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ABSTRACT

Social media posts tend to provide valuable reports during crises. However, this information can be hidden in
large amounts of unrelated documents. Providing tools that automatically identify relevant posts, event types (e.g.,
hurricane, floods, etc.) and information categories (e.g., reports on affected individuals, donations and volunteering,
etc.) in social media posts is vital for their efficient handling and consumption. We introduce the Crisis Event
Extraction Service (CREES), an open-source web API that automatically classifies posts during crisis situations.
The API provides annotations for crisis-related documents, event types and information categories through an easily
deployable and accessible web API that can be integrated into multiple platform and tools. The annotation service
is backed by Convolutional Neural Networks (CNNs) and validated against traditional machine learning models.
Results show that the CNN-based API results can be relied upon when dealing with specific crises with the benefits
associated with the usage word embeddings.
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INTRODUCTION

Social media has emerged as a dominant channel for communities to gather and spread information during crises.
Such media has proven itself as an invaluable information source in several recent natural and social crisis situations,
such as floods (Starbird et al. 2010), earthquakes (Qu et al. 2011), wildfires (Vieweg et al. 2010), nuclear disasters
(Thomson et al. 2012), and civil wars (Bercovici 2012).

A survey by the American Red Cross showed that 40% of the population would use social media during a crisis, and
76% of them expect their help requests to be answered within three hours. Doing this through manual analysis,
however, is far from trivial, due to the sheer data volume generated during crisis events. For example, in a single
day during the 2011 Japan earthquake, 177 million tweets related to the crisis were sent (Campanella 2006).

Although information is paramount during major crises, it is almost impossible for organisations and communities
to manually absorb, process, and turn the volume of social media data during crisis into sensible, actionable
information (Gao et al. 2011). Tools to automatically identify the type of emergency events reported by citizens
(e.g., need shelter, trapped in building) are largely unavailable. Genuine help requests are often difficult to spot,
group and validate and many urgent aid requests by individual citizens can go unnoticed.

Current works for event identification from social media data make use of supervised and unsupervised Machine
Learning (ML) methods, such as classifiers, clustering and language models (Atefeh and Khreich 2015). Lately,
deep learning has emerged as a promising ML technique able to capture high level abstractions in the data, providing
significant improvement for various tasks over more traditional ML methods, such as text classification (Kim 2014),
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machine translation (Bahdanau et al. 2014; Cho et al. 2014) or sentiment analysis (Tang et al. 2015; Dos Santos
and Gatti 2014). Deep learning, in particular, Convolutional Neural Networks (CNNs) have been recently applied
with success to social media during crises situations (Caragea et al. 2016; D. T. Nguyen et al. 2017; Burel, Saif,
Fernandez, et al. 2017; Burel, Saif, and Alani 2017). However, these approaches have been mostly pursued in
academic contexts and have not been made available to the public and social organisations through easily accessible
and integrable tools.

Even though creating models for identifying relevant documents, event types and information categories is a major
step in the right direction and show the potential of automatic approaches for dealing with a large amount of social
media posts during crisis events, its adoption by practitioners is conditioned on their availability and accessibility to
the general public.

In this paper, we create three different CNN-based classifiers that allow the identification of crisis-related documents
(i.e., related vs unrelated), event types (e.g., hurricane, floods, etc.) and information categories (e.g., reports on
affected individuals, donations and volunteers, etc.) using data from the CrisisLexT26 dataset (Olteanu, Castillo,
et al. 2014) and make those models available through an easily accessible web service called CREES (Crisis Event
Extraction Service).1 The API and codebase is designed to be easily deployed and integrated into existing tools and
has been already integrated into the Ushahidi platform2 and Google Sheets.3

The contribution of this paper can be summarised as follows: 1) The generation of three CNN models that target
the problem of event identification in crisis situations (event relatedness, event types and information categories),
and; 2) The creation of an easily deployable web API that exposes the previously trained CNN classifiers and its
integration into the Ushahidi platform and Google Sheets.

RELATED WORK

Recently, several works have introduced the use of deep learning for event detection (Chen et al. 2015; Feng et al.
2016; T. H. Nguyen and Grishman 2015; Ghaeini et al. 2016; Zeng et al. 2016). Unlike traditional ML feature-based
methods, deep learning models do not generally require heavy feature engineering and are therefore less prone
to error propagation, caused by using external NLP and text processing tools. Also, deep learning models are
more generic and tolerant to domain and context variations than feature-based models, as the former use word
embeddings as a more general and richer representation of words (T. H. Nguyen and Grishman 2015).

