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Abstract 

Gross thigh volume is a key anthropometric variable to predict sport performance and health. 

Currently, it is either estimated by using the frustum method, which is prone to high inter- 

and intra-observer error, or using medical imaging, which is expensive and time consuming. 

Depth camera 3D-imaging systems offer a cheap alternative to measure thigh volume but no 

between-session reliability or comparison to medical imaging has been made. This 

experiment established between-session reliability and examined agreement with magnetic 

resonance imaging (MRI). Forty-eight male cyclists had their thigh volume measured by the 

depth camera system on two occasions to establish between-session reliability. A subset of 32 

participants also had lower body MRIs, through which agreement between the depth camera 

system and MRI was established. The results showed low between-session variability (CV = 

1.7%; Absolute Typical Error = 112 cm
3
) when measuring thigh volume using the depth 

camera system. The depth camera systematically measured gross thigh volume 32.6cm
3
 

lower than MRI. These results suggest that depth camera 3D-imaging systems are reliable 

tools for measuring thigh volume and show good agreement with MRI scanners, providing a 

cheap and time-saving alternative to medical imaging analysis. 
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Introduction 

Thigh volume is an important anthropometric characteristic in sport and exercise science 

(McCartney, Heigenhauser, & Jones, 1983; Schranz, Tomkinson, Olds, Petkov, & Hahn, 

2012). It is an anthropometric marker of strength and maximal intensity exercise (Chelly, 

Hermassi, Aouadi, & Shephard, 2014; Chelly, Hermassi, & Shephard, 2015) and maximal-

intensity exercise and health across a range of age groups (Makrides, Heigenhauser, 

McCartney, & Jones, 1985), genders and sub-populations (Lindemann et al., 2016). It also 

can be used to ascertain lean thigh volume (i.e. gross volume minus fat), which acts as a 

determinant of sporting performance (Dorel et al., 2005; Hopker, Coleman, Passfield, & 

Wiles, 2010). 

Accurate and reliable measurement of thigh volume therefore is highly desirable for the 

routine assessment of athletes and patients. X-ray and water displacement methods are 

thought to be gold standard measures of limb volume, but the high radiation exposure in X-

rays make it unethical and potentially dangerous to measure volume longitudinally. 

Additionally, water displacement is highly impractical and difficult to make precise volume 

measurements in short periods of time. 

Medical imaging technologies (e.g. magnetic resonance imaging [MRI]) have been used to 

assess thigh volume (Winsley, Armstrong, & Welsman, 2003) and lean thigh volume (Eston, 

Rowlands, Charlesworth, Davies, & Hoppitt, 2005). Despite their ability to quantify muscle 

volume/mass and fat mass, they typically are unavailable for regular use in most applied 

settings because of expense, laborious data capture and analysis procedures, and in some 

cases exposure to radiation. 

As such, gross thigh volume is commonly acquired by measuring a series of girth 

measurements around the thigh (typically near the gluteal fold, mid-thigh and patella) using a 
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tape measure, and then calculating the segment volume by modelling it as a frustum (or a 

series of frusta) (Kaulesar Sukul, den Hoed, Johannes, van Dolder, & Benda, 1993; Stranden, 

1981; Winter, Brookes, & Hamley, 1991). The frustum method provides a cheap and 

practical method to predict bone and muscle volume of the thigh (and whole leg). The first 

stage of the frustum method estimates gross thigh volume by performing (typically three) 

requisite linear extrapolation of thigh circumference measures, however, is not representative 

of a complex thigh structure, where muscle hypertrophy can be local. Therefore, using the 

initial part of the frustum method to measure total thigh volume can mask local hypertrophy, 

which reduces sensitivity (Mendiguchia et al., 2013). As such, the gross thigh volume which 

is used as part of the frustum method should be considered an emblematic measure rather 

than a valid representation of thigh volume. 

