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Abstract 

Infection negation and biofilm prevention are necessary developments needed for implant 

materials. Furthermore, an increase in publications regarding gallium (Ga) as an antimicrobial 

ion has resulted in bacterial-inhibitory surfaces incorporating gallium as opposed to silver (Ag). 

The authors present the production of novel gallium titanate surfaces through 

hydrothermal ion-exchange reactions. Commercially-pure Ti (S0: Cp-Ti) was initially 

suspended in NaOH solutions to obtain sodium titanate (S1: Na2TiO3) layers ca. 0.5–1 μm in 

depth (2.4 at.% Na). Subsequent suspension in Ga(NO3)3 (S2: Ga2(TiO3)3), and post-heat-

treatment at 700 oC (S3: Ga2(TiO3)3-HT), generated gallium titanate layers (9.4 and 4.1 at.% Ga, 

respectively). For the first time, RHEED analysis of gallium titanate layers was conducted and 

demonstrated titanate formation. Degradation studies in DMEM showed S2: Ga2(TiO3)3 released 

more Ga compared to S3: Ga2(TiO3)3-HT (2.76 vs. 0.68 ppm) over 168 h. Furthermore, 

deposition of Ca/P in a Ca:P ratio of 1.71 and 1.34, on S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT, 

respectively, over 168 h was seen. However, the study failed to replicate the antimicrobial effect 

presented by Yamaguchi who utilised A. baumannii, compared to S. aureus used presently. The 

authors feel a full antimicrobial study is required to assess gallium titanate as a candidate 

antimicrobial surface. 

 

Keywords: biomaterial; sodium titanate; gallium titanate; hydrothermal; ion-exchange; titanium. 
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1 Introduction 

The extent of a medical implant’s success in vivo is dependent upon growth of extracellular tissue 

up to, and around, the implant via osteoconduction and osteogenesis [1]. In recent years, 

significant emphasis has been directed towards improving adhesion between implant surfaces 

and local tissues through direct surface modifications [2-4].  

The only FDA approved process for improving implant surfaces utilises high-temperature 

(droplet temperatures >1500 K [5]) plasma spray methods to deposit coatings of osteoconductive 

hydroxyapatite (HA) [6]; mimicking the main mineral component, and chemical and crystal 

structure, of cortical bone. These coatings, therefore, are ideal for improving metallic implant 

biocompatibility and enhancing osseointegration [7]. However, current plasma-spraying 

techniques offer poor adhesion [8], non-uniformity in coating density [9], excessive temperatures 

leading to deleterious phase transformations [10], as well as residual surface stresses [11] 

resulting in micro-crack formation [12]. Ultimately, plasma-sprayed HA layers have been shown 

to spall due to their brittle nature [13], and weak mechanical adhesion (55-62 MPa; just higher 

than the FDA’s minimum requirement 50.8 MPa) [14, 15]. Spalled particles may embed within 

surrounding tissue, activating complex cellular pathogenesis networks, fundamentally leading to 

periprosthetic osteolysis [16, 17]; aseptic implant loosening [18]; and increased convalescence 

through necessitated revision surgery [19]. Further methods for providing a stable HA layer have 

been proposed, such as sputtering, but often have issues related to the crystal orientation, 

amorphous structure requiring subsequent treatments, or the relatively high manufacturing cost 

[20]. 

To overcome these limitations, solution-based surface treatments have been considered [21-23], 

including the production of sodium titanate surfaces [24]. Research by Kokubo et al. [25-32], 

identified formation of sodium titanate through hydrothermal synthesis, therefore, preventing 

coating spallation caused by excessive production temperatures. Studies confirmed that optimal 

surface formation occurred at 60 oC, much lower than current plasma-spraying technologies. 

Once generated and following further heat- and water-treatments, Ca and P ion-exchanges with 

the sodium modifier within the sodium titanate structure, allows HA generation upon 

implantation in vivo or submersion in simulated body fluid (SBF) in vitro, offering an attractive 

processing methodology [28]. 

Failure of implants still persists as a substantial issue in orthopaedic hip replacements, with most 

common factors including infection (25-28%), and mechanical loosening (19%) [33, 34]. 

Implant infection is a complex issue as bacteria entering the surgical site adhere to implant 

surfaces and form a ‘biofilm’, protecting individual bacteria from antibiotics and the patient’s 

immune system [35]. Initial prevention of biofilm formation is an attractive solution [36]. One 
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possible method for biofilm prevention is the utilisation of antimicrobial ions, such as copper 

(Cu), silver (Ag), and more recently, gallium (Ga) [37, 38].  

Despite its widespread use, Ag has been extensively debated whether to be used in medical 

devices [39]. This is because there are conflicting results in the literature, for example various in 

vitro studies demonstrating cytotoxic effects on host fibroblasts and keratinocytes [40, 41], 

whilst others have shown minimal, to no, sequelae in vivo [42]. A review by Brett demonstrated 

the majority of in vivo studies indicate silver’s non-cytotoxicity, however, its ability to bind to 

proteins and nucleic acids may result in higher topical dosages being needed to generate 

antimicrobial effects [39]. Furthermore, studies have shown Ag’s limited capacity to fully protect 

against infections, which has resulted in increased concern for its use in medical devices [43].  

Ga(III) has been purported to be an ideal substitute for Ag in antimicrobial surfaces through 

various anti-bacterial studies [44, 45]. Its similarity to Fe(III) in ionic radius and charge, allow 

replacement within target molecules, which has resulted in an ideal antimicrobial agent, whose 

presence can cause Ga(III)-induced bacterial metabolic distress [44, 46]. A further property, 

which is pertinent to orthopaedic applications is the inhibition of bone resorption through 

reduction in calcium releases from bone [47]. Therefore, in this work, the authors present 

extensive characterisation of gallium titanate surfaces produced through ion-exchange reactions 

of sodium titanate produced via hydrothermal synthesis.  In addition to cross section electron 

microscopy, RHEED analysis of titanate structures on the top few nm of the surface, in 

conjunction with XPS of the same surface, to elucidate the structure and chemistry of the surface 

in contact with tissue, is presented. Additionally, a pilot study to assess the cytotoxicity and 

antimicrobial nature of these surfaces is shown.  

The antimicrobial nature of gallium titanate surfaces has been assessed previously by Yamaguchi 

et al. using a nosocomial, multi-drug resistant Gram-negative bacteria: A. baumannii [48], 

although using a different processing route. However, assessment using a Gram-positive bacteria 

of gallium titanate surfaces has yet to be investigated, hence the conducted pilot study using S. 

aureus (Newman). This is presented here along with the detailed characterisation and stability 

of using different hydrothermal conditions and concentrations compared to Yamaguchi and its 

stability in media pre- and post-processing heat treatments to fully understand the potential of 

this route.  

