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Abstract—Data streams whose events occur at random arrival
times rather than at the regular, tick-tock intervals of traditional
time series are increasingly prevalent. Event series are continuous,
irregular and often highly sparse, differing greatly in nature to
the regularly sampled time series traditionally the concern of
hard sciences. As mass sets of such data have become more
common, so interest in predicting future events in them has
grown. Yet repurposing of traditional forecasting approaches
has proven ineffective, in part due to issues such as sparsity,
but often due to inapplicable underpinning assumptions such as
stationarity and ergodicity.

In this paper we derive a principled new approach to fore-
casting event series that avoids such assumptions, based upon:
1. the processing of event series datasets in order to produce a
parameterized mixture model of non-homogeneous Poisson pro-
cesses; and 2. application of a technique called parallel forecasting
that uses these processes’ rate functions to directly generate
accurate temporal predictions for new query realizations. This
approach uses forerunners of a stochastic process to shed light
on the distribution of future events, not for themselves, but for
realizations that subsequently follow in their footsteps.

I. INTRODUCTION

Data streams whose events occur at random arrival times
rather than at the regular, tick-tock intervals of traditional
time series are becoming increasingly prevalent. This is due
in no small part to the upsurge in human behavioural data
now being recorded in the form of transactional logs. Such
event series are continuous, irregular and often highly sparse,
and differ greatly in nature to the metronomic, regularly
sampled time series that have traditionally been the concern
of econometrics, engineering and the hard sciences. As mass
sets of event series have become increasingly commonplace,
so interest in predicting future events from them has also
grown. Application areas are diverse, and include: earthquake
forecasting [17], neural spike analysis [3], forecasting of health
episodes [15]; financial event prediction [4]; and finding the
limits of movement predictability [23], [22].

Unfortunately, while a huge amount of prior research has
been undertaken into forecasting time series, it has been shown
that event series do not generally avail themselves to the
field’s techniques [15], [6], [18]. Any attempt to use those
techniques by converting event series into a time-series format
(traditionally by aggregating event counts into temporal bins)
introduces either information loss or extreme sparsity. Both
situations severely impact on the predictive performance of

traditional predictive algorithms [26]. Worse still, when tradi-
tional techniques developed for time series (whether ARIMA
models or Markov chains) are applied to an event stream one
of their key underpinning assumptions is brought into doubt -
that the series contains enough structure within its own history
to facilitate robust prediction of its future. In order to hold,
such an assumption requires:
• Stationarity: the statistical properties of a process must not

change over time (or be transformable into that condition),
otherwise patterns that have occurred in the past will not
be robust predictors of the future.

• Ergodicity: the event series under consideration must con-
tain sufficient information to deduce all or the properties
of its generating process. If this does not hold, and the
realization only casts light on some small part of the
process’ underlying nature, statistical inference cannot be
confidently used to predict that process’ future events.

For most real-world event series, and especially those gen-
erated via human behaviour, satisfying these requirements
is unlikely: individual realizations are often too sparse and
irregular to assume ergodicity; and even if the process were
ergodic and we could observe a realization for sufficiently long
time, little real world behaviour is stationary.

This paper presents a principled new approach to forecasting
event series that avoids these assumptions. The technique
is based upon two key steps: 1. the processing of event
series datasets in order to produce a parameterized mixture
model of non-homogeneous stochastic point processes; and
2. application of a technique called parallel forecasting that
uses the discovered processes’ rate functions to generate
accurate temporal predictions for new query realizations. This
technique is tested via both synthetic and real world data,
comparing to a range of contemporary techniques.

II. PARALLEL FORECASTING OF POINT PROCESSES

The proposed model views a set of n event series real-
izations as having been generated from a mixture model of
Z non-stationary point processes (where Z < n), with each
individual process describing the probability that an event will
occur at timepoint, t. If we can correctly ascertain the nature
of those underlying processes, and subsequently classify a
query event series to its correct parent process, knowledge
of that process’ rate function can be leveraged in order to

Published in the Proceedings of the IEEE International Conference on Data Mining (ICDM 2016). c©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. IEEE Xplore DOI:
http://dx.doi.org/10.1109/ICDM.2016.0027

1



registration point 

0 1 2 3 4 5 6 7 8 9 10 11 

t=4 

t=6 

t=3 

A 

B 

C 

A 

B 

C 

0 1 2 3 4 5 6 7 8 
tREL 

tABS 

registration point forecast point 

forecast region t=6 

Z 

C 

0 1 2 3 4 5 6 7 8 
tREL 

Fig. 1. Illustration of Parallel Forecasting. Step 1 - here it’s recognised that event series
A and B (along with query series C) are generated by the same underlying process, Z,
but are asynchronous having begun that process at different absolute times. Step 2 shows
the commonalities more clearly via a registration process (the absolute time points of
A, B and Q are actually aligned at t = 4, t = 3 and t = 6 respectively). Step 3
shows how the stochastic model created from A and B extends past the endpoint of Q,
producing a labelled forecast region up to t = 8 in relative time.

estimate a distribution of the series’ future event times. From
analyzing this distribution we can then establish the most
likely timings of future events, and therefore start making
robust predictions - even when the query realization’s history
is itself sparse and/or simply contains insufficient information
to make accurate event forecasts on its own.

