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27 Abstract 

28 Recent studies have shown that activating the noise reduction scheme in hearing aids results in a 

29 smaller peak pupil dilation (PPD), indicating reduced listening effort, and 50% and 95% correct 

30 sentence recognition with a 4-talker masker. The objective of this study was to measure the effect of 

31 the noise reduction scheme (on or off) on PPD and sentence recognition across a wide range of 

32 signal-to-noise ratios (SNRs) from +16 dB to -12 dB and two masker types (4-talker and stationary 

33 noise). Relatively low PPDs were observed at very low (-12 dB) and very high (+16 dB to +8 dB) SNRs 

34 presumably due to ‘giving up’ and ‘easy listening’, respectively. The maximum PPD was observed 

35 with SNRs at approximately 50% correct sentence recognition. Sentence recognition with both 

36 masker types was significantly improved by the noise reduction scheme, which corresponds to the 

37 shift in performance from SNR function at approximately 5 dB toward a lower SNR. This intelligibility 

38 effect was accompanied by a corresponding effect on the PPD, shifting the peak by approximately 4 

39 dB toward a lower SNR. In addition, with the 4-talker masker, when the noise reduction scheme was 

40 active, the PPD was smaller overall than that when the scheme was inactive. We conclude that with 

41 the 4-talker masker, noise reduction scheme processing provides a listening effort benefit in addition 

42 to any effect associated with improved intelligibility. Thus, the effect of the noise reduction scheme 

43 on listening effort incorporates more than can be explained by intelligibility alone, emphasizing the 

44 potential importance of measuring listening effort in addition to traditional speech reception 

45 measures. 

46

47

48 Keywords: Hearing impairment, speech recognition, noise reduction scheme, hearing aids, pupil 

49 dilation, listening effort, signal-to-noise ratio

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118



p. 3

50 1. Introduction

51 Audiological evaluations and research studies investigating hearing aid signal processing have 

52 typically focused on changes or benefits in intelligibility but often failed to provide a complete 

53 picture of the processes involved in speech recognition (Dillon et al., 1993; Ricketts et al., 2001; 

54 Sarampalis et al., 2009). Traditional speech reception measures have been shown to be insensitive to 

55 the possible benefits of hearing aid algorithms due to ceiling effects or great variability (Gatehouse et 

56 al., 1990). Baer and colleagues (Baer et al., 1993) suggested that the greatest benefit of noise 

57 reduction processing in hearing aids may be reduced listening effort rather than enhanced speech 

58 intelligibility. 

59 According to the Framework for Understanding Effortful Listening (FUEL) (Pichora-Fuller et al., 2016), 

60 listening effort depends on a range of factors, including not only individual factors, such as hearing 

61 ability and motivation to continue listening, but also external factors, such as the task demands 

62 imposed by the listening situation (Brehm, 1999). Participants may invest less effort in their task 

63 performance when the task demands are too high or allocate less cognitive resources under very 

64 easy listening conditions (Ohlenforst et al., 2017a). Recently, an increasing number of studies have 

65 sought additional methods to gain information about effortful listening as a supplement to 

66 traditional audiological measures to assess individual hearing ability (McGarrigle et al., 2014; 

67 Ohlenforst et al., 2017b; Pals et al., 2013; Wu et al., 2016). These methods include subjective 

68 assessments, such as self-reports and questionnaires (McAuliffe et al., 2012; Panico et al., 2009; 

69 Picou et al., 2011); behavioral measures, such as dual-task paradigms or reaction time measures 

70 (Fraser et al., 2010; Houben et al., 2013; Tun et al., 2009); and physiological measures, such as the 

71 pupil response and functional magnetic resonance imaging (fMRI) or EEG measures (Kuchinsky et al., 

72 2013; Obleser et al., 2012; Petersen et al., 2015). Importantly, the listening conditions may affect 

73 listening effort even when speech intelligibility is not affected, such as when speech intelligibility is at 

74 a ceiling and hence constitutes an insensitive outcome measure (Koelewijn et al., 2014; Wendt et al., 

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177



p. 4

75 2017). For example, Wendt et al., (2017) showed that activating the noise reduction scheme at 

76 ceiling performance reduced listening effort, but speech in noise performance was unaffected. 

77 Therefore, simultaneously assessing listening effort and speech performance may uncover challenges 

78 or changes in processing speech that may not be evident with traditional measures.

79 Numerous studies across different research areas have shown that pupil dilation increases as the 

80 processing load imposed by the task demands increases (Beatty, 1982; Engelhardt et al., 2010; 

81 Granholm et al., 1996; Kahneman, 1973; Van Der Meer et al., 2010). Pupillometry has repeatedly 

82 been verified as a valid measure for quantifying the effort required for speech recognition with 

83 background noise (Koelewijn et al., 2012; Koelewijn et al., 2014; Kramer et al., 1997; Ohlenforst et 

84 al., 2017a; Ohlenforst et al., 2017b; Wendt et al., 2017; Zekveld et al., 2011). For instance, the SNR 

85 (ranging from -20 dB to +16 dB) and masker type (stationary and 1-talker masker) have been shown 

86 to affect pupil dilation during listening (Ohlenforst et al., 2017a). Recent studies indicate that effort is 

87 not necessarily monotonically related to the task demands. The changes in effort follow an inverse U-

88 shaped function, indicating that listeners may exert less effort due to ‘giving up’ under very difficult 

89 conditions and ‘taking it easy’ when listening at high SNRs (Ohlenforst et al., 2017a; Wu et al., 2016; 

90 Zekveld et al., 2014). Ohlenforst et al. (Ohlenforst et al., 2017a) investigated the peak pupil dilation 

91 (PPD) across a range of SNRs in hearing-impaired and normal-hearing listeners. These authors 

92 showed that the PPD, which is an indication of the cognitive processing load, was affected by an 