Ion exchange routes in low temperature solutions (  have the potential to enable low cost 

and scalable generation of osteogenic, antimicrobial surfaces, in comparison to plasma spraying 

and physical vapour deposition [28, 30]. Another key advantage is its ability to manipulate 

surface chemistry reactions and utilise the ion exchangeability of Na2TiO3 with ions including 

Ca, P, Mg, Ga, and Ag. This will enable further tailoring and design of surfaces which could 
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combine a customised array of therapeutic ions to treat individual requirements; a stratified 

approach to design [49-52]. Furthermore, solution based methodologies encourage sufficient 

penetration into porous morphologies to facilitate cellular infiltration, which is limited with 

conventional line of site coating methods [49].  

2 Methodology 

2.1 Substrate preparation 

Commercially pure Ti (Grade 1) discs (10 mm ∅, 1 mm thick), herein labelled as S0: Cp-Ti, 

were used as substrates. Discs were ground and polished using varying grits (P280, P400, P800, 

P1200, P2500 and P4000) of silicon carbide paper. The discs were cleaned by sonicating in 

acetone followed by distilled water for 5 min each. 

2.2 Sodium hydroxide hydrothermal treatment 

A 5 M solution of NaOH was prepared by dissolving 19.99 g of NaOH pellets (purity: 99.0%, 

Sigma-Aldrich) in 100 mL of distilled water. 10 mL aliquots in triplicate were then heated in 

water baths and individual Ti substrates were placed in each polypropylene container at 60 oC 

for 24 h. Sodium exchanged samples were labelled as S1: Na2TiO3. 

2.3 Ion-exchange treatments 

Gallium ion-exchange reactions were conducted from S1: Na2TiO3, using a 4 mM solution of 

Ga(NO3)3. The solution was prepared by dissolving 0.1 g of Ga(NO3)3.xH2O granules (x = 1–9) 

(purity: 99.9%) (Sigma-Aldrich) into 100 mL of water. 10 mL aliquots in polypropylene 

containers were heated at 60 oC in water baths for 24 h. Ga exchanged titanate samples have 

been labelled S2: Ga2(TiO3)3. 

2.4 Heat-treatments 

Both S0: Cp-Ti and S2: Ga2(TiO3)3 were heat-treated to produce S4: Cp-Ti-HT and 

S3: Ga2(TiO3)3-HT, respectively, using a lenton® furnace in air with a ramp rate of 5 oC min-1 

to 700 oC. All samples were left to dwell for 1 h followed by natural furnace cooling to room 

temperature.  

2.5 Scanning electron microscopy (SEM) 

Micrographs were obtained by Scanning Electron Microscopy (SEM) via a JEOL 6490LV SEM. 

A constant working distance of 10 mm was maintained, utilising a beam energy of 15 kV. Image 

acquisition for higher resolution scans were conducted on a Field-Emission Gun Scanning 

Electron Microscope (JEOL 7100 FEG-SEM).  

2.6 Energy dispersive X-ray spectroscopy (EDX) 

Surface compositional analysis was determined via an Energy-Dispersive X-ray spectrometer 

(EDX) (Oxford Instruments) at a working distance of 10 mm, a beam voltage of 15 kV, and 

maintaining a minimum X-ray count of 150,000 counts.  
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2.7 X-ray diffraction (XRD) 

Crystallinity was assessed using a Bruker D8 advanced XRD spectrometer (Cu Kα source, λ = 

1.5406 Å, 40 kV, 35 mA). Measurements were taken over a 2θ range from 10 to 65o; with a step 

size of 0.04o (2θ); a glancing angle of 2o; and a dwell time of 12 s. The glancing angle allows the 

X-ray beam to graze the surface, penetrating the first few microns of material, and restricting the 

diffraction signal to the same depth [53]. 

2.8 Reflective high-energy electron diffraction (RHEED) 

Shallow angle diffraction analysis was conducted using a JEOL 2000 FX TEM with an attached 

RHEED stage and photographic plate camera. Film acquisition was obtained using an 

accelerating voltage of 200 kV, and an exposure time between 11-22 s to ensure visible 

diffraction rings were present. Diffraction ring radii were then analysed using image processing 

software and appropriate d spacing values were calculated according to Bragg’s law. Calibration 

was conducted using a sputtered gold layer on the surface of a titanium substrate. 

2.9 Raman spectroscopy 

Raman spectroscopy was achieved utilising a HORIBA Jobin Yvon LabRAM HR spectrometer. 

Spectra were acquired using a 532 nm laser (25 mW power), 50× objective, and a 300 μm 

confocal pinhole. For simultaneous scanning of multiple Raman shifts, a 600 lines/mm rotatable 

diffraction grating along a path 800 mm length was used. Detection of spectra was achieved 

through use of a SYNAPSE CCD detector (1024 pixels) thermoelectrically cooled to −60 °C. 

Instrument calibration using the Rayleigh line at 0 cm−1 and a standard Si (100) reference band 

at 520.7 cm−1, was employed prior to spectra acquisition. A constrained time window of 20 s 

was employed for each spectra recording with 20 accumulations. 

2.10 Fourier transform infrared spectroscopy (FTIR) 

Infrared absorbance was surveyed using a Bruker Tensor FTIR spectrometer with an Attenuated 

Total Reflectance (ATR) attachment containing a diamond crystal/ZnSe lens. λ of 2.5 to 20 µm 

were surveyed, corresponding to 4000 and 500 cm-1, respectively. 

2.11 X-ray photoelectron spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy (XPS) was conducted using a VG ESCALab Mark II XPS 

with a monochromatic Al Kα X-ray source incident to the sample surface at ≈ 30o. Survey and 

high-resolution scans were conducted in addition to the measurement of adventitious C 1 s for 

calibration: charge corrected to 284.8 eV. Parameters for acquisition were as follows: step size 

of 1.0; number of scans set at 5; dwell time 0.2 s for survey scans, and 0.4 s for high-resolution 

scans. Binding energies were measured over a range of 0-1200 eV. All spectra were analysed in 

Casa XPS constraining the Full Width at Half Maximum to the same value for all deconvoluted 

spectral peaks for the same element. 
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2.12 Ion leaching via induction coupled plasma (ICP) 

Samples were degraded in 1 mL DMEM and were removed after varying degradation times 

of 6 h, 24 h, 3 days, and 7 days. During removal, the samples were washed with 9 mL of ultrapure 

water, ensuring a serum dilution of 1:10, before being removed and subsequently washed in 

ultrapure water and air dried. The 10 mL solutions were then analysed using inductively coupled 

plasma mass spectrometry (ICPMS; Thermo-Fisher Scientific iCAP-Q with CCTED). Each time 

point had three samples independently prepared, with calculated standard error and mean values 

presented. 

