramsey(T)

⟩
=

∞̂

−∞

fv(vz)PRamsey,b(vz , T)dvz . (2.41)

Again a Maxwell–Boltzmann velocity distribution fv(vz) is assumed, but

with a narrow velocity spread compared to

⏐⏐Ωeff

⏐⏐⏐⏐keff

⏐⏐ . As discussed in the

previous section, such a condition is easily satisfied in the case of co-

propagating Raman beams and a laser-cooled atom cloud. This allows the

approximation of equation (2.40) to be applied in equation (2.41), giving

⟨
Pb,Ramsey(T)

⟩
≈ 1

2
+

1
2

exp
(
−1

2

⏐⏐keff

⏐⏐2 T2σ2
v,z

)
cos
(

ΦRamsey

)
, (2.42)

where the Ramsey phase ΦRamsey is defined as

ΦRamsey =
⏐⏐keff

⏐⏐ (〈vz〉 − vR

)
T + δφL(t2)− δφL(t1)

=
(
δωL − ωba

)
T +

⏐⏐keff

⏐⏐(〈vz〉 −
vrecoil

2

)
T + (2πα − keff ·g)

(
T + τπ

2

)2
.

(2.43)

The second expression is retrieved after substitution of relation (2.23) for

the resonant velocity class vR , as well as the laser phase differences calcu-

lated in accordance with equation (2.32).

The contrast CRamsey of the Ramsey fringes is seen from equation (2.42)
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to have the relation

CRamsey = exp
(
−1

2

⏐⏐keff

⏐⏐2 σv,z
2T2
)
= exp

⎡⎣−1
2

(
vrecoil T

Lcoh

)2
⎤⎦. (2.44)

The second expression makes use of the longitudinal coherence length

Lcoh =
h̄

mσv,z

which is associated with the spread in velocities σv,z [126].

This expression makes it clear that the contrast of the Ramsey fringes is

determined by the path separation vrecoil T with respect to the coherence

length of the atom cloud. In order to maintain both a high contrast and a

narrow resonance peak, a small path separation and thus co-propagating

Raman beams are required.

In this work the Ramsey sequence is applied to demonstrate atom in-

terferometry in the experimental setup. However, it is not viable to study

changes in the gravitational acceleration with such a sequence, because

the Ramsey phase ΦRamsey depends on the average velocity 〈vz〉. Even at a

relatively long free-fall time of T = 1 s, a control over the average velocity

of the atom cloud below 10 µm s−1 would be required to achieve a relative

precision in measuring the gravitational acceleration at the 10−6 level.

2.3.2 Mach–Zehnder sequence

A pulse sequence with a phase that is relatively insensitive to the initial

velocity of the atoms is the Mach–Zehnder sequence. It consists of three

Raman pulses at times t1 , t2 = t1 + T + 3
2 τπ

2
and t3 = t2 + T + 3

2 τπ
2

, as

sketched in figure 2.6. Between the first and last π
2 -pulses a π-pulse in-

terchanges the states and reverses the path separation between those. The

recombination of the two paths in the Mach–Zehnder geometry causes the

output state population ratio to become independent of the velocity vz .
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Figure 2.6 Mach–Zehnder type sequence on an atom in free fall with initial veloc-
ity vz . A π

2 -pulse from a light field with effective wavevector keff brings the atom
in a superposition of states |a〉 and |b〉. After a time T a π-pulse interchanges the
states and when these have recombined at t3 , another π

2 -pulse creates interfer-
ence between the states. For an atom cloud with a certain spread in velocities vz

a portion of the atoms undergoes incomplete stimulated Raman transitions. This
causes a non-zero probability of the dashed trajectories for these atoms. These
paths do not recombine at the output of the pulse sequence and is observed as a
loss of contrast in the state populations.
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The transformation matrix MMZ(p, T) for the state coefficients after the

Mach–Zehnder sequence is

MMZ(p, T) = M(p, t3 , τπ
2
)M(p, T)M(p, t2 , τπ)M(p, T)M(p, t1 , τπ

2
). (2.45)

If an atom has an initial velocity vz other than the resonant velocity class

vR , a portion of its wavefunction will follow the dashed curves in fig-

ure 2.6. There will be a non-zero probability associated with the trajecto-

ries that do not spatially recombine at the final π
2 -pulse, due to the incom-

plete state inversion at the π-pulse. The probability functions of the closed

Mach–Zehnder trajectory and the other outputs are found by separating

the transformation matrix in parts that are transmitted and reflected at the

central pulse [63] by writing

M(p, t2 , τπ) =

⎛⎜⎝T (p, τπ) 0

0 T ∗(p, τπ)

⎞⎟⎠+

⎛⎜⎝ 0 R(p, t2 , τπ)

−R∗(p, t2 , τπ) 0

⎞⎟⎠ .

(2.46)

When only applying the second term of the above expression in equa-

tion (2.45), the closed interferometer paths are considered and the proba-

bility to find the atom in state |b〉 at this output is derived as

Pb,MZ(p, T) =
⏐⏐⏐R∗(p, τπ

2
, t3)R(p, τπ , t2)R∗(p, τπ

2
, t1)e

−i(ωa+ωb )T

−R∗(p, τπ , t2)T ∗(p, τπ
2
)T (p, τπ

2
)e−i(ωa+ωb )T

⏐⏐⏐2.

(2.47)
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After substituting the transmission and reflection functions (2.35) in

equation (2.47), the following equation for the probability of state |b〉 is

found:

Pb,MZ(p, T) =
π2

4
sinc2

(
πΩR

2Ωeff

)⎧⎨⎩π4

64
sinc4

(
πΩR

4Ωeff

)

+

⏐⏐Ωeff

⏐⏐2
ΩR

2

⎡⎣cos2

(
πΩR

4
⏐⏐Ωeff

⏐⏐
)
+

δR
2

ΩR
2 sin2

(
πΩR

4
⏐⏐Ωeff

⏐⏐
)⎤⎦

×

⎡⎣1 − π2

8
sinc2

(
πΩR

4Ωeff

)(
1
2
+ cos

(
ΦMZ

))⎤⎦⎫⎬⎭,

(2.48)

where the Mach–Zehnder phase ΦMZ is calculated using again the expres-

sion of the laser phase difference (2.32), resulting in

ΦMZ = δφL(t3)− 2δφL(t2) + δφL(t1)

= (2πα − keff ·g)
(

T +
3
2

τπ
2

)2

.
(2.49)

In the previous derivations the Raman pulse durations are short com-

pared to the free evolution time T. A more general description evaluates

the phase changes during the Raman pulses via the derivation of a sensi-

tivity function [127]. This method results in the equation for the phase of

the MZ sequence [110]

Φ′
MZ

= (2πα − keff ·g)
(

T + 2τπ
2

)(
T +

4
π

τπ
2

)
. (2.50)

The relative error in the Mach–Zehnder phase from the approximation

made with equation (2.49) is in comparison to the above expression for

Φ′
MZ

of the order of 0.3τπ
2

T−1.
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In the case of a small detuning, δR �
⏐⏐Ωeff

⏐⏐, equation (2.48) can be

simplified to

Pb,MZ(p, T) ≈ 1
2
− 1

2
cos
(
ΦMZ

)
. (2.51)

Comparing the relation of equation (2.51) to the result from the Ramsey

sequence in equation (2.40), it is evident that the state population here

is independent of the velocity vz . This means that all velocity classes for

which vz �
|Ωeff |
|keff |

contribute coherently to the output of the Mach–Zehnder

sequence.

The ensemble averaged probability of detecting the atoms in state |b〉

can be expressed in the general form [128]:

⟨
Pb,MZ(T)

⟩
= P0 −

CMZ

2
cos

[
(2πα − keff ·g)

(
T +

3
2

τπ
2

)2

+ δφoffset

]
. (2.52)

Here the mean probability P0 and the contrast CMZ take the probability of

the dashed paths in figure 2.6 into account which do not contribute to the

phase ΦMZ . The additional phase offset δφoffset results from a change in the

phase between the two Raman beams during the interferometry sequence.

With a zero phase offset, the average probability of state |b〉 as a function

of chirp rate α has an interference pattern as plotted in figure 2.7.

From the amplitude of equation (2.48) it is seen that the coherent ve-

locity class for a Mach–Zehnder sequence is similar to that of a π-pulse.

Therefore, the contrast CMZ of the interference fringes scale as

CMZ ∝
σv,π

σv,z

=

⏐⏐Ωeff

⏐⏐√⏐⏐keff

⏐⏐2 σv,z
2 +
⏐⏐Ωeff

⏐⏐2 . (2.53)

Besides the velocity spread along the axis of the Raman laser beams,
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Figure 2.7 Probability of state |b〉 after a Mach–Zehnder sequence as a function
of chirp rate with mean probability P0 = 0.4 and contrast CMZ = 0.5.

there are other factors that reduce the contrast. Among these factors are

the transverse velocity spread of the atom cloud and an imperfect state-

preparation as discussed in the following sections.

The Mach–Zehnder phase of equation (2.49) will be zero when the

phase shift induced by g is cancelled by the chirp rate. Most of the atoms

at the output are then found in state |a〉. This is expected since the total

Raman pulse duration of the Mach–Zehnder sequence equals in this case

exactly 2τπ . One can distinguish the zero phase shift from other multiples

of 2π by changing the free-evolution time T. As shown in figure 2.7, there

is a minimum in the population of state |b〉 that is independent of the time

T. The corresponding chirp rate α0 is used to determine the gravitational

acceleration via

⏐⏐g⏐⏐ = 2πα0⏐⏐keff

⏐⏐ cos(θ)
. (2.54)
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The angle θ is here the angle between the local vector of the gravitational

acceleration and the axis of the Raman beams.

Instead of measuring a population minimum, the highest precision is

achieved when operating on the side of a fringe. This is possible when

either the chirp rate is offset from α0 or δφoffset creates an additional phase

shift, such that the output state probability is close to P0 . In this way a

change in gravitational acceleration δg causes a deviation from the output

probability P0 of

P0 −
⟨

Pb,MZ

⟩
≈ CMZ

2
keff ·δg

(
T +

3
2

τπ
2

)2

. (2.55)

Experimentally, the state of the atoms after the MZ sequence is in-

ferred from the number of atoms that are detected in each of the output

states. When a total number of atoms N are detected, atom counting

statistics cause an inherent spread in the probability of the output states

σP =
√

P(1−P)
N [110]. This is known as the atom shot noise limit or quan-

tum projection noise limit and causes an uncertainty g given by

σg =

⏐⏐⏐⏐dg
dP

⏐⏐⏐⏐ σP ≈ 1

CMZ

⏐⏐keff

⏐⏐ cos (θ)
(

T + 3
2 τπ

2

)2 √
N

, (2.56)

where the second expression applies the approximation of equation (2.55).

The limit to the precision of a gravimeter based on atom interferometry

thus follows the form introduced previously in equation (1.6).

A method that is being studied to overcome the atom shot noise limit

is by use of entangled atoms [129]. This could improve the scaling of the

phase sensitivity with atom number N of an interferometer down to the

Heisenberg limit σΦ ≥ 1
N [130].
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Currently, the highest precision measurements of g are obtained through

an increase of the free-fall time T. This improves the sensitivity as ob-

served by the narrowing of the fringes in figure 2.7. The quadratic depen-

dence enables measurements with a relative precision at the 10−9 level by

extending the total free-fall time to the range of 0.6 s to 0.8 s [71, 131].

It needs to be mentioned here that gravitational acceleration can also

be precisely measured with other pulse sequences. For instance a Ram-

sey–Bordé sequence, consisting of four π
2 -pulses, has trajectories that re-

combine in the same manner as the Mach–Zehnder sequence. The advan-

tage of the Ramsey–Bordé sequence is that it allows limiting the free-fall

distance by accelerating the atoms against gravity in an optical lattice [132]

and thus enables a long free-fall time in a small volume. This method has

demonstrated measurements of gravitational acceleration at a precision of

470 nm s−2 [133] with potential to reach similar sensitivities as the instru-

ments listed in table 1.3 [134].

2.4 Rubidium-87

The atomic species that can be applied in the previously described schemes,

require first of all an energy level structure as in figure 2.1a to enable

stimulated Raman transitions. The most widely applied species are alkali

atoms due to their single valence electron creating a hyperfine splitting of

the ground state in two stable levels. Compared to other alkali atoms, the

large mass of the rubidium and caesium elements makes their photon re-

coil velocity relatively small, which allows for experiments with relatively

long interaction times. While many atom-interferometry experiments in

laboratories are based on caesium atoms, table 1.3 shows that rubidium

has become the element of choice for gravimeters aimed towards trans-
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Figure 2.8 Schematic energy level diagram of the 52S1/2 and 52P3/2 states in 87Rb
with the transitions between the hyperfine levels addressed in this experiment.

portable applications. This choice is mainly driven by the availability of

compact lasers at the resonant wavelength of 780 nm. Also due to the

present expertise with rubidium in the iSense collaboration, this element

is applied in this experiment to serve as the free-falling test mass.

Of the two rubidium isotopes, the natural abundance of 85Rb is about

three-fold that of 87Rb [135]. Most rubidium sources thus have a higher

flux of 85Rb atoms, but 87Rb is the preferred isotope for stimulated Raman

transitions. One of the reasons is that the possible suppression of sponta-

neous emission processes is higher for 87Rb. The transitions in 87Rb used

here are from the 52S1/2 ground state to the 52P3/2 excited state, of which

the hyperfine split energy levels are sketched in figure 2.8. This D2-line has

a closed transition between the |F = 2〉 and |F′ = 3〉 states and is exploited

for laser cooling the atoms as discussed in the next section. The stimulated
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Raman transitions are performed with the Raman,I and Raman,II laser fre-

quencies between the 52S1/2 ground states. Reducing spontaneous emis-

sion during the interaction with Raman beams is achieved by detuning

these laser frequencies from the 52P3/2 state. However, this also brings the

Raman,II laser frequency closer to resonance with the |F = 2〉 ↔ |F′ = 3〉

transition. The lowest probability of populating the excited state is thus

found when the detuning ∆R is about half the hyperfine splitting of the

ground state. Since the hyperfine splitting in 87Rb is at least double that of

85Rb [136, 137], the probability of spontaneous emission processes during

stimulated Raman transitions in 87Rb reaches below 1 % at an optimum

detuning [110].

2.4.1 Laser cooling and trapping

Gravimeters based on atom interferometry greatly benefit from a cold-

atoms source. Atom interferometry can be achieved in a room-temperature

vapour [138], but the thermal velocities of the atoms limit the total inter-

ferometry time. The interrogation time is typically tens of µs for a Raman

laser beam of a few cm in diameter. Under such conditions the sensi-

tivity to acceleration could potentially reach 0.8 mm s−2/
√

Hz [138]. The

atom-interferometry based gravimeters of table 1.3 surpass this precision

by employing a source of cold atoms that generates a cloud of rubidium

atoms with a velocity spread in the order of several mm s−1.

In order to reach such a small velocity spread, a cloud of rubidium

atoms is laser cooled to several µK. A detailed explanation of the physics

behind laser cooling and trapping of neutral atoms is found in many texts,

see the classic work [139] and references therein. The principle effect

is a damping force experienced by an atom in the presence of counter-
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propagating laser beams. When the laser frequency is red-detuned from

a closed atomic transition, repeated absorption and emission cycles dis-

sipate the kinetic energy of the atom via spontaneous emission. Laser

cooling atoms in all spatial directions is made possible by three pairs of

counter-propagating laser beams, creating what is known as an optical

molasses.

Spatial confinement of a cloud of atoms is achieved by the addition of

a magnetic quadrupole field. It produces a Zeeman energy shift in the

magnetic sublevels of the atoms that depend on the atom’s location in the

magnetic field. Together with circular-polarised laser beams, these drive

the atoms towards the centre of the quadrupole field where the magnetic

field is zero. Such a magneto-optical trap allows trapping and cooling

of rubidium atoms with initial velocities up to about 15 m s−1 [140]. The

fraction of atoms with velocities below this capture velocity is 10−4 to

10−3 in an atomic vapour at room temperature. Loading a MOT from

a background rubidium vapour can thus be done relatively fast, because

even in ultra-high vacuum environments rubidium number densities are

in the order of 10−10 cm−3. Therefore, the capture rate of atoms by a MOT

reaches about 109 s−1, as will also be shown in the following chapters.

Typical temperatures of an atom cloud in a MOT are in the order of

the Doppler temperature defined by [139]

TD =
h̄Γ
2kB

. (2.57)

The natural linewidth Γ is here the linewidth of the D2-line transition in

87Rb, see appendix A, and the corresponding temperature is TD = 146 µK

[136]. The magnetic quadrupole field of a MOT however prevents effective
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Figure 2.9 Total sequence of a Mach–Zehnder atom interferometer, schematically
indicating the light and magnetic fields for the cooling, state preparation, atom
interferometry and detection stages. See the text for an explanation of the evo-
lution of the number of atoms N in each of the 87Rb ground states and the total
temperature T of the atom cloud. Note that the durations of each stage are not
on the same scale.
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sub-Doppler cooling mechanisms [73]. Lower temperatures are obtained

when the magnetic field is reduced to levels where the induced Zeeman

energy shift is of the order or below the single-photon recoil energy. The

recoil from a single photon results in a minimum spread in the velocity

distribution of a laser-cooled atom-cloud. This limit is expressed by the

recoil temperature

Trecoil =
h̄2k2

mkB

, (2.58)

where k = |k| is the wavector magnitude of the photon. The recoil temper-

ature for the cooling transition in figure 2.8 is Trecoil = 0.36 µK.

Producing an atom cloud on the scale of the recoil temperature is gen-

erally achieved by first a MOT phase to capture atoms from a background

vapour, followed by an optical molasses phase that cools the atom cloud

further. A complete measurement sequence for an atom interferometer

includes the typical phases shown in figure 2.9.

During the loading of the MOT, 87Rb atoms are trapped and cooled

via the cooling transition indicated in figure 2.8. Because the light is red-

detuned by several linewidths there is also a finite possibility to excite the

|F′ = 2〉 state. Atoms undergoing this transition can decay back to the

|F = 1〉 ground state and are no longer cooled. Preventing a loss of atoms

through this process requires transferring atoms back into the |F = 2〉 state

via the addition of a repump laser beam indicated in figure 2.8.

After trapping a cloud of 87Rb in a MOT, an optical molasses stage is

created by turning off the magnetic quadrupole field. Because the aver-

age kinetic energy of a sub-Doppler cooled atom cloud scales as kB T ∝
I

δC

[141], lower temperatures are obtained by increasing the detuning δC and
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reducing the light intensity I. Turning off the cooling beams completely

stops the optical molasses and allows the atoms to start a free-fall trajec-

tory.

The atoms at the end of the optical molasses are distributed over both

52S1/2 ground states. Thus, a state preparation stage is required before the

atom interferometry sequence. The atoms in the |F = 1〉 state are trans-

ferred to |F = 2〉 by keeping the repump laser light on for a short while

after the cooling beams have been turned off. Additional state preparation

and velocity selection steps are usually required to maintain a high con-

trast of the interference fringes [53, 113], but these will be discussed in the

next section.

After an interferometry sequence of several Raman pulses, the pop-

ulation ratio of the atomic states is measured with a detection beam. A

first pulse that is resonant with the |F = 2〉 ↔ |F′ = 3〉 transition is used

to determine the number of atoms in the |F = 2〉 state by measuring the

scattered light. A second pulse with repump light transfers atoms from

the |F = 1〉 to the |F = 2〉 ground state. This enables another detection

pulse to measure the total number of atoms. The ratio between the num-

ber of atoms detected by these pulses could then be used to determine the

gravitational acceleration via equation (2.52).

The sequential approach introduced here causes a dead-time during

which the instrument is not sensitive to the potential changes in the grav-

itational acceleration. A different approach is to use a continuous beam

of cold atoms, but the longitudinal velocity spread of the atoms limits the

sensitivity [142]. Another method is to recapture the cold atoms, thus sig-

nificantly increasing the measurement rate [143]. However, this is only

possible when the free-fall distance is short compared to the capture re-
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gion of the MOT. A third possibility is to perform interleaved sequences

where one interferometer sequence coincides with the MOT loading of the

next [81]. This method has the potential to completely eliminate the dead-

time, but requires a cold-atoms source with a high atom-flux. To enable

a high sensitivity as well as a compact setup, the sequential approach of

figure 2.9 is applied in the atom-interferometry experiment here.

2.4.2 Stimulated Raman transitions in rubidium-87

The Raman,I and Raman,II laser frequencies indicated in figure 2.8 cou-

ple the |F = 1〉 and |F = 2〉 ground states in 87Rb. This stimulated Raman

transition is, however, not strictly a three-level system due to the hyperfine

splitting of the 52P3/2 excited state. The magnetic sublevels also create mul-

tiple possible routes for stimulated Raman transitions. This section shows

that the results from the previous derivations can nonetheless still be ap-

plied through summation of the different Rabi frequencies by following

the results of the work of [144].

The atomic states in 87Rb that are coupled via the two Raman light

fields are∗:

|a〉 = |52S1/2 ; F = 1; mF〉

|b〉 = |52S1/2 ; F = 2; mF + q1 − q2〉

|e〉 = |52P3/2 ; F′ = 1, 2; mF + q1〉 ,

(2.59)

where mF is the magnetic quantum number and q1,2 indicate the polari-

sations of the electric fields. The polarisation is defined with respect to a

quantisation axis which is provided here by a magnetic field along the axis

of the Raman beams. Left- and right-handed polarisations drive in that

∗ The 52S1/2 and 52P3/2 state labels are usually omitted for ease of writing
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Figure 2.10 Two-photon σ+-transitions between the magnetic sublevels of the
|52S1/2 ; F = 1〉 and |52S1/2 ; F = 2〉 ground states in 87Rb via the |52P3/2 ; F′ = 1〉
and |52P3/2 ; F′ = 2〉 excited states. The geometric factors for each transition are
taken from [136].

case σ−- and σ+-transitions, corresponding to the values q1,2 = ±1. Elec-

tric field polarisations parallel to the quantisation axis drive π-transitions

which correspond to q1,2 = 0. The possible σ+-transitions that create

stimulated Raman transitions between the |F = 1〉 and |F = 2〉 states are

sketched in figure 2.10. The other two cases for σ−- and π-transitions are

shown in the appendix in figures A.1 and A.2. The |F′ = 0〉 and |F′ = 3〉

states have been omitted in these figures as there are no two-photon tran-

sitions via these 52P3/2 hyperfine states due to the angular momentum

selection rules for electric dipole transitions.

The application of a magnetic field to provide a quantisation axis also

means that the atomic energy levels shift. The shift can be expressed using

62



2.4 Rubidium-87

the Zeeman effect when the magnetic field B produces an energy-level

shift that is small in comparison to the hyperfine splitting. The Zeeman

energy shift of each of the mF sublevels is

∆EZeeman = µB gF mF B, (2.60)

with the Bohr magneton µB = 9.274 · 10−24 J T−1 and gF the Landé g-factor

of the hyperfine state [136]. As indicated in figure 2.10, the opposite signs

of the gF factors of the ground states create different resonant conditions

for the stimulated Raman transitions for each of the mF states. This effect

makes it possible to drive transitions between the 52S1/2 hyperfine states

with a specific magnetic quantum number. Since the mF = 0 states are

insensitive to the Zeeman shift of equation (2.60), these are addressed in

high-precision gravimeter experiments as discussed in section 2.5.3.

The Rabi frequencies of equations (2.9) related to the transitions of

figure 2.10 can be written after application of the Wigner–Eckart theorem

as [145]

Ω1,2 =

⏐⏐⏐E1,2

⏐⏐⏐
2h̄

DG1,2 =

√
I1,2

2cε0 h̄2 DG1,2 . (2.61)

Here are I1,2 the intensities of the corresponding Raman beams, c the speed

of light, ε0 the electric constant and D the transition dipole matrix element

of the D2-line, see table A.1. The dimensionless factor G1,2 is a geometric

factor that depends on the specific transition, these are tabulated in [136]

and reproduced for the relevant transitions in figures 2.10, A.1 and A.2.

The effective Rabi frequency of the stimulated Raman transition be-

tween the |F = 1〉 and |F = 2〉 ground states is a sum over the possible

63



Chapter 2 Theory

transitions [144]:

Ωeff =
D2

cε0 h̄2

√
I1 I2

∆R

⏐⏐⏐⏐⏐∑i
G1 G2

⏐⏐⏐⏐⏐ . (2.62)

This equation neglects the hyperfine splitting of the excited state levels,

because it is much smaller than the 52S1/2 hyperfine splitting. This ap-

proximation can be made when ∆R � Ω1,2 , but a more accurate form of

equation (2.62) can be found in for instance [128].