93 interaction between the masker type and hearing status of the individual. In the presence of a 

94 stationary noise masker, the hearing-impaired listeners showed relatively large PPDs across a wide 

95 range of SNRs, while the normal-hearing listeners showed a maximum PPD across a relatively narrow 

96 range of low (challenging) SNRs (Ohlenforst et al., 2017a). With a single-talker masker, the maximum 

97 PPD was in the mid-range of SNRs, while relatively smaller PPDs were observed at low and high SNRs 

98 in both groups of listeners. Interestingly, recent findings across a variety of studies in the field of 

99 listening effort suggest that the allocation of mental resources needed during listening to reach 
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100 speech understanding in daily life listening situations may differ between normal-hearing and 

101 hearing-impaired listeners (Ohlenforst et al., 2017a; Ohlenforst et al., 2017b; Zekveld et al., 2011). 

102 Hearing aids are designed to improve the audibility of sounds and facilitate the intelligibility of 

103 speech in both quiet and noisy environments. These improvements may be accompanied by reduced 

104 listening effort. The advanced signal processing in hearing aids includes a digital noise reduction 

105 scheme, which aims to reduce the level of interfering background noise by improving the SNR. 

106 Recent studies indicate that the noise reduction scheme improves the recall of words presented in a 

107 competing multi-talker background (Lunner et al., 2016; Ng et al., 2015; Ng et al., 2013). The 

108 researchers concluded that the noise reduction scheme may reduce the adverse effect of noise on 

109 memory and thereby facilitate the segregation of the target from the multi-talker masker signal. This 

110 enhanced memory of the target words was interpreted to represent reduced listening effort (Lunner 

111 et al., 2016; Ng et al., 2015; Ng et al., 2013). Moreover, Wendt et al. (2017) presented speech in a 4-

112 talker babble masker at two SNRs (SNR50 and SNR95) corresponding to the individual 50% or 95% 

113 sentence recognition level. These authors assessed the effect of the noise reduction scheme by 

114 applying a combination of a digital noise reduction scheme and directional microphones. When the 

115 scheme was activated in the hearing aid, the speech recognition performance at SNR50 was 

116 significantly improved and accompanied by significantly smaller PPDs. Interestingly, activating the 

117 noise reduction scheme did not affect the near-ceiling speech recognition performance at SNR95. 

118 Nevertheless, significantly smaller PPDs were observed, indicating that the noise reduction scheme 

119 had a beneficial effect on listening effort. Thus, measuring listening effort by assessing PPD could 

120 provide a sensitive outcome measure of hearing aid benefit even at high performance level 

121 traditional methods of audiological assessment are not sufficiently sensitive.

122 The studies described above (Ng et al., 2015; Ng et al., 2013; Wendt et al., 2017) indicate that effort 

123 can be reduced with modern hearing aid signal processing. However, knowledge regarding the 

124 benefit of noise reduction processing on listening effort remains very limited as only a few listening 
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125 conditions were tested in these studies. In contrast, the effect of noise reduction processing on 

126 intelligibility has been studied by several groups of researchers. In these studies, the inconsistency in 

127 the diverse noise reduction processing schemes studied renders generalization problematic, 

128 especially as processing schemes become increasingly sophisticatedion over time. Some research 

129 studies have indicated that the application of noise reduction processing may not always be 

130 beneficial for speech intelligibility (Bentler et al., 2008; Nordrum et al., 2006). Such negative effects 

131 suggest that while the background noise may be removed, the target speech might also be degraded. 

132 Stronger or more aggressive signal processing may cause more signal enhancement but could 

133 simultaneously introduce more degradation (Loizou et al., 2011). For example, in a recent study, the 

134 effect of noise reduction processing on sentence recognition was tested in the presence of a 

135 cafeteria background masker (Neher et al., 2013). Simulated hearing aid processing including 

136 coherence-based noise reduction was presented via headphones to hearing-impaired listeners. The 

137 algorithm was designed to suppress the reverberant signal components and diffuse the background 

138 noise at mid to high frequencies but did not include directionality. The results showed that sentence 

139 recognition was unaffected by the moderate noise reduction processing, but the strong noise 

140 reduction processing reduced speech recognition by approximately 5%. The effect was replicated in a 

141 follow up study in which the same acoustic test conditions were used in a group of habitual hearing 

142 aid users (Neher, 2014). Compared to the moderate or no noise reduction processing, the strong 

143 noise reduction processing reduced speech recognition at -4 dB and 0 dB SNR. 

144 How hearing-impaired listeners invest listening effort across a broader range of listening situations 

145 and how effortful listening relates to performance measures remain unclear. The current study 

146 aimed to examine how a noise reduction scheme influences sentence recognition and listening 

147 effort. The applied noise reduction scheme preserves speech and reduces noise in complex 

148 environments by a fast-acting combination of a beam-former (Kjems et al., 2012) and a single-

149 channel Wiener post-filter (Jensen et al., 2015) to attenuate interfering sounds. Any effect of the 
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150 noise reduction processing on intelligibility likely affects the PPD in a corresponding direction as the 

151 intelligibility of speech has a strong and reliable effect on the PPD (Koelewijn et al., 2014; Ohlenforst 

152 et al., 2017a; Zekveld et al., 2014). However, in addition to this intelligibility effect, the noise 

153 reduction processing may have additional effects on the PPD, as suggested by recent studies 

154 investigating listening effort that demonstrated that hearing aid processing has a beneficial effect on 

155 listening effort due to reduced background noise and reduced cognitive effort during speech 

156 processing (Picou et al., 2013; Sarampalis et al., 2009; Wendt et al., 2017). Demonstrating the effect 

157 of noise reduction processing on listening effort combined with simultaneous knowledge regarding 

158 speech in noise performance could further substantiate the value of measuring effort as an extra 

159 dimension in addition to traditional speech reception measures. 