2.13 Neutral red uptake (NRU) assay 

Samples were degraded in 1 mL DMEM containing Fetal Bovine Serum for 7 days at 37 oC, 

generating liquid extracts as described in ISO 10993-5:2009. The extended degradation time was 

used to mimic long-term contact with the body. MG-63 cells were seeded into a 24 well plate 

(20,000 cells cm-2) and incubated for 24 h to give a sub-confluent monolayer. The media was 

removed and replaced with the liquid extracts. After 24 h further incubation the media was 

removed, the cells washed with PBS, and 500 µL Neutral Red medium added. After 2 h 

incubation the medium was removed, cells washed in PBS and 500 µL de-stain added per well. 

Plates were shaken on a plate shaker for 10 mins and the NR absorption read using an ELx800 

Microplate Colorimeter (BioTek Instruments Inc.) at 540 nm. 

2.14 LIVE/DEAD assay 

S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT samples alongside S0: Cp-Ti controls were sterilised via 

UVB light (Naure Class II Safety Cabinet) for 30 mins per side. S. aureus strain Newman was 

cultured in Tryptone Soy Broth (TSB) overnight. Samples of each type were added in triplicate 

to sterile petri dishes and 15 mL pre-warmed (37 oC) TSB added. The overnight culture was 

washed twice in TSB, and then used to inoculate the petri dishes to 0.01 OD600. The dishes were 

incubated (37 oC at 60 RPM) for 3 days, followed by washing in dH2O twice, incubation at room 

temperature in the dark for 30 min with BacLight LIVE/DEAD stain (Invitrogen) and finally 

dried.  The samples were imaged on a Carl Zeiss L700 Confocal Laser Scanning Microscope 

and biomass volume analysed via COMSTAT 2 plugin to ImageJ [54]. 

3 Results 

3.1 Compositional analysis 

3.1.1 SEM 

Surface alterations were tracked following each ion exchange reaction and post heat-treatment. 

After NaOH treatment at 60 oC (S1: Na2TiO3), some alteration to the morphology of Ti surfaces 

from S0: Cp-Ti was exhibited (Figure 1A & C). Extended nano-porous networks with features 

on the order of a few hundred nanometers in diameter were seen. Following Ga ion exchange, 

micrographs of S2: Ga2(TiO3)3 showed a similar interconnected morphology to S1: Na2TiO3 
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(Figure 1E). Upon heat-treatment (S3: Ga2(TiO3)3-HT), a slightly modified interconnected 

morphology remained, with the formation of flake-like features on the surface, with diameters 

of 150-300 nm (Figure 1G). The inclusion of S4: Cp-Ti-HT (Figure 1I), was to identify 

morphological differences between sodium titanate and rutile formation on the sample’s surface. 

The surface of S3: Ga2(TiO3)3-HT was significantly dissimilar to that of S4: Cp-Ti-HT with a 

porous angular surface containing oblong flakes of ca. 0.5 μm. 

Cross-sectional FEG-SEM imaging of S1: Na2TiO3, S2: Ga2(TiO3)3, and S3: Ga2(TiO3)3-HT 

showed similar morphology, with a distinct porous layer on the order of 0.5–1 μm in thickness 

(Figure 1D. F, & H). This is in stark contrast to the original smooth S0: Cp-Ti control sample 

(Figure 1B). However, the layer exhibited in S3: Ga2(TiO3)3-HT demonstrates an intermediate 

layer between the nanoporous surface layer and the titanium substrate (Figure 1H). Furthermore, 

sample S4: Cp-Ti-HT demonstrates a different cross-sectional profile to all other samples with 

a thin dense titanium oxide layer (Figure 1J). 

3.1.2 EDX 

Initially, elemental mapping analysis of S1: Na2TiO3 showed homogeneous distribution of Na, 

Ti and O, and concluded Na (2.73 at.%) and O (65.3 at.%) had been included within the structure, 

compared to the S0: Cp-Ti control. Subsequent analysis of S2: Ga2(TiO3)3 indicated complete 

substitution of Na by Ga within the TiO3 structure. S2: Ga2(TiO3)3 compared to 

S3: Ga2(TiO3)3-HT showed a 5.3 at.% reduction of Ga within the later following heat-treatment 

(Table 1). 

3.1.3 XRD 

As seen in Figure 2E, the only signals present for S1: Na2TiO3 and S2: Ga2(TiO3)3 were that of 

the Ti substrate (S0: Cp-Ti), which produced peaks associated with titanium (Ti: ICDD PDF 00-

44-1294). Following heat-treatment (S3: Ga2(TiO3)3-HT), further diffraction peaks emerged 

located at ≈26, 37, 40, and 55o 2θ, which were attributed to gallium titanate (Ga2TiO5: ICDD 

PDF 00-020-0447), however, the lack of high quality diffraction data for gallium titanate, the 

lower intensity, as well as the overlap of gallium titanate with rutile means XRD data alone is 

inconclusive. The peak at ≈57o 2θ correlated to rutile (TiO2: ICDD PDF 00-021-1276), and peaks 

at ≈37, 40, and 53o 2θ related to titanium oxide (Ti6O: ICDD PDF-01-072-1471). To verify this 

further RHEED analysis was conducted as this technique offers greater probing resolution and 

shallower probing depth (0.1-10 nm) as compared to XRD (0.1-100 μm) [53, 55]. 
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Figure 1. (A, C, E, G, and I) FEG-SEM surface and (B, D, F, H, and J) cross-sectional images of 

S0: Cp-Ti, S1: Na2TiO3, S2: Ga2(TiO3)3, S3: Ga2(TiO3)3-HT, and S4: Cp-Ti-HT samples, respectively. 

Insert images are of the corresponding sample’s surface. 

Table 1. EDX elemental mapping data of S0: Cp-Ti, S1: Na2TiO3, S2: Ga2(TiO3)3, S3: Ga2(TiO3)3-HT, 

and S4: Cp-Ti-HT samples over a 400 μm2 area of the sample surface. Mean atomic percent (at.%) are 

shown with standard error (n=3). 

