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Abstract
We formulate a novel regularized risk minimiza-
tion problem for learning in reproducing kernel
Kreı̆n spaces and show that the strong representer
theorem applies to it. As a result of the latter, the
learning problem can be expressed as the mini-
mization of a quadratic form over a hypersphere
of constant radius. We present an algorithm that
can find a globally optimal solution to this non-
convex optimization problem in time cubic in the
number of instances. Moreover, we derive the
gradient of the solution with respect to its hyper-
parameters and, in this way, provide means for
efficient hyperparameter tuning. The approach
comes with a generalization bound expressed in
terms of the Rademacher complexity of the corre-
sponding hypothesis space. The major advantage
over standard kernel methods is the ability to learn
with various domain specific similarity measures
for which positive definiteness does not hold or is
difficult to establish. The approach is evaluated
empirically using indefinite kernels defined on
structured as well as vectorial data. The empirical
results demonstrate a superior performance of our
approach over the state-of-the-art baselines.

1. Introduction
We build on the work by Ong et al. (2004) and formulate
a novel regularized risk minimization problem for learning
in reproducing kernel Kreı̆n spaces (reviewed in Section 2).
The proposed risk minimization problem is of interest to sev-
eral applications of machine learning (Laub & Müller, 2004)
where the instance space can be accessed only implicitly,
through a kernel function that outputs a real-value for a pair
of instances. Typically, for a given set of instances the ker-
nel matrix does not exhibit properties required by standard
machine learning algorithms such as positive definiteness
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or metricity. A common practice in dealing with such data
is to map the indefinite kernel matrix to a positive definite
one using a spectrum transformation. This conversion can
cause information loss and affect our ability to model a
functional dependence of interest. In particular, Laub &
Müller (2004) have used three real-world datasets to demon-
strate that for symmetric kernel functions corresponding to
indefinite kernel matrices, the negative parts of their spectra
contain useful information which gets discarded by some of
the standard procedures that learn by first transforming the
indefinite kernel matrix to a positive definite one.

We show that the strong representer theorem applies to
the proposed risk minimization problem and utilize this
theoretical result to express the learning problem as the
minimization of a quadratic form over a hypersphere of
constant radius (Section 3.1). The optimization problem
is, in general, neither convex nor concave and it can have
exponentially many local optima (with respect to the rep-
resentation size). Despite this, a globally optimal solution
to this problem can be found in time cubic in the number
of training examples. The algorithm for solving this non-
convex problem relies on the work by Forsythe & Golub
(1965) and Gander et al. (1989), who were first to consider
the optimization of a quadratic form over a hypersphere of
constant radius. The proposed risk minimization problem is
consistent and comes with a generalization bound expressed
in terms of the Rademacher complexity of the corresponding
hypothesis space, which is a subset of a reproducing kernel
Kreı̆n space of functions (Section 3.2). In Section 3.3, we
derive the gradient of an optimal solution to the risk min-
imization problem with respect to the hyperparameters of
the model (e.g., the regularization parameters, hypersphere
radius, and/or kernel-specific parameters). The derived solu-
tion gradient allows one to tune the hyperparameters of the
model using an off-the-shelf optimization algorithm (e.g.,
L-BFGS-B minimization procedure, available in most nu-
merical packages). In Section 4, we place our work in the
context of relevant existing approaches for learning in re-
producing kernel Kreı̆n spaces. The effectiveness of the
approach is evaluated empirically using indefinite kernels
defined on structured and vectorial data. The results show a
superior performance of our approach over the state-of-the-
art baselines and indicate that on some problems indefinite
kernels can be more effective than the positive definite ones.
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2. Reproducing Kernel Kreı̆n Spaces
This section provides a brief overview of reproducing ker-
nel Kreı̆n spaces. The review follows closely the study
by Azizov & Iokhvidov (1981) and the work by Ong et al.
(2004). For a more extensive introduction, we refer to works
by Bognár (1974) and Iokhvidov et al. (1982).

Let K be a vector space defined on the scalar field R. A
bilinear form on K is a function 〈·, ·〉K : K ×K → R such
that, for all f, g, h ∈ K and scalars α, β ∈ R, it holds:

i) 〈αf + βg, h〉K = α 〈f, h〉K + β 〈g, h〉K, and

ii) 〈f, αg + βh〉K = α 〈f, g〉K + β 〈f, h〉K.

For f ∈ K, if 〈f, g〉K = 0 for all g ∈ K implies that f = 0,
then the form is non-degenerate. The bilinear form 〈·, ·〉K is
symmetric if, for all f, g ∈ K, we have 〈f, g〉K = 〈g, f〉K.
The form is called indefinite if there exists f, g ∈ K such
that 〈f, f〉K > 0 and 〈g, g〉K < 0. On the other hand, if
〈f, f〉K ≥ 0 for all f ∈ K, then the form is called positive.
A non-degenerate, symmetric, and positive bilinear form on
K is called inner product. Any two elements f, g ∈ K that
satisfy 〈f, g〉K = 0 are 〈·, ·〉K-orthogonal. Similarly, any
two subspacesK1,K2 ⊂ K that satisfy 〈f1, f2〉K = 0 for all
f1 ∈ K1 and f2 ∈ K2 are called 〈·, ·〉K-orthogonal. Having
reviewed bilinear forms, we are now ready to introduce the
notion of a Kreı̆n space.

Definition 1. (Azizov & Iokhvidov, 1981; Bognár, 1974)
The vector space K with a bilinear form 〈·, ·〉K is called
Kreı̆n space if it admits a decomposition into a direct sum
K = H+ ⊕ H− of 〈·, ·〉K-orthogonal Hilbert spaces H±
such that the bilinear form can be written as

〈f, g〉K = 〈f+, g+〉H+
− 〈f−, g−〉H− ,

where H± are endowed with inner products 〈·, ·〉H± , f =
f+ ⊕ f−, g = g+ ⊕ g−, and f±, g± ∈ H±.

Thus, a Kreı̆n space is defined with a non-degenerate, sym-
metric, and indefinite bilinear form. For a fixed decompo-
sition K = H+ ⊕H−, the Hilbert spaceHK = H+ ⊕H−
endowed with inner product

〈f, g〉HK = 〈f+, g+〉H+
+ 〈f−, g−〉H− (f±, g± ∈ H±)

can be associated with K. For a Kreı̆n space K, the de-
composition K = H+ ⊕ H− is not necessarily unique.
Thus, a Kreı̆n space can, in general, be associated with
infinitely many Hilbert spaces. However, for any such
Hilbert space HK the topology introduced on K via the
norm ‖f‖HK =

√
〈f, f〉HK is independent of the decom-

position and the associated Hilbert space. More specifically,
all the norms ‖·‖HK generated by different decompositions

of K into direct sums of Hilbert spaces are topologically
equivalent (Langer, 1962). The topology on K defined by
the norm of an associated Hilbert space is called the strong
topology on K. Henceforth, notions of convergence and
continuity on a Kreı̆n space are defined with respect to the
strong topology. As the strong topology of a Kreı̆n space is
a Hilbert space topology, the Riesz representation theorem
holds. More formally, for a continuous linear functional L
on a Kreı̆n spaceK there exists a unique g ∈ K such that the
functional L, for all f ∈ K, can be written as Lf = 〈f, g〉K.

