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A Novel Hierarchical Template 
Matching Model for Cardiac Motion 
Estimation
Jayendra M. Bhalodiya1, Arnab Palit1, Manoj K. Tiwari2, Sanjay K. Prasad3, Sunil K. Bhudia3, 
Theodoros N. Arvanitis   4 & Mark A. Williams1

Cardiovascular disease diagnosis and prognosis can be improved by measuring patient-specific 
in-vivo local myocardial strain using Magnetic Resonance Imaging. Local myocardial strain can be 
determined by tracking the movement of sample muscles points during cardiac cycle using cardiac 
motion estimation model. The tracking accuracy of the benchmark Free Form Deformation (FFD) 
model is greatly affected due to its dependency on tunable parameters and regularisation function. 
Therefore, Hierarchical Template Matching (HTM) model, which is independent of tunable parameters, 
regularisation function, and image-specific features, is proposed in this article. HTM has dense 
and uniform points correspondence that provides HTM with the ability to estimate local muscular 
deformation with a promising accuracy of less than half a millimetre of cardiac wall muscle. As a 
result, the muscles tracking accuracy has been significantly (p < 0.001) improved (30%) compared to 
the benchmark model. Such merits of HTM provide reliably calculated clinical measures which can be 
incorporated into the decision-making process of cardiac disease diagnosis and prognosis.

Cardiovascular Diseases (CVDs) are amongst the leading causes of death globally1. The purpose of cardiac 
image analysis is to provide tools for disease diagnosis and prognosis. The structural analysis such as muscu-
lar strain (shortening or lengthening of muscles) has increased research attention compared to global analysis 
like blood ejection fraction2,3. Cardiac Motion Estimation4–7 (CME) with gold standard8,9 Magnetic Resonance 
Imaging (MRI) can be used to calculate subject-specific muscular strain of the myocardium (heart wall)4,10. The 
subject-specific11 or importantly patient-specific muscular strain could be beneficial for the treatment of car-
diac arrhythmia12, ischemia13, cardiomyopathy14, valve diseases15 and chemotherapy16. For example, Cardiac 
Resynchronization Therapy (CRT) with a pacemaker implant is one of the common clinical practices in patients 
with heart failure to maintain the mechanical movement of the heart. In clinical practice, the effectiveness of 
CRT is based on echocardiographic indices. However, researchers have reported serious dyssynchrony even 
after months of pacemaker implant17. Echocardiography, as a result, is not recommended as per current clinical 
guidelines12. An innovative use of muscular strain would be to target specific regions of the heart for placing the 
lead (wire-end of pacemaker device)12,17 in patients requiring CRT. Concisely, the patient-specific cardiac disease 
treatment could be improved by strain value-based disease diagnosis and prognosis18, and strain values could be 
reliably derived using accurate cardiac motion estimation model4–6.

A typical cardiac motion can be estimated by tracking sample myocardium muscles points throughout all 
the images of a cardiac cycle. The myocardium muscles can be tagged while developing MRI image, and these 
tag points could be used as sample points to track the detailed movement of the myocardium wall during a 
cardiac cycle. In the past decades, researchers have developed various CME models to measure cardiac motion 
and consequently, the ventricular wall strain. The state-of-the-art CME models are Optical Flow19,20 (OF), 
Harmonic Phase4 (HARP), and Free Form Deformation10,21,22 (FFD). OF and its extensions are independent of 
tag appearance but are extremely sensitive to the signal to noise ratio, and therefore, they fail to track muscles in 
low-resolution images23. HARP is based on Fourier domain analysis and capable of tracking arbitrary points of 
the image. However, it is natively low dimensional, highly sensitive to noise, underestimates motion because of 
aliasing artefacts and inaccurate for myocardial borderline muscles23–25. Non-rigid image registration of FFD is 
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based on B-spline functions and performs better than OF and HARP23,24. The fast-FFD has been proposed with a 
strategy of concurrently optimising control points26.