Sample Elemental Composition / at.% 

Ti O Na Ga 

S0: Cp-Ti 100 0 0 0 

S1: Na2TiO3 31.9 ± 0.1 65.3 ± 0.1 2.7 ± 0.2 0 

S2: Ga2(TiO3)3 20.1 ± 0.2 70.5 ± 0.3 0 9.4 ± 0.1 

S3: Ga2(TiO3)3-HT 22.6 ± 0.4 73.3 ± 0.4 0 4.1 ± 0.2 

S4: Cp-Ti-HT 30.2 ± 0.1 69.8 ± 0.1 0 0 
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3.1.4 RHEED 

RHEED analysis of S4: Cp-Ti-HT (Figure 2D) demonstrated clear and distinct diffraction rings, 

as well as matching d spacing values with rutile (TiO2: ICDD PDF-00-021-1276: Table 2) 

consistent with the SEM-EDX results. The diffraction patterns present in S1: Na2TiO3, 

S2: Ga2(TiO3)3, and S3: Ga2(TiO3)3-HT (Figure 2A, B, and C, respectively) demonstrated a 

significant change from that of S4: Cp-Ti-HT, indicating an alternative layer than rutile (Figure 

2D). The d spacing values for S1: Na2TiO3 were ascribed to sodium titanate (Na0.23TiO2: ICDD 

PDF 00-022-1404, and Na4TiO4: ICDD PDF 00-042-0513) and titanium (Ti: ICDD PDF 00-

044-1294). Furthermore, S2: Ga2(TiO3)3 d spacing values were akin to calcium and sodium 

titanate variants (CaTi2O5: ICDD PDF 00-025-1450, and Na2TiO3: ICDD PDF 00-037-0346), as 

well as S3: Ga2(TiO3)3-HT being similar to gallium and calcium titanate variants (Ga2TiO5: 

ICDD PDF 01-070-1993, and CaTi2O5: ICDD PDF 00-025-1450). 

3.1.5 Raman 

Raman spectral analysis (Figure 3A) of S3: Ga2(TiO3)3-HT and S4: Cp-Ti-HT revealed bands 

located at ≈247, 445, and 611 cm-1, which were attributed to rutile, Ti-O. Conversely, alternate 

peaks were found in the S2: Ga2(TiO3)3 sample at ≈273, 425, 700, and 811 cm-1, as well as ≈400 

and 662 cm-1 in S1: Na2TiO3. A shoulder was present in both S3: Ga2(TiO3)3-HT and 

S4: Cp-Ti-HT at ≈700 cm-1, which is present as an identifiable peak in S2: Ga2(TiO3)3.  

3.1.6 FTIR 

IR absorption showed peaks detailed from 500-900 cm-1, matching TiO6 vibrations, Ti-O 

bending and Ti-OH non-bridging bonds, which is prevalent across all samples (Figure 3B). 

Additionally, a peak around 1100 cm-1 and a broad peak from 3000-3500 cm-1, which appear in 

S1: Na2TiO3 and S2: Ga2(TiO3)3 samples, correspond to Ti-O-C vibrations and H-O-H 

stretching, respectively. Three peaks at 1130, 1300, and 2350 cm-1 are seen in the S4: Cp-Ti-HT 

control, consistent with rutile Ti-O, Ti-O-Ti stretching, and CO2 contamination, respectively. 

The peak at 2050 cm-1 remains unmatched. Doublet peaks around 2880 cm-1 in 

S3: Ga2(TiO3)3-HT, match C-H furnace contamination. Finally, all spectra except S4: Cp-Ti-HT 

exhibited a peak around 1610-1630 cm-1, consistent with O-H bonds. 

3.1.7 XPS 

XPS analysis of S1: Na2TiO3, S2: Ga2(TiO3)3, and S3: Ga2(TiO3)3-HT samples was conducted 

(Figure 4). The initial O 1s peak (Figure 4A) at 529.6 eV in the S1: Na2TiO3 sample exhibited a 

shift to 531.6 eV and 530.7 eV in S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT, respectively. 

Deconvolution of O 1s for S1: Na2TiO3 demonstrated three peaks at 530.2, 531.6, and 532.9 eV, 

with area ratios of 75.0, 15.3, and 9.7%, respectively. Each peak matched O-Ti4+, O-Ti3+, 
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and -OH, respectively. This reduced to two peaks at 530.3 (49.3%) and 531.9 (50.7%) eV in the 

S2: Ga2(TiO3)3 sample, eliminating -OH. Moreover, S3: Ga2(TiO3)3-HT demonstrated two 

peaks, with shifts to 530.7 (82.4%) and 532.4 (17.6%) eV, eliminating O-Ti3+. 

 
Figure 2. (A, B, C and D) RHEED diffraction patterns for S1: Na2TiO3, S2: Ga2(TiO3)3, 

S3: Ga2(TiO3)3-HT, and S4: Cp-Ti-HT, respectively. (E) XRD data of aforementioned samples. 

Deconvolution of the peaks are as follows:  - rutile (TiO2: ICDD PDF 00-021-1276);   - titanium 

oxide (Ti6O: ICDD PDF 01-072-1471);  – gallium titanate (Ga2TiO5: ICDD PDF 00-020-0447); 

 - titanium (Ti: ICDD PDF 00-044-1294). 

A perceptible shift was noted in the Ti 2p doublet peak (Figure 4B) for S3: Ga2(TiO3)3-HT. 

Initial positions at 458.6 and 464.3 eV, corresponding to Ti 2p 3/2 and Ti 2p 1/2 in the 

S1: Na2TiO3 sample. These shifted to 458.5 and 464.2 eV in S2: Ga2(TiO3)3. However, a further 

shift to 459.0 and 464.7 eV was observed in S3: Ga2(TiO3)3-HT, which all correspond to Ti4+. 

The Na 1s peak at 1071.9 eV (Figure 4C), matching Na-O, in the S1: Na2TiO3 sample (Ti LMM 

Auger peaks located at 1067.3 and 1075.1 eV), diminished after Ga ion-exchange in both 

S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT. Furthermore, the Ga 2p doublet peak (Figure 4D) 

showed distinct peaks at 1118.3 and 1145.2 eV, corresponding to Ga 2p 3/2 and Ga 2p 1/2 for 

Ga4+-O, respectively, in S2: Ga2(TiO3)3 and 1118.4 and 1145.3 eV, respectively in 

S3: Ga2(TiO3)3-HT.  
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Table 2. Quantitative RHEED analysis data for calculated d spacing (using principles from Bragg’s 

law) figures compared to database values. Calculated d spacing values all have standard errors <0.01. 

Ring radii and d spacing data has been rounded to 3 s.f. 