160 Recent research found better SRTs in speech recognition in the presence of a single-talker masker 

161 than those in the presence of a stationary noise masker (Koelewijn et al., 2012). The envelope 

162 modulations of the multi-talker masker might allow the participants to listen in the energy dips in the 

163 spectral-temporal domain and glimpse parts of the target sentence (Festen et al., 1990; Francart et 

164 al., 2011; Koelewijn et al., 2012; Koelewijn et al., 2014; Rosen et al., 2013). Based on the 

165 characteristics of the masker types and recent findings, we hypothesize that speech recognition 

166 performance is better with the 4-talker masker than that with the stationary noise masker (Koelewijn 

167 et al., 2012; Koelewijn et al., 2014). However, recent studies suggest that the intelligibility of speech 

168 masked by additional interfering speech information may require more mental effort than that with 

169 an energetic mask (Larsby et al., 2008). Informational masking, including lexical interference or the 

170 competition for neural resources, may cause higher listening effort (Beatty, 1982; Koelewijn et al., 

171 2012; Koelewijn et al., 2014; Scott et al., 2004; Scott et al., 2009). We hypothesized that the better 

172 speech recognition with the 4-taker masker compared to that with the stationary noise masker could 

173 be accompanied by larger PPDs. We hypothesized that sentence recognition is improved and 

174 listening effort is reduced with SNRs corresponding to approximately 50% correct or better 
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175 performance with the active noise reduction compared to the inactive noise reduction scheme. This 

176 hypothesis is motivated by two arguments. First, in a previous study conducted by Wendt and 

177 colleagues (2017), SRT targeting 50% correct performance was significantly improved by the active 

178 noise reduction scheme compared to that with the inactive noise reduction scheme setting. Second, 

179 the segregation between the target and masker signal at very low SNRs might be more difficult for 

180 the algorithm, which might have an impact on the SNR improvement provided by the algorithm. 

181

182 2. Materials and methods

183 2.1 Participants

184 Twenty-five experienced hearing aid users were recruited from the Eriksholm Research Centre in 

185 Denmark. On average, the participants had used hearing aids for 7.7 years (SD=3.1 years). The 

186 participants were aged between 46 and 77 years (mean age 64.3 years, SD=9.4) and native Danish 

187 speakers. The audiometric inclusion criterion for the participants was symmetrical, with mild to 

188 moderate sensorineural hearing thresholds. The average pure tone hearing thresholds ranged 

189 between 35 dB and 60 dB HL (see Figure 1), and air-bone gaps less than 10 dB between 500 Hz and 

190 4000 Hz were required in both ears. All the participants had normal or corrected-to-normal vision 

191 and no history of neurological diseases, dyslexia or diabetes mellitus. All the participants provided 

192 written informed consent, and the study was approved by the local regional ethics committee (De 

193 Videnskabsetiske Komiteer for Region Hovedstaden). 

194

195

196 2.2 Auditory stimuli 
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197 Everyday Danish sentences from the Hearing in Noise Sentence Test (HINT) (Nielsen et al., 2009) 

198 were presented in a spatial setup with five loudspeakers in a sound proof measurement booth as 

199 shown in Figure 2. The target sentences were spoken by a male and presented from a loudspeaker 

200 located at 0 degree azimuth. All the sentences contained five words, 8-9 syllables were included in 

201 each sentence, and the single words did not contain more than four syllables (Nielsen et al., 2009). 

202 The following is an example of a presented sentence: “Filmen er rigtig godt lavet” (translation: “the 

203 movie was well made”). The sentence duration was on average 1.4 seconds. The listeners were 

204 presented with a training list of 20 sentences for each masker type, followed by eight lists of 25 

205 sentences for every SNR. To cover the large number of testing conditions, the sentence material was 

206 re-used across four experimental visits. Recent research assessed the possible learning effects due to 

207 repeated exposure to HINT sentences across three experimental visits with an interval of three 

208 weeks between visits. The results showed that the memory effects of the sentence material are not 

209 significant with limited exposure when the sentences were only presented once during each visit 

210 (Simonsen et al., 2016). The experimental visits in the current study were separated by at least three 

211 weeks, and identical sentence material was not repeated within each visit to prevent learning effects 

212 of the speech material. The speech recognition performance was measured in the presence of a 

213 stationary noise or a 4-talker masker background. The 4-talker masker was made from four single-

214 talker maskers, including two different male voices and two different female voices. Each separate 

215 talker read a text passage from a newspaper, and one single talker was presented from one 

216 loudspeaker, each positioned at -/+ 90 and -/+ 150 degree azimuth (Wendt et al., 2017). We 

217 balanced the distribution of the talkers across loudspeakers for each SNR by switching the order of 

218 the talkers. There were never two talkers of the same gender next to each other or on the opposite 

219 position of each loudspeaker. In each trial, the masker started 3 seconds prior to the presentation of 

220 the sentence and ended 3 seconds after the sentence offset. The participants repeated the sentence 

221 aloud once the masker stopped. The same presentation procedure was applied for both masker 
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222 types. The long-term average frequency spectrum of both masker types was identical to the 

223 spectrum of the target speech signal, and the masker was always presented at 70 dB SPL. The masker 

224 levels were kept constant to ensure that the noise would not become too loud at low SNRs. Changing 

225 the noise levels might also allow the listeners to estimate the upcoming task difficulty. The same SNR 

226 range was chosen for both masker types. We included a large range of positive SNRs as previous 

227 findings suggested that typical, ecologically sound environments for hearing-impaired listeners occur 

228 at SNRs of approximately +5 dB or better (Festen et al., 1990; Ohlenforst et al., 2017a; Smeds et al., 

229 2015; Wu et al., 2014; Zekveld et al., 2014). Speech masked with a stationary masker and 4-talker 

230 masker was presented at eight SNRs between -12 dB and +16 dB and distributed in steps of 4 dB. Per 

231 the masker type, 25 sentences were presented for each SNR. 