Pioneer works in this vein include (Chen et al. 2015; Feng et al. 2016; T. H. Nguyen and Grishman 2015). These
works address the problem of event detection at the sentence and/or phrase level by first identifying the event
triggers in a given sentence (which could be a verb or nominalisation) and classifying them into specific types. For
example, the word “release” in “The European Unit will release 20 million euros to Iraq” is a trigger for the event
“Transfer-Money”.

Multiple deep learning models have been proposed. For example, Nguyen and Grishman (T. H. Nguyen and
Grishman 2015) use a Convolutional Neural Network (CNN) (LeCun et al. 1998) with three input channels,
corresponding to word embeddings, word position embeddings and entity type embeddings, to learn a word
representation and use it to infer whether a word is an event trigger or not. Chen et al. (Chen et al. 2015) argue
that a sentence may contain two or more events and that using a traditional CNN model with a max-pooling layer4
often leads to the capture of clues of one event in a sentence but to miss the rest. To address this issue, the authors
propose using a CNN with a dynamic multi-pooling layer to obtain a maximum value for each part of a sentence
and therefore cover more valuable clues of the events within it.

Feng et al. (Feng et al. 2016) use a hybrid neural network model for cross-language event detection. The proposed
model incorporates both, a bidirectional LSTM (Bi-LSTM) (Schuster and Paliwal 1997) and CNN component.
Bi-LSTM captures the contextual semantics of a given word by means of the preceding and the following information
in the text, while CNN is used to capture structure information from the local contexts (e.g., sentence chunks).
Results show that the proposed model achieves relatively high and robust performance when applied to data of
multiple languages including English, Chinese and Spanish, in comparison with traditional feature-based approaches.

Other works (Caragea et al. 2016; D. T. Nguyen et al. 2017; Burel, Saif, Fernandez, et al. 2017; Burel, Saif, and
Alani 2017) have explored directly the application of CNN models to the identification of crisis-related content.
Although Caragea et al. (Caragea et al. 2016) explored the dataset used in this paper, they focused on floods event

1CREES, http://evhart.github.io/crees.
2Ushahidi, http://www.ushahidi.com.
3CREES Add-on, https://goo.gl/t73SNY.
4In a CNN, a max-pooling layer applies a max operation over the representation of an entire sentence to capture the most useful information.
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types and on the informativeness classification rather than event relatedness, event types and information categories.
D. T. Nguyen et al.’s work (D. T. Nguyen et al. 2017) investigated information types, they focused only on one of the
three tasks investigated in this paper. Nevertheless, their results showed that CNN models can be used successfully
for social media classification in crisis situations. Burel, Saif, Fernandez, et al. (Burel, Saif, Fernandez, et al.
2017; Burel, Saif, and Alani 2017) investigated the same dataset as the one investigated in this paper and proposed
multiple extension to CNN using semantics. Their results showed some small improvement over conventional CNN.
Unfortunately, the proposed approach requires concept extraction tools which tend to not scale well making this
approach unsuitable for the development of a web API.

Few works have explicitly targeted the development of automatic machine learning tools and APIs that can be
used for automatically labelling social media documents during crises. In general, most tools do not have any
automatic classification abilities and rely on simple algorithms or manual work. AIDR (Imran, Castillo, et al. 2014),
is one of the very few tools that is explicitly designed for automatically classifying social media documents by
providing a platform for training and serving annotation models during crisis situations. Although AIDR shares
many similarities to the CREES API presented in this paper and even provide advanced features for retraining
machine learning models, contrary to CREES, AIDR relies on traditional machine learning models and requires
more effort to be integrated into existing tools and workflows. Finally. it appears that AIDR does not provide any
default models whereas CREES is designed to be deployed without any re-training requirements. CrisisNET5 is
another tool and API designed for extracting information in social media document. However, the project has not
been updated since 2014 and does not give much information concerning its set of features and the models used.

APPLICATION SCENARIO

During crises, a very large number, sometimes in the millions, of messages are often posted on various social media
platforms by using the hashtags dedicated to the crises at hand. However, a good percentage of those messages are
irrelevant or uninformative.