Having reviewed basic properties of Kreı̆n spaces, we are
now ready to introduce the notion of a reproducing kernel
Kreı̆n space. For that, let X be an instance space and denote
with RX the set of functions from X to R.
Definition 2. (Alpay, 1991; Ong et al., 2004) A Kreı̆n
space (K, 〈·, ·〉K) is a reproducing kernel Kreı̆n space if
K ⊂ RX and the evaluation functional is continuous on K
with respect to the strong topology.

The following theorem provides a characterization of repro-
ducing kernel Kreı̆n spaces.
Theorem 1. (Alpay, 1991; Schwartz, 1964) Let k : X ×
X → R be a real-valued symmetric function. Then, there is
an associated reproducing kernel Kreı̆n space if and only if
k = k+−k−, where k+ and k− are positive definite kernels.
When the function k admits such a decomposition, one can
choose k+ and k− such that the corresponding reproducing
kernel Hilbert spaces are disjoint.

In contrast to reproducing kernel Hilbert spaces, there is
no bijection between reproducing kernel Kreı̆n spaces and
indefinite reproducing kernels. Moreover, it is important
to note that not every symmetric kernel function admits a
representation as a difference between two positive definite
kernels. A symmetric function that does not admit such a
representation has been constructed by Schwartz (1964) and
it can also be found in Alpay (Theorem 2.2, 1991). On finite
discrete spaces, however, any symmetric kernel function
admits a Kreı̆n decomposition.

3. Regularized Risk Minimization in
Reproducing Kernel Kreı̆n Spaces

Building on the work by Ong et al. (2004), we first propose
a novel regularized risk minimization problem for learn-
ing in reproducing kernel Kreı̆n spaces and then show that
the strong representer theorem applies to it (Section 3.1).
The main difference compared to previous stabilization ap-
proaches due to Ong et al. (2004) is in the way the optimiza-
tion problem accounts for the complexity of hypotheses. As
a result of our representer theorem, the proposed regular-
ized risk minimization problem defined over a reproducing
kernel Kreı̆n space can be transformed into a non-convex
optimization problem over a Euclidean space. Following
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this, we build on the work by Gander et al. (1989) and show
how to find a globally optimal solution to the transformed
non-convex optimization problem. Having provided means
for finding an optimal solution to the learning problem, we
present a sample complexity bound (Ong et al., 2004) which
shows that learning in a reproducing kernel Kreı̆n space
is consistent (Section 3.2). The section concludes with a
procedure for the optimization of hyperparameters arising
in our regularized risk minimization problem (Section 3.3).

3.1. Optimization Problem

We retain the notation from Section 2 and assume that
a sample z = {(xi, yi)}ni=1 has been drawn indepen-
dently from a Borel probability measure ρ defined on
Z = X × Y , with Y ⊂ R. For an approximation of the
target function fρ (x) =

∫
y dρ (y | x), we measure the

goodness of fit with the expected squared error in ρ, i.e.,
Eρ (f) =

∫
(f (x)− y)

2
dρ. The empirical counterpart of

the error, defined over a sample z ∈ Zn is denoted with
Ez (f) = 1

n

∑n
i=1 (f (xi)− yi)2.

Early attempts at defining a regularized risk minimization
problem for learning in reproducing kernel Kreı̆n spaces are
based on the stabilization approach by Ong et al. (2004).
We start with an instance of that approach where the stabi-
lization is replaced with minimization over a reproducing
kernel Kreı̆n space. More formally, we refer to the following
risk minimization problem over a reproducing kernel Kreı̆n
space as the OMCS-KREĬN problem (Ong et al., 2004)

min
f∈K

1

n

n∑
i=1

(f (xi)− yi)2 + λ 〈f, f〉K

s.t.
1

n

n∑
i=1

(
f (xi)−

1

n

n∑
j=1

f (xj)
)2

= r2 .

(1)

The empirical squared error depends on f ∈ K only through
its evaluations f (xi), with 1 ≤ i ≤ n. Moreover, the
squared error loss function is convex and, thus, satisfies
the requirement on the loss function from the representer
theorem for stabilization (Theorem 11, Ong et al., 2004).
In Eq. (1), we choose the linear identity function as the
stabilizer and constrain the solution space by matching
the variance of the estimator f to an a priori specified
hyperparameter. Thus, the OMCS-KREĬN problem sat-
isfies the conditions from the representer theorem for sta-
bilization (Ong et al., 2004) and any saddle point of the
optimization problem in Eq. (1) admits the expansion as
f∗ =

∑n
i=1 αik (xi, ·) with αi ∈ R. This allows us to

express the optimization problem from Eq. (1) in terms of
the parameters α ∈ Rn. To simplify our derivations, we
can without loss of generality assume that the kernel matrix
K is centered, where Kij = k (xi, xj) for 1 ≤ i, j ≤ n.
Then, substituting f =

∑n
i=1 αik (xi, ·) and using the re-

producing property of the Kreı̆n kernel k we can rewrite the

optimization problem from Eq. (1) as

min
α∈Rn

‖Kα− y‖22 + nλ2 α>Kα

s.t. α>K2α = nr2 .
(2)

The OMCS-KREĬN regularized risk minimization prob-
lem is non-convex and can have exponentially many local
optima. Despite this, we subsequently show how to find a
globally optimal solution to this problem in time cubic in
the size of the kernel expansion. However, our empirical
evaluation of the approach (presented in Section 5) demon-
strates that it fails to generalize to unseen instances. As
〈f, f〉K = ‖f+‖2H+

− ‖f−‖2H− does not define a norm,
we suspect that the regularization term does not capture
the complexity of hypotheses from the reproducing kernel
Kreı̆n space K. To address this, we propose to penalize the
complexity of hypotheses via decomposition components
H± and/or the strong topology on K. More formally, we
propose the following regularized risk minimization prob-
lem for learning in reproducing kernel Kreı̆n spaces and
henceforth refer to it as the KREĬN problem

min
f∈K

1

n

n∑
i=1

(f (xi)− yi)2 + λ+ ‖f+‖2H+
+ λ− ‖f−‖2H−

s.t.
1

n

n∑
i=1

(
f (xi)−

1

n

n∑
j=1

f (xj)
)2

= r2 . (3)

Having introduced our regularized risk minimization prob-
lem, we show that the following strong representer theorem
applies to it (a proof is provided in Appendix A).

Theorem 2. Let f∗ ∈ K be an optimal solution to the
KREĬN optimization problem from Eq. (3). Then, f∗ admits
the expansion f∗ =

∑n
i=1 αik (xi, ·) with αi ∈ R.

The representer theorem allows us to express the regular-
ized risk minimization problem as an optimization prob-
lem over a Euclidean space. In particular, substituting
f =

∑n
i=1 αik (xi, ·) into Eq. (3) we deduce

min
α∈Rn

‖Kα− y‖22 + nα>
(
λ2+ K+ + λ2− K−

)
α

s.t. α>K2α = nr2 ,
(4)

where K± are kernel matrices corresponding to disjoint
reproducing kernel Hilbert spaces given by positive definite
kernels k±, k = k+ − k−, and K = K+ −K−.

