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SUMMARY
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A previous survey of enterococci had identified five strains of 

Streptococcus faecalis (K55 and SB94) - two subspecies liquefaciens 

(K60 and K 8 8 ) and one zymogenes (K87) - and two S. faecium strains 

(K46 and SB69) which were resistant to tetracycline and streptomycin but 

susceptible to gentamicin. All the S. faecalis strains and K46 were in 

addition resistant to erythromycin but only the ^  faecium strains were 

penicillin and ampicillin resistant.

The minimal inhibitory concentrations of a further six antibiotics 

were determined. These values confirmed that in S. faecalis strains, 

erythromycin resistance was accompanied by resistance to lincomycin and 

pristinamycin lA, a phenotype typical of macrolide - lincosamide - 

streptogramin B - type (MLS) antibiotics resistance. The erythromycin 

resistant K46 however, although resistant to lincomycin, was pristina­

mycin susceptible and so the basis of resistance is unknown. ^  faecalis 

K60, K87 and SB94 were resistant to kanamycin and neomycin as was 

S . faecium K46 but all strains were susceptible to spectinomycin. The 

phenotypes were consistent with resistance mediated by enzymic modification 

of streptomycin with adenyltransferase (6 ) and of kanamycin and neomycin 

with phosphotransferase (3*) (5")-III.

Erythromycin and tetracycline resistances were expressed constitutively 

in all strains. Only one Sj_ faecalis (K8 8 ) was found to be chloramphenicol 

resistant and as is typical of Gram-positive bacteria, resistance was 

inducible.

The ability to produce bacteriocin was restricted to 3“haemolytic 

strain K87 and to strain SB94. Subsequent results indicated that strain 

KB7 probably produced more than one bacteriocin, the activity of which was 

repressed in the parental strain but which, in derivatives, could be
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enhanced by the presence of streptomycin.

Evidence for the location of resistance, haemolysin and bacteriocin 

genes was sought from study of the transfer characteristics and stability 

of markers and from examination of the plasmid content of parental strains 

and their derivatives. The well characterised ^  faecalis subspecies 

zymogenes strain DS5 (Clewell et al., 1982b) was included for comparison 

in transfer and curing experiments.

All the S_̂  faecalis strains aggregated in response to a cell free 

filtrate of a plasmid free recipient strain JH2-1, indicating the presence 

of at least one conjugative plasmid although the low transfer frequencies 

of most resistance genes in broth matings suggested that response was not 

necessarily encoded by antibiotic resistance plasmids. Transfer of g- 

haemolytic activity and all resistance markers was observed after broth 

matings but the range of transfer frequencies between strains was wide. 

Furthermore, the incidence of transfer could be variable particularly in 

the transfer of DS5 erythromycin resistance and all K87 antibiotic 

resistances which seemed to be dependent on the production of active donor 

bacteriocin. Matings of ^  faecalis strains carried out on membrane 

filters were only marginally more efficient in terms of transfer frequen­

cies but were superior with regard to reproducibility of transfer. No 

antibiotic resistance transfer from ^  faecium donors was observed after

broth matings and only SB69 tetracycline resistance transferred after 

filter mating at very low frequency. Several resistance determinants and 

those encoding g-haemolysin were found to be capable of retransfer indicat­

ive of association with genes specifying conjugative ability.

Analysis of transconjugant phenotypes revealed that the tetracycline 

resistance gene of K55, the streptomycin resistance gene of K 88 and g-
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haemolytic activities were always transferred alone but some resistance 

markers were usually co-transferred with other donor markers.

Conversely, transconjugants of K60, K87 and SB94 matings selected on 

any aminoglycoside were always co-resistant to the other aminoglycosides 

and to erythromycin while transfer of K 88 chloramphenicol and, probably, 

erythromycin resistances required simultaneous transfer of tetracycline 

resistance.

The stability of antibiotic resistance and g-haemolytic activity was 

tested after storage for 10 to 12 months or treatment with novobiocin. 

Unlike the situation after resistance transfer, although aminoglycoside 

resistances of K60, K87 and SB94 were lost simultaneously, concomitant 

susceptibility to erythromycin was not necessarily observed. Extremely 

high frequency loss of haemolytic activity, as high as 96% in DS5, was 

obtained but tetracycline resistance was eliminated from strain SB94 only. 

Penicillin and ampicillin were never eliminated from faecium strains.

Several methods of plasmid isolation were carried out and the most 

effective for the strains in this study, was found to be that of Dunny 

et ad. (1981b). Nevertheless, plasmid DNA was always extremely difficult 

to isolate from strains K60 and K46 and was never observed in samples from 

strain SB69. It was assumed that in the latter strain, resistance was 

determined by the chromosome, tetracycline being transferred as a conju­

gative transposon. Including possible linear chromosomal DNA, the 

remaining strains contained between 4 and 6 bands in agarose gels ranging 

in size from 5 to 60kb. However, attempts to correlate the bands observed 

in transconjugants and cured derivatives with the strain phenotypes were 

unsuccessful as often there appeared to be no difference in the plasmid
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content of strains with different phenotypes.

To aid interpretation, DNA samples were digested with restriction 

endonucleases EcoRl and Pstl and several plasmid species were identified. 

Strain K55 contains a conjugative plasmid pSK552 of approximately 24kb 

encoding MLS resistance and a large conjugative plasmid pSK551 which 

could be responsible for the pheromone response of K55 and, although 

probably cryptic, may specify tetracycline resistance. In transconju­

gants and cured derivatives of K60, the MLS determinant is most likely 

located on a conjugative 6 8kb plasmid, pSK601, which specifies pheromone 

response, and a tetracycline resistance gene on a 47kb plasmid, pSK602, 

which is non-conjugative but which can be efficiently mobilised. Strain 

K87 appears to harbour two conjugative plasmids encoding haemolysin- 

bacteriocin and possibly another specifying a different bacteriocin.

In addition, two small, cryptic, non-conjugative plasmids, pSK871 and 

pSK872 were identified as were plasmids with similar characteristics to 

pSK871 in strain K88 (pSK881) and SB94 (pSK941). In strain K88 a plasmid 

of 23.5kb, pSK882, probably specifies tetracycline resistance and is 

capable of transfer but only on membrane filters.

Although transfer and curing data may have implied plasmid encoded 

resistance in many cases, with the above exceptions, the locations of 

the remaining determinants are speculative.
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INTRODUCTION



THE GENUS STREPTOCOCCUS

Streptococci are Gram-positive spherical or ovoid cells which form 
pairs or chains in broth culture. They are non-motile, facultative anaerobic 
bacteria and, on exposure to air, grow readily at 37°C on complex media 

containing fermentable carbohydrate.

A general classification of the streptococci was provided by Sherman 

(1937), with minor modifications by Parker (1983). Members of the pyogenic 

'’group, which includes many human and animal pathogens, usually produce an '4

extracellular enzyme which lyses red blood cells and consequently, colonies 

on blood agar medium are characteristically surrounded by a clear zone in which 
erythrocytes have been completely lysed due to 3~haemolysis. Unlike the 

pyogenic group the enterococci, so named because they occur mainly in the 
intestinal tract of man and animals, can grow over a wide range of pH and 
temperature (10 to 45°C) and have the group D antigen. Lactic streptococci 

are characterised by their low temperature range - they grow well at 10°C 

but cannot grow at temperatures in excess of 40°C. The cells of pneumococci

are typically paired and the species is subdivided into a large number of 
types based on the antigenic specificity of its capsular polysaccharides.

On media containing blood, colonies are surrounded by a zone of "greening", 
termed a-haemolysis, caused by oxidation of haemoglobin to methaemoglobin.

The category of 'other streptococci' includes many strains originally class­

ified as 'viridans' streptococci by Sherman (1937) due to their a-haemolytic 
reaction on blood agar.

A second widely used classification of the genus is based on Lancefield 

group specific antigens known as C substances (Lancefield, 1933). These 

are acid extractable polysaccharides or teichoic acids, attached to the 

peptidoglycan of the cell wall, which form a specific precipitate with rabbit 

antiserum to killed whole bacterial cells. Generally, members of a group



are biochemically uniform or contain recognisable biotypes with a character­

istic host range and ability to cause particular diseases. However, many 

strains do not possess a group antigen and the classification is further 

complicated by the fact that group antigens which characterise certain pyogenic 

bacteria are occasionally found in members of otherwise distinct species.

Additionally, many streptococci possess type specific antigenic proteins 

such as the M (recently cloned in coli; Burdett and Beachey, 1984), T and 

R antigens of Lancefield group A Streptococcus pyogenes. Multiple, 

distinct antigenic types of these proteins exist but only one of each type is 

present in an individual organism, allowing further differentiation of strains 
into a number of serotypes.

As a result of their activities in the production of foods and as agents 

of human and animal disease, the streptococci are a group of major economic 
importance. The Lancefield group N lactic streptococci are particularly 

important in the dairy industry where they are commonly used as starter 

cultures in the production of butter and cheese (Lawrence and Thomas, 1979). 

Lactic streptococci are among those bacteria which occur normally in milk and 

are responsible for souring due to the production of lactic acid which lowers 
the pH sufficiently to cause coagulation of milk proteins.

The most common causative agents of human streptococcal disease are the 
pyogenic streptococci of which group A pyogenes is most frequently involved 

(Cybulska and Jeljaszewicz, 1970; Miyamoto e_t , 1978; Chattopadhyay et al., 

1981). A normal inhabitant of the pharynx, skin and rectum, pyogenes can 

cause suppurative infections such as pharyngitis, scarlet fever and impetigo 

as well as related non-suppurative diseases such as acute glomerulonephritis 

and acute rheumatic fever. agalactiae (group B) are a common cause of

serious infections, including meningitis in neonates and infants (Yow, 1974; 
McCracken, 1976) as well as serious puerperal infections and skin infections 

among diabetics (Anthony and Concepcion, 1975). Additionally, group B



organisms are an important cause of bovine mastitis (Berghash et al., 1983). 

Although less conmon pathogens, groups C and G streptococci can cause a 

variety of serious infections such as endocarditis and septic arthritis 

(Mohr et al., 1979; Cudney and Albers, 1982).

The drugs of choice in the therapy of pyogenic streptococcal infections 

are the penicillins although other antibiotics such as lincomycin are used in 

cases of penicillin allergy. Generally, susceptibility to the penicillins 

is uniform but occasionally strains are isolated showing drug tolerance which 

can adversely affect the response to therapy (Severin and Wiley, 1976;
Rolston a]̂ ., 1982). The incidence of resistance to macrolides, lincosa- 

mides and chloramphenicol is low although some highly resistant strains have 

been isolated (Cybulska and Jeljaszewicz, 1970; Baker e^ , 1976) and there 

does appear to be some relationship between the geographical distribution 

of resistant isolates and high useage of antibiotics (Dixon and Lipinski, 1982) 
Tetracyclines should never be used for treatment of streptococcal infections 

due to the high frequency of resistance - as high at 90% in some studies 
(Baker et al., 1976; Fallon, 1981),

Alpha—haemolytic streptococci such as mitior, sanguis and mutans 

which normally inhabit the oral cavity, are the most common cause of infective 
endocarditis (Garvey and Neu, 1978) while the most widespread bacterial 

infection of man, dental caries, is thought to involve principally mutans 

(Hamada and Slade, 1980). As with the pyogenic streptococci, the drug used 

in therapy of endocarditis is penicillin in combination with strepto­
mycin to produce a more rapid killing although complications can arise in 

cases of penicillin tolerance and high level streptomycin resistance (Bourgault 

£t ^ . , 1979; Farber et al., 1983).

The role of pneumoniae as the etiological agent of pneumonia is well 

known. It was assumed that pneumococci were uniformly susceptible to



penicillins but there is increasing evidence of resistance to these and many 

other drugs in clinical isolates (Jacobs ef , 1978; Tarpay £l., 1982; 

Michel e^ , 1983).

Enterococci are commonly involved in urinary tract infections and can 

cause endocarditis. They are also frequently isolated from dental root canal 

infections and some strains have been shown to be cariogenic in gerrafree rats 

(Gold et al.; 1975). Unlike the other streptococcal groups, the enterococci 
are intrinsically resistant to low levels of many drugs in common use (Taola 

et al., 1969) and consequently, synergistic combinations of penicillins or 

cephalosporins with aminoglycosides are recommended for serious enterococcal 
infections such as endocarditis. Increasingly, clinical isolates have been 
found resistant to synergism due to high level resistance to aminoglycosides 

(Finland, 1979; Carlier and Courvalin, 1982; Murray et al., 1983) and 

resistance to penicillins and cephalosporins (Finland, 1979; Krogstad and 

Moellering, 1982; Elliot e^ a^., 1983). High level resistance to many other 

drugs including tetracycline, erythromycin and chloramphenicol has also been 

shown to be increasingly common (van Embden at al., 1977; Finland, 1979;
Romero et al., 1979).



MODE OF ACTION OF ANTIBIOTICS

Antibiotics have been divided into five general groups according to 

the biochemical site on which they have a primary effect (Gale, 1963) - those 

acting on 1. energy metabolism 2. the function of bacterial membranes |

3. protein synthesis 4. nucleic acid metabolism 5. the synthesis of pepti- 
doglycan. An understanding of the molecular basis of antibiotic action has 
depended on the level of understanding of the basic biochemical processes 

involved and at present the level of knowledge in many cases is insufficient
I

to provide definitive statement on the different modes of antibiotic action.

Much of the work on the activity of antibiotics has been carried out 

using Gram-negative bacteria in particular Escherichia coli and hence, in 
extrapolating results to Gram-positive organisms, the fundamental differences 

in cell envelope compositions must be considered. There are several reviews 
available on the structures of Gram-negative and Gram-positive cell envelopes 

(Rogers et. ' 1980; Salton, 1983). Briefly, Gram-negative bacteria |
possess an outer and an inner cytoplasmic membrane enclosing an aqueous region 
known as the periplasmic space. The outer membrane provides a major hydro- 

phobic barrier to passive diffusion of many compounds although low molecular 
weight hydrophilic molecules can diffuse through transmembrane pores formed 4

by proteins called porins (Nikaido and Nakae, 1979). In contrast. Gram- 

positive bacteria have no outer membrane and consequently are much more 

susceptible to certain hydrophobic antibiotics such as rifamycin. The inner 
membrane of Gram-negative bacteria broadly corresponds to the cytoplasmic 

membrane of Gram- positive species.. Structural Integrity
of both Gram-negative and Gram-positive bacteria is maintained by peptidoglycan 
located in the periplasmic space of Gram-negative organisms and surrounding

the cytoplasmic membrane of Gram-positive organisms. Peptidoglycans are i
fpolymers of N-acetylglucosamine and N-acetylmuramic acid and, attached to the *

carboxyl groups of N-acetylmuramyl residues are peptides, which are often



crosslinked via a peptide bridge in Gram-positive bacteria and which are 

specific to the bacterial species. In Gram-negative organisms there is 

generally only one layer of peptidoglycan while in Gram-positive species, the 
structure is multi-layered and has associated with it a number of other 

polymers such as teichoic or teichuronic acids. In contrast to the molecular 
seiving action of porins, it is unlikely that peptidoglycans form a barrier 
to molecules less than 100,000 daltons.

Of relevance to this introduction, is a presentation of the current state 

of knowledge into mechanisms of action of the antibiotics to which resistance 
has been encountered in this group of study organisms.

Beta-lactam antibiotics

This group of antibiotics includes the penicillins, cephalosporins, 

cephamycins and the newer g-lactams such as thienamycin and clavulanic acid. 
B-lactams are inhibitors of peptidoglycan synthesis and consequently are 
inactive against resting cells and bacteria which lack cell walls such as 
mycoplasmas. They appear to have similar but not identical activities and

there can be a wide spectrum of responses to a particular antibiotic. For 

example, among the streptococci, pneumoniae is both killed and lysed by 
penicillin, pyogenes is killed but not lysed and sanguis is neither 
killed nor lysed (Horne and Tomasz, 1977).

In studies of Staphylococcus aureus. Tipper and Strominger (1965) showed 
that penicillin inhibited the action of trans peptidase, an enzyme which 

removes the terminal D-alanine residue of N-acetylmuramyl pentapeptide and 

links the remaining tetrapeptide to another part of the peptidoglycan structure

i.e. the enzyme which catalyses the formation of cross-links. They suggested 
that penicillin might act as a structural analogue of the transpeptidase 
substrate acyl-D-alany1-alanine resulting in competitive inhibition of the a 

enzyme leading to the formation of a "weak" cell wall and eventually wall



rupture and cell lysis. However, the anomalies that some 3-lactams such as 

mecillinara do not inhibit transpeptidation (Matsuhashi e_t , 1974) and that 

visible morphological distortion is not necessarily related to the degree of 

cross-linking (Katz and Martin, 1970) suggested that the situation was more 

complex.

Interest in the bactericidal action of 3-lactams is now centered on 

penicillin binding proteins (PBP). These proteins which can specifically 

bind 3-lactams, are found in the cytoplasmic membranes of both Gram-negative 
and Gram-positive organisms and have been shown to represent multiple forms 

of the transpeptidases and carboxypeptidases involved in peptidoglycan synthesis 

(Spratt, 1983). The profiles of PBPs vary between species of bacteria with 
usually five or more PBPs present which have variable binding affinities for 

different 3-lactams. Additionally, the pattern of binding to PBPs and hence 

the effect of 3-lactams, has been found to be heavily dependent on growth 

conditions (Fontana ^  al•, 1983). The functions and interaction of PBPs 
with 3-lactams are reviewed by Gale et al_. (1981) and Spratt (1983).

A simplified explanation for the killing of Gram-positive bacterial 

cells by 3-lactams, given by Lancini and Parenti (1982) is that 3-lactams 

inhibit the function of one or more enzymes (PBPs) involved in peptidoglycan 
synthesis resulting in growth inhibition. A signal of unknown biochemical 

nature causes the release of teichoic acids into the medium resulting in the 
activation of autolytic enzymes which hydrolyse covalent bonds of the cell 

wall. Loss of structural integrity is followed by eventual osmotic lysis.

Tetracyclines

The first tetracycline to be introduced, chlortetracycline, was isolated 

from Streptomyces aureofaciens and tetracycline itself was originally obtained 

by hydrogenation of chlortetracycline, but subsequently from cultures of 

several Streptomyces, while doxycydine and minocycline are semi-synthetic



derivatives. This family of antibiotics have a broad spectrum of activity 

and have been shown to block protein synthesis in bacterial and mammalian 

systems (Rendi and Ochoa, 1961; Franklin, 1963). They are bacteriostatic 

at low concentrations but at high concentrations can affect a number of 

cellular processes, such as membrane permeability and DNA synthesis, and 
have a bactericidal effect (Levy, 1981).

ill JE. coli, uptake of tetracyclines has been shown to occur in two 
stages - an energy-independent phase and an energy-dependent phase. The 

energy-independent phase reflects the passive diffusion of the antibiotics 

through the outer membrane either via porins as in the case of the hydro­

philic molecules for example tetracycline or by direct diffusion in the case 
of more hydrophobic molecules such as minocycline (Chopra and Ball, 1982; 

McMurray ^  al., 1982). The energy-dependent accumulation of tetracyclines, 
which has been shown to occur in Gram-positive bacteria (Dockter d  d . , 1978) 

including faecalis (Lindley et al., 1984) as well as Gram-negative bacteria 

(Chopra and Howe, 1978), corresponds to the active, carrier mediated transport 
of the antibiotics through the cytoplasmic membrane. In JE. coli transport 

is inhibited by energy poisons, uncouplers and depolarisers but not by inhibit­

ors of membrane bound ATPase, which implies that proton motive force is the 

energy source for transport. Similar studies in S. faecalis have shown that 

tetracycline influx is dependent on the transmembrane pH gradient component 
of the proton motive force, the drug being transported as an anion proton- 

ated to neutrality and bound to a neutral carrier (Lindley e_t al., 1984;

Munske ejb , 1984). It is thought that the membrane carrier is probably 
a protein, but the identity of the carrier is not known (Chopra and Ball,1982).

Tetracyclines chelate metal ions particularly divalent cations such as 
magnesium, although the relevance of such an activity to the inhibitory effects 
pf the antibiotics was unclear (Tritton, 1977). On the basis of stoichio­

metry, Munske and coworkers (1984) have recently suggested that the magnesium



ion has a role in transport by binding to the apo-carrier molecule to produce 

a functional carrier. Tetracycline inhibits protein synthesis by binding to 

ribosomes. At high drug concentrations, up to 300 drug molecules may bind 

to one ribosome but it appears that only one binding site is important and 
that only one drug molecule is necessary for inhibition of a single ribosome 

in coli (Tritton, 1977). The most significant binding site in terms of 

inhibition of protein synthesis is probably on the 30S subunit of 70S 
ribosomes. It has been shown that tetracycline blocks the A site of ribo­

somes thus preventing the binding of aminoacy1 - tRNA and subsequent trans­
location and peptide elongation (Gale e_t , 1981). Tetracycline also 

inhibits the synthesis of guanosine tetraphosphates and pentaphosphates 

normally synthesised in response to the presence of uncharged tRNAs at the 
A site and responsible for the stringent control of rRNA, tRNA and ribosomal 
protein opérons,

Aminoglycoside-aminocyclitol antibiotics

The aminoglycoside-aminocyclitols are a large group of structurally 
related substances produced naturally by members of the genera Streptomyces, 

Micromonospora and Bacillus or by semisynthetic processes. They can be 
divided into several major groups on the basis of structural similarity - 

the streptomycin group which includes dihydrostreptomycin and bluensomycin, 

the neomycin group, the kanamycin group which includes amikacin and tobramycin, 
the gentamicin group and the groups represented by hygromycin, apramycin, 

spectinomycin and kasugamycin (Price, 1981; Foster, 1983). All show a wide 
spectrum of antimicrobial activity but are inactive against strict anaerobic 

bacteria (Bryan and Kwan, 1981) and against some facultative anaerobes for 

example faecalis (Bryan and van den Elzen, 1977), Unlike other inhibitors 
of protein synthesis, most are bactericidal to susceptible strains although a 

few are bacteriostatic. The killing of susceptible bacterial cells is 

accompanied by a wide range of pleiotropic effects which have led to
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considerable difficulties in defining the lethal event.

Aminoglycoside accumulation in susceptible cells has been shown to occur 

in three phases (Bryan and van den Elzen, 1977). The first is a rapid 
energy-independent (EIP) binding of the polycationic molecules of aminogly­

coside to negative charges (1ipopolysaccharides or lipoteichoic acids) on 
the cell surface followed by passive diffusion through porins in the outer 

membrane of Gram-negative species (Nakae and Nakae, 1982) or the interstices 

of the cell wall in Gram-positive bacteria (Bryan and Kwan, 1983). At least 

part of EIP reflects binding to the cytoplasmic membrane. The first energy- 

dependent phase (EDPI) corresponds to the slow active transport of the drug 

across the cytoplasmic membrane, a process requiring electron transport, and 

although the nature of the transporter species is not known, cytochrome aa  ̂

and/or quinones have been implicated (Bryan and Kwan, 1983; McEnroe and Taber, 
1984). The energy required for uptake was shown to be provided by the trans­

membrane electrical potential component of the transmembrane electrochemical 
proton gradient (proton motive force) and the lethal effects of the drugs were 
found to be proportional to the magnitude of this component (Mates ^  al.,

1983; Eisenberg ^  al., 1984). After transport across the cytoplasmic 
membrane, some antibiotic molecules bind to ribosomes which act as a "binding 

sink". This increasing binding causes cessation of protein synthesis and 

signals the acceleration of aminoglycoside energy-dependent accumulation 

(EDPll). Throughout EIP and EDPI, cells remain viable although the cyto­
plasmic membrane becomes leaky to potassium ions (Dubin et al., 1963).

The onset of EDPll coincides with the onset of lethality, i.e. the inability 

of cells to form colonies, and further cytoplasmic membrane damage resulting 

in loss of permeability control for larger molecules (Bryan and van den Elzen, 

1975; 1976; Hancock, 1981b). That EDPll is probably related to lethality is 
evident from the observations that the bacteriostatic antibiotics, spectino- 

nç^uin and kasugamycin do not induce EDPll (Holtje, 1978) and that addition of
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chloramphenicol to cells antagonises streptomycin killing and prevents EDPll 
presumably by influencing events required for EDPI (Hancock, 1981a, b).

However, this may not be so for gentamicin uptake by Staph, aureus in which 

EDPll was not necessarily associated with the lethal effect (Mandel et̂  ai•, 
1984).

The 30S subunit of 70S ribosomes is the main target for binding of 

aminoglycosides. Streptomycin and dihydrostreptomycin bind to a single site 

while the neomycins, kanamycins and gentamicins interact with multiple sites. 

The binding, which is reversible, results in a number of effects one of which 

is the phenomenon of misreading i.e. incorporation of the wrong amino acid 

during translation (Gorini, 1974; Tai et al., 1978). Misreading caused by 
streptomycin jn vitro has been shown to be non-random - only one base in a 

given mRNA codon is misread and that base, located at the 5'-terminal or 

internal position of the codon, is almost always a pyrimidine (Davies et , 

1966). The action of neomycin is more random involving multiple bases at 
any codon position. Misreading also occurs vivo, albeit at a lower 

frequency (Hancock, 1981b), as demonstrated by the phenotypic suppression of 

nonsense and missense mutations in the presence of sub-lethal concentrations 

of streptomycin (Gorini and Kataja, 1965; Orias and Gartner, 1966; Whitfield 

et al., 1966). The aminocyclitol spectinomycin which is not bactericidal, 

does not cause misreading (Davies et al., 1965) but nevertheless it is unlikely 

that production of faulty proteins is directly responsible for the lethal 
effects of aminoglycosides (Hancock, 1981b).

Streptomycin can inhibit aspects of all phases of protein synthesis 

(reviewed by Gale ^  » 1981) in addition to causing mistranslation of mRNA.
In extracts of JE. coli containing polysomes but no initiation factors, strep­

tomycin caused a rapid decrease in the rate of protein synthesis reflecting 

an inhibitory effect on elongation (Wallace et al., 1973). Streptomycin alsp 

affects initiation by causing release of fmet-tRNA resulting in unstable
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aberrant initiation complexes containing 70S ribosomes and mRNA (Wallace 

and Davis, 1973). In polypeptide chain termination assays, streptomycin 

inhibits release by preventing recognition of the release factors RF-1 and 
RF-2 (Scolnick e_t al̂ ., 1968) . The effects of streptomycin on initiation, 

elongation and termination are probably pleiotropic events due to the same 

interaction of the antibiotic with the ribosome and may reflect dislocation 
of the ribosomal A and/or P sites (Gale ejt al., 1981).

As ribosome binding is reversible however, inhibition of protein 

synthesis per se is unlikely to account for the lethal effects of aminoglyco­

sides (Hancock, 1981b). Instead, there is general agreement that lethality 

of aminoglycosides is related to membrane associated disruptions although 

the precise mechanism is still controversial. Hancock (1981b) has postulated 
that disruption of the DNA-membrane attachment site may be at least one of 

the lethal targets involved. Bryan and Kwan (1983) propose that lethality 
results directly from the loss of cytoplasmic membrane integrity and function 

due to the physical forces involved in the accumulation of the antibiotics.

Chloramphenicol

Chloramphenicol is a fermentation product of Streptomyces venezuelae 

and is one of the few commonly used antibiotics which can be produced 

synthetically. It is a bacteriostatic agent which inhibits protein synthesis 
in a wide range of Gram-positive and Gram-negative bacteria.

In contrast to the complex energy dependent transport systems of amino­

glycosides and tetracyclines, there is little evidence in favour of active 
accumulation of chloramphenicol (Chopra and Ball, 1982) and instead, the 

antibiotic probably diffuses passively through porins of the outer membrane 
of Gram-negative organisms. Uptake of the drug through the cytoplasmic 

membrane is also likely to be due to passive diffusion with apparent intra­
cellular concentration resulting from the binding of the drug to ribosomes



13

(Harvey and Koch, 1980).

At bacteriostatic concentrations, chloramphenicol has been shown to bind 
reversibly to one high affinity site on the 50S subunit of ribosomes and 

polysomes (Fernandez-Munoz et al., 1971; Pestka, 1974). At higher concen­

trations, the antibiotic also binds to a low affinity site on the 30S subunit 

(Lessard and Pestka, 1972) although this may not be significant in terms of 
bacteriostatic activity. Chloramphenicol inhibits the elongation step of 

protein translation and "freezes" polysomes preventing the release of peptidyl- 

tRNA. The drug has an increased affinity for ribosomes when the peptidyl- 

tRNA is located in the P site (Contreras and Vazquez, 1977) and it is thought 

that it inhibits the action of peptidyl transferase (located on the 50S 

ribosomal subunit) by preventing recognition of the enzyme acceptor substrate 
i.e. aminoacyl-tRNA (Gale ejt ^1., 1981).

The MLS group - macrolides, lincosamides and streptogramin B-type antibiotics

Although structurally unrelated these three classes of antibiotics will 
be discussed together in view of the similarities of antibacterial spectrum 

and mode of action. All are produced either naturally by members of the 

genus Streptomyces or by synthetic modification of the natural products.

They are active mainly against Gram-positive organisms - most members of the 

Enterobacteriacae are intrinsically resistant to clinically achievable concen­
trations (Garrod et al., 1981) probably due to the impermeability of the outer 

membrane or ribosomal resistance (Costerton and Cheng, 1975; Tanaka and Weisblum, 
1975).

The macrolide antibiotics contain a large lactone ring of between 12 and 

16 atoms, to which various sugar residues are linked, and can be subdivided 
according to the sugar residues they contain - erythromycin, spiramycin, carbo- 

mycin, methymycin and lancamycin groups. Chemically, the lincosamides are 

completely different, being composed of a modified amino acid condensed with
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a complex amino sugar. Lincomycin, a natural fermentation product of 

Streptomyces lincolnensis, and clindamycin, obtained by chemical modification 

of lincomycin, are the most commonly used antibiotics of this class (Vazquez, 

1979). The streptogramins are, in most cases, produced as mixtures of two 

different components A and B. The A components are considered to be one 

molecular species consisting of a large polyunsaturated non-peptide ring and 

are known by a number of synonyms - mikamycin A, virginiamycin M^, vernamycin A, 

ostreogrycin A, pristinamycin llA and synergistin A. The B components are 

cyclic hexadepsipeptides containing uncommon amino acids (Vazquez, 1979;
Gale al., 1981). All the MLS antibiotics inhibit protein synthesis in 

susceptible bacteria and all are usually bacteriostatic although, in combin­

ation, the streptogramin components demonstrate marked synergism and can be 
bactericidal (Gale et al., 1981).

MLS antibiotics have been shown to bind reversibly to 50S ribosomal 
subunits and to ribosomes with 1:1 stoichiometry. Studies of reciprocal 

competition for the binding site have shown that the antibiotics are mutually 
exclusive reflecting common or overlapping sites on the ribosomes.

Additionally, they prevent the binding of chloramphenicol to ribosomes 

(Fernandez-Munoz e_t al., 1971; Cocito and Di Giambattista, 1978). The anti­
biotics do not however prevent the binding of chloramphenicol to polysomes 

(Pestka, 1974) and indeed, cannot bind to polysomes when peptidyl-tRNA is 

present in either the A or F sites of the ribosomes (Contreras and Vazquez,

1977). The degradation of polysomes found on addition of many of these drugs 

has been interpreted as normal ribosome "run-off" (Cundliffe, 1969) followed 

by antibiotic blocking shortly after initiation of a new round of translation. 

The antibiotics have not been shown to cause inhibition of the initiation 
step itself, but, after the addition of a variable number of amino acid 

residues, prevent further elongation of the oligopeptide chain, possibly by 
stexic hindrance (Vazquez, 1979; Gale et al., 1981). Recently, however.
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Menninger and Otto (1982) have shown in E. coli that macrolides stimulate 

the release of peptidyl-tRNA from ribosomes, possibly during attempted trans- 

location from the A to the P site, followed by ribosome dissociation from 

the message. The effect of this enhanced dissociation would be to reduce 

to a growth inhibitory level the probability of formation of functional 
proteins.
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MECHANISMS OF BACTERIAL RESISTANCE TO ANTIBIOTICS

Clinically important bacterial resistance is most frequently determined 

by extrachromosomal DNA molecules (plasmids) or by transposons which are 

capable of integration into the bacterial chromosome or other DNA molecules 
(Foster, 1983). Many plasmids are capable of transfer from one host to 

another, a phenomenon which has undoubtedly contributed to the rapid spread 

of antibiotic resistance. Naturally occurring chromosomal mutations to 
resistance are encountered less frequently although there are some reports 

of these, for example, penicillin resistance of pneumoniae (Jacobs et al.,
1978).