A. A non-stationary, non-ergodic model for sparse event series
As illustrated in Figure 1, this approach is only possible by

using forerunner realizations from a stochastic process to shed
light on the distribution of future events, not for themselves,
but for realizations that will subsequently follow in their
footsteps. Such a model no longer requires an individual time
series to be stationary - however, it does require realizations
generated from a similar generative process to have occurred
in the past. The approach also no longer requires ergodicity -
instead it relies on sufficient event series realizations generated
from the same process to have occurred in the past. Further,
treating event-series as samples of an overarching parent
process helps to ameliorate issues of sparsity in any individual
series. In an era of ‘Big Data’ we believe that 1. trading
ergodicity assumptions for a greater number of samples; and
2. dropping stationarity requirements by assuming instead that
individuals follow common patterns of time-lagged behaviour;
is a preferable situation in which to position a predictive
model.

B. Non-homogeneous Poisson processes

In our implementation we model the data as asynchronous
realizations of Non-homogeneous Poisson processes (NHPPs).
While other options exist, NHPP have a strong history in suc-
cessfully modelling the irregular and continuous characteristics
of event series. NHPP are stochastic in nature and underpinned
by a time-varying rate function, λ(t), that describes the
probability at time t that an event will occur. An NHPP is
also an example of a counting process which can be defined
by via the probability that the no. events occurring between
two timepoints (t1 and t2) will be some count, c:

P (N(t1, t2) = c) = e−Λ(t1,t2) Λ(t1, t2)c

c!
(1)

where: Λ(t1, t2) =

∫ t2

t1

λ(t)dt

Moreover, the assumption of event independence made by
NHPP allows us to easily treat multiple realizations in parallel.
Due to this, it will be shown in §V that it is possible to obtain
an optimal prediction, π, of the time until the next event, x,
for any event series we believe generated by the process.

NHPP have never previously been used in this fashion,
likely due to the fact that when NHPP are estimated from
a realization the resulting process is time bounded to that
realization’s endpoint - and thus cannot make predictions past
that time. Parallel forecasting frees us from this constraint to
a limited extent, allowing us to make predictions up to the
final timepoint of the longest item in a family of realizations.
Therefore, if we can accurately classify a new query realization
as also belonging to that family, and it is currently shorter than
that family’s longest realization, an informed prediction can be
made for its future event times. The more examples that exist,
the greater confidence we may have in those predictions.

III. RELATED WORK

While NHPP have not been used for direct forecasting of
event series, they have been used for other forms of predictive
tasks, such as predicting the shape of rate functions. Variations
of Poisson processes have long been used in domains such as
queueing theory, with call centre practitioners estimating a rate
function to provide a look-up of the expected call arrival rates
at different points in the day [9], [25]. Shen and Huang [19]
extended this notion, decomposing a set of daily rate functions
via SVD, treating the resulting vectors as multivariate time
series and applying traditional ARIMA models.

NHPP are of course not the only way to model non-
stationary event series. Alternative approaches generally fall
into two distinct classes. The first consists of Continuous Time
Markov Chain (CTMC) models and their extensions (e.g. [14],
[5]), which are an adaption of standard Markov Chains that
allow for transitions between states in continuous time. This
is achieved by replacing a Markov model’s state transition
probability matrix with an intensity matrix that jointly encodes
distributions of how long the system will stay in the current
state and the expected transition time to each potential new
one [16]. While CTMC more closely reflects the continuous,



irregular nature of event series than discrete time models, the
paradigm still focuses on state space transitions rather than
directly modelling the generative event processes themselves.

The second class of continuous time techniques differ in
that they do explicitly model sequences of event occurrences
in continuous time. These models include Poisson Networks
and Cascades [21], CT-NOR models [20], Gaussian-process-
modulated renewal process models [24], [10], Piecewise-
Constant Conditional Intensity Models (PCIMs) [7] and
Multiplicative-Forest Point Processes (MFPPs) [26]. Several
of these approaches achieve very effective results, but often at
the cost of being highly parameterized and requiring a priori
understanding of the process being modelled. For example,
[20], [21] propose a model in which each event triggers a new
mixture of Poisson process, trading parsimony for the ability to
reason about process interaction and at the cost of non-trivial
parametrisation of delay and transition distribution choice.

In a similar vein, both [24] and [10] propose the use of
Gaussian-Process-Modulated Renewal Processes. These as-
sume that the collection of rate functions (for an underlying
Poisson [24] or Gamma [10] process) across time are realised
as the interaction of a Gaussian process and a hazard func-
tion. This allows for certain non-stationary behaviours to be
modelled, but assumes that means and co-variances across
temporal instants follow a fixed functional form. Learning then
involves deducing the best coefficients for the functional form
one chooses. The difficulty of picking the correct function at
design time, and specifying which restrictions should be placed
on it (e.g. stationarity, or isotropicity) stands in contrast to the
broadly unparameterized nature of NHPP.