The optimization problems in Eq. (2) and (4) are minimiz-
ing quadratic forms over hyperellipsoids with radius r and
center at the origin. As such, the problems are non-convex
even in the cases when the regularization term is defined
with a positive definite matrix. Despite this, it is possible to
find a globally optimal solution to such a problem using a
method proposed by Gander et al. (1989). To simplify our
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presentation, we focus on our regularized risk minimization
problem from Eq. (4) and note that the derivation for the
OMCS-Kreı̆n problem follows along these lines. First, we
provide a proposition which is crucial for finding a globally
optimal solution to the problem in Eq. (4). To this end, let
us derive the Lagrangian of that optimization problem as

L (α, µ) = α>
(
λ2+ K+ + λ2− K−

)
α− 2y>Kα−

µ
(
α>K2α− r2

)
,

and denote with Θ (α) the optimization objective in prob-
lem (4). If we now set the derivative of the Lagrangian to
zero, we obtain the following two stationary constraints(

λ2+ K+ + λ2− K−
)
α = Ky + µK2α

α>K2α = r2 .
(5)

Having introduced all the relevant terms, we are now ready
to characterize a globally optimal solution to problem (4).

Proposition 3. (Forsythe & Golub, 1965; Gander et al.,
1989) The optimization objective Θ (α) attains its minimal
value at the tuple (α∗, µ∗) satisfying the stationary con-
straints (5) with the smallest value of µ. Analogously, the
maximal value of Θ (α) is attained at the tuple with the
largest value of the Lagrange multiplier µ.

Hence, instead of the original optimization problem (4)
we can solve the system with two stationary equations (5)
and minimal µ. Gander et al. (1989) propose two meth-
ods for solving such problems. In the first approach, the
problem is reduced to a quadratic eigenvalue problem and
afterwards transformed into a linear eigenvalue problem.
In the second approach, the problem is reduced to solving
a one-dimensional secular equation. The first approach is
more elegant, as it allows us to compute the solution in a
closed form. More specifically, the solution to problem (4)
is given by (Gander et al., 1989)

α∗ =
(
λ2+ P+ − λ2− P− − µ∗K

)−1
y , (6)

where µ∗ is the smallest real eigenvalue of the matrix[
λ2+ K†+ + λ2− K

†
− −I

−yy>/r2 λ2+ K†+ + λ2− K
†
−

]
,

P± = V I±V >, K = V ΣV > is an eigendecomposition
of K, and I± are diagonal matrices with ones at places
corresponding to positive/negative eigenvalues of K.

Despite its elegance, the approach requires us to: i) in-
vert/decompose a positive definite matrix, and ii) decom-
pose a non-symmetric block matrix of dimension 2n, which
is not a numerically stable task for every such matrix. Fur-
thermore, the computed solution α∗ highly depends on the
precision up to which the optimal µ is computed and for

an imprecise value the solution might not be on the correct
hyperellipsoid at all (e.g., see Gander et al., 1989).

For this reason, we rely on the secular approach in the com-
putation of the optimal solution. Gander et al. (1989) pro-
posed an efficient algorithm for the computation of the opti-
mal Lagrange multiplier to machine precision. For the sake
of completeness (and brevity), we review this approach in
Appendix B and in the remainder of the section describe how
to derive the secular equation required to compute the opti-
mal multiplier. First, we perform the eigendecomposition
of the symmetric and indefinite kernel matrix K = V ΣV >.
From this eigendecomposition, we derive the decomposi-
tions of matrices K± = V Σ±V

>, where Σ+/Σ− are diago-
nal matrices with the absolute values of the positive/negative
eigenvalues of K at their respective diagonals, padded with
zeros. The decomposition of K allows us to transform the
stationary constraints from Eq. (5) as

V
(
λ2+ Σ†+ + λ2− Σ†−

)
V >u = y + µu ,

where u = Kα, u>u = r2, and Σ†± denote the pseudo-
inverses of the diagonal matrices Σ±. Then, this resulting
equation is multiplied with the orthogonal matrix V > from
the left and transformed into(

λ2+ Σ†+ + λ2− Σ†−

)
û = ŷ + µû ,

with ŷ = V >y and û = V >u. From here, we deduce

ûi(µ) = σiŷi/(λ2
sign(σi)

−µσi) (i = 1, 2, ..., n) ,

and substitute the computed vector û (µ) ∈ Rn into the
second stationary constraint to form the secular equation

g(µ) = σiŷi/(λ2
sign(σi)

−µσi)− r2 = 0 . (7)

The optimal value of the parameter µ is the smallest root
of this non-linear secular equation and the optimal solu-
tion to problem (4) is given by u∗ = V û(µ∗). Moreover,
the interval at which the root lies is known (Gander et al.,
1989). In particular, the quadratic term from Eq. (4) is a
positive definite matrix and µ∗ ∈

(
−∞, λ2

+/σ+

)
, where σ+

is the largest eigenvalue of the matrix |K|. On the other
hand, the quadratic term from Eq. (2) is an indefinite matrix
and µ∗ ∈

(
−∞, λ2

−/σ−
)
, where σ− is the largest negative

eigenvalue of the matrix K. The condition on the interval
of the optimal Lagrange multiplier implies that the matrix
defining the optimal solution u∗ is positive semidefinite.
Thus, the proposed regularized risk minimization problem
is well-posed if µ∗ 6= λ2

±/σ±. The computational complexity
of both approaches (secular and eigenvalue) is O(n3).

3.2. Generalization Bound

In this section, we present a generalization bound for learn-
ing in a reproducing kernel Kreı̆n space using the proposed
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regularized risk minimization problem. The key to such
bounds over Kreı̆n spaces is to be able to quantify the com-
plexity of a hypothesis space. In the considered case, this
refers to a hypothesis space corresponding to problem (3).

We observe that as n→∞, for zero-mean hypotheses, the
hard constraint in problem (3) converges to ‖·‖2ρ, where ‖·‖ρ
denotes the norm in the space of square integrable functions
defined on X in the measure ρ. Thus, we can under this
assumption define our hypothesis space as

F =
{
f ∈ K | ‖f‖HK ≤ R ∧ ‖f‖ρ = r

}
.

Let us now, similar to Ong et al. (2004), define a ball in the
reproducing kernel Kreı̆n space via the strong topology as

BK =
{
f ∈ K | ‖f‖HK ≤ R

}
.

Then, we have F ⊂ BK and Rn (F) ≤ Rn (BK), where
Rn (F) denotes the Rademacher complexity of F (de-
fined subsequently). On the other hand, we can bound the
Rademacher complexity of the hypothesis space BK using a
result by Ong et al. (Lemma 9, 2004). In particular, we have
that (Ong et al., 2004)

Rn (BK) = Eν,σ

[
sup
f∈BK

∣∣∣∣∣ 1√
n

n∑
i=1

σif (xi)

∣∣∣∣∣ | x1, . . . , xn
]

≤ R√
n

√∫
hK (x, x) dν (x) ,

where σi are Rademacher random variables taking values
in {−1, 1}, hK is the reproducing kernel corresponding to
HK, and ν is a measure on X . Having provided a bound
on the Rademacher complexity of our hypothesis space, we
can now use a result by Mendelson (Corollary 2.24, 2003)
to give a generalization bound for learning in a reproducing
kernel Kreı̆n space using the proposed variant of regular-
ized risk minimization. The proof of the following sample
complexity bound mimics that for the reproducing kernel
Hilbert spaces and can be found in Ong et al. (2004).
Theorem 4. (Mendelson, 2003; Ong et al., 2004) Let hK
be the reproducing kernel of a Hilbert space associated to
a reproducing kernel Kreı̆n space K. For all 0 < ε, δ < 1
there exists N ∈ Ω

(
1
ε2 max

{
R2
n (J (BK)) , log 1

δ

})
such

that for any n ≥ N it holds

P

(
sup
f∈BK

∣∣∣Ez (f)− Eρ (f)
∣∣∣ ≥ ε) ≤ δ ,

where J denotes the squared error loss function.