Resistance to antibiotics can theoretically arise from a number of 

different mechanism (Davies and Smith, 1978). These are 1. inactivation of 

the antibiotic, 2. decreased accumulation either by reduced permeability or 
active efflux of the antibiotic 3. alteration of the antibiotic target site,

4. provision of a by-pass for the particular inhibited metabolic step,

5. increased production of the structure or molecule inhibited by the anti­
biotic, 6. production of a drug antagonist, 7. utilisation of a completely 

different and alternative pathway which is not inhibited. The first four 

mechanisms are most commonly encountered while examples of the latter three 

mechanisms are either extremely rare or unknown. This introduction will be 

confined to a description of the clinically significant resistance mechanisms 
to the antibiotics of interest to this study.

Beta-lactam antibiotics

Resistance to g-lactams can occur by inactivation, increased impermea­

bility and alteration of antibiotic target site or by combinations of these 
mechanisms. Most high level 3-lactam resistance is determined by genes 

located on plasmids or transposons which encode 3-lactamases causing inactiv­

ation of the antibiotics (Davies and Smith, 1978; Foster, 1983). The action
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of 3-lactamases on their substrates, penicillins and cephalosphorins, is 

kinetically complex but basically, it involves hydrolysis of the amide bond 

in the 3-lactam ring via an acyl-enzyme intermediate, leading to the formation 

of inactive penicilloic acid, in the case of penicillin substrates, or 

various decomposition products, with cephalosporins (Sykes and Matthew, 1976; 
Fisher et al., 1980; Foster, 1983).

The enzymes are commonly produced by Gram-negative bacteria, particularly 

members of the Enterobacteriaceae and Pseudomonas, but are also important in 

resistance of the Gram-positive genera Staphy1ococeus, Clostridium and Bacillus 

The need for the development of new penicillins and cephalosporins with 

reduced sensitivity to enzymatic hydrolysis has reflected the increasing 

dissemination of these resistance genes. In addition to plasmid and trans- 

poson encoded 3-lactamases most, and probably all. Gram-negative bacteria 
produce chromosomally specified enzymes which contribute to intrinsic 
resistance (Richmond and Sykes, 1973; Sykes and Matthew, 1976) and which are 

specific for the bacterial species, correlating with taxonomic bacterial 

classification (Matthew and Harris, 1976). It has been suggested that 3- 

lactamases are produced by all bacteria, their normal function being to 

hydrolyse a 3-lactam structure present as a transitory cell wall intermediate 

(Sykes and Matthew, 1976). Furthermore, it has been shown that gome low 

molecular weight PBPs have similar mechanisms of enzyme action to and regions 

of amino acid sequence homologous* with certain classes of 3-lactamases 
(Spratt, 1983).

A widely used general classification of Gram-negative 3-lactamases is 

based on substrate specificity, inhibitor studies and physicochemical and 

immunological data (reviewed by Sykes and Matthew, 1976; Matthew et al̂ ., 1979; 

Matthew, 1979; Foster, 1983). Briefly, the majority of chromosomally encoded 
enzymes are ce.phalosporinases - they have low activity against penicillins - 

and some have been found to be inducible by 3-lactam substrates. Plasmid



and transposon specified g-lactamases are predominantly penicillinases which 

are expressed constitutively and are usually produced at levels far in excess of 

those observed for chromosomally encoded enzymes. All 3-lactamases of Gram- 

negative bacteria are located in the periplasmic space and expression of 

resistance therefore is dependent not only on 3-lactamase production but also 

on outer membrane permeability and indeed, mutation of chromosomal genes 

encoding porins can result in increased resistance (Jaffe ejL , 1982; Sawai 
et aL., 1982). The synergistic interaction of enzyme production and outer 

membrane permeability is responsible for the phenomenon of crypticity of 
Gram-negative bacteria (Richmond and Curtiss, 1974).

The 3-lactamases of Gram-positive bacteria, most of which are inducible 

by low substrate levels (Dyke, 1979; Magot, 1981; Foster,1983), can be 

chromosomally specified (Richmond and Sykes, 1973; Dampen et al., 1980) but 

are often encoded by plasmids in staphylococci (Richmond, 1965). They are 
predominantly penicillinases and all are secreted as extracellular enzymes 

(Sykes and Matthew, 1976; Foster, 1983). Studies on the penicillinases of 
bacilli have shown that they are synthesised as a precursor molecule with an 

N-terminal signal sequence necessary for transport through the cytoplasmic 

membrane and following proteolytic modification, soluble expenicillinase can 

be released (Simons et , 1978; Cheng et al., 1982). Production^of 3-

1act amases by Gram-positive organisms is a less widespread phenomenon than 

that of Gram-negatives and until recently was unknown in the genus Streptococcus. 

The only example thus far of a 3-lactamase producing Streptococcus is a 
clinical, isolate of faecalis which produced extracellular penicillinase 

and was capable of conjugal transfer of this ability to an faecalis recipient 
(Murray and Mederski-Samaroj, 1983). This may therefore represent the 
beginning of dissemination of 3-lactamase genes in streptococci.

Increasingly common is the isolation of strains which do not owe their 

resistance to the production of 3-lactamases. For example, the problem of
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3-lactamase producing Staph, aureus was overcome by the use of methicillin 

which was resistant to hydrolysis by the plasmid specified 3-lactamase but 

methicillin resistant strains, cross-resistant to other 3-lactams, have since 

been isolated. It was proposed that this intrinsic resistance was due to muta­

tions which caused either overproduction or decreased affinity of PBp 3, 

thought to be essential for viability in the presence of the drug (Brown and 

Reynolds, 1980; Hayes at , 1981). However, subsequent evidence has shown

that, unlike susceptible cells, methicillin resistant Staph, aureus produced 

a novel PBP 2a which required 3-lactam concentrations in the region of the 

minimal inhibitory concentration to produce saturation while the other PBPs 
were saturated at much lower concentrations (Hartman and Tomasz, 1984). A 
similar alteration in PBP pattern has been described in pneumoniae 

(Tomasz ^  al., 1984), while alterations in the affinity of PBPs for 3-lactam 

antibiotics have been shown to be important in the development of resistance 

in Neisseria gonorrhoeae (Dougherty et_ > 1980), Pseudomonas aeruginosa 

(Godfrey et , 1981), pneumoniae (Zighelboim and Tomasz, 1980; 1982) and 
Haemophilus influenzae (Parr and Bryan, 1984). In contrast to alterations 

in binding affinity, Eliopoulos and coworkers (1982) comparing the PBPs of 

naturally resistant and hypersusceptible mutants of faecium, found no 

difference in the PBP affinities. Further studies by Fontana e^ al. (1983b) 

showed that in fact, naturally insensitivity to penicillin in Ŝ. faecium was 

correlated with the overproduction of PBP 5 which reacted much more slowly 

than the other PBPs and which required 90% saturation with drug before cell 

growth was inhibited. Thus, it was postulated that as saturation required 
a period longer than that required for cell division and as PBP 5 was over­
produced, cells could remain viable at high drug concentrations. Similar PBPs 

were found in 3-lactam resistant faecalis, durans and lactis but not 
group A, B, C or G streptococci or pneumoniae. In the latter strains, 

resistance was probably due to decreased affinity of one or more PBP (Gutmann 

and Tomasz, 1982; Fontana et al., 1983b).
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Tolerance of penicillins has clinical significance in the treatment 

of staphylococcal and streptococcal infections (Brennan and Durack, 1983;

Hess jet al., 1983). Unlike resistance in which the minimal inhibitory 
concentration of the drug is raised, tolerant organisms have virtually 

unchanged minimal inhibitory concentrations, but greatly elevated minimal 

bactericidal concentrations. In the streptococci, tolerance does not 

appear to be associated with change in the PBPs (Gutmann and Tomasz, 1982; 
Daneo-Moore and Pucci, 1982) but is instead probably dependent on autolytic 

enzyme function and regulation (Daneo-Moore and Pucci, 1982). In the 
future, with the increased use of 3-lactamase stable antibiotics, tolexance 

of and resistance to 3-lactams by alterations in PBPs may become as important 

clinically as resistance mediated by production of 3-lactamases (Spratt, 1983).

Tetracycline

Tetracycline resistance is widely distributed among various Gram-negative 
and Gram-positive species. Among the Gram-negative bacteria, tetracycline 

resistance genes are usually located on plasmid molecules and resistance is 
inducible by low levels of the drug, although high level resistance in 

Proteus mirabilis and E. coli can be chromosomally encoded (Levy, 1981;

George and Levy, 1983). On the basis of resistance phenotypes and DNA - 
DNA hybridisation studies, the tetracycline determinants have been divided 

into various classes designated A to E (Mendez jct al., 1980; Levy, 1981) 
and recently, Marshall and coworkers (1983) have demonstrated yet another 
distinct determinant class in enteric bacteria. Of the different deter­
minants, class B, represented by transposon (Tn) 10, is found most frequently 

among faecal coliforms and Haemophilus species (Levy, 1981; Marshall et al.,
1983) while class A determinants, Tn 1721 and RPl, are more common among 
Pseudomonas and Aeromonas (Marshall e^ , 1983).

There has been no demonstration of homology, either by an vivo trans- 

f ma i n assay or DNA hybrxdisation studies., between tetracycline



resistance determinants of Gram-negative and Gram-positive bacteria (Smith

et ajĵ. , 1981; Burdett et al., 1982a; Eccles and Chopra, 1984) or between 

determinants of different Gram-positive genera (Burdett et al., 1982a; Polak 

and Novick, 1982). Tetracycline resistance genes of Staph, aureus are 

commonly located on small, multi copy plasmids and resistance is expressed 

inducibly (lordanescu et al., 1978; Schafferman et al., 1978). Likewise 

small plasmids encoding tetracycline resistance have been isolated from 

several species of Bacillus (Polak and Novick, 1982). In contrast, tetra­

cycline resistance in the streptococci, although very common, is frequently 
chromosomally encoded (Burdett, 1980). A detailed account of streptococcal 

tetracycline determinants will be given in following sections.

The mechanism of tetracycline resistance has been investigated in detail 

in derivatives of coli, and it is accepted that resistance is due mainly 
to decreased accumulation of the drug (Foster, 1983). Levy and McMurray 

(1978a) showed that cells containing tetracycline resistance plasmids exhibited 
a different energy dependent uptake system from that of sensitive cells and 
furthermore, that class A to D determinants all encoded active efflux of 

tetracycline after induction of resistance (McMurray £l., 1980). Ball 

ejt ai., (1980) found that resistant cells bound less tetracycline and demon­

strated a rapid energy dependent efflux of the drug when the bacteria were 

transferred to drug free medium. The efflux system was shown to be saturable 
at levels of drug which did not saturate the influx system of sensitive cells, 

had different pH and magnesium ion requirements and was competitively 

inhibited by minocycline (McMurray et al., 1980, 1982; Levy, 1981).
Therefore, it seems that the plasmid encoded efflux is not simply a reversal 

of endogenous host influx systems. It has been suggested that decreased 
accumulation of tetracycline is not sufficient explanation for the differences 

in sensitive and resistant strains and that protein synthesis is less sensitive 

in resistant strains of IE. coli (Levy and McMurray, 1978b) and Staph, aureus
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(Sompolinsky and Krausz, 1973). However, there is no direct evidence for 

reduced ribosomal sensitivity or for intracellular inactivation of tetra­
cycline (Levy, 1981).

Molecular analyses and DNA sequence data have shown similar structural 
organisation of the genes involved in tetracycline resistance expression of 

class A, RPl and Tn 1721 (Altenbuchner ^  , 1983) class B, Tn 10 (Hillen

and Schollmeier, 1983) and class C, pSClOl (Stuber and Bujard, 1981). There 

are at least two tetracycline inducible proteins specified by Tn 10 - a 

23,500 dalton repressor protein encoded by the tetR gene and a 43,300 dalton 

membrane bound TET protein, which migrates with an apparent molecular weight 
of 36,000 in sodium dodecyl sulphate polyacrylamide gels, encoded by a 
structural gene composed of two intracistronic complementation groups, tetA 

and tetB, which represent different domains of the TET protein (Curiale et al., 
1984). The repressor and structural genes are transcribed divergently from 
a common intercistronic regulatory region, which is negatively autoregulated 

by the repressor protein (Altenbuchner et al., 1983; Hillen and Schollmeier, 

1983; Hillen et al., 1984). The deduced amino acid sequences of class A, B 

and C repressor proteins show significant homology clustered at the amino- 
terminal three quarters with sequence homology as high as 80% (Postle e_t £l., 

1984; Unger et al., 1984). Additionally, the amino terminal region shows 

significant homology with the DNA recognition regions of other DNA binding 

proteins such as cro and ^  repressors of bacteriophage ^  and the lac repressor 

protein (Postle ^  , 1984). Functional TET repressor is a dimer which
binds to the operators of TET ih a stoichiometry of four

repressors to one control region (Altschmied and Hillen, 1984) resulting in 
15- to 60-fold and 6- to 15-fold repression of g-galactosidase in tetA-lacZ 

and tetR-lacZ gene fusions respectively (Bertrand e^ al., 1984). During 

induction of resistance, tetracycline binds to the repressor resulting in 

loss of repressor-operator DNA binding ability (Unger et al., 1984). The
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repressor has a stronger binding affinity for tetracycline than for DNA and 

it is conceivable that one function of repressor could be to sequester drug 

until the active efflux system is operational (Hillen et al., 1984).

Among the Gram-positive genera, the inducible tet determinant of a 

Bacillus plasmid pAB124 has been cloned in coli where it expressed con­

stitutive resistance by reduced accumulation as with class A to D determinants 

and was shown to encode a 32,000 dalton membrane located TET protein (Eccles 

and Chopra, 1984). The tet region was found by DNA-DNA hybridisation studies 

to be homologous to another Bacillus plasmid pBC16 but not to any represent­
atives of class A to class D. The sequence of a small staphylococcal tetra­

cycline resistant plasmid has been determined by Khan and Novick (1983).

They have identified a structural gene encoding an inducible TET protein of 

molecular weight 35,000 daltons and identified very tentatively a regulatory 

gene encoding a possible repressor protein of 18,000 daltons. These genes 
appear to be transcribed unidirectionally and the authors suggest that 

induction is controlled by a translational attenuation mechanism dependent 
on the potential secondary structures of the RNA message.

Aminoglycoside-aminocyclitol antibiotics

Resistance to this group of antibiotics can arise from spontaneous 

mutations, affecting transport of the drugs or causing alterations in the 

ribosome target site, and drug inactivation. Additionally, as described in 

the previous section, anaerobic bacteria and facultative organisms grown 

anaerobically are intrinsically resistant to aminoglycosides due to the 
absence or low activity of an effective uptake system (Bryan e^ , 1979; 

Bryan and Kwan, 1981). This probably also explains the intrinsic low level 
resistance of enterococci.

Naturally occurring mutations to aminoglycoside resistance are not 

isolated frequently in clinical situations. Important exceptions are strains
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of 2" aeruginosa described by Bryan (1975, 1976) which were found to be 

resistant to gentamicin and streptomycin due to defective drug transport 

systems resulting, at least in part, from reduced permeability caused by 
changes in lipopolysaccharides (Bryan ^  , 1984). Ribosomal resistant

mutants can, however, be readily selected in the laboratory and usually 

have alterations in one or more ribosomal proteins necessary for aminogly­

coside binding (Gale et al., 1981). Natural isolates due to such mutations 

are rare but nevertheless have been described in clinical isolates of 

N. gonorrhoeae (Maness ^  , 1974), streptococci (Farber et al., 1983;

Eliopoulos et. Æl'* 1984), Staph, aureus (Lacy and Chopra, 1972) and 
JP. aeruginosa (Tseng et al., 1972).

The vast majority of clinical isolates resistant to aminoglycosides 
produce enzymes which modify the drugs. An important feature of aminoglyco­

side modifying enzymes is that, in contrast to other inactivating enzymes, 

there is no gross inactivation of the antibiotics in the culture medium 
(Davies and Benveniste, 1974; Davies and Smith, 1978; Courvalin et al., 1980a), 

The enzymes, which are synthesised constitutively, are located possibly in 

the periplasmic space of Gram-negative organisms (Dickie e^ al., 1978;

Davies and Smith, 1978) or in the cytoplasm of Gram-negative (Perlin and 

Lerner, 1981) and Gram-positive organisms where they may be loosely, associated 

with the cytoplasmic membrane and therefore "strategically placed" to 

inactivate incoming antibiotic (Foster, 1983). The result of enzymic 
modification is the inability of the drug to bind to the ribosome target site 

and hence inhibit protein synthesis (Davies and Kagan, 1981). Concomitant 

with the failure to bind to ribosomes, is the lack of onset of the second 
energy-dependent phase of drug accumulation (EDPll) which has been implicated 
in the lethal action of aminoglycosides (Bryan and Kwan, 1983).

However, if the rate of transport of an antibiotic in EDPI exceeds the 

rate of inactivation, some antibiotic will bind to ribosomes causing protein
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synthesis inhibition and such strains therefore appear sensitive to the 

antibiotic although possessing a modifying enzyme. Thus, resistance is due 

to a balance between the rate of uptake and the rate of inactivation of the 
antibiotic (Courvalin and Carlier, 1981; Bryan and van den Elzen, 1977),

Most aminoglycoside modifying enzymes are specified by plasmids (Davies 

and Smith, 1978; Courvalin and Carlier, 1981) and by transposable elements 

(Davies and Kagan, 1981; Foster and Kleckner, 1980) although chromosomally 

determined enzymes have been described in strains of Staph, aureus (Kayser 

et al., 1981), Serratia marcescens (John et al., 1982) and JP. aeruginosa 

(Okii e^ , 1983) . The enzymes can be divided into three classes depending 

on the reaction catalysed. These are 1. aminoglycoside phosphotransferases 
(APH) which phosphorylate a hydroxyl group at the expense of ATP, 2. amino­

glycoside nucleotidyltransferases (AAD) which catalyse the transfer of the 
adenyl moiety of ATP to a hydroxyl group of the antibiotic and 3. aminogly­

coside acetyltransferases (AAC) which catalyse the transfer of acetate from 

acetyl-CoA to an amino group on the antibiotic and they are further subdivided 
according to the particular site which they modify on the antibiotic molecule. 
Thus, AAC(6') acetylates the 6'-amino groups of aminohexose I of susceptible 

drugs. Additionally, an enzyme can be bifunctional, for example the enzyme 

encoded by a Staph, aureus plasmid which has APH2" and AAC6* activities 

(Ubukata e_t , 1984). The substrate range of the enzymes can be broad and 

so, due to overlap, different activities can modify the same molecule. For 

example, kanamycin B can be modified by seven different enzymes - AAC(3), 

AAC(2'), APH(3'), AAD(4')(4"), AAC(6'), AADC2") and APH(2"). Davies and 

Smith (1978), Courvalin and Carlier (1981) and Foster (1983) are among those 
who have extensively reviewed the aminoglycoside modifying enzymes.
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Chloramphenicol

High level resistance to chloranphenicol due to chromosomal mutations 

has not been encountered (Gale et al., 1981). The major mechanism of 

resistance to the drug in Gram-negative and Gram-positive bacteria is acétyl­

ation and thus inactivation by chloramphenicol acetyltransferase (CAT) which 

is usually determined by a plasmid or transposon. This has been the subject 

of a recent detailed review by Shaw (1983). However, another mechanism 

which is plasmid encoded and inducible by sub-inhibitory concentrations of 
the antibiotic, sometimes accounts for resistance in Gram-negative strains.

It does not involve drug inactivation or ribosomal resistance but is thought 

to be caused by a barrier to drug permeability in the cytoplasmic membrane 
(Gaffney et al., 1981; Dorman and Foster, 1982).

Organisms which produce CAT are widespread possibly reflecting the large 
number of soil organisms which are capable of producing chloramphenicol or its 
analogues (Shaw, 1983) . The enzymes are tetramers of identical subunits 

which have molecular weights of 22,000 to 26,000 and can be classified into 

various types on the basis of electrophoretic mobility, kinetic data, 

susceptibility to inhibitors and reactivity with antisera (Foster, 1983).

Three types of plasmid specified CAT have been described in enteric 

bacteria (Gaffney e_t al., 1978). Type I has been the most extensively 
studied and is the most common type encountered, probably due to the fact that 

genes for CAT type I are located on a transposable element, Tn9 (Matthews 

2b ai., 1983; Shaw, 1983). The type I determinant has also been shown to 
confer fusidic acid resistance in fusidic acid sensitive mutants of coli 

due to sequestation of the drug by the CAT protein, thus preventing anti­

bacterial activi-ty (Proctor et al. , 1983). All the CAT enzymes of Gram- 

negative bacteria, with the exception of that produced by Agrobacterium, 
are expressed constitutively. H. influenzae, H. parainfluenzae and Bacteroides 

fragilis produce plasmid encoded CATs similar to type II (Shaw et al., 1978;
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Roberts et al., 1982), while B. ochraceus GAT resembles type I (Britz and 

Wilkinson, 1978; Shaw, 1983). Novel chromosomally determined CATs are 
produced by species of Flavobacterium and Agrobacterium (Zaidenzaig er al.,

1979).

Among the Gram-positive bacteria, five types of CAT have been described - 

types A to D and a fifth CAT specified by pC194 (Sands and Shaw, 1973; Fitton 

and Shaw, 1979; Wilson e^ ai » » 1981) - and unlike the Gram-^negative CATs, all 
are inducible. The CATs of different species of streptococci appear to be 
related to those of the staphylococci (Courvalin _ê  al., 1978). CATs are 

also produced by Clostridium perfringens. Bacillus pumilus and Streptomyces 
species (Shaw, 1983).

The mechanism of inactivation of chloramphenicol appears to be the same 

for all CATs and indeed, comparison of primary amino acid sequences has shown 

conservation of certain amino acids in the proposed catalytic site (Shaw et al., 
1979; Horinouchi and Weisblum, 1982a; Harwood £t al., 1983). The first 

step in the acétylation process couples the breaking of the thiol-ester bond 

of acetyl-S-CoA with the formation of a 3-acetoxy derivative of chloramphenicol. 

This monoacetate undergoes non-enzymic intramolecular rearrangement to form 

the 1-acetoxy derivative which is then acetylated at the 3-hydroxyl position, 

again at the expense of acetyl-S-CoA, to form 1,3-diacetoxy-chloramphenicol 
(Shaw, 1967). Since none of the acetoxy derivatives of the drug binds to 
ribosomes or has antibiotic activity (Shaw and Unowsky, 1968), a metabolic 

consequence of the need for diacetylation can be a decrease in the growth 
rate and the level of resistance expressed when acetyl-S-CoA is limiting 
(Nordstrom et al., 1972).

Constitutive synthesis of type I CAT in coli has been shown to be 

subject to catabolite repression (Harwood and Smith, 1971). Studies of the 

cat gene in an in vitro transcription-translation system showed that both

4
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cyclic AMP and catabolite activator protein (CAP) were necessary for maximal 

rate of CAT production required for high, level resistance (de Crombrugghe 

et al., 1973). From analysis of the cat gene DNA sequence and DNase 

protection experiments, two cyclic AMP-CAP binding sites were identified 

(Le Grice et al., 1982). Only the site overlapping the cat promoter is 

involved in the regulation of transcription probably by interaction with RNA 
polymerase.

The regulation of inducible CAT synthesis in Gram—positive organisms 

has been studied using the small staphylococcal plasmid pC194 and the cloned 
chromosomal determinant (cat-86) of pumilus (Horinouchi and Weisblum, 1982a; 

Harwood et al., 1983), induction of which has been shown to be independent of 
the promoter used to activate the gene (Mongkolsuk £t al̂ ., 1984). Identif­

ication of a 37-base pair inverted repeat sequence between the likely start 

of transcription and the translation initiation codon of pC194 led Horinouchi 
and Weisblum (1982a) and Shaw (1983) to propose that cat gene transcription 

was controlled autogenously by the CAT protein interacting with the "hairpin" 

loop formed by the inverted repeat, either as a repressor in the absence of 

or inducer in the presence of chloramphenicol. However, it was shown that 

the level of pC194 CAT specific mRNA was unchanged by induction (Byeon and 
Weisblum, 1984), although the opposite was true of cat-86 (Duvall et al., 1984) 

and study of expression by derivatives deleted in all or part of pC194 or 

cat-86 structural genes, excluded the possibility of the direct participation 

of CAT in its own regulation (Byeon and Weisblum, 1984; Mongkolsuk et al.,
1984). Nevertheless, the importance of the inverted repeat sequences in 
regulation was shown by isolation of pC194 constitutive variants deleted in 
all or a functional part of the inverted repeat (Ambulos e_t al̂ ., 1984) and 
the demonstration, by lacZ gene fusions, that the region essential to induction 

was the 144-base pair segment between the promoter and structural cat-86 gene 

(Mongkolsuk ad., 1984) which also contains an inverted repeat sequence
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capable of sequestering the ribosomal binding site in a stem-loop formation 

(Duvall al_* » 1983).

Currently, it is thought that CAT synthesis is regulated by a mechanism 

similar to translational attenuation, although unlike other such mechanisms, 

alternative stem-loops are not possible (Duvall et al., 1983; 1984; Byeon 

and Weisblum, 1984). The mechanism by which ribosomes could block stem-loop 
formation or destabilise the structures are unknown. Comparison of the 

sequence of the stem-loop of pC194 mRNA with an inverted complementary repeat 

sequence found in 23S rRNA showed an exact match over a nine nucleotide 
sequence which included the paired region containing the ribosome binding site 

(Byeon and Weisblum, 1984). It was therefore proposed that as a result of 

binding of chloramphenicol to the 50S ribosome subunit, the nine nucleotide 
sequence of the 23S rRNA became accessible to bind to the nascent CAT mRNA 

during its synthesis thus freeing the ribosome binding site to act with 16S 

RNA in the 30S subunit. For synthesis of CAT, a free 508 subunit would have 

to replace that bound to chloramphenicol. Alternatively, the demonstrable 

sequence homology, upstream from the inverted repeats, with the extreme 3’- 

end of 168 rRNA could permit binding of the 308 ribosomal subunit with subsequeni 
association of a chloramphenicol modified 508 subunit. The physical inter­
action of this "dead-end complex" at a precise location upstream of the inverted 

repeat could, during transcription, prevent stem-loop formation (Horinouchi 
and Weisblum, 1982a; Mongkolsuk ejt 2I., 1984) .

Macrolide-lincosamide-streptogramin B antibiotics

Gram-negative organisms are generally intrinsically resistant to clinically 

achievable levels of ML8 antibiotics, either because of impermeability of the 
outer membrane or because of the level of méthylation of adenine residues in 

238 ribosomal RNA (Costerton and Cheng, 1975; Tanaka and Weisblum, 1975).
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One exception to this is the genus Bacteroides which is susceptible to and 

often treated with the lincosamide, clindamycin (Bartlett et a]̂ ., 1972),

High level resistance of Gram-positive bacteria to the MLS group is 

usually specified by plasmids, particularly in the genera^ Staphylococcus and 

Streptococcus where the determinants may be located on a transposon - Tn551 
of Staph, aureus plasmid pI258 (Novick > 1979) and Tn917 of faecalis

plasmid pAD2 (Tomich et al., 1980). In addition, plasmid determined 

resistance has been reported in clinical isolates of Bacteroides (Welch et al., 

1979; Rotimi et al.., 1981), coryneform bacteria (Schiller ^  al., 1980) and 

Clostridia (Brefort et al., 1977) while chromosomal resistance genes have 
been described in B. licheniformis (Docherty et al., 1981) and pneumoniae 

(Engel 22 ad., 1980). On the basis of DNA-DNA hybridisation studies, Ounissi 
and Courvalin (1982) have described four classes of MLS resistance loci.
Class A is the most frequently encountered and includes most of the strepto­
coccal and many staphylococcal determinants. Class B is comprised of 

staphylococcal plasmids pE194 and pE5 while classes C and D are represented 

by the loci of JB» licheniformis and Bacteroides respectively. However, 
comparison of the deduced amino acid sequences of the MLS determinant proteins 

representing class A (pAM77) and class B (pE194) showed that half the amino 
acids were identical in sequence indicating a common origin (Horinouchi and 
Weisblum, 1982b).

Resistance to MLS antibiotics is due to ,N^-dimethylation of adenine 

in 23S ribosomal RNA (Graham and Weisblum, 1979; Ranzini and Dubin, 1983) 

probably resulting in a conformational change which prevents binding of the 
drugs (Shiyakumar and Dubnau, 1981). The RNA methy1ase encoded by the ermC 

gene of staphylococcal plasmid pE194 is a 29,000 dalton protein which 
methylates 50S ribosomal subunits or 23S RNA but not 70S ribosomes (Shivakumar 

and Dubnau, 1981). A RNA methylase has also been identified as the product 

of the 2* licheniformis MLS resistance locus (Docherty et al., 1981).



31

Expression of resistance can be constitutive or inducible although the 

differences in regulation do not correlate with differences in classes 

(Ounissi and Courvalin, 1982), The regulation of inducible resistance by 
pE194 has been intensively studied and the complete nucleotide sequence of 

this plasmid is known (Horinouchi and Weisblum, 1982c). Two open reading 

frames encoding the 29,000 dalton methylase preceded by a 2,700 dalton 

control or leader peptide have been found to be essential for expression of 

resistance. In this system, only erythromycin and the closely related 

oleandomycin can act as inducers and it has been shown that, as induction can 

occur in the absence of transcription, regulation must be posttranscriptional 
(Horinouchi and Weisblum, 1980; Shivakumar et al., 1980). Each open reading 
frame is preceeded by a ribosome binding site and associated with these sites 

are appropriately positioned translation initiation codons. Within the 
leader region and overlapping the 5'-end of the methylase structural gene is 

a series of six repeated sequences which have the potential to form various 
hairpin loop structures in the ermC message (Hahn et al., 1982). The trans­

lation attenuation model proposes that in the absence of drug, the conformation 
of the messenger RNA is such that only the leader peptide is translated and 

that the ribosome binding site and initiation codon for the methylase are 

masked by secondary structure. In the presence of sub-inhibitory concen­

trations of erythromycin, drug binds to ribosomes which begin to translate 

the leader peptide. However, nascent peptidyl-tRNA formation is blocked by 

the antibiotic at a critical length and the result of this ribosome stalling 
is thought to be a conformational change in the RNA message which exposes the 
methylase ribosome binding site and initiation codon thus allowing methylase 
translation (Horinouchi and Weisblum, 1980; 1982c; Hahn et al., 1982).

Studies of ermC—lacZ gene fusions cloned into E. coli have shown that 
ermC^ retains the ability to be induced in the new host (Kirsch and Lai, 1984). 

Partial deletion of the methylase structural gene, leaving the putative 5'-
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attenuator resulted in an increase of B-galactosidase activity related to 

the increase in erythromycin concentration but when functional érmC was 
introduced, significantly less g-galactosidase was produced at comparable 

drug concentrations. This effect was thought to be due to méthylation of 
ribosomes causing negative feedback inhibition.
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GENE TRANSFER IN THE GENUS STREPTOCOCCUS

Transformation

Natural transformation systems have been described in streptococci, 

including group F (LeBlanc et̂  a]L., 1978b), sanguis (Ranhand, 1974;

Davidson et al., 1976; Westergren, 1982) and Ŝ» mu tans (Perry and Kuramitsu, 

1981; Perry at al», 1983), as well as other bacterial genera such as Bacillus 

(Dubnau, 1976) and Haemophilus (Stuy, 1962; Sisco and Smith, 1979) but much 

of the present understanding of the process of transformation, however, has 
come from studies of 2* pneumoniae.

The ability to take up extracellular DNA is not a permanent property but 
is dependent on a competent state acquired for a short period during the late 
logarithmic growth phase when the cells reach a particular density (Tomasz 

and Hotchkiss, 1964), Unlike the coli transformation system in which cells 
are made competent by CaCl^ treatment and heat shock (Cosloy and Oishi, 1973), 

streptococcal competence is a natural process dependent on extracellular 

activators. The activators or competence factors are small basic proteins 

(Tomasz and Mosser, 1966; Leonard and Cole, 1972) which bind to cell membrane 

proteins and signal the onset of competence (Ziegler and Tomasz, 1970).