In terms of a parallel forecasting approach both [7] and
[26] represent the closest work to that presented here. Both of
these propose models designed for multi-event point processes,
based on a piecewise constant approximation of the process’
rate function. Each piecewise segment is represented by a
conditional intensity model in which the probability of a given
rate is conditioned on the existence or absence of events
within a set of lagged historical windows. Prediction occurs by
building a decision tree reflecting the conditional relationships
between each of these windows. PCIMs [7] use manually
specified and problem specific windows, whereas MFPPs [26]
extend this approach by learning intensities conditional on
a more complex set of interactions between those windows.
Importantly both PCIM and MFPP are non-parametric, were
designed specifically for forecasting and, having achieved best
reported results in the literature, will be used as the prime basis
for comparison to our proposed model.

IV. MODEL
The model we present is a new next-step prediction tech-

nique made possible through derivation of a mixture model
of aligned point processes. Given a set of historical event
series T = {−→t 1,

−→
t 2, . . . ,

−→
t m}, the model assumes that each

realization,
−→
t i = 〈ti1, ti2, . . . , tij〉, was generated from one

of Z parent NHPP processes. As detailed in §II-B, each of
these processes is characterized by a time-varying rate function

λz(t). From this rate function, for each process we can derive
a cumulative density function, F sz (x), that describes the times
we expect to wait from some given point s for a new event to
occur (see Appendix A for a proof):

F sz (x) = 1− e−Λz(s,s+x) (2)

where: Λz(s, s+ x) =

∫ s+x

s

λz(t)dt

This cdf will be useful for prediction, but it also allows us to
derive a joint probability density function, gz(

−→
t ), describing

the probability of any specific series of event times being
produced by the process (see Appendix C for a full proof):

gz(
−→
t |τ) = e−Λz(0,τ)

n∏
j=1

λz(tj) (3)

For each process the mixture model takes this pdf, and assigns
it a ‘mixing’ probability, pz , reflecting the chance that any
event series in the historical dataset T was drawn from it.
Thus the likelihood function for the model as a whole is:

L(θ|T ) =

m∏
i=1

Z∑
z=1

pz gz(
−→
ti ) (4)

Here θ = (
−→
λ ,−→p ) represents the model’s parameters and cor-

respond to the processes’ rate functions 〈λ1, λ2, . . . , λZ〉 and
mixing probabilities 〈p1, p2, . . . , pZ〉 respectively. A variety
of ad-hoc algorithms might be used to cluster realizations
into groups and then estimate characteristics of assumed
parent processes. Instead, we present a principled method for
estimating the set of parent rate functions via expectation
maximisation, followed by a technique to directly predict
future events in query event series from the model.

A. Constructing the Rate Functions

The flexibility of this NHPP-based model lies in the fact
that each λz(t) can be a function of any form. In practice we
must build these from some combination of basis functions.
Here numerous options exist, such as linear combinations
of polynomials, Fourier series or exponentials. In our case,
we model λ(t) as the sum of K weighted Gaussian bases,
{B1, B2, ...BK}, all with unit area and identical variances,
but with means spread uniformly between 0 and endpoint τ :

λz(t) =

K∑
k=1

azk Bk(t) (5)

where: Bk(t) =
1

σ
√

2π
e−(x−µk)2/2σ2

and: µk =
(k − 1) τ

K − 1
, σ = τ/k

Note that it is only the weightings, azk, that vary between
processes. It would also be possible to allow means and
variances to vary as hyperparameters of the model, and allow
even more flexibility in rate function construction - but this
is currently left for future work due to the additional com-
putational load it would require during optimization. K was



uniformly set to 120 to ensure over-saturation of the temporal
domain in our experiments (resulting in numerous azk = 0)
and thus rendering the model parameterless outside of Z.

B. Expectation Maximization
With these building blocks, we now show how the model’s

parent processes can be found via EM. This requires estima-
tion of the parameters in θ, which in our case distills to finding
the weights attributed to each of the Z rate function’s set of
k Gaussian bases, azk. Recall from equation 4 that:

L(θ|T ) =

m∏
i=1

Z∑
z=1

pz g(
−→
ti |λz(t))

=

m∏
i=1

Z∑
z=1

pz e
−Λz(0,τ)

n∏
j=1

λz(tij) (6)

Given this Likelihood function, maximum likelihood es-
timates for each of the Z rate functions can be found by
iteratively solving the EM algorithm’s expectation and max-
imisation steps (note we indicate the current iteration by the
superscript, r). Beginning with an initial estimate for θ:

Expectation Step: Given the current value for the parameters,
θr, this step computes the probability that each event series,−→
ti , came from each of the parent processes. For the first
iteration, these individual probabilities, przi, are calculated as:

przi =
e−Λz(0,τ)