If the Raman beams have equal polarisations, it means that q1 = q2 in

(2.59) and the sum of the geometric factors of the D2-line transition can be

written according to [144] as:

⏐⏐⏐⏐⏐∑i
G1 G2

⏐⏐⏐⏐⏐ =
√

4 − mF
2

12
. (2.63)

Equations (2.62) and (2.63) now make it possible to calculate the effec-

tive Rabi frequency of the coupling between the |F = 1; mF〉 and |F = 2; mF〉

states when the Raman laser beam intensities and detuning are known.

Taking a typical detuning of ∆R = 2π × 1.5 GHz and assuming the Raman

beam intensities are approximately equal with I1 = I2 = 50 mW cm−2, the

resulting Rabi frequency is Ωeff ≈ 2π × 60 kHz.

At these parameters a π-pulse, as defined by equation (2.21), has a du-

ration of about 8 µs. When applying counter-propagating Raman beams,

the velocity class that is then addressed has a width of σv,z ≈ 2 cm s−1.

The 87Rb atom cloud that takes part in the stimulated Raman transition,

thus has a temperature of ∼5 µK in confirmation with the discussion in

section 2.2.

After the optical molasses phase a cloud of rubidium atoms is dis-

tributed over several mF sublevels. As indicated in figure 2.9 the atoms
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are pumped to the |F = 2〉 states by the repump laser light. Due to the

absence of a quantisation axis at this stage, the laser light can be regarded

as having an isotropic polarisation and the atoms are distributed almost

uniformly over the |F = 2; mF = 0,±1,±2〉 states. This results in a loss of

contrast if the Raman beam only addresses the mF = 0 sublevel during

the interferometry sequence.∗ The state preparation phase therefore usu-

ally includes a velocity selection pulse that transfers a small velocity class

of the atom cloud between the |F = 2; mF = 0〉 and |F = 1; mF = 0〉 states

[53, 63, 113]. This is followed by a light pulse resonant with the atoms re-

maining in the |F = 2〉 state which allows separating the non-transferred

atoms from the velocity selected atoms. Such an on-resonant light pulse

is generally referred to as a blow-away pulse as it intentionally imparts

momentum to the remaining atoms. After this process, one is thus left

with a cold cloud of atoms in the |52S1/2 ; F = 1; mF = 0〉 state before the

interferometry sequence.

The efficiency of this state preparation is ultimately limited by sponta-

neous emission processes during the velocity selection pulse which pop-

ulate the |F = 1; mF 6= 0〉 states. The internal state preparation could be

improved further by applying a microwave π-pulse to transfer atoms back

to the original |F = 2; mF = 0〉 state, followed by another blow-away pulse

for any atoms remaining in the |F = 1〉 states [53, 128].

2.5 Noise sources and systematic errors

Several sources of noise disturb a gravity measurement made with an

atom-interferometer experiment. Environmental and instrumental noise

∗This is another reason why high-precision gravimeters usually operate with 87Rb
atoms as it has a lower number of mF states than the 85Rb isotope.
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cause fluctuations in the output state population of a Mach–Zehnder se-

quence and thus the inferred gravitational acceleration. Additionally, there

are systematic errors that create a bias in the determination of an accurate

value of g. Some of these will be discussed in this section, but for a more

comprehensive analysis of the different noise sources and systematic er-

rors in a cold-atoms gravimeter see the work of [56].

2.5.1 Laser phase noise

Most noise sources in an atom-interferometry based gravimeter can be

traced to the instability of the optical ruler provided by the Raman beams.

Any phase noise between the two Raman beams during the Mach–Zehnder

sequence is indistinguishable in the output state population from phase

shifts induced by the local gravitational acceleration. It is seen from equa-

tion (2.52) that the general requirement for the phase noise δφnoise during

the interferometry sequence is thus

δφnoise <
⏐⏐keff

⏐⏐ σg

(
T +

3
2

τπ
2

)2

. (2.64)

Achieving a single shot precision at the level of σg ≈ 100 nm s−2 with a

Mach–Zehnder sequence having T = 50 ms, requires a stability between

the phases of the Raman laser beams below 4 mrad.

The pulse sequence however already provides a filtering effect on phase

noise. The single shot sensitivity is not influenced by phase noise on time

scales much longer than the total interferometry time. At time scales

shorter than the duration of a single Raman pulse, phase fluctuations

will be averaged out. The frequency dependence of the sensitivity of a

Mach–Zehnder sequence thus resembles a bandpass filter. It is shown in
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[127] that at high frequencies the behaviour is approximately a first-order

filter with cut-off frequency fc,high ≈ ΩR

√
3

6π
, while for low-frequency phase

noise the cut-off frequency can be derived to be around fc,low ≈ 1
4T

.

Within this frequency band there are generally two solutions that pro-

vide Raman beams with a phase noise down to the level given by equa-

tion (2.64). One method is to phase stabilise the output of one laser with

respect to a second laser [53, 146]. The other method relies on phase mod-

ulation of the output from a laser to create the second Raman frequency

component as will be discussed in section 3.5.2. The latter approach is

chosen here because it simplifies the control electronics and only requires

a single laser.

To create a counter-propagating arrangement of the Raman beams, the

laser light is reflected by a mirror. The distance between the atoms and this

mirror then determines the phase difference of equation (2.11b) between

the two light fields. However, any displacement of the mirror during the

interferometry sequence induce additional phase shifts. To maintain a

stable reference these displacements will need to be lower than at least

half the wavelength of the laser beam. Environmental vibrations can easily

disturb the position of the mirror during the measurement. In case of a

white noise power spectral density of acceleration Sa , the induced phase

noise σφ,a can be approximated by [127]

σφ,a =
⏐⏐keff

⏐⏐ T2

√
Sa

2Tobs

(
2Tc

3T
− 1
)

, (2.65)

with Tobs the total observation time and Tc the duration of a single mea-

surement cycle. For typical measurement cycle times of Tc = 0.5 s and

free-evolution times of T = 50 ms, equation (2.65) can be used to estimate
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the requirements on the acceleration noise and duration of the observation

time. To reach a measurement precision of 100 nm s−2 in an environment

with
√

Sa = 10−6 m s−2, an observation time of Tobs ' 1 h is required. For

high-precision instruments, the environmental vibration noise is reduced

via passive or active isolation [147]. Another solution is to split the laser

light in two beams and apply an active laser phase stabilisation [148].

2.5.2 Instrument tilt

As seen in equation (2.54), a bias is introduced when the effective wave

vector of the Raman beams is tilted with respect to the direction of the

local gravitational acceleration. The error induced by a tilt of angle θ can

be approximated by

∆g = g(cos(θ)− 1) ≈ −g
|θ|2

2
. (2.66)

A tilt of 0.1 mrad thus introduces a decrease of the measured gravita-

tional acceleration by 49 nm s−2. This effect not only applies to atom-

interferometry based sensors but any gravimeter that only measures grav-

ity along a specific axis of the instrument.

Precision alignment of the Raman laser beams to the local direction of

gravity is therefore required. One method to achieve this is by using a

reference surface in the form of a liquid surface [149]. For a transportable

gravimeter, however, it is more practical to monitor the verticality of the

instrument with an electronic tiltmeter. Because the measurement bias

from a tilt is always negative, another approach would be to adjust the

angle of the Raman laser beams until the largest gravitational acceleration

is observed [110].
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2.5.3 Electric and magnetic fields

The use of neutral atoms for gravity measurements makes their free-fall

trajectory relatively insensitive to electric and magnetic fields. However,

both could cause a shift in the energy levels and thus induce a phase shift

in a Mach–Zehnder type interferometer.

In the case of 87Rb atoms the DC Stark effect from a static electric field

can be neglected here, because a phase shift of 1 mrad would require an

electric field in the order of 1 kV m−1 [113]. The AC Stark effect is in-

cluded in the derivation presented in section 2.1 and is observed as an

additional detuning in the stimulated Raman transition given by equa-

tion (2.11d). Its end result is a bias in the Mach–Zehnder phase and thus

in the measurement of gravitational acceleration, but this is usually cor-

rected for by adjusting the ratio between the intensities of the two Raman

beams [53, 128].

The energy level shift from magnetic fields is calculated to first order

using the Zeeman energy shift of equation (2.60). The main source of

these shifts in most atom-interferometry experiments is the earth magnetic

field with a strength of the order of 50 µT. This shift will be constant for

a uniform magnetic field, but other sources can create a magnetic field

gradient ∇B. This causes the atoms to experience a potential acceleration

bias of

aZeeman = −∇EZeeman

m
= −µB gF mF∇B

m
. (2.67)

For this effect to be small compared to the single shot sensitivity in the

order of 0.1 µm s−2 when using 87Rb atoms, the magnetic field gradients

need to be below ∼3 nT m−1. Because such a magnetic field uniformity is
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technically difficult to achieve, only the atoms in mF = 0 state are used in

cold-atoms gravimeters. For this reason a quantisation axis is supplied by

a magnetic field of 10 µT to 100 µT in order to separate the energy levels of

the mF states. The frequency difference between the Raman lasers is then

tuned to only be resonant with the mF = 0 ground states as mentioned in

section 2.4.2.

The requirements on the magnetic field homogeneity are relaxed in this

case, as can be shown when higher-order effects are included. The energy

level shift between the mF = 0 ground states is expressed by the Breit-Rabi

formula [150, 151]. It has no first order dependence on the magnetic field

strength, but the second order term can be written as [136]

EBreit-Rabi ≈
µ2

B
gJ

2

2h̄ω0

B2. (2.68)

Here is ω0 the angular frequency of the unperturbed hyperfine splitting

of the ground state and gJ ≈ 2 is the Landé g-factor of the total electron

angular momentum [152]. The much smaller nuclear Landé g-factor has

been neglected in the approximation of equation (2.68). The acceleration

bias from magnetic field gradients on the atoms in the mF = 0 ground

states can then be written as

aBreit-Rabi =
µ2

B
gJ

2

mh̄ω0

B∇B. (2.69)

From equation (2.69) it is derived that for the same accelerations of about

0.1 µm s−2, the magnetic field gradient will need to be below 2 µT m−1

when a magnetic field in the order of 100 µT is applied for the quantisation

axis.
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2.6 Summary

The main tool for the gravimeter experiment here is a stimulated Raman

transition. Stimulated Raman transitions between two ground states in

an atom can be driven by a combination of two laser beams. This chapter

discussed the principles behind such two-photon transitions and how a se-

quence of Raman pulses can create interference between the atomic states.

The ratio in the state populations after a Ramsey and Mach–Zehnder

type sequence were derived. It was shown that the population ratio of a

cloud of atoms subjected to a Mach–Zehnder pulse sequence can be used

for high-precision measurements of gravitational acceleration. An atomic

species applicable for this is the element rubidium-87 due the existence

of suitable transitions for performing laser-cooling and stimulated Raman

transitions. The experimental sequence and typical parameters for using

87Rb were introduced alongside several major noise sources and system-

atic errors.
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The iSense Experiment

The construction of an absolute gravimeter based on atom interferometry

requires integration and characterisation of many components, the iSense

experiment is no exception in that respect. The difference, however, be-

tween the iSense experiment and other absolute gravimeters is the strong

focus on a compact and low-power design. This philosophy governed

much of the design and the choice of components.

The construction of the iSense setup has already been described in

detail in [104], therefore this chapter summarises the parts relevant for

this work. The results of the integration of the iSense setup are presented,

as well as its performance as a platform for atom-interferometry with cold

atom-clouds. This chapter concludes with the first measurements of the

interference of rubidium atoms in the iSense experiment both inside and

outside the laboratory.
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Figure 3.1 Schematic overview of the iSense setup with a vertical cross-section of
the vacuum chamber, see text for explanation.
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3.1 Experiment overview

The iSense experiment is designed to perform a Mach–Zehnder interfer-

ometer with freely falling 87Rb atoms. As already mentioned in section 2.4,

the choice of rubidium has many advantages, but especially because the

iSense project can draw upon the expertise from its collaborators.

A schematic overview of the iSense experiment is shown in figure 3.1.

A relatively small free-fall distance of 12 cm allows for a Mach–Zehnder

type interferometry sequence lasting about 2T ≈ 150 ms. Other research

groups have shown that this can reach sensitivities in the order of 10 nm s−2,

see table 1.3, while keeping the vacuum chamber relatively compact.

Clouds of cold atoms are created from a background rubidium vapour

near the surface of an atom chip assembly. Atom chip is a general term

for micro-fabricated structures capable of cooling, trapping and manipu-

lation of atoms [153]. Such structures allow a close proximity of electric

currents to the atoms in the order of several mm down to 100 nm. This

small distance allows relatively little current to create high magnetic field

strengths. For this reason atom chips are mainly used for the rapid cre-

ation and manipulation of Bose–Einstein condensates (BECs) [154–156].

In the iSense experiment an atom chip assembly is chosen for the ef-

ficient generation of a magnetic quadrupole field for the MOT. Besides a

reduced power consumption, the integration of a mirror surface on the

atom chip assembly allows the production of cold atom-clouds with four

laser beams. Compared to a common six beam MOT configuration, this

enables more efficient use of the available laser power. The mirror-MOT

geometry of the atom chip assembly is discussed in section 3.2, followed

by a description of the vacuum chamber in section 3.3.
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After the generation of a cold atom-cloud, the atoms are released in

free fall by turning the magnetic quadrupole fields and laser cooling beams

off. A laser beam in the vertical (z-) direction then drives stimulated Ra-

man transitions. Either counter-propagating or co-propagating Raman

transitions can be performed by removing or blocking the mirror below

the vacuum chamber and setting the appropriate light polarisation, see

section 2.4.2. The resulting population of the atomic states is then mea-

sured via fluorescence detection with a photodiode and recorded by an

oscilloscope.

A large part in the reduction of the overall size and power consump-

tion of the setup comes from the application of compact, digital control

electronics. All components of the experiment are controlled by small-

footprint electronics which communicate with each other through a cus-

tom (TBus) interface. A brief description of the electronics and experimen-

tal control is found in section 3.4.

To drive the required transitions in 87Rb, indicated in figure 2.8, a laser

system was developed for the iSense project and described in section 3.5.

The light from compact and robust laser sources is coupled into a light

distribution network consisting of optical fibre-coupled components. Sec-

tion 3.5 also explains the frequency stabilisation of the lasers using a spec-

troscopy setup and the generation of the two Raman laser frequencies with

an electro-optic modulator (EOM) and a radio frequency (RF) reference

source.

Not drawn in figure 3.1 are the coils that compensate any stray mag-

netic fields, but these are presented in section 3.6. Finally, the fluorescence

detection with a photodiode and the imaging of the atom cloud with a

charge-coupled device (CCD) camera are described in section 3.7.
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3.2 Atom chip assembly

The atom chip assembly for the iSense project has been designed and

constructed at the University of Nottingham, details of which are found in

[157]. It is based on the same methods as the first experimental realisation

of a quadrupole magnetic field with an atom chip [158]. The combination

of the magnetic field of a current carrying wire and a homogeneous bias

field can form a two-dimensional quadrupole field parallel to the wire.

Instead of a single wire, the iSense collaboration opted for the use of coils

that recycle the current and thus the requirements on the current supply

are reduced.

As shown in the cross-section view in figure 3.2, a two-dimensional

magnetic quadrupole field is created by a set of three coils. A central,

rectangular coil (QUAD2) consists of 20 windings of a flat copper conduc-

tor of which only the few outer windings are sketched. The coils above

(QUAD1) and below (QUAD3) the central coil are of a similar construction

but are connected in series. A current running through these coils, in the

opposite direction compared to the QUAD2 coil, generates a bias magnetic

field. The opposing bias magnetic field cancels the field from the central

coil at a position that is determined by the geometry and the ratio of the

currents I1 and I2 .

With currents I1 = 2.8 A and I2 = 7.3 A, this coil configuration creates a

magnetic field as indicated by the streamlines in figure 3.2. The geometry

of the coils is designed such that it forms a magnetic zero for a MOT at

5 mm distance from the atom chip surface. The relatively large separation

between conductors and the centre of the MOT is necessary to limit the

obstruction of the vertical Raman beams by the atom chip assembly.
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Figure 3.2 Vertical cross-section of mirror-MOT geometry showing magnetic field
lines and laser beams in the y,z-plane. A magnetic quadrupole field is formed by
a set of three coils, each of which are made from a total of 20 windings of a flat
copper conductor. With currents I1 = 2.8 A and I2 = 7.3 A running in opposite
directions, this coil assembly creates a magnetic quadrupole field centred at 5 mm
distance from a gold coated atom chip surface. The top two light beams, indicated
by two red arrows, originate from a single laser beam at 45◦ with the chip surface.
Together with a second laser beam at 45◦ from the bottom direction, these beams
provide the cooling and trapping forces for the atoms in the y- and z-directions.
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3.2 Atom chip assembly

Two laser beams incident at a 45◦ angle with a gold coated surface∗

create a mirror-MOT configuration. As sketched in figure 3.2, this configu-

ration allows cooling and trapping of atoms from four directions. The two

laser beams are circularly polarised with opposite handedness. Upon re-

flection from the atom chip surface the polarisation handedness is flipped,

thus maintaining the match between the polarisation and magnetic field

direction required for a MOT.

The cooling and trapping of atoms in the remaining horizontal (x-) di-

rection is made possible by the addition of a second magnetic quadrupole

field. It is created by two rectangular wire loops in the x,z-plane made up

of four printed circuit board (PCB) layers stacked between the coil assem-

bly and the atom chip surface. Two counter-propagating laser beams in

the x-direction (into and out of the plane of figure 3.2) provide the cooling

and trapping forces for the atoms along this direction.

The magnetic field generated by the atom chip assembly has been mod-

elled and the resulting field lines are shown in figure 3.2. In this model

the currents through the coils are adjusted by about 10 % from the ac-

tual currents in order to reproduce the same magnetic fields that have

been measured with the final constructed atom chip assembly [157]. These

deviations are caused by imperfections in the fabrication and systematic

measurement uncertainties. Using the adjusted currents, the model shows

magnetic field gradients of 0.08 T m−1 to 0.11 T m−1 along the laser beams

of figure 3.2. In the horizontal directions the gradient is significantly

smaller at 0.03 T m−1, because the PCB structure has a smaller number

of windings and operates at currents around 2 A. However, other atom

chip experiments with a similar ratio between magnetic field gradients

∗ Reflectivity of the atom chip surface Racs ≈ 92 % for 780 nm wavelength light
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have shown to be able to trap up to 3 · 108 rubidium atoms [159].

To create a vapour of rubidium atoms inside the vacuum chamber,

the atom chip assembly includes a rubidium dispenser∗. Heating the dis-

penser, by running a current of 3 A to 4 A through it, releases rubidium

atoms for loading the MOT. An improved MOT loading speed, and con-

sequently an increased measurement repetition rate, would be possible by

the addition of a two-dimensional MOT. Such a pre-cooling stage increases

the complexity of the laser and vacuum systems, thus has been omitted in

the iSense experiment.

3.3 Vacuum chamber

An ultra-high vacuum environment is required for atom interferometry

with free-fall times in the order of 150 ms, because the coherence is dis-

turbed by collisions with other atoms and molecules. The rate at which

collisions occur between particles in a gas with a Maxwell–Boltzmann ve-

locity distribution can be found in many works that include kinetic theory

of gases, as for instance [160]. Here the inelastic collision rate τ−1
c

is ex-

pressed as

τ−1
c

= σc n 〈v〉
√

2 = σc P

√
16

πmkB T
, (3.1)

where σc is the inter-particle collision cross-section, n is the number den-

sity and 〈v〉 =
√

8kB T
πm

is the average speed of the atoms. The second ex-

pression in equation (3.1) also applies the ideal gas approximation for a gas

with pressure P. When creating atom clouds from a background vapour, it

is assumed that collisions between rubidium atoms dominate and thus the

∗ SAES Getters rubidium dispenser
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Figure 3.3 Photograph of the front of the vacuum chamber showing the atom
chip assembly used to create cold clouds of rubidium atoms.

collision cross-section is approximately σc ≈ 3 · 10−18 m2 [161]. In order to

reach average collision rates smaller than
1

2T
≈ 7 s−1 at room temperature,

according to equation (3.1) an environment with pressure P < 10−7 mbar

is required.

The ultra-high vacuum in the iSense experiment is created inside the

compact vacuum chamber shown in figure 3.3. It has been designed

and assembled at the University of Birmingham. A top octagonal section

houses the atom chip assembly which in turn is mounted on a DN63CF

flange with vacuum feedthroughs for the electrical connections. The cham-

ber is machined out of titanium, which is chosen for its high strength and

low magnetic susceptibility.
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Optical access for the vertical MOT beams and diagnostics of the cold

atom-cloud is given by a front window of 10 cm diameter. For the Raman

and horizontal MOT beams there are 4 cm-diameter windows installed on

the sides, top and bottom of the vacuum chamber. All windows are anti-

reflection coated for 780 nm wavelength light and indium-sealed directly

to the titanium chamber. The top and bottom windows for the Raman laser

beam are angled by 5◦ to prevent possible interference with reflections that

could cause spatial intensity variations in the Raman beam.

At the bottom of the vacuum chamber a rectangular section with three

similar windows allows for the detection of the atom cloud after its free

fall. The distance between the MOT and the centre of the detection re-

gion is 115 mm, allowing a total free-fall time up to 153 ms. The lower

section also connects via a custom tee to an ion-getter vacuum pump∗.

This compact vacuum pump keeps the vacuum chamber at a background

pressure of about 6 · 10−9 mbar according to the measured ion-pump cur-

rent. Because the ion-pump is located behind the getter unit, the pressure

in the MOT region is estimated to be slightly higher than indicated by the

ion-pump controller, as will be discussed in section 5.2.1.

The vacuum chamber, including atom chip assembly and ion-getter

pump, weighs about 10 kg and has a volume of <15 L. Thus a vacuum en-

vironment is created in a compact setup that also allows plenty of optical

access. The geometry lends itself for future atom-interferometry schemes

with vertical optical lattices, using for instance Bloch oscillations [134] or

a Wannier–Stark ladder scheme [162], to increase the sensitivity to gravi-

tational acceleration.

∗ SAES Getters NEXTorr D100-5 ion-getter pump
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Figure 3.4 Control electronics of the iSense experiment consisting of stackable
PCBs, each having a 10 cm × 10 cm footprint.

3.4 Control electronics

The control electronics for the iSense experiment are developed at Leib-

niz Universität Hannover as part of the Quanten Gase unter Schwerelosigkeit

(QUANTUS) project [89, 163–165]. The electronics are based on PCBs with

a footprint of 10 cm × 10 cm, each controlling a different part of the exper-

iment. The electronics boards are stacked, as visible in figure 3.4, and

interconnected for power and communication through a custom (TBus)

interface. At the same time, this configuration allows the entire experi-

mental control electronics to fit in a volume of ∼10 L.

The experimental control is performed by a small form factor (PC104)

computer operating on real-time LabView. It in turn programs a field-

programmable gate array (FPGA) that is responsible for the timing of the

experimental sequence. Digital triggers from this FPGA can be sent to

external components, for instance oscilloscopes and optical-fibre switches,

but also via the internal TBus to the FPGAs on each of the other electronics

boards in the stack.
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Figure 3.5 Voltage from current probe measuring the decay of the currents in the
atom chip assembly. Ripples in the current are observed most prominently in the
QUAD coils due to their large inductance. The total switching time of ∼0.5 ms of
the magnetic fields is limited by the QUAD1/3 coil pair.

Of special note is the frequency controller board as this regulates the

laser frequencies. It features several digital proportional-integral (PI) con-

trollers, frequency counters and a (de)modulation option for laser fre-

quency stabilisation as will be described in section 3.5. The other boards

contain temperature controllers and current drivers for the laser diodes

and power amplifiers, direct digital synthesizer (DDS) boards for the gen-

eration of RF signals and an ion-pump controller. The PC104 communi-

cates over ethernet with a desktop computer or laptop which serves as the

user interface and carries out the data acquisition.

The current drivers for the atom chip assembly also consist of stackable

PCBs of a similar form factor. However, these boards operate completely

on analogue electronics to allow for fast and low-noise control over the

currents for the magnetic fields. The current output is monitored via a

high precision resistor and stabilised with a feedback loop to an RMS
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3.4 Control electronics

noise level below 0.4 % of the current setpoint in steady state operation.