232

233

234 2.3 Noise reduction scheme

235 All the participants wore identical hearing aid models during the sentence recognition test and 

236 examined in the same two different settings. In one setting, the noise reduction scheme was turned 

237 off, but the hearing aid provided audibility based on each individual’s hearing threshold via the Voice 

238 Aligned Compression (VAC) rationale (Le Goff, 2015). The VAC amplification rationale is based on a 

239 wide dynamic range compression scheme with compression knee points between 20 and 50 dB SPL 

240 depending on the frequency range and the individuals’ hearing thresholds. The hearing aid was set to 

241 mimic the natural acoustic effect of the pinna; thus, the microphone setting was close to 

242 omnidirectional, and no actual noise reduction processing was applied. The other setting involved 

243 activating the noise reduction scheme. In this setting, a fast-acting combination of a minimum 

244 variance distortion-less response (MVDR) beam-former (Kjems et al., 2012) and a single-channel 
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245 Wiener post-filter (Jensen et al., 2015) was applied before the VAC. In the algorithm, spatial filtering 

246 and Wiener filtering were applied to attenuate interfering sounds originating behind the listener. 

247 The output SNR method suggested by Naylor and Johannesen (2009) was used to directly measure 

248 the SNR effect of the complete noise reduction scheme. The hearing aid was placed in a sound field 

249 and exposed to running speech plus noise mixtures in SNRs ranging from -10 dB SNR to +20 dB in 

250 steps of 5 dB for the two different noise types (speech-weighted unmodulated noise and multi-talker 

251 babble noise). The output SNR method was applied to NR on and off. In the range of -10 dB SNR to 

252 +10 dB SNR, the listeners experience an articulation-index (AI) weighted SNR improvement ranging 

253 from 4.5 dB to 5.2 dB for NR on compared to that for NR off for the speech-weighted noise and an AI 

254 weighted SNR improvement ranging from 4.2 dB to 4.8 dB for the multi-talker babble noise. For SNRs 

255 above +10 dB, the SNR improvement gradually declined to a few dB because the noise estimates in 

256 the noise reduction algorithm decline at high SNRs, and thus, the noise reduction algorithm becomes 

257 less effective.

258

259

260 2.4 Pupillometry

261 During the experiment, the pupil location and pupil size were recorded using an eye tracking system 

262 by SensoMotoric Instruments (SMI, Berlin, Germany, 2D Video-Oculography, version 4), which 

263 applies infrared video tracking to measure the pupil diameter. The eye tracking system had a 

264 sampling frequency of 120 Hz and a spatial resolution of 0.03 mm. The pupil location and pupil size 

265 were recorded by the eye tracker and stored on a connected computer with time stamps 

266 corresponding to the start of each trial, including the masker onset, the sentence onset and the 

267 offset for the post-masker. The experimenter monitored the pupil recordings and applied corrective 

268 actions. In the case that a participant moved his/her head or upper body or the real-time pupil 
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269 recordings were missing data regarding the pupil diameter, corrective actions, such as adjusting the 

270 participants’ position, the distance to the eye tracker, or light, were applied.

271

272 2.5 Procedures

273 In total, 17 adults from the Eriksholm pool of participants with recent pure tone audiogram data and 

274 recently made ear impressions (less than 6-month-old) were required to participate in four 

275 experimental visits. We recruited 8 additional participants who required an additional recruitment 

276 visit (total of five visits) to measure the pure tone audiogram and take ear impressions. In total, four 

277 experimental visits, including two visits per masker type, were required for each participant. The 

278 visits were distributed across approximately four months during the fall of 2016 with intervals of at 

279 least three weeks between each visit to avoid learning effects of the sentence material as the 

280 material was repeatedly used (Simonsen et al., 2016). During the four experimental sessions, each 

281 participant sat on a fixed chair in front of the eye tracking system in a sound proof booth. The 

282 experimenter observed the real-time recording of the pupil response from the eye tracking system to 

283 evaluate the pupil recording quality. The height of the chair and the distance to the eye tracker (55 

284 cm +/- 5 cm approximately) were adjusted individually until a stable, continuous pupil response was 

285 measured. The illumination in the measurement booth was fixed during the experiment to an 

286 average of 84.3 lux (SD=3.56 lux). The stationary noise and 4-talker masker were presented at eight 

287 identical SNRs between -12 dB and +16 dB distributed in steps of 4 dB. During each visit, only 1 of the 

288 2 masker types was presented in two blocks of four randomized SNRs. In one block, the noise 

289 reduction scheme was turned on, and in the other block, the noise reduction scheme was turned off. 

290 During each visit, each noise reduction scheme setting (on or off) was tested at four SNR levels. We 

291 balanced the SNR levels for each visit, including two difficult and two easier SNRs (e.g., -12, -4, +4 and 

292 +12 dB SNR or -8, 0, +8 and +16 dB SNR). We balanced the setting of the noise reduction scheme and 
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293 the presented masker types across visits and blocks. Each participant’s visit started with a practice 

294 session in which the noise reduction scheme setting was the same as that in the starting block, and 

295 20 sentences at an SNR of +4 dB were tested. The practice session ensured that the participants were 

296 confident with the experimental procedures as it may not be intuitive to inhibit movements and 

297 blinking during the sentence presentation. A sentence was scored as correct if all the words were 

298 correctly repeated. 