Mutants defective in achieving spontaneous competence have been isolated by 

insertion-duplication mutagenesis using the erythromycin resistance'' gene of 
pAM31 and, although the exact nature of the defect is unknown, they probably 

fail to produce or produce inactive extracellular competence factor (Morrison 

et al., 1984). In 2* sanguis, the production of competence factor has been 
found to be dependent on the strain and the medium used and is inversely 
related to the presence of competence factox inactivator (Gaustad, 1983).

The competent state in 2* pneumonia.e has been shown to be associated with 
a change in the pattern of proteins synthesised by a culture with at least 16 

new polypeptides being made (Morrison and Baker, 1979; Morrison et al., 1982).
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Other changes associated with competence, which may be secondary to the 

redirection of cellular metabolism, include appearance of a novel surface 

antigen, altered cell wall structure leading to the unmasking of an agglutinin, 

leakage of DNA and nucleases, increased autolysis and a requirement for choline 
in the cell wall (Lacks, 1977).

Following the development of competence, uptake of extracellular DNA is 

possible and a generally accepted model for uptake in 2* pneumoniae has been 
proposed by Lacks (1977). Double-stranded DNA binds to specific sites on 

the surface of competent cells and is accompanied by random single strand 

breakage or nicking. A membrane located nuclease, the major endonuclease, 

is necessary for aubsequent entry of donor DNA. The enzyme produces a double 

strand break opposite the nick and processive action of the endonuclease 
results in internal single-stranded DNA and an equivalent amount of extra­

cellular oligonucleotides derived from the complementary strand. In this 

original model, the requirement for double-stranded DNA was absolute and it 

was suggested that entry of one strand resulted passively and processively 

from the alternate attachment and hydrolysis of the complementary strand by 
the nuclease. This DNA translocation did not however explain the essential 

requirements for calcium ions and an energy source such as glucose (Seto and 

Tomasz, 1974; 1976). Moreover^ recent work has shown that single-stranded 

phage-plasmid hybrid molecules are capable of transforming 2' pneumoniae, 
albeit with greatly reduced efficiency (Barany, 1982; Barany and Boeke, 1983). 
While not excluding the possibility that the mechanisms of uptake of single- 
and double-stranded DNA may be different, these authors suggest that membrane 
potential or calcium gradient generated by fermentation of glucose could 

provide the energy of DNA uptake. Recently,it has been shown in H. influenzae 

that the transformation frequency of homologous DNA increased with the proton 
motive force and DNA uptake could be driven with either the electrical 

potential or pH gradient components (Bremer et al., 1984).
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On uptake by 2* pneumoniae, donor DNA undergoes an eclipse of trans­

forming activity due to its single—stranded nature. In this state before 

integration into the recipient chromosome, it is found to be associated with 

the major competence specific protein in a nuclease resistant eclipse complex 

(Morrison and Mannarelli, 1979; Vijayakumar and Morrison, 1983). Similar 

complexes have been described in sanguis (Raina and Ravin, 1978) and the 
protein component of these complexes is thought to have a role in transport, 

protection against nuclease digestion and, possibly, in recombination (Raina 

e_t al., 1979; Vijayakumar and Morrison, 1983). Integration of single-stranded 
donor DNA into the recipient chromosome can occur where there are regions of 

significant homology (Fox and Allen, 1964; Mejean and Claverys, 1984) but if 

no homology exists or if the segment is too short (Morrison and Guild, 1972), 

the DNA is usually degraded (Cato and Guild, 1968; Lacks et al., 1967). In 

pneumoniae, integration efficiency has been shown to be dependent on the 
markers or mutations carried by the donor DNA and is under the control of the 
Hex system which recognises and corrects base mismatches during donor- 

recipient heteroduplex formation (Claverys e_t al̂ ., 1982; 1983).

Transformation with heterologous plasmid DNA was first demonstrated in 

a streptococcal system by LeBlanc and Hassel (1976) when they successfully 

transformed the Challis strain of sanguis using the 2* faecalis MLS 
resistance plasmid, pAM31 (but not using the tetracycline resistance plasmid 

pAMal which is unable to replicate in 2* sanguis ; Ranhand and LeBlanc, 1984). 

The 3 plasmid could be isolated from 2* sanguis as a covalently closed molecule 

but velocity gradient analysis showed that the plasmid had undergone deletion. 
Subsequent studies of plasmid transformation of 2* sanguis and pneumoniae 

showed that uptake occurred by a mechanism similar to chromosomal DNA and 
thus closed circular plasmid DNA is bound, randomly linearised by nucleases 
and enters the cell as a single strand (Barany and Tomasz, 1980; Saunders and 

Guild, 1981a,b; Behnke, 1981). Restoration of a circular plasmid requires
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annealing of complementary strands originating from two different donor 

molecules and deletions are thought therefore to occur when annealing between 

a unit length molecule and a shorter complementary fragment results in long 

stretches of single-stranded DNA. Intrastrand annealing within the single­

stranded regions at points of local homology would produce deletions (Behnke,

1981). The production of deletions has been exploited in order to obtain 

miniplasmid derivatives suitable as molecular cloning vehicles (Macrina et al., 

1980; 1982; Behnke et al., 1982) and to localise biological functions on the 

physical maps of the parent plasmids (MaIke, 1981; Behnke and Gilmore, 1981).

Plasmid transformation of JB- subtilis has been shown to be due to multi­
meric forms of closed circular plasmids with monomeric forms being inactive 

(Canosi et al., 1978; Mottes jet al̂ ., 1979). In contrast, 2* sanguis and 
pneumoniae can be transformed with multimeric and monomeric forms (Barany 

and Tomasz, 1980; Saunders and Guild, 1981a; Macrina ̂ t al., 1981), the former 

transforming with first-order kinetics whilst the latter follow second-order 
kinetics, reflecting the need for two independently derived single strands 

to produce a closed circular molecule in the recipient. Furthermore, it has 

been shown that open circular and linear molecules are also active although 

with reduced efficiency (Saunders and Guild, 1981b; Behnke, 1981). Unique 

linear forms produced by restriction endonucleases are inactive due' to a 

lack of overlapping homologous sequences which prevents circularisation but 
transforming activity is restored when linear molecules generated by different 
endonucleases are mixed.

The fact that transformation with monomeric plasmid DNA is a second- 
order process in 2* sanguis and the low overall efficiency of plasmid 

establishment in both 2* sanguis and 2» pneumoniae has led to problems in 
'shotgun' cloning of chromosomal fragments and construction of gene libraries 

(Macrina et al., 1981; Lacks e^ ah., 1982). In 2* sanguis, the likelihood 
of transformation either by mu1timers or monomers carrying the identical insert
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is extremely low and annealing of only partly homologous molecules most 

likely leads to mlspairings resulting in deletions (Behnke 2 2 ^ * »  1982).
To obviate the problem, a helper plasmid cloning system has been developed 

in which the recipient cell contains a resident homologous plasmid which 

participates in the recombinational "rescue" of chimeras with shared 

homology (Tobian and Macrina, 1982; Macrina 2Ï. £i* » 1982; Malke and Holm,
1982). In 2* pneumoniae the efficiency of transformation has been greatly 
increased by the use of recombinant plasmids carrying DNA segments homologous 

to the chromosome (Lacks 22 > 1982; Lopez et al., 1982).

A polyethylene glycol induced transformation system has recently been 

described in group N 2* lactis by Kondo and McKay (1982). Using protoplast 
recipients, they have been successful in transforming a lactose-negative 

strain to lactose fermenting ability with 2* lactis plasmids ranging in size 
from 35 to 55kb. Moreover, transformation to erythromycin resistance has 

been demonstrated with the 2* faecalis plasmid pAMgl and the 2* sanguis cloning 

vector pGB301, the latter indicating the usefulness of the transformation 

system for cloning plasmid encoded genes in H. lactis (Kondo and McKay, 1982; 

1984).

Conjugation

Conjugal transfer in streptococci was first reported by Tomura 22 al., 

.(1973) with a haemolysin-bacteriocin determinant although direct evidence of 
plasmid involvement was not given. Reports by Jacob and coworkers (1974;

1975) followed, describing a strain of 2* faecalis subspecies zymogenes which 
contained two plasmid species - pJHl encoding multiple antibiotic resistance 

and pJH2 encoding haemolysin-bacteriocin production. Both plasmids were 

transmissable to a plasmid free recipient strain during mixed incubation in 

nutrient broth by a process which required viable donor cells and was 

resistant to DNase I treatment. In addition, no transfer was observed using
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cell free filtrates of donor and no evidence of bacteriophage in the donor 

strain could be found. The authors therefore concluded that cell-to-cell 

contact was necessary for transfer and that such transfer occurred by conjug­
ation.

Numerous conjugative plasmids in 2» faecalis have now been described 

which encode a variety of functions including antibiotic resistance (Van Embden 

et al., 1977; Harder and Kayser, 1977; Horodniceanu 22 .êL*> 1979a,b; Courvalin 
et al., 1980a), resistance to ultraviolet light (Frazier and Zimmerman, 1980; 

Miehl ejt 2L* > i980) and production of haemolysin and bacteriocin (Dunny and 
Clewell, 1975; Oliver et al., 1977; Borderon £t al., 1982). In the industrially 

important group N lactic streptococci, transfer by conjugation of metabolic 

plasmids specifying protease production or ability to ferment lactose, as well 

as plasmids encoding bacteriocin production, has been demonstrated (McKay et al., 

1980; Walsh and McKay, 1981; Neve e_t ' 1984). Conjugative transfer of 

antibiotic resistance has also been reported in streptococci of group A (Malke, 

1979), group B (Horodniceanu jet al., 1979a; Burdett, 1980) and groups C and G 

(Bougueleret 22 2i.* » 1981), Certain of these plasmids, noteably those encoding 
MLS resistance, have been shown to have a broad host range and are capable of 
intergroup transfer (LeBlanc jet al., 1978; Malke, 1979; Engel et al., 1980;

Gasson and Davies, 1980) as well as intergeneric transfer to lactobacilli 
(Gibson et al., 1979) staphylococci (Engel et al., 1980; Schaberg at al., 1981; 

1982) and bacilli (Landman et al., 1980). In addition, it has been shown that 

certain conjugative plasmids can mobilise non-conjugative plasmids (Dunny and 
Clewell, 1975; Tomich et al., 1979; Burdett, 1980; Smith et al., 1980) and 

chromosomal markers (Franke et al., 1978). Indeed, in order to circumvent 

the inability of S. faecalis to take up DNA by transformation, a technique has 
been developed in which a non—conjugative S. sanguis-E.coli shuttle vector is 

mobilised to an 2» faecalis recipient via cointegrate formation with a 

conjugative plasmid (Smith and Clewell, 1984).
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The mechanism by which conjugal transfer occurs in streptococci is 

poorly understood. Unlike the well documented role of pili in mating pair 

formation of the classical F plasmid conjugation system of E.' coli (Clark 

and Warren, 1979; Bradley, 1981) no correlation between possession of fimbriae 

and a conjugative plasmid has been observed (Handley and Jacob, 1981),

Krogstad and coworkers (1980) reported intercellular "connections" during 

conjugation in 2» faecalis but it was not clear whether these connections were 
artefacts of the preparation or true examples of conjugal contacts (Clewell,
1981).

In order to detect transfer of the majority of conjugative streptococcal 

plasmids, it is necessary to carry out matings under conditions which enforce 
cell-to-cell contact. This is usually obtained by collecting a mixture of 

donor and recipient cells on a membrane filter which is subsequently incubated 

on nutrient agar. In 2* faecalis, however, certain large plasmids (53 to 70 
kilobase pairs; kb) have been described which transfer with high frequency 

in mixed broth cultures. These plasmids commonly encode haemolysin and 

bacteriocin production, although some antibiotic resistance plasmids have been 

reported (Clewell jet ajL., 1980a; Dunny ejL a^., 1981a,b), and have a narrow 

host range, in that transfer occurs only to 2* faecalis recipients (Dunny 
£t al., 1978; Clewell 22 al•, 1980a; Clewell, 1981). A study of the physio­
logical conditions affecting transfer has shown that recipient growth phase
has no effect on transfer but maximum efficiency is obtained using early

7 8exponential phase donor cells in the ratio of 10 donors to 10 recipient cells 

per ml (Dunny et al., 1982a). Plasmid transfer in this unique system is 
characterised by the appearance of mating aggregates after 40 to 120 minutes 

growth in mixed culture (Dunny et al., 1978). It was subsequently shown that 
incubation of donor cells in the presence of a cell free filtrate of recipient 

cells induced auto-aggregation and that, whereas plasmid transfer normally 

required a 2 to 4 hour incubation period, high frequency transfer could be
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obtained after just 10 minutes incubation with an induced donor culture 

(Dunny et al., 1978; 1979; 1981b). The substance responsible for the donor 

aggregation response was shown to be a soluble, protease sensitive, heat 

stable protein or peptide of molecular weight around 1000 daltons, excreted 
by potential recipient strains and referred to as a clump inducing agent (CIA) 

or sex pheromone (Dunny et al., 1978). Quantitation of CIA activity could 
be achieved by measuring the highest serial twofold dilution of culture 

filtrate which produced clumping of donor cells (Dunny et al., 1978) and the 
titre was shown to be variable usually between 4 and 64 depending on the 

plasmid carried by the donor and the donor strain itself (Dunny 22 iLl.* » 1981b; 
1982a). The production of CIA by recipient strains closely followed cellular 
growth during log phase and reached a stable maximum as the cells entered 

stationary phase (Dunny et al., 1979) although in the case of the liguefaciens 

subspecies of 2* faecalis, CIA activity rapidly decreased at stationary phase 
presumably due to the proteolytic activity of these strains. This was 

confirmed by the isolation of a protease-negative mutant which maintains the 

maximum level of CIA (Ike ejt £2* > 1983).

Further studies showed that recipient strains produced multiple CIAs, 

specific for a particular class of plasmid, and that acquisition of a given 
plasmid appeared to "shut off" production of the corresponding CIA only, while 

allowing the cell to become responsive to exogenous pheromone (Dunny et al., 
1979; Clewell\et al., 1980a). Recently it has been shown that the apparent 
shuttingsoff of pheromone production actually reflects plasmid encoded modif­

ication of endogenous CIA (Ike e_t £2* > 1983) . Plasmid containing isogenic 
derivatives of recipient cultures were found to produce a substance which 
inhibited specifically the action of CIA and comparison of the molecular weights 
of the CIA with the corresponding inhibitor indicated that the latter was the 

CIA which had undergone a chemical addition of 350 to 400 daltons. That the 

inhibitor was in fact a modified form of CIA and not a novel substance, was
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confirmed by demonstration of activity regeneration on treatment with 

phosphodiesterase II and by the fact that a mutant, defective in CIA production, 

also failed to produce inhibitor. The inhibition of CIA by the modified CIA 
is thought to result from competition for a binding site or transport system 

on the donor cell surface.

In the model of aggregation proposed by Dunny and coworkers (1979) and 
Ike and Clewell (1984), the response of the donor cell to exogenous CIA is 
the activation of synthesis of an aggregation substance (AS), encoded either 

chromosomally, or more likely by the plasmid, which would recognise an as yet 

unidentified, chromosomally determined and constitutively expressed binding 

substance (BS) located on the cell surface of both donor and recipient cells. 

Regulation of AS synthesis is assumed to be under the control of a plasmid 

located gene which specifies a repressor while another plasmid locus is 

thought to be involved in the inactivation of chromosomally determined 

pheromone. Using Tn917 to generate insertion mutations in the haemolysin- 

bacteriocin plasmid pADl, Ike and Clewell (1984) have investigated the molecular 

basis of the clumping response. Several types of mutation were obtained, 
some of which resulted in constitutive clumping i.e. constitutive synthesis 
of AS, and which were found by restriction endonuclease analysis to cluster 

in two regions separated by 1.7kb;traA (1.5kb), mutants of which had/a "dry" 
colony morphology and traB (l,3kb), mutants of which had a normal colony 

morphology. Neither mutant type produced the active pheromone cADl but instead 
produced the corresponding inhibitor suggesting that no insertions were obtained 

in the putative pheromone inactivation determinant and it was postulated that 
traA and traB products may be involved in negative regulation of AS synthesis.

Studies have shown that induction of the aggregation response requires 

RNA and protein synthesis (Dunny et al., 1978) and the. presence of phosphate 

and divalent cations at physiological pH (Yagi al_* » 1983). The requirement 

for these ions may reflect stabilisation of binding by modulation of the
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repulsive effects of the net negative charge on the bacterial surface. Anti- 

serum raised against an induced donor strain carrying a conjugative plasmid 

has been shown to block aggregation by binding to a pheromone induced surface 

antigen (Kessler et al., 1982; Yagi et al., 1983). This novel antigen appears 

as a dense amorphous layer on the surface of induced cells when viewed by 
immunofluorescence and immunoperoxidase and it is considered to be the AS of 
the above model (Yagi et al., 1981; Kessler and Yagi, 1983). The AS is a 

protein with an apparent molecular weight of 78,000 (Kessler 22 al̂ ., 1982; 
Kessler and Yagi, 1983). Interestingly, specific antiserum prepared against 

induced cells harbouring one conjugative plasmid, readily cross-reacted with 
AS induced in strains harbouring different plasmids which make use of different 

pheromones. Thus, despite differences in pheromone specificity, the ASs 

produced by different strains have significant structural similarity (Yagi 
et al., 1983).

In addition to induction of AS, pheromones appear to elicit other functions 
related to conjugation. Investigating donor-donor matings between isogenic 

strains containing derivatives of the same conjugative plasmid - one with a 
tetracycline resistance transposon insert and the other with an erythromycin 

resistance transposon insert - Clewell and Brown (1980) demonstrated that 
plasmid transfer was enhanced primarily in the direction of induced to uninduced 
cells regardless of which donor was induced. This indicated that the pheromone, 

in addition to AS, induced an as yet uncharacterised preparation for plasmid 

transfer. Induction of both donors prior to mating resulted in reduced 
transfer frequency and was thought to be suggestive of induced surface exclusion 
functions. The authors proposed that CIA induction induces a polycistronic 

operon, which encodes several functions related to transfer, in a system 
analagous to that described for the tra operon of Gram-negative organisms 

(Clark and Warren, 1979).
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Aggregation and associated high frequency transfer by conjugation has 

also been reported in strains of 2* lactis (Gasson and Davies, 1980; Walsh 

and McKay, 1981). The transfer of plasmid DNA in group N strains occurs 
normally at low frequency and only when matings are carried out on membrane 

filters or the surface of agar (McKay et al., 1980). However, after transfer 

of a plasmid specifying ability to utilise lactose, Gasson and Davies (1980) 

reported that a large percentage of lactose utilising transconjugants exhibited 

aggregation and subsequent high frequency transfer of lactose genes in broth 
culture. The aggregation response was different from that of 2* faecalis 

in that the original donor did not aggregate and no sex pheromone could be 

demonstrated. Further studies by Walsh and McKay (1980) showed that lactose 

metabolism (in the parental strain mediated by a 55kb plasmid), aggregation 

and high frequency conjugation were associated with the acquisition of a 104kb 
plasmid. Improved plasmid isolation techniques showed that the 104kb plasmid 

was also present in parental strains but at very low copy number (0.06 copies 

per cell) and restriction endonucleases analysis indicated that it was a 

cointegrate molecule composed of the 55kb lactose plasmid pSK08 and a co­

resident 48.4kb plasmid pRSOl (Anderson and McKay, 1984). The recombinant 

molecule was generated as an intermediate in the transposition of a 0.8 to 

l.Okb insertion element on pSK08 to pRSOl. The aggregation response was found 
to be associated with an inversion element on pRSOl of 4.3kb and a contiguous 

region spanning a total of 23.1kb, aggregation being dependent on the orien­
tation of the inversion element and probably also on gene dosage.

Conjugation in the absence of plasmids

The conjugal transfer of streptococcal antibiotic resistance determinants 
in the absence of extrachromosomal DNA was first reported by Shoemaker and 

coworkers (1980) in two clinical isolates of 2» pneumoniae which had previously 

been found to be resistant to tetracycline and chloramphenicol (Miyamura et al..
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1977; Dang-Van et al., 1978). Analysis of transformation and physical data, 

obtained from velocity and dye-buoyancy experiments, showed that the cat and 

tet genes were contained in adjacent heterologous insertions (4 to 8kb and 

greater than 30kb respectively) in the chromosome (Shoemaker > 1979).

The transfer of these genes was demonstrated at low frequency to pneumococcal 

but not 2* faecalis recipients by a process which required cell-to-cell contact 

on membrane filters and which was DNase resistant (Shoemaker et. » 1980;
Smith and Guild, 1980). The process thus resembled conjugation and was 

distinguished from transformation by a number of criteria - 1. the yield of 
transconjugants was unaffected by the Hex status of the recipient, 2. transfer 

was independent of the membrane endonuclease necessary for entry of transforming 
DNA, 3. transfer of point mutations to streptomycin and erythromycin resistance 
which efficiently transformed recipients was completely abolished by the 
presence of DNase, and 4. chloramphenicol resistance was never transferred 

alone although this was the most frequent event in transformation. No plasmid 

DNA could be detected in parental or transconjugant strains and introduction of 
a conjugative plasmid by transformation had little or no effect on the transfer 

of the chromosomal resistances.

Similar DNase resistant transfer from multiple resistant S. pneumoniae 

to pneumococcal and group D recipients has been described (Buu-hoi and 

Horodniceanu, 1980). Again no plasmids could be detected and thé chromosomal 
location of resistance genes has been confirmed in one of the strains (Guild 
et al., 1981).

The possible mechanisms of transfer have been discussed by Guild et al., 

(1982). They have rejected the possibility of Hfr-like mobilisation since 
transconjugants could all retransfer resistances and no mobilisation of the 
chromosome could be detected. Excision of a plasmid intermediate also seems 

unlikely as the efficiency of transfer of insertions is not decreased when 

the recipient strain possessed ah in vivo restriction system which was shown
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to restrict conjugative transfer of plasmids. Instead, they postulate transfer 

of a single strand of the insert followed by integration at sites of flanking 

homology or an as yet obscure transposition process.

In 2* faecalis, low frequency transfer on membrane filters of a chromo­

somal ly encoded tetracycline resistance determinant was described by Franke 

and Clewell (1980;1981), Transfer required viable donor cells and was DNase 

resistant. The data indicated that the determinant was located on a 15kb 

transposon, designated Tn916, which was capable of transposition to different 
conjugative haemolysin plasmids introduced into the host cell as well as 
transfer to a plasmid free recipient. Insertion into these plasmids caused, 

in some cases, inactivation and, in others, hyperexpression of haemolysin 

suggesting that the transposon could insert into multiple sites. By analysis 
of hybridisation profiles of transconjugants, it was subsequently shown that 
Tn916 could also insert into different sites in the recipient chromosome 

(Clewell, 1981; Gawron-Burke and Clewell, 1982). The fact that digested 

recipient chromosomal DNA from different transconjugants showed different 

patterns when hybridised to a Tn916 probe argued against the possibility that 

the determinant was located on a plasmid which had escaped physical detection. 

Both transposition and transfer were found to be independent of the host 
recombination system (Franke and Clewell, 1981; Clewell, 1981).

Certain tetracycline resistant transconjugants were isolated which exhibited 

increased transfer frequencies in secondary matings. Introduction of a haemo­
lysin plasmid into these strains followed by analysis of the frequency of 
occurrence of the hyperhaemolytic phenotype during secondary matings showed 
that transposition was similarly increased, indicative of a common step(s) in 

Tn916 transposition and transfer (Gawron-Burke and Clewell, 1982). Studies 
involving the transfer of Tn916 located on a conjugative erythromycin 

resistance plasmid showed that the transposon was excised precisely and at 

high frequency in the recipient strain (Gawron-Burke and Clewell, 1982).
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Excision resulted either in transconjugants in which the resistances were no 

longer linked, i.e. Tn916 integrated into the recipient chromosome, or in the 

loss of tetracycline resistance, and was possibly related to zygotic induction 

of Tn916 recombination enzymes. The model of Tn916 behaviour suggested by 

Gawron-Burke and Clewell (1982) proposed that spontaneous excision occurs at 

low frequency from the bacterial chromosome and that the element forms a 

circular molecule incapable of vegetative replication. Excision is accompanied 

by the induction of enzymes which allow the transposon to 1. re-insert into 

the chromosome either at the original or at a new site, 2. insert into a 
resident plasmid, 3. transfer into a recipient strain or 4. segregate. 
Conjugation therefore could be achieved by the same mechanism used by plasmids, 

with zygotic induction of enzymes to allow insertion into the recipient 
chromosome.

Recently, Nida and Cleary (1983) have described the conjugative transfer 

of Tn916 to a group A streptococcal isolate and showed that the transposon 

could insert in multiple sites of the chromosome and that some insertions 

resulted in inactivation of the determinant for production of the cytolytic 

toxin, streptolysin S. Tetracycline sensitive revertants regained the ability 

to produce streptolysin S, confirming the observation of Gawron-Burke and 

Clewell (1982) that excision is precise. Precise excision of Tn916 from 

a pBR322 derived vector in JB* coli has also been demonstrated (Gawron-Burke 

and Clewell, 1984) although insertion of the transposon into the 2* coli 
chromosome was rare. In contrast, introduction of chimeric DNA containing 

Tn916 into 2* sanguis resulted in frequent transposition, sometimes to multiple 
sites, in the host chromosome. These re^sults suggest the suitability of 
Tn916 for targeting the cloning genes of Gram-positive bacteria by insertional 
mutagenesis and, following cloning of the DNA sequence containing Tn916, 
functional integrity of the gene of interest could be regained by the precise 

excision of the transposon.
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The extent of homology of tetracycline resistance determinants has been 

investigated using an in vivo transformation assay (Smith e t . * 1981) based 
on the ability of tetracycline determinants from different sources to trans­

form a tetracycline sensitive point mutation in the chromosomal insertion of 

an 2 ‘ pneumoniae isolate. Two distinct groups emerged - those determinants 
which were unable to transform the mutant to tetracycline resistance and were 
of plasmid origin and those which transformed with high efficiency and were 

chromo somally encoded. Among the latter group were all the S. pneumoniae 

clinical isolates tested, Tn916 and three strains of group B including that 
which has since been shown to carry a transposon (Smith and Guild, 1982).
These results lend support to the idea that some resistance genes of

S. pneumoniae are located on conjugative transposons.

Transfer of antibiotic resistance has been reported in a number of other 

streptococcal groups including groups A, B, F, G (Horodniceanu et al., 1981) 

and D (2* faecium and 2* bovis) and in viridans streptococci (Le Bouguenec 
and Horodniceanu, 1982; Horodniceanu et al., 1982a,c). The transfer has been 

shown to be at low frequency on membrane filters and resistant to the presence
of DNase although plasmid free transfer has only been inferred by the lack of

physical evidence for extrachromosomal DNA in most of these strains and their 
transconjugants. Recent investigations by Smith and Guild (1982) of one of 
the group B strains have indicated however that the resistance genes are 

carried on a chromosomal transposable element with properties similar to Tn916. 

In contrast-, one group G strain (Horodniceanu 2È. £i.* > 1981) and a strain of 
S. mutans (LeBlanc ejt al., 1982) have been shown to contain conjugative elements 

integrated into the chromosome which are capable of autonomous replication on 

transfer to recipient cells. The absence of plasmid DNA in a donor strain 

does not therefore necessarily indicate that resistance determinants are 

located on the conjugative transposons of Franke and Clewell (1980; 1981).
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Transduction

Bacteriophage mediated transfer of genetic traits such as antibiotic 

resistance and ability to produce haemolysin or to ferment lactose has been 
shown to occur in streptococcal groups A, C, G (Wannamaker, 1982) and N 

(McKay et al., 1973), and possibly in pneumococci (Parker et a^., 1979) but 
has never been demonstrated in group B or D streptococci (Clewell, 1981).

Among the group A 2* pyogenes, production of the streptococcal exotoxin 

responsible for the characteristic rash of scarlet fever, is known to be 

associated with a specific group of temperate bacteriophage which have the 

ability to convert nontoxigenic strains to toxin production (Nida and Ferretti,

1982). The mechanism of this toxigenic phage conversion is however unclear 

as is the location (chromosomal or phage DNA) of the gene specifying the exo­
toxin (Ferretti et al., 1982).

The transfer of chromosomal streptomycin and erythromycin resistance 
determinants by the virulent transducing phage A25 has been demonstrated 
between group A (Leonard et al., 1968; Malke, 1970a) and between group C strains 

(Wannamaker et al., 1973), as well as intergroup transfer from group A to 

group G strains (Colon jet al.•, 1972) and from group C to group A strains 

(Wannamaker et al., 1973). Transduetional analysis of chromosomal antibiotic 
resistance loci in multiple resistant group A streptococci has been/useful in 
establishing that there are three distinct linkage groups - spectinomycin, 

erythromycin, spiramycin; streptomycin, fusidic acid, bacitracin, kasugamycin; 
rifampicin, streptolydigan (Malke, 1972; Stuart and Ferretti, 1978). That 

transduction could be important in the spread of naturally occurring antibiotic 

resistance among streptococci was demonstrated by Malke (1975) using a group A 

isolate which was lysogenic for the transducing phage P13234mo and which 

carried an MLS resistance plasmid, ERLl. Phage mediated transfer of ERLl 

was not only demonstrated between group A strains but was subsequently shown to 

occur between groups A and C, and groups A and G (Malke et al., 1975) and
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phage A25 mediated transduction of ERLl was reported from a group A strain 

to group G and back to group A (Skjold 22 üi* » 1979). In addition to anti­
biotic resistance, transduction of other markers, such as resistance to 

ultraviolet light (Malke, 1970b) and production of the cytolytic toxin, 

streptolysin S (Skjold et al., 1982), have been reported in group A strepto­

cocci. Furthermore, it has been shown that the production of M protein, 
which confers virulence to group A strains by virtue of its antiphagocytic 

properties, is positively controlled by the specific integration of a temperate 
bacteriophage (Spanier and Cleary, 1980; Cleary and Spanier, 1982).

Studies of intraspecies (2* lactis to 2* lactis) and interspecies 

(2* cremoris to 2* lactis) transduction in group N streptococci using temperate 
phage induced from donor strains have been profitable for identification of 

plasmids involved in lactose metabolism (Klaenhammer and MacKay, 1976;

MacKay et al., 1976; Snook 22. Ji* > 1981). Often, transduction of plasmid to 
lactose defective recipients has resulted in deletions due to a limitation 

in size of the DNA packaged in the phage head (McKay 22 2dL* » 1973; Snook et al.,
1981) and such deleted plasmids were transduced at elevated frequency in sub­

sequent transduction experiments (Klaenhammer and McKay, 1976). Gasson (1982) 

has shown that the lactose plasmid of 2* lactis 712 undergoes spontaneous 

deletion and has postulated that transducing phage merely select deleted 
plasmids of appropriate size which would account for the increased transduction 
frequency in strains harbouring already deleted plasmids. Occasionally, 

lactose-positive transductants have been isolated which contain larger molecular 
weight plasmids than the parent strain probably

resulting from recombination between an incoming transduced lactose plasmid 

and a deleted lactose-negative derivative in the recipient, Transductants 
which have not acquired detectable plasmid DNA have also been described 

presumably due to the Integration of lactose genes into the chromosome (McKay 

and Baldwin, 1979; Snook et al., 1981).
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Although, there have been several reports describing the bacteriophage 

of pneumococci (Porter and Guild, 1976; Bernheimer, 1979; Lopez et al,, 1982), 

there has been little exploitation of phage mediated gene transfer in this 
group. A study by Porter and coworkers (1979) investigated the transfer 

of chromosoma1ly located mutations to antibiotic resistance by a natural 

phage isolate. The process resembled generalised transduction in that 

unlinked markers of donor cell DNA were packaged in phage structures which 

adsorbed to recipient cells and, in this form, the DNA was resistant to the 

action of DNase. However, unlike the phage infection process, entry of 

donor markers did not require phage but insztead was dependent on development 

of recipient cell competence using the endonuclease dependent pathway of 
trans formation.
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ANTIBIOTIC RESISTANCE GENES OF STREPTOCOCCI

Tetracycline resistance genes

Surveys of antibiotic resistance have shown that tetracycline resistance 

is commonly encountered in streptococci (Finland, 1979; Dixon and Lipinski,

1982) although, unlike the situation in Gram-negative bacteria, the majority 

of determinant loci do not appear to be located on plasmid molecules. An 
investigation of 30 group B clinical isolates found that only three strains 

possessed plasmids encoding tetracycline resistance (Burdett, 1980). Of 

these, two were small, nonconjugative, multicopy plasmids which could be 

mobilised by the introduction of a conjugative plasmid, and one was a large 

conjugative plasmid. The remaining strains had no detectable plasmid and 
were unable to transfer tetracycline resistance. A similar lack of plasmid 

located tetracycline resistance has been reported in other studies of group B 

streptococci (Horodniceanu et sd., 1979a) as well as oral streptococci (Hawley 

et al., 1980), group D species faecalis (van Embden et al., 1977) and 

£. faecium (le Bouguenec and Horodniceanu, 1982) and groups A, B, F and G 
streptococci (Horodniceanu et al., 1981).