Olteanu, Vieweg, et al. observed that crises reports could be classified into three main categories of informativeness;
related and informative, related but not informative, and not related (Olteanu, Vieweg, et al. 2015). The percentage
of relevant and informative social reports during crises varies a great deal, ranging from 10% in some cases6 to 65%
in others (Sinnappan et al. 2010). However, buried under very many mundane and irrelevant tweets, sometimes one
post emerges that needs an urgent response.

In this paper, our goal is to create an automatic tool and the corresponding API that efficiently identifies crisis-related
social media messages of sufficient relevance and value. For this purpose, and based on the event types identified by
Olteanu, Vieweg, et al. (Olteanu, Vieweg, et al. 2015) and later on investigated by Burel, Saif, Fernandez, et al.
(Burel, Saif, Fernandez, et al. 2017), we consider the following three tasks when developing our API:

• Task1 - Crisis vs. non-crisis related messages: The goal of this task is to differentiate those posts that are
related to a crisis situation vs. those posts that are not.

• Task2 - Type of crisis: The goal of this task is to identify the different types of crises the message is related to
and the potential sub-event linked to a particular crisis. Following the work of (Olteanu, Vieweg, et al. 2015)
we consider the following types of natural and human-induced types of crises: shooting, explosion, building
collapse, fires, floods, meteorite fall, haze, bombing, typhoon, crash, earthquake and derailment.

• Task3 - Type of information: the goal of this task is to provide a fine-grained information detection in crises
situations. Following the work of (Olteanu, Vieweg, et al. 2015) we consider the following categories of
crisis-related information: affected individuals, infrastructures and utilities, donations and volunteer, caution
and advice, sympathy and emotional support, useful information, other.

The API resulting from training the models on the three previous tasks provides means for: 1) filtering crisis-related
content on social media; 2) the identification of event types, and; 3) the identification of information categories.
In a real-world use case, such services can be used sequentially in order to gain deep insights concerning a crisis
situation.

5CrisisNet, http://crisis.net.
6Behavioral & Linguistic Analysis of Disaster Tweets, http://irevolution.net/2012/07/18/

disaster-tweets-for-situational-awareness.
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AUTOMATIC CLASSIFICATION OF CRISIS-RELATED CONTENT ON SOCIAL MEDIA

The first step required for creating the crisis annotation API is to train document classifiers that automatically
identify event-related posts, crisis types and information categories. The following sections discuss the CNN model
used for training the API models and evaluate the models against multiple baselines in order to validate the accuracy
of the API.

Classification of Crisis-related Content using Convolutional Neural Networks (CNN)

Event detection in the context of Twitter is a text classification task where the aim is to identify if a given document
(post) describes or is related to an event. In this section, we describe the Convolutional Neural Networks (CNN)
model used for performing event detection on Twitter. Similarly to previous work (D. T. Nguyen et al. 2017; Burel,
Saif, Fernandez, et al. 2017), the model relies on word embeddings in order to better represent the implicit semantics
of the documents and consequently better identify crisis-related documents.
The pipeline of the model consists of three main phases as depicted in Figure 1:

1. Text Processing: A collection of input tweets are cleaned and tokenised for later stages;

2. Word Vector Initialisation: Given the word tokens produced in the previous stage and pre-trained word
embeddings, a matrix of word embedding is constructed to be used for model training;

3. CNN Training: In this phase, the CNN model is trained using the word embeddings matrix.

Tweets Preprocessing
Word

Vectors 
Initialisation

CNN Training

Pre-trained 
Embeddings

Tokens

T = “Obama 
attends vigil for 

Boston Marathon 
bombing victims”

W = [obama, attends, vigil, for, boston, 
marathon, bombing, victims]

Embeddings

obama
attends

vigil
for

boston
marathon
bombing

victims

Figure 1. Pipeline of the CNN deep learning model event detection model.

In the following subsections, we describe each of the phases of the pipeline in more detail.

Text Preprocessing

Tweets are usually composed of incomplete, noisy and poorly structured sentences due to the frequent presence of
abbreviations, irregular expressions, ill-formed words and non-dictionary terms. This phase, therefore, applies
a series of preprocessing steps to reduce the amount of noise in tweets including, for example, the removal of
URLs, and all non-ASCII and non-English characters. After that, the processed tweets are tokenized into words
that are consequently passed as input to the word embeddings phase. Although different methods can be used for
preprocessing the input data, in this paper we follow the same approach as Kim (Kim 2014) since it is scalable and
does not require any complex algorithms.