3.3. Optimization of Hyperparameters

We now show how to improve the inductive bias (Baxter,
2000) of our approach by automatically tuning the hyper-
parameters while performing inner cross-validation. In this

process, we split the training data into training and val-
idation folds and select a validation function that will be
optimized with respect to the hyperparameter vector. The op-
timization can be performed with an off-the-shelf algorithm
(e.g., L-BFGS-B solver) as long as we are able to compute
the hyperparameter gradient of the validation function.

Denote the training and validation examples with F and F⊥,
respectively. Then, the validation function corresponding to
the squared error loss function is given by

Ξ (F, f) =
1

|F⊥|
∑

(x,y)∈F⊥
(f (x)− y)

2
,

where f =
∑n
i=1 αik (xi, ·) is a hypothesis from the repro-

ducing kernel Kreı̆n space defined by training examples in
F . Now, denote the hyperparameter vector with θ consisting
of scalars λ± and r that control the capacity of the hypothe-
sis and a vector η parameterizing the kernel function. Then,
the gradient of this validation function is given by

∇Ξ (F, f) = 2/|F⊥|
∑

(x,y)∈F⊥

(
K>x α− y

)
·
(

(∂Kx/∂θ)
>
α+K>x ∂α/∂θ

)
.

(8)

A globally optimal solution to our regularized risk mini-
mization problem is given in a closed form in Eq. (6). From
that solution, we can derive the gradient of α with respect
to the hyperparameters. More specifically, we have

τ>
∂α

∂θ
= − t>P+α

∂

∂θ
(λ+)

2
+ t>P−α

∂

∂θ
(λ−)

2
+

t>u
∂µ∗

∂θ
+ µ∗t>

∂K

∂θ
α ,

with τ = 2/|F⊥|
∑

(x,y)∈F⊥
(
K>x α− y

)
Kx, St = τ , and

S = V
(
λ2+I+ − λ2−I− − µ∗Σ

)
V > that can be computed

from the eigendecomposition of K. Thus, t is the solution
of a linear system which can be solved in time quadratic in
the number of instances using the eigendecomposition of S.

Before we give the gradients of the hyperparameters, we
need to find the derivative of the optimal Lagrange multiplier
µ∗. In order to do this, we substitute the expression for u∗

into the second stationary constraint from Eq. (5) to obtain

y>
(
λ2+ K−1+ + λ2− K

−1
− − µ∗I

)−2
y = r2.

To find the derivative of µ∗ with respect to θ we need to
implicitly derive the latter equation. In particular, taking the
derivative of both sides with respect to θ we deduce

∂

∂θ

(
r2

2

)
= − q>P+u

∂

∂θ

(
λ2+
)

+ q>P−u
∂

∂θ

(
λ2−
)

+

u>
∂K

∂θ
α+ µ∗q>K

∂K

∂θ
α+ q>Ku

∂µ∗

∂θ
,
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where q is the solution of the linear system Sq = u which
can again be solved in quadratic time using the eigende-
composition of S. From the latter equation, we derive the
gradient of the optimal Lagrange multiplier µ∗ with respect
to the individual hyperparameters (a detailed derivation is
provided in Appendix E). If we now substitute the derived
gradients of the optimal multiplier µ∗ into ∂α

∂θ , we obtain

τ>
∂α

∂r
= r

t>u

q>Ku
,

τ>
∂α

∂η
=

t>u

q>Ku
(−u− µ∗ Kq)> ∂K

∂η
α+ µ∗ t>

∂K

∂η
α ,

τ>
∂α

∂λ±
= 2λ±

(
± t>u

q>Ku
· q>P±u∓ t>P±α

)
.

Now, the gradient of the validation function Ξ (F, f) can be
derived by substituting the individual gradients into Eq. (8).

4. Related Work
From the perspective of practitioners, the main advantage
of the proposed regularized risk minimization problem over
standard kernel methods is the fact that a kernel function
does not need to be positive definite. It is often well beyond
the ability of practitioners to verify this condition and many
intuitive/interpretable similarity functions are not positive
definite. Previous approaches for dealing with indefinite-
ness of kernel matrices can be divided into three classes:
i) transformations of the kernel spectrum, ii) stabilization
instead of minimization of a risk functional, and iii) learning
with evaluation functionals as features.

The first class of approaches aims at converting an indefinite
kernel function, which defines a reproducing kernel Kreı̆n
space, to a positive definite one. Perhaps the simplest such
approach is to clip the spectrum of the kernel matrix, i.e.,
set the negative eigenvalues to zero (Wu et al., 2005). This
corresponds to projecting an indefinite kernel matrix to the
cone of positive definite matrices. The approach can be
motivated by problems in which negative spectrum amounts
to noise, rather than useful information. Another approach
from this class, considers shifting the spectrum of the kernel
matrix by adding the absolute value of the smallest eigen-
value to the diagonal of the kernel matrix (Roth et al., 2003;
Zhang et al., 2006). While spectrum clip changes the kernel
matrix, spectrum shift modifies only its diagonal entries.
Some approaches consider mapping of an indefinite kernel
matrix to its square which is positive definite (Chen et al.,
2009; Graepel et al., 1998). Another popular transforma-
tion flips the spectrum by taking the absolute value of the
eigenvalues (Graepel et al., 1998; Loosli et al., 2016). This
transformation is equivalent to learning in an associated
Hilbert space corresponding to a decomposition of a Kreı̆n
kernel. We conclude our brief review of spectral transforma-
tions with the work by Ong et al. (2004), which regularizes

the risk minimization by setting to zero the eigenvalues with
the absolute value below an a priori specified threshold. The
hypothesis is then obtained by solving the linear system
given by the minimization of the expected squared error.

In the second class of approaches, the minimization of a
regularized risk functional is replaced with its stabiliza-
tion. The stabilization of a risk functional, first proposed
by Ong et al. (2004), can intuitively be interpreted as set-
tling with a good stationary point of the regularized risk
minimization. Early approaches from this class involved
optimization of support vector machines while ignoring
the non-convexity of the optimization problem (Lin & Lin,
2003). Recently, Loosli et al. (2016) have proposed a sup-
port vector machine for learning in Kreı̆n spaces that per-
forms stabilization by finding a hypothesis in a reproducing
kernel Kreı̆n space (H+ ⊕H−, 〈·, ·〉K) that solves the corre-
sponding primal optimization problem by minimizing over
H+ and maximizing overH−. As the authors of that work
show, this amounts to solving the dual optimization prob-
lem over the associated reproducing kernel Hilbert space(
H+ ⊕H−, 〈·, ·〉HK

)
. The approach is related to consider-

ations by Graepel et al. (1998), where the eigenvalues of
an indefinite kernel matrix are replaced with their absolute
values. Another support vector machine approach for learn-
ing in Kreı̆n spaces was proposed by Luss & d’Aspremont
(2009). A key idea in that work is to first find a positive
definite matrix that approximates well the indefinite one
and then learn a support vector machine predictor with that
positive definite matrix as the kernel matrix. Thus, the
approach can be seen as a sophisticated transformation of
spectrum, where an indefinite matrix is mapped to a positive
definite one using training examples. Chen & Ye (2008)
have provided a fast algorithm for this variant of support
vector machines in Kreı̆n spaces.