The failure to detect and identify tetracycline resistance plasmids in 

many streptococcal strains has led to the conclusion that the determinants 

are chromosomally located although, as some have been shown to be transferable 
by conjugation on membrane filters, the possibility remains that the genes 

could be located on plasmids refractory to isolation. However the chromo­
somal location of certain tetracycline resistance determinants has been 

established by transformation studies as for the 30kb tet insertion of

pneumoniae (Shoemaker et al., 1979), by studies of transposition with, for 
example, Tn916 of faecalis (Franke and Clewell, 1981) and the resistance 

determinants of the group B strain agalactiae B109 (Smith and Guild, 1982), 

and from cloning experiments involving an mutans tetracycline resistance

determinant (Tobian and Macrina, 1982).
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On the basis of location and transfer characteristics, streptococcal 

tetracycline resistance determinants can be divided into five groups.

First are those determinants located on small, multicopy, non-conjugative 

plasmids which can be mobilised by other conjugative plasmids, examples of 
'which are pMV158 and pMV163 of agalactiae (Burdett, 1980) and pAMal of 

2" faecalis strain DS5 (Clewell et al., 1974; Dunny and Clewell, 1975).
The latter plasmid has been the subject of some interest since the resistance 

gene has the ability to undergo amplification in the presence of tetracycline, 

resulting in generation of tandem repeats (Clewell ejt £l., 1975). The 
determinant was shown to be located on a 4.2kb segment flanked by homologous 

direct repeat sequences of 380 base pairs referred to as RSI sequences 

(Yagi and Clewell, 1977) and it was postulated that amplification was due to 

recombination, either intra- or inter-molecular, between RSI sequences 

(Clewell and Yagi, 1977). Concomitant with amplification was a decrease in 

plasmid copy number (Yagi and Clewell, 1976) suggesting a copy number control 
mechanism sensitive to the total plasmid mass. Amplification was found to be 
reversible and in addition tetracycline sensitive variants, having deleted 
the 4.2kb segment, could be obtained although neither amplification nor 

deletion occurred in a recombination deficient host (Yagi and Clewell, 1980).
A recent report by Perkins and Youngman (1983) has shown that the 4.2kb

I
segment of pAMal, designated pAMalAl, could function as an autonomous 

replicon in jB. subtilis and confer tetracycline resistance. Further, it was 
shown by restriction mapping that pAMalAl was almost identical to the

cereus tetracycline resistance plasmid, pBC16 and showed extensive homology 
with a Staph, aureus kanamycin resistance plasmid pUBllO.

The second group of streptococcal tetracycline determinants are those 

located on large conjugative plasmids which can confer tetracycline resistance 

alone, for example the 53kb pCFlO of faecalis strain SF-7 (Dunny e£ al̂ ., 

1981b) and the 45.5kb pMV120 of agalactiae (Burdett, 1980), or can also 

specify resistance to other antibiotics such as the 80.7kb plasmid pJHl of
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faecalis strain JHl and the llSkb plasmid pJH5 of faecalis strain JH6 

(Jacob and Hobbs, 1974; Courvalin et al,, 1978). A study of the host range 

of conjugative tetracycline resistance plasmids by Horodniceanu and coworkers 

(1982b) showed that strains of groups D and B could act as recipients.

Some plasmids such as pMV120 also transferred at low frequency to groups A,

B, C, G and H recipients and another plasmid, plP685, transferred into a 

Staph, aureus recipient. However, in these latter examples, no plasmid DNA 
could be detected in recipient strains suggesting that the tet genes had 
become integrated into the chromosome.

A third set of determinants are those, located on the host chromosome, 

which are incapable of transfer,such as those commonly encountered in strains 

of group B streptococci (Horodniceanu et al., 1979a; Burdett, 1980) and 

other streptococcal groups (Bougueleret et al., 1981; Horodniceanu et al., 
1982c).

The fourth class are those determinants which again are chromosomally 

encoded and incapable of autonomous replication but which are transferable 

by a conjugation-like mechanism. Such loci are often linked to other anti­
biotic resistances with which they can co-transfer and have been described 

in groups A, B, F and G streptococci and pneumoniae (Shoemaker ^  ad•» 1979; 
Buu-hoi and Horodniceanu, 1980). Some, for example Tn916 of faecalls 

and the chromosomal insertion of agalactiae strain B109, which specifies 
tetracycline, chloramphenicol and erythromycin resistance, have been shown 
to be capable of transposition to multiple sites of other replicons (Gawron- 
Burke and Clewell, 1982; 1984; Smith and Guild, 1982). It remains uncertain 

how many other conjugative chromosomal determinants are located on transposable 

elements,

A possible fifth group is typified by the tetracycline resistance deter­

minant of mutans strain DL5 described by LeBlanc et al  ̂ (1982). It 

appears to be a 12kb element, inserted into the host chromosome, which is
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conjugative and, on transfer, capable of autonomous replication in faecalis 
and mutans recipient strains.

Strains may contain more than one type of determinant. For instance, 
faecalis strain JHl harbours two conjugative plasmids, pJHl conferring 

resistance to tetracycline, streptomycin, kanamycin, gentamicin and MLS 

antibiotics and pJH2 (58kb) encoding haemolysin and bacteriocin production 

(Jacob and Hobbs, 1974). In addition to the tetracycline resistance locus 

on pJHl, LeBlanc and Lee (1982) have described another tetracycline resistance 

determinant, integrated into the chromosome, which differed in both resistance 

level and regulation of expression. The pJHl associated determinant specified 

constitutive resistance to 40yg tetracycline per ml. On transfer of tetra­

cycline resistance, the majority of transconjugants were haemolytic, co­

res is tant to kanamycin, streptomycin and erythromycin and contained two 
plasmids which corresponded to pJHl and pJH2 on agarose gels. A small 

proportion however harboured a single co-integrate plasmid of 138.7kb. In

a subsequent study, transconjugants were obtained which were haemolytic and 
constitutively resistant to 40pg tetracycline per ml but susceptible to other 
pJHl associated resistances. These strains were shown by restriction endo­

nuclease analysis, to contain hybrid plasmids composed of pJH2 into which 
were inserted fragments originating from pJHl (Banai and LeBlanc, 1983). 

Together with information obtained from study of spontaneous deletions of 

pJHl determinants, the authors have constructed a physical and functional 
map of the plasmid.

The presence of a second tetracycline resistance determinant in strain 
JHl was suspected from the observations that transconjugant strains containing 

pJHl did not express a resistance level as high as the donor and that pJHl 
cured derivatives of JHl remained resistant to 80pg tetracycline per ml 

(LeBlanc and Lee, 1982), On mating in broth culture, one transconjugant
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was obtained which, was tetracycline resistant but susceptible to 

kanamycin, streptomycin and erythromycin and was haemolytic only when tetra­
cycline was included in the blood agar. In contrast to transconjugants
containing pJHl, tetracycline resistance in this strain was inducible. |

aRestriction endonuclease analysis and DNA-DNA hybridisation studies revealed ^
1that the isolate contained plasmid pJH2 into which was inserted a 17.8kb s

fragment which shared no homology with pJHl but was homologous with a 

fragment of chromosomal DNA from strain JHl and its pJHl cured derivative.

The chromosomal locus may therefore represent another example of a resistance I
4

transposon like the conjugative Tn916, which is also capable of transposition 1
'Iinto the haemolysin plasmid of its host. J

Burdett and coworkers (1982a) have investigated the molecular relatedness >
'.f

of tetracycline determinants by DNA^DNA hybridisation studies using probes
i

constructed from the small, non-conjugative plasmid pMV163 and 5kb chromo- |
somal fragment from agalactiae strain B109. Both probes were shown to 
contain the sequences necessary for expression of tetracycline resistance 

when cloned in either orientation into coli. They have identified three 
distinct streptococcal loci on the basis of DNA hybridisation data. The 
tetL locus, carried by the non-conjugative plasmids pMV163, pMV158 and 

pAMal and by the conjugative plasmid pJHl, specifies constitutive resistance 

to tetracycline but not to the related antibiotics, minocycline and 

chelocardin. The tetM determinant located on strain B109 chromosomal DNA 

hybridised to chromosomal DNA fragments from several other agalactiae 
strains which have been found capable of tetracycline resistance transfer 
in the apparent absence of plasmids, pneumoniae and faecalis strain 

DS16 which contains Tn916. This probe also showed homology to plasmid 
pAM211 which carried Tn916. and.a .large C97kb) conjugative faecalis plasmid 

plP614, Preliminary work reported by LeBlanc and Lee (1982) suggested -j

homology with the chromosomal resistance locus of faecalis strain JHl j

which, like that of strain B109, conferred inducible resistance to tetra- 'JI
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cycline and minocycline. A chromosomal mütàns tetM gene has been cloned on 

a 2.8kb fragment in 'co 11 where resistance was expressed constitutively, 
and minicell studies have identified two proteins (33,000 and 35,000 daltons),

encoded by mutans DNA, one or both of which are involved in expression of "i
' X

tetracycline resistance (Tobian et al., 1984), The third class of determin- Æ 
ant, tetN, was identified on the basis of complete lack of homology with

either probe. Only one member of this class, the conjugative plasmid pMV120, 4
has been described and has been shown to confer constitutive resistance to 

tetracycline and minocycline. No homology was seen on hybridisation of 
either probe to any of the four tetracycline determinants of E_. coli, plasmid 

pT181 of Staph, aureus or plasmid pBC3106 from sphaericus. The results 

of the DNA hybridisation studies correlate well with the study by Smith |
et al. (1981) which investigated homology by the ability of various tet loci 

to transform a pneumoniae point mutation to tetracycline resistance (see 
section on transformation).

A study of the distribution of tet classes in streptococci (Burdett 
e^ ad., 1982b) showed that of 31 tetracycline resistant,plasmid containing 

faecalis from human and animal sources, all reacted with the tetL probe
and 30 also reacted with the tetM probe. Among 13 £. agalactiae strain tested, ï|

-ÿ-
one failed to react with either probe, 2 contained tetL and tetM and the rest |

contained tetM determinants. This finding is in accordance with previous 

observations with group B strains in which plasmid located tet genes are |

rare (Burdett, 1980) but suggests that in £. faecalis, plasmid encoded tetra­
cycline resistance is more common.

Preliminary work on the mechanism of tetracycline resistance in strepto- |
cocci has indicated that tétL exhibits drug efflux typical of that observed 
with Gram-negative genes but that there is no difference in tetracycline 

accumulation in sensitive cells and those containing'tetM or'tétN suggesting 

a non-efflux resistance mechanism (Burdett, 1984),
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Aminoglycoside resistance gènes
I

Streptococci, in particular those of group D, are intrinsically J
Iresistant to low levels C< 250yg per ml) of aminoglycoside antibiotics 4

probably due to inefficient transport of the drugs as a result of poor oxi­

dative membrane energisation (Chopra and Ball, 1982), As in Gram-negative

organisms and certain Gram-positive genera such as staphylococci, most strepto- | 

coccal high level resistance to aminoglycosides (>2000pg per ml) is dependent on 1 
the constitutive production of drug modifying enzymes (Courvalin e^ ̂ 1,, 1978; 

1980a) which detoxify the drugs on entry to the cell and prevent ribosome 
binding (Bryan and Kwan, 1983). Notable exceptions to this are the strepto­
mycin resistant viridans streptococci described by Farber and coworkers (1983) 

and clinical enterococcal isolates studied by Eliopoulos et al, (1984). iINo streptomycin modifying enzymes could be demonstrated but it was found that J 
polypeptide synthesis by ribosomes isolated from these strains was resistant 
to inhibition by the drug. Unlike enzymic inactivation, ribosomal resistance 

to streptomycin was probably not plasmid associated and in enterococci, was

shown to confer considerably higher MIC values.

All three classes of modifying enzymes - phosphotransferases (APH), |

nucleotidyltransferases (AAD) and acetyltransferases (AAC) - have been 

identified in streptococci and comparison of parameters such as substrate range,- 

molecular weight and isoelectric point have shown that enzymes with identical 
site specificity from staphylococci and streptococci are very similar but 

different from the corresponding enzymes of Gram-negative bacteria (Courvalin 
et al., 1980b; Courvalin and Carlier, 1981), In addition, certain enzyme 
subclasses have been described in the Gram-positive cocci which have not 

been detected in Gram’̂ negative organisms. The enzymes described in strepto­

cocci therefore appear to represent a subset of the staphylococcal enzymes 

suggestive of a potential for exchange of these resistance determinants within 

the Gram-positive cocci (Carlier and Courvalin, 1982),

j-

   ' ‘
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Among clinical isolates of Ŝ. faecalis, determinants encoding high level 

aminoglycoside resistance by enzymic modification have been shown to be 

transmissible (Harder and Kayser, 1977; Horodniceanu et al,, 1979b; Murray 

et al., 1983) and in several studies have been associated with conjugative 

plasmids. Horodniceanu e± (1979b) described several plasmids in strains 

of faecalis which conferred high level resistance to gentamicin, kanamycin 

and chloramphenicol. Physical characterisation of the plasmid pIP800 from 
one of these strains, showed that it was a 66.7kb conjugative plasmid and, 

from substrate profile studies, encoded two enzyme activities, APH (2") and 

AAC (6’) (Courvalin et al,, 1980a). On transfer to a group D recipient, one 

transconjugant was obtained which was sensitive to aminoglycosides and 
contained a plasmid with a 2.8kb deletion. Other faecalis and faecium 
strains have been isolated which contain conjugative plasmids specifying 

resistance to kanamycin, streptomycin, erythromycin and tetracycline (pJHl,

80.7kb; Jacob and Hobbs, 1974), kanamycin, streptomycin and erythromycin 

(pJH4, 39,4kb; Courvalin et al., 1978) and kanamycin, streptomycin, erythro­

mycin, tetracycline and chloramphenicol (pJH5, 115kb; Courvalin et al., 1978). 
The plasmids were shown to encode the enzymes APH (3*)-III and AAD (3") (9) 

and in hybridisation studies, a complementary RNA probe generated from an 
APH (3')-III encoding Staph, aureus plasmid was found to be homologous to 

DNA fragments of all three plasmids but not to aminoglycoside resistance 
plasmids of Gram-negative organisms (Courvalin et al., 1980b). The kanamycin 
and streptomycin resistance determinants of pJHl have been localised to a 
16.5kb fragment and although resistance to the antibiotics is mediated by the 
APH (3*)-III and AAD (3") (9) enzymes respectively, natural segregation of the 
resistances has never been observed (Banai and LeBlanc, 1983), Streptomycin 
and kanamycin resistance genes of the non-conjugative faecalis plasmid 

pAD2 have however been cloned separately into sanguis and were located 

on 1.8kb and 2.3kb fragments respectively (Clewell et al., 1982a). The APH 

(3^) (5")-III gene of pJHl has also been cloned in E. coli on a l.Skb fragment
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and the sequence determined (Trieu-Cuot and Courvalin, 1983). The deduced 

gene product had a molecular weight of 29,200 daltons and comparison of the 

deduced amino acid sequence with those of Tn903 representing APH 3*5"-I 

and Tn5 representing APH 3’-II, both from Gram-negative bacteria, indicated 

a significant structural relationship despite the lack of DNA hybridisation.
By extrapolation, the faecalis enzyme must also be related to that produced 

by Streptomyces fradiae (a neomycin producer) since it is also structurally 

similar to Tn903 and Tn5 encoded enzymes (Thompson and Gray, 1983) which 

suggests a common evolutionary origin for these resistance genes.

Transferable resistance to kanamycin and streptomycin has also been 

reported in a survey of H. faecium strains (Le Bouguenec and Horodniceanu,

1982). Donor strains were co-resistant to MLS antibiotics and tetracycline 

and some were also chloramphenicol resistant. Analysis of kanamycin resistant 

transconjugants revealed that in some cases, no plasmid DNA could be detected 

while in others, small plasmids (18-25kb) were isolated. Yet other trans­
conjugants were obtained which showed co-transfer of one or more donor 

resistance markers. However, no firm evidence, such as the ability to 
retransfer, was given in this study to link resistance to plasmids and results 

could be interpreted as transfer of chromosomally encoded resistance with 

coincidental transfer of a cryptic plasmid. Transfer of high levql resistance 
to streptomycin and kanamycin to group D recipients in the absence of detect­

able plasmid has been reported from strains of group A, B, G, D and viridans 
streptococci (Horodniceanu et al., 1982a). High level, chromosome borne 

resistance to kanamycin due to synthesis of an APH (3’) (5")-IIIenzyme with 

an apparent molecular weight of 32,500 daltons has been reported in

pneumoniae (Carlier and Courvalin, 1982; Collatz et al,, 1984) and after 
cloning of the aminoglycoside and associated MLS resistance genes into ]E. coli 

it was found that the determinants were located on a 18.5kb element (designated 

Tnl545) capable of transposition.
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The host range of aminoglycoside resistance plasmids from group D 

streptococci has been investigated using recipient strains representing 

groups A, B, C, D, G. H and pneumoniae as well as Staph, aureus and

(Horodniceanu et , 1982b). In contrast to the broad host range 

displayed by MLS resistance plasmids (Buu-hoi et al., 1984), transfer of 

aminoglycoside resistance plasmids could be demonstrated only to group B and 

D recipients. In one instance, that of plP1075 specifying gentamicin and 

kanamycin resistance, no plasmid DNA could be isolated after transfer to a 
group B recipient and retransfer from this recipient was not observed 

suggesting that the determinants for resistance had become inserted in the 
chromosome of the new host.

High level aminoglycoside resistance is of particular importance in 

therapy of serious streptococcal infections such as endocarditis when it is 
necessary to use synergistic combinations of aminoglycosides and 6-lactam 

antibiotics. Studies using labelled streptomycin showed that antibiotics 
which affected cell wall synthesis such as penicillin and vancomycin, caused 

increased aminoglycoside uptake and that this was the basis for antibiotic 

synergism (Moellering and Weinberg, 1971). Strains which carry determinants 

for high level aminoglycoside resistance are therefore resistant also to anti­

biotic synergism (Calderwood e^ al., 1977; Krogstad and Moellering,/1982; 

Murray et al., 1983). Recently, a strain of faecalis has been isolated 

which is insensitive to synergism of all possible combinations of penicillin 
and commercially available aminoglycoside antibiotics (Combes at al., 1983) 
due to high-level aminoglycoside resistance which was found to be transferable 

and conferred by four modifying enzymes. Thus, the strain possessed a single 
mechanism of resistance to streptomycin, probably AAD (6) but possibly 
AAD C 3 (9), two mechanisms of resistance to gentamicin APH (2") and

AAC (6^) and three mechanisms of resistance to kanamycin , APH (2")

APH (3') (5") -III and AAC (6’).
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Chloramphenicol resistance gènes

Resistance to chloramphenicol has been reported in a number of strepto­

coccal groups. The determinants are usually found in association with other 
resistance genes and are often located on plasmids. Examples of such plasmids 

in faecalis are pJH5, a large (llSkb) conjugative plasmid which also encodes 

resistance to kanamycin, streptomycin, tetracycline and MLS antibiotics 
(Courvalin et al., 1978) the conjugative 39.4kb plasmid pFK14 encoding co­

resistance to streptomycin and MLS antibiotics (Marder and Kayser, 1977) and 

plP800 (Courvalin et al., 1980a) also designated plP655 (Horodniceanu et al., 

1979b) a 66.7kb conjugative plasmid also specifying resistance to gentamicin 

and kanamycin. Transfer of these plasmids has been demonstrated to group D 
recipients and plP800 has also been shown to transfer to a group B recipient 

but to no other streptococcal groups (Horodniceanu et al., 1982b). Only 

one 2" faecalis plasmid, plP686 (68kb), resistant to chloramphenicol alone 
and capable of transfer only to group D recipients has been described 
(Horodniceanu et al., 1982b). Chloramphenicol resistance, possibly plasmid 

encoded, has also been found to be transferable from strains of faecium 

to faecalis (Le Bouguenec and Horodniceanu, 1982) always with co-transfer 

of other resistance determinants.

In a study of antibiotic resistant group B streptococci strains 
resistant to chloramphenicol only did not transfer the determinant 

(Horodniceanu et al., 1979a), Another strain B117, co-resistant to tetra­

cycline, transferred both resistances but only when selection was done on 
tetracycline and only to a group B recipient. Further study demonstrated 

transfer of both resistance genes from this strain to group B, C and G 
receipients but no plasmid DNA could be detected (Horodniceanu at a]̂ ., 1982c). 

Similar transfer of chloramphenicol in association with other resistance 

loci and in the absence of detectable plasmid DNA has been reported from 

strains of groups A and G to various streptococcal recipients (Horodniceanu



62

et al., 1981; 1982c). agalactiae B109, also originally described

by Horodniceanu et al. (1979a) has subsequently been shown to transfer by 

conjugation its chromosomal chloramphenicol-tetracycline-erythromycin 
resistance insertion to groups A, B, C, D, G and H (Horodniceanu et al., 

1982c) and the 60kb insertion has been shown to transpose to.the haemolysin- 

bacteriocin plasmid pADl (Smith and Guild, 1982).

In addition to apparently chromosomally located determinants, chloram­

phenicol encoding plasmids have been described in group B strains. These 

plasmids plPSOl, plP612 and plP635 also encode MLS resistance and have the 

typical broad host range and size (28-35kb) of other MLS plasmids (Horod­

niceanu e^ a_l. , 1979a; 1982c; Buu-hoi et al., 1984). The chloramphenicol 
resistance gene of pIPSOl has been shown to be expressed in Staph, aureus 

(Schabergxe^ al., 1982) and species of Pediococcus (Gonzalez and Kunka, 1983) 
as well as many streptococcal groups and from cloning experiments into 

sanguis, the determinant has been localised to a 6.3kb fragment of the 
plasmid (Evans and Macrina, 1983). MLS plasmid associated chloramphenicol 

resistance has also been reported in a group A (Horodniceanu e_t £l., 1982c) 

and a group G strain (Bougueleret ut al., 1981), the former being non- 

conjugative and the latter capable of transfer to group D recipients only. 

Comparison of the restriction endonuclease patterns of these and other 

chloramphenicol-MLS plasmids with plasmids encoding MLS resistance only, 

showed that they were very similar but chloramphenicol encoding plasmids 
contained a 6.2kb fragment not found in MLS plasmids (Horodniceanu et al., 
1982c).

In strains of pneumoniae, initial reports suggested that chloram­
phenicol resistance could be plasmid encoded (Miyamura e.t al., 1977; Dang-Van 
et al., 1978) but transformation analysis and co-sedimentation studies by 

Shoemaker and coworkers (1979) demonstrated that the determinant formed part 
of a heterologous chromosomal insertion. The chloramphenicol resistance
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gene was located on a 4 to 8kb fragment and closely associated with a large 

insertion (30kb) encoding tetracycline resistance. Both determinants were 
capable of conjugative transfer on membrane filters to pneumoniae but 

not 2' faecalis recipients (Shoemaker al., 1980). Chloramphenicol 

resistant transconjugants were always co-resistant to tetracycline but the 

reverse was not true, suggesting that the insertion encoding chloramphenicol 

lacked the necessary genetic information for self-^transfer.

As in other genera, the mechanism of chloramphenicol resistance in 

streptococci, regardless of the location of the determinants, has been shown 

to be di-acetylation of the molecule via 1- and 3-monoacetylated intermediates 

catalysed by the enzyme chloramphenicol acetyltransferase (CAT; Shaw, 1967).
Like the CAT enzymes of staphylococci, but in contrast to those of entero- 
bacteria, the streptococcal CATs are inducible by sub-inhibitory concen­

trations of chloramphenicol and by its biologically inactive analogue 
3-deoxychloramphenicol (Courvalin et al., 1978; Robins-Brown et al., 1979).

A comparison of CATs produced by a group A strain, £. pneumoniae and faecalis 

showed that the enzymes were identical in respect of molecular weight (75,000- 
80,000 daltons) pH optimum and heat stability (Miyamura e_t al., 1977) and as 
in other bacterial CATs, the streptococcal enzymes have been found to be 

homomeric, composed of four subunits of approximately 22,000 daltons (Dang- 

Van ejt £l. , 1978; Zaidenzaig et al., 1979). Immunological studies have 
shown that the enzymes produced by group B and D strains cross-react with 

anti-sera to staphylococcal CAT but not with anti-serum to JE. coli enzymes 

(Courvalin et al., 1978; Zaidenzaig et al., 1979) and the close relationship 
of staphylococcal type D CAT to that specified by faecalis plasmid pJH6 

was confirmed by demonstration of identical electrophoretic mobility 
(Courvalin et al., 1978). On the basis of biological, physical and immuno­

logical properties therefore, the enzymes produced by staphylococci and 

streptococci appear to be closely related although the extent of DNA sequence
1
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homology of the determinants has not yet been investigated.

Macrolide—lincosamide-streptogramin B resistance determinants

Although only one mechanism of MLS resistance is known, that of 

dimethylation of adenine residues in 23S RNA CWeisblum, 1975), the regulation 
of resistance expression in streptococci can be of three types. Among the 

first streptococcal plasmids to be described, the faecalis plasmid 

pAMBl exhibits constitutive resistance (Yagi et al., 1975). Constitutive 
expression of MLS resistance has also been described in group A (Malke, 1974; 

Dixon and Lipinski, 1982), group B (Horodniceanu et al., 1979a; Dixon and 
Lipinski, 1982) and 2* pneumoniae (Carlier and Courvalin, 1982). An 

inducible mode of resistance has been demonstrated in strains of group A 
(Malke, 1974; Yagi et al., 1975) group B(flhrodniceanu et al., 1979a), group D 
(Corb and Murray, 1977), group H (Yagi et al., 1978) and pneumoniae 

(Weisblum at al., 1979) in which the maximum level of expression of MLS 

resistance is observed only after prior exposure to sub-inhibitory concen­

trations of the inducer erythromycin or lincomycin. Common in group A 

strains, and also encountered in groups B, C and G, is the zonal pattern 

of resistance to lincomycin (Dixon and Lipinski, 1982) which is characterised
by growth in sub-inhibitory concentrations of lincomycin (below 0.05pg per ml)

/
and between 50 to 200pg per ml but not in intermediate concentrations. A 
study by Malke and coworkers (1981b) of group A plasmid encoded zonal 
resistance showed that pre-growth in sub-inhibitory concentrations of 

erythromycin not only induced erythromycin resistance but also induced 
growth in intermediate concentrations of lincomycin while low concentrations 
of lincomycin failed to induce erythromycin resistance or growth in intermediate 
lincomycin concentrations. Single step mutations giving rise to either 
constitutive erythromycin resistance or constitutive lincomycin resistance 

could be obtained but generalised constitutive resistance required sequential 

two step mutations.
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Conjugative MLS resistance plasmids have been reported in many groups 

of streptococci including group A (Clewell and Franke, 1974; Malke, 1979), 

group B (Horodniceanu-et al., 1976; 1979a; Hershfield, 1979), groups C and 
G (Bougueleret , 1981) and group D (Clewell et al., 1974; El-Solh et al.,
1978; Engel et al., 1980). The plasmids are similar in size, 25 to 30kb 

and, in contrast to most other streptococcal plasmids, exhibit an extra­

ordinarily broad host range. One such plasmid, pAMgl, was originally 
identified and characterised in faecalis strain DS5 which also harbours 
pAMal encoding tetracycline resistance and a conjugative haemolysin- 

bacteriocin plasmid, pAMyl (Clewell ^  al•» 1974). It was originally thought 

that pAMBl was non-transmissable as the presence of pAMyl or a related plasmid, 

pADl, in the donor strain inhibits the transfer of the MLS plasmid (Clewell,

1981). However, by transforming pAMgl into a group F strain, LeBlanc and 

coworkers (1978a) demonstrated transfer of the plasmid on membrane filters 

to 2' mutans, sanguis and salivarius recipients. Burdett (1980) 
reported transfer of pAMBl and other related plasmids by conjugative on 

membrane filters from faecalis to group B and D recipients and indeed used 
the ability of these "sex factors" to mobilise non-conjugative plasmids in 

her analysis of the location of tetracycline resistance determinants of group 
B isolates.

Several studies of the host range of streptococcal MLS resistance 

plasmids have been made. Malke (1979) reported conjugal transfer of group A 
and B plasmids to group A, D and H recipients, and Gasson and Davies (1980) 
demonstrated transfer of pAMBl between the lactic streptococci. In addition 

to intra- and inter^specific transfer, intergeneric transfer of MLS plasmids 
has been demonstrated to lactobacilli (Gibson et , 1979), Staph, aureus 

(Engel et al., 1980; Schaberg et al., 1982), Listeria QPerez-Diaz et al.,

1982), 'hMrlhglensis (Lereclus et al., 1983) and Pediococcus (Gonzalez 

and Kunka, 1983) with subsequent autonomous replication in all new hosts.

Mobilisation of non-conjugative plasmids was also reported during matings
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of faecalis with. Staph, aureus (Schaberg et al., 1982), faecalis with 

pneumoniae (Smith et al., 1980) and matings between strains of 

B. thuringiensis (Lereclus et al., 1983). A recent comprehensive report 

has been published by Buu-hoi ^  al•, (1984) investigating the transfer of 

MLS plasmids, originally described in group B, C, D and G strains, from group 

D donors to ten different streptococcal recipients representative of groups 
A, B, C, D, G, H and pneumoniae as well as Staph, aureus and Listeria 

innocua. In accordance with previous studies (Malke, 1979;. Engel et al.,

1980; Gonzalez and Kunka, 1983), host ranges of the different plasmids were 

similar although not identical and the frequency of transfer to different 
recipients was variable indicating the importance of the recipient. Plasmid 

stability was also variable in sanguis, pneumoniae, Staph, aureus and 

li* innocua hosts. Similar observations of plasmid maintenance were reported 
by Engel et al., (1980) in a Staph, aureus host and LeBlanc ^  a 1•> (1978a) 
reported an inability to isolate MLS plasmid DNA from a salivarius host 

indicating either a rapid degradation after extraction from the strain or 
integration into the chromosome.

With respect to structure, heteroduplex analysis of several MLS resistance 

plasmids from group A strains has revealed that there can be considerable 

similarities (Boitsov et al., 1979; Behnke et al., 1980). The plasmids were 
conposed in part of two "unique sequences" one of which carried the resistance 

determinant while the remainder of the molecules, as much as 92% in some 

cases, was present as long inverted repeat sequences. Physical mapping of 
spontaneous deletions obtained on transformation of sanguis located the 
replication functions on these repeat sequences but no function could be 
assigned to the remainder of the inverted repeats (Behnke eh al., 1980;

Malke, 1981),

Due. to their clinical importance and potential as genetic tools for 

recombinant DNA technology, the broad host range plasmids have received
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considerable attention in terms of their molecular arrangement. Malke (1981) i

by analysing natural deletion derivatives obtained by transformation of 

S.xsàhgûis with a group A plasmid localised the gene encoding erythromycin 
and lincomycin resistance to a l.Skb fragment and identified the region of i

DNA involved in plasmid replication. The possession of several unique 

restriction endonuclease sites have made these derivatives (pSM7, pSM8, pSM9, 
pSMlO) attractive as cloning vehicles (Malke et al., 1981; Malke and Holm, 1982) 

and in addition by constructing a chimeric plasmid with pBR322, Malke and 

Holm (1981) have demonstrated expression of MLS resistance in coli. Other 
approaches to generating streptococcal cloning vehicles (pVA680, pVA736, 
pVA738) have been successfully attempted by insertion of the erythromycin 
resistance gene originating from pAMgl into a small cryptic plasmid from

ferus (Macrina et al., 1980; 1982). A third family of cloning vectors ;

(pGB301 and derivatives) has been obtained by spontaneous deletion of the 
group B plasmid pIPSOl which encodes MLS and chloramphenicol resistance 
(Horodniceanu et al., 1976) and restriction endonuclease data have localised 

the resistance determinants, copy number control functions and replication region 
(Behnke and Gilmore, 1981). pGB301 and its derivatives have been shown in 

13. subtilis mini cells to produce three proteins associated with erythro­

mycin resistance, chloramphenicol resistance and a one likely to be associated 

with plasmid replication or maintenance respectively (Behnke et al., 1982).

