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ABSTRACT 

Microbubbles in an ultrasound beam experience a primary Bjerknes force, which pushes the 

microbubbles against a fluid-tissue interface and deforms the tissue. This interaction has been 

used to measure tissue elasticity and is a common interaction in many therapeutic and 

diagnostic applications, but the mechanisms of deformation, and how the deformation 

dynamic depends on the bubble and ultrasound parameters, remain unknown. In this study, a 

mathematical model is proposed for the displacement of a bubble onto a fluid-tissue interface 

and the tissue deformation in response to the primary Bjerknes force. First, a model was 

derived for static loading and the model’s prediction of bubble-mediated tissue displacement 

and stresses in tissue were explored. Second, the model was updated for dynamic loading. 

The results showed that the bubble is both displaced by the applied force and changes its 

shape. The bubble displacement changes nonlinearly with the applied force. The stress values 

in tissue are quite high for a distance within one radius of the bubble from the bubble surface. 

The model proposed here is permissible in human tissue and can be used for biomedical 

ultrasound applications including material characterization. 

 

PACS numbers: 43.80.Gx, 43.80.Qf, 43.80.Sh 
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I. INTRODUCTION 

Microbubbles in an ultrasound beam experience a primary Bjerknes force, which pushes 

these microbubbles. There are many studies of bubbles within infinite liquids exposed to a 

pressure wave in the literature. In fact, several models have been developed for 

unencapsulated (Keller and Miksis, 1980;  Prosperetti, 1987) and encapsulated (Church, 1995;  

Doinikov et al., 2009; Marmottant et al., 2005) bubbles in a liquid, and for radial oscillations 

of a bubble in an elastic and viscoelastic medium (Yang and Church, 2005; Zabolotskaya et 

al., 2005; Barajas and Johnsen, 2017). Mathematical models for the displacement of a bubble 

embedded in a tissue have also been proposed (Ilinskii et al., 2005). But bubbles are often 

present along fluid-tissue interfaces during ultrasound imaging (Erpelding et al., 2005) 

(Doherty et al., 2013) and therapeutic applications (Haar, 2007). In these situations, it would 

be useful to be able to predict the deformation and stress applied to the tissue for different 

ultrasound and microbubble parameters. 

Techniques, based on the application of ultrasound and monitoring of the deformation or 

force response, have been used in practice to determine tissue properties such as the elasticity 

modulus  (Ophir et al., 1991; Fatemi and Greenleaf, 1998; Nightingale et al., 2001). The use 

of microbubbles, where bubbles push tissue under ultrasound exposure, was proposed to 

improve the contrast and spatial resolution of elasticity imaging (Koruk et al., 2015). 

However, the mechanisms of deformation, and how the deformation dynamic depends on the 

bubble and ultrasound parameters, remain unknown. It should be noted that a bubble pushed 

by ultrasound has been previously used for tissue characterization by using mathematical 

models for a particle embedded in a tissue (Ilinskii et al., 2005; Chen et al., 2002; Aglyamov 

et al., 2007; Karpiouk et al., 2009; Urban et al., 2011; Yoon et al., 2011). This technique uses 

a high-powered laser to generate the bubble. Therefore, this limits its application to shallow 

targets and requires local destruction of the material. Thus, the technique based on bubble 
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generation using laser induced optical breakdown in the medium may not be permissible in 

human tissue. Furthermore, microbubbles and other contrast agents are not embedded in 

tissue in practice instead they are administered in blood. 

In this study, a mathematical model is proposed for the displacement of a bubble onto a 

fluid-tissue interface and the tissue deformation in response to the primary Bjerknes force. 

The technique used here is based on the approach used for the displacement of a spherical 

object embedded in a bulk material (Ilinskii et al., 2005; Landau and E. M. Lifshitz, 1987). 

