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Abstract. TexGen is open source software developed at the University of Nottingham for the 
geometric 3D modelling of textiles and textile composites. It has a large number of users 
worldwide and underpins a significant number of research publications. 
While many users make simplifying assumptions about the structure of a textile, in reality the 
internal geometry of a textile or textile composite is complex. Capturing this complexity is vital 
for the prediction of properties such as permeability and mechanical failure. Examples will be 
given of the characterisation of a material and how the complex features are captured and 
implemented in TexGen, making use of functionality such as the ability to vary the cross-
sectional shape along the length of a yarn. The effect on prediction of properties as a model is 
refined will be demonstrated. 
Recent additions to the software will also be highlighted. Laminated structures can be quickly 
and easily constructed from a selection of textiles and several nesting options are available. A 
new rotate textile option can then be used to create laminates with varying ply angles. Where the 
unit cell is also rotated, appropriate periodic boundary conditions have been implemented and 
are automatically generated in an ABAQUS input file. 
A new feature is described which generates a TexGen model from a weave pattern file. Future 
developments of this may improve accessibility of the software to the weaving community.  The 
generation of a pattern draft output from the TexGen model is also described. 
 

1.  Introduction 
Textile composites are used in a wide range of applications, either in the form of laminates from 2D 
textiles, 3D textiles or increasingly complex net-shaped preforms. In order to speed up the design cycle 
for these materials it is essential to be able to create realistic geometric models so that accurate 
simulation results can be obtained for the prediction of properties such as permeability and mechanical 
properties. TexGen [1, 2] is open source software developed in the Composites Research Group at the 
University of Nottingham, enabling the creation of 3D geometric models of textiles and textile 
composites. There is built-in capability for the creation of standard textile forms, both 2D and 3D woven, 
and there are refinement algorithms built into the software for automatic reduction of intersections in 
the model and for creating different levels of compaction. This automation makes use of the versatility 
of the built-in modelling capability and can be recreated using the functions in the Python scripting API. 
This functionality is often overlooked by users and this paper seeks to highlight how this can be used to 
create more realistic textile models and how this can improve the final simulation results which use 
these models. 

http://creativecommons.org/licenses/by/3.0


2

1234567890‘’“”

13th International Conference on Textile Composites (TEXCOMP-13) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 406 (2018) 012024 doi:10.1088/1757-899X/406/1/012024

 
 
 
 
 
 

New features are also described, including an option to build up laminates using a variety of textile 
layers at varying rotations, and new input from weave pattern data as well as its output from a TexGen 
model. 

2.  Geometric modelling 
The functionality used within TexGen to enable the creation and refinement of complex textile models 
is highlighted here and guidance is given on how these methods can be used for geometry model 
generation. The example used here is a 3D orthogonal weave shown in Figure 1a [3]. An idealized model 
of the geometry can be created using the 3D wizard in the TexGen graphical user interface (GUI), Figure 
1b, in this case using the measured yarn widths and heights and a default power ellipse with a power of 
0.6 as the constant cross-section. Nodes are created on a grid with one at each crossing of the warp and 
weft yarns.  The binder yarns have extra nodes inserted around the top and bottom weft yarns in order 
to follow their shape, shown in Figure 1c. This uses a function ShapeBinderYarns which automatically 
calculates the yarn positions.  

 

 
Figure 1. a) µCT image of 3D orthogonal textile b) Idealised model created using TexGen 3D 

wizard c) Nodes and paths in idealised model 

2.1.  Use of complex cross-sections 
Figure 2a shows a slice from the µCT image of the orthogonal textile. It can be seen that the weft 
cross-sections, seen end-on in the image, show two distinct shapes. Where the binder yarns wrap 
around the wefts at the top and bottom of the textile the wefts form a curved section on the outer 
surface whilst remaining flat where they lie next to the warp yarn underneath. The weft yarns in the 
inner section of the textile form into a more rectangular shape which can be represented using a power 
ellipse section. 

 
Figure 2. a) µCT image showing weft cross-sections b) Hybrid section dialog c) Yarn with hybrid 

sections 

(a) (b) (c) 

(a) (b) (c) 
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2.1.1.  Hybrid sections. The asymmetric outer sections can be created using the hybrid section type. 
From the GUI the dialog in Figure 2b allows the shape to be divided into sections, here showing two 
but more can be chosen if desired. The size and section type of each division can then be entered to 
form the combined shape. Using Python the CSectionHybrid class is used followed by AddDivision 
and AssignSection to specify how the section is divided and which section type and size is assigned to 
each division. An example yarn using this cross-section is shown in Figure 2c. 