Recently, detailed physical maps of faecalis MLS resistance plasmid 

pAMgl (LeBlanc and Lee, 1984) and agalactiae MLS and chloramphenicol 
resistance plasmid pIPSOl (Evans and Macrina, 1983) have been constructed. 
Analysis of deletion derivatives of pAMgl located the MLS determinant on a 
l.lkb fragment and the replication functions on a 2,95kb fragment (LeBlanc 

and Lee, 1984). The latter functions contained in a 5kb fragment were 
ligated to coli plasmid pACKCl to obtain ah coli—S. sanguis shuttle

vector which could express the _E. coli kanamycin resistance gene of pACKCl

S. sanguis and a cloned chromosomal streptomycin resistance locus from
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s. mutans, in E. coU. Evans and Macrina (1983) also used deletion analysis

as well as cloning data to locate resistance determinants and replication
functions of pIPSOl. In addition, both groups have identified regions

involved in conjugation hut neither has yet been successful in cloning these 
functions.

Determinants conferring inducible resistance to MLS antibiotics have 
been identified on a transposon, Tn917. Originally associated with the 

25.9kb non-conjugative plasmid pAD2 which also encodes streptomycin and 

kananycin resistance (Tomich et al., 1979), the 5-lkb element was found to 

transpose to a conjugative haemolysin-bacteriocin plasmid pADl also harboured 
by S. faecalis strain DS16. Additionally, the transposon was shown to insert 
into pAMyl and pAMul of ^  faecalis strain DS5 (Tomich et al., 1978; 1980) 
and into multiple sites of pADl (Clewell et al., 1982a). Heteroduplex 

analysis has shown that the resistance determinant is flanked by homologous 
inverted repeat sequences of approximately 0.28kb (Tomich et al., 1980) and 
I S  structurally related to a family of transposons, typified by Tn3, which 

have been isolated from a wide diversity of genera (Heffron, 1983). Indeed, 

comparison of physical maps and heteroduplex studies have revealed extensive 

homology between Tn917 and the staphylococcal transposon Tn551 while DNA 

sequence determination has shown significant homology between the terminal 
inverted repeats of Tn917, Tn551 and the Gram-negative Tn3 (Perkins and 

Youngman, 1984). Functional similarity between Tn917 and Tn551 or Tn3 has 

also been demonstrated by the identification of a 5-base pair duplication on 
insertion of the transposon.

Exposure of DS16 cells to sub-inhibitory concentrations of erythromycin 
was shown,not only to induce MLS resistance,but also to increase the frequency 
of transposition and it was thought that the stable co-integrates of pADl 

and pAD2 formed in recipient cells after induction represented intermediates 
in the transposition process which subsequently failed to resolve in the
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n e w  host. However, this model of the transposition process would require 

two copies of Tn917 to be present in the co-integrated structure and this 

was shown not to be the case (Clewell et al., 1982a). The involvement of 

transient co-integrate intermediates containing two copies of Tn917 never­
theless remains a possibility. Both induction of resistance and trans­

position enhancement have been found to be sensitive to protein inhibition 

by chloramphenicol although the isolation of mutants with normal inducible 
resistance phenotypes but lacking enhanced transposition response^ suggested 

that the two functions were under separate control (Clewell jet al., 1982a). 
Tn917 has been shown to undergo transposition in subtilis and to insert 

into multiple chromosomal sites indicating its value as an insertional 
mutagen (Youngman et al., 1983).

Preliminary work has suggested that other MLS resistance transposons 

may occur in streptococci. Le Bouguenec and Horodniceanu (1982) postulated 

that transposition could account for the difference in size of plasmids 

isolated from parental and transconjugants strains of faecium. Banai and 

LeBlanc (1983) described insertion of the faecalis MLS determinant of 
pJHl into the co-resident plasmid pJH2, the size of the insertion being 

similar to Tn917. They have subsequently shown that the 5.1kb segment 
could insert into at least four different sites on pJH2 and was homologous 

to Tn917 by the criteria of DNA hybridisation and comparison of endonuclease 
Aval restriction patterns (Banai and LeBlanc, 1984). Like Tn917, the segment 

designated Tn3871 expressed inducible MLS resistance. Characterisation of 
the conjugative chromosomal insert of agalactiae B109 which encodes 
resistance to chloramphenicol, tetracycline and MLS antibiotics has shown 
that the element is capable of transposition to multiple sites of the plasmid 
pADl (Smith and Guild, 1982) and results suggested that the MLS determinant 

was capable of independent transposition. Interestingly, the transfer of 

plasmid plFSOl into a strain in which B109 insertion was already present has
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been shown to be inhibited and in strains containing both plPSOl and the 

B109 insertion element, the plasmid and insertion were found to be 
incompatible, suggesting a relationship of surface exclusion and incompat­

ibility genes (Horodniceanu et al., 1981).

Several studies have demonstrated the relationship of MLS plasmids 

isolated from different clinical strains suggesting a common origin for 

these determinants. S. faecalis pAM31 and pyogenes pACl encoding 
constitutive and inducible MLS resistance respectively, were shown by ÜNA- 

DNA hybridisation experiments to be 95% homologous (Yagi et al., 1975) and 
similar results were obtained on examination of homology between plasmids 

originating from groups D and B (El-Solh et al., 1978). Comparison of the 

restriction endonuclease profiles of plasmids from group A, B and D isolates 

(Hershfield, 1979) and from groups B, C and G strains (Bougueleret e^ al., 

1981; Horodniceanu et al., 1981) showed a number of digestion fragments in 

common. Using complementary RNA probes prepared from pAMBl, pAM77 (a 6.8kb, 
non-conjugative plasmid from S. sanguis encoding inducible MLS resistance; 

Yagi et al., 1978) and pl258 (a 27kb Staph, aureus plasmid containing the 
constitutive MLS resistance gene of Tn551; Novick et al., 19 79b), Weisblum 

and coworkers (1979) demonstrated sequence homology in heterologous hybrid­

isations with target DNA prepared from the above templates, pyogenes 

pACl and chromosomal DNA of MLS resistant pneumoniae. Gilnwre ejt al. 
(1982) investigated the relationship between MLS resistance loci and 

replication function sequences of plasmids obtained from groups A, B, D and 

H streptococci. Staph, aureus and R. fragilis as well as chromosomal DNA 
of Lactobacillus easel and Streptomyces erythreus, an erythromycin producer. 

The DNA probes were a 1. 7kb fragment containing MLS determinants and a 1.5kb 
fragment containing the replication origin and copy number control region 

of the group A plasmid pSM19035 (Behnke and Ferretti, 19.80). Hybridisation 

of the resistance probe was seen with all streptococcal plasmids including
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pAD2, which carries Tn917, and with StAph. àûréus pi258 CTn551) but not 

with Staph, aureus pE194, fragilis plP410 or chromosomal DNA of Î. casei 

or 2' erythreus. The replication origin—copy number probe hybridised with 
all plasmids giving positive MLS resistance homology except for pAD2, pl258 

and pAM77. Lack, of homology of pAD2 and pl258 probably reflected the trans­

poson location of the determinants and suggested that the resistance gene 

of pAM77, an MLS plasmid which is unusual in respect of its small size, may 

have originated as a transposable element. On the basis of DNA-DNA hybrid­

isation studies, Ounissi and Courvalin (1982) have identified four classes 
of MLS resistance determinants: class A includes all the streptococcal

determinants examined as well as Staph, aureus Tn554; class B is comprised 
of^Staph, aureus plasmids pE194 and pE5; class C contains the chromosomally 
specified locus of lichenifotmis; class D is typified by JB. fragilis plP410.

Although lack of sequence homology, as judged by DNA hybridisation 

experiments, has been observed, Horinouchi and Weisblum (1982b) have shown 
that there can be nevertheless considerable similarities in the structural 

genes encoding MLS resistance. Comparison of the nucleotide sequences of the 

structural genes of pAM77 and pEl94, revealed that approximately half the 

nucleotides were identical while analysis of the deduced amino acid sequences 

showed striking conservation. Indeed, where there were differences in amino 

acid sequence, the alternative corresponding residues were frequently 
structurally related.

'I

I
J
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BETA-HAEMOLYSIN AND BACTERIOCIN GENES OF GROUP D STREPTOCOCCI

The ability to produce haemolysins and bacteriocins is widely distributed 

among Gram-negative and Gram-positive bacteria and indeed, production of g- 

haemolysin has been used as a major criterion in the classification of pyogenic 

streptococci and is the criterion for the sub-classification of group D 

2' faecalis subsp. zymogenes. All the determinants for production of 3- 
haemolysin in faecalis subsp. zymogenes, which have so far been examined, 

are carried by plasmids of similar size, 50 to 60kb (Clewell, 1981; Borderon 
jê  al., 1982). The production of haemolysin in these strains is always 

associated with bacteriocin production and it has been shown that the two 
activities are attributable to the same molecule (Brock and Davie, 1963;
Dunny and Clewell, 1975; Yagi e^ al., 1983).

Evidence for the plasmid linkage of haemolysin-bacteriocin was first 

reported by Tomura et al., (1973) who described both the transfer of these 

traits to 2» faecalis recipients by a mechanism which was probably conjugation 

and the loss of the traits on irradiation with the ultraviolet light. Sub­

sequently Jacob and coworkers (1975) identified, in strains of faecalis 

subsp. zymogenes, plasmids which encoded haemolysin-bacteriocin production 

and which were transmissible by conjugation in broth culture to a plasmid free 

recipient. Plasmids pJH2 and pJH3 were shown to be of similar size (57.5kb), 
present as a single copy and in addition to haemolysin-bacteriocin, encoded 

resistance to the corresponding bacteriocin. On studying the loss of the 
pJH2 associated haemolysin trait, some strains could be isolated which were 
non-haemolytic and non-bacteriocinogenic but retained bacteriocin resistance 
and pJH2. This observation was presumably due to a point mutation or small 

deletion in the haemolysin-bacteriocin determinant of pJH2, faecalis

haemolysin has been shown to he composed of an activator A and a catalytic 
molecule L (Granato and Jackson, 1971a,b) and, on cross—streaking of the 

sfnrains, combinations which resulted in restoration of haemolytic activity
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were observed suggesting that mutations had occurred producing either defective 

A or L.

Reports describing the haemolysin-bacteriocin plasmid pAMyl of faecalis ' 

strain DS5 (Clewell et al., 1974) not only showed that the plasmid was capable 

of transfer by conjugation in broth culture but that it could also mobilise 
the non-conjugative, co-resident tetracycline resistance plasmid pAMal (Dunny 

and Clewell, 1975). However, certain discrepancies in the phenotypes of 
derivatives were observed which led to the suggestion that there were in fact 

two bacteriocin activities encoded by pAMyl. It has been shown since that 

in fact strain DS5 contains three plasmids - pAMyl (60kb) which encodes 

haemolysin-bacteriocin activity and bacteriocin resistance, pAMyZ (52.8kb) 

which encodes a second bacteriocin and bacteriocin resistance, and pAMy3 (45.8kb) 

the presence of which reduces the production of the pheromone cPDl (Clewell 

et al., 1982b; LeBlanc e_t aJL., 1983). All three plasmids have been shown to 
be capable of mobilising pAMal.

Similar conjugative plasmids encoding haemolysin-bacteriocin, including 
pADl (Clewell al., 1982a) pOBl (Oliver et al., 1977), pX-14 (Frazier and 

Zimmermann, 1977) and pFD5 (Yagi ef al., 1983) have been described in other 
strains of faecalis although in some cases, notably pOBl and pPD5, there 

has originally been confusion as to the activities encoded by these'plasmids 
because it has subsequently been shown that their hosts in fact contained 

two plasmids, one of which encoded haemolysin-bacteriocin activity and the 

other which encoded a different bacteriocin. In the case of strain 39-5 
which harbours pPD5.,. the. co^rr^ident bacteriocin plasmid pPDl was found to be 
almost the same size and often co-transferred (Yagi et al., 1983).

A characteristic of the transfer of all the faecalis haemolysin- 

bacteriocin plasmids (with the possible exception of pPD5), the bacteriocin 

plasmids pPDl, pAMy2 (but not pOB2; Oliver ^  , 1977) and pAMy3 is the

use of the pheromone dependent aggregation system which allows high frequency
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transfer in broth culture to recipient faecalis (Clewell, 1981). A 

study of the host range of such plasmids found that no transfer was observed 

to faecium, dur ans, bovis, E. coli or Î. innocua recipients (Borderon 

et al., 1982). As described previously, acquisition of these plasmids results 

in the production of a proteinaceous aggregation substance on the cell surface 
in response to the corresponding pheromone of faecalis recipient cells.

The location of the genes for aggregation substance is not yet known but it 1

has been shown that aggregation substances produced in response to different 

pheromones are inmunologically related (Kessler and Yagi, 1983; Yagi et al.,
1983).

Digestion of pAMyl and pADl with the restriction endonuclease EcoRl 

resulted in the generation of identical fragments indicating the close 

structural relationship of these haemolysin-bacteriocin plasmids isolated 
from different sources (Clewell et al., 1982b). Moreover the two plasmids 

were shown to share the same pheromone system and both exhibited the property 

of inhibiting the transfer of the MLS plasmid pAMgl. Similarly, restriction 

endonuclease profiles of haemolysin-bacteriocin plasmids isolated from a 

group of six 2' faecalis strains were identical (Borderon ejt al., 1982) but 
comparison of the physical maps of pADl and the bacteriocin plasmid pPDl 

showed no similarity (Yagi ^  al., 1983). Using Tn916 and Tn917 aŝ  insertional 

mutagens, the haemolysin-bacteriocin determinant has been located on the physical 
map of pADl (Clewell al., 1982a) and has been used as a probe to investigate

homology between haemolysin and bacteriocin genes from several sources (LeBlanc 
et al., 1983). DNA-DNA hybridisation studies indicated that the haemolysin- 
bacteriocin loci of different faecalis plasmids are very closely related 
and, although restriction endonuclease profiles of pADl and pAMyl were qui-te 
different from pJH2, pPD5 and pOBl, there was considerable DNA sequence homology 

suggestive of a common origin. There was no hybridisation observed between 

the cloned pADl haemolysin-bacteriocin determinant and the bacteriocin plasmids,
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pAMyZ and pPDl, or pAMy3 and likewise no homology with total cell DNA 

isolated from pyogenes, £. agalactiae, ahgihosus and sanguis all of 

which produce chromosomally determined 3-haemolysins.

Other species of bacteriocinogenic group D streptococci are commonly 

encountered (Tomura et al., 1973) but there is little information on the 

nature of the genes for bacteriocin production in strains other than faecalis. -r 
In 2" faecium, Keness and coworkers (1978) reported that bacteriocin determin­

ants were located on small 3.6 to 5.8kb plasmids but Le Bouguenec and 

Horodniceanu (1982), although they described transferable bacteriocin production, 

could not relate this phenotype with the acquisition of particular plasmids.
In two strains of faecium, however, bacteriocin production and resistance 
to bacteriocin was correlated with transfer of a 5.3kb plasmid and a 3.6kb 

or a 7.1kb plasmid respectively (Kramer et al., 1983; Reichelt et al., 1984).



OBJECT OF RESEARCH
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In group D streptococci, it is known that antibiotic resistance, as 

well as haejnolysi'n and b.acteriociti production, is often encoded by genetic 

determinants located on plasmids, many of which are capable of self transfer 

by conjugation or which can be mobilised by other conjugative plasmids. 

Alternatively, antibiotic resistance may be specified by genes situated 

in the chromosome, some of which, may be capable of transposition to other 

replicons and of transfer by conjugation in the absence of plasmid DMA.

Although numerous enterococcal strains which display multiple antibiotic 

resistance phenotypes have been described, detailed studies of the entire 
plasmid complement of such strains and the location of the resistance genes 

have been limited to only three Streptococcus faecalis strains, namely DS5 
(Clewell et al., 1974; 1982b), DS16 (Clewell et al., 1982a; Franke and 
Clewell, 1981), and JHl (Jacob and Hobbs, 1974; Banai and LeBlanc, 1983; 
1984a,b). Group D streptococcal strains in this study were chosen on

the basis that they had shown resistance to two or more antibiotics in a 
previous investigation (Blankson, 1981). The principle aims of the research 

were 1. to extend the information on the phenotypes and ascertain the mode 

of resistance expression, 2. to investigate the nature of the resistance 
genes with respect to transfer characteristics and mitotic stability,

3. to determine if the strains contained plasmids and whether antibiPtic 

resistance was specified by these plasmids or by the chromosome and
4. if possible, to compare and contrast the plasmid contents of these strains 
with those of the well characterised strains.



MATERIALS AND METHODS
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BACTERIAL STRAINS

Source

Table 1 lists the bacterial strains used in this study. The group D 

streptococci under investigation were isolated and Identified previously as 

part of the work towards a Ph.D. degree by M. Blankson (1981). Strains K46, 
K55, K60, K87 and K88 were isolated from clinical specimens obtained from 

Victoria Hospital, Kirkcaldy and were identified as faecium (K46),

£. faecalis (K55), faecalis subsp. liquéfàciens (K60, K88) and 
faecalis subsp. zymogenes (K87).

Strains SB69 and SB94 were isolated from water snmpled below a sewer outfall 
and identified as faécrum and faecalis respectively.

The well characterised strain DS5 was included in the study as an example 
of a known plasmid containing group D Streptococcus. Originally reported 
as having only three plasmid species (Clewell et , 1974), it has recently 

been shown to possess five plasmids which encode haemolysis and bac-tariocin 
production, resistance to ultraviolet light and pheromone response 

(pAMy1 ; 60.0kb), bacteriocin production and pheromone response (pAMy2; 52.8kb), 
pheromone response (pAMy3; 45.8kb), resistance to MLS antibiotics (pAMg1 ; 
26.5kb) and tetracycline resistance (pAMal; 9.1-kb) (Clewell et al., 1982b; 
LeBlanc £t , 1983). '

Strains JH2-I, JH2-2 and JH2-17 were generously provided by Dr. A.E.

Jacob, University of Manchester. They are mutant derivatives of S. faecalis 
strain JH2 which has been shown to be plasmid free (Jacob and Hobbs, 1974) 

and therefore suitable as a recipient in mating experiments. Strain JH2-I 
has chromosomally encoded resistance to fusidic acid, strain JH2-2 to 
fusidic acid and rifampicin. Strain JH2'-17 is resistant to rifampicin and 
is a thymine auxotroph.
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Growth and maintenance

The solid medium used for routine growth of organisms was Diagnostic 

Sensitivity Test agar (DST; Oxoid). Cultures were streaked on to DST 

agar, grown aerobically at 37°C for 36h and stored for up to three weeks at 

4°C. These cultures were used as a working stock and the phenotype was 

checked prior to use in an experiment. For long term maintenance, 

bacterial strains were inoculated into Luria broth containing 0.5% (w/v) 

agar, incubated at 37°C for 48h and stored at 4°C. Luria broth consisted 

of 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) sodium chloride, 
adjusted to pH 7.5 with sodium hydroxide. In parallel, cultures were 
grown in Luria broth to which was added an equal volume of an aqueous 

solution of glycero1-dimethyl sulphoxide, each at 6% (v/v), and after 

mixing, these cultures were stored at -70°C. To sub-culture from this 

frozen stock, a small quantity of material was scraped from the surface and 
streaked on to DST agar.

All media used for the growth of JH2-17 or its derivatives were
• 1 •supplemented with 2yg ml thymine.

Detection of haemolysin production

Cultures were grown aerobically at 37°C for 24 to 48h on DST agar 

supplemented with 6% (v/v) defibrinated horse blood (Gibco). 3“haemolysis 

was easily recognised after incubation as a clear zone around the colonies, 
and while a-haemolysis was more difficult to see, "greening" of the blood 

became apparent after cultures had been kept at room temperature for up to 
72h.

Detection of bacteriocin production

The method described by Dunny and Clewell (1975) with minor modifications 

was used to detect bacteriocinogenic strains. The indicator strain was grown
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overnight at 37°C in Brain Heart Infusion broth (BHI; Oxoid) and 25yl 

added to 4ml liquefied 0,75% (w/v) agar at 50°C which was poured over a 

DST agar plate. When the overlay had solidified, colonies of the 
organisms under test were stab inoculated into the agar. Approximately

22 bacterial strains could be tested on each agar plate. After incubation

at 37°C overnight, zones in which the growth of indicator organisms was 

inhibited could be seen around bacteriocin producers.

DETERMINATION OF ANTIBIOTIC RESISTANCE PHENOTYPE 

Antibiotics and preparation of antibiotic agar

The antibiotics used are listed in Table 2. All antibiotic solutions 

were prepared freshly and the use of sterile diluents and containers 

obviated sterilisation. Solutions whidirequired ethanol, dimethyl sulphoxide 

or 0.5M Tris pH 8.0 were prepared by dissolving the antibiotic in a minimal 

amount of solvent and adding sterile distilled water to give the correct 
volume. Where the technical information on specific activity of the anti­

biotics was available, the weight of dry antibiotic was adjusted accordingly, 

but if there was no such information, the specific activity was taken to be 1.

For the preparation of solid antibiotic medium, antibiotic solutions 

were made 25 or 100 times the concentration required and diluted to the 

correct concentration in sterile liquefied nutrient agar at 50°C which, 

after thorough mixing, was poured into 9cm plastic petri dishes and allowed 
to solidify. The medium was dried before use in a circulating hot air oven 
at 50°C for 5 to 10 min. If the antibiotic medium was not required for 
immediate use, plates were stored at 4^C for one week, in the case of 
ampicillin and penicillin, or up to four weeks for other antibiotics.
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Dé termination of minimal Inhibitory concentrations

The minimal inhibitory concentrations (HICs) of antibiotics were 

determined in duplicate using an antibiotic agar dilution method. Serial 

two-fold dilutions of antibiotic solutions were made in sterile distilled 

water at 25 times the concentration required and antibiotic agar plates of 

each dilution were prepared as above. Bacterial strains were grown on 

DST agar at 37°C for 36h and five isolated colonies of each strain were 
suspended in 3ml sterile 0.9% (w/v) sodium chloride. A loopful of each 

suspension was placed on the dilutions of antibiotic in DST agar and the 
agar allowed to dry at room temperature before incubating at 37°C for 24h. 

Included on all plates were the strains JH2-2 which is known to be suscep­

tible to all antibiotics but fusidic acid and rifampicin, and DS5 which is 
resistant to tetracycline and MLS antibiotics. The MIC was taken as the

lowest concentration (yg ml"^) : antibiotic which inhibited the
growth of three or more colonies.

Expression of antibiotic resistance

In order to determine whether expression of resistance was inducible 

or constitutive, the method described by Yagi aT (1975) was used.

Antibiotics tested were erythromycin, tetracycline and chloramphenicol. 

Bacterial strains were grown in BHI broth overnight and 10ml of these 
cultures were used to inoculate fresh 40ml aliquots of BHI broth. Growth 
of the strains at 37°C in an orbital incubator shaker at 150 rpm was monitored 

at 30 min intervals by measuring the absorbance at 610nm. When the absorbance 
reached 0,15 to 0,20 at the start of exponential growth, the cultures were 
divided into three equal volumes, one of which received inducer.

Concentrations of antibiotics used as inducers were erythromycin 0.05yg 

ml , tetracycline O.lyg ml  ̂ and chloramphenicol 5,0yg ml \  Growth was 

continued to an absorbance of 0,45 — 0.50 (mid—exponential phase) when one



portion which did not contain inducer and the portion to which inducer 

had been added, were challenged with the appropriate antibiotic. Concen­

trations of antibiotics used as challenge were erythromycin lOOyg ml~\ 

tetracycline 20yg ml and chloramphenicol 20yg ml ^, All three portions 

of each culture were incubated as above until the stationary phase of 
growth was reached.

Test for beta-lactamase activity

Penicillinase activity was tested using Intralactam (Mast Laboratories) 
and Beta-test (Medical Wire) strips according to the manufactureras 

recommendations. Strips were moistened with sterile distilled water and 

culture, taken from DST agar, was applied to the strip using a bacterio­

logical loop. If, after a period of up to 10 min, a yellow colour appeared, 
the test was positive. Cephalosporinase activity was tested using the 

synthetic chromogenic cephalosporin nitrocefin (Glaxo). An aliquot 

(0.05ml) of an overnight culture in BHI broth was added to an equal volume
—  I

of a 0.5mg ml aqueous solution of nitrocefin. After incubation at 37°C 

for up to 30 min, a positive result was recorded when the solution changed 

from a straw colour to red. In all tests, JH2—2 and 3—lactamase producing 

Staph, aureus and coli containing RP4 were included as negative and 
positive controls respectively.
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TRANSFER EXPERIMENTS

Broth- mating procedure

Donor and recipient strains were grown overnight at 37°C in Oxoid 

Nutrient Broth No. 2 supplemented with 0.2% (w/v) glucose and O.lM Tris 

with pH adjusted to 7.8 using 5M HCl (N2GT) which had been sterilised at 

lOpsi for 10 min. An aliquot (Iml) was inoculated into 20ml fresh N2GT 
in 100ml Ehrlenmeyer flasks which were placed in an orbital incubator 

shaker at 37°C and cultures grown for 1.5 to 2h shaking at 200 rpm to give 

approximately 5 x 10® colony forming units (cfu) ml~^ The procedure 
described by Dunny and coworkers (1979) was used. Mating mixtures 

consisted of 0,05ml donor culture and 0.5ml recipient culture mixed in 

4.5ml fresh N2GT broth i.e. a donor: recipient ratio of 1:10 and a total

of approximately 5 x 10 cfu ml . The actual ratio and concentration of 
bacteria was checked by performing viable counts on cultures added to 

mating mixtures. Serial 10-fold dilutions of culture were made in sterile 
0.9% (w/v) sodium chloride and one drop from a Pasteur pipette (average 

volume 25yl) of dilutions 10 to 10  ̂was placed in duplicate on DST agar. 

After allowing the agar to dry at room temperature plates were incubated 
for 36h at 37 C and the cfu ml estimated.

Mating mixtures were incubated without shaking for 4h at 37°C, with
cultures of donor and recipient strains alone treated in the same fashion.
After incubation all cultures were mixed vigorously and the number of

viable donor and recipient bacteria estimated by viable counting as before
using appropriate selective agar - selection of donors was with DST agax 

—  1containing 25yg ml erythromycin except with strain SB69 where 20yg ml*~̂  

tetracycline was used, and for recipients, with DST agar containing 50yg ml"* 
fusidic acid or lOOyg ml rifampicin depending on the recipient strain.

In fact, the number of donor cfu should be estimated for each'drug under 

test as the donor viable count at the end of mating will In part consist



of these recipients which have received the resistance and hence be 

dependent on the transmissibility. Estimating the donor viable count
on only one antibiotic therefore has the effect of underestimating transfer 
frequency of those markers where the actual frequency is less than the 

selected marker and vice versa when the transfer frequency is greater.

Filter mating procedure

Bacterial strains were grown by the same procedure as that described

for broth matings, although latterly BHI broth was used as nutrient medium.

As above, the viable count of cultures was estimated before mixing 0.5ml

donor and 4.5ml recipient to give a ratio of one donor to ten recipients
8and a total count of approximately 5 x 10 cfu ml . Immediately after 

mixing, 1ml of the mating mixture was filtered on to a 25mm diameter 0.45ym 

filter (Sartorius, type SM113) which was placed on DST agar and incubated 
at 37°G for 18h. After incubation, the cells on the filter were re­

suspended in 1ml nutrient medium by vigorous agitation using a vortex mixer 
and the number of viable donor and recipient bacteria estimated on 

appropriate selective solid medium. Selection for donors and recipients 
was as above.

Selection of transconjugants

Transconjugants were selected on the basis of their simultaneous

resistance to both a donor antibiotic resistance trait and a recipient anti-
—  1biotic resistance trait. Concentrations of antibiotics in yg ml used 

for selection were : erythromycin 25; lincomycin 100; tetracycline 20; 
streptomycin, kanaraycin and neomycin 1000; chloramphenicol 20; ampicillin 
and penicillin 10; fusidic acid 50; rifampicin 100, Transfer of haemo­

lysin activity could not be selected directly but was assessed on DST agar 

containing 6% (v/v) defibrinated Horse blood and fusidic acid or rifampicin.
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Fusidic acid was used in preference to rifampicin in blood agar as the 

colour of the latter antibiotic interfered with haemolysin detection, 

particularly if the transfer frequency was low and the background of 

non-haemolytic colonies consequently high, a situation which results in 
almost imperceptible haemolytic zones.

After incubation of mating mixtures and thorough mixing, duplicate 

0.1ml aliquots were spread using a sterile glass spreader, on well dried 
DST agar plates containing selective antibiotics. When necessary, 

aliquots of serial lO-fold dilutions prepared for viable counts were also 
spread in order to achieve a suitable number of single colonies. All 
agar plates were allowed to dry at room temperature before incubating at 
37°C for 48 to 72h. fransconjugant colonies which grew on selective 

plates were counted and the number of transconjugants per ml estimated.

From this count and that of the donor cells at the end of mating, the 

frequency of transconjugants per donor was calculated.

Determination of transconjugant phenotype

In order to determine the phenotype of transconjugant colonies, master 

plates were prepared on DST agar by conventional "picking and patching".
To avoid bias, all single colonies on a selective plate or all single 

colonies of a section of a selective plate were taken for preparation of 
the master plate. Patches of donor and recipient strains were also 
included on master plates which were incubated at 37°C for 36h and repli­

cated, using sterile velvets, on to DST agar plates containing single anti­
biotics or 6% horse blood, representing non-selected donor and recipient 
markers. Antibiotic concentrations were the same as those used for 

transconjugant selection. As many as six replicas were made from each 

master, the last replica being a DST agar plate without antibiotic to check 

the efficiency of replication. Replica plates were incubated at 37°C 

for 36 to 48h.



Preparation and assay of clump inducing agent (CIA)

The procedure of Dunny and coworkers (1979) was used to assay CIA 

activity. CIA producing strains were grown in N2GT broth at 37°C in an 
orbital incubator shaker at 150 rpm to late exponential phase at an 

absorbance of 0.8 at 610nm. Cultures were centrifuged for 10 min in a 

Sorvall SA-600 rotor at 8000 rpm, the supernatant decanted and filtered 

through a 25mm diameter 0.45yra filter (Millipore) and finally, the filtered 
supernatant was autoclaved at 15 psi for 20 min before storage at 4°C.

Response to CIA was assayed in ^U-shaped* microtiter trays (Sterilin). 

Autoclaved filtrate was diluted in fresh N2GT to give serial two—fold 

dilutions in 50yl volumes. Strains to be tested for response to CIA 

were grown in N2GT at 37 C overnight, diluted to an absorbance of 0.5 at 

660nm and 50yl added to each dilution. The range of final dilutions of 

CIA was 1/2 to 1/256 with a well containing N2GT and responder cells alone 

as a control. Microtiter trays were incubated at 37°C for 90 to 120 min 
on a rotating table (Rotatest shaker, Luckham) before examining wells 
for clumping of responder cells. The CIA titre was taken as the 
reciprocal of the highest dilution in which clumping occurred.

ELIMINATION OF PLASMID DNA

Loss of plasmid DNA during storage

Bacterial strains were stored at room temperature in Luria broth 

containing 0.5% (w/v) agar for 10 to 12 months. BHI broth supplemented 

with 0.5% (w/v) yeast extract (Difco), 0.2% glucose and 0.1 volume IM Tris- 
HCl, pH 8,0 (BYGT; Dunny et 1981b)sterilised at 15 psi for 15 min

in 20ml amounts , was inoculated with 0.2ml of these cultures and incubated 
at 37°C in an orbital incubator shaker at 200 rpm. Overnight incubation 
was necessary to obtain visible growth of the organisms. Serial 10-fold
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dilutions in 0.9% (w/v) sterile sodium chloride were made and 0,1ml of
• • "6  ̂dilutions 10 to 10 was spread on dried BHI agar (BHI broth containing

1.5% (w/v) Oxoid agar No. 1) which was incubated at 37°C for 48h.