Word Vector Initialisation

An important part of applying deep neural networks to text classification is to use word embeddings. As such, this
phase aims to initialise a matrix of word embeddings for training the event classification model.
Word embeddings is a general name that refers to a vectorised representation of words, where words are mapped to
vectors instead of a one dimension space (Bengio et al. 2003). The main idea is that semantically close words should
have a similar vector representation instead of a distinct representation. Different methods have been proposed for
generating embeddings such has Word2Vec (Mikolov et al. 2013) and GloVe (Pennington et al. 2014) and they have
shown to improve the performance of multiple NLP tasks. Hence, in this work, we choose to bootstrap our model
with Google’s pre-trained Word2Vec model (Mikolov et al. 2013) to construct our word embeddings matrix, where
rows in the matrix represent embeddings vectors of the words in the Twitter dataset. We decide to use this model
since it is a commonly used embedding model. In future work, we are planning to experiment with Twitter and
crisis-specific embedding models such as the model proposed by Imran, Mitra, et al. (Imran, Mitra, et al. 2016).

WiPe Paper – Social Media Studies
Proceedings of the 15th ISCRAM Conference – Rochester, NY, USA May 2018

Kees Boersma and Brian Tomaszewski, eds.



Grégoire Burel et al. CREES – Classification of Crisis-related Content on Social Media

CNN Model for Text Classification

This phase aims to train the CNN model from the word embeddings matrix. Below we describe the CNN model
along with the proposed training procedure.

As previously discussed, CNN can be used for classifying sentences or documents (Kim 2014). The main idea is to
use word embeddings coupled with multiple convolutions of varying sizes that extract important information from a
set of words in a given sentence, or a document, and then apply a softmax function that predicts its class.

The proposed CNN model is based on Kim’s model (Kim 2014), a CNN model widely used for text classification.
It consists of a convolution layer (with three region sizes and multiple filters per region) followed by a max-pooling
phase and a fully connected layer where the softmax function is applied for predicting the document classes.

For example, the document D = ‘Obama attends vigil for Boston Marathon bombing victims.’ may be tokenised as
Tw = [‘obama’, ‘attends’, ‘vigil’, ‘ f or’, ‘boston’, ‘marathon’, ‘bombing’, ‘victims’] by a word tokeniser. Then,
the embedding Dw is created using the previous document representation Tw and convolutional layers are used
followed by a max-pooling step before applying the softmax step that classifies individual documents as depicted in
Figure 2.

Figure 2. Convolutional Neural Network (CNN) for text classification using word embeddings.

Experimental Setup

Here we present the experimental setup used to assess the event detection model used in the classification API.
As previously mentioned, we aim to design an API that supports three different tasks. As such, our evaluation
setup requires the selection of (i) Twitter datasets, (ii) the semantic extraction tool, and (iii) baseline models for
cross-comparison.

Dataset

To assess the performance of the event detection model we require the use of datasets where each tweet is annotated
with: whether or not it relates to a crisis event, the type of crisis (e.g., earthquake, flood, etc.) and the type of
information (e.g., affected individuals, infrastructures, etc.). For the purpose of this work, we use the CrisisLexT26
dataset (Olteanu, Castillo, et al. 2014).

CrisisLexT26 includes tweets collected during 26 crisis events in 2012 and 2013. Each crisis contains around 1,000
annotated tweets for a total of around 28,000 tweets with labels that indicate if a tweet is related or unrelated to a
crisis event (i.e. related/unrelated, Task 1)

For the second task, we need a list of crisis types. In order to obtain such information, we consider that the annotated
tweets that are from the same sub-collection belong to the same type of event. Using this approach we obtain 12
different crisis types (shooting, explosion, building collapse, fires, floods, meteorite fall, haze, bombing, typhoon,
crash, earthquake and derailment) (Task 2).

The CrisisLextT26 tweets are also annotated with additional labels indicating the type of information present in the
tweet (affected individuals, infrastructures and utilities, donations and volunteer, caution and advice, sympathy
and emotional support, and useful information and unknown, Task 3). More information about the CrisisLexT26
dataset can be found on the CrisisLex website.7

7CrisisLex T26 Dataset, http://www.crisislex.org/data-collections.html#CrisisLexT26.
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Table 1. Event detection performance of baselines and the CNN model under the three evaluation tasks on the full
and undersampled datasets (PT-Embed: Pre-trained word embeddings).