However, FFD has many tunable parameters such as (i) grid spacing in x and y directions, (ii) multiple grid 
levels, (iii) similarity measure, (iv) regularisation function, (v) a combination of different regularisation functions, 
and (vi) the maximum number of iterations. Therefore, the accuracy of the FFD greatly depends on the proper 
selection of these parameters for a particular pair of images. Additionally, the values of parameters may differ for 
a different set of image pairs. As a result, a fixed set of parameter values does not provide same accurate output 
for all the image pairs in a cardiac cycle. For example, the parameter values used with images A and B may not 
produce an accurate output for a different image pair C and D, as the best parameter values for image pair C and 
D might be different as used for image pair A and B. A typical cardiac motion can be recorded with 19 images 
(may vary as per subject) during a cardiac cycle, which is 18 image pairs. FFD output does not remain accurate for 
all 18 pairs of the cardiac cycle, and the inaccurate output leads to incorrect clinical measures. Contrary to FFD 
behaviour and according to a recent clinical contribution, the whole cardiac cycle strain values are crucial clinical 
measures18. Therefore, a CME model that remains accurate during the whole cardiac cycle is essential.

In addition, the FFD has smoothing effect which eventually underestimates the radial strain27. Incorporating 
cine MRI with tag MRI can improve the calculation of radial strain24, but this will incorporate additional depend-
ency on cine imaging. Moreover, the spatial and temporal alignment between cine and tag MRI will introduce 
additional error in the strain estimation. Tag points are sparse in the radial direction of heart vessel, which 
increases the difficulty for accurate radial strain measurement in heart muscles27. MRI images suffer from fading 
of tag points due to blood flow in vessels, and therefore, it is difficult to track the tag points. Hence, a CME model, 
which is less dependent or independent of tag points, is expected.

Overall, existing benchmark model FFD has limited accuracy due to the dependency on tunable parameters 
and regularisation function which result into incorrect clinical measures23–25,27–29.

In this paper, a novel Hierarchical Template Matching (HTM) model is proposed which is independent 
of tunable parameters, tag intersection points and regularisation function. The HTM considers the image as 
a set of points and is the core part of CME framework that estimates the muscles points displacement dur-
ing the cardiac cycle. HTM algorithm consists of three main steps: (i) selecting image points (ii) establishing 
point-correspondence between multiple images, and (iii) calculating geometric transformation among them. 
Points are dense, uniformly distributed, and automatically derived with hierarchical normalised cross-correlation 
and correlation-coefficient, which are proven as optimal matching criteria30–32. The geometric transformation has 
been calculated with Local Weighted-Mean33–36 (LWM). LWM is capable of calculating local image area-based 
non-linear transformation. LWM has provided promising results for the transformation of satellite images37,38. 
The displacement vectors of points have been used to calculate deformation followed by circumferential and 
radial strain39.

Section 2 includes the proposed HTM model and strain calculation steps. The results, validation approach and 
calculated strain values for a given MRI data set have been reported in Section 3. The discussion of clinical impact 
has been mentioned in Section 4, followed by a conclusion in Section 5.

Methods
The Hierarchical Template Matching (HTM)-based non-rigid image registration algorithm has been proposed, 
and the cardiac motion has been estimated by a sequence of image registrations over the cardiac cycle. As men-
tioned in Fig. 1, HTM consists of three steps: (i) Retrieving moving image point set (ii) Finding corresponding 
reference image point set (iii) Calculating geometric transformation between moving and the reference image 
point set. These three steps are performed with all the image pairs of the cardiac cycle to estimate the cardiac 
motion and strain values, which is described in section 2.4. Template, Segment, Chunk and Window are defined 
in Fig. 2, and the word ‘part’ is used for any of these four words. The phrase ‘target sliding region’ is used for the 
reference image area.

Retrieving Moving Point Set.  The moving image has been divided into t × t size image areas, which 
are Templates. Templates are divided into t/2 × t/2 size Segments, and Segments are divided into t/4 × t/4 size 
Chunks. Finally, Chunks are divided into t/8 × t/8 size Windows. The initial size of t is set as 16. Therefore the 
sizes of parts are as, Template 16 × 16, Segment 8 × 8, Chunk 4 × 4, and Window 2 × 2.

The first point of all the parts is stored in a separate set of points, which is a uniformly distributed point set, 
M = {m1, m2, …, mn}. The point set made up of all Window points is uniformly distributed as well as dense 
Pmoving = {p1, p2, …, pn}, which is a moving point set.