Sample Database file Calculated 

d spacing / 

Å 

Database 

d spacing 

/ Å 

S1: Na2TiO3 

Sodium Titanate (Na0.23TiO2) 

(ICDD PDF 00-022-1404) 

3.70 3.65 

1.87 1.92 

Titanium (Ti) 

(ICDD PDF 00-044-1294) 

2.28 2.24 

Sodium Titanate (Na4TiO4) 

(ICDD PDF 00-042-0513) 

3.22 3.23 

2.28 2.21 

1.87 1.87 

S2: Ga2(TiO3)3 

 

Calcium Titanate (CaTi2O5) 

(ICDD PDF 00-025-1450) 

3.50 3.50 

1.83 1.87 

Sodium Titanate (Na2TiO3) 

(ICDD PDF 00-037-0346) 

3.27 3.23 

1.83 1.87 

S3: Ga2(TiO3)3-HT 

Gallium Titanate (Ga2TiO5) 

(ICDD PDF 01-070-1993) 

3.50 3.38 

2.88 2.75 

Calcium Titanate (CaTi2O5) 

(ICDD PDF 00-025-1450) 

3.50 3.50 

2.88 2.92 

1.82 1.87 

S4: Cp-Ti-HT 
Rutile (TiO2) 

(ICDD PDF 00-021-1276) 

3.23 3.25 

2.45 2.49 

2.28 2.30 

2.19 2.19 

2.05 2.05 

 

3.1.8 Degradation and ion leaching 

Figure 5(A-F) demonstrated the surface alteration of S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT 

samples after degradation in 1 mL DMEM over 168 h. It is clear, compared to surfaces illustrated 

in Figure 1, that surface deposition/growth occurred during degradation, as well as opening of 

the porous surface network. Spherical deposits were seen on both S2: Ga2(TiO3)3 and 

S3: Ga2(TiO3)3-HT at 24 and 72 h. EDX analysis of the deposits demonstrated their composition 

to be rich in Ca and P. Ca:P ratios were then taken, as demonstrated in Figure 5G, with 

S3: Ga2(TiO3)3-HT resulting in a surface Ca:P ratio close to 1.34, whereas S2: Ga2(TiO3)3 

reached 1.71 by 168 h. Furthermore, rod-like deposits were also seen on both samples at 24 and 

72 h. Their composition, as delineated by EDX, consisted mainly of Ga and O, suggesting Ga2O3 

had deposited. By 168 h, the surface morphology (Figure 5E & F) showed an absence of both 

spherical and rod-like surface growths in S2: Ga2(TiO3)3, and larger clusters of rod-like deposits 

had formed on S3: Ga2(TiO3)3-HT.  
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Figure 3. (A) Raman infrared spectrometry analysis, and (B) FTIR analysis of 

S1: Na2TiO3, S2: Ga2(TiO3)3, S3: Ga2(TiO3)3-HT, and S4: Cp-Ti-HT samples. 

A combination of EDX and ICP (Figure 6) was used to identify the alteration of both surface 

and solution ion concentrations during DMEM degradation. Over 168 h, aqueous Ga ion 

concentrations gradually increased for S3: Ga2(TiO3)3-HT (Figure 6D), as expected, however, 

at a slower rate than S2: Ga2(TiO3)3 (Figure 6B), with a peak Ga ion concentration of 2.76 and 

0.68 ppm, for S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT, respectively. The error at 168 h in 

S2: Ga2(TiO3)3 meant quantification here was difficult. Additionally, S2: Ga2(TiO3)3 surface Ga 

concentration (Figure 6A) decreased over the course of 168 h, whereas the S3: Ga2(TiO3)3-HT 

sample (Figure 6C) demonstrated a re-deposition of Ga during the later time points. For both 

S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT, Ca and P aqueous ion concentrations decreased between 

0 and 168 h (Figure 6B & D). Both surface Ca and P ion concentrations increased for 
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S2: Ga2(TiO3)3, however, S2: Ga2(TiO3)3 (Figure 6A) exhibited deposition and subsequent 

release during the 168 h period (Figure 6C).  

 

Figure 4. XPS analysis of S1: Na2TiO3, S2: Ga2(TiO3)3, and S3: Ga2(TiO3)3-HT. (A) High resolution O 

1s spectra, (B) High resolution Ti 2p spectra, (C) High resolution Na 1s spectra, and (D) High 

resolution Ga 2p spectra. 

3.1.9 Cell studies 

From ISO 10993-5:2009, the definition of a cytotoxic effect demonstrated by NRU assay is a 

>30% reduction in cell viability from the non-treated cells (TCP control). The dotted line in 

Figure 7 shows this threshold at 70% signal intensity. The untreated S0: Cp-Ti sample 

demonstrated an average signal of 94.2%, with S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT showing 

average signals of 24.2% and 81.4%, respectively. Therefore, both S0: Cp-Ti and 

S3: Ga2(TiO3)3-HT samples are above the viability threshold, with a clear reduction in cell 

viability noted for the S2: Ga2(TiO3)3 sample. It was shown through a One-way ANOVA, 

followed by the Bonferroni post-test that the S2: Ga2(TiO3)3 sample, was the only sample that 

exhibited a significant difference (p<0.0001) from the TCP control. 
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3.1.10 LIVE/DEAD 

Biofilm development assay results are shown in Figure 8, with no significant difference being 

noted between the live or dead biomass on any of the samples. The presence of dead bacteria on 

the Ti control sample is expected due to the length of the incubation period. An antimicrobial 

effect would be shown either by a significantly reduced total signal (both live and dead) from 

either titanate structures compared to the S0: Cp-Ti control, or by a significant decrease in live 

(green) signal and subsequent increase in dead (red) signal. Neither of these effects was prevalent 

in the data shown and was also not observed when the experiment was repeated. 

 

Figure 5. (A, C, and E) FEG-SEM images of the surface of degraded S2: Ga2(TiO3)3 samples in 1 mL 

DMEM (diluted with 1:10 ratio of ultrapure water) at time points 24, 72, and 168 h, respectively.  

(B, D, and F) FEG-SEM images of the surface of degraded S3: Ga2(TiO3)3-HT samples at 24, 72, and 

168 h, respectively. (G) Graph showing the alteration in Ca:P ratio on the surface of S2: Ga2(TiO3)3 

and S3: Ga2(TiO3)3-HT during the degradation study. Ca:P rich nodules and Ga2O3 precipitates were 

observed. 
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Figure 6. (A & C) EDX analysis of the substitution of Ca, P, and Ga ions on the surface of 

S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT during 168 h of degradation, respectively. (B & D) ICP Ca, P, 

and Ga ion alterations of S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT in DMEM solution during degradation 

over 168 h, respectively. Error bars of S.E.M (n=3), with EDX taken over a 3600 μm2 area. 

 

Figure 7. Effect of elution products of S0: Cp-Ti, S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT samples 

compared TCP control on the viability of MG-63 cells measured by NRU assay. All values are mean 

values ± SEM (n=6). Dotted line represents 70% threshold for cytotoxic effects (ISO 10993-5:2009). 

4 Discussion 

4.1 Composition and topographical analysis by SEM, FEG-SEM, EDX, FTIR, XRD, XPS, and 

Raman. 