The third class of approaches first embeds instances into a
feature space defined by kernel values between them and
a fixed number of landmarks from the instance space. Fol-
lowing this, a linear model is used in the constructed feature
space to learn a target concept. Chen et al. (2009) have
considered such an approach for learning with symmetric
similarity/kernel functions, providing a detailed empirical
study and a generalization bound. Recently, Alabdulmohsin
et al. (2015) have reported promising empirical results using
support vector machines with `1-norm regularization and in-
definite kernels as features. Balcan et al. (2008) have studied
generalization properties of learning with kernel/similarity
functions as features. Their theoretical results demonstrate
that learning with a positive definite kernel corresponding to
a feature space where the target concept is separable by a lin-
ear hypothesis yields a larger margin compared to learning
with a linear model in a feature space constructed using that
kernel function. As a result, if a kernel is used to construct
a feature representation the sample complexity of a linear
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Table 1. This table presents the results of synthetic experiments in which the proposed approach (i.e., the KREĬN method) is compared
to frequently used transformations of the spectrum of indefinite kernel matrices on regression tasks. We measure the effectiveness of a
baseline/method using the average root mean squared error, computed after performing 10 fold outer cross-validation.

K −K−1 min max # pos # neg ι KREĬN FLIP CLIP SHIFT SQUARE OMCS-KREĬN

GAUSS (n = 100) −272.08 91.03 1 99 0.99 8.99 (±1.96) 9.11 (±2.00) 23.14 (±9.45) 22.20 (±4.95) 9.73 (±1.43) 9.28 (±2.23)
GAUSS (n = 500) −70.75 378.65 51 449 0.98 10.76 (±1.54) 10.80 (±1.38) 19.87 (±5.54) 15.84 (±1.86) 11.01 (±1.28) 29.89 (±16.51)
GAUSS (n = 1000) −520.19 886.49 55 945 0.99 9.70 (±0.67) 9.77 (±0.68) 14.13 (±1.49) 14.10 (±1.71) 11.31 (±4.62) 50.24 (±18.11)
SIGMOID (n = 100) −19.73 21.68 44 56 0.45 12.21 (±1.67) 12.30 (±1.93) 14.75 (±2.94) 16.16 (±3.03) 13.05 (±2.01) 27.59 (±24.29)
SIGMOID (n = 500) −43.87 129.87 179 321 0.47 7.94 (±1.07) 8.06 (±0.96) 9.78 (±1.02) 10.90 (±1.27) 9.40 (±0.80) 22.51 (±13.80)
SIGMOID (n = 1000) −385.50 300.26 375 625 0.48 6.63 (±0.34) 6.62 (±0.33) 13.21 (±1.13) 13.56 (±1.20) 7.09 (±0.46) 16.58 (±3.87)

*SIGMOID (n = 100) −5.86 × 105 5.32 × 105 2 98 0.56 5.70 (±0.60) 5.67 (±0.51) 12.97 (±2.20) 14.00 (±2.34) 20.62 (±5.81) 18.56 (±4.29)

*SIGMOID (n = 500) −22.61 1.66 × 106 400 100 0.01 9.04 (±1.32) 8.06 (±0.92) 8.11 (±0.88) 15.08 (±14.27) 38.04 (±26.12) 14.59 (±12.30)

model in that space might be higher compared to learning
with a kernelized variant of regularized risk minimization.

An important aspect of learning with indefinite kernels is
the consistent treatment of training and test instances known
as the out-of-sample extension. While this problem does not
occur in transductive setting, where the kernel matrix can be
constructed using both training and test samples, it affects
a number of approaches based on spectral transformations.
In particular, Chen et al. (2009) have constructed a linear
operator to deal with training and test samples consistently
in the case of spectrum clip. In addition to this, the au-
thors of that work have provided an out-of-sample extension
for spectrum flip without a theoretical result guaranteeing
its consistency. Contrary to some of the previous empiri-
cal studies, these out-of-sample extensions are used in our
experiments to transform test samples. For other transfor-
mations, such as spectrum shift, the described regularization
by Ong et al. (2004), and/or matrix inversion no linear trans-
formation exists to consistently deal with training and test
samples. In these cases, it is possible to use a heuristic pro-
posed by Wu et al. (2005), that can also be found in Chen
et al. (2009). The heuristic first applies the spectral transfor-
mation to a kernel matrix comprised of training instances
and a test sample and then uses the transformed part of the
kernel matrix corresponding to the test sample to define its
kernel expansion. In our experiments, we use this heuristic
for shift and square transformations of the kernel spectrum.

5. Experiments
The presented optimization procedure can compute a glob-
ally optimal solution to the regularized risk minimization
problem defined by either a positive definite (e.g., regulariza-
tion via decomposition componentsH±) or an indefinite reg-
ularization/quadratic term (e.g., regularization via 〈·, ·〉K).
In the first set of experiments, we exploit this to gain an in-
sight into the effectiveness of learning in reproducing kernel
Kreı̆n spaces using: i) our approach that regularizes via de-
composition components (KREĬN), ii) an approach that reg-
ularizes via the strong topology (FLIP), iii) a variant of the
stabilization approach (OMCS-KREĬN) motivated by Ong
et al. (2004), and iv) approaches relying on spectral transfor-

Table 2. This table presents the results of experiments with in-
definite kernels derived from dissimilarity matrices defined on
structured data. The effectiveness of an approach is measured
using the average percentage of misclassified examples, computed
after performing 10 fold stratified cross-validation.
DATASET DISSIM SOURCE KREĬN (%) K-SVM (%) LRR-SF (%)
coilyork Graph matching 22.56 (±7.66) 32.91 (±8.06) 26.03 (±5.60)

balls 3D Ball-to-ball distances 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

prodom Protein alignment 0.00 (±0.00) 0.00 (±0.00) 0.04 (±0.11)

chicken10 String edit distance 5.62 (±2.55) 30.95 (±7.81) 11.91 (±3.56)

protein Protein alignment 0.00 (±0.00) 5.17 (±3.34) 2.83 (±3.15)

zongker Template matching 0.95 (±1.68) 16.00 (±1.41) 5.60 (±1.20)

chicken25 String edit distance 4.73 (±3.29) 17.72 (±6.57) 16.38 (±5.14)

pdish57 Hausdorff distance 0.35 (±0.37) 0.42 (±0.25) 0.20 (±0.19)

pdism57 Hausdorff distance 0.11 (±0.18) 0.13 (±0.23) 0.15 (±0.17)

woody50 Shape dissimilarity 2.53 (±2.66) 37.04 (±5.07) 22.89 (±4.07)