Finding Reference Point Set.  The hierarchical structure has been used to identify the reference image 
points corresponding to the moving image points. The proposed hierarchical structure has two crucial com-
ponents: template matching and overlapping layers. Template matching has been performed using Normalized 
cross-correlation (NCC) and correlation coefficient (CC). NCC takes two images as input and gives an output 
matrix of CC. The output matrix contains values ranging from −1.0 to +1.0. The maximum matrix value indicates 
the expected location of matching between both images. We have adopted NCC40,41 as a three-step procedure:

	 i.	 Select moving image part and compute its cross-correlation with corresponding reference image sliding area.
	ii.	 Evaluate local sums by pre-calculating running sums41.

	 iii.	  Apply local sums to normalise the cross-correlation values to calculate CC.
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As shown in Fig. 1 Step1, three overlapping layers are designed between Template and Segment layer, and one 
layer is designed between Segment and Chunk layer. The three overlapping layers have sizes 14 × 14, 12 × 12, 
10 × 10, whereas the one layer between Segment and Chunk is of size 6 × 6. The overlapping layers perform the 
crucial task of improving accuracy and reducing the size of reference image area during hierarchical matching. 
The mathematical definition of NCC is mentioned in Equation 1.
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where f is the reference image, p  is mean of moving image template, fu v,  is mean of f (x, y) that is reference image 
area under moving image template. The maximum of γ (u, v) is used to calculate the location of matching refer-
ence image area.

Equation (2) represents the first step of hierarchical structure, which is NCC between reference image and 
template of moving image.
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where IM: Moving Image, IR: Reference Image, MT: Moving Template, RT: Reference Template i:ith template, NCC: 
Normalized Cross-Correlation.

As mentioned in equation (3), the moving template section is used as an input for the overlapping layers, 
which perform NCC with the reference image template.

⊂ =MX MT RX NCC(MX , RT ) (3)im i im im i

Figure 1.  Overview of HTM model. These steps are repeated for all images pairs of the cardiac cycle to estimate 
strain in the myocardial muscles as a sequence of geometric transformation between image pairs.
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where the size of X is (st-2) × (st-2), st × st is the size of Template, MX: moving template section, RX: Reference 
template section, i: ith template, m: mth template section. The procedure of Equation (3) is performed with three 
different sizes of X, and the output RXim is used as input for Equation (4).

As mentioned in Equation (4), matching reference template section (RX) has performed NCC with moving 
segment to find corresponding reference segment.

∑= =
=

MT MS RS NCC MS RX( , )
(4)

i
j

ij ij ij im
1
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where MS: Moving Segment, RS: Reference Segment, i: ith template, m: mth template section, j: jth segment.
Equation (5) represents the overlapping layer between Segment and Chunk layer. The input for NCC is refer-

ence segment and moving segment section. It gives the reference segment section as an output.

⊂ =MY MS RY NCC RS(MY , ) (5)ijy ij ijy ijy ij

where MY: Moving segment section, RY: Reference segment section, i: ith template, j: jth segment, y: yth segment 
section.

As mentioned in Equation (6), Matching reference segment section (RY) is further used as an input of NCC 
with moving chunk. It gives the matching reference image chunk.
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where MC: Moving Chunk, RC: Reference Chunk, i: ith template, j: jth segment, k: kth chunk, y: yth segment section.
As mentioned in Equation (7), as a final step, NCC between reference image chunk and moving image window 

is performed. It provides the matching reference image window corresponding to the moving image window.
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where MW: Moving Window, RW: Reference Window, i: ith template, j: jth segment, k: kth chunk, l: lth window. The 
resultant moving window point set (PMW) and corresponding reference window point set (PRW) are mathemati-
cally represented by Equation (8).

Figure 2.  (a) Pictorial definitions of Template, Segment, Chunk, Window, Representative or Control Point. (b) 
Structure of overlapping parts layer to derive dense control points.
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The whole mathematical procedure of hierarchical NCC matching from Equations 2–7 is represented in Fig. 3. 
PMW and PRW are further used as inputs to estimate geometrical transformation in section 2.3.

Geometric Transformation of Moving Points into Reference Points.  All the moving points are 
transformed into reference points using landmark-based Local Weighted Mean (LWM) radial basis function. In 
moving image, landmarks are N moving control points (Xi, Yi), and in the reference image landmarks are corre-
sponding reference control points (xi, yi), which are mentioned in Equation (8).

= …x y X Y i N{( , ), ( , ): 1, , } (9)i i i i

= =X f x y Y f x y( , ), ( , ) (10)i x i i i y i i

Or,
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The measurements are arranged in a surface f(x, y) as per equation (12).

x y f i N{( , , ): 1 } (12)i i i = ..