∏n
j=1 λz(tij)∑Z

q=1 e
−Λq(0,τ)

∏n
j=1 λq(tij)

(7)

Maximization Step: With these probabilities in hand, new
estimates are obtained for the parameters, θr+1, by solving:

θr+1 = argmax
θ

( m∑
i=1

Z∑
z=1

piz ln

(
pz e

−Λz(0,τ)
n∏
j=1

λz(tij)

))
In practice, this involves solving a concave maximization
problem with respect to the set of basis Gaussian functions
through substituting in equation 5. We therefore maximize1:

m∑
i=1

Z∑
z=1

priz

(
ln pz − Λz(0, τ) +

n∑
j=1

ln

K∑
k=1

azk Bk(t)

)
(8)

Finally updates for the aggregate mixing probabilities, pz ,
are calculated by simply averaging all of the individual mem-
bership probabilities, as follows:

pr+1
z =

∑m
i=1 p

r
iz

n
(9)

This whole process then iterates, halting after a specified
number of iterations or until convergence. When complete,
we are left with final estimates for each weighting, azk, and
hence the final form of each parent NHPP’s rate function.
Since the process we use to model rate functions currently uses
fixed parameters and we oversaturate the number of Gaussian
components required, the model has a single hyperparameter
- the number of parent processes, Z.

1In our implementation we negate equation 8 and use the python
scipy.optimize.minimize() function to perform this optimization step.

V. MAKING PREDICTIONS

In order to predict the next event in an event series,
−→
t ,

we must first assign it to one of our derived model’s parent
processes. To do this we simply determine which rate function
has the highest (log) likelihood of producing the series:

argmax
z∈{1,2,...,Z}

ln gz(
−→
t ) (10)

Hence, for NHPP, we substitute in equation 3 to obtain:

ln gz(
−→
t ) = ln

e−Λz(0,τ)
n∏
j=1

λz(tj)


= −

∫ τ

0

λz(t)dt+

n∑
j=1

lnλz(tij) (11)

By substituting in the Gaussian bases from equation 5, the
final function calculated for each of the Z candidate process
in order to determine an optimal classification is:∫ τ

0

K∑
k=1

azk Bk(t)dt+

n∑
j=1

ln

( K∑
k=1

azk Bk(tij)

)
(12)

Note that it is at this point that classification of an event
series could incorporate temporal alignment. Currently, how-
ever, we restrict ourselves to situations where alignment is
easily performed in the data pre-processing stage (such as
when constructing daily event sequences), and solve equation
12 directly. Incorporation of temporal alignment during model
construction/classification is left as future work.

A. Predicting Time until the Next Event
Once a new event series has been classified, if it is shorter

than the parent process to which it has been assigned, it is then
possible to use that process to predict the series’ next event.
For this prediction, π, we use the median of the pdf of wait
times, fsz (x), to the process’ endpoint (which is preferred to
the mean of the pdf due to its mathematical properties). This
occurs when its cdf, F sz (π) = 1

2 . From equation 2:

F sz (π) = 1− e−Λz(s,s+π) =
1

2
Λz(s, s+ π1)− ln(2) = 0 (13)

Because we are modelling the rate function via weighted
Gaussian bases, we again substitute in equation 5 to yield:

K∑
k=1

∫ s+π

s

azkBk(π)dt− ln(2) = 0

By performing the integration, we arrive at the final equation
we need to solve to produce our prediction:
K∑
k=1

azk
2

[
erf
(
s+ π − µk√

2σk

)
− erf

(
s− µk√

2σk

)]
− ln(2) = 0

(14)

Importantly, given that the means, variances and the weighting
parameters, azk have already been estimated in the model
training stage, π is left as our only free variable so a solution
can be found in rapid time again using a numerical solver.



VI. IMPLEMENTATION & EXPERIMENTS

Experiments were performed on both synthetic and real
world data, with comparison made to the predictors below2.

Baseline predictors:
Global Mean Predictor (GMP): A baseline scalar predictor

that forecasts time to next event as the mean gap between
events across the whole training dataset.

Individual Mean Predictor (IMP): A predictor that, given
timepoint s, forecasts time to next event as the mean gap
between events in the event-series’ history (therefore treating
the query as an independent constant Poisson process).

Local Mean Predictor (LMP): This predictor works by cal-
culating the mean time until next event from time s from all
realizations in the training set extending past that point.

State-of-the-art predictors:
K-Nearest Trajectories (KNTP): Predictor that returns

mean time until next event following time-point s across
the k nearest realizations (via sub-sequence Dynamic Time
Warping). In common use in the literature via [12], [8].

Piecewise-Constant Intensity Model (PCIM): This predic-
tor treats the dataset as stemming from a hierarchical set
of component piecewise constant rate functions, whose con-
ditional relationships are modelled via a regression tree [7].
Prediction is made by simulating a series of realizations after
s, and taking the median of first events occurring.