mations of the kernel matrix (CLIP, SHIFT, SQUARE). In the
first case, we find a globally optimal solution to the problem
from Eq. (4) and in others we solve the problem from Eq. (2),
defined with an indefinite kernel matrix or a spectral trans-
formation in place the matrix K. Having established that
the regularization via decomposition components of a repro-
ducing kernel Kreı̆n space is effective, we perform a series
of experiments on real-world datasets with different struc-
tured representations (i.e., strings, graphs, shapes). More
specifically, we evaluate the effectiveness of our approach
with respect to the state-of-the-art baselines for learning in
reproducing kernel Kreı̆n spaces: i) Kreı̆n support vector
machine (Loosli et al., 2016), and ii) linear ridge regression
with similarities as features (Alabdulmohsin et al., 2015;
Chen et al., 2009). In addition to this, we perform a series of
experiments with variants of standard indefinite kernels on
vectorial data (described in Appendix D) and demonstrate
that on some problems indefinite kernels can be more effec-
tive than the positive definite ones. A detailed description
of the experimental setup can be found in Appendix C. To
quantify the indefiniteness of a kernel matrix, we use the
following measure (Alabdulmohsin et al., 2015)

ι =
∑
{i : λi<0}|λi|/

∑
i|λi| with 0 ≤ ι ≤ 1.

In Table 1, we present the results of our synthetic experi-
ments designed to evaluate the effectiveness of regulariza-
tion via decomposition components H± and/or the strong
topology of a Kreı̆n space. In these experiments, we first
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Table 3. This table presents the results of experiments on real-world datasets in which the proposed risk minimization problem is used to
evaluate the effectiveness of indefinite kernels on classification and regression tasks. For classification tasks, we measure the effectiveness
of a kernel using the average percentage of misclassified examples, computed after performing 10 fold cross-validation. The effectiveness
on regression tasks is measured using the root mean squared error, which is also computed after performing 10 fold cross-validation.

DATASET SIGMOID ι RL-SIGMOID ι DELTA-GAUSS ι EPANECHNIKOV ι GAUSS ι RL-GAUSS ι

c© HABERMAN (n = 306) 29.99 (±5.76) 0.11 30.79 (±5.85) 0.21 30.31 (±9.63) 0.60 32.29 (±7.28) 0.02 30.61 (±8.70) 0.00 29.69 (±8.00) 0.00
c© IONOSPHERE (n = 351) 9.35 (±4.26) 0.34 7.96 (±5.22) 0.40 6.29 (±4.92) 0.60 7.45 (±4.67) 0.02 6.29 (±4.92) 0.00 8.25 (±3.42) 0.00
c© BREASTCANCER (n = 683) 2.63 (±1.71) 0.29 3.25 (±2.91) 0.26 2.93 (±1.86) 0.40 3.36 (±2.79) 0.03 3.21 (±2.68) 0.00 2.63 (±1.94) 0.00
c© AUSTRALIAN (n = 690) 14.32 (±4.89) 0.14 13.89 (±4.02) 0.38 14.18 (±4.80) 0.60 13.76 (±4.80) 0.01 14.18 (±4.58) 0.00 13.74 (±4.16) 0.00
c© DIABETES (n = 768) 27.08 (±4.61) 0.20 26.30 (±5.31) 0.32 26.30 (±3.84) 0.30 25.65 (±4.81) 0.03 26.17 (±4.71) 0.00 24.74 (±5.08) 0.00
r© YACHT (n = 308) 2.12 (±1.73) 0.11 1.63 (±1.24) 0.35 2.80 (±2.44) 0.70 5.75 (±1.85) 0.04 5.09 (±2.33) 0.00 3.47 (±1.93) 0.00
r© PM10 (n = 500) 16.05 (±2.81) 0.16 16.06 (±2.38) 0.37 15.72 (±2.83) 0.50 15.63 (±2.34) 0.04 15.54 (±2.67) 0.00 15.78 (±2.15) 0.00
r© WAGE (n = 534) 10.01 (±2.17) 0.17 9.95 (±2.13) 0.36 9.85 (±2.11) 0.20 10.02 (±1.99) 0.01 9.87 (±2.12) 0.00 9.92 (±2.13) 0.00
r© AIRFOIL (n = 1503) 8.31 (±1.62) 0.07 7.54 (±1.03) 0.25 6.12 (±0.53) 0.49 8.84 (±0.77) 0.04 8.54 (±1.89) 0.00 9.21 (±1.74) 0.00

sample hyperparameters of a kernel matrix and then define
an indefinite matrix as the difference between the sampled
kernel matrix and its inverse. Having selected the kernel
matrix, we pick a Kreı̆n hypothesis by sampling coefficients
of the kernel expansion from the standard normal distri-
bution and dividing them with the square root of the size
of the expansion. Note that the target function is, thus,
unlikely to be contained in the span of the training data
only. After sampling the hypothesis, we perturb it with a
noise vector sampled from the standard normal distribution
with zero mean and scale that corresponds to 5% of the
hypothesis range. The empirical results show that clipping
and shifting of the kernel spectrum can result in a signifi-
cant performance degradation compared to regularization
via decomposition components and/or the strong topology
of a reproducing kernel Kreı̆n space (KREĬN and FLIP).
While the flip spectrum transformation has been considered
in previous work (Chen et al., 2009; Graepel et al., 1998;
Loosli et al., 2016), the results reported here are obtained
using a novel regularized risk minimization problem with
different generalization properties compared to the previ-
ous approaches. Overall, our KREĬN approach is the best
performing method across the considered problems charac-
terized by different spectrum structure/decay. For kernel
matrices, which in the absolute value have a large positive
and a large negative eigenvalue, squaring of the spectrum
can result in a performance degradation. Another impor-
tant insight from the synthetic experiments is that for fixed
hyperparameters the OMCS-KREĬN approach results in a
hypothesis with large norm over the negative part of the
spectrum. The hyperparameter optimization on a validation
set penalizes over-fitting on the training data by pushing the
radius r to zero or ‘encourages fitting’ of the validation data
without capacity control by pushing λ to zero. As a result
of this, the approach fails to generalize to unseen examples.

In Table 2, we present the results of our experiments on
classification tasks using a set of benchmark datasets for
learning with indefinite kernels (Duin & Pekalska, 2009).
The set consists of matrices with pairwise dissimilarities
between instances and the corresponding labels. In our simu-
lations, we follow the guidelines from Pekalska & Haasdonk

(2009) and use the negative double-centering transforma-
tion characteristic to multidimensional scaling (Cox & Cox,
2000) to map dissimilarity matrices to kernel matrices ex-
pressing the pairwise similarities between instances. In the
table header, K-SVM refers to Kreı̆n support vector machine
and LRR-SF to linear ridge regression with similarities as
features. For each dataset, we have performed the Welch
t-test (Welch, 1947) with p = 0.05 and marked the statisti-
cally significantly better results in bold (standard deviations
are provided in the brackets). The results show that our ap-
proach which regularizes via decomposition components of
a Kreı̆n space performs statistically significantly better than
the two competing approaches on the considered datasets.

Table 3 presents the results of our empirical evaluation on
real-world vectorial datasets using the proposed approach.
The goal of the experiment is to show that indefinite kernels
define an important class of kernel functions. All the kernels
used in this experiment are described in Appendix D, to-
gether with the corresponding hyperparameters. The results
show that on the YACHT and AIRFOIL datasets, the error
obtained with RL-SIGMOID and DELTA-GAUSS kernels is
statistically significantly better than the one obtained with
positive definite kernels (the Welch t-test with p = 0.05).