Three-dimensional (3D)-surface imaging systems – also known as 3D-scanning systems – 

offer an alternative method for obtaining measurements of thigh volume. These systems offer 

several benefits. They capture the complete external geometry of the thigh, data collection 

and analysis are fast and non-invasive, and they allow digital representations of the thigh to 

be stored, facilitating retrospective analysis of data. Although 3D-surface imaging systems 

have been used to take measurements of the human body (Hsu, Shih, & Liao, 2013), their use 

has been limited due to cost (ranging from £10,000 to £150,000) (Daanen & Ter Haar, 

2013).Consumer depth cameras – also known as RGB-D cameras (cost about £150) – offer 

an alternative for inexpensive and quick measurement of 3D morphology of the human body 

(Bullas, Choppin, Heller, & Wheat, 2016; Clarkson, Wheat, Heller, & Choppin, 2016; Ng, 

Hinton, Fan, Kanaya, & Shepherd, 2016; Soileau et al., 2016; Tong, Zhou, Liu, Pan, & Yan, 

2012; Wheat, Choppin, & Goyal, 2014). Several approaches have been used to obtain 

complete geometries of body segments from depth cameras, including moving the camera 

relative to a still participant or moving the participant relative to a fixed single camera (Ng et 
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al., 2016). An alternative that presents an important benefit of fast data collection times 

(which is more convenient for the participant and reduces movement artefacts) is to 

extrinsically calibrate several depth cameras relative to each other and perform near 

concurrent data capture. Bullas et al. (2016) used four extrinsically calibrated depth cameras 

to measure thigh volume and reported good intra-session reliability (relative technical error of 

measurement = 2.0%) but systemically overestimated thigh volume (6%) when compared to a 

gold standard 3D-surface imaging system (3dMD Ltd., 2008). 

Despite these promising initial findings related to the measurement of thigh volume using 

inexpensive, readily accessible, depth cameras, agreement with gold standard medical 

imaging techniques (such as MRI) is yet to be established, and no inter-session variability has 

been reported. Inter-session variability is important for longitudinal assessment (McGuigan, 

2017), particularly for elite athletes, where it is necessary to differentiate meaningful changes 

in volumes and potentially fat and fat-free volumes/mass of total thigh volume (Wroblewski, 

Amati, Smiley, Goodpaster, & Wright, 2011). Therefore, the aims of this study were twofold: 

to establish inter-session reliability of thigh volume measured using a depth camera 3D-

imaging system similar to that used by Bullas et al. (2016) and to assess the agreement 

between measurements of thigh volume taken using MRI and the depth camera system. 

Methods 

Participants 

Forty-eight male cyclists (M ± SD; age, 22.0 ± 4 years; stature, 1.79 ± 0.06 m; body 

mass, 77.8 ± 11.3 kg) were recruited for the study, all of whom participated in experiment 1. 

Thirty-six of those participants (M ±SD; age, 22.2 ± 5 years; stature, 1.79 ± 0.07 m; mass, 

75.2 ± 10.8 kg) volunteered to participate in experiment 2. Experience varied from 

recreational cyclists to elite cyclists who have competed internationally in the following 
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disciplines: BMX, track sprint, track endurance, mountain bike and road. Before their 

involvement, participants were informed of the purpose and potential risks of the study and 

provided written informed consent. The study was approved by the institutional Research 

Ethics and Governance Committee. 

Study Design 

The study was split into two experiments to assess the reliability and validity of the 

depth camera system. In experiment 1, between-session reliability of the depth camera system 

was assessed by comparing mean thigh segment volume of the participants measured on two 

occasions. In experiment 2, validity of the depth camera system was assessed by comparing 

the thigh segment volume with that measured using a 1.5 T Signa HDxt portable MRI 

system. 

The depth camera system used in both experiments was similar to that used by Bullas 

et al. (2016). It comprised four off-the-shelf, consumer depth cameras (Microsoft Kinect 

version 1, Microsoft Corporation, Redmond, USA) mounted vertically at each corner of a 

1.41 m by 1.41 m aluminium frame (Bosch, Rexworth, AG). Each camera was connected to a 

single computer (Dell Vostro 470, Intel Core™ i7, 8.0 GB RAM Dell Inc., Texas, USA), 

running KinanthroScan software (KinanthroScan v1.0, Centre for Sports Engineering and 

Research, Sheffield Hallam University), which was used to extrinsically calibrate, 

communicate with, and obtain data from, each depth camera during 3D scan capture. 