299  

300

301 2.6 Pupil data selection and cleaning 

302 Pupil diameter values more than 2 standard deviations from the mean pupil diameter in a given trial 

303 were defined as blinks. Pupil traces with more than 25% of blinks between the start of baseline (final 

304 second pre-noise before the sentence onset) and the end of the post-masker were excluded from 

305 data analysis. For pupil traces with less than 25% of blinks, the blinks were interpolated linearly 

306 starting with 5 samples before and 7 samples after each blink (Siegle et al., 2008). The pupil response 

307 within each selected and de-blinked trace was smoothed by a 9-point moving average filter. The 

308 reference of the task evoked pupil dilation was the baseline, which corresponded to the average 

309 pupil diameter recorded during the final second of the three second presentation of the masker 

310 before the target speech onset. The PPD was calculated as the maximum pupil dilation between the 

311 onset of the sentence and the offset of the noise relative to the baseline pupil diameter for every 

312 trace (one pupil trace was recorded per sentence). For each participant and each condition, all the 

313 included de-blinked and smoothed traces (≤25) were time-aligned and averaged. For each SNR 

314 condition, at least 18 valid pupil traces (n=25 traces in total) with less than 25% of blinks were 

315 required per participant to consider the pupil data for the statistical analysis. Eighteen participants 

316 had the required number of valid pupil traces for each of the 32 testing conditions. Six participants 
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317 had less than 18 valid pupil traces in at least one of the testing conditions, and two participants had 

318 missing data (<18 valid pupil traces) in at 3 test conditions. We calculated the average pupil trace 

319 across all the valid pupil traces per SNR condition and subject. The mean PPD was calculated based 

320 on the averaged pupil trace and thus provided the data for the statistical analysis per SNR and 

321 participant. 

322

323

324 2.7 Statistical analyses 

325 Pupil data selection and cleaning were applied to the pupil data from 24 participants (50% female). 

326 One participant was excluded due to unexpected attention problems. We measured 800 pupil traces 

327 during the experimental sessions (excluding the practice traces) per participant, and on average, 38 

328 (SD=12.92) pupil traces were excluded per person. The corresponding sentence recognition scores 

329 for all 800 measured traces were included in the statistical analysis. 

330 We applied linear mixed models (LMM) to analyze the data as LMMs tolerate missing values, while 

331 repeated measures ANOVA tests only use complete cases contrary to multilevel analyses. Moreover, 

332 mixed-effects models are more flexible in processing the multilevel structure of the data (i.e., the 8 

333 different SNRs and 2 different hearing aid settings). We averaged over 25 sentences to obtain one 

334 ‘observation’ under each hearing aid setting and listening condition (SNR and masker type), which is 

335 commonly performed in pupillometry research (Koelewijn et al., 2012; Koelewijn et al., 2014; 

336 Ohlenforst et al., 2017a; Zekveld et al., 2011). A linear mixed-effects model was built in R-studio 

337 using the packages lme4 (Bates et al., 2014) and lmerTest (Kuznetsova et al., 2016). The function 

338 lmer was applied to fit the LMM to the data. First, we applied a 3-way LMM ANOVA to statistically 

339 compare the fixed effects of the masker types, SNR and noise reduction setting on the PPD and the 
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340 sentence recognition performance separately to verify the hypothesis that the masker type and SNR 

341 range have an impact on speech recognition performance and the corresponding listening effort. The 

342 probability level of each LMM ANOVA was p< 0.05. We did not observe a significant 3-way 

343 interaction effect on the PPD, but we did observe a significant interaction between the SNR and 

344 noise reduction scheme setting. The model was collapsed across masker type, and an additional 2-

345 way LMM ANOVA was applied to assess the effect of the SNR and noise reduction scheme setting 

346 and the corresponding interaction effect on the PPD. 

347 The three-way interaction among the masker type, SNR and noise reduction scheme setting on 

348 sentence recognition performance was significant. We created two additional separate LMM 

349 ANOVAs to test the effect of the SNR of each masker type independently (stationary noise and 4-

350 talker masker) on the percent-correct sentence recognition. In these models, the averaged 

351 percentage of correct sentence recognition scores for each SNR was treated as a dependent 

352 measure, and the participants were treated as a repeated measure, i.e., random effects. The fixed 

353 effects in each separate LMM ANOVA included the categorical variable SNR, the categorical variable 

354 noise reduction scheme setting and the interaction between the SNR and noise reduction scheme 

355 setting. We included the random effect of the SNR and noise reduction scheme as a random slope of 

356 SNR to allow each participant to have their own mean PPD size and effect of SNR or noise reduction 

357 scheme on PPD with both factors nested within participants. The phia package, including the 

358 testInteractions functions, was used to apply a post hoc interaction analysis. Pairwise comparisons of 

359 the noise reduction scheme setting (on or off) at each SNR level were conducted. The pairwise post-

360 hocpost hoc analysis was separately applied to both outcome measures (PPD and sentence 

361 recognition performance), and a p-value correction using the Holm method was applied to correct 

362 for the multiple comparisons. 
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364 3. Results

365 3.1 Sentence recognition data 

366 The results are displayed in Figures 3 and 4. Figure 3 shows the sentence recognition scores across 

367 the range of stationary noise masker SNRs with the noise reduction scheme on (solid, gray curve) or 

368 off (dashed, gray curve). The sentence recognition scores with the 4-talker masker are shown in 

369 Figure 4 with the noise reduction scheme on (solid, gray curve) or off (dashed, gray curve). The error 

370 bars represent the standard error of the mean. 

371 The 3-way LMM ANOVA revealed significant main effects of SNR (F[7,713]=1382.5, p<0.001), noise 

372 reduction scheme (F[1,713]=524.4, p<0.001), and masker type (F[1,713]=72.9, p<0.001), indicating that 

373 sentence recognition is affected by differences in the listening conditions (SNR and masker type) and 

374 the noise reduction processing algorithm. Furthermore, we found significant interactions between 

375 the SNR and noise reduction scheme (F[7,713]=93.7, p<0.001), between the SNR and masker type 

376 (F[7,713]=5.73, p<0.001) and among the SNR, noise reduction scheme and masker type (F[7,713]=2.82, 

377 p<0.01). The interaction between the masker type and noise reduction scheme was not significant. 