2.1.2.  Polygon sections. In some cases the required cross-section may not conform to a standard 
shape, or may be difficult to assemble as a composite shape using the hybrid option. In this case the 
CSectionPolygon class can be used. This option is only available via the Python scripting interface. In 
the case of the 3D orthogonal textile, as the textile is compacted crimp is induced in the top weft yarns 
which in turn affects the shape of the warp yarns underneath as shown in Figure 3a. During the 
refinement process implemented automatically in TexGen this effect is captured, Figure 3b, and the 
warp yarns shape is automatically changed to avoid intersections. The polygon section is used thus 
enabling sections such as that shown in Figure 3c to be produced. When the section is initialised a 
vector of points is specified which define the outer surface of the boundary. 

Figure 3. a) µCT image showing local geometry variations b) Refined geometry for compacted textile 
c) Polygon section 

2.2.  Variation of cross-section along length of yarn 
When a yarn is created it will be assigned a constant cross-section by default using the 
CYarnSectionConstant class. In reality yarns will deform along their length and a realistic model should 
reflect these changes in cross-section. In TexGen it is possible to specify varying cross-sections along 
the length of a yarn either by specifying the sections at each node using the CYarnSectionInterpNode 
class or at specific points along the yarn using the CYarnSectionInterpPosition class. These classes are 
all inherited from the abstract CYarnSection base class. After these classes have been created sections 
are added using the AddSection function, either one section for each node or one section at each position 
as required. Once all of the sections have been added then the yarn section object is assigned to the yarn 
using the AssignSection function. These can also be selected in the GUI using the Select Yarn Section 
dialog given by the Modeller->Assign Section option. An example of a yarn with varying cross-sections 
can be seen in Figure 2c. 

2.3.  Local checking of volume fraction 
It is important when adjusting cross-sections to ensure that the volume fraction within the yarn does 
not exceed a realistic limit. If yarn properties have been assigned to a yarn then the yarn volume 
fraction at a given section can be calculated. 

(a) 

(b) 
(c) 
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𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑉𝑉𝐹𝐹 =  
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑉𝑉 𝐴𝐴𝐹𝐹𝑉𝑉𝐹𝐹
𝑆𝑆𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝑉𝑉𝐹𝐹 𝐴𝐴𝐹𝐹𝑉𝑉𝐹𝐹

 
 
where fibre area can be obtained using the yarn GetFibreArea function and the local yarn section can be 
extracted from the appropriate CYarnSection class described in section 2.2. This can be obtained using 
the yarn GetYarnSection function and then getting the actual cross-section at the required point using 
the GetSection function. From this the GetArea function will calculate the section area. 

2.4.  Permeability prediction 
Flow through the 3D orthogonal textile was simulated using Computational Fluid Dynamics (CFD) 
software in order to determine the textile permeability [3]. A model of an orthogonal weave was created 
and then meshed using the voxel meshing built into TexGen. Incremental changes were made to the 
geometric model to assess the sensitivity of the permeability prediction to the level of geometric detail 
in the model using the techniques described in the previous sections. Changes were made to the binder 
cross-sections, surface weft yarn crimp and warp yarn cross-sections in successive models. The CFD 
simulation predictions are plotted with experimental data in Figure 4, demonstrating significant 
improvement in permeability prediction with inclusion of local variations in the geometric model. 
 

Figure 4. Permeability predictions with variations in model geometry 

3.  Constructing laminates 
It is common for textiles to be built into laminates, often with varying rotations. The CTextileLayered 
class allows textiles to be combined into a single unit. 

3.1.  Layered textiles 
In the GUI a layered textile can be created from any combination of textiles currently loaded. The 
Textiles->Create Layered option enables the selection of textiles and the ordering of the layers using the 
dialog shown in Figure 5a. The domain is created to be the size of the largest of those selected, therefore 
there may be more than one repeat of weaves with smaller unit cells. By default the textiles are stacked 
using the sizes of the domains in the z direction to govern the distance between the layers. 
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An example layered textile is shown in Figure 5b. In a Python script the CTextileLayered class is created 
and then textiles are added together with their x-y offsets using the AddLayer function. 

 

  
Figure 5. a) Dialog for selection of layers b) Layered textile 

3.2.  Layer-Offsets and Nesting 
Layered textiles are created with an initial offset of zero in the x-y plane when created using the GUI. 
Using a script offsets can be specified for the individual layers as described in Section 3.1. Using the 
GUI offsets can either be specified as a constant offset between layers, random or specific offsets 
specified for each layer. A layered textile with random offsets is shown in Figure 6a. 

Nesting of layers is implemented either by keeping the offsets, moving layers as close to each other 
as possible until the first contact is made between layers, or by finding the maximum nesting.  In this 
case the offset is found between each pair of layers which gives the maximum vertical displacement of 
the layers towards each other to the point at which they make contact. In this case both the offset in the 
x-y plane and the vertical displacement are adjusted. Nesting retaining original offsets is shown in 
Figure 6b and the same layered textile with maximum nesting is shown in Figure 6c. 