Calibration of the depth camera system followed the process described by Clarkson et 

al. (2016) in which 3D images of a calibration object (four polystyrene spheres mounted on a 

metal pole and baseplate) were obtained at nine positions in the calibration volume. The 

centres of the spheres were identified using a combination of image processing on the depth 

maps (an image containing information about the distances of objects in the scene from the 
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camera) and spatial optimisation within the 3D point clouds (collections of 3D points). 

Estimates of the sphere centre locations in each camera’s local coordinate system then were 

used to determine the relative position and orientation of the cameras using a common rigid 

body transformation technique (Spoor & Veldpaus, 1980) and optimised using a RANSAC 

approach (Fischer & Bolles, 1981). The system was calibrated on each testing day, taking 

approximately 9 min to complete. 

During 3D scan capture, data were collected sequentially from each depth camera, 

eliminating interference between the devices. This resulted in a total capture time of 

approximately 900 ms. For more details of the depth camera system, see Bullas et al. (2016). 

Experiment 1: Inter-session Reliability 

Depth Camera-Based 3D Scan Capture 

To assess the test-retest reliability of the depth camera system, participants reported to 

the laboratory twice, separated by a minimum of 24 hours and maximum of 7 days. 

Participants were instructed to avoid strenuous exercise 24 hours before data collection to 

avoid exercise-induced swelling and therefore changes in thigh segment volume. The 3D 

scans were captured for the left and right thigh segment at each visit. Upon arrival at the 

laboratory, participants removed extraneous lower body clothing and rolled up underwear if 

necessary to expose the relevant thigh segment. 

The inferior and superior boundaries of the thigh segment of each leg were identified 

by a circular marker, 1 cm in diameter, made in marker pen by the researcher to ensure the 

boundaries were visible on the scan image and to aid digitisation during post-scan analysis. 

The inferior boundary was defined as the most superior margin of the anterior patella and the 

superior boundary of the thigh segment was defined at a point 1 cm below the gluteal fold, 
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both in accordance with the standards of the International Society for Advanced 

Kinanthropometry (Stewart & Sutton, 2012). For consistency, the same researcher performed 

the anatomical marking throughout the data collection. 3D scans were captured while 

participants stood on an X that marked the centre of the scanner area. The limb not currently 

being scanned was positioned upon a nearby table, 1 m in height (straight-legged with 

relaxed calf muscle in contact with the table surface), to provide participants with stability 

and to keep the limb above the cameras’ vertical field of view. The scan was then captured 

with this process being repeated for the contralateral limb. Before leaving, the 3D images 

were examined briefly to ensure that the quality was at the desired standard. If they were not, 

the process was repeated until the investigator was satisfied with the image quality. This 

process took a maximum of 10 minutes. 

Post-Processing 

After the capture of the 3D scans, preliminary analysis was conducted in 

KinanthroScan (KinanthroScan v1.0, Centre for Sports Engineering and Research, Sheffield 

Hallam University). This required the digitisation of two anatomical landmarks, the superior 

and inferior boundaries of the thigh segment region of interest. For consistency of landmark 

digitisation in pre-post scans, a custom programme was used to automatically place the 

superior landmark equidistant from the inferior (which was placed by the researcher) to 

replicate thigh segment length from the initial test in the second experimental session. As 

such, the length of the thigh segment was kept consistent and allowed for direct comparison 

of volumes given by the scan analysis. 

This process created point clouds representing the thigh segment. We used an 

implementation of discrete Green’s equations as reported by Crisco & McGovern (1998) to 

calculate thigh volume. Each thigh point cloud was segmented into multiple contours (1 mm 
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thickness) along the long axis of the segment. The coordinates of each point on the contour in 

the long axis direction (z) were discarded, creating a plane of 2D points for each contour. 