First, a model was derived for static loading and the model’s prediction of bubble-mediated 

tissue displacement and stresses in tissue were explored. Second, the model was updated for 

dynamic loading. The results showed that the model is capable of predicting the bubble 

displacement in fluid-tissue interface and tissue deformation, thus can be used for biomedical 

ultrasound applications including the design of experiments and material characterization. 

 

II. MATHEMATICAL MODEL 

A bubble moves in fluid (Fig. 1a) and then displaces tissue when it is exposed to an 

acoustic radiation force (Fig. 1b). The problem here is axisymmetric, hence the deformation is 

symmetric along the axial (x) direction and the vector of displacement due to an acoustic 

radiation force 𝑓𝑒 has radial (𝑢𝑟) and polar (𝑢𝜃) components.  

 

 

 

 

 

 

 



 6 

 (a)                                                                    (b) 

 

 

FIG. 1. (Color online) (a) A bubble with a radius of R moves in fluid and then (b) displaces 

tissue with a shear modulus G and density 𝜌 when it is exposed to an acoustic radiation force.  

 

A. Static loading 

Most tissues can be considered incompressible (Sarvazyan, 1975). Assuming the medium 

is elastic, isotropic, homogeneous, incompressible and inviscous, the displacement vector can 

be written as (Ilinskii et al., 2005): 

 𝐮 = 𝛁x𝛁(𝑔𝐞)                                                             (1) 

where 𝐞 is a unit vector along the displacement vector and 𝑔 = 𝑔(𝑟) is a scalar function given 

by: 

 𝑔(𝑟) = 𝑎𝑟 +
𝑏

𝑟
                                                              (2) 

Here 𝑎 and 𝑏 are constants determined by using boundary conditions on the object surface 

and 𝑟 is the radial coordinate. When the polar axis of the spherical system of coordinates is 

along the displacement vector, the components of displacement vector are given by: 

 𝑢𝑟 =
2

𝑟2 (−𝑎𝑟 +
𝑏

𝑟
) cos𝜃                                                          (3a) 

 𝑢𝜃 =
1

𝑟
(𝑎 +

𝑏

𝑟2) sin𝜃                          (3b) 
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fluid tissue  
(𝐺,  𝜌) 
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(𝐺,  𝜌) 
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ℎ 
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where 𝜃 is angle between the radial coordinate (r) and axial (x) direction as depicted in Fig. 1. 

The pressure in the medium is given by: 

 𝑝 = 𝑝0 + 𝐺(𝐞 ∙ 𝛁)∇2𝑔              (4) 

where 𝑝0 is the pressure far away from the object and 𝐺 is the shear modulus of material. It 

should be noted that the elasticity modulus is related to the shear modulus by 𝐸 = 2𝐺(1 + 𝜈) 

for homogeneous isotropic materials where 𝜈 is Poisson’s ratio. The force on a displaced 

spherical object in elastic medium is given by (Landau and E. M. Lifshitz, 1987): 

 𝑓 = ∫(−𝑝cos𝜃 + 𝜎𝑟𝑟cos𝜃 − 𝜎𝑟𝜃sin𝜃) d𝑆          (5) 

where 𝜎𝑟𝑟 and 𝜎𝑟𝜃 are stress tensor components and d𝑆 is an element of spherical surface. For 

the problem illustrated in Fig. 1, Eq. (5) can be written as: 

 𝑓 = ∫ (−𝑝cos𝜃 + 𝜎𝑟𝑟cos𝜃 − 𝜎𝑟𝜃sin𝜃)2π𝑅sin𝜃𝑅d𝜃
𝜃ℎ

0
               (6a) 

or  

 𝑓 = 2𝜋𝑅2 ∫ (−𝑝cos𝜃 + 𝜎𝑟𝑟cos𝜃 − 𝜎𝑟𝜃sin𝜃)sin𝜃d𝜃
𝜃ℎ

0
                  (6b) 

where 𝜃ℎ is the angle corresponding to the displacement h. The components of stress tensor 

within a spherical system of coordinates become: 