The current setpoints are determined by the analogue outputs from the

iSense control electronics, thus allowing the generation of programmable

magnetic fields for the MOT.

The atom chip currents can be switched by means of a trigger input on

the current drivers. The switching characteristics of the currents through

the magnetic coils is measured with a current probe∗ and results are shown

in figure 3.5. By optimising the PI settings of the current driver’s feedback

loop, switching times below 0.5 ms are obtained. The switching speed of

the magnetic field is limited here by the QUAD1/3 coil pair, due to its high

inductance and current.

The total power consumption of the atom chip assembly is about 7 W

during the MOT stage. However, the current drivers typically require a

power close to 60 W. The excess power is dissipated as heat in the elec-

tronics boards, thus necessitating active (fan) cooling. Overall, the closely

stacked PCBs pose a challenge for thermal management. Another consid-

eration is that the need for active cooling introduces vibrations that could

limit the gravimeter’s sensitivity when all components are integrated into

a single instrument.

The modular design of the control electronics allows for an easy ex-

change of parts in case of malfunction or modifications to the setup. This

feature turned out to be indispensable in the construction of the exper-

iment and for the redesign discussed in the following chapters. On the

other hand, there is room for reducing the size and overhead of the many

FPGAs even further, when a more permanent design of the control elec-

tronics can be settled upon.

∗ Aim I-prober 520 current probe
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3.5 Laser system and light distribution

The iSense laser system is designed for compactness and robust operation

through the combination of micro-integrated lasers and all fibre-coupled

components. A schematic representation of the laser system is shown

in figure 3.6. All lasers and power amplifiers have been developed at the

Ferdinand-Braun-Institut, packaged and fibre coupled at Universität Ham-

burg and connected to a light distribution network made at the University

of Birmingham [104]. A network of optical fibre-coupled components al-

lows control and manipulation of the laser light in a small and flexible

setup. In comparison to free space optomechanical components, that re-

quire rigid mounting to prevent laser beam misalignment, fibre-coupled

components have a significantly reduced size and weight.

3.5.1 MOT and detection lasers

The sources for the MOT and detection light are distributed feedback

(DFB) diode lasers mounted on micro optical benches with a footprint of

25 mm × 50 mm [166, 167]. The DFB diode lasers have a FWHM linewidth

below 1 MHz and an output power of 50 mW. This power is amplified

in the cooling laser by an integrated tapered amplifier on the micro op-

tical bench to a level of 1 W. Each of the laser modules are housed in

an aluminium case with dimensions 20 cm × 10 cm × 6 cm that includes a

Peltier element for temperature stabilisation, an optical isolator and fibre

couplers. Due to losses in the latter two elements, only 30 % to 40 % of the

total laser power is coupled into the fibre network.

The laser light is guided to the vacuum chamber by a network of po-

larisation maintaining (PM) fibres. The light from the cooling and repump
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lasers is switched on and off within 100 ns by an acousto-optic modula-

tor (AOM)∗. Fibre switches† controlled via transistor-transistor logic (TTL)

signals then direct the light towards either MOT or detection beams. Be-

cause the fibre-coupled AOMs only provide an attenuation of 50 dB, addi-

tional attenuation in the order of 55 dB is made possible by directing the

light to beam dump outputs of the fibre switches. The total available laser

power for the MOT and detection beams from cooling and repump lasers

is about 48 mW and 4 mW respectively. This power is split over four MOT

beams by 50/50 fibre splitters. At each output, a telescope configuration

of two lenses‡ provides collimated beams of about 16 mm 1
e2 -diameter. The

detection beam on the other hand is collimated to a larger beam diameter

of about 27 mm, but is clipped to 23 mm, in order to create a relatively flat

intensity profile across the atom cloud.

The master laser serves as an optical frequency reference for the cool-

ing and repumping lasers by means of a modulation transfer spectroscopy

(MTS) setup described in section 3.5.3. The master laser frequency is sta-

bilised to the |F = 2〉 ↔ |F′ = 3〉 transition in 87Rb indicated in figure 2.8.

The cooling and repump lasers are stabilised to a user-defined offset fre-

quency with respect to the master laser. This is achieved by mixing part

of light from the master laser via a series of fibre splitters§ with the cool-

ing and repump laser light. The frequency difference between cooling and

master laser generates a beat signal on a fast photodiode¶. This beat signal

is amplified and its frequency is counted with a resolution of 100 kHz by

the frequency controller. A PI controller in the frequency controller sends

∗ Gooch&Housego R23080-1-.78-LTD-FO-HP-PM-FC/APC AOM
† LEONI eol 1x2 PM and eol 1x3 PM fibre switches
‡ Focal distances of -9 mm and 60 mm
§ Evanescent Optics custom 954P fibre splitter array
¶ OSI Optoelectronics FCI-125G-010HR-FC photodiode
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3.5 Laser system and light distribution

an analogue voltage to the laser diode current drivers that tunes its current

output. This feedback loop stabilises the beat signal frequency to a value

programmed in the frequency controller, thus creating what is referred to

as an offset lock.

The cooling light is red detuned from the |F = 2〉 ↔ |F′ = 3〉 transition

by δC ranging from 10 MHz to 70 MHz in the MOT and optical molasses

phases. Because the AOMs in the fibre network shift the laser frequencies

up by fAOM = 80 MHz, the beat signal between cooling and master laser is

stabilised at a frequency in the range of fAOM + δC = 90 MHz to 150 MHz.

The difference between the repump laser frequency ν1↔2 to address the

|F = 1〉 ↔ |F′ = 2〉 transition and the master laser frequency ν2↔3 , as seen

from figure 2.8, needs to be 6568 MHz. A beat signal of this frequency,

however, cannot be measured by the frequency counter, because its band-

width only reaches up to about 1 GHz. Therefore, the beat signal between

the repump and master lasers is mixed down with the multiplied signal

from a phase-locked loop (PLL) synthesizer∗ as sketched in figure 3.6.

This creates a new setpoint frequency for the beat signal to offset lock the

repump laser at a frequency†

ν1↔2 − ν2↔3 − 2 fosc − fAOM =

6568 MHz − 2 × 3320 MHz − 80 MHz = −152 MHz.
(3.2)

The frequency stability of the cooling and repump lasers depends on

the stability of both the offset lock and the master laser frequency. The

offset lock stability is determined from the spectrum of the beat signals.

The measured FWHM linewidths of the locked beat signals are in the

∗ AME LO-45C-3220 PLL synthesizer
† Throughout this thesis the symbol ν is used for optical frequencies while f indicates

frequencies in the radio frequency range.

89



Chapter 3 The iSense Experiment

range of 1 MHz to 2 MHz, which is smaller than the linewidth of the 87Rb

D2-line [136]. The stability of the master laser frequency is found to be of

a similar scale, as will be shown in section 3.5.3.

3.5.2 Raman laser and microwave reference

In order to efficiently address a small velocity class with Raman beams

in a counter-propagating configuration, a narrow-linewidth laser is re-

quired. For this reason, the Raman laser source in this experiment is a

compact external-cavity diode laser (ECDL) with a FWHM linewidth be-

low 100 kHz [168]. As shown in figure 3.6, a power amplifier (PA) boosts

the power for the Raman beam up to about 600 mW∗. This PA is of a

similar construction as the cooling laser, but without the DFB diode laser,

and its output beam passes through a free-space AOM†. The first-order

diffraction output of the AOM is coupled into a PM fibre that brings the

Raman laser light to the vacuum chamber. On top of the vacuum chamber

a collimation lens‡ provides a (7.7 ± 0.1)mm 1
e2 -diameter Raman beam.

The frequency of the Raman laser is not actively stabilised, but the

frequency drift of the ECDL is of the order of tens of MHz h−1 as seen in

figure 3.23. With respect to the two-photon detuning ∆R in the range of

1 GHz to 1.5 GHz used here, the frequency instability of the Raman laser

means a relative change in Rabi frequencies < 5 %. Variations of this level

are below the measurement uncertainty of the current setup.

The second Raman frequency is added to the output light from the

ECDL by a fibre-coupled electro-optic modulator§. This solution requires

∗ Before the input of this PA a second power amplifier is used in some of the measure-
ments in this chapter in order to increase the input power to the PA above saturation.

† Crystal Technology 3080-125 AOM
‡ Newport KPA22 lens with 40 mm focal distance
§ EOSpace PM-AV5-40-PFA-PFA-780 EOM
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only a single laser for the Raman beams and less control electronics in

comparison to a phase-lock of two Raman lasers. The EOM consists of a

lithium niobate (LiNbO3) waveguide that enables a phase modulation of

the laser light. The light travelling through the EOM is phase shifted by

exploitation of the Pockels effect, i.e. through the application of a volt-

age across the LiNbO3 waveguide, inducing a change in its birefringence.

Applying a sinusoidal voltage to the EOM creates additional sideband fre-

quency components in the output beam.

This effect can be understood when the light at the input of the EOM is

expressed by the electric field Ein(t) = E0 sin(ωt). Here are I = 1
2 cε0

⏐⏐E0

⏐⏐2
the intensity of the laser beam and ω = 2πν its optical frequency in radi-

ans. When a sinusoidal voltage is applied to the EOM, the electric field of

the output beam will have a phase modulation according to

Eout(t) = E0 sin
[
ωt + m sin(ωm t)

]
. (3.3)

The modulation depth m = π
Vm

Vπ

depends on the amplitude Vm of the

modulation signal with respect to the voltage Vπ that creates a phase shift

of π radians∗. Equation (3.3) can be written as a series of Bessel functions

of the first kind:

Eout(t) = E0

∞

∑
n=−∞

Jn(m) sin
[
(ω + nωm)t

]
= J0(m)E0 sin(ωt) +

∞

∑
n=1

Jn(m)E0 sin
[
(ω + nωm)t

]
+

∞

∑
n=1

(−1)n Jn(m)E0 sin
[
(ω − nωm)t

]
,

(3.4)

with Jn(m) the Bessel function of order n. From the above expression it

∗ The voltage Vπ depends on the construction of the phase modulator and changes with
ωm , but this variation can be neglected over the frequency ranges applied here.
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Figure 3.7 Schematic of the microwave chain for generating the Raman sideband
frequency νRaman,II to the carrier frequency νRaman,I with an electro-optic modulator
(EOM). Mixing the stable output of a phase-locked dielectric resonator oscilla-
tor (PLDRO) with a computer controlled direct digital synthesizer (DDS) creates
a tunable frequency around the hyperfine ground-state level splitting of 87Rb.
A bandpass filter (BPF) prevents undesired frequency components from the RF
mixing process being applied to the EOM.

is seen that the light after the EOM has additional frequency components

separated from the optical carrier frequency ω by multiples of the modu-

lation frequency ωm . These frequency components are commonly referred

to as the n-th order sidebands. The intensity of these sidebands can be

found from equation (3.4) to follow I
⏐⏐Jn(m)

⏐⏐2, while the intensity of the

carrier is I
⏐⏐J0(m)

⏐⏐2.

The RF signal for the EOM, is supplied by a versatile microwave chain

that is designed and constructed by SYRTE. The main components are

sketched in figure 3.7, but for a more detailed schematic see [104]. The

main RF source is a phase-locked dielectric resonator oscillator (PLDRO)∗.

It consists of a quartz oscillator to which a 100 MHz and a 7 GHz source

are phase-locked. The 100 MHz output is used as the clock signal for the

DDS in the control electronics. The DDS generates in turn an RF signal

that is tunable in amplitude, frequency and phase. This is supplied back to

∗ Nexyn NXPLOS-I-0700-03659 PLDRO
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the microwave chain and mixed∗ with the 7 GHz output† of the PLDRO.

The multiplied signal is amplified and passed through a narrow band-

pass filter‡ that suppresses spurious frequency components to a level 60 dB

below the 6.834 GHz centre frequency. The difference between the Raman

laser frequency components, νRaman,II − νRaman,I = 7 GHz − fDDS , is then set

via the DDS frequency fDDS . By varying the RF output power of the DDS,

the modulation depth of the EOM is tuned. The intensity ratio of the

frequency components in the Raman beam is determined with a scanning

Fabry–Pérot interferometer and tuned to equal amplitudes, this method is

discussed in more detail in section 4.1.3.

A drawback of this phase modulation method is that the many side-

band frequency components in the Raman laser create additional Raman

transitions [169]. The effect of which is a systematic phase shift in a

Mach–Zehnder sequence, but can be minimized by optimisation of the

timing of the Raman pulses [170]. Undesirable sidebands could also be

reduced by using an optical serrodyne technique [171, 172] or by making

use of a single-sideband modulator [173, 174] instead of the EOM.

3.5.3 Modulation transfer spectroscopy

The laser frequency stabilisation technique applied to the master laser

is based on MTS. The general principle relies on monitoring the differ-

ence between the laser frequency and an atomic transition in a rubidium

vapour. The deviation from the atomic transition is used to electronically

adjust the laser frequency, which could either be a laser diode current

driver or a high voltage driver for a piezo electric actuator, to counteract

∗ Mini-Circuits ZMX-10G RF mixer
† An MTC H111VFF RF isolator prevents reflections from going back into the PLDRO
‡ Nextec NBL00419 low noise amplifier and BL Microwave cavity bandpass filter
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(a) A probe beam with frequency ω scans atomic transitions in a rubidium vapour
that are excited by a counter-propagating pump beam. Error signals can be gen-
erated by phase modulating the probe beam (frequency modulation spectroscopy)
or the pump beam (modulation transfer spectroscopy). This creates a beat signal
in the probe beam at the modulation frequency ωm and is detected with a fast
photodiode.
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Frequency with respect to  87Rb cycling transition (MHz)
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Frequency Modulation
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(b) Spectroscopy signals from scanning the laser frequency over the D2 -line transi-
tions from the |F = 2〉 ground state in 87Rb. The DC component of the probe beam
photodiode signal results in the saturated absorption spectrum, while the beat signal
at ωm can be demodulated to create the frequency modulation or modulation transfer
spectra. The spectra are scaled and vertically offset for clarity and the frequency axis
is with respect to the |F = 2〉 ↔ |F′ = 3〉 transition. This cycling transition is not
dominated in the modulation transfer signal by the two crossover transitions in be-
tween the |F′ = 3〉 and |F′ = 2〉 or |F′ = 1〉 excited states that are seen in the saturated
absorption and frequency modulation signals.

Figure 3.8 Doppler-free spectroscopy methods for laser frequency stabilisation to
an atomic transition in rubidium.
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changes in the laser frequency. The stability of this feedback loop depends

first of all on the spectroscopy technique that measures the frequency de-

viation. The frequency discriminating signal used to regulate the laser fre-

quency is referred to as the error signal and varies between spectroscopy

methods. One of the advantages that MTS has over other spectroscopy

methods, such as frequency modulation spectroscopy (FMS), is that the

error signal has a flat, zero background level. MTS also has the most

prominent error signal for closed atomic transitions, thus allowing a fast

determination of the lock point [175].

Probing atomic transitions in a rubidium vapour is done here via the

pump-probe techniques sketched in figure 3.8a. In order to overcome

the Doppler broadening of the spectra of atoms contained in a room-

temperature vapour cell, the atoms are excited by a pump beam. A

counter-propagating probe beam at the same frequency ω will then ex-

perience a reduced absorption for the atoms that have a velocity compo-

nent close to zero along the laser beams [73]. This creates Doppler-free

absorption peaks in the probe beam intensity as seen in the saturated ab-

sorption spectrum of the 87Rb D2-line in figure 3.8b. The more promi-

nent absorption peaks occur at crossover transitions where atoms have a

red-detuned Doppler shift from one excited state that equals the opposite

(blue-detuned) Doppler shift from another lower-energy excited state.

Locking the laser frequency ω to any of these Doppler-free features is

possible when an error signal is generated. This can be achieved through

phase modulation of either the probe or the pump beam. As was seen

from equation (3.4), a small modulation index m results in the addition of

two sidebands at frequencies ω ± ωm . In case the modulation is applied

to the probe beam, a beat signal between carrier and sidebands occurs
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which can be detected by a fast photodiode. Separating the beat signal

from the saturated absorption signal can be done via a lock-in amplifier or

demodulating the AC component of the photodiode with the modulation

frequency. The result is a derivative-like form of the saturated absorption

spectrum [176] and the method is generally known as frequency modula-

tion spectroscopy. The FMS signal for the 87Rb D2-line transition is shown

in figure 3.8b. The same method produces the modulation transfer spec-

troscopy signal, but there the phase modulation is instead applied to the

pump beam.

The FMS signal can be understood as follows. The opposing sidebands

will be absorbed by an equal amount when the laser frequency is on an

atomic transition, but an imbalance occurs when the laser frequency drifts

away from the transition. The unbalanced absorption can be detected in

the beat signal between the carrier and sidebands [177]. The beat signal

intensity measured by the photodiode is for small changes in absorption

and dispersion of the form [177–179]

SFMS(t) = AFMS J0(m)J1(m)

{(
−L− 1

2
+ L 1

2

)
cos(ωm t)

+
(
−D− 1

2
− D 1

2
+ 2D0

)
sin(ωm t)

}
.

(3.5)

Here is AFMS a constant depending on the intensity and absorption of the

probe beam and m � 1. Ln and Dn are absorption and dispersion func-

tions defined as

Ln =
1

1 +
(

ω−ω0−nωm
Γ′

)2 (3.6a)

Dn =
ω − ω0 − nωm

Γ′ Ln , (3.6b)
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with Γ′ the power-broadened FWHM linewidth of the atomic transition

centred at frequency ω0 .

The cosine term in equation (3.5) corresponds to the absorption in the

atomic vapour while the sine term is a result of the dispersion experienced

by the probe beam. Phase-sensitive detection of these signals is achieved

by mixing the photodiode signal with the local oscillator that is respon-

sible for the modulation frequency. This creates a frequency-modulation

spectrum that is time-independent, i.e. at DC level, and one at double the

modulation frequency:

SFMS(t) cos(ωm t + φLO) =
1
2

AFMS J0(m)J1(m)×{(
−L− 1

2
+ L 1

2

) [
cos(φLO) + cos(2ωm t + φLO)

]
−
(
−D− 1

2
− D 1

2
+ 2D0

) [
sin(φLO)− sin(2ωm t + φLO)

] }
.

(3.7)

By tuning the phase difference φLO between local oscillator and photodiode

signals, either the absorptive term, the dispersive term or a mix of both

can be generated. The high frequency components are filtered by a low-

pass filter having a cut-off frequency fc usually below the modulation

frequency fm =
ωm

2π
, leaving just the DC components of equation (3.7)

as the error signal for laser frequency stabilisation.

In modulation transfer spectroscopy the modulation is applied to the

pump beam. The sidebands of the pump beam cause oscillating state-

populations in the rubidium vapour at frequencies ω ± ωm . This is ob-

served by the probe beam as a modulated absorption and dispersion, in-

ducing an amplitude and phase modulation of the probe beam [180]. The

process has also been described as four-wave mixing caused by the non-

linear susceptibility of the atomic vapour [181–183]. The atomic vapour
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(a) Schematic of the stabilisation of the master laser frequency νL to a transition in rubid-
ium which is contained in a vapour cell, see text for explanation.
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(b) Photograph of the compact MTS unit built for the experiment without its cover and
the free-space beam paths indicated. The unit houses the components enclosed by the
dashed box in (a).

Figure 3.9 Modulation transfer spectroscopy (MTS) (a) schematic and (b) the ac-
tual setup that is used to stabilise the master laser frequency.
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effectively transfers the sideband frequency components from the pump

beam to the probe beam.

The MTS beat signal between the probe beam and its sidebands is

expressed by the relation [180]

SMTS(t) = AMTS J0(m)J1(m)

[ (
−L−1 + L

− 1
2
− L 1

2
+ L1

)
cos
(
ωm t + φD

)
+

(
−D−1 + D

− 1
2
+ D 1

2
− D1

)
sin
(
ωm t + φD

)]
,

(3.8)

where AMTS is again a constant depending on beam intensities and Ln and

Dn are the same functions as equations (3.6). Additionally, the MTS signal

has an extra phase shift φD between detector and modulation field.

The signal of equation (3.8) is detected by a photodiode and demod-

ulated in the same manner as in FMS. The resulting MTS lineshape of

the 87Rb transition is shown in figure 3.8b. The error signal is higher

for the |F = 2〉 ↔ |F′ = 3〉 transition compared to the other transitions,

because the modulation transfer process is most efficient for closed tran-

sitions [175]. The flat background of the MTS signal is a results of the

Doppler-free resonance condition, evident in the symmetry of both ab-

sorption and dispersion terms in equation (3.8). The effect is a zero cross-

ing in the error signal at the centre frequency ω0 of the cycling transition.

The FMS error signal on the other hand still has some contribution from

Doppler broadening as seen in figure 3.8b.

Because of the mentioned properties, an MTS setup has been built to

provide the error signal for stabilisation of the master laser frequency. A

schematic of the laser frequency feedback loop and a photograph of the

compact MTS setup are shown in figure 3.9. Light from the master laser
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Figure 3.10 Error signals of |F = 2〉 ↔ |F′ = 3〉 transition in 87Rb generated by
the modulation transfer spectroscopy setup at different modulation frequencies.
The error signals have peak-to-peak amplitudes in the range of 3 V to 7 V and are
offset from each other for clarity.
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is split by a PM fibre splitter of which one output is passed through a

fibre-coupled EOM for phase modulation. Aspheric lenses∗ at the output

of the fibres create collimated beams with a 1
e2 -diameter of (4.6 ± 0.1)mm

that are aligned counter-propagating through a rubidium vapour cell. The

polarisation axes of the pump and probe beams are set orthogonal to each

other by a polarising beam splitter (PBS) and a polariser. A photodiode†

detects the probe beam and its AC-coupled signal is amplified before the

input of the frequency controller. There the MTS signal is demodulated

by mixing it with the phase-shifted signal from the local oscillator and

low-pass filtered with a cut-off frequency around 10 kHz. The generated

error signal enables stabilising the laser frequency through one of the inte-

grated PI controllers which applies a proportional feedback to the current

or piezo driver of the laser.

With an optical power of (7.3 ± 0.1)mW at the input of the compact

MTS unit, the average intensities of the pump and probe beams measure

(7.9 ± 0.5)mW cm−2 and (14 ± 1)mW cm−2 respectively. These intensities

are about 2 to 4 times the saturation intensity of the 87Rb D2-line transition,

a region that has been shown to give the largest amplitude and slope of

the error signal [184]. However, a better intensity balance between the

two beams increases the error signal amplitude as observed in another

MTS setup. This could be achieved in future designs by optimising the

fibre-splitter ratio.

The largest beat signal according to equations (3.5) and (3.8) is ob-

tained when the product J0(m)J1(m) is maximised, corresponding to a

modulation index m = 1.08. However, in practice the error signal is usu-

ally optimised experimentally by tuning the modulation amplitude and

∗ 30 mm focal distance
† Hamamatsu S5971 photodiode
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Figure 3.11 Slope of the measured MTS error signal as a function of modulation
frequency. The slope is determined from a linear fit around the zero crossing of
the error signal at the 87Rb |F = 2〉 ↔ |F′ = 3〉 transition. The error bars indicate
the standard deviations of nine repeated measurements.

demodulation phase such that the largest amplitude or steepest slope is

observed. This method has also been applied in the MTS setup here and

the produced error signals at the |F = 2〉 ↔ |F′ = 3〉 transition are shown

in figure 3.10. The error signals have been recorded at different modula-

tion frequencies and phase to achieve the steepest slope around the line

centre. The frequency axis in these plots is calibrated by increasing the

scan of the laser frequency to include the error signal from the nearby

|F = 2〉 ↔ |F′ = 2〉 transition.

Evident in figure 3.10 is that, as the modulation frequency increases,

so does the separation of the four resonances in equation (3.8). For mod-

ulation frequencies below the linewidth of the transition, the error signal

resembles the derivative of the saturated absorption signal [182]. In order

to find an optimum modulation frequency, the slope of the error signal

is estimated by fitting the central part of the error signal with a linear
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function. The results from these fits are plotted in figure 3.11, where the

average steepest slope is observed for modulation frequencies in the range

of 5 MHz to 8 MHz.