Conclusion
We have proposed a novel regularized risk minimization
problem for learning in reproducing kernel Kreı̆n spaces
and showed that the strong representer theorem applies to it.
The approach is consistent and guaranteed to find an optimal
solution in time cubic in the number of training examples.
Moreover, we have provided means for efficient hyperpa-
rameter tuning by deriving the gradient of the solution with
respect to its hyperparameters. Our empirical results demon-
strate the effectiveness of regularizing via decomposition
components of a reproducing kernel Kreı̆n space compared
to learning with different spectrum transformations, as well
as the state-of-the-art competing approaches. The results
obtained on real-world vectorial datasets show that on some
problems variants of the well-known indefinite kernels can
outperform the frequently used positive definite ones.
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A. Proofs
Theorem 2. Let f∗ ∈ K be an optimal solution to the
KREĬN optimization problem from Eq. (3). Then, f∗ admits
the expansion f∗ =

∑n
i=1 αik (xi, ·) with αi ∈ R.

Proof. From Definition 1 it follows that a function f ∈ K
admits a decomposition f = f+ ⊕ f− with f± ∈ H±.
Denote withH± (X) = span ({k± (x, ·) ∈ H± | x ∈ X})
the two spans of the evaluation functionals centered at data
instances from X = {x1, . . . , xn}. Let f± = u± + v±
such that u± ∈ H± (X) and v±⊥H± (X). Then, for all
instances x ∈ X it holds that

〈v±, k± (x, ·)〉H± = 0 .

Thus, for all x ∈ X a Kreı̆n hypothesis f ∈ K evaluated at
x is independent of v±. More specifically, we have that

f (x) = 〈f+ ⊕ f−, k (x, ·)〉K =

〈u+ + v+, k+ (x, ·)〉H+
− 〈u− + v−, k− (x, ·)〉H− =

u+ (x)− u− (x) = u (x) .

From here it follows that we can express the optimization
problem from Eq. (3) as

min
f∈K

1

n

n∑
i=1

(
u (xi)− yi

)2
+ λ+

(
‖u+‖2H+

+ ‖v+‖2H+

)
+ λ−

(
‖u−‖2H− + ‖v−‖2H−

)
s.t.

1

n

n∑
i=1

(
u (xi)−

1

n

n∑
j=1

u (xj)
)2

= r2 .

As the hard constraint is independent of v±, this optimiza-
tion problem attains the minimal value at v± = 0. Hence,
an optimal solution to the optimization problem from Eq. (3)
admits the expansion f∗ =

∑n
i=1 αik (xi, ·) with αi ∈ R

and 1 ≤ i ≤ n.

For the sake of completeness, we provide a proof of Propo-
sition 3 which can also be found in Oglic et al. (2014).
While the result itself has not been explicitly formulated
by Forsythe & Golub (1965) and Gander et al. (1989), it
follows directly from the considerations in these two papers.

Proposition 3. (Forsythe & Golub, 1965; Gander et al.,
1989) The optimization objective Θ (α) attains its minimal
value at the tuple (α∗, µ∗) satisfying the stationary con-
straints (5) with the smallest value of µ. Analogously, the
maximal value of Θ (α) is attained at the tuple with the
largest value of the Lagrange multiplier µ.

Proof. Denote with C = λ2+K
−1
+ + λ2−K

−1
− and let u =

Kα. Then, the two stationary constraints from Eq. (5) can

be written as

Cu = y + µu

u>u = r2 .

Here, C is a symmetric matrix as the sum of two symmetric
and positive definite matrices.

Let (α1, µ1) and (α2, µ2) be two tuples satisfying the sta-
tionary constraints from Eq. (5) with µ1 ≥ µ2. Then, sub-
stituting u1 = Kα1 and u2 = Kα2 into the first stationary
constraint, we have that

Cu1 = µ1u1 + y , (9)
Cu2 = µ2u2 + y . (10)

Substracting (10) from (9) we deduce

Cu1 − Cu2 = µ1u1 − µ2u2 . (11)

Multiplying Eq. (11) first with u>1 and then with u>2 and
adding the resulting two equations (having in mind that the
matrix C is symmetric) we derive

u>1 Cu1 − u>2 Cu2 = (µ1 − µ2)(r2 + u>1 u2) . (12)

On the other hand, combining the Cauchy-Schwarz inequal-
ity with the second stationary constraint we obtain that

u>1 u2 ≤ ‖u1‖‖u2‖ = r2 . (13)

Now, combining the results obtained in (12) and (13) with
the initial assumption µ1 ≥ µ2,

u>1 Cu1 − u>2 Cu2 ≤ 2r2(µ1 − µ2) . (14)

Finally, subtracting the optimization objectives for the two
tuples and using (9) and (10) multiplied by u>1 and u>2 ,
respectively, we derive

Θ(α1)−Θ(α2) = u1Cu1 − u2Cu2 − 2y> (u1 − u2) =

2r2(µ1 − µ2)− (u>1 Cu1 − u>2 Cu2) ≥ 0 ,

where the last inequality follows from (14).

B. Secular Root Finder
In this appendix, we review an effective iterative
method (Gander et al., 1989) for finding the smallest/largest
root of the secular equation introduced in Section 3.1. An
obvious choice for the root finder is the Newton method
and, yet, it is not well suited for the problem. The tangent
at certain points in the interval of interest crosses the x-axis
outside that interval leading to incorrect solution or division
by zero. An efficient root finder, then, must overcome these
issues and converge very quickly. The main idea behind an
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efficient iterative root finder is to first approximate the secu-
lar equation with a quadratic surrogate and then update the
current root estimate with the root of the surrogate function.

As the smallest root µ∗ ∈
(
−∞, λ2

±/σ±
)
, the secular equa-

tion has a quadratic surrogate for only one interval end-
point (Gander et al., 1989), i.e.,

h(µ) =
p

(q − µ)
2 − r

2.

In order to determine the coefficients of the quadratic sur-
rogate at step t, the secular equation and its derivative are
matched to the corresponding surrogate approximations at
the candidate root. In other words, the following constraints
are enforced on the surrogate function

h(µt) = g(µt) ∧ h′(µt) = g′(µt).

From the derivative constraint it follows that

g′ (µt) = 2
g (µt) + r2

q − µt
=⇒ q = µt + 2

g (µt) + r2

g′ (µt)
.

Now, combining the computed coefficient q with the con-
straint on the surrogate value at µt we deduce

p = 4

(
g (µt) + r2

)3
g′ (µt)

2 .

Having computed the coefficients p and q, the next secular
root candidate is given by

p

(q − µt+1)
2 − r

2 = 0 =⇒

µt+1 = q −
√
p

r
=⇒

µt+1 = µt + 2
g (µt) + r2

g′ (µt)

(
1−

√
g (µt) + r2

r

)
.

For an initial solution µ∗ < µ0 < λ2
±/σ± the convergence is

monotonic (Bunch et al., 1978), i.e., for all t > 0 we have
that µ∗ < µt+1 < µt.