 𝜎𝑟𝑟 = 2𝐺
𝜕𝑢𝑟

𝜕𝑟
= 4𝐺 (

𝑎

𝑟2 −
3𝑏

𝑟4 ) cos𝜃            (7a) 

 𝜎𝑟𝜃 = 𝐺 (
𝜕𝑢𝜃

𝜕𝑟
−

𝑢𝜃

𝑟
+

1

𝑟

𝜕𝑢𝑟

𝜕𝜃
) = −

6𝐺

𝑟4 𝑏sin𝜃              (7b) 

The boundary condition at the bubble surface (i.e., at 𝑟 = 𝑅) is 𝜎𝑟𝜃 = 0 and this gives 𝑏 = 0. 

Thus, the expressions displacement vector components, the radial component of stress tensor 

𝜎𝑟𝑟 and pressure are reduced to: 

 𝑢𝑟 = −
2𝑎

𝑟
cos𝜃               (8a) 

 𝑢𝜃 =
𝑎

𝑟
sin𝜃                                   (8b) 

 𝜎𝑟𝑟 =
4𝐺𝑎

𝑟2
cos𝜃                            (9) 
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 𝑝 = 𝑝0 −
2𝐺𝑎

𝑟2 cos𝜃                               (10) 

The value of 𝑎 is estimated using the equilibrium equation stating that the pressure outside the 

object including the pressure in the medium 𝑝, the normal stress 𝜎𝑟𝑟 acting on the object, and 

the acoustic radiation pressure 𝑝𝑒 is balanced by the internal pressure in the object 𝑝𝑔: 

 𝑝 − 𝜎𝑟𝑟 + 𝑝𝑒 = 𝑝𝑔                              (11) 

The radiation pressure 𝑝e here is the external force per unit area acting on the bubble surface. 

Since the radiation force changes with 𝜃, the pressure 𝑝e is also as a function of 𝜃: 

 𝑝e = 𝑝e0cos𝜃                                (12) 

where 𝑝e0 is the pressure for 𝜃 = 0, and its value is defined by the equation for the radiation 

force: 

 𝑓e = 2𝜋𝑅2 ∫ (−𝑝ecos𝜃)sin𝜃d𝜃
𝜃ℎ

0
                                  (13) 

Substitution of Eq. (12) into Eq. (13) and integration yields: 

 𝑝e0 =
3𝑓e

2𝜋𝑅2(cos3𝜃ℎ−1)
                    (14) 

Substitution of Eqs. (9), (10), (12) and (14) into Eq. (11) and setting 𝑟 = 𝑅 and 𝑝𝑔 = 𝑝0 

yields: 

 𝑎 =
𝑓e

4𝜋𝐺((1−
𝑢𝑟0

𝑅
)

3
−1)

                   (15) 

where 𝑢𝑟0 is the radial stress component for 𝜃 = 0. Thus, the displacement components and 

the radial stress component then become: 

 𝑢𝑟 =
𝑓e

2𝜋𝐺𝑟[1−(1−
𝑢𝑟0

𝑅
)

3
]
cos𝜃                               (16a) 

 𝑢𝜃 = −
𝑓e

4𝜋𝐺𝑟[1−(1−
𝑢𝑟0

𝑅
)

3
]
sin𝜃                                (16b) 

 𝜎𝑟𝑟 = −
𝑓e

𝜋𝑟2[1−(1−
𝑢𝑟0

𝑅
)

3
]
cos𝜃                        (17) 
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It should be noted that the impedance mismatch between the bubble and the surrounding fluid 

or tissue is far greater than the mismatch between the fluid and tissue. As a result, we have 

ignored the deformation of the fluid-tissue interface. The model can be used to predict 

displacement of large and small bubbles. However, the surface tension effect, which was not 

included here, is significant for small bubbles and specifically for bubble shape changes. The 

inclusion of surface tension into the model will be considered in a future study.  