Master plates were prepared by picking and patching, as described 

previously, on to fresh BHI agar. Approximately 200 single colonies of 

each strain was taken. Master plates were incubated at 37°C for 36h 

before replicating using sterile velvets on to BHI agar containing an 

appropriate antibiotic or horse blood. The concentrations of antibiotics 

and blood used were the same as for analysis of transconjugant phenotypes 

and included on master plates were patches of JH2-1, as susceptible control, 
and the parental strain. Up to six replica plates were made from each 

master, the last being BHI agar without antibiotic. After incubation 
at 37°C for 48h, growth of patches on antibiotic and blood agar was 

compared with that on the BHI agar replica and where no growth occurred 

on antibiotic or where there was no haemolysis on blood, it was taken as 
evidence of loss or ’curing’ of plasmid DNA.

Treatment with novobiocin

Novobiocin (Sigma) is an antibiotic which inhibits the B subunit of 

DNA gyrase and which has been shown to effect plasmid elimination possibly 

by a selective action on plasmid associated gyrase (McHugh and Swartz,

1977; Hooper et al., 1984). , The most effective concentration of drug 
was shown to be that which inhibited multiplication or caused minimal 

killing (McHugh and Swartz, 1977).

Novobiocin was dissolved in a minimal amount of ethanol and sterile
—  jdistilled water added to give a concentration of 2mg ml . The antibiotic 

was diluted in sterile BHI broth to lOOyg ml followed by serial two­

fold dilutions in 1ml sterile BHI broth to give a series of dilutions 

from 50 to 0.19yg ml novobiocin in a total of 1ml broth. A tube con-
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taining 1ml BHI broth without antibiotic was included in each series. 

Bacterial strains were grown overnight at 37°C in 5ml BHI broth, diluted 1 

in 120 in fresh sterile BHI broth and 1 drop from a sterile Pasteur pipette 

(average 25yl) was added to each of the dilutions of novobiocin and the

antibiotic free control, giving an estimated initial bacterial count of
• 5 " * " !  * . • .  » oapproximately 10 cfu ml . After incubation overnight at 37 C, the

cultures were agitated and examined for growth. The MIC for novobiocin

was the reciprocal of the lowest dilution in which no growth was visible
and the dilution at half MIC concentration, i.e. the lowest dilution with

visible growth, was tested for cured derivatives. Serial 10-fold dilutions

were made in sterile 0.9% (w/v) sodium chloride and duplicate 0.1ml aliquots
"“5 *^2  ̂ ^of dilution 10 to 10 were spread on dried BHI agar. After incubation

at 37°C for 36h, master plates were prepared and replicated as above.

PREPARATION OF PLASMID DNA

Vapnek method

This method of plasmid preparation (Vapnek et al., 197 6) is commonly 

used for isolation of plasmid DNA from Gram-negative bacteria and an 

attempt was made, with minor modifications, to prepare plasmid DNA from 

strains of group D streptococci. Strains were grown in 30ml Luria broth in 
250ml flasks at 37°C in an orbital incubator shaker at speed 200 rpm until 
the absorbance at 610nm was 0.8. Cells were pelleted by centrifugation 
for 10 min at 8000 rpm in a Sorvall SA-600 rotor resuspended in 2ml 10% (w/v) 
sucrose in 0,05M Tris^HCl pH 8,0 and treated with 0,8ml 0.2M EDTA, pH 9.0 
to inhibit nucleases by chelating magnesium ion cofactors, and 0.4ml egg 
white lysozyme 5mg ml (Sigma; specific activity 38 poO Units mg protein) 

in 0,25M Tris-HCl, pH 8.0 to degrade the cell wall. After incubation for 
5 min on ice, 0,3ml 2% (w/v) sarkosyl was added dispersed immediately by 

gentle agitation and the mixture was incubated a further 10 min at 37°C to

...J



90

achieve lysis. The cell debris was removed by centrifugation for Ih at 

18000 rpm in a Sorvall SA—600 rotor and the supernatant transferred to 
corex tubes. Deproteinisation of the sample was a c c o m p l i s h e.d by extraction 

with redistilled phenol saturated with lOmM Tris-HCl, pH 8.0. An equal 

volume of phenol was added and mixed by inversion of the tube several times. 

To separate the aqueous and phenol phases, the tubes were spun for 5 min at 

5000 rpm, the aqueous phase carefully removed avoiding the precipitate at 

the interface and the DNA precipitated by addition of 2 volumes of ethanol 
pre-cooled to -20°C. After mixing by inversion, samples were incubated 

at -20°C overnight and the DNA collected by centrifugation for 10 min at 

10000 rpm followed by thorough draining and resuspension in 0.2ml TE buffer 
(50mM Tris-HCl,5mM EDTA, pH 8,0). If necessary, samples were stored at 
4°C.

Eckhardt method

Plasmid DNA preparation by this method involves the gentle lysis of 
cells directly in the slots of an agarose gel and was developed to detect 
plasmids of low copy number within a wide size range of 3 to 230kb from 

Gram-negative and Gram-positive bacteria(Eckhardt, 1978). The procedure
requires the following solutions:

• 1 Lysozyme solution - lysozyme 75000 Units ml
“ 1ribonuclease 1 0.3 Units ml (Sigma) 

disodium EDTA 0.05M 
sodium chloride O.lM 
Ficoll 400,000 20% (w/v) 
bromophenol blue 0.05% (w/v) 
in TBE (89mM Tris base, 12,5mM

disodium EDTA, 8.9mM boric acid, 
pH 8,2)
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Ribonuclease 1 was first dissolved in 0.4M sodium acetate buffer, pH 4.0 
to lOmg ml *, heated for 2 min at 98°C and diluted to the appropriate 

concentration.

SDS solution sodium dodecyl sulphate (SDS) 2% (w/v)

Ficoll 400,000 10% (w/v) 

in TBE

Overlay solution - SDS 0.2% (w/v)

Ficoll 400,000 5% (w/v) 
in TBE

A 1% (w/v) vertical agarose gel (preparation described in following 

section) was prepared. Lysozyme solution (30yl) was placed in each well and 

1 to 3 single colonies from 36h DST agar cultures were suspended in the 
solution so that it became slightly turbid. Cells were incubated in the 
lysozyme solution for 40 min, 60yl SDS solution layered on top and the two 

layers gently mixed with a toothpick moved side to side two or three times. 

Incomplete mixing was necessary to produce only partial lysis at this 

stage, lysis being completed by migration of SDS through the bottom layer 

during electrophoresis (Eckhardt, 1978). Finally 200yl overlay solution 
was carefully layered without disturbing the layers below and the slots 

sealed with molten agarose. Electrophoresis was for 60 min at 2mA and 

thereafter at 40mA and the bands of nucleic acid visualised as described 
in the following section.

Mutanolysin method

This method was developed by Nonsen et al (1983) specifically for 

preparation of DNA from streptococci and uses mutanolysin isolated from 
Stfeptbmyces globispofus (Sigma; specific activity 3585 Units mg protein) 

in combination with the non—ionic detergent Triton X—100 and high concen­

trations of sodium chloride to effect lysis.
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Bacterial strains were grown to mid-exponential phase 0.4)

in 100ml BYGT broth supplemented with 20mM threonine which facilitates 
lysis possibly by weakening cross-linking of the peptidoglycan (Chassy,

1976). Cells were harvested by centrifugation for 10 min at 7000 rpm in 

a Sorvall SAHOO rotor, washed in 20ml lOiriM sodium phosphate buffer, pH 8.0. 

To this suspension was added 50yl 0.5M disodium EDTA, pH 8.0, 125yl 20%

(v/v) Triton X-100, lOOyl 5.8 mg ml * mutanolysin and 0.5g solid sodium 
chloride to give a final concentration of 1.62M. The suspension was gently 

mixed until the salt was dissolved, incubated 5 to 60 min at 37°C until 
complete visual lysis was obtained, and incubated for 30 min at 4°C.

The presence of sodium chloride directly enhances mutanolysin lysis possibly 

by destabilising streptococcal peptidoglycan (Monsen et al., 1983) in 

addition to causing preferential precipitation of linear (chromosomal)

DNA. The lysate was spun at 4°C for 20 min at 15000 rpm and the super­
natant poured into a corex tube. At this point, the published method 
continued with two serial caesium chloride-ethidium bromide buoyant 

density centrifugations, phenol extractions and ethanol precipitation.

In this study, the centrifugation steps were omitted and the samples 
extracted twice as described above by addition of an equal volume of re­

distilled phenol saturated with 3% (w/v) sodium chloride, followed by 

mixing and separation of phases by centrifugation at room temperature for 

5 min at 2500 rpm in a Sorvall SA-600 rotor. The aqueous phase was 
extracted twice with chloroform to remove the phenol and the DNA precipit­

ated by addition of 0.5ml 3M sodium acetate and 2 volumes cold 95% (v/v) 
ethanol. Samples were incubated at -20^0 overnight or until needed when 

they were spun for 20 min at 12000 rpm. After thorough draining and 
drying, the DNA pellet was resuspended in 300yl TE buffer (lOmM Tris-HCl,

ImM disodium EDTA, pH 8,0),
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Préparation of large plasmid molecules

This method was described by Crosa and Falkow (1981) as suitable for 

preparation of plasmid DNA up to 530kb from Gram-negative and Gram-positive 

bacteria. Unlike the other methods, it does not include enzyme treatment 

of the cells but relies on SDS alone to produce lysis. As with the 

following methods, covalently closed circular (ccc) plasmid DNA is enriched 
and separated from the majority of contaminating chromosomal DNA by raising 

the pH to 12.4, resulting in dénaturation and strand separation of nicked or 

linear DNA - cccDNA is resistant to strand separation in alkaline conditions. 

On neutralisation, the chromosomal DNA forms an insoluble mesh, production 

of which is greatly facilitated by addition of sodium chloride to a IM 

concentration. During centrifugation to remove chromosomal DNA, cccDNA 
remains in solution until addition of alcohol.

Bacterial strains were grown in 10ml BYGT broth at 37°C in an orbital 
incubator shaker at 200 rpm for 1.5 to 2h and harvested by centrifugation 

for 10 min at 7000 rpm in a Sorvall SA-600 rotor. Cells were resuspended 

in Iml TE buffer (50mM Tris-HCl, 5mM disodium EDTA, pH 8.0), transferred to 
a 1.5ml eppendorf tube and pelleted by centrifugation for 5 min in an MSE 
microfuge. After resuspension in 40yl TE buffer, 0.6ml freshly prepared 

lysis buffer was added and gently mixed by inversion several times. Lysis 

buffer consisted of 4% (w/v) SDS in TE at pH 12.40, the pH of which was 

determined as accurately as possible since a pH of greater than 12.50 will 

irreversibly denature plasmid DNA. The sample was incubated with lysis 

buffer for 20 min at 37°C and neutralised by addition of 30yl 2M Tris-HCl 

pH 7,0, which was gently mixed by slowly inverting the tube until there was 

a noticeable change in viscosity. Chromosomal DNA was preferentially pre­

cipitated by addition of 240yl 5M sodium chloride and incubation for 1 to 4h 
at 4°C. The sample was centrifuged for 10 min in an MSE microfuge, the 

supernatant carefully poured into a new tube and 550yl cold isopropanol



94

added. After mixing, the sample was incubated at —20°G for 30 min, spun 

for 3 min in the microfuge and thoroughly drained. Drying of precipitated 
DNA was completed under vacuum and the precipitate resuspended in 30yl 

sterile TES (50mM Tris-HCl, 5mM disodium EDTA, 50mM sodium chloride, pH 8,0), 

If not used immediately, samples were stored at 4°C.

Dunny method

Preparation of plasmid DNA by this method was described by Dunny and 

coworkers (1981b) for use with group D streptococci and was carried out with 

minor modifications necessitated mainly by differences in available equip­
ment.

Cultures were grown at 37°C in 25ml BYGT supplemented with 20mM 

threonine in an orbital incubator shaker at 200 rpm for 1,5 to 2h to give 

a mid-exponential phase culture. Cells were harvested as above, washed 

with 5ml TE buffer (50mM Tris-HCl, 5mM disodium EDTA, pH 8.0) and re­

suspended in 0.1ml TE buffer. To this suspension 25yl 40mg ml * lysozyme 
in TE buffer was added, mixed thoroughly and incubated for 20 min at 37°C.

In order to lyse the cells and denature nicked or linear DNA, 2,4ml lysis 

buffer consisting of 1% (w/v) SDS in TE at pH 12.45 was added slowly, mixed 

gently by rotation and incubated for 20 min at 37°C. To neutralise, 0.4ml 
2M Tris-HCl,pH 7.0 was added slowly with gentle but thorough mixing by 

inversion of the tube and chromosomal DNA was precipitated by addition of 

0.3ml 5M sodium chloride followed by incubation at 4°C for 2 to 4h. 
Precipitate was removed by centrifugation for 20 min at 15000 rpm (Sorvall 

SA-600 rotor) and the supernatant was poured into a corex tube. At this 

stage, the RNA in the samples was sometimes removed by degradation with 
150yl 2mg ml ribonuclease ] at 37 C for 30 min. The enzyme had been 

boiled for 10 min to remove contaminating DNases and stored frozen. The 

samples were deproteinised by extraction twice with an equal volume of
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redistilled phenol saturated with 3% (w/v) sodium chloride as described 

above. In addition to extraction of proteins, particularly nucleases, it 

has been shown that single-stranded DNA, for example chromosomal DNA de­
natured after treatment with alkali, is preferentially entrapped in the 

precipitate at the interface between the phenol and aqueous layers and that 

3% sodium chloride is the optimum concentration for this removal of 

denatured DNA (Currier and Nester, 1976). Residual phenol was removed 

by extraction with chloroform: isoamyl alcohol 24:1 (v/v). Throughout
the extraction procedure wide bore Pasteur pipettes were used to transfer 

the aqueous phase to fresh tubes in order to minimise shearing. The DNA 

was precipitated by addition of 460yl 3M sodium acetate and 2 volumes cold 
95% (v/v) ethanol followed by incubation at —20°C overnight or until the 

samples were required. After spinning for 20 min at 12000 rpm (Sorvall 
SA-600 rotor) and thorough draining, the DNA was resuspended in 100 to 200yl 
TE buffer (lOmM Tris-HCl, ImM EDTA, pH 8.0).

Large scale preparation

The preparation of plasmid DNA on a large scale was carried out using 

a method modified from that described by Bimboim and Doly (1979) for 

isolation of plasmid DNA from Gram-negative bacteria. As with the previous 

method, chromosomal DNA denatured with alkali was removed by precipitation 

in high salt. The following solutions were used :

Solution I sucrose 50mM
Tris 25mM

disodium EDTA lOmM
pH 8.0

Solution II sodium hydroxide 0.2M

SDS n  (w/v)

Prepared by diluting stock solutions of 2M sodium hydroxide and 10% (w/v)

SDS in distilled water.
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Solution III 3M potassium, acetate, pH 4.8.

The salt was dissolved in a minimal amount of distilled water, adjusted 

to the correct pH with glacial acetic acid and finally to the correct volume 

with distilled water.

Bacterial strains were grown in 1000ml BYGT in an orbital incubator 

shaker at 100 rpm for 5h. Cells were collected by centrifugation for 
10 min at 7000 rpm in a Sorvall G5-3 rotor at 4°C, washed with 50ml 50mM 
Tris-HCl, pH 8.0 and resuspended in 50ml Solution I. To this suspension 

was added 250mg lysozyme which was dissolved and the suspension incubated 

at 37°C for 30 min or at 4°C for 30 min with Gram-negative strains. Protein­
ase K (lOmg; Sigma) could be added at this stage and incubated for 60 min 
at 37°C. Lysis of the cells was completed by addition of 80ml fresh 

Solution II which was added slowly and mixed thoroughly followed by incubation 
for 10 min at 37°C. Incubation for Gram-negative organisms was for 5 min 

on ice. Chromosomal DNA. was precipitated by addition of 40ml cooled 

Solution III which was thoroughly mixed and the sample incubated on ice for 

15 min. Precipitate was removed by centrifugation for 5 min at 7000 rpm, 

the supernatant filtered through two layers of gauze and the volume measured. 

Isopropanol at -20°C was added at 0.6 volume (approximately 108ml), mixed 

and the sample spun immediately for 5 min at 7000 rpm. The supernatant 
was discarded and the precipitate thoroughly dried.

The precipitate was dissolved in 5ml TE buffer (lOiriM Tris-HCl, ImM EDTA, 

pH 8.0) in preparation for caesium chloride-ethidium bromide density gradient 
centrifugation. More ethidium bromide intercalates into linear and open 
circular DNA than cccDNA hence the former types of DNA are less dense and 
form hands above cccDNA during equilibrium centrifugation. These bands 

can be visualised with ultraviolet light due to the fluorescence of the 

intercalated ethidium bromide.



97

The volume of samples dissolved in TE buffer was carefully measured, 

made up to 6.7ml with TE buffer and the sample added to 7.2g caesium 

chloride. This was dissolved before adding 0.7ml 3mg ml^* ethidium bromide 
(Sigma), The mixture was poured into a 10ml polypropylene centrifuge 

tube (MSE) and the air expelled by addition of paraffin oil. Carefully 

balanced tubes were placed in an MSE 10 x 10ml rotor and spun at 20°C for 

40h at 40,000 rpm. Bands were visualised using a 302nm ultraviolet lamp 

and the bands collected using a Pasteur pipette. The ethidium bromide was 
extracted several times by addition and mixing of butan—l—ol until the 

sample appeared colourless and the aqueous phase was dialysed at 4°C 

against 4 x 1000ml TE buffer (lOmM Tris-HCl, ImM EDTA, pH 8.0) overnight 
to remove the caesium chloride. If necessary, the DNA could be concen­

trated by precipitation with 2 volumes of ethanol as in previous methods. 
Sanples were stored at 4°C.

AGAROSE GEL ELECTROPHORESIS

Preparation of agarose gels

Unless stated otherwise, the buffer used throughout for the prepar­

ation and electrophoresis of gels was TBE (89mM Tris, 2.5mM disodium EDTA, 

8.9mM boric acid, pH 8.1). Electrophoretic grade agarose (BRL) was 

dissolved in running buffer by boiling to give gels between 0.35 and 0.8% 

(w/v). The apparatus used for horizontal gels was manufactured by BRL 

and was of two sizes. The smaller model H4, allowed gels of dimension 
14cm x 11cm with a total gel volume of 100ml or 120ml giving a thickness 
of 7 to 8mm with 14 wells of 4mm x 2mm while gels of the larger model HO 

were 25cm x 20cm with a total volume of 200ml or 300ml resulting in a 

thickness of 4mm or 6mm. The slot former of the larger apparatus produced 

20 wells of dimensions 6.4mm x 1mm or 6.4mm x 3mm, Molten agarose was 
cooled to 60°C before pouring into the plexiglass trays, the ends of which
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had been sealed with tape. When the gel had solidified, the tape and 

slot former was removed and the gel submerged in running buffer.

Vertical gels were prepared by pouring molten agarose over a plug 
which had been previously poured and solidified and which consisted of 

l.Og cyanogum, O.lg ammonium persulphate and 40yl N,N,Nf,N^-tetramethyl- 

ethylenediamine in 10ml TBE. The slot former was positioned to provide 
sample wells and removed after the agarose had solidified.

Sample preparation, loading and electrophoresis

Aliquots of DNA samples were adjusted to the same volume by addition 

of buffer and prepared for leading on to the gels by addition and mixing 

of 0.1 volume of dye solution. The dye solution consisted of 0.05%

(w/v) xylene cyanol, 0.05% (w/v) bromophenol blue in 50% (v/v) glycerol, 
or latterly 0.05% bromophenol blue in 30% (w/v) sucrose.

Before loading the samples, wells were filled with running buffer 

ensuring that there were no air bubbles present. After carefully loading 

the samples avoiding any spillage, the horizontal gel apparatus was attached 
to a power supply and a maximum current applied, usually 80mA for the small 

gel and 120mA for the large gel, until the dye had migrated into the gel 

in order to minimise the risk of loss of DNA due to diffusion out pf the 

well. Electrophoresis was carried out at 1.5 to 2V per cm until the 

bromophenol blue neared the bottom of the gel. Electrophoresis conditions 
for vertical gels have been described previously.

Determination of plasmid sizes

Following electrophoresis, the agarose gel was placed in a solution 

of 0.5mg ml ethidium bromide for 20 to 30 min, washed with tap water 

and the DNA visualised by transillumination (Model C-61 trans illumina tor, 

U.V. Products, If.S.A.) using an ultraviolet lan^ (302nm). Photographs 

of the gels were taken with a Polaroid Land camera through a Kodak Wrattan
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No. 22A yellow filter using Polaroid type 57 or type 667 film for 

instant pÎLotographja and Ilford PP4 film with, a 4 to 8 min exposure. The

mobility of DNA bands- was measured in all cases from photographs of 
approximately the same size as the original gel. 1

The plasmids shown in Table 3 of known size were used for the con­

struction of standard curves from which to extrapolate the size of unknown 

samples, since this is inversely proportional to migration rate. At 

low voltage gradients, a plot of size against the reciprocal of the mobility 

(ra) gave a straight line while at higher voltage gradients, size against 

1/m-mo where mo is a constant calculated from standard values was plotted 5|
as described by Southern C1979).

The standards used for the determination of length of linear DNA were,

HindiII restriction endonuclease fragments of bacteriophage \ obtained from ^

BRL and stored at -20°C. Standard curves were constructed as for cccDNA 
with fragment sizes 23.13kb, 9.42kb, 6.68kb, 4.36kb, 2.32kb and 2.03kb.

RESTRICTION ENDONUCLEASE DIGESTION

Two restriction enzymes, EcoRI and PstI from BRL were used to digest 

DNA samples obtained from bacterial strains by the method of Dunny (1981b). 

As instructed by the manufacturer, the reactions were carried out in buffers 

which were stored at -20°C at 10 times concentration. Final concentrations 
in the reaction mixtures are shown in Table 4.

Reaction mixtures consisted of :

40pl sample 
5pl 10 X reaction buffer 
4pl distilled water 

Ipl restriction endonuclease
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Table 3. DNA of known alze used in construction of standard curves

cccDNA speciee 

pGC9114

RP4

Sa

pAJ50

pBR325 containing 
Neurospora Hindlll 
glutamate debydrogenase 
fragment

pDB248

pBR325 containing 
Neurospora crassa BamEI 
glutamate dehydrogenase 
fragment

pHC79

pBR322

Size OdhJ

65,90

51,50

37,88

15,30

13.94

10.10

7.88

6,44 

4.36

Source or Reference

C. Drainas, University of loannina, 

Greece,

Plasmid Reference Center,

Stanford University.

Medical School,

Plasmid Reference Center

Jimenez and Davies C1980)

J,R.S. Fincham,

University of Edinburgh

Beach and Nurse (1981)

J.R.S. Fincham,

University of Edinburgh

Hohn and Collins (1980) '

Rosenberg "and t^ueen (1981)



101

m

WPh

m

M

CO

cr*
m

r~f'd'

O

O
r~H

*H(0acd%

Om

‘doi—i

njoCO

t

CO

05•M
‘ri
§
OS

CO

y
m

H ,+J
05PhI

Om

or-l
-a
g•HTI)OCO

CO

.L
CO (Ü

4-1•rim
<Ur
3
05

3

:
■3



102

Mixtures containing EcoRI were incubated at 37°C for 2h. and the reaction 

stopped by incubation for 10 min at 65°C followed by gentle cooling at 

37°C for 10 min and storage on ice until preparation for agarose gels as 

described previously. Mixtures containing pstI were incubated at 30°C 

for 2h followed by treatment as for EcoRI. Given that digestions were 

carried out for 2h with excess enzyme, it was expected that digestion would 

be complete.



RESULTS
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PHENOTYPE OF BACTERIAL STRAINS

Minimal inhibitory concentrations

The minimal inhibitory concentrations (MXCs) of 12 antibiotics are 
shown in Table 5. Results obtained for JH2-2 were the same as those pre­

viously published results (Jacob and Hobbs, 1974) or were within a two­

fold variation, such small differences probably being due to a different 

method of MIC determination. For the antibiotics erythromycin, lincomycin
and the aminoglycoside-aminocyclitol group, strains were considered to be

“ I •" 1resistant if the MIC was  ̂ lOOOpg ml , for tetracycline > 64pg ml , for
• 1pristinamycin > 40yg ml , for benzylpenicillin and ampicillin lOyg ml ,

ww. j|and for chloramphenicol > 40yg ml . These values for enterococcal 
resistance were a consensus based on previous studies (Taola ^  al., 1969; 

Clewell aJ., 1974; Jacob and Hobbs, 1974; Van Embden et al., 1977; 

Courvalin £t ^ . , 1978; Bayne et al., 1983; Combes £t al., 1983).
Strain DS5 was, as expected, resistant to erythromycin, lincomycin, pristin­
amycin (MLS antibiotics) and tetracycline only.

All isolates in this study were resistant to tetracycline with MIC
values up to 800 times the value of the susceptible strain JH2-2. Likewise

all strains were insensitive to MLS antibiotics except strain K46 which was
/

resistant to erythromycin and lincomycin but susceptible to pristinamycin,

and strain SB69 which was susceptible to all three MLS antibiotics. Of the

aminoglycoside-aminocyclitol antibiotics tested, all strains were susceptible

to gentamicin (MIC < 64yg ml ^) and and spectinomycin (MIC < 40yg ml ^) and
strains K55, K88, and SB69 were susceptible to kanamycin (MIC < 320yg ml )̂

«and neomycin (MIC < 160yg ml ). All the strains were however resistant 

to streptomycin, strains K60, K87, SB94 and K46 being in addition resistant 
to kanamycin and neomycin. Strain K88 was the only isolate which was 

resistant to chloramphenicol and the two faecium strains K46 and SB69 

were the only strains which showed resistance to penicillin and ampicillin.

..,-1
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Production of haemolysin arid bacteriocin

On nutrient medium containing horse blood, only strains DS5 and K87 

3“haemolytic and strain SB69 alone was a-haemolytiu.

When bacteriociti production was tested using strain JH2-1 as indicator 

organism, strains DS5 and K87 were unequivocally bacteriocinogenic with 

zones of clearing around stab inocula of between 2 and 5mm diameter, while 

strain SB94 appeared to be weakly bacteriocinogenic producing inhibition of 

JH2-1 within a 1mm diameter zone. With strain K87IO as indicator organism, 
stab inocula of strains DS5 and SB94 were surrounded by clear zones of 2 to 

4mm diameter. In one experiment as expected, strain K87 produced no 

bacteriocin against K87IO but surprisingly in another experiment appeared 

to produce a very weak bacteriocin. In this case, the zone of clearing 
was barely discernable but was plainly different when compared with growth 
of the indicator organism around the known non-producer JH2-1. None of 

the other strains produced detectable bacteriocin against JH2-1 or K87IO.

Mode of expression of erythromycin resistance

Figure 1 shows the results of a typical experiment to determine whether 

erythromycin resistance was inducible or constitutive. Growth, measured 

as absorbance at 610nm, was plotted against time for cultures grown in the 
presence or absence of a concentration of drug below that which inhibits 

growth of susceptible cells, followed by challenge with a drug concentration 
many times higher. Only the data for strains DS5 which is known to display 
constitutive resistance (Yagi £t al., 1975), and K55 are shown, as all the 
strains produced similar results.

At the start of the logarithmic growth phase, the culture was divided 

equally and the inducer, erythromycin, added to one aliquot to give 0.05yg 
ml . There was no detectable inhibition of growth by this concentration 

of antibiotic. After further growth, challenge of two aliquots in mid-



106

Figure la. Effect on growth of addition of lOOyg ml ^

erythromycin to cultures of DS5 grown in the
-1presence or absence of O.OSyg ml erythromycin.

At 80 min, the culture was divided into three equal aliquots and 
-1inducer (0.05]Jg ml erythromycin) was added to one aliquot. At 140

min, the induced culture and one other aliquot (uninduced) were challenged
-1with addition of lOOyg ml erythromycin.

#-----# no antibiotic added

~0 uninduced

O- -O induced

1-0

0*5

challenge

0*1

inducer added

0 0 5
1000 300200

TIME(MIN)
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Figure lb. Effect on growth of addition of lOOyg ml erythromycin

to cultures of K55 grown in the presence or absence of 
-10.05]jg ml erythromycin.

At 95 min, the culture was divided into three equal aliquots and
-1inducer (0.05]Jg ml erythromycin) was added to one aliquot. At 140

min, the induced culture and one other aliquot (uninduced) were challenged
-1with the addition of lOOpg ml erythromycin.

no antibiotic added

-O uninduced

-Q induced

10

0 5

challenge
CO

inducer added

0 0 5 200 '1000 300
TIME(Min)
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, -f-. 1logarithmic phase, with lOOyg ml erythromycin did not cause any effect on 

the rate of growth of induced or uninduced culture nor was there any 

difference in growth rate between those aliquots challenged and the control 

which had no antibfotic added. Had resistance been inducible, it would 

have been expected that under these conditions, challenge of uninduced 

culture would have resulted in inhibition of growth followed by an increase 

in growth rate after a lag period while challenge of induced culture would 
have had no effect (Yagi et al., 1975).

Mode of expression of tetracycline resistance
- ]Figure 2 shows the effect of challenge with 20yg ml tetracycline of

strains DS5 and K55 grown in the presence or absence of an inducing concen-
. 1 ] tration (O.lyg ml ) of tetracycline. On addition of 20yg ml tetra­

cycline, there was no interruption, of growth in either culture nor was there 
any difference between those cultures challenged and the control with no 
antibiotic added. The other strains gave similar results to DS5 and K55 
the former of which is known to express tetracycline resistance constitutively 
(Burdett, 1980).

Mode of expression of chloramphenicol resistance
•— ]The effect of challenge with 20yg ml chloramphenicol of strain K88 

grown in the presence or absence of 5yg ml  ̂ chloramphenicol is shown in 

Figure 3. Addition of the challenge concentration of drug has no effect
_  jon the culture previously exposed to the inducing concentration of 5yg ml 

chloramphenicol. In contrast, challenge of the culture which was not 
induced by prior growth in 5yg ml ' drug resulted in a marked decrease in 
growth rate followe.d by a gradual resumption of normal growth after 
approximately 90 min»



109-1Figure 2a. Effect on growth of addition of 20pg ml tetracycline
to cultures of DS5 grown in the presence or absence of -1O.lyg ml tetracycline.

At 30 min, the culture was divided into three equal aliquots and inducer 
(O.lpg ml  ̂ tetracycline) was added to one aliquot. At 90 min, the 
induced culture and one other aliquot (uninduced) were challenged with 
addition of 20yg ml tetracycline.

-e no antibiotic added
O-----O uninduced
□-----Q  induced

1-00

0*50

CD

challenge

0 10

0 0 5

inducer added

3002001000
TIME(Min)



-1Figure 2b. Effect on growth of addition of 20pg ml tetracycline to
cultures of K55 grown in the presence or absence of O.lyg 

-1ml tetracycline.

110

At 30 min, the culture was divided into three equal aliquots and 
-1inducer (O.lvig ml tetracycline) was added to one aliquot. At 90 min,

the induced culture and one other aliquot (uninduced) were challenged
-1with addition of 2 0)ig ml tetracycline.

no antibiotic added
uninduced
induced

100

0 5 0

challenge

CD

0*10 inducer added

0 0 5

3001000 200
TIME{Min)
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~1Figure 3. Effect on growth of addition of 20yg ml chloramphenicol

to cultures of K 88 grown in the presence or absence of 
-15pg ml chloramphenicol.

At 30 min, the culture was divided into three equal aliquots and 
-1

inducer (5pg ml chloramphenicol) was added to one aliquot. At 90 min,
the induced culture and one other aliquot (uninduced) were challenged with-1addition of 2 0yg ml chloramphenicol.

-# no antibiotic added
-o uninduced

O- -a induced

100

0-50

CO

challenge

0 10

inducer added

0 0 5
0 100 . 200 300TIME{Mln)
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Be.ta-làctàriiàsé. activity

Strains K46 and SBfi9. vdiicH. weire. found to Be resistant to penicillin 

and ançiciilin were tested for tHe: production of g^iactamase. On Beta-test 

and Intralactam strips, only tRe, penicillinase producing jE. ' coli control 

produced a change, in colour from purple to yellow. As the strips are known 

to be. ineffective in detecting g-lactamase activity of Gram-positive Staph. 
aüréus, all strains were, also tested using nitrocefin, With this substrate, 
the g-lactamase producing controls immediately turned the solution from straw 
coloured to red but none of the. streptococci produced any change even after 
incubation at 37°C for 30 min.