378 The interaction effects of among the masker type, noise reduction scheme and SNR are larger in the 

379 mid-range of SNRs, while at relatively low and high SNRs, floor or ceiling effects of sentence 

380 recognition were observed. 

381

382 Regarding the stationary noise masker, at relatively high SNRs between +16 dB and +8 dB, the 

383 participants achieved 100% sentence recognition independent of the setting of the noise reduction 

384 scheme. As the SNR decreased (+8 dB to -8 dB), sentence recognition rapidly decreased until the 

385 participants were unable to perform correct sentence recall at -12 dB SNR when the noise reduction 

386 scheme was turned off. At -12 dB SNR, the participants could correctly recognize approximately 12% 

387 when the noise reduction scheme was turned on. Overall, the sentence recognition curve at the level 
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388 of 50% correct speech recognition was shifted by approximately 5.5 dB (see Figure 3) toward lower 

389 SNRs when the noise reduction scheme was turned on compared to that when it was turned off. The 

390 LMM ANOVA revealed significant main effects of SNR (F[7,345]=846.2, p<0.001) and noise reduction 

391 scheme (F[1,345]=332.5, p<0.001) and a significant interaction between the SNR and noise reduction 

392 scheme (F[7,345]=68.8, p<0.001). We performed pairwise post hoc comparisons between the two noise 

393 reduction scheme settings (on or off) at each SNR level. Post hoc analysis revealed significant 

394 differences between the noise reduction scheme settings at -12 dB, -8 dB, -4 dB and 0 dB SNR 

395 (p<0.01, as indicated by gray diamonds in Figure 3). 

396

397 Regarding the 4-talker masker, at SNRs between +16 dB and +8 dB, nearly 100% sentence recognition 

398 was achieved regardless of the noise reduction setting. The overall performance curve was shifted by 

399 approximately 5.1 dB toward the lower SNRs when the noise reduction scheme was turned on 

400 compared to that when it was turned off. By applying an LMM ANOVA, we found significant main 

401 effects of SNR (F[7,345]=617.3, p<0.001) and noise reduction scheme (F[1,345]=223.8, p<0.001) and a 

402 significant interaction between the SNR and noise reduction scheme (F[7,345]=36.2, p<0.001). We 

403 performed pairwise post hoc comparisons between the two noise reduction scheme settings (on or 

404 off) at each SNR level. Significant differences were observed in the sentence recognition performance 

405 between the noise reduction scheme settings at -8 dB, -4 dB, 0 dB and +4 dB SNR (p<0.01, as 

406 indicated by gray diamonds in Figure 4). 

407

408 Arcsine transformation prior to analyzing proportion data, such as the percent of correct responses, 

409 is known to stabilize the variance and normalize proportional data (Studebaker, 1985). We applied 

410 the arcsine transformation to the speech scores and performed the statistical analysis described in 

411 section 2.7 by using LMM ANOVAs of the speech data. The results revealed small differences in the F- 
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412 and p-values compared to those obtained by analyzing the percentage scores. We chose to apply the 

413 statistical analysis of the speech data because the prior arcsine transformation did not change the 

414 results, and arcsine units are difficult to interpret as they fall into a numeric range that has little 

415 intuitive relationship to the proportionate performances.

416

417 3.2 Pupil data 

418 Figure 3 shows the PPD data under the stationary noise masker conditions, and Figure 4 shows the 

419 PPD data under the 4-talker masker conditions across SNRs. The 3-way LMM ANOVA revealed the 

420 significant main effects of the SNR (F[7,699.1]=26.82, p<0.001), noise reduction scheme (F[1,699.1]=25.34, 

421 p<0.001), and masker type (F[1,699.1]=21.37, p<0.01), and a significant interaction was observed 

422 between the SNR and noise reduction scheme (F[7,699.1]=9.97, p<0.01). No significant interaction was 

423 observed between the masker type and SNR or masker type and noise reduction scheme. The 

424 interaction effect between the SNR and noise reduction scheme suggests that the SNR-dependency 

425 of the PPD differs when the noise reduction scheme is on from that when the scheme is off. We did 

426 not test two separate models for each masker type per sentence recognition performance. In an 

427 additional 2-way LMM ANOVA that collapsed across the level of masker type, the noise reduction 

428 scheme setting and masker type were not significant, which is similar to the interaction with the SNR. 

429 The 2-way LMM ANOVA revealed a significant main effect of noise reduction scheme setting 

430 (F[1,715.05]=25.08, p<0.001), a significant main effect of SNR (F[7,715.07]=25.94, p<0.001) and a significant 

431 interaction effect between the noise reduction scheme setting and SNR (F[7,715.05]=9.72, p<0.001) on 

432 the PPD. Pairwise post hoc comparisons of the two noise reduction scheme settings (on or off) were 

433 applied at each SNR level. Significant differences were observed between the noise reduction 

434 scheme settings in the PPD measured at -8 dB, -4 dB, 0 dB and +4 dB SNR. 
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436 Figure 3 shows the averaged PPD data across SNRs for the stationary noise masker when the noise 

437 reduction scheme was active (black, solid line) and when the noise reduction scheme was inactive 

438 (black, dashed line). The PPD plateaued with relatively high SNRs between +16 and +8 dB where high 

439 performance was reached independently of the noise reduction scheme setting. When the noise 

440 reduction scheme was turned off, as the SNR further decreased, a steady increase in PPD was 

441 observed until a maximum PPD was reached at -4 dB SNR. The corresponding sentence recognition 

442 was approximately 38% correct. The maximum PPD was shifted by 4 dB toward lower SNRs when the 

443 noise reduction scheme was turned on, and this maximum corresponded to an approximately 52% 

444 correct sentence recognition. At the lowest SNR of -12 dB, relatively lower PPDs were observed 

445 under both noise reduction scheme settings. 