Multiplicative Forest Point Process (MFPP): An extension
of PCIM prediction that applies theory in multiplicative
forest continuous-time Bayesian networks. MFPP simulates
using regression forests rather than single trees, for which
evidence of improved results has been shown [26].

NHPP-based predictors:
Parallel Global Mean Predictor (P-GMP): Given the Z

parent NHPPs whose rate functions have been established via
EM (as detailed in §IV-B), a query realization is allocated to
its most likely parent class but prediction then made simply
using the mean inter-event gap for members of that class.

Parallel Local Mean Predictor (P-LMP): As above, but
once the query is then classified, prediction is made using
the mean next-event time after s for members of that class.

Parallel NHPP Predictor (P-NPP): Our proposed approach.
Functions as above, but with prediction being made through
direct integration of the assigned class’ rate function follow-
ing s (as detailed in §V). This returns the parent process’
median next-event time as a prediction.

Global and individual baselines were selected in order to
contrast behaviour of parallel predictors against extremes. We
did not convert event series into time series via binning in
order to apply traditional forecasting algorithms given the
reported lack of effectiveness of this approach [15], [6], [18].
State-of-the art predictors were selected for comparison as
discussed in the related work section.

2Python implementation code for all predictors and experiments is available
at the paper’s accompanying website, which can be found at ¡removed¿

Fig. 2. Synthetic Non-stationary rate functions. Fitted models (dotted) illustrate 1. the
approach’s ability to model both sharp and gradual rate changes; and 2. how numerous
sparse event series can combine to produce a fuller picture of underlying motivations.

A. Synthetic Data

Synthetic datasets are used to first evaluate the mechanisms
separating event series into Z classes (clustering) and to map
new event processes to a given set of underlying processes
(classification) are independently evaluated. Synthetic event
series are generated from 4 families of non-stationary rate
functions: piecewise Poisson; ascending piecewise linear; de-
scending piecewise linear; and sinusoidal, as illustrated in



Figure 2. Each function was constrained so that for a fixed
observation window τw = 20 all had an identical integral
Λ(t) = 100 and therefore produce a similar expected number
of events. This precluded the danger that each event series
could be trivially distinguished via length. Each rate function
was used to generate m observations via thinning [11] running
the process up to a cut-off time-point, τ .

Classification performance: This was tested via a process
of random re-sampling. In each iteration a training set of
m = [10, 200] event series was simulated for each class
using its whole rate function. These were used to produce
an estimate of the class’ generating rate function (examples
of these estimates for m = 100 are illustrated in Figure 2).
A further 100 event series were then produced for each class
limited to a fixed timepoint τ ) and combined to create a test
set, T . Each element in T was then classified via equation 12,
and the average classification accuracy recorded. This process
was then repeated with a different value for τ = [1..20] (and
hence a different average no. of events in each series, m̄),
iterating the whole process 50 times for each value. Extremely
high results were observed, as illustrated in Figure 3. First, it
can be seen that once the training set had reached 25 event
series performance became highly consistent (and broadly
independent of increasing the model size). As one would
expect as test series became longer they also became easier
to classify. However accuracy improved extremely rapidly and
by the time τ = 5 (with an average of 25 events in each series)
90% accuracy was already being achieved across the board,
increasing to 97% by τ = 10.
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Fig. 3. Classification performance using the 4 synthetic datasets detailed in Figure 2,
varying no. realizations generated from each rate function (m) and sparsity/series length
as defined by the end time-point of the process (τ ).

Clustering performance: Again the full rate function was
used to generate a fixed number of event series, m = [10, 200],
for each class, combining these to form dataset, T . This dataset
was then clustered into 4 classes using the unsupervised
method described in §IV-B. The purity [1] of those classes
was then recorded, with the whole process being iterated 50
times in order to come up with a mean purity score for that
value of m. The experiment was then repeated for different
dataset sizes. The results of this analysis are illustrated in
Figure 4. Results were highly encouraging, with the clusters
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Fig. 4. Clustering performance as measured by the purity of the 4 clusters retrieved,
varying dataset size and end-points (τ ) of the realizations simulated in equal numbers
from the four parent processes in Figure 2. 90% accuracy is achieved by the time τ = 10
and 98% accuracy is achieved by τ = 15.

retrieved having a 90% correspondence to the ground truth
even with relatively sparse event series (at τ = 10). By the
time τ = 15 there was 98% purity across the board, with this
score continuing to increase the more of the rate function used.
Any effect due to the size of the dataset being clustered is only
observable at lower series length (i.e. τ < 10), where increased
numbers of realizations lead to more errors occurring.

Next-event prediction: Finally, we tested the predictive
strength of our approach versus the other candidate predictors
using a regime of random re-sampling tests3. In each iteration
100 event series were simulated from each of the four parent
processes (using their full rate functions). Labels denoting
the generating process were removed from the realizations
before combining them into a training set of 400 event series.
To prepare for parallel prediction a model was then created
using the unsupervised clustering approach detailed in §IV-B
assuming k = 4, with a rate function being estimated for each
cluster as described in §IV-A.