Ion-exchange reactions were a key development in the production of tailored, application 

specific titanate surfaces. This is due to the initial, layered sodium hydrogen titanate formed from 

the NaOH treatment, allowing ion incorporation and substitution with Na+ ions already present. 

Not only are these surfaces able to release ions into the surround media, but they can also 

facilitate further ion-exchange reactions in vivo, allowing generation of amorphous calcium 

phosphate layers, or release of therapeutic or antimicrobial ions. 
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Figure 8. (A, B, & C) LIVE/DEAD staining maps for S0: Cp-Ti, S2: Ga2(TiO3)3, and 

S3: Ga2(TiO3)3-HT, respectively. Live bacteria are stained green, with dead bacteria stained red, as 

indicated. (D) Live and dead Biomass from a 3 day culture of S. aureus analysed via COMSTAT. There 

is no significant difference between the Live or Dead values between the samples (2 way ANOVA). The 

experiment was repeated and the same trends observed (n=3; error bars in S.E.M). 

The nanoporous surface morphology exhibited by S1: Na2TiO3 and S2: Ga2(TiO3)3 was 

consistent with the only other gallium titanate study published [48] and the higher resolution 

presented here clearly shows interesting differences from the S0: Cp-Ti control, where no 

significant features were present. Initially, the sodium hydrogen titanate and the isomorphic 

gallium hydrogen titanate formed after ion-exchange, exhibited an open, nanoporous 

morphology. Upon heat-treatment, the surface layers increased in thickness, as well as becoming 

denser, upon conversion to gallium titanate. Furthermore, flake-like features (∅ ≈ 100-150 nm), 
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formed of Ga and O from EDX analysis (Figure 1G & Table 1), suggested gallium 

oxide/hydroxide formation. However, morphologically these features are significantly different 

to the gallium oxide precipitates noted on the degraded surfaces (Figure 5). A study by Dulda et 

al. demonstrated micrographs of GaO(OH) precipitates formed through alkali precipitation, 

which morphologically are similar to the flake-like precipitates on S3: Ga2(TiO3)3-HT [56] and 

correlates with the GaO(OH) peak noted in FTIR (Figure 3B), suggesting these are GaO(OH) 

flakes. EDX analysis demonstrated no sodium was detectable on either gallium-treated samples, 

matching the lack of a Na 1s peak in XPS, indicating gallium ions readily ion-exchange with 

sodium in the titanate structure, supporting the postulated ion-exchangeability. The atomic 

percent of Ga exhibited in S2: Ga2(TiO3)3 was 9.4 at.%; much greater than sodium (2.7 at.%) in 

S1: Na2TiO3. The surface features formed on S3: Ga2(TiO3)3-HT are significantly different to 

S4: Cp-Ti-HT (Figure 1), showing clear structural differences between the nanoporous titanate 

layers and the dense smooth rutile formed during heat-treatment.  

The XRD results suggested the initial hydrothermally produced (S1:Na2TiO3), and ion-

exchanged layers (S2: Ga2(TiO3)3) were amorphous in nature, since no additional crystalline 

peaks further to the S0: Cp-Ti control were present, correlating with the diffuse ring patterns 

noted in RHEED (Figure 2). This was to be expected as no heat-treatment had been conducted, 

therefore, the surface layer produced should be amorphous; crystallisation temperature >500 oC 

[57]. Smaller, less intense, peaks were noted in XRD, with the lower intensities potentially 

attributed to lower quantities of surface crystals, due to the temperature being below the stated 

crystallisation temperature of gallium titanate (≈1100 oC [58]). However, this evidence alone 

was not conclusive, due to significant overlap with rutile, to identify the formation of titanate 

layers, and hence RHEED analysis was also conducted. This enabled shallower beam 

penetration, of the order of a few tens of nanometers, as well as higher probing resolution 

(0.01-0.001 nm) [55].  

Upon heat-treatment (S3: Ga2(TiO3)3-HT), the sample yielded new Bragg peaks corresponding 

to rutile: a characteristic phase transformation of titanium at > 600 oC in oxygen, as anticipated 

[59]. Formation of rutile was also seen in the S4: Cp-Ti-HT sample, in the RHEED d spacing 

analysis, as well as two characteristic peaks detailed in FTIR (Figure 3B), and three in Raman 

spectroscopy (Figure 3A). Furthermore, smaller Bragg peaks at 26, 37, 40 and 55o 2θ from the 

XRD patterns, were deconvoluted as gallium titanate derivatives, partially confirming its 

formation. To avoid characterising just the rutile produced in S3: Ga2(TiO3)3, as well as the Ti 

substrate in S1: Na2TiO3 and S2: Ga2(TiO3)3, and allow characterisation of solely the produced 

surface layers, RHEED was employed. RHEED has a similar probing depth to the XPS used and, 

therefore, provides an ideal technique to compare and corroborate results. As seen in Figure 2D, 
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RHEED demonstrates a clear diffraction pattern for rutile on S4: Cp-Ti-HT, and matches d 

spacing values from the database, as well as confirming the results from XPS (Figure 4). Rutile 

diffraction rings were not observed in samples S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT. However, 

even with RHEED, it was noted that the S1: Na2TiO3, S2: Ga2(TiO3)3, and S3: Ga2(TiO3)3-HT 

samples exhibited a more diffuse pattern than S4: Cp-Ti-HT only, causing overlap and 

complicated the quantification. This diffuseness could be attributed to the amorphous sodium or 

gallium hydrogen titanate layers present. Despite the diffuse rings, quantification of d spacing 

values was possible for S1: Na2TiO3, S2: Ga2(TiO3)3, and S3: Ga2(TiO3)3-HT, which matched 

sodium titanate derivatives (Na0.23TiO2 and Na4TiO4) and titanium; calcium and sodium titanate 

variants (CaTi2O5 and Na2TiO3); and gallium and calcium titanate derivatives (Ga2TiO5 and 

CaTi2O5) also suggested by [48], respectively. 

The evidence demonstrated through XRD and RHEED, was supported by IR absorption 

spectrometry, (Figure 3), which demonstrated characteristic TiO6 octahedron vibrations, Ti-O 

bond stretching and Ti-OH non-bridging bonds of titanate structures. Edge-sharing TiO6 

octahedra and Ti-O-Ti stretching were also present in the Raman analysis [60-62]. Additionally, 

XPS also supported titanate formation, through the presence of Ti4+-O bonding [63], which were 

ubiquitous across all samples, in both the Ti 2p and O 1s deconvolution, and are characteristic 

of titanate structures, as discussed by Takadama et al. [64]. 