A polynomial (Polyi) passing through the measurement (xi, yi, fi) and its (n-1) nearest neighbour control 
points is calculated. For an arbitrary point (x, y) the weighted mean of all polynomials passing through that point 
has been calculated. The weight function is mentioned in Equation (13).

Figure 3.  Pictorial representation of Hierarchical Template Matching (HTM) process.
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Therefore, if control points have a greater distance than Dn then they will not affect the transformation of that 
point. Moreover, the derivation of W with respect to D at D = 0 and D = 1 is 0. It ensures that the weighted sum is 
continuous and smooth at all the points. The transformation function at any arbitrary point (x, y) is defined in 
Equation (14).
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Cardiac motion and strain calculation.  Cardiac motion is defined as the change in locations of the myo-
cardial points. The cardiac motion function is initialised with the myocardial points of image I1, which is the 
first image of the cardiac cycle recorded at time t. The geometric transformation function tracks the location of 
these points in image I2, which is the second image of the cardiac cycle at time t + Δt. The entire cardiac cycle is 
recorded with n images (I1, I2, I3, …, In). Therefore, the geometric transformation has been performed sequen-
tially (I1 → I2 → … → In-1 → In) with consecutive images of the cardiac cycle. The motion estimation and strain 
calculation are aligned with literature (Khaled et al., 2009; Gao et al.42).

The displacement gradient is calculated with respect to the initial image I1. Equation (15) defines the 2D 
displacement gradient ∂U. L is the position vector of the moving image and L1 is the same position vector of the 
initial image I1.
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The deformation gradient F is defined in Equation (16).

F I U( ) (16)1= − ∂ −

The circumferential and radial strain during the whole cardiac cycle has been derived from the deformation 
gradient. Eulerian strain tensor E is defined in Equation (17).

= − −E I FF1
2

[ ( ) ] (17)
T 1

Results
The proposed, HTM cardiac motion model has been applied to a dataset of 15 healthy subjects which contains 
1140 short-axis images. The assessment is performed using Target Registration Error (TRE) using 18 landmarks 
of the Left Ventricle (LV) wall. The clinical measure of muscles displacement has achieved an accuracy of less 
than half a millimetre of cardiac muscle. HTM significantly (p < 0.001) reduces the registration error 30.97% 

Figure 4.  (a) Four different LV plane positions during MRI, and (b) six different regions of the LV muscular 
wall for strain calculation.
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compared to the registration error obtained from FFD for 1080 image pairs. The Root Mean Square Error (RMSE) 
at four different LV level (basal, upper mid-ventricular, mid-ventricular and apical; Fig. 4) is calculated to show 
the accuracy of the HTM model all over the LV wall muscles. Another important clinical measure is the ventricu-
lar wall strain during the cardiac cycle. Circumferential and radial strain values using a data of healthy subject 
have been estimated in six regions (Figs 4 and 8) of LV myocardial wall. The details of the data set and the vali-
dation method are mentioned in section 3.1, and the quantitative results are reported in section 3.2, 3.3, and 3.4.

Algorithm 1.  C ardiac Motion Estimation with HTM.
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Dataset and Validation.  The data has been obtained using two different scanners to investigate the robust-
ness of our method. (i) 1.5 T Optima MR450w of GE MRI scanner from University Hospital Coventry and 
Warwickshire (UHCW), Coventry, UK; with pixel size 1.48 × 1.48 mm (ii) 3 T SKYRA of SIEMENS MRI scanner 
from Royal Brompton Hospital, London, UK; with pixel size 1.69 × 1.69 mm. Biomedical and Scientific Research 
Ethics Committee (BSREC) approval (REGO-2016-1865) has been obtained to conduct the study on anonymised 
human heart data. ECG-gated cardiac tagged MRI has been recorded with proper breath holds and Steady-State 
Free Precision (SSFP). As mentioned in Fig. 4, the human LV images have been captured at four different levels: 
basal (top of LV), upper mid-ventricular, mid-ventricular and apical (bottom of LV). The cardiac cycle has been 
captured with 19 sequential phases of short-axis images (SAX). The initial phases represent diastole, and the later 
phases represent systole.