Related/Unrelated Event Types Information Types

Model Data Features P R F1 P R F1 P R F1

Naive Bayes Full TF-IDF 0.846 0.684 0.733 0.941 0.927 0.933 0.600 0.570 0.579
CART Full TF-IDF 0.742 0.707 0.723 0.992 0.992 0.992 0.506 0.491 0.497
SVM Full TF-IDF 0.870 0.738 0.785 0.997 0.996 0.997 0.642 0.604 0.616

CNN Full PT-Embed 0.861 0.744 0.797 0.991 0.986 0.988 0.634 0.590 0.609

Naive Bayes Sample TF-IDF 0.795 0.787 0.785 0.929 0.928 0.928 0.558 0.563 0.556
CART Sample TF-IDF 0.770 0.769 0.769 0.988 0.988 0.988 0.471 0.464 0.464
SVM Sample TF-IDF 0.833 0.830 0.829 0.995 0.995 0.995 0.606 0.609 0.605

CNN Sample PT-Embed 0.839 0.838 0.838 0.983 0.983 0.983 0.610 0.610 0.610

Since the annotations tend to be unbalanced, we also create a balanced version of the dataset for each task by
performing biased random undersampling using tweets from each sub-collection. As a result, the first task dataset is
reduced to 6703 tweets (24%), the second task to 12997 tweets (46.5%) and the final task to 9105 tweets (32.6%).
The balanced datasets are created in order to avoid an overfitted model that does not generalise well in future event
predictions where the data distribution can differ from the datasets used for training the models.

Evaluation

In this section, we report the results obtained from using the CNN model for crisis event detection of tweets
under three evaluation tasks: (Task1) Crisis vs. non-crisis related tweets, (Task2) type of crisis, and (Task3)
information categories. Our baselines of comparison are three traditional machine learning classifiers: Naive
Bayes, Classification and Regression Trees (CART), and SVM with RBF kernels trained from words unigrams. We
initialise the CNN models with the Google News 3 million words and phrases pre-trained word embeddings data.8
Results for all experiments are computed using 5-fold cross-validation. For each task, we perform the evaluation on
the full and undersampled versions of the dataset.

We train the CNN model using 300 long word embeddings vectors with Fn = 128 convolutional filter of sizes
Fs = [3, 4, 5]. For avoiding over-fitting, we use a dropout of 0.5 during training and use the ADAM gradient descent
algorithm (Kingma and Ba 2014). We perform 400 iterations with a batch size of 256.

Table 1 shows the results of our event detection classifiers for the three evaluation tasks on the full and undersampled
versions of the dataset. In particular, the table reports the precision (P), recall (R), and F1-measure (F1) for each
evaluation task and model. The table also reports the types of features and embeddings used to train the different
classifiers.

Baselines Results

As seen in Table 1, the results for each task and each baseline show that the first two tasks are relatively easy
to predict whereas predicting information types is much more complex. In general, we also observe that SVM
is the best performing algorithm followed by CART and Naive Bayes. For the first two tasks with the full data,
each method achieve precision, recall and F1 > 0.72 and SVM appears to be the best model with F1 = 0.785 for
identifying crisis related tweets and F1 = 0.997 for identifying event types. The task of identifying information
types show much lower F1 across the board. This is probably due to the fact that compared to the previous tasks,
information types probably contain much more general terms in each class. Similarly to the previous tasks, SVM
performs the best with F1 = 0.616.

With the balanced datasets, the results are similar. However, the predictions for the first task increase by around
+4.8%. This result is likely due to the fact that the first task was the most imbalanced task and benefits the most
from the undersampling process.

The high precision and recall results observed for the second task (F1 = 0.997) suggests that the different models
overfit the data. The issue is not resolved by undersampling the data with an F1 of 0.995. Looking at the data in
more details, we observe that each category contains very clear category indicators. For instance, 77% of the tweets
about meteorite falls contain the word meteor, whereas 76.2% of the tweets about explosions contains the word
Boston. In order to reduce such issue, we could, for instance, remove some of these words from the dataset so the
models become less tied to practical event instances (e.g the Boston bombings).