For each iteration, a test set of 200 series was simulated
(again containing an equal number of realizations from each
parent process, but with each having a randomized final time-
point, τ = [5, 15], in order to reflect the radically different
lengths of event series expected in real data). Prediction
accuracies were assessed by removing each test realizations
final event time, tm, and using each candidate predictor to
forecast that ‘next event’ time given the remaining event
history, 〈t1, t2, . . . , tm−1〉. Each predictor’s mean error was
then recorded, and the whole process then repeated 100 times
using a different random seed.

Final results are reported Table I with box-plots illustrated
in Figure 5. As can be seen, the P-NPP predictor performed
extremely well, improving on all other candidates to a statis-
tically significant level (Bonferroni adjusted t-test, p < 0.05).
Performances of PCIM and MFPP were still surprisingly good,
if inseparable from each other and the best KNTP predictor,

3This test procedure is designed to account for training set variance and
maximise replicability, as per the prescription in [13], corroborated in [2].



IMP GMP P-GMP LMP KNTP P-LMP PCIM MFPP P-NPP
0.14107 0.13209 0.12934 0.15590 0.12491 0.13503 0.12263 0.12264 0.11669

TABLE I
MEAN ERROR RESULTS FOR EACH OF THE 9 NEXT-EVENT PREDICTORS ON SYNTHETIC DATASETS.

IMP GMP P-GMP LMP KNTP P-LMP PCIM MFPP P-NPP4
0.18082 0.15508 0.15627 0.13269 0.12492 0.13023 0.12492 0.12498 0.11663

TABLE II
MEAN ERROR RESULTS FOR EACH OF THE 9 NEXT-EVENT PREDICTORS ON A&E EMERGENCY DATASET. HERE P-NPP SCORES REFLECT A 4-PROCESS ASSUMPTION.

for which numerous neighbourhood sizes were attempted
(k = {1, 5, 10, 15, 25, 50, 100} - we report scores for the most
effective, which was 25). Given the nature of the synthetic
data the success of the parallel NHPP approach is somewhat
to be expected, but does highlight: 1. the effectiveness of
our technique when the underlying data can be assumed to
have been produced by a non-stationary independent process;
and 2. that parallel forecasting is preferable to both global
and individual prediction when data are likely generated from
multiple underlying processes.

IMP GMP P-GMP LMP KNTP P-LMP PCIM MFPP P-NPP
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Fig. 5. Next-event prediction results, illustrating performance on synthetic data sets.

B. Accident and Emergency Data

Effectiveness of the predictors was also tested on real world
datasets, for which we use two examples. The first dataset
analysed is extracted from event logs of patient arrivals at
Accident and Emergency (A&E) departments across the UK.
Among numerous labels, each patient arrival is attributed a
date, time and a diagnosis code. These allowed us to extract
1460 daily event series (all representing a 24 hour period
starting at 12.00am) from the period 1st Jan 2013 to 31st
Dec 2014. Each of these daily series corresponds to the
arrival of patients at any of the UK’s five busiest A&E
departments4 for one of 4 distinct emergency conditions -
respiratory illness, lacerations, gastrointestinal conditions and
sprain/ligament injuries5.

Forecasting performance for each predictor was tested by a
series of random resampling tests. In each of the 50 iterations

4QMC (Nottingham), New University College (London), Frimley Park
(Surrey), Queen’s (London) and Queen Elizabeth (Birmingham).

5This dataset is available on request from http://www.hscic.gov.uk/dars.

performed 400 series were sampled with 80% of that data
used for training the predictors and 20% for testing their
performance. Each event series in the test set was curtailed
at a random point in the day, and a forecast made using
each predictor as to the time of the next event following
that point. As with the synthetic datasets, KNTP was tested
with neighbourhood ranges of k = {1, 5, 10, 15, 25, 50, 100}.
Equally, with there being no ‘ground truth’ as to the correct
natural number of underlying processes at work, a range of
z = [1, 15] was considered during cross validation for P-NPP.

Results are illustrated in the boxplot in Figure 6, and to
some extent echo the performance of the predictors on the
synthetic datasets. Baseline methods of IMP and GMP both
perform relatively poorly, as expected. LMP however delivers
much better performance than on the synthetic data, and in its
KNTP form (with k = 10) performs almost as well as PCIM
and MFPP.

P-NPP, however, again achieved strongest performance
scores. Table II reports the performance when using 4 pro-
cesses, which reflects an informed guess given the 4 conditions
featured in the dataset. This resulted in a prediction error
of 0.1166 for P-NPP4 in comparison to 0.1250 for MFPP.
This represents a statistically significant improvement using
a Bonferroni-corrected paired t-test (p < 0.05), but more
importantly an improvement in the prediction of the next
patients arrival by 12.1 minutes.