 

B. Dynamic Loading 

Here, we investigate the displacement of a gas bubble in an elastic incompressible medium 

when the external force depends on time. The displacement of the bubble will be as in Eq. (1). 

However, this time the function 𝑔(𝑟) is defined as (Ilinskii et al., 2005): 

 𝑔(𝑟) =
�̃�𝐞𝑗𝑘𝑟

𝑗𝑘𝑟
−

�̃�

𝑟
                   (18) 

where �̃� and �̃� are complex constants determined by using boundary conditions, while 𝑘 is a 

wave number for a shear wave of frequency 𝜔 given by:  

 𝑘2 =
𝜔2

𝑐𝑡
2 =

𝜌𝜔2

𝐺
                       (19) 

The components of displacement vector in this case are given by: 

 𝑈𝑟 = −
2

𝑟2 [�̃�𝐞𝑗𝑘𝑟 (1 −
1

𝑗𝑘𝑟
) +

�̃�

𝑟
] cos𝜃                        (20a) 

 𝑈𝜃 = −
1

𝑟2 [�̃�𝐞𝑗𝑘𝑟 (1 − 𝑗𝑘𝑟 −
1

𝑗𝑘𝑟
) +

�̃�

𝑟
] sin𝜃                           (20b) 

The pressure equation is: 

 𝑝 = 𝑝0 + 𝐺(𝐞 ∙ 𝛁)(∇2𝑔 + 𝑘2𝑔)                                  (21) 

where 𝑝0 is the pressure far away from the object. Using the boundary condition at the bubble 

surface (i.e., at 𝑟 = 𝑅) being 𝜎𝑟𝜃 = 0 and Eq. (20), we have: 

 𝜎𝑟𝜃 = −
𝐺

𝑅3
[�̃�𝐞𝑗𝑘𝑅 (3𝑗𝑘𝑅 + 𝑘2𝑅2 − 6 +

6

𝑗𝑘𝑅
) −

6�̃�

𝑟
] sin𝜃 = 0              (22) 
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Here �̃� is determined to be: 

 �̃� = �̃�𝐞𝑗𝑘𝑅𝑅 (
1

2
𝑗𝑘𝑅 +

1

6
𝑘2𝑅2 − 1 +

1

𝑗𝑘𝑅
)                (23) 

So, the expressions of the displacement vector components are reduced to: 

 𝑈𝑟 = 𝑈𝜔 (1 −
1

3
𝑗𝑘𝑅) cos𝜃                              (24a) 

 𝑈𝜃 = −
𝑈𝜔

2
(1 +

1

3
𝑗𝑘𝑅) sin𝜃                                (24b) 

Here 𝑈𝜔 is given by: 

 𝑈𝜔 = −
𝑖𝑘

𝑅
�̃�𝐞𝑗𝑘𝑅                                   (24c) 

and is interpreted as low-frequency displacement. The radial component of stress tensor 𝜎𝑟𝑟 at 

the bubble surface, and the pressure in the medium around the moving bubble are reduced to: 

 𝜎𝑟𝑟 = −
2𝐺

𝑅
𝑈𝜔(1 − 𝑗𝑘𝑅)cos𝜃                                   (25) 

 𝑝 = 𝑝0 +
𝐺

𝑅
𝑈𝜔 (1 − 𝑗𝑘𝑅 −

1

2
𝑘2𝑅2 +

1

6
𝑗𝑘3𝑅3) cos𝜃                            (26) 

Performing operations similar to the static case expression describing bubble displacement 

induced by external force 𝐹𝑒𝜔 is obtained as: 

 𝐹𝑒𝜔 = 2𝜋𝐺𝑅𝑈𝜔(1 − cos3𝜃ℎ) (1 − 𝑗𝑘𝑅 −
1

6
𝑘2𝑅2 +

1

18
𝑗𝑘3𝑅3)                (27) 