Phenotype of bacterial strains

Table 6 was compiled from the information above and shows the relevant 

phenotypes of the strains in this study. All the strains expressed anti­

biotic resistance constitutively with the exception of inducible chloramphen­
icol resistance of strain K88. The strains showed multiple antibiotic 

resistance to between 4 and 8 drugs and in addition some were haemolytic or 
produced bacteriocin. No two strains had exactly the same phenotype.

TRANSFER EXPERIMENTS

Conjugation in broth culture

The transfer frequencies of phenotypic markers expressed as transcon- 

jugant colonies per donor colony forming unit after 4h broth culture matings 
are shown in. Table. 7. Throughout the description and discussion of results, 
values greater than 1 x 10 will be. referred to as high frequency transfer, 

values hetweeh 1 x 10 ^ and 9 x 10 ^ as intermediate frequency transfer, and 
values less than 9 x 10 as low frequency transfer.

1

a

I

-.-.'A
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Results calculated for transfer of DS5 markers (Table 7a) in experiments

I, 2, 4 and 5 are in broad agreement with published observations (Dunny and

Clewell, 19 75), haemolysin activity being transferred at high frequency
(10 to 10 ), tetracycline resistance transferred at intermediate or low

-8 -6 .frequency (.5 x 10 to 10 )’ and erythromycin resistance transfer undetected.

During these experiments, the recipient viable count decreased by a factor
7 -1 .of 10 to 50 from an initial count of approximately 5 x 10 cfu ml in

• 8 ^ 1  experiments 1, 2 and 4 and 3 x 10 cfu ml in experiment 5, due to the

production of bacteriocin by DS5 which is active against JH2 derivatives. 

Experiment 3 was atypical in that recipient viable count did not decrease 

during incubation. Concomitantly, there was a 100-fold increase in the 

frequency of transfer of haemolytic activity, a 10-fold increase in tetra­

cycline resistance transfer and transfer of erythromycin resistance occurred 

at an intermediate frequency of 1.6 x 10 This latter result is partic­

ularly unusual as transfer of the MLS plasmid, pAM61, is normally inhibited 
by pAMyl (Clewell, 1981),

Transfer of erythromycin resistances from K55 to JH2-2 occurred at 
intermediate frequency in all experiments and at low frequency with JH2-17 

as recipient (Table 7b). Tetracycline resistance was also transferable in 

experiments 1, 4 and 5 at low frequency and experiment 2 at intermediate 

frequency but no transfer occurred in experiments 3 or 6. In the latter 
experiment, the transfer frequency of erythromycin was also atypically low 
indicating inefficient transfer in this case, but there was no obvious 

reason for not obtaining tetracycline resistant transconjugants in experiment 
3. Transfer of streptomycin resistance was very unpredictable with 

experiments 1, 2., 3 and 5 yielding no streptomycin resistant transconj ugants 
and low frequency transfer in experiments 4 and 6.

Transfer of erythromycin resistance from K60 to JH2-2 and JH2-17 (Table 

7c) was always in the high frequency range although there was considerable
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-3 -Ivariation (.1 x 10 to 5 x 10 ). In experiments 1 and 2, tetracycline

resistance was transferred at high frequency but in experiments 3 and 4 

at intermediate frequency and this trend in the latter two experiments, was 

continued with, transfer of streptomycin^ kanamycin and neomycin indicating 

that the overall efficiency of transfer in experiments 3 and 4 was less. 

Generally the frequency of streptomycin resistance transfer was less than 

that of kanamycin resistance which was less than that of neomycin resistance 
but the values for transfer frequencies of aminoglycoside resistances were 

closer to each other than to the values for transfer of tetracycline or 
erythromycin resistances.

During broth matings with K87 as donor in Table 7d, only haemolysin 

activity was repeatedly transferred with high frequency to JH2-2 and inter­

mediate frequency to JH2-17, The latter value however could be an under­
estimate due to the difficulty described in Materials and Methods in visual­

ising g-haemolysis in blood agar containing rifampicin. In experiments 1 

and 3 no transfer of antibiotic resistance was observed and, as occurred in 

DS5 matings, the recipient viable count decreased during incubation probably 

due to the action of donor bacteriocin. In experiment 2 however, transfer 
of all antibiotic resistances occurred at similar intermediate frequencies 

and in experiment 4, erythromycin and tetracycline resistances were*' trans­
ferred at low frequency. The recipient viable count during both these 
experiments did not show the expected decrease.

Resistance transfer from the K88 donor shown in Table 7e was very 
inconsistent and always at low frequency. Only tetracycline resistance was 

transferred in all experiments, erythromycin resistance transferred in four 

experiments, chloramphenicol resistance in three and streptomycin resistance 

in two. There did not appear to he any relationship between transfer 

frequencies of the different antibiotic resistance markers.
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The resistance markers of strain SB94 C.Table 7f) all transferred at 

intermediate frequency to JHZ'~2 (experiments 1 and 2) with the frequency of 

transfer of erythromycin resistance consistently higher than other markers 

and the frequencies of aminoglycosides resistance transfer almost identical. 

Mating with JH2-17 (experiment 3) resulted in high frequency transfer of 

erythromycin and aminoglycosides resistances and intermediate frequency 

transfer of tetracycline resistance, the same general trends being observed 

as with the JH2p2 recipient. Although the donor was found to produce bacter­

iocin against a JH2 derivative, the recipient viable counts do not decrease 

and instead give evidence of growth as is usual for matings with bacteriocin 

non-producers. Possibly as SB94 was only weakly bacteriocinogenic against 

JH2-1, the rate of killing of recipient was less than the growth rate or 
less than the rate of acquisition of bacteriocin resistance.

Matings of the faecium strains K46 and SB69 with JH2-2 were attempted 

in three separate experiments. In no case was transfer of any of the donor 
markers detected in broth matings.

Conjugation on membrane filters

Table 8 shows the results of individual experiments involving the mating 
of group D streptococcal isolates with JH2 recipient strains. The transfer 

frequencies are expressed as the number of transconjugant colony forming 

units per donor colony forming unit after 18h mating on membrane filters. 
Definitions of high, intermediate and low frequencies are the same as those 

given in the previous section.

The transfer of B'^haemolyti'c activity from DS5 shown in Table 8a was 

demonstrated on membrane filters at high frequency within the same 10-fold 
range as in broth matings, while tetracycline resistance was transferred at 

intermediate frequencies, somewhat higher than those obtained in mixed 

broth culture. In striking contrast to broth matings, erythromycin
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resistance transfer occurred reproducibly at low or intermediate frequency 

and again, in contrast to broth mating experiments number 1, 2, 4 and 5, 
there was no decrease in the viable count of the recipient strain after 

18h incubation on filters with the hacteriocinogenic donor. It has been 

suggested by Leblanc and Lee (1982) that this latter effect occurs either 

because there is less Bacteriocin produced under these conditions or 
because the bacteriocin may be effectively diluted By diffusion into the 
supporting solid medium.

In all experiments in Table 8b, erythromycin resistance was trans­

missible from K55 at intermediate frequency and in the same frequency range 

as that obtained during broth matings and likewise, transfer of tetracycline 

resistance was at the low to intermediate frequency seen during broth matings 

but occurred more reproducibly on filters. Streptomycin resistant trans- 

conjugants were isolated in five of the seven experiments at frequencies 

which varied lOO^fold from low to intermediate But there was no correlation 

between efficient transfer of erythromycin and tetracycline resistances 
and transfer of streptomycin resistance with the possible exception of 

experiment 4, in which transfer of all resistances was slightly higher than 
usual.

The frequency of erythromycin resistance transfer from K60 (Table 8c) 
was very high and three of four experiments reached a value of 1.0, i.e. 
all the recipients received erythromycin resistance, representing an increase 

in frequency of 10- to 1000-fold over the frequencies obtained in broth 
matings. Tetracycline resistance transferred also at high frequency on 

filters and, although values were 10- to 1000-fold less than erythromycin, 

there was also a trend towards higher frequencies in filter matings than 

in broth matings. The aminoglycosides resistance transfer was observed 

at high frequency in the same range as tetracycline resistance. The 

frequency values for the aminoglycosides were very similar with a maximum
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of a 2.5-fold difference within experiments and a 4.3-fold difference 
between experiments.

Mating of K87 with JH2 derivatives on membrane filters shown in 

Table 8d resulted in high frequency transfer of erythromycin resistance in 

five experiments and intermediate frequency transfer in one experiment 

with a variation of 1000-fold between experiments. Tetracycline resistance 

transferred at high frequency in two experiments, intermediate frequency 

in three experiments but in experiment 4 was unexpectedly low and therefore 

below the level detectable in the dilutions used. The frequency values 

for tetracycline resistance transfer varied 100-fold between experiments 

and were always at least 10-fold less than the corresponding values for 

erythromycin resistance transfer. Transfer frequencies for aminoglycoside 
resistance were high in three experiments and intermediate in three experi­

ments. In all experiments, however, the frequencies were very similar for 

the individual aminoglycosides, the maximum variation being a 6-fold diff­
erence in experiment 5, and similar to the transfer frequencies for tetracycline 

resistance with the exception of experiment 4. Transfer of g-haemolytic 

activity was high in all experiments except experiment 4 where transfer 

frequency was below the level detectable. In the absence of 

positive selection for haemolytic transconjugants, this level was dependent 

on the recipient viable count as, if there was confluent growth on the blood 
agar, g-haemolysis of a small number of colony forming units was almost 

impossible to detect owing to the restriction on growth of individual units 
at high cell density on agar. In all but experiment 4, the frequencies of 
haeraolysin transfer were close to those of erythromycin resistance transfer 

and higher than those for tetracycline and aminoglycosides resistance transfer. 

Generally, the transfer of markers was more reproducible on membrane filters 

and frequencies were higher, with the exception of 3-haemolysin transfer.
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This may have reflected the fact that, as with DS5 matings on filters, the 

viable count of recipient in K87 matings did not decrease during mating. 

Similarly, antibiotic resistance transfer from K87 was observed only in broth 

matings when there was no decrease in recipient viahle count.

In filter matitigs involving K88 donors (Table 8e^, erythromycin 

resistance transferred at intermediate frequency (two experiments) or low 
frequency (four experiments). Tetracycline resistance transfer was 
observed at intermediate frequency in three experiments and at low frequency 

in all experiments. Transfer frequencies of chloramphenicol resistance 

were intermediate in two experiments and low in four experiments. There 

were however, no striking differences in the transfer frequency values of 

the different antibiotics within or between experiments, the maximum vari­
ation being 150'^fold. The transfer of erythromycin and tetracycline 

resistance determinants was possibly more efficient on filters than in broth 
culture but the major contrast between the two mating methods was the re­

producibility of the results obtained with filter matings in which all the 

antibiotic resistance determinants transferred to JH2 recipients.

Transfer of erythrongrcin resistance during filter matings with SB94 

occurred at high frequency with a 40-fold difference between the highest 

and lowest values (Table 8f). Tetracycline resistance was transmissable 

at high frequency in four experiments, intermediate frequency in two 

experiments but in experiment 5 at a frequency below the level of detection 
in the dilutions tested for the presence of transconjugants. In all 
experiments, neomycin and kanamycin resistances transferred at high and 

very similar frequencies. In five experiments, the transfer frequency of 

streptomycin resistance was almost identical to the corresponding values 
for kanamycin and neomycin but in experiment 5 was 60-fold less.

Generally, transfer on filters appeared to be slightly more efficient for
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all resistances than than transfer in broth culture.

In contrast to the situation in broth matings, two filter mating 

experiments shown in Table 8g involving SB69 donors resulted in low 

frequency transfer of tetracycline resistance. None of the other donor 

markers was transferred nor was any transfer of donor markers from strain 
K46 detected in three filter mating experiments.

Mutation of strains to antibiotic resistance

In order to determine whether mutation of either donor or recipient 

strains to antibiotic resistance could interfere with the determination of 
transfer frequency, cultures of donor strains and of JH2-2 were tested on 
three occasions by spreading duplicate 0.1ml aliquots on to agar containing 

the appropriate antibiotics at concentrations used for selection of trans­

conjugants. The frequency of mutation of donor strains to fusidic acid 

or rifarapicin resistance was less than 10 The frequency of mutation

of JH2-2 to erythromycin, lincomycin, tetracycline, neomycin and chloram-

phenicol resistances was less than 10 , to streptomycin 2.35 x 10 and
• ■"9 . ^kanamycin 4.92 x 10 . On one further occasion, the mutation frequency

of JH2-2 to tetracycline resistance was estimated by growing a culture in

500ml BHl broth to late logarithmic phase, concentrating the cells 100/
times by centrifugation followed by resuspension in 5m1 broth and spreading
aliquots (0.1ml) on eight tetracycline agar plates. After 5 days incubation,
no colonies were seen, the mutation frequency of JH2-2 to tetracycline

^12resistance therefore being less than 8,22 x 10

Trans;conjuga.nt phenotypes

Transconjugant colonies selected on each antibiotic were replicated 

on to the nonT$elected donor and recipient markers. Transconjugants 

obtained from matings with JH2-17 recipients were tested for thymine
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requirement by replicating on to DST agar without supplement which 

sustained only poor growth of JH2--17. Table 9 shows the phenotypes of 
transconjugants, obtained from broth and filter matings, as percentages 

of the total number of colony forming units tested for each antibiotic 

used in selection. In addition to the resistances shown, all transconju­

gants from matings with JH2-2 recipients were also resistant to fusidic acid 
and rifampicin and all transconjugants from matings with JH2-17 recipients 
were resistant to rifampicin and required thymine for normal growth.

The percentages of different phenotypes obtained using erythromycin or 

lincomycin for selection were always the same regardless of the donor strain 
and so the results were combined. Thus erythromycin resistance is here 

synonymous with MLS resistance. Likewise, results obtained using strepto­

mycin, kanamycin or neomycin for selection were also combined.

Selection with erythromycin resulted in transconjugants after only one 
broth mating with DS5 donors but such transconjugants were readily isolated 

after filter matings. All those obtained after broth mating (Table 9a) 
were co-resistant to tetracycline, with 16.67% also haemolytic. In contrast, 

75% of those obtained after filter matings were susceptible to tetracycline 
and non-haemolytic, the remainder being co-resistant to tetracycline (9.24%) 

and haemolytic (15.76%). Almost half (43.16%) the transconjugants^selected 

after mating in broth cultures using tetracycline were tetracycline resistant 
only while the remainder were also 6-haemolytic. After filter matings, 

the percentage of transconjugants resistant to tetracycline only was twice 

that obtained after broth matings and again the remainder were also B- 

haemolytic transconjugants obtained after either broth or filter matings 

were susceptible to erythromycin and tetracycline.

The majority of erythromycin selected transconjugants from matings 

with K55 donors shown in Table 9b were co—resistant to streptomycin with the 

percentage slightly higher after filter matings (90,36%) than broth matings
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(73.76%), the remaining transconjugants being resistant to erythromycin 

only. All tetracycline resistant transconjugants were susceptible to 

erythromycin and streptomycin. The total number of streptomycin resistant 

transconjugants obtained from broth matings was small with 62.5% being 

streptomycin resistant only and the rest co-resistant to erythromycin.

From filter matings however, where the number of streptomycin resistant 

transconjugants tested was much higher and hence the results more accurate, 
the great majority were in addition resistant to erythromycin and only 2.74% 

were resistant to streptomycin alone.

Transconjugants selected on erythromycin from matings involving K60 

(Table 9c) were primarily resistant to erythromycin only, with just 1.5% 

co-resistant to streptomycin, kanamycin and neomycin and 4.89% resistant to 

all the donor markers after broth matings, and a very low percentage (0,93%) 
resistant to all donor markers after filter matings. Selection with tetra­

cycline yielded transconjugants the majority of which were resistant to all 
donor markers although in broth matings a small percentage were tetracycline 

resistant only (1.42%) or jointly resistant to erythromycin (4.25%), while 
in filter matings, 4.11% were resistant to erythromycin also. None of the 
transconjugants selected on streptomycin, kanamycin or neomycin was 

resistant to these antibiotics alone. Most were resistant to all the donor 
markers but a small percentage (1.2% in broth matings and 0.76% in filter 

matings) were susceptible to tetracycline.

Table 9d shows that the percentage of each phenotype obtained from 

matings involving K87 donors was very dependent on the method of mating.
For example, of the transconjugants selected with erythromycin after broth 

matings, 90.87% were also g—haemolytic while only 4.84% displayed this 

phenotype after filter matings. The most common phenotype observed after 

filter matings was that resistant to erythromycin only (58.13%), followed 

by the phenotype showing resistance to all the donor markers (22.14%).



138

m
Md)4->
rH•H

(U
C(Ü1
§

g
<uk
P4-1rHpu
Æ4J

2
P•H
M
g--ri44
G
g4-144nj
S•H
5«

to>401
oU3
M
C•iH
(d>444to
x:44

(Uentü44
Cs
mC4

(Ug44
0

1C4

'S44to
(U44
tog
PS'

M(ü44
•H

OO rH en 43en 1—f 00 OJ
O

O in O en
en en

5OS

t3û)
gto
•§

d)44rH•H

rH O en 04 in m4) m oo '4* OJ co
m rH rHen en

G G3 3
e G13 «

ë G g03 œ
e u o uw Eh 64

G Ë g O G gW M W Eh 0 H

O<N

I
I

O
co

00en

,§
ü
Ë4

tnrH
CN

00 un43(N

4343<M m04rH

-H

•H
rH



139

w

4->iH
■H

0)§
B

§

1
(ÜU4J I—IP
U
xi

2
■Q
G
"H

<UCnto4J
go
w04

0)
■ssI

n TT ro Tf Tf CO m kO cn rH 00 o1— ! 00 O 00 O rH OJ Tf o 00 KD VD O' O
OO Tf O Tf CNJ 0\) cn Tf cn cn d cn oin 1— 1 OJ rH rH OJ VD O

rH

rP O' O' tH vo 00 cn ro m Tf O 00 OJfO 00 cn VD CM Tf 00 00 cn cn Tf mO o O
m

rH g O Tf CM 00 CM CM O Tf
00 d cn<n

rH53
I

I

i
rHtn

I
ë

ê
üE4I uEh

UEHI
>1

r-H
tn
oBt

>1fH
tn

III
0
Eh1 tl II

a
0  
Eh1

8
8

>1 I—I
tn

•H

00
OJ

•H

■H

MH

■H
CTi •H

•H
■H

CO

m<Ti

00
O
OJ

O

O
OI—IX!
0)
M
Otn
df>

to
pfa



140

Most transconjugants selected using tetracycline were resistant to all 

donor markers after both broth and filter matings (84.9% and 63.43% res­

pectively). After filter matings many transconjugants were co-resistant 

to erythromycin (19.43%) and some were in addition 3-haemolytic (14.86%) 

while after broth matings, these phenotypes were rare (2.83% and 0.94% 

respectively) and transconjugants solely resistant to tetracycline were 

more common (8.49%). None of the transconjugants selected on streptomycin, 
kanamycin or neomycin was resistant exclusively to these antibiotics. After 

broth matings, the majority (99.52%) were resistant to all the donor markers 

although a very small percentage (p.48%) were susceptible to tetracycline 

while after filter matings the ratio of the percentages of these phenotypes 

was less - 69.78% resistant to all donor markers and 29.61% susceptible to 

tetracycline. Furthermore, after filter matings, a small percentage (0.61%) 

was found to be susceptible to tetracycline but produced g-haemolysin. As 

was found with strain DS5, transconjugants of K87 isolated for 3-haemolytic 
activity were all antibiotic susceptible whether obtained from broth or 

filter matings.

The total number of transconjugants obtained with erythromycin or 

tetracycline selection was small after matings in broth culture with K88 

donors (Table 9e). On selection with erythromycin, resistance was glways 
associated with tetracycline and chloramphenicol resistance after either 

broth or filter matings. The majority of tetracycline resistant trans­
conjugants was resistant only to tetracycline after both broth and filter 

matings (75% and 83.85% respectively) and the remainder were co-resistant 
to erythromycin and chloramphenicol. All transconjugants selected on 

chloramphenicol after broth matings were also resistant to erythromycin 

and tetracycline as were 98.76% of those obtained after filter matings, 

the remaining 1.23% being co-resistant to tetracycline but susceptible to 

erythromycin and streptomycin. Streptomycin selected transconjugants were
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always susceptible to all the other donor markers.

In matings involving SB94 donors^ almost half the erythromycin selected 

transconjugants were resistant to erythromycin alone and Half resistant to 

all the donor m a r k e r s A  small percentage from both broth and filter 
matings ((3.44%' and 1.970% respectively! however, were susceptible to tetra­

cycline although, displaying insensitivity to streptomycin, kanamycin and 

neomycin. All the tetracycline resistant transconjugants selected after 
broth matings had received donor markers en Bloc while after filter matings 
9.68% were solely resistant to tetracycline. Selection of streptomycin, 

kanamycin or neomycin resulted, for the majority of transconjugants (98.12% 

for broth matings and 96.59% for filter matings), in concomitant resistance 
to all the donor markers, the. remainder being susceptible to tetracycline 

but co-resistant to erythromycin. (Table 9f).

The data for matings involving SB69 donors is not shown. Tetracycline 
resistant transconjugants were selected after two of four filter mating 

experiments and all were exclusively resistant to tetracycline.

Response of strains to clump inducing agent produced by JH2-1

CIA was prepared from a culture of JH2-1 as described and the clumping 

response of donor group D streptococci and selected transconjugants was 

tested. The response titres from duplicate experiments of the donor strains 
are shown in Table 10. The highest titre obtained was that of DS5 response 

at 32 while the other S. faecalls strains had titres of 16 (K87) and 4 (K55, 
K60, K88 and SB94). JH2-̂ 1 CIA had no visible effect on either faecium

strains K46. or SB69.,. or on. the producer strain JHZ'-l itself.

In addition to the above donor strains representative transconjugants 
from matings with JH2.-2 or JH2.H7 recipients were also tested for response 

to JH2.-rl CIA. Where possible transconjugants displaying only a single 

donor phenotypic marker were tested and assays were carried out in duplicate
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Table 10. Response of donor strains to CIA produced

by JH2-1

Strain Response titre

DS5 32

K55 4

K60 4

K87 16

K88 4

SB94 4

K46 <2

SB69 <2



145

with three transconjugants of each phenotype. No clumping was observed 

with any of the transconjugants regardless of donor with the following 

exceptions. One erythromycin resistance transconjugant from a filter 

mating of DS5 with JH2-17 had a titre of 4, one erythromycin resistant 

trans con jugant of a broth mating of K60 with JH2'-17 had a titre of 2 and 

one erythromycin resistant transconjugant from a filter mating of K87 with 
JH2t-17 had a titre of 2.

Retransfer of markers from transconjugants

In order to determine whether the markers transferred from original 

donors were self-transmissable, transconjugants obtained from matings with 

JH2-17 recipients i.e. with chromosomal resistance to rifampicin and thymine 

requirement, and displaying a single donor marker were mated with JH2-1 

(chromosomal fusidic acid resistance) in broth culture and on membrane 

filters. These results including the transfer frequencies are shown in 
Table 11. When the retransfer frequency was low, the phenotype of the 

transconjugants obtained was checked by replicating master plates on to the 
donor marker, rifampicin, fusidic acid and DST agar. Only those which 

grew well on the donor marker, fusidic acid and DST agar (without thymine 

supplement) were considered to be transconjugants.
/

As expected from published observations (Dunny and Clewell, 1975), the 

haemolysin marker of DS5 was again transferable in broth culture at high 

frequency but unlike the original broth matings, no decrease in recipient 

viable count was observed (data not shown). In the absence of transfer 
inhibition by the haemolysin plasmid, transfer of erythromycin resistance 
was observed in broth culture at low frequency but no transfer of tetra­

cycline resistance was observed after either broth or filter matings. 
Likewise, there was no retransfer of either streptomycin or tetracycline 

resistance originating from strain K55. Retransfer of the erythromycin 

resistance determinant originating from strain K60 was observed in broth
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Table 11. Retransfer to JH2-1 recipients of markers from
transconjugants obtained after matings with JH2-17

Parental strain
(initial mating 
method)

Transconjugant 
designation 
(donor )

Phenotype* Retransfer frequency
per donor colony forming
unit (retransfer mating 

method)

DS5 (broth) SSJl Hly 4.10x10 (broth)
DS5 (broth) SSJ2 Hly 1.25x10*2 (broth)
DS5 (broth) SSJ3 Hly 2.70x10*2 (broth)
DS5 (filter) SSJ4 Em 3.30x10*^ (broth)
DS5 (filter) SSJ5 Em 3.40x10*^ (broth)
DS5 (filter) SSJ6 Em 7.70x10*7 (broth)
DS5 (broth) SSJ7, SSJ8 or SSJ9 Tc no transconjugants detected
K55 (broth) SSKl, SSK2 or SSK3 Sm no transconjugants detected
K55 (filter) SSK4, SSK5 or SSK6 Tc no transconjugants detected
K60 (broth) SSL1 Em 6.70x10* (broth)
K60 (broth) SSL2 Em 9.85x10*7 (broth)
K60 (broth) SSL3 Em 9.69x10*® (broth)
K60 (broth) SSL4 or SS15 Tc no transconjugants detected
K87 (broth) SSMl Em 1.45x10 (broth)
K87 (broth) SSM5 Em 2.15x10*® (broth)
K87 (broth) SSM2, SSM3 or SSM4 Tc no transconjugants detected
K87 (broth) SSM6 Hly 3 .10x10 (broth)
K87 (broth) SSM7 Hly no transconjugants detected
K87 (broth) SSM8 Hly 2.30x10* (broth)
K87 (broth) SSM9 Hly 2.85x10*® (broth)
K88 (filter) SSNl Tc 3.95x10*® ( filter)
K88 (filter) SSN2 Tc 3.00x10*7 (filter)
K88 (filter) SSN3 Tc 1.34x10*7 (filter)
K88 (broth) SSN4 Sm 1 .22x10*® (broth)
K88 (broth) SSN5 Sm 1.83x10*® (broth)
K88 (broth) SSN6 Sm 2.33x10*® (broth)
SB94 (filter) SSOl, SS02 or SS03 Tc no transconjugants detected

* All transconjugants obtained from original matings were in addition 

chromosomally resistant to rifampicin and thymine requiring.
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matings at intermediate and low frequency, these transfer frequencies 
being 1000- to 100,000-fold less than those observed in the original broth 

matings, and no retransfer of the tetracycline determinant was observed.

The ability of the streptomycin, kanamycin and neomycin markers to retransfer 

was not tested as no transconjugants were originally obtained which were not 

also erythromycin resistant.

The retransfer of the haemolysin marker originating from strain K87 

was observed at intermediate frequency from three of four transconjugants 
representing a decrease in frequency of 10-to 10,000-fold compared with the 

oxiginal matings. This decrease in frequency could account for the apparent 
inability of SSP2 to transfer haemolysin as in the absence of a counter- 
selective agent, the background of non-haemolytic recipients can become so 

high that haemolysin detection is extremely difficult. In all four matings, 

as in the original broth matings between K87 and JH2-17, a decrease in the 

viable count of recipient was noted from an initial count of 2.0 to 
3.6 X 10^ cfu ml  ̂ to 2.0 to 5.6 x 10^ cfu ml \  presumably due to the

production of bacteriocin by the donor during mating. This effect was

not seen during retransfer matings involving erythromycin or tetracycline 

resistant transconjugants. The erythromycin resistance marker from K87 

was retransferable from both strains tested in broth culture at hi^h 

frequency compared with the intermediate transfer frequency obtained in the 
original matings but no retransfer of the tetracycline resistance marker 

was observed in either broth or filter matings. Retransfer of K87 
streptomycin, kanamycin and neomycin markers not tested for the same reason 
as that given for K60.

The tetracycline resistance marker originating from K88 did not

transfer from transconjugants to JH2T1 during matings in broth culture but

low frequency transfer was obtained after filter matings within the 

frequency range observed in the original filter matings. Strain K88
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streptomycin resistance marker was retransferable during broth matings 

at intermediate frequencies 100-fold higher than those obtained in two 

of five original broth mating experiments and in all original filter mating 
experiments. No transconjugants resistant to erythromycin alone were 

available for testing.

Strain SB94 tetracycline resistance marker did not retransfer in 

either broth or filter matings. Unfortunately, no transconjugants resistant 

to erythromycin only were obtained from the original mating with JH2-17 and 

in the absence of a suitable recipient for the erythromycin marker in a 
JH2-2 background (rifampicin and fusidic acid chromosomal resistance), 

retransfer was not tested. Retransfer of the streptomycin, kanamycin and 

neomycin markers was not tested for the reason given above for K60.

The retransfer of tetracycline resistance originating from SB69 was not 

tested because transconjugants were not obtained after mating with JH2-17 
and a suitable recipient was not available.
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ELIMINATION OF ANTIBIOTIC RESISTANCE AND HAEMOLYTIC ACTIVITY

Loss of resistance or tiaemolysin production during storage

Cultures which had heen stored in drug free sloppy Luria agar for up 

to one year were grown overnight in nutrient broth and the viable counts 

estimated. Master plates prepared as described previously were replicated 

on to agar containing appropriate antibiotics and the percentage of those 
clones which had lost antibiotic resistance or the ability to produce haemo- 

lysin was calculated and is shown in Table 12. Of the MLS antibiotics, 

only erythromycin was used in experiments for elimination of resistance, it 

being assumed that there would be concomitant loss of the other MLS 
resistances.

Loss of haemolytic activity was very high, 96% in total, from strain

DS5 while only 0.5% of colonies tested had lost erythromycin resistance
and none was tetracycline susceptible. Of the colonies grown from the

storage culture of K55, 1,5% were resistant to tetracycline alone while
0.5% had lost streptomycin resistance only. No tetracycline susceptible

colonies were obtained and the majority of colonies tested had the parental

phenotype. Almost half (52.3%) of K60 colonies tested were no longer

streptomycin, kanamycin and neomycin resistant but none was observed which
/

was erythromycin or tetracycline susceptible. Likewise, no erythromycin 
or tetracycline susceptible colonies were obtained from the K87 culture 

although streptomycin, kanamycin and neomycin resistances were lost in 0.9% 
of K87 derived colonies. A total of 12.1% were ron-haemolytic, a value 
which, was much lower than the percentage of haemolysin negative derivatives 

of DS5. During incubating in BHI broth of DS5 and K87 cultures from sloppy 

Luria, K87 was seen to form cell aggregates while DS5 did not, aggregation 

possibly reflecting transfer of markers from haemolytic to non^-haemolytic 

derivatives of K87, thus effectively reducing the percentage of colonies
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Table 12. Percentage of different phenotypes obtained after 
storage of cultures at room temperature for 10 to 
12 months.

Parental Strain Number of Phenotype
{phenotype) cfu tested observed* Percentac

DS5 (EmTcHly) 200 Tc 0.5
EmTc 95.5
EmTcHly 4.0

K55 (EmTcapt) 200 Tc 1.5
EmTc 0.5
EmTcSm 98.00

K 6 0 (EmTcSmKmNm) 199 EmTc 52.3
EmTcSmKmNm 47.7

K87 {EmTcSmKmNmHly) 215 EmTcHly 0.9
EmTcSmKmNm 12.1
EmT c SmKmNmH1y 87.0

K88 (EmTcSmCra) 200 TcSm 0.5
EmTcCm 1 . 0
EmTcSmCm 98.5

SB94 (EmTcSmKmNm) 200 TcSmKmNm 29,0
EmTc 5.5
EmTcSmKmNm 65.5

K46 (EmTcSmApPn) 200 EmTcApPn 0.5
EmTcSmApPn 99.5

SB69 (TcSmApPn) 200 TcSmApPn 1 0 0 . 0

* Antibiotic resistant or haemolysin producing.
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showing mitotic segregation of markers.

Of the colonies tested from the culture of K88, 0.5% were simultaneously 

erythromycin and chloramphenicol susceptible, while 1% were no longer 

streptomycin resistant. The remaining 98.5% had the parental phenotype, 

no loss of tetracycline resistance being observed. Derivatives of SB94 

susceptible to erythromycin were observed in 29% of colonies tested and a 

further 5.5% were resistant to erythromycin and tetracycline but susceptible 
to streptomycin, kanamycin and neomycin. Again no tetracycline susceptible 

derivatives were observed. Of the colonies of K46 none was susceptible to 

erythromycin, tetracycline, ampicillin or penicillin but 0.5% were found 

to have lost resistance to streptomycin. No segregation of antibiotic 
resistance was observed among colonies of SB69.