The geometric transformation is the core part of the model, and it has been quantitatively validated using 
two approaches: (i) Target Registration Error (TRE), and (ii) comparison with the benchmark model FFD. The 
first approach, TRE is adapted from literature10,27,42 which is reported as a most important accuracy measure42. 
It calculates the RMSE between corresponding known landmarks which are not used while calculating transfor-
mation. The second method is a comparison with improved FFD model26, which is an extension of classical FFD 
model21. FFD is reviewed with least RMSE error compared to existing methods23. Non-rigid registration results 
are obtained using latest FFD source code in order to compare the RMSE of HTM and FFD. In this study, the fol-
lowing values of FFD are used: (i) similarity measure is normalised mutual information (ii) regularisation func-
tion is bending energy (BE) (iii) value of BE is 0.001 (iv) the linear energy term is 0.01 (v) control point grid levels 
are 3. The accuracy of the FFD model could be improved if the distances between control points are reduced21. 
Therefore, initial, second, and final level has 4 × 4, 2 × 2 and 1 × 1 control point spacing respectively.

Figure 5.  (a) TRE of basal, upper mid-ventricular, mid-ventricular, and apical level of LV. (b) Separate TRE of 
all image pairs of cardiac cycle at all four levels.

Figure 6.  Comparison of output images using FFD and HTM. Middle image (in both cases (a) and (b)) is the 
expected output image. Left and right images are respectively FFD output image and HTM output image. Red 
circles highlight inaccurately transformed muscles of LV wall.
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Target Registration Error – RMSE of HTM.  The tagged MRI SAX images have known landmarks dis-
tributed over all six regions. These landmarks are tracked during the cardiac cycle to calculate RMSE in milli-
metre (mm), which provides a clinical measure of LV wall displacement. The RMSE is applied on pairs of actual 
landmark locations and tracked landmark locations, which provides RMSE of differences between actual and 
tracked landmarks. As mentioned in Fig. 5(a), the basal level mean error is 0.3101 ± 0.0053 mm, the upper 
mid-ventricular level mean error is 0.3743 ± 0.0035 mm, the mid-ventricular error is 0.4140 ± 0.0026 mm, and 
the apical level mean error is 0.3179 ± 0.0065 mm. The reported mean error with HTM is less than half a milli-
metre in all cases. The results clearly show that HTM is capable of providing the desired accuracy during image 
registration without using tunable parameters as used in FFD. Moreover, a significant reduction of RMSE is also 
mentioned in section 3.3.

Comparison of HTM and FFD.  The transformed images, which are obtained using FFD and HTM, have 
been compared with the expected results as shown in Fig. 6. It is observed that the transformed images produced 
using HTM provide better results as compared to the transformed images obtained from FFD. FFD failed to 

Figure 8.  Circumferential and radial strain values over the cardiac cycle. All six regions have different 
behaviour and strain pattern.

Figure 7.  (a) Mean RMSE comparison using 1080 SAX image pairs from 15 normal subjects. HTM has 
significantly reduced error with p < 0.001 for a paired-sample t-test. (b) Percentage error comparison during all 
phases of four different cardiac cycles. The yellow bar is FFD error which is the base (100%), and accordingly, 
the green bar is HTM error in percentage. The difference of heights of yellow and green bars is percentage error 
reduction using HTM.
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transform muscles of Anterior, Anterolateral and Anteroseptal regions of the myocardial wall (red circles). From a 
paired sample t-test, it is observed that HTM significantly (p < 0.001) reduces TRE compared to FFD. The signifi-
cant reduction is depicted in Fig. 7(a). Figure 7(b) shows the percentage improvement in accuracy obtained from 
HTM in comparison with FFD. The FFD error (yellow bar) is considered as a base, i.e. 100% and with respect to 
that, the HTM error percentage is shown using the green bars. The difference in the height of yellow and green 
bars shows the percentage improvement with HTM model. The comparative analysis shows that HTM provides 
almost 50% improvement in 20% of the images, and more than 30% improvement in 50% of the images.

Strain analysis.  Circumferential and radial strain values of a healthy volunteer have been calculated during 
the cardiac cycle with a promising accuracy of less than half a millimetre of cardiac muscle. The mechanics of the 
heart is not uniform for all the heart muscles. Therefore, myocardial muscles have different strain values in differ-
ent regions. SAX images have been divided into six different regions as per American Heart Association (AHA) 
model. As shown in Fig. 4(b), the six regions are Anterolateral, Inferolateral, Inferior, Inferoseptal, Anteroseptal, 
Anterior. Strain values for each of the regions are separately plotted in Fig. 8. Circumferential strain value curves 
show that they are increasing gradually in the beginning and reducing faster in the later part. It is because of the 
reduced filling of the blood in LV followed by contraction and rapid ejection. The strain values are qualitatively 
similar and within the typical limits mentioned in the literature for human LV43.