A theoretical evaluation of the MTS error signal as a function of mod-

ulation frequency has been investigated by [185]. For an optimum phase

and modulation depth, there the steepest slope is found at 0.7Γ. This

would correspond in the MTS setup here, when taking a power-broadened

linewidth of 12 MHz for the |F = 2〉 ↔ |F′ = 3〉 transition, to an optimum

modulation frequency of 8.5 MHz. The slight difference between this and

the optimum found in figure 3.11 could be attributed to an uncertainty in

the linewidth associated with MTS [175]. Another difference with the the-

oretical evaluation is that all measurements were performed at the same

modulation depth.

The MTS modulation frequency used in the remainder of the exper-

iments here is 6.25 MHz. This setting is the closest possible modulation

option in the frequency controller to the optimum modulation frequency

range. The stability of the master laser frequency locked with the MTS

setup in figure 3.9 is determined via a beat signal with an independently

stabilised laser. A narrow-linewidth fibre laser, which will be presented

in the next chapter, is stabilised by a second MTS setup. The frequency

stability of this laser is determined from the error signal and the RMS de-

viation of the locked laser frequency is found to be below 100 kHz on time

scales of 1 ms. A beat signal between the fibre laser and the master laser is

then recorded with a photodiode and spectrum analyser, giving a FWHM

of the beat note spectrum of (2.4 ± 0.2)MHz. The linewidth broadening is

mainly caused by electrical noise from the control electronics that supply

the laser diode current.

103



Chapter 3 The iSense Experiment

The long term frequency stability of the iSense master laser on the

other hand has not been determined due to an electrical cross coupling

between the temperature sensor and the laser diode. This caused the laser

frequency to drift out of the scan range of the control electronics on time

scales of tens of minutes. However, re-locking the laser to the desired

frequency is straight forward thanks to the recognisable error signal of

modulation transfer spectroscopy.

Other groups have shown that long-term frequency stability of DFB

diode lasers below 100 kHz is possible by locking to an MTS setup [186]. It

has recently been demonstrated that the laser frequency stability could be

improved through the combination of MTS and FMS techniques [187]. The

compact MTS setup built for this experiment could be readily adapted to

include an FMS signal by replacing the polariser in figure 3.9a by a second

beam splitter and photodiode to record the pump beam.

3.6 Magnetic compensation field

There are many sources of magnetic fields that could influence the perfor-

mance of a cold-atoms gravimeter. Besides the bias from magnetic field

gradients as discussed in section 2.5.3, a prominent effect is also found in

the MOT and optical molasses stage. A stray magnetic field can shift the

magnetic zero of the quadrupole field of the MOT and create an imbal-

ance in the forces of the cooling beams in an optical molasses [188]. A

dominant source of stray magnetic fields is the earth. At the surface of

the earth a typical magnetic field strength of 50 µT is present which shifts

the magnetic zero of the quadrupole field in the order of 0.5 mm. This

displacement is comparable to the size of the atom cloud itself, but can be

reduced by cancellation of ambient magnetic fields.
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A magnetic shield is a straight-forward method of reducing any am-

bient fields. However, in the construction and optimisation phase of the

iSense experiment, regular access to the components is needed. Therefore

an active magnetic compensation field is chosen which does not obstruct

access to the vacuum chamber. Additionally this allows compensating the

magnetic field from sources that are difficult to shield effectively, as for

instance the ion-pump. A significant drawback of this approach is that

the current through the compensation coils will have to be re-optimised

when the experiment is moved. Because the use of compensation coils

also increases the total power consumption of the experiment, a (passive)

magnetic shield would be the preferred method for future designs.

For the iSense experiment three pairs of rectangular coils have been

constructed to provide a tunable magnetic field for compensating un-

wanted stray magnetic fields. The dimensions of the coils are kept within

45 cm × 46 cm × 50 cm in order for the setup to fit inside a 19-inch rack

system, see figures 3.20 and 3.21. In the centre of the structure the coils

provide a field strength of 0.1 mT A−1. The currents through each pair of

coils is tuned such that their magnetic field cancels stray magnetic fields at

the designed position of the MOT. The magnetic field homogeneity along

the vertical (z-) axis is measured with a fluxgate magnetometer∗. When

compensating the ambient magnetic field in the laboratory the measured

residual fields are plotted in figure 3.12. The residual magnetic fields are

less than 0.5 µT in the horizontal plane and below 4 µT in the vertical di-

rection.

Additionally, a model of the compensation coils has been made by sim-

plifying each coil as a rectangular current loop similar as done in [114].

∗ Stefan Mayer Instruments Fluxmaster fluxgate magnetometer
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Figure 3.12 Components of residual magnetic field from compensation coils and
ambient magnetic field in the laboratory. Currents through compensation coils
are set to balance the ambient field at the position of the MOT (z = 0). A model
based on rectangular current loops (solid and dashed lines) matches the verti-
cal field components but overestimates the residual horizontal field components.
This discrepancy can partially be attributed to the measurements being off the
central axis of the coils.
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Each loop carries a current equal to the actual current used in the mea-

surement and multiplied by the number of turns of the corresponding

coil. The x-, y- and z-components of the magnetic field strength are then

calculated using the expressions from [189]. The sum of the calculated

components and the measured ambient magnetic field is indicated by the

lines in figure 3.12. The model very well agrees with the vertical compo-

nent of the measurements, but the residuals are larger compared to the

measurements in the horizontal directions. The cause of this difference is

most likely found in the uncertainty in the location and angle of the flux-

gate sensor with respect to the axes of the coils. This effect is shown by the

dashed lines in figure 3.12 where a small deviation from the vertical axes

in the model cause a significant shift in the horizontal components. Cor-

rections to the model can thus improve its accuracy, but the model could

already be applied to estimate systematic effects from residual magnetic

fields.

These residual magnetic fields are about a factor of 10 higher compared

to those reported in other compact gravimeter setups that use a magnetic

shield [60, 63]. However, it has been demonstrated that gravimeter exper-

iments with magnetic compensation fields can reach sensitivities in the

order of 1 µm s−2/
√

Hz [64].

Besides ambient magnetic fields there are also stray fields from com-

ponents in the experimental setup itself. One of the main sources are

the magnets in the ion-pump that create a field at a distance of 10 cm to

15 cm that is comparable in strength to the earth magnetic field [104]. The

ion-pump is at about twice this distance from the free-fall region of the

atoms, and its magnetic field can thus be compensated for by adjusting

the currents through the compensation coils.
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Figure 3.13 Top view sketch of the detection setup for the diagnostics of atom
clouds. The CCD camera captures an absorption image of the atom cloud that
is illuminated by a detection beam. The photodiode records the scattered light
from the atom cloud.

A different source of magnetic fields located much closer to the atoms

is the rubidium dispenser. When a current of 3 A is applied to the dis-

penser, it can cause field gradients up to several mT m−1 in the interfer-

ometry region. From equation (2.69) it can be calculated that the magnetic

field from the dispenser could cause an acceleration bias in the order of

10 µm s−2. For this reason, the current supplied to the dispenser can be

switched off during the interferometry sequence via the current drivers or

an insulated-gate bipolar transistor (IGBT).
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3.7 Detection

There are two detection systems in the iSense setup for diagnostics of the

atom cloud. These are sketched in figure 3.13 and similar to detection

systems widely found in other cold-atoms experiments.

The first detection system uses a CCD camera∗ and a double lens sys-

tem at a magnification of 1.2 to record an image of the atom cloud. Ab-

sorption images are taken by reflecting a detection beam at a 45◦ angle off

the atom chip surface. The detection beam intensity is 1.1 mW cm−2 and

a pulse duration of 5 µs is applied in order to prevent saturation of the

camera.

A second image is taken with the same settings but when the atom

cloud is no longer present. This light field image is used to normalise

the previous absorption image, which suppresses spatial variations of the

intensity from the detection beam and inhomogeneities in the imaging

setup. An example of an atom cloud image after normalisation is shown

in figure 3.14. By fitting such absorption images with a two-dimensional

Gaussian function, the size of the atom cloud in the vertical and horizontal

directions can be determined. It is also possible to extract the optical

density of the atomic cloud from these normalised images, which is done

in [104] as a verification of the number of atoms in each cloud.

The size of the atom cloud depends on the time after it has been re-

leased from the MOT or the optical molasses. The expansion, for instance

in the x-direction, is governed by the velocity spread σv,x of the atoms. The

RMS size σx(t) of an atom cloud with a Maxwell–Boltzmann distribution

∗ The Imaging Source DMK31BU03 CCD camera
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Figure 3.14 Example of an atom cloud image reconstructed from an absorption
image taken at 4.5 ms after release from an optical molasses and a light field
image taken by the CCD camera. A two-dimensional Gaussian fit is applied
to this image to determine the cloud size. In this example the fit results in a
FWHM of the atom cloud of 0.68 mm in the vertical and 0.48 mm in the horizontal
directions.
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is then given by

σx(t) =
√

σ2
x
(t0) + σ2

v,x

(
t − t0

)2. (3.9)

The initial RMS size of the atom cloud is σx(t0) when it is released at

time t0 . The velocity spread in an atom cloud is usually expressed as the

temperature T that is related to the RMS velocity via [139]

T =
m

3kB

(
σ2

v,x
+ σ2

v,y
+ σ2

v,z

)
. (3.10)

The temperature of cold atom-clouds can thus be determined from their

expansion as a function of time. The expansion can be found by taking

several images of the atom cloud at different time intervals t − t0 , which is

generally referred to as the time-of-flight (TOF) method.

The second detection system shown in figure 3.13 uses an avalanche

photodiode∗ to record the loading of the MOT and the atomic state popu-

lations. A portion of the light scattered by the atoms is collected by a lens†

at a distance dL from the atom chip surface. This light is focussed on the

photodiode, its output voltage is recorded on an oscilloscope and used to

estimate the number of atoms as follows.

A rubidium atom in a laser beam that is close to resonance with the

|F = 2〉 ↔ |F′ = 3〉 transition scatters the laser light at a rate [73]

Rsc =
Γ
2

I/Isat

1 + I/Isat + 4(δ/Γ)2 . (3.11)

Here is I the intensity of the laser light, δ the detuning from the transition,

Γ the linewidth of the atomic transition and Isat its saturation intensity. The

∗ Thorlabs APD120A avalanche photodiode
† Focal distance of 50 mm and clear aperture diameter of 23 mm
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values of these properties that correspond to the D2-line transition in 87Rb

are listed in table A.1.

The light power radiated by N atoms is then NRsc h̄ω2↔3 with ω2↔3

the angular frequency of the |F = 2〉 ↔ |F′ = 3〉 transition. Therefore,

the number of atoms can be determined from the output voltage VPD of

the photodiode collecting the scattered light. When taking into account

the spectral response S and transimpedance (gain) G of the photodiode

circuit, the atom number can be calculated via

N =
VPD

ηdet SGRsc h̄ω2↔3

. (3.12)

The detection efficiency ηdet depends here on the fraction of the total solid

angle δΩ that is covered by the detection optics. In this experiment the

solid angle fraction consists of a part δΩdir for the directly captured light

and a part δΩrefl for the reflected light from the atom chip surface. As-

suming an isotropic light scattering from the atom cloud, the detection

efficiency ηdet can thus be expressed as

ηdet =
(
δΩdir +RacsδΩrefl

)
Tr

=
DL

2Tr

16

[
1

(dL − dMOT)
2 +

Racs

(dL + dMOT)
2

]
.

(3.13)

The constants Racs and Tr are the reflectivity of the atom chip surface and

the transmission of the vacuum window and optical elements∗, respec-

tively. The diameter DL in equation (3.12) is the clear aperture diameter of

the detection optics, which is located at a distances dL ≈ 60 mm. At the

design distance of the atom cloud to the atom chip surface, dMOT = 5 mm,

the efficiency of this detection setup is ηdet = (1.8 ± 0.2)%. For a known

∗ Transmission for 780 nm wavelength light is Tr ≈ 99 %
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laser intensity and detuning, it is thus possible to estimate the number of

atoms with the help of equations (3.11) and (3.12).

Because these two detection systems only collect the light from atoms

within several mm of the MOT region, their usage is limited to study

atoms over short free-fall distances. An additional detection system that

makes use of the windows at the bottom of the vacuum chamber will be

discussed in section 5.1.2.

3.8 Preliminary results

In the scope of this work, the first results obtained with the iSense experi-

ment include the realisation of a cloud of cold 87Rb atoms. After optimisa-

tion of the cold-atoms source in terms of atom number and temperature,

stimulated Raman transitions are performed. This allows determining the

required pulse duration for π
2 -pulses to create interference with the atoms

in a Ramsey sequence. These preliminary results are briefly presented in

this section, but a more detailed discussion can be found in [104].

3.8.1 Cold-atoms source

Cold clouds of 87Rb atoms are created in the vacuum chamber by loading

the MOT with the background rubidium vapour. The combination of the

laser system described in section 3.5.1 and the reflection of the beams from

the atom chip surface creates an average intensity of the cooling light of

(34 ± 4)mW cm−2. The largest number of atoms in the MOT was found

when the cooling laser was red-detuned from the |F = 2〉 ↔ |F′ = 3〉 tran-

sition by 12 MHz. At these settings the average scattering rate according

to equation (3.11) is Rsc = (6.9 ± 0.5) · 106 s−1. Together with the known

spectral response and load resistance of the photodiode, the measured
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Figure 3.15 Estimated number of atoms in the MOT as a function of time after the
magnetic quadrupole field is turned on at different currents through the rubidium
dispenser.
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Figure 3.16 Atom loading rate and loading time constant of the MOT at different
currents through the rubidium dispenser.
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photodiode voltage is used to estimate the number of atoms in the MOT.

When recording the increase of the photodiode voltage upon turning the

magnetic quadrupole field of the MOT on, typical loading curves as shown

in figure 3.15 are obtained.

Increasing the current through the dispenser creates a higher partial

pressure of rubidium. Therefore, both the atom loading rate of the MOT

increases as well as the equilibrium number of atoms. These can be ex-

tracted from the time-dependent atom number curves in figure 3.15. Con-

sider for this the rate equation of the number of 87Rb atoms N(t) in the

MOT as given by [190]

dN(t)
dt

= RMOT − γC N(t), (3.14)

where RMOT is the loading rate of the MOT and γC is the atom loss rate

due to collisions with the background vapour. Atom loss from collisions

between cold atoms in the MOT is neglected here, since this collision rate

is about an order of magnitude lower than γC [191].

The solution of the rate equation (3.14) is

N(t) = Neq

(
1 − e−t/τload

)
, (3.15)

with Neq = RMOT τload the atom number in the MOT at equilibrium and the

loading time constant τload = γ−1
C

. Applying equation (3.15) to fit the atom

loading curves of the MOT allows determining RMOT and τload at different

dispenser currents. The results are plotted in figure 3.16 with the error

bars indicating the uncertainty from the determination of the number of

atoms via the fluorescence detection setup. At a dispenser current of 4.1 A

the MOT captures 107 atoms in about 0.25 s. However, to prevent rapid
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Figure 3.17 RMS size of atom cloud as a function of its time-of-flight after release
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vertical direction, respectively. With an optical molasses phase after the MOT
these velocity spreads are reduced to (22 ± 1)mm s−1 and (21 ± 1)mm s−1.

depletion of the available rubidium, the dispenser is usually operated at a

current of 3.5 A.

The temperature of the atom cloud after the MOT is determined via the

time-of-flight method discussed in the previous section. The measured ex-

pansion of the RMS size of the atom cloud is shown in figure 3.17. The

velocity spread in both the horizontal and vertical directions is determined

from fitting the results with equation (3.9). The horizontal velocity spread

of (137 ± 4)mm s−1 is slightly larger than the (122 ± 3)mm s−1 in the ver-

tical direction. The difference is most likely due to the different magnetic

field gradients of the quadrupole field generated by the atom chip assem-

bly, see section 3.2.

The temperature of the atom cloud is estimated from the velocity spread
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with expression (3.10). Under the assumption that the velocity spread in

the direction along the optical axis of the imaging system is equal to the

measured horizontal spread, a temperature of (182 ± 19)µK is found. This

is slightly above the Doppler temperature of 87Rb, see table A.1.

A lower cloud temperature after the MOT is achieved by an optical mo-

lasses phase. Turning off the quadrupole field and simultaneously detun-

ing the cooling laser frequency achieves sub-Doppler cloud temperatures.

The optical molasses phase used here involved first a detuning of the cool-

ing laser to 73 MHz below the |F = 2〉 ↔ |F′ = 3〉 transition and halving

the beam intensity. After 9 ms in this state, another step in the detuning

to δC = 141 MHz is made and the intensity is ramped down before the

cooling beams are completely shut off after 3 ms. This sequence showed a

minimum expansion of the atom cloud as verified by TOF measurements.

The results are plotted in figure 3.17 and the corresponding temperature

determined from the fit is (4.8 ± 0.2)µK.

The initial cloud size is difficult to determine in this setup, as evident

from the discrepancy in the fitted curves at short free-fall times. Taking

absorption images of the atom cloud at shorter time intervals after their

release from the MOT or optical molasses is currently not possible, since it

takes the optical fibre-switch to change between the different output ports

a duration of ' 3 ms.

In comparison to other atom-chip based experiments with 87Rb, the

number of atoms in the cold cloud are similar to other setups [192, 193],

but do not reach the 109 level reported elsewhere [164]. The difference

is the application of external coils for the magnetic quadrupole field in-

stead of the smaller coils integrated in the iSense atom-chip assembly.

However, a similar or even lower temperature of the atom cloud after the
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Figure 3.18 Rabi oscillations observed in the changing population of the |F = 1〉
state as a function of the Raman pulse duration. At two different Raman beam
powers the effective Rabi frequency is determined from a fit with a damped sine
function giving (78 ± 5) kHz (solid line) and (26 ± 1) kHz (dashed line).

optical molasses is achieved here. The main cause is believed to be due to

the larger distance between the atom cloud and the mirror surface of the

atom chip. This prevents the cloud from self-shadowing the reflected laser

beams which could cause an imbalance in the beam intensities [104].

3.8.2 Rabi oscillations

With the source of cold atom-clouds, stimulated Raman transitions are

performed. First, the atoms are prepared in the |F = 2〉 state by keeping

the repump laser on for about 1 ms after the AOM has extinguished the

light from the cooling laser. Next, a pulse of the vertical Raman beam

drives stimulated Raman transitions in the atoms. The Raman transitions

are Doppler insensitive since the Raman beams are in the co-propagating

configuration without a mirror below the vacuum chamber. Depending
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on the duration of the Raman pulse a fraction of the atoms is transferred

to the |F = 1〉 ground state.

The population of this state is measured by three detection pulse as dis-

cussed in section 2.4.1, each having a duration of 1 ms. The first detection

pulse is resonant with the |F = 2〉 ↔ |F′ = 3〉 transition and scatters the

atoms in the |F = 2〉 away from those in |F = 1〉. A second pulse with light

from the repump laser then transfers the atoms from the |F = 1〉 ground

state to |F = 2〉, allowing these to be detected by another on-resonant pulse

with the |F = 2〉 ↔ |F′ = 3〉 transition. The scattered light from the reso-

nant detection pulses is captured by the photodiode shown in figure 3.13.

The recorded photodiode voltage of the last detection pulse with respect

to the background level is then a measure of the state population of the

atoms in the |F = 1〉 state.

The first measurements of Rabi oscillations in the iSense experiment

are plotted in figure 3.18. Two different settings of the Raman beam pow-

ers are applied, showing a change in both the Rabi frequency and the

number of transferred atoms between the ground states. The decay in the

Rabi oscillations can be explained by the Gaussian intensity distribution

of the Raman beam and the velocity spread of the atoms. Atoms located

away from the centre of the Raman beam will experience lower Rabi fre-

quencies than the atoms in the centre where the beam intensity is higher.

Additionally, the velocity spread of the atoms creates a convolution of

different Rabi frequencies as the atoms traverse the laser beam. This is ob-

served as a quadratic or even faster decay in the ensemble averaged Rabi

oscillations [194]. To include this decay, the state population Na,Rabi after a
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Raman pulse of duration τ is expressed as

Na,Rabi =
1
2

N0

[
1 − exp

(
−γ2

R
τ2
)

cos
(
ΩR τ

)]
. (3.16)

Here is N0 the average number of atoms that are transferred between states

and γR is the damping rate of the Rabi oscillations.

Fitting the Rabi oscillations measurements with equation (3.16) re-

sults in a Rabi frequency ΩR of 2π × (78 ± 5) kHz and a decay rate of

γR = (0.14 ± 0.04)ΩR for the measurements with a Raman beam power of

60 mW. At this power level the peak intensity of each frequency compo-

nent in the Raman beams is estimated at I1 ≈ I2 ≈ 77 mW cm−2. When

applying this intensity to calculate the effective Rabi frequency from equa-

tion (2.62), the result is slightly higher in the range of 82 kHz to 94 kHz de-

pending on the mF state. Since there is no quantisation axis applied in the

experiment, cross coupling between mF states could explain the difference

with the measured Rabi frequency. Another possibility is that the beam

intensities observed by the atoms is lower than estimated from the Raman

beam power measurements.

In the case of the reduced Raman beam power to 35 mW, the Rabi fre-

quency from the fit is (26 ± 1) kHz with a decay rate γR = (0.11 ± 0.02)ΩR .

Due to the slightly lower decay rate of the Rabi oscillations in the low

power measurements, this setting is used in the following interferometry

sequence. The reduced Raman beam power also lowers the incoherent

population transfer induced by excitation of the 52P3/2 state [104]. Under

these operating conditions, it is seen in figure 3.18 that a π
2 -pulse corre-

sponds to a duration of approximately 7 µs.

An estimation of the shot-noise limited precision of the iSense setup
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can now be made using the measured Rabi frequency. In case counter-

propagating Raman beams would be applied to a cold atom-cloud having

the previously found velocity spread of 21 mm s−1, the theoretical contrast

of a Mach–Zehnder sequence is according to equation (2.53) about 44 %.

Assuming the initial atom-cloud of 107 atoms is distributed evenly over

the five mF sublevels of the |F = 2〉 state, about 2 · 106 atoms will take part

in the interferometry sequence when only the magnetic insensitive mF = 0

state is used. At a free evolution time T = 50 ms, equation (2.56) then gives

a shot-noise limit to the precision in measuring gravitational acceleration

of 40 nm s−2 per measurement.

3.8.3 Ramsey interferometry

The interference of 87Rb atoms is demonstrated by performing a Ramsey

type pulse sequence. Two Raman pulses of 7 µs duration and a Raman

beam power of 35 mW are separated by a free evolution time of 100 µs.

Having the atoms initially prepared in the |F = 2〉 state, a fraction of the

population will be transferred to the |F = 1〉 ground-state as discussed in

section 2.3.1. The resulting population of the lower ground-state is then

detected via the same detection sequence as applied in the previous Rabi-

oscillations measurements. Scanning the detuning of the Raman laser fre-

quency sideband over the resonance changes the Ramsey phase as seen

in equation (2.43). This results in the observation of Ramsey interference

fringes in the detected state population and is confirmed by the measure-

ment results shown in figure 3.19.

Here the expression of the number of atoms Na,Ramsey in state |F = 1〉 is

described with a more general form of equation (2.42). Taking again the

average number of transferred atoms N0 as well as the fringe contrast C
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Figure 3.19 Ramsey interferometry fringes in measured state population of
|F = 1〉 state for a sequence of two 7 µs Raman pulses separated by a time
T = 100 µs. The fringes are plotted with respect to the hyperfine splitting fre-
quency fhfs of the 52S1/2 ground state in 87Rb and fitted with equation (3.17).

into account, the number of atoms after the Ramsey sequence is

Na,Ramsey = N0 sinc2
[

τ

2
(δωL − ω0)

]{
1
2
+

C
2

cos
[

T
(
δωL − ω0

)
+ Φoffset

]}
.

(3.17)

The resonant frequency ω0 = 2π fhfs is in this experiment the frequency

corresponding to the hyperfine splitting of the 52S1/2 state, see table A.1.

The laser frequency difference δωL is calculated from the applied DDS

frequency fDDS as discussed in section 3.5.2. The phase offset Φoffset in

equation (3.17) is a constant phase shift due to, for instance, a non-zero

differential AC Stark shift.

Equation (3.17) is used to fit the measurements of figure 3.19 and re-

sults in a fringe width of (4.5 ± 0.1) kHz. Determining the hyperfine split-

ting of the ground state energy-levels is thus in this measurement achieved
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at a relative precision of 6.7 · 10−7. This result is no competition for the

10−11 precision of commercial rubidium-frequency standards [195], but

foremost demonstrates that atom interferometry is achievable in the cur-

rent iSense experiment.