446 Figure 4 shows the PPD data across SNRs with the noise reduction scheme on (black, solid curve) or 

447 off (black, dashed curve) under the 4-talker masker condition. The PPD measured with high SNRs 

448 between +16 dB and +8 dB was overall consistent but larger when the noise reduction scheme was 

449 off compared than that when it was on. Further decreases in the SNRs resulted in continuous 

450 increases in the PPD until the maximum PPD was reached between -4 dB and 0 dB SNR when the 

451 noise reduction scheme was off and between -8 and -4 dB SNR when the noise reduction scheme 

452 was on. The range of the maximum PPD was shifted by approximately 4 dB toward the lower SNRs 

453 when the noise reduction scheme was turned on compared to that when it was turned off. 

454

455 3.3 Summary of the results

456 The preceding statistical analyses support the following summary of the results: The effect of the 

457 noise reduction scheme applied in this study on sentence recognition was to shift the performance 

458 function across SNRs by approximately 5.5 dB for the stationary masker and approximately 5.1 dB for 

459 the 4-talker masker toward the lower SNRs. For both masker types, the effect of the noise reduction 
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460 scheme on listening effort (as measured by the PPD) was to shift the peak of the PPD function across 

461 SNRs by approximately 4 dB toward the lower SNR. In addition, in the case of the 4-talker masker, 

462 the noise reduction scheme lowered the average PPD by approximately 35% compared to the 

463 inactive noise reduction scheme. 

464

465

466 4. Discussion

467 In the present study, the effect of a noise reduction scheme on sentence recognition and PPD was 

468 examined across a range of SNRs with two masker types. For both masker types, the noise reduction 

469 scheme had a large beneficial effect on sentence recognition, which was accompanied by a 

470 corresponding effect on listening effort, as indicated by the PPD. 

471

472 4.1 Relationship among noise reduction scheme, SNR and speech recognition

473 For the stationary and 4-talker maskers, the sentence recognition performance was significantly 

474 improved when the noise reduction scheme was active compared to that when it was inactive. The 

475 results showed improved sentence recognition not only at performance levels of approximately 50% 

476 and higher but also at lower sentence recognition performances. Notably, sentence recognition was 

477 mainly improved across a large range of negative SNRs between 0 dB and -12 dB. The findings of the 

478 present study confirm and extend the previously shown benefits of a noise reduction scheme on 

479 sentence recognition with an approximately 50% successful performance rate (Wendt et al., 2017) at 

480 higher and lower performance levels. Additionally, the present study confirmed that the currently 

481 tested noise reduction scheme can significantly improve speech intelligibility in very challenging 
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482 sound environments. Hence, this finding might allow hearing-impaired listeners to participate in 

483 communication situations that might otherwise be impossibly challenging. 

484

485 4.2 Relationship among noise reduction scheme, SNR and PPD

486 In line with recent research (Ohlenforst et al., 2017a; Zekveld et al., 2014), the present results 

487 confirm that the changes in speech recognition are accompanied by changes in PPD. We found the 

488 maximum PPD with SNRs producing approximately 50% correct sentence recognition and relatively 

489 smaller PPDs at very low and very high SNRs. The indication that listening effort follows an inverted 

490 U-shape across a range of SNRs also supports the findings reported in a recent study (Wu et al., 2016) 

491 in which dual-task paradigms were applied to assess listening effort across a wide range of SNRs. Wu 

492 et al. (2016) found that second-task performance (reaction time) was the worst (i.e., longest) at SNRs 

493 for 30-50% speech recognition and better at both lower and higher SNRs. The change in the PPD 

494 function at positive SNRs when the percent-correct sentence recognition is saturated might be 

495 affected by the type of speech material used in the sentence recognition test. The transfer function 

496 of the speech intelligibility index is modifiable depending on the tested sentence material, and more 

497 difficult speech material can change the transfer function. Thus, the transfer function at positive 

498 SNRs might already be saturated for speech intelligibility index values that are not at the level of 

499 saturation. However, we designed this experiment to intentionally reach a ceiling in performance, 

500 although with very positive SNRs, a ceiling effect is achieved regardless of the presented speech 

501 material.

502 The statistical analysis revealed that the level of the SNR and the noise reduction scheme setting 

503 significantly affected the PPD. The impact of the masker type on the PPD was rather small, which 

504 might contrast with previous studies reporting that listening effort required for speech recognition is 

505 altered by the type of background masker (e.g., Koelewijn et al., 2012; Koelewijn et al., 2014). 
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506 Koelewijn and colleagues reported significantly larger pupil dilation responses for masker types 

507 containing speech information, and the increase in effort was mainly explained by the semantic 

508 inference with the target. However, Koelewijn and colleagues examined the impact of masker types 

509 on the PPD at similar intelligibility levels corresponding to 50% correct speech recognition. Therefore, 

510 comparisons between the PPDs of the different masker types were drawn at varying SNRs. Our data 

511 indicate that the PPDs are strongly affected by the SNRs, which is in line with the results of previous 

512 studies (Zekveld and Kramer, 2014; Ohlenforst et al., 2017). Hence, the differentiation between the 

513 effect of the SNR and masker type is not possible based on these aforementioned studies by 

514 Koelewijn and colleagues. Our results suggest that when examining the PPD across a range of 

515 intelligibility varying between 0 to 100%, a non-linear change in the PPD, with maximum PPDs 

516 occurring at approximately 50% recognition, could be observed independently of the masker type. 

517 Furthermore, the impact of the masker type might be less pronounced when testing fixed SNRs, 

518 which is in line with the results of previous work (see Wendt et al., 2018 in press).