In the time domain, the equation for the bubble oscillations looks like: 

 𝑢 + �̇� +
1

6
�̈� +

1

18
𝑢 = 𝑓𝑒                  (28) 

Equation (28) is written by dimensionless displacement, external force and time, given by: 

 𝑢 =
𝑢(𝑡)

𝑅
                                (29a) 

 𝑓𝑒 =
𝑓𝑒

2𝜋𝐺𝑅2(1−cos3𝜃ℎ)
                                      (29b) 

 𝑡 =
𝑡√𝐺 𝜌⁄

𝑅
                                 (29c) 

The solution of Eq. (28) will provide the dynamic force-displacement relation for a bubble 

onto a fluid-tissue interface. 
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The model presented here can be improved for more accurate displacement predictions. 

Although the radial and translational bubble oscillatory motion can be kept small when proper 

excitation parameters are selected (Watanabe and Kukita, 1993; Zheng et al., 2007; Mettin 

and Doinikov, 2009), the use of different bubble models including radial and translational 

oscillatory bubble dynamics will be considered in future studies.  

 

III. RESULTS AND DISCUSSION 

Here analyses are performed for physiologically relevant material properties (e.g., G = 0.5 

– 4 kPa and 𝜌 = 1000 kg/m3) and bubble radii (R = 1 – 5 𝜇m) mostly encountered in practice 

(Koruk et al., 2015). The dimensionless force 𝑓e/(𝑢𝑟0𝐺𝑅) changes from zero to 4𝜋 as the 

dimensionless displacement 𝑢𝑟0/𝑅 increases from zero to two for a bubble onto a fluid-tissue 

interface (Fig. 2a). It should be noted that the dimensionless force does not change with the 

dimensionless displacement for a bubble embedded in a bulk material. The bubble 

displacement increases linearly with the applied force for the embedded bubble. However, the 

displacement-force relation is nonlinear for a bubble onto a fluid-tissue interface (Fig. 2b). It 

is seen that 𝑢𝑟0/𝑅 changes from 0 to 0.5 as force increases from 0 to 70 nN for physiological 

relevant parameters (e.g., G = 1 kPa, R = 1 - 5 𝜇m). Thus, force is selected between 0 and 70 

nN for the subsequent analyses.  
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 (a)                                                                            (b) 

 

FIG. 2. (Color online) (a) The dimensionless force 𝑓e/(𝑢𝑟0𝐺𝑅) and (b) displacement-force 

relation for a bubble onto a fluid-tissue interface for different bubble radii (shear modulus is 

𝐺 = 1 kPa here). 

 

Results show that a bubble onto a fluid-material interface is both displaced by the applied 

force and also changes its shape (Fig. 3). The bubble remains almost spherical for forces 

producing a displacement of up to half the bubble radius. It is seen that the maximum 

displacement and stress in material are around 1 μm and 0.5 kPa, respectively, for a typical 

bubble radius (2 μm) encountered in practice and a force amplitude of 10 nN (Fig. 4). Results 

show that the stress values are high for a distance within one radius of the bubble from the 

bubble surface, while the values are quite low in the region where the distance from the 

bubble surface is greater than two radii (Fig. 4).  
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FIG. 3. (Color online) Bubble displacement for a bubble radius 𝑅 = 2 μm, shear modulus 

𝐺 = 1 kPa and different force values (0, 10, 20 and 30 nN). 
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  (a)                                                               (b) 

 

FIG. 4. (Color online) Stress distribution for a bubble radius (a) 𝑅 = 2 and (b) 5 μm (shear 

modulus is 𝐺 = 1 kPa and force is 10 nN here). 