Discussion
A novel patient-specific model HTM is proposed to estimate cardiac motion and to calculate myocardial strain 
values using human heart MRI. The model is based on the local weighted-mean geometric transformation of 
image points, which are obtained using robust hierarchical template matching. The HTM has five advantages over 
existing literature methods. First, HTM is independent of tunable parameters and tag MRI intersection points, 
which makes it significantly accurate than benchmark model-FFD. Second, radial strain calculated by FFD is 
affected by regulariation term27, whereas HTM does not use regularisation term, and therefore, the calculated 
strain values are not affected by regularisation function. Third, the control points are dense and uniform all over 
the image, therefore, HTM can provide better accuracy compared to the thin-plate spline and multiquadric based 
models35. Fourth, HARP is natively two dimensional, but HTM can be extended to the higher dimensions33,34 
which provides flexibility to improve the cardiac analysis by three-dimensional extension of HTM. Fifth, the 
transformation function of HTM does not need a solution of a system of equations which makes it mathemati-
cally and computationally simplified compared to the elaborate spline procedure which is used in FFD33,35,37. The 
transformation function of HTM is locally sensitive, which can transform smaller areas of the image precisely, 
and therefore the resultant muscles tracking can be performed with an accuracy of less than half a millime-
tre of cardiac muscle. The calculated circumferential and radial strain of six different LV regions are similar to 
literature43.

The patient-specific muscular strain value-based disease diagnosis and prognosis is still in its clinical infancy7, 
but researchers have reported possible applications for CVD patients18. For example, patients with the ischemic 
cardiomyopathy could be benefitted by end-systolic strain-based diagnosis13. The prognosis of patients with car-
diomyopathy might be improved by observing the difference in strain values14. However, the strain value based 
prognosis and therapy in cardiomyopathy is under research, and therefore, the future benefit from derived mus-
cular strain values needs to be tested on a large group of patients, and the generalized strain range might be useful 
for clinical decisions. Cardiac Resynchronization Therapy (CRT) with specialised pacemakers have been used 
in heart failure patients17. The cardiac muscles in these patients do not shorten or lengthen appropriately during 
heart function. Pacemaker leads (wire-end) stimulate various parts of the heart, right and left ventricles, to mimic 
the finely tuned rhythmic movement of the heart. Identifying the optimum position for the pacemaker leads 
can be challenging, and not routinely performed. The positions in which the leads settle are crucial for rhyth-
mic heart movement. Strain values can be calculated for various potential lead positions, and the most efficient 
could be used to ensure leads are positioned as close to the identified position as possible. The identified position 
could be reached transvenously or epicardially via minimal access techniques. Strain values could be instead of 
currently used ventricular ejection fraction to guide timing of intervention in patients with valvular disease15. 
In chemotherapy patients suffering from cardiotoxicity (heart becomes weaker to pump blood) could be treated 
more efficiently with proper strain value-based cardiac assessment16 which may help to reduce the mortality with 
chemotherapy.

The limitation of the proposed method is generating an ill-conditioned polynomial with a fewer (less than 6) 
number of points. However, this limitation can be eliminated by selecting a sufficient number of local points (rec-
ommended 12). The proposed method may not give promising results for the images which are affected by high 
sensor noise of MRI scanner, but standard quality scanner with a trained operator can eliminate this limitation 
by developing better quality images.

The future work is the extension of HTM model for three dimensions which will incorporate vertical move-
ment of the heart to provide us with the improved clinical measures. The strain values could be incorporated in 
biomechanics44–48 model with tissue properties constraint for designing future therapeutic interventions.

Conclusion
In this paper, a novel HTM algorithm is proposed for cardiac motion estimation which is independent of tuna-
ble parameters, regularisation function, tag MRI intersection points, and extendable to higher dimensions. The 
reported results have shown the promising accuracy of less than half a millimetre of cardiac muscles. The calcu-
lation of cardiac strain values is performed for a detailed local assessment of cardiac muscles. The impact of the 
outcome has been focused on the betterment of patient-specific cardiac disease diagnosis and prognosis.
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Data availability.  The dataset generated during the current study and code are available from the corre-
sponding author on reasonable request. The original MRI scans can be accessible from the authors SKP and SKB 
as per NHS rules and regulations.
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