Smoothing splines were fitted to the raw 2D points, resulting in a smooth collection of points 

defining the surface of the thigh in each contour. Thus, the thigh was represented as an object 

that can be described by multiple contours (s where s = 1 to sn, and sn is the total number of 

contours). Each contour lies on an xy plane and contains multiple 2D points (p, where p = 1 

to pn, and pn is the total number of point on a contour). The contours have z coordinates 

within the segment (mid-point of the contour along the long axis of the segment) and have 

consistent thickness (dz: 1 mm). Therefore, the coordinates of any point on the surface of the 

trunk are defined by x(s,p), y(s,p) and z(s) and: 

𝑑𝑥(𝑠, 𝑝) = 𝑥(𝑠, 𝑝 + 1) − 𝑥(𝑠, 𝑝) 

𝑑𝑦(𝑠, 𝑝) = 𝑦(𝑠, 𝑝 + 1) − 𝑦(𝑠, 𝑝) 

𝑢(𝑠, 𝑝) =
𝑥(𝑠, 𝑝 + 1) + 𝑥(𝑠, 𝑝)

2
 

𝑣(𝑠, 𝑝) =
𝑦(𝑠, 𝑝 + 1) + 𝑦(𝑠, 𝑝)

2
 

Volume can then be calculated as: 

𝑉 = ∑ (𝑑𝑧 × ∑ (−
𝑣(𝑠, 𝑝)

2
𝑑𝑥(𝑠, 𝑝) +

𝑢(𝑠, 𝑝)

2
𝑑𝑦(𝑠, 𝑝))

𝑝𝑛(𝑠)−1

𝑝=1

)

𝑠𝑛

𝑠=1

 

Statistical Analyses 

We measured absolute reliability using absolute standard error and calculated relative 

reliability using coefficient of variation (CV), standardised typical error and intraclass 

correlation coefficient (ICC). Thresholds for CV were defined in line with previous reliability 

studies that have used a CV of < 5% to infer acceptable reliability (Buchheit, Spencer, & 
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Ahmaidi, 2010). For standardised typical error, the results were doubled prior to 

interpretation using modified effect size thresholds (trivial, ≤ 0.2; small, > 0.2–0.6; moderate, 

> 0.6–1.2; large, > 1.2) as advocated by (Smith & Hopkins, 2011). ICC was interpreted 

according to the following thresholds: high , > 0.90; moderate, 0.80–0.90; low, < 0.80 

(Vincent, 2012). We calculated raw and relative typical error, as well as ICC, using the MS 

Excel Reliability spreadsheet developed by Hopkins (2015). 

Experiment 2: Agreement of the Depth Camera System with MRI 

Magnetic Resonance Imaging 

The second part of this study assessed agreement (concurrent validity) between the 

depth camera system and MRI. T1-weighted MR images of both limbs of the lower body 

were obtained originating at the anterior-superior iliac spine and finishing at the lateral 

malleolus of the fibula (scan parameters: time of repetition = 600 ms; time to echo = 14 ms; 

image matrix 512 pixels x 512 pixels; field of view 260 mm x 260 mm; slice thickness = 5 

mm; and interslice gap = 50 mm), using a mobile MR scanner at Christie Hospital, 

Manchester, UK (1.5 T Signa HDxt; Alliance Medical Limited, Warwick, UK). The MR 

scanner was operated by trained radiographers.  

Participants were asked to refrain from intensive exercise in the 24 hours before the 

scan. Before the MRI scan, each participant had multiple capsules containing fish oil attached 

to each leg to mark the specific landmarks. Fish oil capsules are an effective, low-cost MRI 

compatible skin marker (Gilbert et al., 2011). Accordingly, the inferior land mark had fish oil 

capsules placed at the superior margin of the anterior patella, and the superior land mark had 

fish oil capsules placed on the lateral part of the thigh 1 cm below the gluteal fold. 

Participants lay supine with legs fully extended and strapped in position to discourage any 

movement that could cause image distortion. 
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MRI Processing 

MR images were copied to open source DICOM image processing software OsiriX 

(OsiriX Lite 7.5.1, Pixmeo, Geneva, Switzerland), and an initial check for image quality was 

conducted. At this point, four participants were removed from the study due to either poor 

image quality or difficulty determining the inferior and superior boundaries of the thigh 

segment. For the remaining participants, the anatomical cross-sectional area of each thigh 

image was determined, in the axial plane, by manually outlining each individual image using 

the “closed polygon” tool. As this study was assessing whole-thigh segment volume, as 

opposed to that of constituent muscles, external visceral fat and connective tissue was not 

excluded. 