519

520 One strength of the present study is the replication of previous findings, demonstrating the beneficial 

521 effect of a noise reduction scheme in hearing aids on sentence recognition and the PPD (Wendt et 

522 al., 2017). There were several factors that were kept constant between the setup of the recent study 

523 by Wendt and colleagues (2017) and the current study. In both studies, the same noise reduction 

524 scheme was tested during a sentence recognition task with identical stimulus material (HINT 

525 sentences in a 4-talker masker). Additionally, the large number of listeners (n=17) that participated in 

526 the study by Wendt et al., (2017) were used in the present study. Both studies contribute to the field 

527 of hearing research and listening effort by providing new valuable knowledge showing the possible 

528 benefits of a noise reduction scheme for hearing-impaired listeners wearing hearing aids. 
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530 5. Conclusion 

531 The present study demonstrates that a noise reduction scheme in commercial hearing aids can 

532 reduce the effort required during speech recognition in stationary noise and a 4-talker masker. With 

533 both maskers, the noise reduction processing resulted in a shift in the performance (sentence 

534 recognition) function toward lower (more challenging) SNRs, and a corresponding shift in the PPD 

535 function was observed. For the 4-talker masker, in addition to the speech recognition-related 

536 reduction in the PPD, a main effect of noise reduction processing on the PPD was observed, 

537 indicating that the cognitive processing load and some aspects of listening effort may be reduced 

538 independent of the SNR. These results also confirm previous findings by showing that for hearing-

539 impaired listeners using hearing aids during speech recognition, listening effort changes in a non-

540 monotonic way as a function of the SNR. This knowledge is essential for future research in the field of 

541 listening effort and the hearing aid industry for improving the development of better hearing aid 

542 algorithms.

543
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558 Appendix 

559

Table 1: Beta estimates of the sentence recognition performance scores and PPD at each SNR level show the 
mean differences between the inactive and active noise reduction scheme setting. The SNR levels are 
compared to the lowest SNR at -12 dB. 

SNRs [dB] compared to the 
reference SNR of -12 dB

-8 -4 0 +4 +8 +12 +16

Beta estimates of performance 
with the stationary noise masker 

-33.68 -40.57 -5.68 7.92 11.03 11.67 11.40

Beta estimates of performance 
with the 4-talker masker

-26.57 -46.05 -20.73 -4.07 4.57 4.40 5.97

Beta estimates of the PPD 
collapsed across stationary noise 
masker and 4-talker masker

-0.03 0.04 0.08 0.05 0.03 0.01 0.03
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716

717 Figure legends 

718 Fig. 1: Averaged pure tone hearing thresholds of the left and right ears across frequencies 

719 (125 Hz to 8 kHz) among the twenty-four hearing-impaired participants. Error bars show the standard 

720 deviations of the mean. 

721 Fig. 2: Spatial loudspeaker setup as used in Wendt et al., 2017. Target speech was presented 

722 from the front. Masker signals were presented at 90, 150, 210 and 270 degree azimuth. The 

723 stationary noise masker was presented as four individual point sources. For the four-talker masker, 

724 one single talker was presented from one loudspeaker each. 

725 Fig. 3: Peak pupil dilation (PPD) (black color) and percentage-correct sentence recognition 

726 scores (gray color) are shown on the right y-axis across the signal-to-noise ratios (SNRs) with the 

727 stationary masker and the noise reduction scheme turned on or off. Error bars represent the 

728 standard error of the mean. Dark gray diamonds at -12, -8, -4, 0 and +4 dB SNR represent significant 

729 differences in sentence recognition performance between the active and inactive noise reduction in 

730 the pairwise comparison at each SNR level (p<0.01).

731 Fig. 4: Peak pupil dilation (PPD) (black color) and the percentage of correct sentence 

732 recognition scores (gray color) are shown on the right y-axis across the signal-to-noise ratios (SNRs) 

733 with the 4-talker masker and noise reduction scheme on or off. Error bars represent the standard 

734 error of the mean. Dark gray diamonds at -8, -4, 0 and +4 dB SNR represent significant differences in 

735 sentence recognition performance between the active and inactive noise reduction in the pairwise 

736 comparison at each SNR level (p<0.01). 
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Fig. 1: Averaged pure tone hearing thresholds of the left and right ears across frequencies (125 Hz to 8 kHz) among 

the twenty-four hearing-impaired participants. Error bars show the standard deviations of the mean. 

 

 

 

Fig. 2: Spatial loudspeaker setup as used in Wendt et al., 2017. Target speech was presented from the front. Masker 

signals were presented at 90, 150, 210 and 270 degree azimuth. The stationary noise masker was presented as four 

individual point sources. For the four-talker masker, one single talker was presented from one loudspeaker each.  

 



 

Fig. 3: Peak pupil dilation (PPD) (black color) and percentage-correct sentence recognition scores (gray color) are 

shown on the right y-axis across the signal-to-noise ratios (SNRs) with the stationary masker and the noise reduction 

scheme turned on or off. Error bars represent the standard error of the mean. Dark gray diamonds at -12, -8, -4, 0 

and +4 dB SNR represent significant differences in sentence recognition performance between the active and 

inactive noise reduction in the pairwise comparison at each SNR level (p<0.01). 

 

 

 



 

Fig. 4: Peak pupil dilation (PPD) (black color) and the percentage of correct sentence recognition scores (gray color) 

are shown on the right y-axis across the signal-to-noise ratios (SNRs) with the 4-talker masker and noise reduction 

scheme on or off. Error bars represent the standard error of the mean. Dark gray diamonds at -8, -4, 0 and +4 dB SNR 

represent significant differences in sentence recognition performance between the active and inactive noise 

reduction in the pairwise comparison at each SNR level (p<0.01). 