3.9 Component integration and transportability

The previous results showed the operation of the iSense experiment in the

laboratory. To demonstrate that the integrated setup can be used outside

of the laboratory, the entire experiment is packaged and operated in a

transportable case.

A frame is constructed that mounts the vacuum chamber and control

electronics as shown in the photograph in figure 3.20. An aluminium

frame with a total volume of 150 L supports a baseplate and an upright

backplane on which the indicated components are mounted. These alu-

minium mounting plates make up a significant portion of the assembly’s

total mass of 53 kg. This part also houses the cooling and repump lasers

as well as the complete light distribution network.

A separate breadboard tray with the same footprint as the frame, car-

ries the master laser, an MTS setup, the Raman laser and power amplifiers.

This tray is indicated in figure 3.21 were the experiment is shown mounted

inside a transportable case. The transport case is a standard 19-inch case of

16U height. Two optical fibres guide the light from the master and Raman

laser to the experiment in the upper frame.

To provide power for the experiment, a separate 19-inch rack unit

houses an uninterruptible power supply (UPS) and three laboratory power

supplies∗ to generate the necessary DC voltages and currents. As seen on

∗ Rohde&Schwarz HAMEG HMP4040 power supplies

123



Chapter 3 The iSense Experiment

Magnetic compensation
field coils

54 cm

Vacuum
chamber

Cooling &
repump lasers

Control
electronics

62 cm

Current
drivers

45 cm

Figure 3.20 Assembled iSense experiment in a frame suitable for mounting in a
19-inch rack. The assembly includes the vacuum chamber, control electronics,
light distribution network, cooling and repump lasers in a total volume of about
150 L and weighs 53 kg.
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Figure 3.21 Packaged iSense experiment in a 16U transportable case, view from
the front (left) and from the back with power supply case (right).
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the right in the photograph in figure 3.21, the transport case with the

power supplies has almost the same size as the iSense experiment itself.

A smaller and more efficient solution uses battery packs, but has not been

implemented due to time constraints.

The power consumption of the whole experiment is measured by sum-

ming the DC powers from the power supplies and came to a total of

(240 ± 10)W. Compared to the size, weight and power consumption of

a Micro-G LaCoste FG5-X, the packaged iSense setup has reduced these

values by at least a factor of two.

To demonstrate the operation of the iSense experiment in its integrated

form, the setup was transported to the West-Midlands office in Brussels.

Upon arrival, cold atom-clouds were created within an hour. After optimi-

sation of the magnetic compensation field and alignment of the detection

photodiode, the same Ramsey sequence as explained in section 3.8.3 was

performed. The results of these measurements are plotted in figure 3.22.

The reduced photodiode signal in comparison to the previous measure-

ments of figure 3.19, is likely caused by a higher temperature of the atom

cloud. The difference in magnetic field could be the cause of this, with

additional stray magnetic fields from the optical isolators within the cool-

ing and repump lasers located in close proximity to the vacuum chamber.

Overall, the width of the Ramsey fringes of (4.7 ± 0.1) kHz determined

from the fit in figure 3.22, shows good agreement with the previous re-

sults obtained in the laboratory.

An issue of the current setup is an electrical cross-coupling between

the laser diodes and temperature sensors in the master and cooling lasers.

This causes significant drifts in their frequencies as shown by the mea-

surements in figure 3.23. Without manual adjustment, the laser frequency
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Figure 3.22 Ramsey fringes measured in the packaged iSense experiment at the
West-Midlands office in Brussels with the same sequence as the measurements of
figure 3.19.

would exceed the range of the feedback electronics within several minutes.

A repair or replacement of these laser modules is thus required to achieve

robust operation of the setup.

Another part that required improvements is the polarisation stability.

The slow axis of the PM fibres have a slight mismatch with the polarisation

of the cooling and repump laser light due to their construction making the

alignment difficult. This effect is enhanced by the fact that fibre-coupled

components for 780 nm wavelengths have been found to be subject to drifts

in polarisation [172, 196]. The combination of which lead in some cases

to observing a polarisation extinction ratio as low as 8 dB at the output of

the optical fibre network. These issues prompted the design of a new laser

system and light distribution network as discussed in the next chapter.
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Figure 3.23 Relative frequency drifts of temperature stabilised lasers with respect
to an arbitrary start frequency in the iSense setup as measured by a HighFinesse
WSU-2 wavelength meter.

3.10 Summary

This chapter introduced a compact and transportable instrument that per-

forms interferometry with 87Rb atoms. Due to the state-of-the-art compo-

nents developed by the partners in the iSense project, the setup is able to

create atom clouds at a rate of about 2 Hz and with a temperature down

to 4.8 µK. Interference of these atom clouds is shown by performing a

Ramsey sequence, both inside and outside a laboratory environment.
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Chapter 4

Compact Fibre Laser System

The original laser system of the iSense experiment demonstrated its ap-

plicability for atom interferometry but needed to be replaced. Recently,

new versions of these laser modules have been tested for experiments

on-board of a sounding rocket, showing robust and autonomous oper-

ation [197, 198]. Instead of requiring the development of bespoke laser

modules, more readily available components can be used to construct a

compact fibre laser system. By combining commercially available laser

components from the telecommunication industry with the technique of

sum-frequency generation (SFG), an efficient and robust laser systems can

be built.

This chapter presents two compact laser systems based on all fibre-

coupled components. The first laser system that is built in the course

of this work is widely applicable in experiments that address the 780 nm

wavelength transition in rubidium. The effects of the sum-frequency gen-

eration from the 1560 nm wavelength source are discussed with respect to

the output power, polarisation and sideband frequency components. The

second laser system that is presented and characterised here, is designed
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Fibre Laser

EOM

(b)

(c)

PPLN RW
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Fibre Laser
1560 nm

EOM

RF

EDFA PPLN RW
780 nm

EDFA
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Driver

VIn

Figure 4.1 Compact laser system based on 1560 nm wavelength components and
a periodically-poled lithium niobate ridge-waveguide (PPLN RW) for the sum-
frequency generation of 780 nm wavelength light. (a) The output from a single
fibre laser is amplified by an erbium-doped fibre amplifier (EDFA) before the
wavelength conversion. Multiple optical frequency components are added to the
laser light via the application of an RF signal to an electro-optic modulator (EOM).
(b) Photograph of the single 19-inch rack unit laser system. (c) Top view of the
laser system without the lid.
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for an atom-interferometry experiment discussed previously in section 2.4.

The design builds upon the control electronics and microwave reference of

the original iSense setup, but uses only two lasers and one fibre amplifier.

It will be shown that the reduction in the number of lasers and power am-

plifiers, as well as the required control electronics and AOM’s, decreases

the complexity, size and power consumption of the experimental setup.

4.1 Frequency-doubled fibre laser system

Due to the advanced development of laser components for the telecom-

munication industry, high-power and robust components for near-infrared

wavelengths are widely available. To address optical transitions in atoms

outside of the telecommunication wavelength bands, it has become a com-

mon technique to use sum-frequency generation and second-harmonic

generation (SHG) for high power laser systems [199–202]. The wavelength

range in which erbium-doped fibre amplifiers operate conveniently cov-

ers 1560 nm, or double the rubidium D2-line wavelength. Several com-

pact laser systems for rubidium experiments are thus based on frequency-

doubled lasers from the telecommunication industry [169, 196, 203, 204].

The main components of the compact fibre laser system developed as

part of this work are shown in figure 4.1. The source of 1560 nm laser light

is an erbium-doped fibre laser∗. It has a narrow linewidth, specified by

the manufacturer at about 2 kHz, but is principally chosen for its passive

frequency stability. On the scale of several minutes to hours the frequency

stability is at a level of ∼10 MHz.

The laser frequency is tunable via a piezo electric actuator that varies

the fibre cavity length [205]. Tuning the wavelength this way does not

∗ NKT Photonics Koheras BASIK E15 fibre laser
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affect the output power, as is the case when tuning the current that is

necessary for diode lasers. However, the lower tuning speed is limited

by the mechanical response of the fibre cavity. It will be shown that the

response of the laser frequency with a tuning bandwidth of about 30 kHz

[205] is fast enough to change between the different frequencies for the

atom-interferometry experiment discussed here. Control of the piezo elec-

tric actuator is done via a small piezo driver∗ which amplifies an input

voltage Vin with a gain of 20 up to a maximum of 200 V.

Additional frequency components are added to the laser light via the

same phase modulation method that was introduced in section 3.5.2. The

difference here is that the electro-optic phase modulator† operates in 1560 nm

wavelength. To reach an output power comparable to the original laser

system, an erbium-doped fibre amplifier (EDFA)‡ is installed before the

wavelength conversion module.

The principle of sum-frequency and SHG is explained in many (non-

linear) optics textbooks, see for instance [206]. When light enters a medium

with a non-linear susceptibility, the polarisation of the material exhibits

additional frequency components. The most prominent of these frequency

components in the case of monochromatic light will be the second har-

monic. This causes the medium to emit light at double the frequency

(half the wavelength) of the incident light. When multiple frequencies

are present in the input light, the same principle allows the sum of these

frequency components to be generated. Basically, the non-linear medium

enables the creation of a single higher-energy photon from two low-energy

photons.

∗ PiezoDrive PDm200(B) piezo driver
† PhotLine MPZ-LN-10-P-P-FA-FA EOM
‡ NKT Photonics Koheras BOOSTIK OEM EDFA
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4.1 Frequency-doubled fibre laser system

The conversion of light from one wavelength to the other would show

a quadratic increase in intensity as it traverses the non-linear medium, if

only it were not for the presence of a phase mismatch. Because the two

light fields experience a different index of refraction inside the medium,

there will be a de-phasing between the material’s polarisation and the

second-harmonic or sum-frequency light field. This phase shift causes a

periodic exchange of photons along the beams between the input light and

the generated output. Thus, for an efficient generation of second-harmonic

and sum-frequency light, a phase match with the input light field needs

to be maintained.

The phase-matching between the two light fields can be achieved with

a birefringent crystal. This exploits the change in index of refraction with

the angle of the light polarisation to the optical axis of the crystal. Polar-

ising the input light and the SHG light orthogonal to each other, allows a

phase match to be achieved between the two light fields. A birefringence

material commonly used for this purpose is lithium niobate (LiNbO3). Be-

cause its refractive indices vary strongly with temperature, LiNbO3 can be

tuned to phase-match a wide range of wavelengths [207]. However, effi-

cient generation of light at 780 nm wavelengths requires a LiNbO3 crystal

at temperatures in the order of several hundreds of ◦C.

At lower temperatures a phase-matching condition is accomplished in

periodically-poled lithium niobate (PPLN) crystals. By reversing the po-

larisation axis of the crystal with a period equal to the coherence length

between input and SHG light field, a quasi-phase-matching condition is

achieved [208]. High conversion efficiencies can be reached by passing

the light through several PPLN crystals or multiple times through the

same crystal. Alternatively, a more efficient and compact solution pro-
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vides transverse confinement for the light in a ridge-waveguide (RW). Such

structures provide high intensities along a greater length of the periodically-

poled material compared to bulk PPLN crystals. At optimum operation

conditions PPLN RWs have demonstrated optical conversion efficiencies,

defined as the ratio between output to input power, as high as 92 % [209].

However, RWs are usually not found in high-power laser systems as the

high intensities in those can damage the material.

Because PPLN ridge-waveguides are also available in a small fibre-

coupled package∗, these have been chosen for the compact fibre laser sys-

tems in this work. The ridge waveguide in this module is mounted on a

Peltier element, allowing its temperature to be tuned for optimum phase-

matching. The Peltier element is connected to a temperature controller†

that stabilises the RW temperature as monitored with a thermistor.

All laser components have been mounted in a single 19-inch enclosure

measuring 45 cm × 37 cm × 4 cm and shown in figure 4.1b,c. The fibre

laser, EDFA and temperature controller for the PPLN RW are controlled

through a single USB port and powered via an included AC-DC converter.

The power consumption totals to (23 ± 2)W in normal operating condi-

tions at an optical output power in 780 nm wavelength of about 600 mW.

Similar configurations of this compact fibre laser system have been

built for cooling and trapping 87Rb atoms in portable MOT setups [210].

In another atom-interferometry experiment this laser systems is used to

drive stimulated Raman transitions [172]. Together with the laser system’s

robust operation make this an ideal option for a new laser system for

the iSense experiment. Therefore, the performance of the components is

characterised in the following sections.

∗ NTT Electronics WH-0780-000-F-B-C wavelength conversion module
† Meerstetter Engineering TEC-1091 temperature controller
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Figure 4.2 Output power of PPLN RW (780 nm wavelength) as a function of input
power (1560 nm wavelength) from the EDFA. Fit of measurements (solid line)
shows a SHG conversion efficiency of (1.3 ± 0.3) · 103 % W−1 and a light coupling
efficiency of (64 ± 1)%. The ratio of the output to input power of the PPLN RW,
i.e. its optical conversion efficiency, saturates at higher powers.

4.1.1 Output power

The SHG output power P780 of a PPLN medium as a function of the optical

input power P1560 follows the relation [211, 212]

P780 = ξP1560 tanh2√ηSHG ξP1560 . (4.1)

The efficiency of the SHG process is determined by the coupling efficiency

ξ of the light into the ridge waveguide and its conversion efficiency ηSHG

which is usually expressed in units of % W−1. The output power of the

compact fibre laser system shows the relation of equation (4.1) when vary-

ing the EDFA output power, see figure 4.2. Fitting these measurements

gives a coupling efficiency of (64 ± 1)% and SHG conversion efficiency

ηSHG = (1.3 ± 0.3) · 103 % W−1. This SHG conversion efficiency is higher
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Figure 4.3 SHG output power as a function of the temperature of the PPLN RW.
The FWHM determined by the sinc2 fit is (1.93 ± 0.08)K.

compared to bulk PPLN crystals [201, 213]. However, the optical conver-

sion efficiency of the PPLN RW module saturates to a level just over 60 %

as seen in figure 4.2, which is due to the light coupling efficiency between

the fibres and the ridge waveguide.

The maximum EDFA output power limits the laser system’s output

to about 800 mW. The manufacturer of the wavelength conversion mod-

ule does not guarantee optical power handling above 200 mW. However,

no significant loss in SHG output power has been observed in several

of these laser systems that routinely operate with EDFA output powers

around 300 mW. At a different research group the same PPLN RW mod-

ules have also shown no degradation in the conversion efficiency after

several months of continuous operation at 1 W of input power [196].

The quasi-phase-matching condition of the PPLN RW depends on both

temperature and laser frequency. By varying the temperature setpoint

of the temperature controller, the change in SHG output power of the
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Figure 4.4 Output power of the PPLN RW as a function of the output laser fre-
quency with respect to the |F = 2〉 ↔ |F′ = 3〉 transition in 87Rb. The bandwidth
of the PPLN RW output is determined from a sinc2 fit and has a FWHM of
(91 ± 2)GHz.

PPLN RW is measured. The typical temperature dependence of the output

power, as plotted in figure 4.3, shows a sinc2 behaviour with an asymmetry

contributed to the changing refractive index and structural inhomogeneity

of the RW [214, 215]. From these measurements it is found that intensity

fluctuations in the SHG light in the order of 1 % can be achieved if the

PPLN RW’s temperature is stable to within 0.1 K of its optimum operating

temperature. This stability is easily achieved in the current configuration

since the temperature variations recorded by the temperature controller

are more than an order of magnitude lower than this.

The output power of the PPLN RW as a function of laser frequency

has a similar sinc2 relation [206]. It is characterised by tuning the laser

frequency via the fibre laser temperature, while simultaneously recording

both frequency and power of the PPLN RW output as shown in figure 4.4.
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Figure 4.5 Relative change in the output power in 780 nm wavelength light from
the fibre laser system when operating around 400 mW of total output power.

The highest conversion efficiency of this PPLN RW at a temperature of

39.5 ◦C is found 18 GHz above the |F = 2〉 ↔ |F′ = 3〉 transition in 87Rb.

This difference causes only a 0.5 % decrease in output power due to the

large bandwidth of (91 ± 2)GHz of the waveguide. A shift in the laser

frequency of about 100 MHz away from this 87Rb transition would thus

result in a change of less than 0.2 % in the output light intensity, but could

be reduced further by fine tuning the RW temperature.

The PPLN RW temperature and laser frequency variations have neg-

ligible effect on the output power stability of the laser system compared

to power fluctuations induced by the fibre laser and EDFA. The output

power of the laser system shows short-term RMS fluctuations in the order

of 0.2 % as can be seen in figure 4.5. These are believed to be caused mainly

by the internal power stabilisation mechanism of the EDFA. The long term

drift on time scales of minutes to hours reaches 1 %. The cause of this drift

is possibly found in environmental temperature fluctuations that disturb

the light polarisation in the PM fibres between the laser components.

138



4.1 Frequency-doubled fibre laser system

The effect of power fluctuations on the stimulated Raman transitions is

a change in the Rabi frequency. Because the Rabi frequency scales linearly

with the total laser intensity I, intensity fluctuations of δI induce relative

variations in the Rabi frequency of
δI
I

. This causes the population transfer

of π- and π
2 -pulses as seen from equations (2.20) to change by an amount

π

2
δI
I

. The effect on the output of a Mach–Zehnder sequence is a reduction

in the fringe contrast by a similar magnitude [125]. The output power

fluctuations of this laser system thus reduce the precision in measuring

the gravitational acceleration in the range of 0.5 % to 3 %.

4.1.2 Polarisation extinction ratio

All components in the fibre laser system apply PM fibres of the panda

type where the light polarisation is aligned with the slow-axis∗. The same

is also the case for the light distribution network of figure 3.6, but here

the fibre-to-fibre connections are made with narrow-key mating sleeves.

This choice allows for an easy exchange of components in comparison to a

network of spliced fibres. However, the higher tolerances of mating sleeves

could cause a degradation in the polarisation extinction ratio [172].

The polarisation extinction ratio (PER) is a measure of the transmitted

power when the polarisation axis of an optical component is aligned with

linear polarised light compared to when their axes are crossed. In practice

the PER is defined in units of decibel as [217]

PER = 10 log10

(
Pmax

Pmin

)
, (4.2)

where Pmax and Pmin are the measured maximum and minimum powers as

the polarisation axis of the component is rotated. Such a measurement

∗ See for instance [216] for a practical explanation of PM fibres and PER.
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(a) The fibre output of the laser system is aligned such that most of the
light is reflected by a polarising beam splitter (PBS). The ratio of the
reflected and transmitted powers is measured by two photodiodes and
recorded by an oscilloscope.
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(b) Power ratio calculated from the measured photodiode voltages.

Figure 4.6 Polarisation measurement (a) setup and (b) results of the output light
from the fibre laser system.

relies on a light source having a polarisation extinction ratio that exceeds

the PER of the optical device under test. The fibre laser in this laser system

is specified with a PER > 23 dB, however the chain of optical components

between the fibre laser and the experiment reduces the PER due to an

accumulation of polarisation extinction losses.

To measure the polarisation extinction ratio of the light at the output

of the compact fibre laser system, two different methods are employed∗.

∗ Technically, both methods measure the linear polarisation ratio (or sometimes referred
to as the polarisation linearity ratio) of the light, but the worst case values give a reasonable
representation of the PER of the optical components.
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First, an extinction ratio meter∗ is used to determine the PER after the

PPLN RW, measuring a minimum of 18 dB. Secondly, a polarising beam

splitter is used in a setup as sketched in figure 4.6a. By rotating the fibre

output such that a minimum optical power is measured by a photodiode

at the transmitted output port of the PBS, most of the light will be collected

by a photodiode at the reflected output port†. The ratio between the two

recorded photodiode voltages is then a measure of the PER and plotted in

figure 4.6b. The slightly lower PER found by this method in comparison

to the measurement results from the extinction ratio meter, could be at-

tributed to the uncertainty in the alignment of the fibre axis with respect

to the axis of the PBS.

The main cause of the limited PER of this laser system is found in

the wavelength conversion module. The coupling of the light between

the fibre and the ridge-waveguide limits the PER to a minimum of 15 dB

[218]. To improve the polarisation stability a polarising fibre could be

added after the PPLN RW [172], but in this work polarisers in the beam

collimators are applied, see figure 5.1. These solutions potentially worsen

the fluctuations in the beam intensity, as observed in another experiment

[114, 172], but this effect could be countered with the addition of active

power stabilisation mechanisms [219].

4.1.3 Sideband frequency generation

Optical sideband frequencies are created by applying an RF signal to the

fibre-coupled EOM in figure 4.1a. Because the EOM operates on 1560 nm

wavelength light, both second-harmonic and sum-frequency generation of

∗ OZ Optics ER100-VIS extinction ratio meter
† Both photodiodes are Thorlabs DET100A photodiodes, but terminated with 100Ω

for the reflected beam and 10 kΩ for the transmitted beam to create a 20 dB offset in the
measured power ratio.
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the carrier and sidebands take place in the PPLN RW. The electric field

of the 780 nm wavelength output E780(t) is proportional to the square of

equation (3.4) [206] and can thus be expressed as

E780(t) ∝
1
2

J0(m)2E2
0

cos (2ωt)

+
∞

∑
n=1

J0(m)Jn(m)E2
0

cos
[
(2ω + nωm)t

]
+

∞

∑
n=1

(−1)n J0(m)Jn(m)E2
0

cos
[
(2ω − nωm)t

]
+

1
2

∞

∑
n=2

n−1

∑
l=1

Jl (m)Jn−l (m)E2
0

cos
[
(2ω + nωm)t

]
+

1
2

∞

∑
n=2

n−1

∑
l=1

(−1)n Jl (m)Jn−l (m)E2
0

cos
[
(2ω − nωm)t

]
+

∞

∑
n=2

n−1

∑
l=1

(−1)l Jl (m)Jn−l (m)E2
0

cos
[
(2ω + (n − 2l)ωm)t

]
,

(4.3)

where the (modified) Cauchy product
∞

∑
n=1

an

∞

∑
n=1

bn =
∞

∑
n=2

n−1

∑
l=1

al bn−l has been

applied. The first term in equation (4.3) corresponds to the SHG of the

carrier frequency and would describe the output without any modula-

tion by the EOM, since in that case m = 0 and Jn(m) = 0 for n 6= 0.

Sum-frequency generation of the carrier and the sideband components is

described by the second two summations in equation (4.3). The last three

double-summation terms in the above expression correspond to second-

harmonic and sum-frequency generation with higher-order sidebands.

The power in the carrier and first-order sidebands at the output of the

laser system can be readily found from equation (4.3) for a small modu-

lation depth. When m � 1, the intensity of the carrier is proportional to

1
4

⏐⏐J0(m)
⏐⏐4 and the first-order sidebands scale with

⏐⏐J0(m)J1(m)
⏐⏐2.
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This approximation cannot be made when for instance the ratio be-

tween the Raman frequency components is close to equal, because that

requires a modulation depth of m ≈ 0.9. The intensity of the sidebands

becomes dominant in these cases and the other terms in equation (4.3)

need to be considered. One of the effects is that sum-frequency generation

of two equal-order sidebands creates again a frequency of 2ω at the out-

put. This is described by the terms in the last summation in equation (4.3)

for which n = 2l. It can be found that the electric field amplitude of the

carrier frequency component in the 780 nm light is thus proportional to

E780,carrier(t) ∝
1
2

J0(m)2 +
∞

∑
n=1

(−1)n Jn(m)2. (4.4)

In a similar way, the field amplitude of the first-order sidebands is ex-

pressed by including the terms in equation (4.3) for which n = 2l ± 1,

giving

E780,sideband(t) ∝ J0(m)J1(m) +
∞

∑
n=1

(−1)n Jn(m)Jn+1(m). (4.5)

The intensity of the carrier and first-order sideband components are

dependent on the square of equations (4.4) and (4.5). The behaviour is ob-

served in the frequency components in the output of the fibre laser system

as shown by the measurements in figure 4.7. The power in the carrier and

first-order sideband after the PPLN RW are determined as a function of

the amplitude of the RF voltage applied to the EOM. The ratio of both fre-

quency components is recorded with the help of a scanning Fabry–Pérot

interferometer (FPI)∗ as sketched in figure 4.7a. When an RF signal of

frequency 6.834 GHz is applied to the EOM, a photodiode measures the

∗ Thorlabs SA210-5B scanning FPI
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(a) An RF signal applied to the EOM in the fibre laser system adds sideband
frequency components to the output of the laser system. The powers of the
carrier and sidebands are measured by scanning the length of a Fabry–Pérot
interferometer and recording the separate transmission peaks with a photo-
diode.
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(b) Normalised peak power of carrier and first-order sideband in the 780 nm
wavelength output as a function of the RF amplitude of the signal applied to the
EOM. The measurements are fitted with Bessel functions up to order 20 for both
the carrier and first-order sideband, giving a Vπ of (3.49 ± 0.02)V.