Manual outlining started with the most distal slice above the knee at which the 

anterior superior margin of the patella was not visible and ended with the most proximal slice 

for which the thigh was clearly distinguishable from the gluteal muscles. The total number of 

slices was noted and used to determine the length of the segment (length = n x 0.5 cm; where 

n = number of slices, given that MR image slices were 5 mm in thickness), and so the thigh 

segment volume could be calculated using the volume equation: volume = cross-sectional 

area x height. To ensure consistency in the assessment of concurrent validity between MRI 

and the depth camera system, the length given by MRI analysis was mirrored when 

calculating thigh segment volume from the raw circumference data obtained from the scan 

analysis. 

Statistical Analyses 



 

13 
 

We initially assessed concurrent agreement by comparing thigh segment volume as 

determined by the MRI technique with the mean volume of participants for which pre-post 

depth camera system scans were available. Of these, two were removed due to poor MRI 

clarity leading to a total of 32 observations. We used ordinary least square regression to 

determine the strength of the relationship between the criterion (MRI) and practical method 

(3D capture scan). We calculated overall bias, standardised and standardised error of estimate 

(SEE) with 95% confidence expressed absolutely as well as CV about regression in 

accordance with Hopkins’ (2015) guidelines. Both standardised mean bias and SEE used 

different modified Cohen scales. Hopkins’ modified Cohen scale was used to establish effect 

size thresholds for standardised overall bias; half thresholds of the scale were used (trivial, ≤ 

0.2; small, > 0.2–0.6; moderate, > 0.6–1.2; large, > 1.2). For SEE, Hopkins’ Cohen scale 

thresholds (trivial, < 0.1; small, ≥ 0.1–0.3; moderate, > 0.3–0.6; large, > 0.6) were used 

(Hopkins, 2015). 

Results 

Experiment 1 

Thigh volume measures of both lab visits are shown in Table 1. Absolute typical error 

of 112 cm
3 

was measured. For relative reliability, CV was 1.7%, and standardised typical 

error was calculated to be 0.09, which is classified as trivial effect size. ICC was 0.99 (0.99–

1.0), which showed high repeatability. 

Experiment 2 

There was good agreement between the depth camera and MRI estimates of thigh 

volume
 
(Figure 1) with the depth camera systematically measuring volume lower than the 

MRI by 32.6cm
3
. Raw and standardised SEE were 187 (149–249) cm

3
 and 0.20 (0.16–0.27), 
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small overall bias. SEE expressed as a CV about the regression was 3.8% (3.0–5.1%). Raw 

and standardised overall bias were 31 (-35–97) cm
3
 and 0.03 (-0.04–0.10), respectively, 

which is classified as trivial. This is summarised in Table 2. 

Discussion 

The aims of this investigation were to establish between-session reliability of thigh 

volume using the depth camera system and to compare the agreement of thigh volume 

obtained using the depth camera system with MRI measurement. 

For our first aim, results suggest that the depth camera system has high inter-session 

reliability when measuring thigh volume. For our second aim, there was a good agreement 

between thigh volume measures of the depth camera system and MRI with only a small, 

systematic underestimation. Taken together, our findings give researchers and practitioners 

confidence that depth camera 3D-imaging systems offer an inexpensive, time-saving and 

practical method to accurately and reliably measure gross thigh volume, making them 

suitable to monitor longitudinal changes. 

Traditionally, gross thigh volume is more commonly estimated by applying a formula 

that uses three circumference measures (distal, middle, and proximal) to create frusta (Jones 

& Pearson, 1969; Kaulesar Sukul et al., 1993; Stranden, 1981; Winter et al., 1991). This 

method that predicts gross thigh volume was introduced almost half a century ago, at the time 

where MRI and other high-fidelity systems were unavailable or, in the case of 

roentgenograms, were restricted to two-dimensional images and, importantly, were 

hazardous.  The depth camera system provides a higher resolution (i.e. more girth measuring 

points) which improves the measure of gross thigh volume by reducing the two major sources 

of error. First, it minimises inter- and intra-practitioner error as it only requires a practitioner 

to mark one point subsequent to the first measure of a participant rather than having to make 
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three separate circumference measures. Second, the higher resolution from the depth camera 

system gives a better representation of gross thigh morphology, capturing the non-

homogenous structure and growth of the thigh, which can be lost with the frustum method 

(Mendiguchia et al., 2013; Wells et al., 2014).  