8Google Word2Vec, https://code.google.com/archive/p/word2vec
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CNN Results

In general, applying CNNs with pre-trained word embeddings (PT-Embed) for both the full and undersampled data
does not improve significantly over SVM. Using the full dataset, we obtain an F1 of 0.797 for the crises related
tweets and full dataset, 0.988 for event types detection and 0.616 for information type identification.

When using the undersampled datasets, the results are similar to the previous observations with an increase of
+3.7% in F1 for the first task. There is also a slight improvement for the last task with +0.6% in F1.

Even though CNN models marginally improve over the baselines, word embeddings have the advantage to be less
strict than the bag of words model. This means that when new vocabulary is added, the CNN model may be less
affected by out of vocabulary words (e.g., by using pre-trained embeddings).

Discussion

Similar to previous work (D. T. Nguyen et al. 2017; Burel, Saif, Fernandez, et al. 2017; Burel, Saif, and Alani
2017), we used deep learning CNN models for detecting events on Twitter. This section discusses the limitations of
the presented work as well as different areas of future investigations.

We experimented with three event detection tasks and observed that identifying crisis-related events and event types
in tweets (i.e., Task 1 and Task 2) with high accuracy appears to be a relatively easy task that can be fulfilled well
with both traditional models such as SVM and CNN models. Identifying the types of information provided in crisis
related tweets (Task 3) is much more challenging as tweets mentioning event information types tend to contain much
more general terms in each class than the tweets that are related or unrelated to crises or are discussing different
types of events.

Looking into the details of the second task, we observed that for this task, the models were generally overfitted even
after balancing the data. The reason seems to be associated with the presence of very clear category indicators (e.g.,
place names). In order to reduce such an issue, we could remove place names from training instances or try to
collect additional data so that the associations between event types and locations is reduced.For instance we could
consider the CrisisNLP datasets 9.

Although comparing our results with existing works is not straightforward due to differences in the used datasets
and experimental setup, our results appear to be similar to previous observations (D. T. Nguyen et al. 2017; Burel,
Saif, Fernandez, et al. 2017; Burel, Saif, and Alani 2017). As future work, we are considering using more complex
preprocessing methods as well as augmenting the CrisisLexT26 dataset with the CrisisNLP datasets similarly to the
work done by D. T. Nguyen et al. (D. T. Nguyen et al. 2017). We also plan to improve the CNN model by adding
additional convolutional layers and performing parameter optimisation. For instance, we could try to improve the
results by modifying the size of the model filters as well as the number of filters. We could also increase and
optimise the number of training steps in order to obtain better results. Besides CNN, other more suitable models
such as recurrent neural networks (RNN) (Graves 2012) may be also considered as future work due to their ability
to capture textual relations more accurately.

THE CRISIS EVENT EXTRACTION SERVICE (CREES)

In order to be able to use the previous models, it is necessary to create an easily deployable API that can be integrated
into multiple tools and software. In this section we introduce the Crisis Event Extraction Service (CREES)10 as a
simple REST API for automatically identifying crisis-related documents.

The CREES API Server

The CREES server provides a simple web API that can be queried using standard HTTP POST and GET queries.
The API accepts textual documents as input and returns standardised JSON objects that contain the annotations
returned by the CNN model presented in the previous section. The following subsections describe the API in more
details and show how the API design choices help its integration into third-party tools.

9CrisisNLP, http://crisisnlp.qcri.org/.
10CREES API, http://evhart.github.io/crees.
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API Description and Services

The CREES API exposes three different services that follow the tasks described in the previous sections. Each
method can be accessed using a GET query with a text parameter that contains the document that needs to be
labelled. CREES also provide POST queries that can be used for annotating more than one document by submitting
a JSON array that contains multiple textual documents to the endpoint. The methods are the following:

• /events/eventRelated: Determines if a document is related to a crisis situation. The following labels are
returned: non-related, related (Task 1).

• /events/eventType: Determines the type of crisis discussed in a document. The following labels are returned:
bombings, collapse, crash, derailment, earthquake, explosion, fire, floods, haze, meteorite, none, shootings,
typhoon and wildfire (Task 2).

• /events/infoType: Determines the type of information discussed in a document. The following labels are re-
turned: affected_individuals, caution_and_advice, donations_and_volunteering, infrastructure_and_utilities,
not_applicable, not_labeled, other_useful_information and sympathy_and_support (Task 3).