Figure 4.7 Carrier and first-order sideband power measurement (a) setup and (b)
results of the output of the frequency-doubled laser system.
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transmitted laser light after the FPI while a piezo electric actuator scans

the length of the interferometer. An oscilloscope connected to the output

of the photodiode amplifier then records the peak transmission through

the FPI of both the carrier and sideband frequencies.

Varying the RF amplitude results in the normalised peak values of the

carrier and first-order sideband shown in figure 4.7b. The measurements

are fitted with the squared functions of equations (4.4) and (4.5), where the

infinite sums are truncated at order 20. The Vπ voltage from these fits is

(3.49 ± 0.02)V, which is slightly lower than the specified 4 V of this EOM.

The discrepancy is possibly caused by a systematic error in the measure-

ment of the amplitude of the RF signal. Another explanation could be

found in a frequency dependency of the Vπ voltage.

The ratio between the n-th order sideband and carrier intensity can

also be described by the simple expression
⏐⏐Jn(m′)/J0(m

′)
⏐⏐2. However, in

this case the modulation depth m′ =
m
2

is half the modulation depth m

that is applied by the EOM before the wavelength conversion.

For effective state preparation only the repump frequency needs to be

present in the laser light. Because the carrier frequency is close to the

|F = 2〉 ↔ |F′ = 3〉 transition in 87Rb, it can cause unwanted excitations

and thus needs to be suppressed. At optimum suppression the sideband

amplitude measures (4.5 ± 0.1)V in the Fabry–Pérot interferometer setup

while the carrier amplitude is below the measurement noise floor of about

10 mV. This indicates that the ratio between repumping and cooling light

at optimum carrier suppression is at least a factor of 450. In case of the

state preparation phase where the remaining cooling light is detuned by

at least 10Γ, the scattering rate from this cooling light will thus be a factor

10−5 smaller than the repump scattering rate. In other words, for approx-
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Figure 4.8 Schematic of the frequency-doubled fibre laser system for the iSense
experiment. A reference fibre laser is stabilised to a cycling transition in 87Rb
via a modulation transfer spectroscopy (MTS) setup. The frequency of the cool-
ing/Raman/detection (CRD) laser is offset locked to the reference laser as shown
in detail in figure 4.13. Sideband frequencies for the repump and Raman transi-
tions are added to the CRD laser light via an EOM. The light is then amplified by
an EDFA and pulsed with an AOM, see figure 3.6 for an extended legend. After
the wavelength conversion by a PPLN RW from 1560 nm to 780 nm, a fibre switch
directs the light to the various beams for the experiment.
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imately every 105 atoms transferred from the |F = 1〉 to the |F = 2〉 state,

one atom will have been transferred in the other direction.

4.2 Fibre laser system for the iSense experiment

The compactness of a frequency doubled fibre laser system makes it a

natural choice for an alternative laser system for the iSense experiment

and atom-interferometry experiments in general. The design of the laser

system here is based on work carried out by ONERA [169, 203, 204] and

sketched in figure 4.8. The new laser system applies one fibre laser, dubbed

the cooling/Raman/detection (CRD) laser, to generate the light neces-

sary for the complete experimental sequence. The frequency of the CRD

laser is offset locked to a second fibre laser as will be discussed in the

section 4.2.2. The frequency of this reference laser is in turn stabilised

to the |F = 2〉 ↔ |F′ = 3〉 transition with the modulation transfer spec-

troscopy setup described previously in section 3.5.3. Measurements of the

frequency stability of both lasers and the response to changes in the set-

point of the offset lock of the CRD laser frequency are presented in the

following sections.

The reference laser thus replaces the master laser in the previous laser

system of figure 3.6, while the CRD laser replaces the cooling, repump

and Raman lasers. Achieving this functionality is made possible by the

large bandwidth of the PPLN RW and by tuning the RF signal applied

to the EOM in the right arm of figure 4.8. Switching between the Raman

and repump sideband frequencies requires modifications to the microwave

circuit which are discussed in section 4.2.4.
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Figure 4.9 Light pulse from the fibre laser sytem for the iSense experiment gener-
ated by switching the RF signal to the AOM driver. The light intensity measured
by a fast photodiode shows a FWHM pulse duration of (8.2 ± 0.1)µs. The differ-
ence in response to the rising and falling edge of the trigger cause an offset with
respect to the pulse duration of the digital trigger.

4.2.1 Laser light switching

In comparison to the compact fibre laser system of figure 4.1, two main

components are added to the fibre network of the CRD laser. The first

is an AOM∗ between the EDFA and PPLN RW to control the intensity of

the output light. The second is a fibre switch that directs the light to the

various beams in the experiment.

With the AOM in the off-state an attenuation of (48 ± 2)dB is mea-

sured before the PPLN RW. However, the attenuation of the 780 nm wave-

length output is higher due to the non-linear relation of the SHG process.

From equation (4.1) and the previously determined PPLN RW efficiencies,

it can be calculated that attenuations in excess of 80 dB could be achieved.

This means that at the nominal powers indicated in figure 4.8 and with

the AOM in the off-state, at most 3 nW of optical power could be observed

∗ Gooch&Housego Fibre-Q T-M110-0.2C2J-3-F2S AOM
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4.2 Fibre laser system for the iSense experiment

at the output of the PPLN RW. Laser power measurements confirm this,

thus a sufficient attenuation is made possible in this configuration without

having to resort to a beam dump output of the fibre switch.

The AOM is driven by a home-built RF amplifier∗ which is supplied by

a 110 MHz signal from one of the DDS boards in the control electronics. An

RF switch† at the DDS output allows the generation of light pulses timed

by a digital trigger. The switching speed of this setup is characterised

by generating a light pulse and recording its temporal profile with a fast

photodiode‡. The result of the application of a 10 µs trigger pulse is shown

in figure 4.9. Switching times are (0.25 ± 0.01)µs, however a difference

is observed in the delay with respect to the digital trigger between the

rising and falling edge. This is possibly caused by an asymmetric response

of the RF switch, but can be adjusted for by changing the timing of the

trigger pulse. The small rise in intensity during the pulse originates from

a heating effect of the AOM crystal. Light pulses generated by this laser

with a duration of ' 2 µs are therefore approximated as square pulses.

The switching speed of the integrated fibre-optic switch§ is signifi-

cantly slower than that of the AOM. Changing the laser light between

the different beams with this fibre switch takes 3 ms to 10 ms.

During the MOT and molasses phases four cooling beams for the

iSense experiment are created with the help of the fibre splitter array¶

shown in figure 4.8. The differences in powers measured at the outputs of

this fibre splitter array are around 10 %. An unequal splitting ratio causes

an imbalance in the intensities between the cooling beams. However, such

∗ Based on RFHIC RFC1G18H4-24 wideband amplifier with a total gain of 40 dB and
maximum output power of 36 dBm

† Mini-Circuits ZX80-DR230-S+ RF switch
‡ Thorlabs DET10N photodiode
§ LEONI eol 1x4 PM fibre switch
¶ Evanescent Optics custom 945P splitter array
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Figure 4.10 Error signal from the modulation transfer spectroscopy setup and
transmission peak from a Fabry–Pérot interferometer (FPI) obtained by scanning
the reference laser frequency. The frequency axis with respect to the zero-crossing
of the error signal is calibrated with a scan over a nearby cross-over transition in
87Rb. A fit of the slope of the error signal and the Lorentzian profile of the FPI
transmission peak enable a conversion from voltage to frequency for analysing
the laser frequency stability.

levels of imbalance do not significantly impact the temperature achievable

via sub-Doppler cooling mechanisms and can be corrected for with the

magnetic compensation field [188].

4.2.2 Laser frequency stabilisation

The frequency stability of the reference laser is investigated by analysing

the error signal from the MTS setup. As discussed in section 3.5.3, the de-

modulation of the signal from the MTS setup is achieved by the frequency

controller. Since also the digital PI feedback takes places inside the FPGA

of the frequency controller, monitoring the error signal electronically is

not directly possible. Therefore, a separate demodulation circuit is built to
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4.2 Fibre laser system for the iSense experiment

generate an error signal for measuring the laser frequency stability.

The error signal from scanning the laser frequency over the |F = 2〉 ↔

|F′ = 3〉 transition in 87Rb is shown in figure 4.10. The frequency axis is

with respect to the zero crossing of the error signal and calibrated using

the known distance to a nearby cross-over transition, similar to the method

applied to the data in figure 3.10. The slope of the error signal around the

zero-crossing is determined from a linear fit and corresponds to a voltage

to frequency conversion factor of (−27 ± 1)MHz V−1.

Applying this conversion factor, the frequency stability of the refer-

ence laser can be inferred from the voltage of the error signal. Recorded

error signals from the MTS setup when the reference laser is locked and

unlocked are shown in figure 4.11a. As expected, a reduction in the laser

frequency noise is observed, which is reduced from an RMS noise ampli-

tude of 130 kHz in the unlocked case to 40 kHz for the locked laser. The

frequency offset from zero is an artefact from the demodulation circuit

used here being different to the one applied in the frequency controller.

The spectrum of the laser frequency noise is visualised in figure 4.11b

where the square root of the power spectral densities of the recordings

from figure 4.11a are plotted. The laser frequency noise is most promi-

nently reduced by the feedback loop in the frequency range below ∼10 Hz.

This is expected since the MTS setup provides a stable atomic reference

and is also evident in the absence of a drift in the error signal of the locked

laser. At higher frequencies the feedback loop becomes less effective in re-

ducing the laser frequency noise, due to the bandwidth limit of the piezo

electric actuator. The diagnostics of the laser frequency noise from the er-

ror signal is affected by electrical noise. This noise floor is observed with

the laser off and shown in figure 4.11b.
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Figure 4.11 Frequency noise of the reference laser inferred from the error signal
of the spectroscopy setup with the laser locked and unlocked.
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Figure 4.12 Frequency noise of the reference and CRD lasers measured with the
side of a transmission peak from a Fabry–Pérot interferometer. The RMS fluctu-
ations of the frequency of the reference laser are 0.1 MHz and for the CRD laser
0.7 MHz.

Another method to determine the laser frequency stability is by use

of a Fabry–Pérot interferometer. The side of a transmission peak of the

FPI can be applied as a frequency discriminator. The conversion from

photodiode voltage to laser frequency is made possible with the scan over

the transmission peak shown in figure 4.10. Here the voltage from the

photodiode is fitted with a Lorentzian function which is in turn applied to

convert the measured voltage to a change in the laser frequency.

Results of such a measurement over a duration of 1 s are shown in

figure 4.12. The RMS size of the frequency fluctuations are for the refer-

ence laser about 0.1 MHz. This confirms the results from the frequency

noise measurements determined with the MTS error signal. Despite the

frequency of the reference laser being locked here, a long-term change is

observed due to the thermal drift of the FPI. A more stable FPI would be

required to perform laser frequency measurements on time-scales > 1 s.

The side of the FPI transmission peak is also useful to estimate the

frequency noise of the CRD laser. Shown in figure 4.12 is the frequency
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Figure 4.13 Offset stabilisation schematic of the fibre laser for cooling, Raman
and detection frequencies. A beat signal between the light from the reference
laser and the CRD laser is recorded by a photodiode. The beat frequency fbeat
is monitored by the frequency controller and stabilised using feedback to the
piezo driver of the fibre laser. The setpoint voltage Vsetpoint allows coarse tuning
of the laser frequency νCRD . Tunable sidebands are added to the laser frequency
via a wide-band electro-optic modulator (EOM) in combination with a voltage
controlled oscillator (VCO) and voltage variable attenuator (VVA). A first-order
sideband is then used to offset lock the CRD laser at a tunable frequency foffset
away from the reference laser frequency (CPL = coupler, LPF = low-pass filter).

noise of the locked CRD laser, having RMS fluctuations of 0.7 MHz. A

major source of these fluctuations can be found in the control electronics

of the offset lock circuit which will be discussed next.

The frequency stabilisation of the CRD laser is made possible by mix-

ing a small part of its light with the light from the reference laser in a

50/50 fibre splitter. The resulting beat frequency fbeat is measured by a
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4.2 Fibre laser system for the iSense experiment

fast photodiode∗, amplified† and monitored by the frequency controller.

As shown in the schematic of figure 4.13, also added are an RF coupler

for diagnostics purposes and a low-pass filter for removing higher-order

frequency components‡.

The beat signal of the two fibre lasers is measured with a spectrum

analyser at the coupler output and the recorded beat signal spectrum is

shown in figure 4.14. The three different recordings correspond to the

cases where the reference laser has its feedback and piezo control disabled,

where it has only the piezo control enabled and where both piezo control

and feedback are enabled. In all cases the CRD laser has its piezo control

disabled and thus relies only on its internal temperature and current sta-

bilisation. With the piezo control disabled, the piezo electric actuator is

electrically grounded and a Gaussian fit of the beat signal shows a FWHM

linewidth of (45 ± 2) kHz. Since the fibre lasers are of the same model, the

inferred laser linewidth on the time scale of the spectrum analyser sweep

time of 2.5 ms is (32 ± 1) kHz.

Enabling the piezo control shows an increase of the beat signal linewidth

to (150 ± 25) kHz likely due to electrical noise from the piezo driver. The

beat signal linewidth is broadened further to (415 ± 23) kHz when the

feedback to the reference laser is engaged. A dominant source of the laser

frequency noise in this setup is thus believed to be originating from the

control electronics. However, the current frequency stability of the locked

reference laser is comparable to other laser systems that apply MTS lock-

ing and feedback via a piezo electric actuator [220].

∗ Thorlabs FGA01FC photodiode biased with a Mini-Circuits ZX85-12G-S+ Bias-T
† Mini-Circuits ZFL1000LN+ RF amplifier
‡ Mini-Circuits ZX30-17-5-S+ RF coupler and ZX75LP-216-S+ low-pass filter
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Figure 4.14 Beat signal spectra between reference and CRD fibre lasers recorded
by a fast photodiode and a spectrum analyser at a sweep time of 2.5 ms. The
FWHM of a Gaussian fit of the spectrum is (45 ± 2) kHz when the piezo control
of both lasers is disabled. With only the piezo control of the reference laser
enabled, the linewidth increases to (150 ± 25) kHz, while enabling the feedback
of the reference laser increases the beat signal linewidth further to (415 ± 23) kHz.
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Figure 4.15 Laser frequency jump of the CRD laser when steps of 4.4 V are applied
to the setpoint voltage in the unlocked case and when the laser frequency is offset
locked to the reference laser (lines are guides for the eye).
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4.2.3 Laser frequency offset control

With the frequency of the reference laser stabilised to the |F = 2〉 ↔

|F′ = 3〉 transition in 87Rb, the CRD laser frequency is offset locked by the

frequency controller. The feedback signal from the frequency controller is

added∗ to a setpoint voltage Vsetpoint before it is applied to the piezo driver.

The setpoint voltage is supplied by one of the analogue output channels

of the control electronics and enables coarse tuning of the fibre laser fre-

quency. The tuning range of the laser system is enhanced by the frequency

doubling module. Using the full range of the piezo electric actuator in the

fibre laser enables a frequency tuning range of the 780 nm light of about

4.5 GHz. This range is more than sufficient to allow this laser system to be

tuned between the |F = 2〉 ↔ |F′ = 3〉 resonance in 87Rb and the Raman

laser frequency shown in figure 2.8.

An example of the laser frequency response to a change in the setpoint

voltage is shown in figure 4.15. Here the setpoint voltage underwent a

step of 4.4 V while the laser frequency is recorded by a wavelength meter†.

The resulting laser frequency jump covers about 1.76 GHz. The drift of the

laser frequency in the unlocked case originates from a creep in the piezo

electric actuator [205].

The sweep rate of the laser frequency during such a step change can-

not be measured by the wavelength meter due to the limited sampling

rate. Therefore a Fabry–Pérot interferometer‡ is applied to investigate

how fast the laser frequency scans over a free spectral range of the FPI.

The recorded photodiode signal from the FPI is plotted in figure 4.16 and

∗ Using a custom summing amplifier based on a Texas Instruments TL072 operational
amplifier

† HighFinesse WSU-2 wavelength meter
‡ Thorlabs SA200-5B FPI
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Figure 4.16 Photodiode signal from a Fabry–Pérot interferometer (FPI) when a
step in the setpoint voltage creates a fast frequency sweep of the CRD laser. The
separation between the two resonance peaks correspond to a free spectral range
of 1.5 GHz. The voltage applied to the piezo electric actuator is scaled by the
piezo driver gain of 20.

shows two resonance peaks corresponding to a separation of 1.5 GHz. The

first resonance peak of the FPI is smaller due to the changing sweep rate of

the laser frequency. This measurement confirms that the laser frequency

is tuned over at least 1.5 GHz within 0.8 ms.

The laser frequency sweep rate is currently limited by the low-pass

filter before the summing amplifier shown in figure 4.13. Its effect is visible

in the response of the voltage that is applied by the piezo driver. Increasing

the cut-off frequency enables faster sweep rates, but increases the potential

to excite the resonance frequency of the mechanical tuning structure in the

fibre laser. The measured response time in the current setup is fast enough

for the iSense experiment, because switching the light between cooling and

Raman beams takes ' 3 ms with the current fibre switch.

The offset lock of the CRD laser frequency is maintained before and

after a step in its setpoint frequency. During the cooling and detection
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stages of the experiment, the CRD laser frequency is stabilised at a fre-

quency νCRD = νRef − fbeat . Because the reference laser frequency satisfies

νRef =
1
2 ν2↔3 , the carrier frequency νout,CD at the output of the PPLN RW is

νout,CD = 2
(
νCRD + fAOM

)
= ν2↔3 + 2

(
fAOM − fbeat

)
. (4.6)

Here the upshift of the AOM by a frequency fAOM = 110 MHz is taken into

account. From equation (4.6) it can be seen that the laser frequency offset

lock has an upper limit in this case of ∼220 MHz above the |F = 2〉 ↔

|F′ = 3〉 transition. The lower limit is set by the cut-off frequency of the

low-pass filter before the frequency controller, indicated in figure 4.13, to

about 200 MHz below the 87Rb cycling transition.

During the interferometry phase of the experiment, the offset lock is

made possible by the addition of a sideband via the EOM in figure 4.13.

Using the RF signal from a voltage-controlled oscillator (VCO)∗, a side-

band frequency of the CRD laser creates tunable beat signals with the ref-

erence laser. Stabilising the beat signal of the first-order sideband means

that the CRD laser frequency becomes νCRD = νRef − fbeat ∓ foffset . Selecting

the higher sideband frequency results in the frequency νout,R at the output

of the laser system of

νout,R = ν2↔3 + 2
(

fAOM − fbeat − foffset

)
. (4.7)

The VCO thus enables a shift in the output frequency while keeping an

offset lock at a frequency fbeat . This mode is used in the next chapter when

the laser frequency is detuned in the order of 1 GHz to 2 GHz below the

|F = 2〉 ↔ |F′ = 3〉 transition for stimulated Raman transition.

∗ Mini-Circuits ZX95-1300-S+ VCO
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Figure 4.17 Offset lock response to a step in the setpoint voltage controlling the
CRD laser frequency. The voltage applied to the piezo element is scaled by the
piezo driver gain of 20.

The result of switching between the locking points for the cooling and

detection frequencies νout,CD and those for the Raman frequency νout,R , is

shown in the locked trace in figure 4.15. The VCO is here set at a fre-

quency foffset = (882 ± 2)MHz. The amplitude of the offset-lock sideband

is controlled by a voltage variable attenuator (VVA)∗ and can be monitored

by an RF coupler† before the EOM.

Measuring the feedback signal from the frequency controller while a

step in the laser frequency is made, shows a typical response as plotted in

figure 4.17. The noise in the feedback voltage during the fast frequency

sweep of the piezo voltage shows a disabled offset lock. After about 1.1 ms

the piezo voltage has settled to its new level indicating that the new offset

lock frequency is found by the frequency controller. The PI controller

∗ Mini-Circuits ZX73-2500-S+ VVA
† Mini-Circuits ZFDC-20-5-S+ RF coupler
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then recovers the offset lock to its intended setpoint frequency in about

1 ms as evident by the decay of the feedback voltage towards zero. These

durations are similar to reported values from laser systems of another

research group [204]. Notable differences are that here a digital feedback

loop is applied and a larger step in the laser frequency is achieved.

4.2.4 Raman and repump sideband generation

A single laser that enables both tasks of cooling an atom cloud and per-

forming stimulated Raman transitions, requires switching between side-

band frequencies. As mentioned previously, the EOM before the EDFA in

figure 4.8 is used to generate the repump and Raman sideband frequen-

cies for the experiment. To this end, a microwave chain similar to the work

of [60] is built and sketched in figure 4.18. The design reuses the original

microwave chain presented in section 3.5.2, but with several additions.

The microwave source for the Raman sideband frequency is the same

as used previously. But, to generate a sideband for the repump frequency,

the output of the PLDRO is split and mixed with the RF signal from a

VCO∗. A VVA tunes the RF power and thus the ratio between the powers

in the cooling and repump light. The mixer output is amplified and fil-

tered by a bandpass filter†. An RF switch‡ then selects either the Raman

frequency fRaman or repump frequency frepump to be passed to the EOM. Be-

tween these, another RF amplifier and coupler§ for monitoring purposes

are added.

The frequency and amplitude of the repump sideband are tuned with

the voltages applied to the VCO and VVA, respectively. A calibration mea-

∗ Mini-Circuits ZX55-625-S+ VCO
† Nextec NBL00419 low noise amplifier and ETL Systems custom cavity bandpass filter
‡ Pasternack PE7115 SPDT RF switch
§ Mini-Circuits ZRON-8G+ amplifier and ZADC-13-73-S+ RF coupler
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surement of the VCO voltage is performed by measuring the frequency at

the RF coupler output with a spectrum analyser, see appendix B.

4.2.5 Discussion

Comparing the laser system presented in this chapter to the original iSense

laser system, it is seen that both have similar functionality. The separate

lasers in the original laser system, however, allow greater flexibility when

it comes to frequency tuning. The measured output powers indicated in

figure 4.8 are more than the available cooling light in the original iSense

laser system, but less compared to the previous power of the Raman beam.

Reducing the number of lasers and power amplifiers, as well as the

number of fibre-coupled components, eliminates a large part of the over-

all power consumption. Summing the DC powers supplied to all the laser

components results in a total of (52 ± 4)W. This is a reduction of ∼30 W

in comparison to the original laser system [104]. The change in laser sys-

tem also made the temperature controllers and laser diode current drivers

in the control electronics redundant. This lead to the total power con-

sumption of the iSense experiment to be reduced by a third, down to

(162 ± 7)W.

If the new fibre laser system for the iSense experiment is packaged

in a 19-inch rack enclosure similar to the laser system of figure 4.1, its

total volume would be about 25 L. Due to the compact packages of the

components from the telecommunication industry it is envisaged that the

new fibre laser system could completely fit in the frame of figure 3.20. This

would eliminate the additional tray in the packaged iSense experiment

that was originally required to mount the master and Raman lasers.

Further reductions in size of the presented laser system could be ac-
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Chapter 4 Compact Fibre Laser System

complished by making the reference laser more compact, as it is not strictly

necessary for this to be a frequency doubled fibre laser. Small packages

that integrate a laser diode, atomic reference cell and beat note detection

could be employed [221]. Another approach is to offset lock the CRD laser

directly to a spectroscopy setup, thus eliminating the need for a reference

laser altogether. It has been shown by other research groups that such a

method allows all the frequencies necessary for an atom interferometry

experiment to be generated from a single DFB laser diode [204, 222].

The current design of the microwave source is relatively inefficient as

only about half of the available RF power is used at any one time. In

principle a DDS with a larger frequency range could be employed to gen-

erate both the Raman as well as the repump sideband frequencies. Besides

using an EOM, other methods exist to generate higher frequency compo-

nents in the laser light. For instance, modulation of the current that drives

the laser diode [223] or a tapered amplifier [224] could generate sideband

frequencies. However, the phase stability and carrier suppression of these

techniques are currently unknown.