The rate functions recognized by the four process P-NPP
predictor are visualized in Figure 7 and it was interesting
to note that three of the rate functions often corresponded
to specific conditions. Rate A predominantly reflected sprains
which have a major influx at 9am and tail off throughout the
day. Rate C connects with empirical observation of gastro-
intestinal conditions which occur more frequently than other
illnesses at night, but remain relatively flat throughout the day.
Rate D also showed a strong correspondence with laceration
attendances, which have a slightly lower daily incidence.
However, the remaining condition, respiratory illnesses had
little to no correspondence with the trend found in Rate B.

The suspicion therefore was that 4 was not the optimal
number of processes, and variation in other factors (e.g.
day of the week, month, temperature, etc.) influenced the
true underlying processes. During training, cross validation
of the hyper-parameter Z identified 7 as the most common
no. of processes settled upon, overall reducing mean error
to 0.115 (reflecting a further 2.3 minute mean improvement
in prediction accuracy). Figure 8 illustrates the resulting rate
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Fig. 6. Performance of each of the 9 predictors on the A&E events dataset, measured
in days (n.b. P-NPP results are for 4 processes being assumed).
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Fig. 7. Rate functions as determined and then used by the P-NPP4 predictor, reflecting
the different daily temporal event patterns of different illnesses.
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Fig. 8. Rate functions as determined by the P-NPP predictor using 7 processes.

functions when we directly set Z = 7 - the miscellaneous
function from P-NPP4 results has now disappeared, replaced
by rates that reveal spikes for injuries in the late hours of the
weekends (which one might attribute to social behaviours over
those periods).

C. Retail Customer Data

Our second dataset contains household level transactions
over two years from a group of 2,500 households who are
frequent shoppers at an anonymous retailer, collected over a 2
year period 6. For our experiments we extracted event series
covering a 3 month period for 500 anonymous households
(beginning at day 100 and filtering out series with less than 5
events, to ensure all households were active over the period).
Testing occurred in exactly the same manner as per §VI-B. For
the retail dataset the optimal neighbourhood size for KNTP
was 4, and the number of underlying processes used by the
P-NPP predictor predominantly occurred when Z = 5 during
the testing procedure.

Results were again encouraging (see Figure 9 and Table
III), with P-NPP achieving improved performance over PCIM
based-approaches. However, in this case its predictive accuracy
was inseparable from using a KNTP predictor (both achieving
a mean improvement in predicting a customer’s next visit
of ≈9.15 hours over using the global average GMP). An
advantage of P-NPP, however, is that the underlying patterns of
behaviour it reveals can also be used for descriptive purposes
- these are illustrated in Figure 10 and highlight that while one
group of customers are characterized by their higher intensity
(Rate C, featuring customers who visited a mean of ≈29
times), there are distinct group behaviours for both medium
frequency (Rates D/E, with a mean of ≈11 visits) and low
frequency households (Rates A/B, with a mean of ≈6.5 visits).

VII. DISCUSSION & CONCLUSIONS

Experimental results for the parallel NHPP technique de-
rived in this paper show high performance, demonstrating
the potential of the approach and suggesting that event series
forecasting may well be best viewed as a distinct predictive
task, rather than being conflated within time-series research. In
particular, the sparsity inherent to most event series means that
the sharing of cross-realization structural information may be
a particularly valuable area of ongoing investigation (indicated
by the strong results for both KNTP and P-NPP predictors).
The real value of ‘Big Data’ may well lie not in the statistical
significance it provides, but in the fact that we no longer
need to rely on assumptions of stationarity or ergodicity to
make predictions. Instead we can begin to piece together
the statistical properties of underlying behavioural processes
through principled recombination of mass sets of individual
realizations - or ‘small data’ which can happily be sparse
individually.

A parallel NHPP approach will work most effectively on
datasets which have stemmed from distinct, separable classes
of behaviour rather than a continuum (in which a case a
local neighbourhood approach would be more advantageous).
P-NPP proved most effective on the health data, given the
distinct causes for A&E attendance and differing behaviours
at weekends compared to weekdays. The higher variation of

6The raw data is publicly available as ”The Complete Journey” dataset from
https://www.dunnhumby.com/sourcefiles



IMP GMP P-GMP LMP KNTP P-LMP PCIM MFPP P-NPP4
1.91014 1.90108 1.86326 1.73295 1.52008 1.60209 1.75941 1.75712 1.52494

TABLE III
MEAN ERROR RESULTS FOR EACH OF THE 9 NEXT-EVENT PREDICTORS ON THE RETAIL DATASET.
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Fig. 9. Next-event prediction results, illustrating performance of each of the 9 predictors
on the Retail dataset.
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Fig. 10. Processes reflecting different household shopping habits over two months
(each x-axis tick representing one day), exhibiting strong periodical behaviour.

behaviours inherent to household shopping mean that a local
approach was also effective - however, P-NPP is also disad-
vantaged by the high-frequency cyclical behaviours exhibited.
While it can cope with stark changes in intensity rates (as
demonstrated by the synthetic datasets), the fact that we model
rate functions using a fixed number of Gaussian bases meant
the approach is more amenable to modelling smooth rate
functions such as those in the health data. As mentioned in
§IV-A, however, alternative bases for the rate function and/or
alternate process models are possible under the framework,
providing the potential for future work to provide formulations
that better suit datasets with such properties.