Specifically, for S1: Na2TiO3, there were no other FTIR absorption bonds corresponding to 

sodium titanate formation, however, this may be attributed to limitations on the FTIR 

spectrometer used, which made analysis lower than 600 cm-1 difficult [65]. Nevertheless, FTIR 

ruled out formation of re-precipitated NaOH, due to the lack of characteristic O-H tension 

peaks around 3600 cm-1 [66]. Despite this, Raman (Figure 3) and XPS analysis confirmed the 

presence of Na-O bonds, which are readily seen in sodium titanate structures [67]. The additional 

presence of O-H bending modes in Raman (as described by Oleksak et al. [68]), and –OH bonds 

in XPS, before and after heat-treatment, suggest amorphous sodium and gallium hydrogen 

titanate may also be present on the surface.  

The shoulder exhibited between 800-900 cm-1, shown in FTIR for S2: Ga2(TiO3)3, may have 

corresponded to GaO(OH) vibrations and Ga-OH bending modes, which could be attributed to 

gallium hydrogen titanate formation prior to heat-treatment, as well as the GaO(OH) flakes noted 

in Figure 1G [56, 69]. Furthermore, peaks demonstrated by Raman spectroscopy may 

correspond to gallium oxide, as shown by Zhao et al. [70], Rao et al. [71], and Gao et al. [72], 

or derivatives of gallium titanate. The Raman peak at 700 cm-1 remains as a shoulder in 

S3: Ga2(TiO3)3-HT, and correlates with the GaO(OH) flakes seen in Figure 1G. Gallium titanate 

formation is also confirmed by XPS analysis, with the Ga 2p 3/2 peak position at ≈1118.5 eV 
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relating to Ga-O in its Ga4+ state, which are doped at various characteristic Ti4+ sites, as detailed 

by Deng et al. [73]. Furthermore, the presence of Ti-O Raman bonds in S2: Ga2(TiO3)3, suggest 

gallium titanate formation [74]. A significant alteration, which correlates well with the EDX 

results previously mentioned, is the reduction in the Na 1s peak in XPS for both S2: Ga2(TiO3)3 

and S3: Ga2(TiO3)3-HT, demonstrating complete Na replacement, and the subsequent formation 

of gallium titanate. 

In additional to titanate formation, broad absorption peaks from 3000-3500 cm-1, seen in both 

S1: Na2TiO3 and S2: Ga2(TiO3)3, can be ascribed to H-O-H stretch bonds of any remaining 

surface, or chemisorbed/interlamellar, water, since this stage was prior to the heat-treatment step 

[75]. The removal of these peaks in both heat-treated samples: S3: Ga2(TiO3)3-HT and 

S4: Cp-Ti-HT, support this postulation and is further backed up by Shiropur et al., who showed 

peak elimination during dehydration [60]. Interestingly, FTIR demonstrated a peak at 1100 cm-1 

in both S1: Na2TiO3 and S2: Ga2(TiO3)3, potentially matching Ti-O-C vibrations, which is 

unexpected, as the carbon location would be in place of either gallium or sodium in the titanate 

structure [76]. It is evident from the heat-treatment stage, through the generation of doublet peaks 

at 2880 cm-1 (S3: Ga2(TiO3)3-HT) and the shoulder at 2350 cm-1 in FTIR matching C-H bonds 

and atmospheric CO2, respectively, that carbon contamination on the surface of the samples is 

present and unavoidable [77]. 

4.2 Surface degradation and ion release 

During submersion in DMEM, opening of the porous network in the titanate surfaces was 

observed. Furthermore, spherical and rod-like deposits, which through EDX analysis were found 

to be formed of Ca:P, and Ga:O, respectively, were also noted (Figure 5). Morphologically, the 

rod-like Ga:O deposits look similar to those generated by Zhao et al. and Shah et al. [78, 79]. 

Deposition may have occurred due to over-saturation of the surrounding solution, however, 

further studies would be needed to confirm this postulation. Additional EDX analysis was 

conducted on the Ca and P deposits to understand the Ca:P ratio, and whether these deposits are 

similar to HA. For S2: Ga2(TiO3)3, the Ca:P ratio increased significantly above 1.8 within 6 h 

and gradually plateaued at 1.71 by 7 days. This is in stark contrast to the heat-treated sample 

(S3: Ga2(TiO3)3-HT), which had a Ca:P ratio of ≈1.42 at 6 h and reached a final ratio of 1.34 by 

7 days. Stoichiometric HA contains a Ca:P = 1.67, with calcium deficient and calcium rich HA 

having ratios of <1.67 and >1.67, respectively [80]. Correlating this with the Ca:P generated on 

both samples, S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT are calcium rich and calcium deficient, 

respectively. Studies conducted by Kizuki et al. demonstrated the relative propensity for ion 

inclusion into the titanate layer for Ca2+ and Na+ [81]. The studies concluded that, even with a 

calcium contamination of 0.0005% in the sodium containing solution, divalent Ca2+ ions would 
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preferentially enter into the structure, as it has a more potent electrostatic attraction to negative 

TiO6 [82]. The authors hypothesise that the calcium contained within the solution, preferentially 

ion exchanged into the surface layer due to its relatively higher propensity, as demonstrated 

through literature studies investigating Ca2+ ions preferentially exchanging into the titanate 

structure [27, 28, 83]. As S2: Ga2(TiO3)3 has a less stable layer compared to S3: Ga2(TiO3)3-HT, 

due to the increased release rate of Ga ions, this explains why there is a higher Ca content on 

S2: Ga2(TiO3)3.  

The opening of the porous network, as well as the deposition of Ca:P and Ga2O3 exhibited in the 

micrograph images (Figure 5) correlates with the ICP and EDX analysed ionic alterations on the 

sample’s surface and in solution. As shown in Figure 6, S3: Ga2(TiO3)3-HT released gallium at 

a much slower rate than S2: Ga2(TiO3)3, suggesting the heat-treatment had a significant effect 

on the stability of the titanate surface generated. Moreover, the peak Ga solution concentration 

was much greater for S2: Ga2(TiO3)3 (2.76 ppm; day 3) compared to S3: Ga2(TiO3)3-HT (0.68 

ppm; day 7). Additionally, the trend in surface concentration of Ga in Figure 6 agrees well with 

the micrographs presented in Figure 5. The S2: Ga2(TiO3)3 sample exhibited an overall decrease 

in Ga ions with no deposition occurring, whereas S3: Ga2(TiO3)3-HT demonstrated a deposition 

of Ga back onto the surface after 24 h, with a large proportion of Ga:O deposits. Furthermore, 

the decrease in solution ionic concentrations of Ca and P, as well as the overall increase of these 

ions on S2: Ga2(TiO3)3, relates to the deposition of Ca:P deposits seen in Figure 5. The 

anomalous re-release of Ca and P from the surface of S3: Ga2(TiO3)3-HT, which does not match 

the solution concentration, could be due to detachment of Ca:P precipitates, which are not 

detectable via ICP. Distinction between Ca ions penetrating into the titanate layer and deposition 

on the surface was not possible with the techniques used, hence further studies would be needed.  