Depth camera systems are applicable for monitoring thigh volume changes in 

response to training and prediction of sporting performance. They also are useful as an 

affordable and quick method to diagnose differences or changes in thigh volume in the 

clinical setting, such as trying to measure the difference between thigh volume of an 

individual who has suffered severe or chronic injuries in which limbs are injured or 

immobilized for long periods (e.g. after severe bone fractures or cruciate knee ligament 

tears). This also would make it applicable for practitioners, clinicians, strength and 

conditioning coaches, and physiotherapists to use as part of a monitoring or rehabilitation 

assessment battery. 

Our data collection showed the depth camera system to have a good between-session 

variation (CV = 1.7%). This repeatability is similar to that presented by Bullas et al. (2016) 

who investigated the intra-session variation of a similar depth camera system reporting a CV 

of 2.0%. The between-session variation for the 3D scanning system is similar when 

measuring volume using MRI and computed tomography (CT) where typical between-session 

measures are about 2% when using human participants rather than cadavers (which report a < 

1% repeatability). However, both Bullas et al. (2016) and Clarkson et al. (2016) reported a 

systematic overestimation of about 6% when comparing to volumes obtained using a gold 

standard 3dMD-surface imaging system and machined cylinders of known volume, 

respectively. The current study showed only a small, consistent and systematic 

overestimation of about 0.2% when compared to MRI, which suggests that both the depth 

camera system and MRI might systematically overestimate gross thigh volume. 
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There are limitations of this study that should be acknowledged. First, we assessed 

only one configuration of a consumer depth camera 3D-imaging system. Systems based on 

extrinsically calibrated consumer depth cameras can vary by the make and model, number, 

and positioning of the cameras. This is analogous to 3D stereo-photogrammetry systems – 

used for tracking movement of the body or equipment – which vary based on these factors. 

As with 3D stereo-photogrammetry systems, changes in the configuration of a depth camera 

3D-imaging system likely would affect validity and repeatability. The results presented here, 

however, provide a useful, general, indication of the validity and repeatability of depth 

camera systems in measuring thigh volume. Nonetheless, future studies using depth camera 

systems should report summary information for the repeatability of the specific setup used – 

which is, again, analogous to good practice with stereophotogrammetry systems. 

Second, like all 3D surface imaging systems – as well as other techniques such as 

water displacement and the frustum method – depth camera systems measure only gross thigh 

volume. Unlike medical imaging technologies, the composition of the thigh is unknown and, 

therefore, depth camera systems cannot be used to measure proportions fat and fat-free tissue 

directly. 3D surface scanning, however, has been used recently to estimate proportions of 

abdominal subcutaneous and visceral fat, by extracting from the 3D scans information about 

the shape as well as size of the abdominal region (Lee, Freeland-Graves, Pepper, Yao, & Xu, 

2014). Future research should explore the use of similar approaches to estimate proportions 

of fat and fat-free tissue in the thigh from 3D scans obtained with depth camera systems. 

Conclusion 

Three-dimensional surface imaging systems based on consumer depth cameras offer a 

solution to reliably measure thigh volume longitudinally with trivial-to-small differences 
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from MRI measures. Furthermore, they are low cost and readily accessible, offering the 

potential to impact on analysis of body morphology in clinical, health and sports domains. 
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Figure 1: Relationship between thigh segment volume as measured by the depth camera-

based 3D scanning system and MR Imaging technique (R
2
 = 0.96); y = -32.6 + x.  



 

24 
 

Table 1: Mean (± SD) thigh volume of both lab visits with coefficient of variation (CV%), 

absolute and standardised (stand) typical error and intraclass correlation coefficient (ICC). 

 

Table 2: Raw and standardised overall bias and standard error of estimate 