 

Equation (28) is solved for an impulsive force with an amplitude 𝑓𝑒 and a duration 𝜏 where 

small and large 𝜏 values correspond to short and long pulses, respectively. The normalized 

dimensionless impulsive response 𝑢𝑟0/(𝑅𝑓𝑒) for different duration 𝜏 values presented as a 

function of dimensionless time 𝑡 in Fig. 5 shows that the response resembles the unit impulse 

response and step response as the duration 𝜏 takes small and large values, respectively. It can 

be seen that the displacement reaches an almost steady-state value of around 𝑡 = 5. It is worth 

noting that the pulse length required for a steady-state displacement in experiments in practice 

can be calculated using this value and Eq. (29c). It is clear that softer materials will take 

longer time to reach to the steady state.  
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FIG. 5. (Color online) The normalized dimensionless impulsive response 𝑢𝑟0/(𝑅𝑓𝑒) for an 

amplitude 𝑓𝑒 and different duration 𝜏 values as a function of the dimensionless time 𝑡. 

 

The impulsive response for 𝑅 = 2 μm, 𝜌 = 1000 kg/m3, 𝐺 = 1 kPa, 𝜏 = 10 μs and 

different force amplitude (A) values as a function of time in Fig. 6 shows that displacement 

increases as force increases as expected. The steady-state amplitude changes nonlinearly with 

the applied force. It should be noted that the model can be used to design bubbles (e.g., 

radius) and pulses (e.g., pulse length and amplitude). Furthermore, it can be used to predict 

the order of possible displacements for a specific input and thus determine the resolution of 

the equipment (e.g., microscope) required in experiments in practice when material properties 

are known approximately. 
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FIG. 6. (Color online) The impulsive response for 𝑅 = 2 μm, 𝐺 = 1 kPa, 𝜌 = 1000 kg/m3, 

𝜏 = 10 μs and different force amplitude (A) values.   

 

The impulsive response for 𝑅 = 2 μm, 𝜌 = 1000 kg/m3, 𝑓𝑒 = 10 nN, 𝜏 = 5 and different 

shear modulus (G) values as a function of time in Fig. 7 shows that the displacement and the 

time required for the steady-state response decreases as shear modulus increases. In fact, 𝜏 

values corresponding to 𝜏 = 5 are 14.1, 10.0, 7.1, and 5.0 𝜇s for 𝐺 = 0.5, 1, 2 and 4 kPa, 

respectively. The period of oscillations decreases as the shear modulus value increases.  

 

FIG. 7. (Color online) The impulsive response for 𝑅 = 2 μm, 𝜌 = 1000 kg/m3, 𝑓𝑒 = 10 nN, 

𝜏 = 5 and different shear modulus (G) values.  
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The model presented here seems appropriate to be used to predict the amount of 

deformation and stresses in materials in biomedical ultrasound applications. The model 

presented here is of practical importance and can be used for biomedical ultrasound 

applications including the design of experiments and material characterization.  

 

IV. CONCLUSION 

In this study, a mathematical model was proposed for the displacement of a bubble onto a 

fluid-tissue interface and the tissue deformation in response to the primary Bjerknes force. 

First, a model was derived for static loading and the model’s prediction of bubble-mediated 

tissue displacement and stresses in tissue were explored. Second, the model was updated for 

dynamic loading.  The results show that bubble displacement changes nonlinearly with the 

applied force for a bubble onto a fluid-tissue interface. The bubble is both displaced by the 

applied force and changes its shape. The bubble remains almost spherical for a force 

producing a displacement which is less than the bubble radius. The stress values in the tissue 

around the bubble for a region within a distance of a radius from the bubble surface are high, 

while the stress values are quite low when the distance is greater than two radii. For dynamic 

loading, the increase in steady-state amplitude changes nonlinearly with the applied force. 

The time required for steady-state response decreases as the shear modulus increases. It is 

seen that the proposed model is capable of predicting the bubble displacement onto a fluid-

tissue interface and tissue deformation and, thus, can be used in biomedical ultrasound 

applications including the design of experiments and material characterization. 
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