Other improvements to the laser system presented here could be made

on the side of its frequency control. For example, the frequency noise in-

duced by the control electronics can be decreased by changing to a piezo

driver with lower noise [225]. An increase in the response and feedback

bandwidth would be possible with electronic feedback to the current of

the laser diode, but this feature is not available on the currently used fibre

laser model. Improving the control electronics of the laser system could

reduce the frequency noise of the laser system down to the 1 kHz-level

[226]. However, the power spectral density of the measured frequency

noise shown in figure 4.11b, is comparable to other experiments that eval-
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uate the contribution of the laser frequency noise in measurements of the

gravitational acceleration in the order of 25 nm s−2 per shot [204].

4.3 Summary

This chapter discussed the construction of a compact laser system based

on frequency doubling of the light generated by telecommunication laser

components. Characterisation of this fibre laser system showed its poten-

tial for laser cooling and atom interferometry with rubidium atoms. On

the basis of the components used in this design, a compact laser system

has been constructed for atom-interferometry experiments like the iSense

setup. The complete fibre-based laser system builds upon the existing

control electronics and microwave reference from the iSense project, but

applies only two lasers and one fibre amplifier. Characterisation of the

frequency tuning of the new laser system shows that it could be applied

for cooling and detection of rubidium atoms as well as performing stim-

ulated Raman transitions. The available laser power is comparable to the

original iSense laser system while it enables the size and power consump-

tion of the overall experiment to be significantly reduced.
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Chapter 5

Optimisations and Results

After demonstrating atom interferometry in the iSense setup, the devel-

opment of the experiment is continued in order to, for instance, increase

the number of atoms in the MOT. Additionally, the detection setup is en-

hanced to enable measurements on the atom clouds after a larger free-fall

distance than was possible in the original setup. The modifications that

enable this are discussed in the next section, followed by a discussion of

the results achieved with the upgraded setup in sections 5.2 and 5.3. As

a demonstration of its capabilities, stimulated Raman transitions are per-

formed using the compact fibre laser system introduced in the previous

chapter. It is shown that this new laser system can achieve all the steps

necessary for laser cooling, atom interferometry and detection.

5.1 Upgrades to the experiment

The increase of available laser power from the change to the fibre laser

system enabled a redesign of the MOT and Raman beams delivery. This

section presents new versions of the beam collimators to provide flexible
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sured with photodiodes behind the mirror in figure 5.1 that record the power of
each beam separately. The fluctuations and drift in the intensity ratio decrease
over time after the laser beams are turned on with the AOM.
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alignment and slightly larger diameters of the laser beams. It is followed

by a discussion in section 5.1.2 of the changes and additions to the de-

tection of the scattered light from the atom clouds. Addressing a specific

magnetic sublevel in the 87Rb atoms, as discussed in section 2.4.2, was not

possible in the original setup due to the absence of a magnetic field to

provide a quantisation axis. Therefore, the construction of a set of coils

and the homogeneity of their magnetic field are presented in section 5.1.3.

Lastly, a vibration isolation platform is installed to suppress environmen-

tal vibration noise which potentially disturb measurements with counter-

propagating Raman beams.

5.1.1 Laser beam collimators

New collimators for the MOT beams are built using a single collimation

lens with a focal distance of 100 mm. The design shown in figure 5.1 uses

an elliptical mirror∗ in a kinematic mount for ease of alignment. Addition-

ally, this mirror makes the setup more compact and allows monitoring the

beam intensity by measuring the small fraction of light that is transmitted

by the mirror. A polariser† aligned with respect to the slow-axis of the

PM fibre reduces fluctuations in the light polarisation as those observed in

section 4.1.2. A quarter-waveplate‡ is set such that the light at the output

of the collimator is circularly polarised for the MOT beams. The resulting

beams have a 1
e2 -diameter of (18 ± 1)mm and the output power measured

(23 ± 1)mW and (21 ± 1)mW for the horizontal and vertical MOT beams,

respectively. From this result the average intensity of the cooling light at

the MOT region is determined after taking the vacuum window transmis-

∗ Thorlabs BBE1-E03 mirror with polished back side
† Polarcor glass polariser
‡ Thorlabs WPQ05M-780 waveplate
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Figure 5.3 Vertical cross-section of the upgraded setup showing the Ra-
man/detection beam and the vertical MOT beams with their 1

e2 -diameters. Two
photodiodes measure the light scattered by the atoms at the location of the atom
chip assembly and at the bottom detection window.
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sion and the reflectivity of the atom chip surface into account. The average

intensity reaches (49 ± 4)mW cm−2 which corresponds to about 14Isat for

the 87Rb D2-line transition.

As a proof of principle of monitoring the beam intensity imbalance, a

photodiode∗ is placed behind the mirror shown in figure 5.1. The power in

each of two counter-propagating cooling beams is measured this way with

separate photodiodes. The relative difference between the recorded pho-

todiode voltages is an indication of the intensity imbalance in the beams

and plotted in figure 5.2. Within the first few minutes after turning on

the light via the AOM, drifts on the order of 8 % are observed. Leav-

ing the laser light on for an extended duration sees this drift decrease to

about 2 %. Fluctuations in the intensity imbalance of these amounts cre-

ate potential fluctuations in a gravimeter setup at the level of ∼20 nm s−2

according to [57], but recording this intensity ratio allows post corrections

for this effect. Another approach would be to apply an active feedback

that maintains a power balance in the cooling beams [219, 227].

A collimator for the Raman beam of similar design is built to also

create a slightly larger beam diameter. A lens with 50 mm focal distance

creates a collimated beam of (8.9 ± 0.2)mm 1
e2 -diameter. As shown in the

cross-section in figure 5.3, the Raman beam alignment is provided by a

translation stage and again a mirror with a polished back side that enables

monitoring the power in the Raman beam. A polariser† in front of the

fibre output filters possible fluctuations in the light polarisation from the

laser system. Below the vacuum chamber a mirror and quarter-waveplate‡

retro-reflect the Raman beam to create a counter-propagating arrangement

∗ Thorlabs DET36A photodiode
† Newport 05P109AR.16 polariser
‡ Newport 20Z40BD.2 Zerodur mirror and Thorlabs WPQ10M-780 waveplate
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of two Raman light fields with perpendicular linear polarisations.

The collimation of the Raman beam is fine tuned by adjusting the po-

sition of the collimation lens, while measuring the radius of curvature of

the Raman beam with a Shack–Hartmann sensor∗. The maximum radius

of curvature achieved is (117 ± 8)m, however passing the beam through

the vacuum chamber sees a reduction to (83 ± 3)m, indicating a distor-

tion from the vacuum windows. On the assumption that the atom cloud

is at the centre of the Raman beam, this radius of curvature would give

a bias to the inferred gravitational acceleration below 10 nm s−2 according

to the analysis of a similar atom-interferometry experiment by [32]. Af-

ter this adjustment the peak intensity of the Raman beam is measured at

(231 ± 14)mW cm−2.

5.1.2 Fluorescence detection

The fluorescence detection system for the atom chip, discussed previously

in section 3.7, is upgraded to an optics system with a larger aperture.

By applying lenses with a clear aperture of DL = 48 mm, the detection

efficiency given by equation (3.13) is increased to ηdet = (8.1 ± 0.6)%. To

accommodate the increase in collected light power with these lenses, the

original avalanche photodiode is replaced with a low-noise photodiode†.

A similar photodiode is placed at the bottom detection window to en-

able detection of the atoms after a longer free-fall time. When the atoms

reach the detection region shown in figure 5.3, a light pulse resonant with

the |F = 2〉 ↔ |F′ = 3〉 transition is applied from the Raman beam colli-

mator with an intensity of (7.4 ± 0.7)mW cm−2. Part of the light scattered

∗ Thorlabs WFS300-14AR Shack–Hartmann sensor
† Thorlabs DET36A photodiode
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by the atom cloud is directed by a system of two lenses∗ and a mirror

to the bottom photodiode. The fraction of the light collected by this op-

tics system is (3.1 ± 0.2)%, assuming the scattered photons are distributed

homogeneously over all directions. The current of the photodiode is am-

plified† with a transimpedance of 5 · 107 V A−1 and the output voltage is

recorded by an oscilloscope.

Two light pulses are used to record the state population of the atom

cloud with this detection setup. The first has a duration of 0.5 ms and

detects the atoms in the |F = 2〉 state. This is followed by a second light

pulse in which the repump sideband frequency is turned on at resonance

with the |F = 1〉 ↔ |F′ = 2〉 transition. A typical signal recorded from this

detection sequence is shown in figure 5.4. The population of the |F = 2〉

state is then estimated from the area under the first pulse, while the to-

tal population is determined from the area under the second pulse. The

boundaries of these areas is set by the integration bounds indicated in

figure 5.4. In order to account for scattered light from the background

rubidium vapour, a background signal is recorded with the same pulse

sequence without an atom cloud in the detection region and subtracted

from the state detection signal.

The rise in the detection signal during in the first pulse in figure 5.4

is believed to be caused by the movement of the atom cloud into the field

of view of the detection photodiode. The spatial region in the z,x-plane

over which the light is collected by the photodiode is about 5 mm × 5 mm.

Since the atom cloud’s centre of mass moves by about 1.5 mm during the

1 ms window of the detection sequence, a temporal change in the recorded

voltage is observed in the detection signal. A method to reduce this effect

∗ Focal distances of 35 mm and 25 mm give a demagnification of 1.4
† Femto LCA-100K-50M current amplifier
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Figure 5.4 Detection signal from bottom photodiode recording the fluorescence
of the atom cloud as it scatters light from two light pulses. The time axis is with
respect to the end of the optical molasses phase when the cloud is released in
free-fall. The first pulse is only resonant with the |F = 2〉 ↔ |F′ = 3〉 transition
while the second pulse also has a sideband frequency that excites the atoms via
the |F = 1〉 ↔ |F′ = 2〉 transition. The ratio of the |F = 2〉 state population to the
total atomic population is estimated from the ratio of the indicated areas enclosed
by the integration bounds above the background signals.
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Figure 5.5 Spatial distribution of atom cloud after a free-fall distance of 115 mm
with an initial RMS radius of 0.5 mm and different initial temperatures. Dashed
lines indicate the field of view of the detection setup.

would be to apply a red-detuning to the detection beam, thus creating

a one-dimensional optical molasses that slows the atom cloud. For im-

proved accuracy in the determination of the state population ratio, the

difference in the recorded voltages can also be taken into account by a

change in the detection efficiency of the two pulses [128].

Not all of the atoms can be detected due to the size of the atom cloud

approaching the limited field-of-view of the detection setup as illustrated

in figure 5.5. From the Maxwell–Boltzmann distribution of an atom cloud

with an initial RMS radius of 0.5 mm and temperatures of 1 µK, 3 µK and

10 µK, the percentage of the atoms detected after the cloud’s free-fall ex-

pansion is about 87 %, 66 % and 40 %, respectively. The reduced number of

detected atoms causes a square-root dependent increase in the atom shot

noise limited sensitivity of a gravimeter as seen from equation (2.56).

At an average intensity of 2Isat of the detection beam, the number of
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detected photons Nphot from a 0.5 ms pulse scales with the number of atoms

N in the field of view of the detection setup as Nphot ≈ 200N. The relative

photon shot noise with these parameters is thus given by
1√

200N
and is

significantly lower than the atom shot noise.

Additional noise in the fluorescence detection signal comes from fluc-

tuations in the detection laser frequency and intensity. The effects can

be estimate by propagating these noise sources via the scattering rate of

equation (3.11). The CRD laser frequency noise of 0.7 MHz from the mea-

surements in section 4.2.2 contributes about 5 % to the relative detection

noise. The fluctuations in the laser intensity seen in figure 4.5 cause a

noise in the detection signal of ∼0.3 %. Both noise sources will have to

be reduced by about an order of magnitude to be able to reach atom shot

noise limited detection [228].

5.1.3 Magnetic field for quantisation axis

The magnetic field that supplies a quantisation axis during the interferom-

etry phase is created by three circular coils around the vacuum chamber,

visible in figures 3.3 and 5.19. In order to fit the geometry of the vac-

uum chamber while not obstructing any optical access, a coil diameter

of 212 mm and a separation distance of 103 mm is chosen. The magnetic

field homogeneity has been optimised by chosen the number of windings

N2 = 33 for the centre coil and N1,3 = 48 for the top and bottom coils. This

enables all three coils to be connected in series and powered by a single

current source.

The current through the magnetic quantisation coils is controlled with

one of the current drivers introduced in section 3.4. The switching speed

of the magnetic quantisation field is measured via the same current probe
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technique as applied with the quadrupole field coils. The higher induc-

tance of the quantisation coils, however, cause significantly longer switch-

ing times of (5 ± 1)ms. This introduces a relatively small delay between

the end of the molasses phase and the start of the state preparation and

interferometry phases. On the other hand, switching between cooling and

Raman beams with the fibre laser system already requires about the same

duration due to the switching speed of the optical fibre switch.

The magnetic field of the quantisation coils is measured∗ along the axis

of the coils and found to be 0.40 mT A−1. The vertical component of the

magnetic field at a current of 300 mA is plotted in figure 5.6 and shows

that it varies by less than 1 % over the free-fall distance of the atoms.

The measured magnetic field of the quantisation coils is compared to

its design as modelled by circular current loops. The generated magnetic

field BQ is in this model calculated by the sum

BQ =
3

∑
i=1

Ni BCL

(
x, y, z − zi

)
(5.1)

of the magnetic fields BCL(x, y, z) of each current loop located in the hor-

izontal plane at the vertical position z1 = 45 mm, z2 = −58 mm and

z3 = −161 mm. An expression for BCL(x, y, z) can be found in [229].

The absolute value of equation (5.1) is evaluated at the same current of

300 mA used in the measurements and plotted in figure 5.6. The relatively

small difference between the magnetic field model and the measurements

is mostly caused by the measurements not being made precisely along the

axis of the coils. This deviation is of similar magnitude as was observed

with the compensation coils in secton 3.6 and could also explain the overall

∗ Using the same Stefan Mayer Instruments Fluxmaster magnetometer as for the mag-
netic compensation field measurements in section 3.6.
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Figure 5.6 Measured and modelled magnetic field strength along the axis of the
quantisation coils for a current of 300 mA. The modelled magnetic field assumes
three circular current loops of the same dimensions as the coils in the experiment
located at the indicated positions. The position along the vertical axis is with
respect to the centre of the atom chip assembly.
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slope visible in the measurement of figure 5.6.

The inhomogeneity of the magnetic field for the quantisation axis could

cause a bias in the gravity measurement and is estimated using equa-

tion (2.69). The maximum magnetic field gradient found from the mod-

elled magnetic field is 50 µT m−1 which translates to a potential accelera-

tion bias in the order of 3 µm s−2. It is seen in the following sections that

this bias is smaller than the current precision of the experiment.

5.1.4 Vibration isolation

Suppressing environmental vibration noise is a key requirement for a

high-precision gravimeter experiment, as discussed in section 2.5.1. There-

fore, the entire frame in which the vacuum chamber is mounted, is placed

on a vibration isolation platform∗, see figure 5.19.

The performance of the vibration isolation platform in the laboratory

is recorded by two seismometers†. One is placed on the floor of the labo-

ratory while the other is positioned on the baseplate of the frame. Simul-

taneous recordings from the seismometers are converted from velocity to

acceleration and the amplitude spectral density is plotted in figure 5.7.

The effect of the vibration isolation platform is clearly visible in the re-

duction of vibration noise with frequencies above ∼10 Hz. However, an

increase in the acceleration noise in the range of 2 Hz to 5 Hz is caused by

the natural frequency of the vibration isolation platform. At frequencies

' 50 Hz the measurements in figure 5.7 become limited by electrical noise

and the bandwidth of the sensors.

The measured vibration noise poses a limit on the precision in mea-

suring the gravitational acceleration, which can be estimated via equa-

∗ Minus-K Technologies 125BM-8 vibration isolation platform
† Sercel geophone L-4C seismometers with measurement bandwidth < 100 Hz
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Figure 5.7 Amplitude spectral densities of acceleration noise from vibrations mea-
sured on the floor of the laboratory and on a vibration isolation platform. While
low frequency noise increases on the vibration isolation platform, the average vi-
bration noise is reduced for frequencies above the cut-off frequency of about 5 Hz
for a Mach–Zehnder type atom-interferometer with T = 50 ms.
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tion (2.65). The acceleration amplitude spectral density is therefore sim-

plified for the setup on the vibration isolation platform as white noise

at a level of 5 · 10−6 m s−2/
√

Hz. Using a measurement cycle duration of

Tc = 0.4 s and free evolution time T = 50 ms, the estimated accelera-

tion noise is then about 12 µm s−2 per shot. This is currently the dominant

noise source in the experimental setup, but increasing the observation time

reduces this by a factor
√

Tobs from averaging multiple measurements.

Reduced vibration noise could be achieved by enclosing the setup in a

soundproof box [230] or moving the experiment to locations with lower

environmental noise [59]. Improving the short-term sensitivity of the ex-

periment to gravitational acceleration could also be accomplished through

the application of an active vibration isolation system [53, 231].

5.2 Cold-atoms source

After the previously discussed changes, the new fibre laser system is tested

on the upgraded setup. The loading of 87Rb atoms in the MOT is studied

in the following section and compared to the results obtained with the

original iSense setup. An optical molasses phase is then added to cool

the atom clouds further in preparation for performing stimulated Raman

transitions.

5.2.1 MOT loading

The number of atoms in the MOT is estimated from the fluorescence

recorded by the photodiode via the same method explained in section 3.8.1.

This is used to optimise several parameters towards a maximum in the

number of trapped atoms. By fitting the MOT loading curves with equa-

tion (3.15), the equilibrium atom number Neq is determined.
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Figure 5.8 Optimisation of the number of 87Rb atoms in the MOT determined
by loading curve measurements. The error bars indicate the uncertainty in the
determination of the number of atoms from the photodiode voltage.
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A maximum atom number is found, for example, when the cooling

laser is detuned in the range of 17 MHz to 18 MHz, see figure 5.8a. In

this measurement the repump sideband frequency is kept on resonance

with the |F = 1〉 ↔ |F′ = 2〉 transition. However, the ratio in the powers

of the cooling and repump frequency components also has an optimum

in the number of atoms in the MOT as shown in figure 5.8b. By varying

the RF power applied to the EOM in the fibre laser system, the power

ratio between cooling and repump components is tuned. At an RF power

around 2.5 dBm the MOT captures a maximum number of atoms. The

amplitude of the first-order sideband at this setting is 3 % of the carrier

amplitude. This amplitude ratio, as well as the optimum detuning of the

cooling laser frequency, are similar to values applied in other MOTs for

rubidium atoms [53, 63].

To compare the performance of the upgraded setup to its previous in-

stalment, MOT loading curves at different dispenser currents are recorded.

Three of such loading curves are shown in figure 5.9. A small jump in the

atom number at the start is visible due to atoms cooled by the optical

molasses before the quadrupole field is turned on. The atom loading rate

determined from fits of these measurements with equation (3.15) results in

the rates plotted in figure 5.10. Compared to the original setup the loading

rate of the MOT is increased by a factor 7 to 10. The improvement is in

part due to the increase in diameter and intensity of the cooling beams.

Another cause of the improved loading rate is a decrease of the residual

background pressure in the vacuum chamber after a reconditioning of the

getter unit. The residual gas pressure is estimated from the loading of

the MOT via the method described in [232]. In summary, this method

differentiates the loss rate γC in equation (3.14) caused by residual gas
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ison to the original setup.
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Figure 5.11 Equilibrium number of atoms in the MOT as a function of the loading
time constant. The linear fit results in a loss rate from collisions with residual
background gas of γ0 = (0.62 ± 0.04) s−1.

collisions from those caused by hot rubidium atoms. The MOT loading

time constant is then written as

τload =
1

γC

=
1

βPRb + γ0

. (5.2)

The loss rate βPRb from collisions with background rubidium atoms de-

pends on the partial rubidium pressure PRb , while the loss rate γ0 from

collisions with other elements is assumed constant.

Along the same lines, the loading rate of the MOT increases linear with

the rubidium partial pressure, i.e. RMOT = κPRb . The equilibrium number

of atoms can be expressed as

Neq = RMOT τload =
κ

β

(
1 − γ0 τload

)
, (5.3)

through rearranging and substitution of equation (5.2).
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The linear relation of equation (5.3) becomes apparent when plotting

Neq as a function of τload obtained from the MOT loading curve measure-

ments as shown in figure 5.11. From the linear fit a loss rate due to colli-

sions with non-rubidium elements of γ0 = (0.62 ± 0.04) s−1 is determined.

The residual background pressure is estimated from γ0 with the conver-

sion factor 2.7 · 10−8 mbar s [233]. As expected, the thus found background

vapour pressure of (1.7 ± 0.1) · 10−8 mbar is higher than measured by the

ion-pump controller. In the original setup the same method estimates

the background pressure at (6 ± 1) · 10−8 mbar, indicating that the recon-

ditioning of the getter unit has indeed reduced the residual background

vapour.

To reach the best possible sensitivity of an atom interferometry setup,

many parameters in the sequence need to be optimised. One of these

parameters is the loading time Tload of the MOT, since it determines not

only the total number of atoms but also the measurement rate. Choosing

a loading time is a trade-off between these parameters, because the pre-

cision of each measurement increases with atom number, but increased

loading times require longer integration times. The effect of this trade-off

is evident in the more general case of the shot-noise limited sensitivity of

equation (2.56) [94]:

σg =
1

CMZ

⏐⏐keff

⏐⏐ T2
√

nD Tobs

. (5.4)

Instead of the number of atoms per shot N, equation (5.4) takes the total

observation time Tobs and detected atom flux nD into account. It is thus

convenient to use the detected atom flux as a figure of merit for optimising

the loading time of the cold-atoms source.
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Figure 5.12 Theoretical atom flux of a MOT normalised to its equilibrium atom
number. A maximum in the atom flux is seen due to the trade-off between the
loading time Tload of the MOT and the duration TAI of the atom-interferometry
sequence, depending on the loading time constant τload .

To this end, the duration of a single measurement sequence Tc is sep-

arated in the MOT loading time Tload and the duration of all other phases,

including atom interferometry and detection phases, represented by TAI .

Together with equation (3.15), this allows the atom flux n from the cold-

atoms source to be described as

n =
N(Tload)

Tc

=
Neq

TAI + Tload

⎡⎣1 − exp

(
−Tload

τload

)⎤⎦ . (5.5)

Plotting the normalised atom flux
n

Neq

as a function of
Tload

τload

, as in fig-

ure 5.12, shows that there is a loading time Tload where the atom flux is

maximised.
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Figure 5.13 Optimum loading time of MOT for a maximum atom flux as a func-
tion of the MOT loading time constant. The optimum MOT loading time does
not deviate much from the loading time constant (indicated by the dashed line)
for a relatively fast loading MOT.

This optimum loading time Tload,O can be found by setting the derivative

of equation (5.5) equal to zero, which results in the relation

(
1 +

TAI + Tload,O

τload

)
exp

(
−

Tload,O

τload

)
= 1.

The above equation can be rewritten as

−
(

1 +
TAI + Tload,O

τload

)
= W−1

⎛⎝− exp

(
−1 − TAI

τload

)⎞⎠ ,

using the lower branch of the Lambert-W function W−1(ζ) for ζ 5 −1.

Solving for the optimum loading time then gives the formula

Tload,O = τload

⎡⎢⎣−1 − W−1

⎛⎝− exp

(
−1 − TAI

τload

)⎞⎠
⎤⎥⎦− TAI . (5.6)
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Equation (5.6) is plotted in figure 5.13 as a function of the MOT loading

time constant. It can be seen there that for a relatively fast loading MOT,

i.e. τload . TAI , the optimum loading time is close to the actual loading

time constant.

In the current experimental setup the smallest loading time constant is

obtained at a dispenser current of 4.1 A where τload ≈ 265 ms. The total du-

ration of a single free-fall and detection sequence takes about TAI = 160 ms,

thus the highest atom flux is then according to equation (5.6) achieved at

a MOT loading time Tload,O = 246 ms. The combination of these parame-

ters would result in a repetition rate of T−1
c

= 2.5 Hz with 1.7 · 108 atoms

available after the MOT phase.