The mechanism for amorphous calcium phosphate formation, and subsequent apatite maturation, 

has been explained previously by [27, 84]. The surface titanate layers, containing positive 

metallic ions, with this case being Ga3+, facilitate ionic exchange between H3O
+ (hydronium) 

ions and Ga3+. This exchange generates Ti-OH bonds upon the top surface of the titanate layers, 

generating an overall negative surface charge. This negative charge allows Ca2+ ions to 

preferentially ion exchange into the surface. High concentration of Ca2+ ions on the surface 

generates an overall positive surface charge, allowing phosphate ions present within the DMEM 

solution to be attracted to the surface generating calcium phosphate precipitates (Figure 5). Since 

S3: Ga2(TiO3)3-HT contained a heat-treatment stage and, therefore, had a more stable surface 

layer, Ga release was much lower than S2: Ga2(TiO3)3 (Figure 6), which evidently resulted in 

lower consumption of Ca ions from the DMEM onto the surface (Figure 5 & Figure 6). This is 
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evident in the calcium-deficient Ca:P precipitates present on S3: Ga2(TiO3)3-HT, as well as the 

smaller quantity of precipitates present on the surface (Figure 5). 

 

4.3 Cytotoxicity and antimicrobial assessment 

Initial evaluation on the effect of titanate surfaces on human cells has been performed via Neutral 

Red Uptake assay. Upon exposure to media, which had been in contact with the samples for 7 

days, significant reduction in cell viability was only shown for S2: Ga2(TiO3)3, with the 

performance of the control S0: Cp-Ti, S3: Ga2(TiO3)3-HT and cells exposed to untreated media 

showing no significant differences (Figure 7). From the ICP analysis, the maximum Ga(III) 

release for the S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT samples were 2.76 and 0.68 ppm (39.6 

and 18.6 µM), respectively. Although these concentrations are lower than those commonly seen 

in the literature for Ga(III) toxicity to human cells, the hypothesis that the heat treatment 

stabilising the rate of gallium release is supported by these results [85, 86]. The toxicity of Ga(III) 

can also be effected by local Fe(III) concentrations and any binding molecules, which can 

promote Ga(III) uptake into the cells. It is also possible that a toxic pH was caused by the elutant 

of the S2: Ga2(TiO3)3 samples during ion exchange within the structure; an effect which is lost 

after heat treatment.  

In this pilot study, S. aureus was used as it is a clinically relevant pathogen commonly associated 

with nosocomial infection and orthopaedic biofilm infections, occurring in as many as 75% of 

joint infections [87-89]. Although Ga(III) has been demonstrated to be antimicrobial against a 

wide variety of pathogens, its efficacy varies over a wide range of inhibitory concentrations 

(µM-mM) specific to each bacterial strain. An antimicrobial effect of gallium titanate structures 

against A. baumannii has been recently demonstrated by Yamaguchi et al. [48]. A. baumannii 

has been found to be particularly susceptible to Ga(III) (2-100 µM), whereas S. aureus is 

relatively more resistant compared to other species (0.32-5.12 mM) [44, 90]. Although the 

concentration of gallium used to produce these structures was far higher than in the Yamaguchi 

study, these results suggest that it has still fallen short of the minimum inhibitory concentration 
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to prevent a S. aureus infection. In DMEM, the Ga(III) release after 6 h was 1.04 and 0.32 ppm 

for S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT, respectively (15 and 4.6 µM in 1 mL solution), which 

falls well below the toxic concentrations for S. aureus, in addition to being considerably lower 

than concentrations clinically used [91]. However, upon reflection, the authors feel it is necessary 

to conduct a further, more comprehensive, study to fully elucidate the antimicrobial status of 

gallium titanate surfaces against S. aureus and other common nosocomial pathogens. 

5 Conclusions 

Formation of gallium titanate surfaces through sequential hydrothermal NaOH, Ga(NO3)3 and 

subsequent heat-treatments, was successful. Full characterisation of the produced gallium 

titanate surfaces were conducted, using FEG-SEM, RHEED, XRD, XPS, FTIR, EDX, Raman, 

and ICP methodologies. Significant morphological changes were demonstrated at high-

resolution on titanium surfaces upon hydrothermal treatment in NaOH, ion-exchange in 

Ga(NO3)3, and subsequent heat-treatment. Furthermore, the antimicrobial and cytotoxic nature 

of the produced surfaces were assessed via Neutral red and LIVE/DEAD analyses. In addition 

to the Ga(III) ion’s ability to substitute into the sodium titanate structure, the surface layer 

enables release of gallium ions into the surrounding environment. However, further testing 

against a wider range of relevant pathogens is required in order to demonstrate the concentrations 

of Ga(III) necessary for these surfaces to be clinically effective. It is also clear that the heat-

treatment conducted on the gallium titanate surface resulted in a more stable layer that released 

Ga ions at a slower rate: 2.76 compared to 0.68 ppm for S2: Ga2(TiO3)3 and S3: Ga2(TiO3)3-HT, 

respectively. Further to this, the incorporation of Ca/P ions on the surface was much lower on 

the heat treated surface (S3: Ga2(TiO3)3-HT), generating a calcium deficient amorphous 

precipitate (Ca:P = 1.34), relative to crystalline HA as compared to the calcium rich (Ca:P = 

1.71) precipitate deposited on the surface of S2: Ga2(TiO3)3. 

If additional assessments can indicate microbiological and further osteogenic efficacy, such 

surfaces may be suitable candidates as an orthopaedic alternative. The production design which 

utilised low temperature Ga ion exchange reactions will enable tailorable and cost effective 

antimicrobial surfaces that can potentially be used to coat both surfaces and internal porosities 

of orthopaedic prosthetics at commercial scales; a key design improvement. 
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Improved Highlights 

 Gallium (9.4 at.%) can successfully ion-exchange with sodium (2.7 at.%) in titanate 

structures (0.5-1 μm deep), demonstrating convenient design processing. 

 RHEED analysis was successfully conducted, for the first time, to assess titanate 

structures, confirming d spacing values for titanate structures. 

 Pre-heat-treated gallium titanate surfaces released more gallium ions compared to post-

heat-treated samples (2.76 vs. 0.68 ppm, respectively). 

 Released gallium ion concentrations (4-40 μM) were significantly less than toxic 

concentrations for S. aureus (0.32-5.12 mM). 

 Pre-heat-treated gallium titanate demonstrated significant (p<0.0001) cytotoxicity 

(75.8% cell viability reduction) compared to post-heat-treated samples (18.6% reduction) 

via Neutral Red. 
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