Each method returns a similar JSON object. For example the following CURL11 query:

curl -G http://127.0.0.1/events/infoType \
--data-urlencode ’text=If you are evacuating please dont wait, \
take your pets when you evacuate’

Returns the following JSON object:

{
"classifier": "CNN",
"input": "if you are evacuating please dont wait, take your pets when you evacuate ",
"label": "caution_and_advice",
"version": 0.3

}

Although the GET method only accepts one document as input, the API also allows POST queries that can be used
in order to annotate more than one document by submitting a JSON array containing a list of documents to annotate.
Each method returns a similar JSON object. For example:

curl -X POST http://127.0.0.1/events/eventRelated --header \
’Content-Type: application/json’ -d ’["If you are evacuating, \
"take your pets when you evacuate", "AAPL, NBA playoffs 2013, \
New York Post, West Texas, ..."]’

Returns the following JSON object:

{
"labels": [
{

"input": "If you are evacuating, take your pets when you evacuate",
"label": "related"

},
{

"input": "AAPL, NBA playoffs 2013, New York Post, West Texas, ...",
"label": "non-related"

}
],
"classifier": "CNN",
"version": 0.3

}

11CURL, http://curl.haxx.se.

WiPe Paper – Social Media Studies
Proceedings of the 15th ISCRAM Conference – Rochester, NY, USA May 2018

Kees Boersma and Brian Tomaszewski, eds.

http://curl.haxx.se


Grégoire Burel et al. CREES – Classification of Crisis-related Content on Social Media

CREES is built on top of Flask12 and Tensorflow13 and exposes an OpenAPI v214 compliant endpoint that can be
used for helping the automatic consumption of the CREES services. The API serves the aforementioned CNN
models and integrates Swagger UI15 so the API can be used directly in a web browser.

Installation and Integration

Besides the ability to handle multiple classification tasks concurrently, the development of the CREES server was
driven by two key requirements. First, the API needed to be easy to understand and integrate into existing tools.
Second, the CREES server needed to be easy to download install and deploy.

CREES has been integrated into the Ushahidi platform16 as part of the COMRADES17 project using the Ushahidi
webhooks API. Ushahidi is a crowd-sourcing platform designed for collecting data from multiple resources such as
social media, SMS and email. The platform helps the visualisation and classification of posts in order to better
understand crisis situations by allowing users to manually map, annotate and classify documents. The CREES
integration allows the automatic categorisation of Ushahidi posts as soon as they are added to the platform and as
result reduces the human resources required for classifying incoming documents.

We also created a Google Sheets add-on18 that exposes the CREES classifiers to Google Spreadsheet users since
spreadsheet software is often used by volunteers during crises. The add-on exposes each of the three classifiers as
a spreadsheet function (i.e., CREES_RELATED, CREES_EVENT and CREES_INFO) that can be used for annotating
individual table cells or columns.

In order to allow the fast deployment of the CREES server during crises, the CNN models and code are both
available online and can be deployed in a few minutes using Docker and a step-by-step documentation. Another
specificity of CREES is that it is not deeply integrated into a specific ecosystem. This simplifies the integration of
the annotation services into multiple products as the Ushahidi and Google Sheets integrations demonstrate.

Load Testing

Although the current version of CREES is not explicitly optimised for scalability, the API is built on top of Flask so
multiple servers can be used for distributing user load when a large amount of data needs to be analysed concurrently.
Nevertheless, we load test the CREES API in order to better understand the current strengths and limitations of
the deployed server implementation. We conduct a traditional load balancing test by progressively increasing the
number of API users and observing how the server handles the requests.

Although in principle, more than 6000 tweets are created every second, the standard (free) Twitter API only allows
for the access of at most 20 tweets per second (180 queries that returns 100 tweets per 15 minutes windows). As a
consequence, a realistic usage of the CREES API is to consider that each user will submit at most 12 GET query per
second to each CREES annotation service every second (i.e., 12 queries per second to CREES). In this context, we
decide to load test the CREES API by considering that each user performs 12 queries per second.

We load test CREES using Locust19 by increasing the number of users every second by 10 until we have 1000 users
that perform simultaneous server queries using the previously mentioned 12 GET queries per second. We report the
number of average requests performed per second on the endpoint as well as the number of failed requests. We also
report the server latency in order to evaluate the responsiveness of the API. In order to have a fairer evaluation, we
perform the evaluation outside the network domain where the server is hosted.