5.2.2 Atom cloud temperature

The temperature of the atom clouds that are generated in the upgraded

setup is determined with the same method discussed previously in sec-

tion 3.7. A different imaging setup is applied here, however, that no longer

relies on a separate detection beam. Instead of creating an absorption im-

age, the fluorescence of the cloud is used to capture an image with the

CCD camera. This is achieved by exposing the atom cloud for a duration

of 200 µs with resonant light from the MOT beams. The recorded images

can then directly be fitted with a two-dimensional Gaussian function to

determine the size of the atom cloud. An additional benefit of using flu-

orescence imaging is that the time-of-flight measurements are not limited

here by the switching speed of the optical fibre switch.

The expansion of the atom-cloud size after an optical molasses is es-

timated from the captured fluorescence images. Via the TOF method a

minimum in the expansion of the atom cloud is found which is plotted
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Figure 5.14 Expansion of the atom-cloud size as a function of the time-of-flight
after an optical molasses. The velocity spread determined from the fitted curves
is (26 ± 1)mm s−1 in both the horizontal and vertical directions.
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Figure 5.15 Fluorescence signal captured by the bottom photodiode from an atom
cloud falling through a light sheet. The time of flight of the atom cloud is with
respect to the end of the optical molasses phase. A Gaussian fit results in a
vertical velocity spread of the atom cloud of (17.2 ± 0.7)mm s−1.
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in figure 5.14. This optimum is found for an optical molasses of ∼4 ms at

a 175 MHz red-detuning of the cooling light, corresponding to about 23Γ.

During the optical molasses phase the intensity of the beams is gradually

turned down in about 3 ms by ramping the RF amplitude that drives the

AOM of the laser system. These parameters are similar to the optimum

settings found previously, as well as to those reported from other cold

atom experiments based on 87Rb [110].

Applying equation (3.9) to fit the measurements of figure 5.14, shows

a velocity spread of the atom cloud of (26 ± 1)mm s−1 in both the hori-

zontal and vertical directions. This velocity spread corresponds, accord-

ing to equation (3.10), to the atom clouds having a temperature of T =

(6.9 ± 1.1)µK. There is room for further optimisation of the optical mo-

lasses phase that could potentially reach the slightly lower temperatures

of the atom cloud observed in section 3.8.1. The initial size of the atom

cloud of about 0.5 mm is also slightly larger compared to values obtained

in the original setup, see section 3.8.1. Both effects are likely caused by the

increased number of atoms.

The optimisation of the optical molasses phase is enhanced further via

the addition of a light sheet in the bottom detection region. By recording

the fluorescence of the atom clouds while they fall through this light sheet,

gives a measure of their size and velocity spread. Such a light beam is

created here from the collimated light of the detection output of the fibre

laser system and passing it through a 22 mm × 0.7 mm slit. The resulting

light sheet is passed horizontally through the detection windows in front

of the bottom photodiode of figure 5.3. The light is retro-reflected by a

mirror on the opposite side of the vacuum chamber and its frequency

is red-detuned by 5 MHz from the |F = 2〉 ↔ |F′ = 3〉 transition. This
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creates a one-dimensional optical molasses which slows the atom cloud in

the x-direction and maximises the fluorescence signal from the atoms with

respect to the background light intensity.

An example photodiode signal from an atom cloud traversing the light

sheet is plotted in figure 5.15. The centre-of-mass of the atom cloud

reaches the light sheet at (152.8 ± 0.1)ms after the end of the optical mo-

lasses. Assuming that the average velocity of the atoms is negliglible

at the release of the optical molasses, their average vertical velocity is

〈vz〉 ≈ 1.50 m/s when the atom cloud falls through the light sheet. The

vertical size of the cloud at the detection region can then be determined

from the Gaussian fit in figure 5.15, resulting in an RMS size of σz =

(2.58 ± 0.03)mm.

Applying this result and the initial cloud size determined previously

from the measurements of figure 5.14, allows estimating the velocity spread

of the atom cloud. Again by making use of equation 3.9, a velocity spread

of σv,z = (17.2 ± 0.7)mm s−1 is calculated, which corresponds to about 3

times the recoil velocity of the 87Rb D2-line transition. The difference in the

velocity spread with respect to the measurement results from fluorescence

images could be due to a calibration uncertainty of the magnification of

the imaging setup. However, the vertical velocity spread found via the

light sheet method is within a factor of 2 of those obtained in the atom-

interferometry based gravimeters listed in table 1.3.

5.3 Atom interferometry measurements

To prepare the atom cloud for stimulated Raman transitions, the repump

sideband frequency component is turned off during the last 2 ms of the

optical molasses phase. This populates the |F = 1〉 ground state and the
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remaining atoms in the |F = 2〉 state are scattered by a resonant blow-

away pulse from the MOT beams. This state preparation method leaves

∼40 % of the atoms, as observed from the decrease of the TOF signal of

figure 5.15 when the blow-away pulse is applied. All the remaining atoms

in the cloud are distributed over the three magnetic sublevels in the |F = 1〉

state after this state preparation. Since only a fraction of the atoms in the

|F = 1; mF = 0〉 will be addresses, the stimulated Raman transitions in this

section show a relatively low contrast. However, without further state-

preparation of the atom cloud, the following results do demonstrate the

operation of the fibre laser system in performing the steps necessary in an

atom-interferometry experiment.

5.3.1 Raman sideband frequency scan

While the atoms are starting their free-fall trajectory after the optical mo-

lasses phase, the magnetic field for the quantisation axis is turned on.

At the same time, the CRD laser frequency is stepped by 1.80 GHz away

from the |F = 2〉 ↔ |F′ = 3〉 transition, thus having a one-photon detun-

ing ∆R = 2π × 1.38 GHz. Combining this with the Raman beam intensities

of I1 ≈ I2 ≈ 69 mW cm−2 gives according to equation (2.62) an effective

Rabi frequency of Ωeff = 2π × 91 kHz.

A Raman pulse is applied that couples the ground states of the atoms

at approximately 9 ms into the free-fall of the atom cloud. This dura-

tion allows for the fibre switch and the currents in the coils to settle. By

scanning the frequency of the Raman sideband the resonance of the stim-

ulated Raman transition can be found as shown in figure 5.16. Here a

Raman pulse of 14 µs is applied which creates a π-pulse as will be shown

in the next section. The frequency axis in figure 5.16 is determined from
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Figure 5.16 State population ratio as a function of the Raman sideband frequency
detuning with respect to the hyperfine splitting frequency fhfs . The error bars
indicate standard deviations of 4 repeated measurements. The two Doppler sen-
sitive resonance peaks are the result of two possible combinations of the counter-
propagating wavevectors in the Raman beams. The small central peak is likely
caused by stimulated Raman transition with co-propagating components. The
FWHM of (114 ± 4) kHz determined from the sinc2 fit corresponds to the Fourier
transform of the Raman pulse duration.

the difference between the frequency applied to the EOM and the fre-

quency corresponding to the 52S1/2 state hyperfine splitting fhfs . Rewriting

the resonance condition of equation (2.22) gives the detuning δR,lab in the

laboratory frame as

δR,lab

2π
= νRaman,II − νRaman,I − fhfs −

h̄
⏐⏐keff

⏐⏐2
4πm

= 7 GHz − fDDS − fhfs − 95 kHz,

(5.7)

where the last term is the Doppler shift from half the recoil velocity of the

stimulated Raman transition.

Two resonance peaks of the stimulated Raman transition are found
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where most of the atoms are transferred from the |F = 1; mF = 0〉 to the

|F = 2; mF = 0〉 ground state. These peaks are the result of the two oppo-

site effective wavevectors ±keff that satisfy the Doppler sensitive resonance

condition of the stimulated Raman transition, see equation (2.1). The reso-

nance peak at negative detuning is created by the coupling made possible

by the sideband frequency component that is reflected by the bottom mir-

ror. The positive detuned peak indicates the resonance condition for when

the carrier frequency component has undergone a reflection by the mirror.

The small peak visible in-between indicates an excitation of stimulated Ra-

man transitions by co-propagating frequency components which could be

caused by the polarisation of the Raman beams not being exactly orthog-

onal [234]. The difference in the amplitude of the two Doppler-sensitive

peaks could be caused by a drift in the intensity of the Raman beam or

in the relative amplitude between the Raman frequency components. The

spacing between the peaks of ∼230 kHz is caused by the Doppler shift of

the atom cloud as it has reached an average velocity of about 9 cm s−1.

The asymmetry of the resonance peaks with respect to the frequency of

the 52S1/2 state hyperfine splitting, however, remains to be investigated.

5.3.2 Rabi oscillations

Varying the Raman pulse duration enables the observation of a Rabi oscil-

lation as shown in figure 5.17, while keeping other parameters the same as

before. The Raman sideband frequency is in this case set at the peak of the

red-detuned resonance of figure 5.16, which corresponds to a wavevector

keff pointing upwards.

The damped cosine function of equation (3.16) is fitted to the measure-

ments in figure 5.17 and results in a Rabi frequency of 2π × (37 ± 1) kHz.
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Figure 5.17 Rabi oscillation of the state population ratio in the ground states of
87Rb caused by stimulated Raman transitions as a function of the Raman laser
pulse duration. The error bars are standard deviations from 4 repeated measure-
ments and the damped cosine fit corresponds to a Rabi frequency of (37 ± 1) kHz.

The damping constant here is γR = (0.31 ± 0.03)ΩR and is higher com-

pared to the Rabi oscillation measurements in the original iSense setup.

This increased damping rate, as well as the lower Rabi frequency in com-

parison to the calculation of the previous section, are probably due to a

mismatch between the position of the atom cloud and the centre of the Ra-

man beam. An atom cloud that is on-axis with the Raman beams should

see an increased coherence of Rabi oscillations [235].

5.3.3 Mach–Zehnder interferometry

Despite the low contrast, interference between 87Rb atoms can readily be

demonstrated in the current setup. Therefore, a MZ pulse sequence is

applied using Raman pulse durations of τπ
2
= 7 µs and τπ = 14 µs. The

result of three different pulse sequences is measured at a free-evolution
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Figure 5.18 Interference fringes in the output state population ratio of
Mach–Zehnder sequences with different free-evolution time T between Raman
pulses. Scanning the phase offset of the last pulse creates a periodic change in
the state population ratio which are fitted with a cosine function. The error bars
indicate standard deviations of 4 repeated measurements.

time of T = 0.5 ms, 1 ms and 2 ms. By scanning the phase of the DDS

for the last π
2 -pulse an intentional phase offset δφoffset is added to the MZ

phase, see equation (2.52). A measurement over the range of possible

output states is thus created and the resulting MZ fringe scans are plotted

in figure 5.18.

These measurements show that interference between the ground states

is observable with counter-propagating Raman beams at free-evolution

times of at least 2 ms. The contrast of the T = 0.5 ms fringe scan is CMZ =

0.08, but is halved when the free-evolution time is increased to 2 ms. The

interference fringes are no longer observed when a MZ sequence with

T ' 4 ms is performed. Improving the state preparation of the atom cloud

by removing atoms that are not addressed by the Raman beams is expected

to provide a larger signal-to-noise ratio.
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The phase offset determined from the cosine fit of the T = 2 ms mea-

surements is δφoffset = (0.56 ± 0.03) rad. The precision in measuring the

gravitational acceleration g with this sequence can be estimated from the

confidence interval 2σ
δφ

of the fit via

σg =
σ
δφ⏐⏐keff

⏐⏐
(

T +
3
2

τπ
2

)−2

. (5.8)

The corresponding precision is 0.23 mm s−2 or 2.4 · 10−5 relative to the lo-

cal gravitational acceleration. This result is several orders of magnitude

above values obtained with precision gravimeters, but shows that mea-

surements of the gravitational acceleration can be achieved with the com-

bination of this setup and the developed fibre laser system.

5.4 Discussion

The results presented in this chapter show the advances from the original

iSense setup towards its current capabilities. The addition of a new de-

tection system and the change to counter-propagating Raman beams has

shown that the setup is now capable of performing atom-interferometry

with a Mach–Zehnder type pulse sequence. However, for an absolute mea-

surement of the gravitational acceleration, the sweep rate of the Raman

laser frequency needs to be varied to perform a measurement as shown

in figure 2.7. The low contrast and short free-fall times currently limit a

sensitive determination of g via this method.

The change to the compact fibre laser system made it possible to in-

crease the loading rate and atom number in the MOT. Estimating the avail-

able number of atoms from the optimum loading cycle discussed in sec-

tion 5.2.1, gives 3 · 107 when taking the loss in the state preparation phase
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and the field-of-view of the detection setup into account. The next im-

provements would need to be found in the Raman beam alignment with

respect to the atom cloud and the state preparation phase. A velocity selec-

tion pulse or a microwave π-pulse could be applied to transfer a fraction

of the atoms between |F = 1; mF = 0〉 and |F = 2; mF = 0〉 states. When

assuming a homogeneous distribution over the mF -states and a velocity

spread as measured in section 5.2.2, the fraction of atoms in the velocity

class addressed by the Raman beams is ∼15 %. In this scenario the de-

tected number of atoms would be 4.5 · 106, which gives an atom shot noise

limited sensitivity of 12 nm s−2 for free-evolution times of T = 50 ms.

However, a practical limit is imposed by the vibration noise measured

in section 5.1.4, requiring observation times of several minutes to reach a

precision below a level of ∼1 µm s−2. The measured frequency noise of

the fibre laser system is estimated to start playing a role in the stimulated

Raman transitions at a level of / 0.2 µm s−2 [236]. However, the frequency

noise already reduces the contrast in the detection by 5 %, with another

/ 3 % from the intensity noise, as discussed in sections 4.1.1 and 5.1.2. It

is thus important to note that the current results show no limits imposed

by the fibre laser system. The robust operation of it allows performing

stimulated Raman transitions within several ms after the optical molasses

phase. Faster switching speeds between MOT and Raman beams could

be achieved by replacing the optical fibre switch∗. It also is possible to

increase the beam diameter of the Raman beam further which could help

improve the contrast in the measurements due to the more homogeneous

beam intensity across the atom cloud, but this will ultimately be limited

by the total available laser power.

∗ For instance Agiltron NanoSpeed fibreoptic switches have specified switching speeds
below 1 µs.
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Figure 5.19 Photograph of the experimental setup after the modifications.
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A notable increase in the size of the experimental setup after the mod-

ifications is due to the vibration isolation platform, see figure 5.19. How-

ever, the reduction accomplished with the compact laser system, allows the

overall experiment to retain dimensions comparable to the original iSense

setup. Further reductions of the size would require more radical changes

on the various parts of the experiment, some of the possible approaches

are discussed in the next chapter.

5.5 Summary

This chapter discussed the continued development of the original iSense

experiment towards a test platform for the fibre laser system discussed

previously. New light delivery and detection systems have been designed

and implemented, as well as a magnetic field for a quantisation axis and

a vibration isolation platform were installed. These modifications and

the change to the compact fibre laser system has seen an increase in the

number of atoms in the MOT by an order of magnitude. An optical

molasses and state preparation phase were presented that showed 87Rb

atom clouds with velocity spreads suitable for stimulated Raman transi-

tions with counter-propagating Raman beams. Finally, the interference of

these atoms has been shown by performing a Mach–Zehnder type pulse

sequence and potential improvements towards precision measurements of

gravity were discussed.
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Chapter 6

Conclusion and Outlook

This thesis presented an integrated atom-interferometer based on laser-

cooled clouds of 87Rb atoms and a compact laser system with which this

experiment is able to perform measurements sensitive to gravitational ac-

celeration. The work started as part of the iSense project that brought

together the expertise of several European research groups and institu-

tions, resulting in the development of a compact and transportable atom-

interferometry experiment. The iSense setup demonstrated the generation

of clouds containing 107 atoms at a temperature of 5 µK. Interference of

the ground states in these atoms has been measured by performing stim-

ulated Raman transitions in a Ramsey type pulse sequence. Interference

fringes with co-propagating Raman beams showed a relative fringe width

of 7 · 10−7 in both the laboratory and in an integrated, transportable setup.

The work described in this thesis that led up to this results, included the

construction of a compact modulation transfer spectroscopy setup and the

integration of the entire experiment in a 19-inch rack flight case. What has

thus-far mostly been contained in laboratory environments is here demon-

strated in a compact and transportable instrument.
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Following the development of cold-atoms based sensors initiated by

the iSense project, the work of this thesis focussed on the design and

demonstration of a compact fibre laser system. Through the combination

of fibre-coupled components from the telecommmunication industry and

sum-frequency generation, a robust laser system was built that uses only

two lasers and one fibre amplifier. Tuning of the stabilised laser frequency

is shown to cover a range of 1.8 GHz within 2 ms and is thus capable of

performing laser cooling, stimulated Raman transitions and detection of

rubidium atoms. At the same time, a significant reduction in the size of the

laser system is achieved, as well as a decrease in the power consumption

of the overall experiment by a third down to (162 ± 7)W.

As well as the upgrade to this new laser system, other changes to the

original experiment were addressed that bring it closer towards precision

measurements of gravitational acceleration. With the additions of a mag-

netic field to provide a quantisation axis for the stimulated Raman transi-

tions, a vibration isolation platform and modifications to the light delivery

and detection setup, only the vacuum chamber of the original iSense ex-

periment is left unchanged. The culmination of these upgrades led to an

increase in the loading rate and number of atoms in the MOT. The gener-

ation of cold atom-clouds was shown to reach 1.7 · 108 atoms at a rate of

2.5 Hz having cloud temperatures in the range of 3 µK to 7 µK.

These clouds of atoms were used to demonstrate atom-interferometry

with counter-propagating Raman beams and a Mach–Zehnder type pulse

sequence. Interference fringes were measured from which a relative pre-

cision to changes in gravitational acceleration at a level of 2 · 10−5 was

inferred. This precision is limited by the low contrast of a few %, but

mainly through improving the state preparation phase, it is expected to
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see the experiment reach sensitivity levels below 1 µm s−2. This work has

thus shown a compact atom-interferometry experiment that paves the way

towards transportable cold-atoms based sensors for gravimetry.

6.1 Outlook

The work achieved within the iSense project has contributed to bring-

ing cold-atoms experiments towards transportable sensors for applications

outside of laboratory environments. The continued development of which

has taken place in the UK National Quantum Technology Hub (QT Hub)

in Sensors and Metrology. The design of the compact fibre laser system

presented in chapter 4 has since found widespread use among collabora-

tors in other research groups and industrial partners of the QT Hub. It

is expected that further miniaturisation of cold-atoms based sensors will

see an increase in their applicability [210]. With this in mind, several pos-

sible improvements to the fibre laser system and the setup have already

been suggested in sections 4.2.5 and 5.4. However, the experiment that

this thesis has focussed on could be enhanced further by other methods.

Surpassing the sensitivity limit imposed by the vibration noise could

for instance be achieved by the integration of a continuous accelerometer,

which at the same time allows an increased measurement bandwidth [56,

61]. Alternatively, one could make use of the 85Rb isotope present in the

setup to create a dual species atom interferometer to reject the common-

mode vibration noise from the mirror movements [85].

Extending the time of the interferometry sequence sees a rapid in-

crease in the measurement precision due to the quadratic scaling with

the free-evolution time T. Going beyond a free-fall time of about 150 ms

that is currently possible in the vacuum chamber would require trapping
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the atoms in an optical lattice. For instance, the application of Bloch

oscillations keeps the atoms within several mm during the interferome-

try sequence [132, 237]. The combination of a Ramsey–Bordé sequence

and Bloch oscillations has the potential to reach sensitivities in the or-

der of 10 nm s−2 [134]. Alternatively, determining the Bloch frequency

through Wannier-Stark states allows measuring the gravitational accelera-

tion [238, 239] with reported sensitivities of 2 µm s−2 after 300 s [162]. The

small free-fall distance of the atoms is not the only advantage of using

Bloch oscillations, since a well-designed pulse sequence can accomplish a

sensitivity scaling faster than T2 [240, 241]. Similarly, an enhanced sen-

sitivity could be achieved by increasing the momentum transfer between

the states [242, 243].

Instead of only cooling the atom cloud using an optical molasses, a

next possible step is to create a Bose–Einstein condensate (BEC). It has

been shown that gravimetry with BECs potentially reaches a relative pre-

cision at the 10−9 level [244]. The generation of a BEC can be made possible

in this experiment through modifications to the atom chip assembly [154].

Improvements in the detection scheme towards the shot noise detection

limit could be achieved through suppressing laser frequency and intensity

fluctuations [245]. Such detection methods rely on simultaneous detection

of the population in the two ground states [246], but require a spatial

separation of the atoms in each state.

Other designs of the cold-atoms source could enable further reduc-

tions in size and power consumption of the experiment. Instead of re-

quiring four laser beams to create a MOT, a single large-diameter beam

and mirrors in a pyramid geometry can be applied [60, 247]. Alterna-

tively, MOTs and optical molasses based on optical gratings have recently
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showed promising results for creating cold atom-clouds with tempera-

tures at 3 µK [248]. Together with advanced coil designs for the mag-

netic quadrupole field [249] this could see the size of the vacuum chamber

shrink by an order of magnitude [250]. Making more efficient use of the

available laser power could be achieved by employing a cavity to enhance

the interaction between the light and atoms [251, 252].

Since atom interferometers are not only sensitive to acceleration, simul-

taneous measurements of multiple effects could extend the applicability

of the setup. The gravitational acceleration has been measured, for exam-

ple, alongside gravity gradients [253], rotations [254, 255] and magnetic

fields [244]. In most applications, gravimeters are never used on their own

but always in combination with other measurement techniques and de-

vices, as for instance seismometers or altimeters [30, 31]. Even combining

gravimetry and atomic clock data shows improvements in modelling of

the geopotential [256]. It is thus believed that gravimeters are only at the

beginning of enhancing our understanding of the earth and the universe.
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Appendix A

Rubidium-87 data

The relevant properties of the rubidium-87 isotope and its D2-line tran-

sition, that are used throughout this thesis, are listed in table A.1. The

D2-line transition allows several possible two-photon transitions between

the |F = 1〉 and |F = 2〉 ground states in 87Rb via the 52P3/2 excited state.

This is presented in section 2.4.2 using the case of σ+-transitions. Fig-

ures A.1 and A.2 show the cases of such stimulated Raman transitions

based on σ−- and π-transitions. The energy level diagrams in these fig-

ures only show the magnetic sublevels of the |F′ = 1〉 and |F′ = 2〉 states

since the other hyperfine sublevels of the 52P3/2 state do not have possible

two-photon transitions.
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Table A.1 Properties of 87Rb isotope and its D2 -line transition, values from [136].

Property Symbol Value

Mass m 1.443 16 · 10−25 kg

Wavelength (in vacuum) λ 780.24 nm

|F = 2〉 ↔ |F′ = 3〉 transition frequency ν2↔3 384.228 115 20 THz

|F = 1〉 ↔ |F′ = 2〉 transition frequency ν1↔2 384.234 683 23 THz

52S1/2 hyperfine splitting frequency fhfs 6.834 682 610 9 GHz

Excited state lifetime τ0 26.235 ns

Natural linewidth Γ 2π·6.067 MHz

Recoil velocity vrecoil 5.8845 mm s−1

Doppler temperature TD 145.6 µK

Recoil temperature Trecoil 362 nK

Transition dipole matrix element D 3.5842 · 10−29 C m

Saturation intensity |F = 2〉 ↔ |F′ = 3〉
transition (isotropic light polarisation)

Isat 3.5771 mW cm−2
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Figure A.1 Two-photon σ−-transitions between the magnetic sublevels of the
|52S1/2 ; F = 1〉 and |52S1/2 ; F = 2〉 ground states in 87Rb via the |52P3/2 ; F′ = 1〉
and |52P3/2 ; F′ = 2〉 excited states. The geometric factors for each transition are
taken from [136].
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Appendix B

Repump sideband frequency

calibration

Figure B.1 shows the calibration measurements of the voltage applied

to the VCO that is used to generate sideband frequency components in

the laser system discussed in section 4.2.4. When the carrier frequency

is resonant with the |F = 2〉 ↔ |F′ = 3〉 transition in 87Rb, the linear

fit has a crossing at the |F = 1〉 ↔ |F′ = 2〉 repump transition that cor-

respond to a voltage of (6.55 ± 0.04)V. The slope of the linear fit is

(28.5 ± 0.4)MHz V−1, giving a tuning sensitivity of (35.1 ± 0.4)mV MHz−1.

In case the carrier frequency is red-detuned from the cycling transition, the

right y-axis in figure B.1 needs to be shifted up by the same amount as the

detuning.
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[111] R. Charriere, Optimisation dun capteur inertiel à atomes froids par une
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