C. Experimental Setup
In all the experiments, we have performed 10 fold outer
cross-validation to evaluate the effectiveness of the consid-
ered baselines (with stratified fold splitting on classification
tasks). To tune the hyperparameters of the approach (λ±, r,
and η where applicable) we have performed 5 fold (strati-
fied) inner cross-validation. For one such split, the training
is performed on the batch of (k − 1) training folds and the
hyperparameters are optimized on the remaining validation
fold. Each inner cross-validation fold is used exactly once
as a validation fold and we refer to the hyperparameter gra-
dients computed on these folds as fold gradients. Having

computed the fold gradients for all inner cross-validation
splits, the ultimate hyperparameter gradient is their average.
In the inner cross-validation, we have used the derived hy-
perparameter gradients (Section 3.3) with the L-BFGS-B im-
plementation from the scipy package. The hyperparameter
optimization is performed with 10 random restarts such that
for each initial solution the minimization procedure makes
at most 20 iterations of L-BFGS-B minimization and then
continues with the best hyperparameter vector for at most
200 iterations. In all our simulations, we have used identical
initialization procedures for hyperparameter optimization
(described in Appendix E). For real-world vectorial datasets,
we have normalized the instances so that the data matrix
has zero mean and unit variance. To facilitate the compar-
ison between different problems, the labels in regression
tasks were normalized so that their range is equal to one. In
classification tasks, the input labels {−1, 1} were set to

y+ =

√
n−
n+

and y− = −
√
n+
n−

,

where n± denote the number of positive/negative class la-
bels present in a given sample of labeled examples.

In the experiments with structured data1, we have used
the negative double-centering transformation (Cox & Cox,
2000; Pekalska & Haasdonk, 2009) to convert dissimilarity
matrices to indefinite kernel/similarity matrices. More for-
mally, for a symmetric dissimilarity matrix D the indefinite
kernel/similarity matrix is given by

K = −1

2
HD �DH ,

whereH = In− 1
nee

>, e is the vector of all ones, and� de-
notes the elementwise multiplication of two matrices. Some
of the classification tasks on structured data are multi-class
problems and for them we only evaluate the effectiveness
of one-vs-all classifier for the class with the label one.

D. Kernels
GAUSS

k(x, x′) = exp

(
−‖x− x

′‖2

2η2

)
,

where η ∈ R

RL-GAUSS

k(x, x′) = exp
(
− (x− x′)>D (x− x′)

)
,

where x, x′, η ∈ Rd and D = diag
(
η−2

)
1

The datasets are available at http://prtools.org/disdatasets/index.html.

http://prtools.org/disdatasets/index.html
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SIGMOID

k(x, x′) = tanh

(
−0.5 + x>x′

η2

)
,

where η ∈ R

RL-SIGMOID

k(x, x′) = tanh
(
x>Dx′

)
,

where x, x′, η ∈ Rd and D = diag
(
η−2

)
DELTA-GAUSS

k(x, x′) = exp

(
−‖x− x

′‖2

2η21

)
− exp

(
−‖x− x

′‖2

2η22

)
,

where η1, η2 ∈ R

EPANECHNIKOV

k(x, x′) = max
(

0, 1− (x− x′)>D (x− x′)
)2

,

where x, x′, η ∈ Rd and D = diag
(
η−2

)
E. Hyperparameter Optimization
E.1. Initialization Schemes

The outputs are normalized so that their mean is equal to
zero and their range is equal to one.

RADIUS

• var← 1
n

∑n
i=1 y

2
i

• δ ←
√

1
n

∑n
i=1 (y2i − var)

2

• rmin ← max
{

10−4, var− 2.5δ
}

• rmax ← var + 2.5δ

• u ∼ U [0, 1] and r ←
√

(rmax − rmin)u+ rmin

REGULARIZATION PARAMETERS λ±

• S ← logspace (−1, 2, 5)

• u ∼ U {1, 2, 3, 4, 5} and λ± ←
√
S[u]/n

BANDWIDTH

i) GAUSS

– p← sq pairwise distances (X)

– u ∼ U [0, 1] and c← 0.4(u+ 1)

– η ← median(p)/c

ii) RL-GAUSS

– M ← col max (X) and m← col min (X)

– u ∼ U [0, 1]
d and c← 0.4(u+ 1)

– η ←
√
d · c⊗ (M −m)

iii) SIGMOID

– u ∼ U [0, 1] and c← 0.4(u+ 1)

– η ←
√

max{row norm(X)}/c

iv) RL-SIGMOID

– u ∼ U [0, 1]
d and c← 0.4(u+ 1)

– η ←
√

col max (abs (X))⊗ c−1

v) DELTA-GAUSS

– u ∼ U [0, 1] and c← 2u− 1

– η ∼ GAUSS

– η1 ← (1− c)η and η2 ← (1 + c)η

vi) EPANECHNIKOV

– η̂ ∼ RL-SIGMOID

– η ← η̂2

E.2. Derivation of Hyperparameter Gradients

K = V ΣV > ∧ S = λ2+ P+ − λ2− P− − µ∗K
S = V

(
λ2+I+ − λ2−I− − µ∗Σ

)
V >

α =
(
λ2+ P+ − λ2− P− − µ∗K

)−1
y = S−1y

u = Kα = KS−1y

Ξ (F, f) =
1

|F⊥|
∑

(x,y)∈F⊥
(f (x)− y)

2
=

1

|F⊥|
∑

(x,y)∈F⊥

(
K>x α− y

)2

∇Ξ (F, f) = 2/|F⊥|
∑

(x,y)∈F⊥

(
K>x α− y

)
·

(
(∂Kx/∂θ)

>
α+K>x ∂α/∂θ

)

τ = 2/|F⊥|
∑

(x,y)∈F⊥

(
K>x α− y

)
Kx ∧ St = τ
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τ>
∂α

∂θ
= τ>S−1

(
− ∂

∂θ
(λ+)

2
P+ +

∂

∂θ
(λ−)

2
P−

)
α+

τ>S−1
(
∂µ∗

∂θ
K + µ∗

∂K

∂θ

)
α =

− t>P+α
∂

∂θ
(λ+)

2
+ t>P−α

∂

∂θ
(λ−)

2
+

t>u
∂µ∗

∂θ
+ µ∗t>

∂K

∂θ
α

y>
(
λ2+ K−1+ + λ2− K

−1
− − µ∗I

)−2
y = r2

Sq = u

∂

∂θ

(
r2

2

)
= − q>P+u

∂

∂θ

(
λ2+
)

+ q>P−u
∂

∂θ

(
λ2−
)

+

u>
∂K

∂θ
α+ µ∗q>K

∂K

∂θ
α+ q>Ku

∂µ∗

∂θ

∂µ∗

∂r
=

r

q>Ku

∂µ∗

∂η
= − 1

q>Ku
(u+ µ∗Kq)

> ∂K

∂η
α

∂µ∗

∂λ±
= ± 2λ±

q>P±u

q>Ku

τ>
∂α

∂r
= r

t>u

q>Ku

τ>
∂α

∂η
= − t>u

q>Ku
(u+ µ∗ Kq)

> ∂K

∂η
α+ µ∗ t>

∂K

∂η
α

τ>
∂α

∂λ±
= 2λ±

(
± t>u

q>Ku
· q>P±u∓ t>P±α

)