 

 
Figure 6. a) Textile with random offset b) Nested with same offset c) Maximum nesting 

3.3.  Rotated textiles 
Textiles can be rotated either using the Textile->Rotate Textile option in the GUI or using the CTextile 
Rotate function which takes as parameters a quaternion, giving the axis and angle of rotation, and the 
centre of rotation. In the GUI the axis of rotation is limited to the x, y and z axes, however using the 
function in a script any axis of rotation can be selected. The domain can also be rotated if desired. 
Voxel file export has been modified for the rotated domain so that voxels are generated which are aligned 
to the domain axes and periodic boundary conditions have been implemented which account for the 
rotation. 

4.  Weave pattern input/output 

4.1.  Weave pattern import 
Although it can be straightforward to create a ‘standard’ textile using the TexGen user interface, textile 
designers often design weave patterns using a weave pattern matrix. The ability to input these and 
automatically generate the corresponding textile model will speed up the modelling process 
significantly. In order to interpret a weave pattern in TexGen some extra information about the number 
of warp yarns in each stack is added as well as a keyword to indicate the type of weave generated. 

(a) (b) 
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Generation of general and 3D orthogonal weave patterns were reported in [4, 5]. This has now been 
extended to include 3D angle interlock weaves. 

The weave pattern and layer-ID information are read from a text file in the format shown in Figure 
7 using the WeavePattern Python script included in the TexGen installation. This is accessed from the 
GUI using the File->Import->WeavePatternFile option. The number of warp and weft yarns is extracted 
and the number of binder yarns deduced. From this the cell structure used to store weave patterns within 
TexGen is generated. 

Figure 7. Weave pattern input file format a) Orthogonal weave b) Angle interlock weave 
 
The appropriate class, CTextile3DWeave, CTextileOrthogonal or CTextileAngleInterlock, is used to 

create a textile each of which contain the cell array which describes the configuration of warp and weft 
yarns within the textile. The cell array is initialized by processing the weave pattern one row at a time, 
calling the SetupWeftRow function. This uses the layer-ID information to delimit the binder and warp 
stack information in the chart as illustrated by the dotted separators in Figure 8. For any stack of warp 
layers the weft will be positioned where the warp changes from being up to down. 

Figure 8. Creation of cell array entries 
 

For an orthogonal weave, for each binder/warp stack, j, the cell array is populated as illustrated in 
Figure 8 which shows the row for i = 2 as highlighted in Figure 7a. In this case the binder yarn is 
assumed to be at either the top or bottom of the stack depending on whether the warp (ie binder) is up 
or down. 

(a) 

(b) 
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The angle interlock case is more complicated as the binder travels through the thickness of the textile 
at varying weft heights and the correct position needs to be retained in the cell array. In the first instance 
the binder position is set to one below the weft if the warp is down and to one above the weft if the warp 
is up.  This results in a textile such as that shown in Figure 9a. At this point in the case of both types of 
weave a textile is formed with the warps stacked but the weft yarns spread out, one yarn for each cell 
row i.  

A subsequent process, ConsolidateCells, moves the weft yarns into stacks where there is an empty 
cell in the previous row. For angle interlock yarns it can be seen from Figure 9a that the correct binder 
position for each stack is either where the position is constant between two rows or where it is at the 
top or bottom. This information is stored in a vector for each binder yarn and then the appropriate 
binder positions are assigned as the cells are consolidated. The resulting textile is shown in Figure 9b. 

 
Figure 9. Angle interlock textile a) unconsolidated b) after consolidation 

4.2.  Weave pattern export 
For textiles which use either the 2D or 3D weave base classes the process described in Section 4.1 can 
be reversed in order to generate a weave pattern matrix from a TexGen model. For 3D textiles the 
ordering of the weft insertions, either stacking from top to bottom or bottom to top will change the 
weave pattern generated. In the user interface there is a dialog to select the weft insertion ordering 
(Figure 10b). From a Python script the ordering can be passed as a parameter to the weave 
ConvertToPatternDraft function. 

A pattern draft is also generated based on a 1:1 tie up. This uses an adaptation of the algorithm 
defined for hand looms given by Griswald [6] and Glasner [7]. The pattern draft can either be printed 
or saved as a text file as shown in Figure 10c. 

 
Figure 10. Weave pattern export a) Example weave b) Dialog to select weft stack ordering c) 

Pattern draft 

5.  Conclusions 
Methods for increasing the accuracy of geometric textile models created using TexGen software have 
been described. The benefits of improved model accuracy were demonstrated for a case study where in-
plane permeability was predicted using CFD simulation with models of increasing geometric accuracy. 

Methods to quickly and easily create models of textile laminates using either the TexGen GUI or 
Python scripting are described. This includes nesting and new options for rotation of layers. 

(a) (b) 

(a) (b) 

(c) 
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A method for importing a weave pattern matrix and converting it into a TexGen model is described 
enabling fast creation of models from a standard textile design format. The method has recently been 
extended to angle interlock textiles and this will be included in the next TexGen release. Creation of 
pattern drafts from a TexGen model is also described. 
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