Results

The evaluation results are listed in Table 2. In general, we can observe that each model performs roughly similarly
and is able to perform between 77 and 82 queries per second with a median latency of 700 milliseconds. Out of the
1698 requests submitted to the CREES API, less than 5% of the calls fail. When performing the same test with at
most 500 users, we observe no failing requests.

In general, the results show that the CREES API is able to serve 500 users concurrently without any issues and to
some extent 1000 users successfully when each user perform more than 12 queries every second to the CREES API.

12Flask, http://flask.pocoo.org.
13Tensorflow, http://www.tensorflow.org.
14Open API, http://www.openapis.org.
15Swagger UI, https://swagger.io/swagger-ui/.
16Ushahidi, http://www.ushahidi.com.
17COMRADES, http://www.comrades-project.eu.
18CREES Add-on, https://goo.gl/t73SNY.
19Locust, http://locust.io.
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Table 2. Load test of the CREES API using 1000 users performing 12 API calls per second with an hatching rate
of 20 users per second.

Query Nb Reqs Nb Fails Avg Min Max Median Req/S

GET /events/eventRelated 573 32 (5.29%) 1159 361 63845 700 82.60
GET /events/eventType 559 22 (3.79%) 1041 372 63210 690 79.40
GET /events/infoType 566 22 (3.74%) 1024 392 58950 700 77.80

Total 1698 76 (4.48%) 239.80

It is important to note that it is relatively unlikely that in a real use case more than 500 users or organisation will
be accessing CREES concurrently. Moreover, if the users use the batch CREES API (POST), they need to only
make 0.6 query per seconds to the API since they can submit multiple posts to the API using only one call. In this
context, the CREES API can potentially handle much more connections if the clients use less aggressive methods
for querying the API.

Discussion

Although the current CREES API requirements are principally focused on providing a simple API that can be
integrated into existing tools and workflows, we showed that the CREES API can already support realistic query
loads (i.e. 500 users performing 12 query per second on the API endpoint concurrently). Moreover, if necessary,
the API efficiency can be easily improved by using multiple CREES servers together. Finally, we also showed that
CREES can be easily integrated into third-party tools such as Ushahidi and Google Sheets.

Compared to other tools that use machine learning methods for helping the analysis of social media documents
during crises, CREES is designed to be lightweight in order to easily integrate to already existing platforms and
workflows such as the Ushahidi platform or Spreadsheet software. This approach can be directly contrasted to
more integrated tools such as AIDR (Imran, Castillo, et al. 2014) that provide end-to-end annotation heavyweight
features. Compared to AIDR, CREES models are also backed by CNN models making them potentially more
accurate compared to the classifiers used by AIDR.

Even though improving the underlying CNN models can lead to better predictions, the CREES API can be improved
in multiple ways in order to make it more robust and scalable. At the moment, CREES does not support rate-limiting
and user authentication as well as advance caching features. Adding those features would allow for a more robust
API. Another line of research could be the integration of methods for updating the trained CNN models through the
API. However, adding such feature may increase the integration complexity of CREES.

CONCLUSIONS AND FUTURE WORK

In this paper, we introduced CREES (Crisis Event Extraction Service), a web API that allows the automatic
classification of crisis-related social media documents. The API provides services for identifying crisis-related
documents, event types and information categories. Compared to existing tools, CREES is a lightweight API that
can be easily integrated into existing tools and workflows. In order to demonstrate the versatility of CREES, we
integrated the API into the Ushahidi platform and exposed its features as a Google Sheet add-on.

CREES annotation features are backed-up by CNN models trained on a Twitter dataset consisting of 26 different
crisis events. The models were tested evaluated. Results show that CNNs are able to successfully identify the
existence of events, and event types with > 79% F-measure, but the performance of CNN significantly drops (61%
F-measure) when identifying fine-grained event-related information. These results are competitive with more
traditional Machine Learning models, such as SVM.

Although multiple improvements can be done in order to improve the CNN models used by CREES such as using
additional training datasets (e.g., CrisisNLP) or alternative deep learning models (e.g., RNN). We plan to focus
future work on adding more features to the CREES API such as user authentication mechanisms, rate-limiting
features and better caching support. We are also working on evaluating the Ushahidi and Google Sheets integration
with users as part of a crisis response exercise.
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