One attractive feature of the proposed technique (that be-
came apparent during experimental runs) is its lack of reliance
on simulation - direct use of the rate function’s integral
provided a computational advantage over PCIM and MFPP. A
further extension lies in deriving formulae not only for the next
step distribution, W1(s), but for further steps ahead, Wx(s),
in the same manner as described in Appendix A. This would
allow direct prediction of events further into the future, without

having to turn to iterated predictions (which are thought only
to be stable for short term forecasts [12]).

Limitations certainly exist - use of Gaussian bases means
predictions cannot be made past the endpoint of the longest

−→
t

(alternative bases such as Fourier series may offer a solution
here). Further, the independence assumption made by NHPP
may lead the technique to be less effective in modelling
bursty data streams (e.g. email generation). Again, however,
the exploration of other process models within the parallel
prediction framework better suited to cope with inter-event
dependencies may remedy this situation. Finally the flexibility
NHPPs offer may come at the cost of greater requirements on
size of training dataset. While this requires more investigation,
we note pressure here would be placed on the number of event-
series in T and not the density of any individual event series.

In this paper we have presented a new technique for event
series prediction, deriving a new estimation process for parallel
NHPP mixture model based on expectation maximization,
before layering upon it a novel parallel forecasting technique.
The applicability and effectiveness of this technique was
demonstrated on both real world and synthetic datasets. There
is much scope for further development - in particular the
process of aligning asynchronous series within that mixture
modelling task deserves further investigation.
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APPENDIX

Given a set of event series X = {−→x 1,
−→x 2, . . . ,

−→xm}, where
each realization is made up of a vector of inter-event ‘gaps’,
−→x i = 〈xi1, xi2, . . . , xij〉, the first tools our model requires
are density functions for event occurrences. Point processes
have two key attributes that aid in this task: the number of
events, N(t1, t2), the process generates within the time interval
(t1, t2]; and the waiting time, Wn(t), until the next n events
occur, following time t. There is a direct relationship between
these two random variables: ifWn(t) > x then at time (t+x)
we must still be waiting for the nth event to occur. Hence:

P (Wn(t) > x) = P (N(t, t+ x) < n)

[A] Next-Event CDF: Given an event has occurred at time s,
this allows us to define the cumulative density function (cdf),
F s(x), for the wait time until the next event occurs, W1(s):

F s(x) = 1− P (N(s, s+ x) = 0)

For an NHPP, at time-point s, the probability that after period,
x, no more events will have occurred is given by:

P (N(s, s+ x) = 0) = e−Λ(s,s+x) Λ(s, s+ x)0

0!
= e−Λ(s,s+x)



Hence the cdf for an NHPP is:

F s(x) = 1− e−Λ(s,s+x) (15)

[B] Next-Event Gap PDF: The probability density function
for time of next event given we are time-point s, can then be
found by differentiating the cdf given in equation 15:

fs(x) =
d

dt

(
F s(x)

)
=

d

dt

(
1− P

(
N(s, s+ x) = 0

))
For NHPP we find this pdf by differentiating equation 2:

fs(x) =
d

dx

(
1− e−Λ(s,s+x)

)
= λ(s+ x)e−Λ(s,s+x) (16)

[C] Event-Times Joint PDF: In order to find the MLE for
an NHPP it is easier to use the pdf of event times, g(ti),
rather than of inter-event gaps, fs(t). A natural accompanying
representation to X , is therefore to cast −→xi , as an ordered series
of time points (where each t is the sum of inter-event gaps that
preceded it):

−→
ti = 〈ti1, . . . , tin〉 where tij =

∑
k≤j

xik.

This translates the items in X , into their event-time equiva-
lents, T , with no information loss. For NHPP every inter-event
gap is independent, so if we see an event at time s, then the
distribution for the next event time, gs(t), is identical to the
distribution of inter-event times, fs(x), where t = s+ x:

gs(t) = fs(t− s)

Because NHPPs possess the Markov property, this relationship
provides a way of describing the distribution of the jth time
point in the process. If we let t0 = 0:

g(tj) = ftj−1
(tj − tj−1) = λ(tj) e

−Λ(tj−1,tj)

A joint probability distribution for a set of time-points is then:

g(
−→
t ) = g(t1, t2, . . . , tn) =

n∏
j=1

g(tj) = e−Λ(0,tn)
n∏
j=1

λ(tj)

One final step remains - if our point processes were generated
by cutting off at some specified time, τ , then we also need to
account for the lack of new events between tn and τ . Now:

P (N(tn, τ) = 0) = e−Λ(tn,τ)

Therefore, the joint pdf given this cut-off time is:

g(
−→
t |τ) = g(

−→
t ) P (N(tn, τ) = 0)

= e−Λ(0,τ)
n∏
j=1

λ(tj) (17)

———————————————————————-
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