Novobiocin treatment

Table 13 shows the highest concentrations of novobiocin which permitted 

visible growth of strains i.e. half MIC and the viable counts at those 

concentrations from duplicate experiments. All the half MIC values were 
either the same or within one doubling concentration between experiments

and for faecalis strains the difference was only one doubling concen-
* "Itration 3.2 to 6.4pg ml within experiments, values which are in the

expected range for this species (McHugh and Swartz, 1977). The faecium

strains K46 and SB69 were more sensitive to the antibiotic with half MIC
concentrations of 0.4pg ml \  From initial bacterial inocula of approx- 

5 - 1imately 10 cfu ml , most cultures incubated overnight with novobiocin at 
half MIC concentration showed only 10- to 1000-fold increase in viable count.

Single colonies obtained while estimating the above viable counts were 
used to prepare, master plates which were replicated on to agar containing 

appropriate, antibiotics or blood. The phenotypes of several hundred such 

colonies for each parental strain were determined and the percentages of

each phenotype are shown in Table 14.
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Table 13 Concentration of novobiocin and viable count of 

group D streptococci used for elimination of 

phenotype markers.

Strain

DS5

K55

K60

K87

K88

SB97

K46

SB69

-1Novobiocin (pg ml )

Expt. 1 Expt. 2

3.2

6.4

6.4

6.4

3.2

6.4 

0.4 

0.4

6.4 

12.8

6.4

6.4

6.4

6.4 

0.4 

0.4

_ 1Viable count (cfu ml ) 

Expt. 1 Expt. 2

4.4x10

3.1x10

7.8x10

9.2x10

9.2x10

5.8x10

7.2x10

9.4x10

2 .8x10

3.0x10'

3.2x10

1.4x10

1 .1x10

1 .2x10

1 .0 x10

2 .0 x10

8
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As had been observed after storage, the majority of DS5 colonies 

tested C.86.1%1 were resistant to erythromycin and tetracycline but did not 

produce haemolysin and a further 0.4% were haemolysin negative and erythro­

mycin susceptible, A small percentage (0.2%) were haemolytic and tetra­

cycline resistant giving a total of 0.6% susceptible to erythromycin, but 

none was found to be cured of tetracycline resistance. Only 13.3% showed 

the parental phenotype. Erythromycin and streptomycin resistances were 
eliminated by novobiocin treatment in 19.2% of colonies from the K55 cultures, 
the remainder showing the parental resistance pattern. Unlike the results 

obtained after storage, all the erythromycin susceptible colonies were 

streptomycin susceptible. The majority of colonies from K60 cultures (66%) 
were susceptible to streptomycin, kanamycin and neomycin, with a further 

0.2% no longer resistant to erythromycin. The remainder showed the parental 

phenotype and none was tetracycline susceptible. The percentage curing of 

haemolytic activity from K87 was lower after novobiocin treatment (1.5%) 

compared with results from storage (13%) and no colonies were found anti­

biotic susceptible. A small percentage of treated K88 colonies (0.2%) 

were resistant to tetracycline alone and 1% were co-resistant to erythro­

mycin and chloramphenicol giving a total of 1.2% elimination of strepto­

mycin resistance. In 2.7% of colonies tested, erythromycin resistance
/

had been eliminated with concomitant loss of chloramphenicol resistance.
The remaining colonies had the parental phenotype, no elimination of tetra­
cycline resistance being observed. Indeed, strain SB94 was the only

faecalis strain which yielded a tetracycline susceptible derivative at 
a frequency of 0,2% after novobiocin treatment. This derivative was also 
susceptible to the other parental markers. A further 0.6% were tetra­

cycline resistant but susceptible to erythromycin and aminoglycosides while 

the remainder had the parental phenotype. In contrast to the situation 

observed after storage of K46, novobiocin treatment yielded a variety of 

phenotypes, ampicillin and penicillin resistances being the only markers
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Table 14. Percentage of different phenotypes obtained after

novobiocin treatment

Parental Strain 
(phenotype)

Number of 
cfu tested

Phenotype
observed* Percentage

DS5 (EmTcHly)

K55 (Em Tc Sm)

K60 (EmTcSmKmNm)

K87 (EmTcSmKmNmHly)

K8 8 (EmTcSmCm)

SB9 4 (EmTcSmKmNm)

K46 (EmTcSmApPn)

460

464

420

538

488

523

316

SB69 (TcSmApPn) 417

Tc
TcHly
EmTc
EmTcHly

Tc
EmTcSm

Tc
EmTc
EmTcSmKmNm

EmTcSmKmNm 
EmT c SmKmNmH 1 y

Tc
TcSm
EmTcCm
EmTcSmCm

—* *
Tc
EmTcSmKmNm

EmApPn 
TcApPn 
EmSmApPn 
EmTCAPPn 
EmTcSmApPn

TcSmApPn

0,4
0.2
86.1
13.3

19.2
80.8

0.2
66.0
33.8

1.5
98.5

0.2
2.7
1.0

96.1

0.2
0.6
99.2

0.3
0.3
2 . 2
1.3

95.9

100.0/

* antibiotic resistant or haemolysin producing

** antibiotic susceptible
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not eliminated. A small percentage was susceptible to tetracycline and 

streptomycin (.0.3%) or erythromycin and streptomycin (0.3%) and a further 

2.2% susceptible to tetracycline only. Streptomycin resistance was cured 

in 1.2% of colonies tested and the rest showed parental phenotype.

Consistent with results obtained after storage, none of the colonies from 

treated cultures of SB69̂  had lost any of the parental antibiotic resistances

Response of antibiotic susceptible and non-haemolytic derivatives to 

JH2-1 pheromone

Representative derivatives of parental strains obtained after storage 

and novobiocin treatment were tested in duplicate for their response to the 

CIA produced by JH2-1 and the titres are shown in Table 15. Of the DS5 

derivatives, only those with the erythromycin and tetracycline co-resistance 
phenotype did not respond to CIA. Two tetracycline resistant derivatives 

showed CIA titres of 8, a quarter of the parental strain, and the other a 

titre of 4 while the erythromycin resistant derivative responded with a 

titre of 16. All K55 derivatives, which were susceptible to streptomycin, 

displayed clumping within one doubling concentration of the parental strain 

response titre of 4. K60 derivatives resistant to erythromycin and tetra­

cycline aggregated within one doubling dilution or concentration of the 
parental strain and only the derivative susceptible to erythromycin showed 

no response. The response of non-haemolytic derivatives of K87 was low 
(titre 2) compared to the parental response titre of 16 while aminoglycoside 
susceptible, haemolytic derivatives had titres of 8 and 16. The only 
response of K88 derivatives was seen in two of three erythromycin, tetra­

cycline and chloramphenicol co?resistant derivatives, erythromycin and 

chloramphenicol susceptible derivatives did not respond to CIA.

Tetracycline and erythromycin co-resistant derivatives of SB94, 
as well as those resistant to tetracycline alone, responded within one 

doubling dilution or concentration of the parental response titre of 4.
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Table 15. Response of antibiotic susceptible and non-haemolytic 
derivatives of parental strains to CIA produced by JH2-1

Parental
strain

Derivative
designation

Phenotype* Response 
titre to CIA

DS5

K55

K60

K87

K88

SB94

DS5C1,DS5C2,DS5C3
DS5C4
DS5C8
DS5C10
DS5C9

K55C1,K55C4,K55C5,
K55C6,K55C7
K55C2
K55C3

K60C1
K60C2
K60C3
K60C4

K87C1,K87C3,K87C6,
K87C7,K87C8
K87C4
K87C5

K88C14
K88C1,K88C11,K88C12,
K88C13
K88C2,K88C3
K88C6

SB94C1
SB94C2
SB94C3
SB94C3,SB94C5,SB94C6 
SB94C7

EmTcHly
EmTc
Tc
Tc
Tc
TcHly
EmTcSm

Tc
Tc
EmTc
EmTcSmKmNm
EmTc
EmTc
EmTc
Tc

EmT c SmKmNmH1y

EmTcSmKmNm
EmTcHly
EmTcHly

EmTcSmCm
Tc

TcSm
EmTcCm
EmTcCm

EmTcSmKmNm
Tc 
Tc 
Tc 
EmTc 
— * *

32
<2
8
8
4

16

2
4
2

4
4
8
2

<2

16

2
8
16
4

<2

<2
2

<2

4
2
8
2
2

<2

* antibiotic resistant or haemolysin producing

** antibiotic susceptible
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Only the antibiotic susceptible derivative SB94C7 showed no aggregation 

on incubation with JH2-1 CIA. Controls consisting of JH2-1 as responder 
cells to JH2-1 CIA likewise did not aggregate.
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BACTERIOCIN PRODUCTION BY STRAINS DS5, K87 AND DERIVATIVES

Bacteriocin production was initially tested using JH2-1 as indicator 

organism. However, during the course of experiments to eliminate phenotypic 

markers, ft was observed that non—haemolytic derivatives of K87 appeared 

to inhibit surrounding colonies particularly when replicated on to agar 

containing streptomycin. Consequently, eight "surrounding colonies", 

which otherwise appeared identical to the parental K87, were grown for use 

as indicator organisms, K87IO, in tests for bacteriocin production by strains 

DS5, SB94, K87 and its representative derivatives.

Bacteriocin production by DS5 and derivatives against JH2-1

Table 16 shows the activity of bacteriocin produced by DS5, strains 

derived from matings with JH2-17 and cured derivatives against the strepto­
coccal recipient strain JH2-1. Strain DS5 produced a definite zone of 

clearing but the haemolytic transconjugants and two of the tetracycline 
resistant transconjugants were only weakly bacteriocinogenic while the 

remaining tetracycline resistant transconjugant tested, SSJ9, did not show 
any activity. Erythromycin resistant transconjugants exhibited conspicuous 

clear zones but of smaller diameter than DS5. Of the cured derivatives, 

DS5C1, DS5C2 and DS5C3 non-haemolytic strains produced zone diameters greater 
than those of the parental strain while strains with the same phenotype, 

DS5C5, DS5C6 and DS50 7 had the same zone diameters as DS5. The only 
difference between the two sets of derivatives was that the former were 
obtained after storage and the latter by novobiocin treatment. Two of 
three tetracycline resistant derivatives and a haemolytic, tetracycline 

resistant derivative obtained after novobiocin treatment appeared to have 

the same activity as DS5 while DS5C4, a tetracycline resistant derivative 

obtained after storage, had no detectable activity. All four derivatives 

obtained after storage were surrounded by opaque zones extending outwards
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Table 16 Bacteriocin production by DS5 and derivatives against JH2-1

Strain* Phenotype Bacteriocin against 
JH2-1**

DS5 Em Tc Hly ++
SSJl Hly ±
SSJ2 Hly ±
SSJ3 Hly +
SSJ4 Em +
SSJ5 Em +
SSJ6 Em +
SSJ7 Tc ±
SSJ8 Tc ±
SSJ9 Tc -

DS5C1 Em Tc +++ 0
DS5C2 Em Tc +++ 0
DS5C3 Em Tc +++ 0
DS5C4 Tc 0
DS5C5 Em Tc ++
DS5C6 Em Tc +4-
DS5C7 Em Tc 44
DS5C8 Tc 44
DS5C9 Tc Hly 44
DsSClO Tc 44

* Prefix SSJ denotes transconjugant of DS5 x JH2-17 mating, 
chromosomally resistant to rifampicin and thymine requiring 
Prefix DS5C denotes strains derived from curing experiments

**-, no bacteriocin detected; ±, barely detectable clear zone 
diameter <0 .5mm; +, zone clear diameter 0 . 5 to 2mm, ++ clear 
zone diameter 2 to 4mm; +++, clear zone diameter 4 to 6mm;
O, opaque zone 7 to 9mm diameter.
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from the clear zones produced by bacteriocin activity. A control stab 

of JH2-J did not show any activity, neither clear nor opaque zones.

Bacteriocin production by DS5, SB94, K87 and its derivatives against 
JH2-1 and K87IO

The presence or absence of bacteriocin production by test strains 

against the indicator organisms JH2-1 and K87IO is shown in Table 17.
Against JH2-1, K87 was moderately active while K87IO had barely detectable 

activity. Only the haemolytic transconjugants were bacteriocinogenic, 
with zone diameters larger than the parental strain and of the same size 

as DS5. All the cured derivatives and SB94 showed some bacteriocin activity 
against JH2-1 albeit very weak except for K87C3, K87C4 and K87C5. As seen 
with cured derivatives of DS5, some cured derivatives of K87 as well as the 

haemolytic transconjugants were surrounded, in addition to a clear zone, by 
an opaque zone the diameter of which was unrelated to the diameter of the 

clear zone. All the cured derivatives which were surrounded by opaque 
zones were obtained after storage.

Against K87IO, neither K87 nor K87IO showed any activity. Unlike 

the situation with JH2-1 indicator, none of the haemolytic transconjugants 
was bacteriocinogenic, tetracycline resistant transconjugants were bacterio­

cinogenic as were the erythromycin resistant transconjugants of K87 matings 

with JH2-2 but not of a K87 and JH2-17 mating. Also in contrast to results
with JH2-1 indicator, only the cured derivatives K87C6, K87C7 and K87C8 

showed any activity. DS5 was bacteriocinogenic with K8-7IO indicator as 

was SB94 which had a much more obvious clear zone on K87IO. As above, 
haemolytic transconjugants and those derivatives obtained after storage 

had opaque zones around the inocula.

As described previously, K87IO was taken from replica plates containing 

streptomycin on which the non-haemolytic derivatives of K87 appeared to 

be very bacteriocinogenic. Bacteriocin production was therefore tested by
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Table 17. Bacteriocin production by DS5, SB94, K87 and its 
derivatives against JH2-1 and K8710

Strain* Phenotype Bacteriocin against** 

JH2-1 K87IO

K87 EmTcSmKmNmHly + -
K87IO EmT c SmKmNmH1y ± -
SSMl Em - -
SSM2 Tc - ±
SSM3 Tc - +
SSM4 Tc - ±
SSM6 Hly ++ 0 - 0
SSM7 Hly ++ 0 - 0
SSM8 Hly ++ 0 - 0
SSM9 Hly ++ 0 - 0
SSG12 Em - +
SSG13 Em - +
K87C1 EmTcSmKmNm ± 0 - 0
K87C2 EmTcSmKmNm ± 0 - 0
K87C3 EmTcSmKmNm + 0 - 0
K87C4 EmTcHly + 0 - 0
K87C5 EmTcHly + 0 - 0
K87C6 EmTcSmKmNm ± ±
K87C7 EmTcSmKmNm ± ±
K87C8 EmTcSmKmNm ± ±
DS5 EmTcHly ++ +
SB94 EmTcSmKmNm ± ++

* Prefix SSM denotes transconjugant of K87 x JH2-17 mating, chromosomally 
resistant to rifampicin and thymine requiring, and SSG of K87 x JH2-2 
mating chromosomally resistant to rifampicin and fusidic acid. Prefix 
K87C denotes strains derived from curing experiments. K87IO described in 
text.

** -, no bacteriocin detected; ± barely detectable clear zone diameter <0 . 5 mm; 
+, clear zone diameter 0.5 to 2mm; ++ clear zone diameter 2 to 4mm;
+++, clear zone diameter 4 to 6inm; 0, opaque zone diameter 7 to 8 .
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stab inoculating strains into K87IO overlaid on BHI agar containing

streptomycin, erythromycin or tetracycline at the concentrations used for

selection of transconjugants and the results are shown in Table 18.

K87 did not produce bacteriocin when there was no antibiotic present or

on streptomycin hut was weakly bacteriocinogenic on erythromycin and

tetracycline. The indicator strain was not bacteriocinogenic with or

without antibiotic. The erythromycin resistant transconjugant SSMl was

also non-bacteriocinogenic as were SSG12 and SSG13 and the tetracycline
resistant transconjugants except when there was no antibiotic present.

There was however a striking difference in activity between antibiotic free

and streptomycin containing agar with haemolytic transconjugants and cured
derivatives. In the presence of streptomycin, the previously non-

bacteriocinogenic transconjugants and cured derivatives became highly

bacteriocinogenic and K87C6, K87C7 and K87C8 which were weak producers

without antibiotic, also appeared to increase activity. Derivatives K87C4

and K87C5 were cured of streptomycin resistance and so should not have grown

but close examination of the inocula showed that there was slight growth

in the overlay agar although none in the streptomycin agar. Possibly

therefore a few cell divisions took place before the drug diffused

completely into the overlay. On erythromycin, none of the transconjugants
/

was active but all the cured derivatives were weakly bacteriocinogenic, while 
on tetracycline only K87C6, K87C7 and K87C8 showed weak activity. The 
opaque zones seen without antibiotic around haemolytic transconjugants and 
derivatives obtained after storage were not visible on streptomycin or 

erythromycin but were present on tetracycline. Strain DS5, bacteriocino­
genic against K87IO without antibiotic and with tetracycline, did not 

produce bacteriocin or appear to grow at all (compare K87C4 and K87C5) on 

streptomycin. On erythromycin however, bacteriocin production was greatly 

enhanced. SB..94 produced bacteriocin without antibiotic, showed slight 

enhancement in the presence of streptomycin, and was bacteriocinogenic also 
on erythromycin and tetracycline.
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Table 18. Bacteriocin production by DS5, SB94, K87 and its 
derivatives against K87IO on agar containing 
streptomycin, erythromycin or tetracycline.

Strain* Phenotype Bacteriocin production ** with
no antibiotic Sm Em Tc

K87 EmT c SmKmNmH1y - - + +
K87IO EmTcSmKmNmHly - — - -
SSMl Em - - - -
SSM2 Tc ± - - -
SSM3 Tc ± - - -
SSM4 Tc ± — - -
SSM6 Hly - 0 ++++ - - 0
SSM7 Hly - 0 ++++ - - 0
SSM8 Hly - 0 ++++ - — 0
SSM9 Hly - 0 ++++ — - 0
SSG12 Era + — - -
SSG13 Em + _ - -
K87C1 EmTcSmKmNm - 0 ++++ + - 0
K87C2 EmTcSmKmNm - 0 ++++ ± - 0
K87C3 EmTcSmKmNm - 0 ++++ ± - 0
K87C4 EmTcHly - 0 ++++ ± - 0
K87C5 EmTcHly - 0 ++++ ± - 0
K87C6 EmTcSmKmNm ± +++ ± +
K87C7 EmTcSmKmNm ± +++ ± ±
K87C8 EmTcSmKmNm ± +++ ± ±
DS5 EmTcHly + - ++++ +
SB94 EmTcSmKmNm ++ +++ + / +

* See Table 17.

** See Table 17; ++++, clear zone diameter 6 to 9mm.
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PREPARATION OF PLASMID DNA

To obtain a method of preparation of streptococcal plasmid DNA which 

was quick, with as few steps in the procedure as possible, was reproducible 

and suitable for all the strains under study, preliminary experiments were 
carried out usihg several well documented methods.

On two separate occasions, attempts were made to prepare plasmid DNA 

from strains DS5, K87, JH2-2 and transconjugant derivatives of matings 

between DS5 and JH2-2 by the Vapnek method. The samples thus obtained were 

run on horizontal 0.8% (w/v) agarose gels and the DNA visualised in ultra­

violet light after staining with ethidium bromide. All samples had an

identical diffuse hand of DNA which co-migrated with that obtained from the 
plasmid free strain JH2-2 and was, therefore, most likely chromosomal DNA.

The lysis of cells directly in the slots of a vertical gel as described 

by Eckhardt was tested as a rapid method of plasmid isolation which should 
have minimised nuclease digestion and the possibilities of mechanical 

shearing of large plasmids. The strains used in the first experiment were 

DS5, JH2-2 and two tetracycline resistant transconjugants from a mating of

these strains, and the procedure was repeated using strains DS5, JH2-2,

K55 and K60. On both gels, the position of chromosomal DNA was taken as 

those bands co-migrating with that from the plasmid free JH2-2. Such a 

band was seen in DS5 and transconjugants on the first gel but only in 
JH2-2 on the second. On the first gel, a faint band which had migrated 
faster than chromosomal DNA was seen in all samples except JH2-2 and it 
was assumed that this was the tetracycline resistance plasmid pAMal but 

other hands representing pAMyl or pAM&l were not seen in the DS5 sample.

The second gel gave a more promising result for DS5 with pAMal clearly 

visible and a faint band migrating more slowly than chromosomal DNA, 

probably pAMyl, although neither^,K55 nor K60 samples showed any DNA bands.
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Assuming that under the conditions used lysis of cells, was obtained it is 
possible that no plasmid DNA was seen in K55 and K60 because the concen­

tration of cells was too high resulting in a reduced yield of plasmid 

(Eckhardt, 1978) although a band of chromosomal DNA would have been expected 

in these circumstances. Alternatively, if the cell concentration was too 
low and low copy number plasmids present, the concentration of DNA released 

would probably have been insufficient to visualise after staining.

The mutanolysin lysis method was used to isolate plasmid DNA from 

strains DS5, K88 and K87 in a series of experiments. As stated previously, 

density gradient centrifugation steps were omitted and replaced by phenol 

and chloroform extractions. This lysis method must have released a large 

amount of soluble protein as, on addition of phenol for the first extraction, 
the samples became completely white due to precipitated protein. A further 

phenol extraction followed by two chloroform extractions were necessary to 

produce a clear aqueous phase from which DNA was precipitated with ethanol. 
Figure 4 is a representation of the band patterns in 0.6% (w/v) agarose 

obtained from the above strains and the plasmid free JH2-1 on four separate 

occasions. As the running conditions were slightly different on each 

occasion, band sizes were calculated from the standard DNA samples on the 

respective gels and re-drawn in the appropriate position. The pattpm of 

bands obtained from DS5 was similar in both experiments with bands at 

positions expected for ccc DNA of pAMal (9.1kb) pAMBl (26.5kb) and possibly 
one or more of the pAMyl plasmids (54kb). The other bands in the samples 

were either chromosomal DNA or other forms of these plasmids. The pro­
cedure was less successful with strain K88 - apparently only chromosomal 
DNA was isolated in the first experiment. However three bands, one 
probably chromosomal, were isolated when the procedure was repeated, The 

most striking feature of the K87 samples was the large amount of chromosomal 

DNA present. Band patterns were similar in both experiments but what the
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Figure 4. Schematic representation of DNA samples prepared by the

mutanolysin method after electrophoresis in 0.6% agarose gels.

Numbers in parenthesis indicate the experiment number. Arrow 

indicates chromosomal DNA and show the positions of pAMy,
pAM3l and pAMal of DS5 respectively.
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figure does not show was the distortion of the four small bands of K87 

which was a characteristic of these samples and possibly caused by incomplete 

deproteinisation or overloading due to the high proportion of chromosomal 

DNA.

The method was successful in isolating several plasmid species from 

the strains tested but there was also a large amount of chromosomal DNA in 

the sançles which could conceal the presence of co-migrating plasmid DNA. 
Another disadvantage of the method was the inefficient separation of cccDNA 
from open circular or linear forms of plasmids, exemplified in DS5 samples 
where there were several bands in addition to those expected.

The method recommended by Crosa and Falkow (1981) for isolation of 

large plasmids was tested twice using all the parental antibiotic resistant 
strains and the plasmid free strain JH2-1 and the appearance of the samples 

from the first experiment after electrophoresis in a 0.6% (w/v) agarose gel 

is shown in Figure 5. Two DS5 samples, one of which was prepared from 

double the cell density, were included in the preparation and only the sample 

from the higher DS5 cell density showed any bands, one of which was probably 

chromosomal DNA. The probable positions of pAMy and pAMal are marked but 

there was no DNA visible at the position expected for pAMal or pANgl.

Samples prepared from K55, K60 and K87 all had the same band pattern which 

differed markedly from that obtained from K87 using the mutanolysin procedure. 
Only chromosomal DNA was isolated from K88, SB94, SB69 and JH2-1 while no 
DNA was visible in the K46 sample. In general, the DNA bands obtained 
were very faint. At the second attempt to isolate plasmids using this 
method, no DNA was seen in any of the samples with the. exception of K87 
which had one hand of approximately 26kb. The most probable reasons for 

the. failure, of this method were either not enough starting material i.e. 

insufficient cells to yield detectable DNA at the end of the procedure, or 

incomplete lysis of cells in the absence of lysozyme treatment leading to a
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Figure 5. Schematic representation of DNA samples prepared by the 

Crosa and Falkow method after electrophoresis in a 0.6% 

agarose gel.

Arrow indicates the position of chromosomal DNA and 

y, a the probable positions of DS5 plasmids pAMy and 

pAMal respectively.

8 mlO o r>
s i i i i

origin

60 - 
50 -
40 -

30

20

cathode

anode



169

low DNA yield.

Large scale preparations from 1000ml culture which included a caesium 

chloride-ethidium bromide density gradient centrifugation were carried out 

once for strains DS5, K87, K88, SB94, twice for strains K55, SB69 and K46 

and three times for K60. After centrifugation, all gradients except those 

of K60, SB69 and one of K46 had two and sometimes three bands visible with 

ultraviolet light. The uppermost band contained mainly chromosomal DNA 

and the lowest band the ccc plasmid DNA. Gradients from K60 preparations 

did not have any visible DNA bands while SB69 and one of the K46 preparations 

had one faintly fluorescent band at a density equivalent to that of the 
chromosomal DNA in the other preparations. Since samples were run on 

different agarose gels with slightly altered running conditions, the sizes 

of the bands obtained have been estimated from standard size DNA samples 

on the individual gels and re-drawn in Figure 6 at the appropriate positions. 

Samples DS5, K55, K87, SB94 and SB69 all had bands of approximately 21kb 

which may have been contaminating chromosomal DNA. As the method is 

designed to separate the linear chromosomal DNA from ccc plasmids, however, 

it is possible, especially in samples K55 and K87 where the bands were clear 

and sharp, that these bands represent plasmids. In addition to this band,
the DS5 sample contained bands migrating to positions expected for pAMy, 

pAMgl and pAMal with a further,, band of 5.5kb. This latter could have been 
the 5.1kb autonomously replicating dissociation product of pAMal described 
by Perkins and Youngman (1983). Both preparations of K55 yielded three 
bands. Strain K87 had, in addition to the 21kb band, six others arranged 
in three, pairs none of which was the same size as those obtained by the 

mutanolysin method. The K88 sample had three bands, two of which co­

migrated with bands obtained from strain SB94. SB69 had as expected only 

one faint diffuse band which was probably chromosomal DNA. Only one of 

the K46 density gradients contained ccc plasmid DNA which after electrophor-
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Figure 6 . Schematic representation of DNA samples obtained from 

1 0 0 0ml cultures after electrophoresis in 0 .8 % agarose 

gels.

Probable positions of DS5 plasmids pAMy, pAM$l and 

pAMal are indicated by y, 3 and a respectively.
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esis was found to be composed of three bands.

Table. 19 shows the average sizes of bands estimated on 0,6% agarose 

gels from several Dunny preparations. Between preparations, there were 

variations in band patterns particularly with respect to the larger bands. 

Presumably, such large plasmids are more susceptible to shear during pre­

paration or alternatively, these bands could represent nicked forms of 

smaller plasmids, multimers or concatamers. Analysis of restriction endo­

nuclease digestions of DS5 plasmids has revealed that the largest band 

obtained on gels is in fact composed of three plasmids ranging from 60 to 

45.8kb (Clewell et̂  , 1982) and in three preparations, two bands were 
seen but resolution was poor. Additionally, most preparations had a band 
co-migrating with JH2-1 DNA and therefore presumably chromosomal DNA. 

pAM31 was usually resolved below this band at this gel concentration but 

the most distinct band in all DS5 preparations was always that corresponding 
to pAMal.

Of the three or four bands visible in samples from strain .K55, only 

band 1 was always present. Two preparations consisted of bands 1, 2 and 3, 

two of bands 1, 3 and 4 one one of bands I, 2 and 4. Band 3 of K55 was 

possibly chromosomal DNA, Strain K87 samples resolved into five or six bands 

of which band 2 was the most prominent and was within the size range for 

chromosomal DNA. The sizes of the two pairs of bands, 3 and 4, and 5 and 6, 
were in agreement with those obtained previously by the multanolysin method. 

More bands were detected from K88 samples prepared by the Dunny method than 
by either the multanolysin or large, scale methods and only bands 2, 5 and 6 
were of similar sizes, to those observed previously. Either band 3 or 4 

could have been chromosomal DNA.. SB94 samples had three or four DNA bands, 

two of which. (3 and 4) corresponded to bands obtained by the large scale 

method and one. of which .(band 2) was probably chromosomal DNA.
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Table 19. Mean sizes of bands observed in 0.6% agarose gels 

from samples prepared by the Dunny method.

Strain Number of Band Mean size of band Number of
preparations designation (kb ± standard deviation) times

obsei

DS5 10 pAMy 53.3 ± 5.6 8
pAMgl 25.8 ± 3.1 10
pAMal 9.7 ± 0 , 8 10

K55 5 1 51.5 ± 5.9 5
2 37.0 ± 4.4 3
3 23.8 ± 1,6 4
4 16.9 ± 0.9 3

K87 5 1 59.7 ± 3,3 3
2 26.7 ± 1,8 5
3 9.9 ± 0.7 5
4 9.0 ± 0.8 5
5 5.1 ± 0.5 5
6 4.7 t 0.4 5

K88 8 1 58.3 ± 6.4 6
2 38.8 ± 2,8 7
3 28.5 ± 2,6 6
4 22.3 ± 2,4 5
5 10.2 ± 0.5 / 8
6 5.2 ± 0.4 8

SB94 4 1 53.8 ± 2 .0 3
2 23.2 ± 1,6 4
3 10.9 ± 2.3 4
4 5.2 ± 0.4 4

JH2-1 8 26.7 ± 3.4 8
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Not included in Table 19 are the results for strains K60, K46 and 

SB69, In five of nine K60 preparations, no plasmid DNA was detected

while in the remaining four, two or three bands were visible one of which 

always migrated with DNA obtained from plasmid free strains and was assumed 

to be chromosomal DNA. In addition to this band, two preparations had each 

one band of size 60.5Tcb and 65.5kb respectively and two preparations had 
two bands of sizes 120 and 97,5kb, and 94.5 and 53.7kb respectively.

The relationship of these different estimated sizes was not clear.

Only two preparations from strain K46 produced bands on agarose gels, 

and in each, four bands were obtained. The first preparation run on 

0.6% agarose had band sizes estimated at 120, 97.5, 41 and 28kb while the 

second preparation run on 0.35% agarose had band sizes estimated at 80,
61, 38 and 17.2kb. Again, the relationship of the bands observed in the 

different preparations was unclear. As with all the previous methods, no 

plasmid DNA could be isolated from four preparations of strain SB69.

To summarise therefore, it was found that the Vapnek, Eckhardt and 

Crosa and Falkow methods were unreliable and/or not reproducible. The 

mutanolysin method was efficient for isolating plasmid DNA from strains 
DS5 and K87 but a large, sometimes unacceptable, amount of chromosomal DNA 

was also isolated. The large scale method while producing "clean"/ 
preparations from strains DS5, K55, K87, K88 and SB94 was not successful in 
isolating large plasmids such as those found in strains K60 and K46. 
Additionally, the inclusion of density gradient centrifugation was prohib­
itive both in terms of time and cost.. The Dunny method was therefore 

considered the most efficient, reproducible and useful method and was used 
throughout for the analysis of plasmid content from transconjugant and 

cured derivatives.
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PLASMID CONTENT OF PARENTAL STRAINS AND DERIVATIVES

In order to relate the phenotypes of the parental strains to their 

respective plasmids, the plasmid content of a selection of transconjugants 

and cured derivatives of each strain was investigated using the DNA preparation 
method of Dunny (1981^)*

Figure 7(a) shows the appearance of samples from K55 and transconjugants 

of matings between K55 and JH2-2 after electrophoresis in 0.5% agarose.
Figure 7(b) shows samples from a second preparation of K55 along with trans­

conjugants from matings with JH2-17 and cured derivatives of K55, after 

electrophoresis in 0.6% agarose. The band numbers given correspond to those 
assigned in Table 19. In the first preparation (Figure 7a), the band pattern 
obtained for K55 was 1, 2 and 4 while in the second preparation (Figure 7b) 

was 1, 3 and 4. The band at 27.5kb in Figure 7(a) which was present in 
transconjugant strains was most likely chromosomal DNA as was the band at 

21.8kb in Figure 7(b). However, it is conceivable that these bands could 

consist of chromosomal DNA and a co-migrating plasmid, particularly in 

Figure 7(b) where the amount of DNA in this band from transconjugants is far 

greater than that of plasmid free recipient JH2-17. Tetracycline resistant 

transconjugants SSD3, SSD4 and SSD18 had similar band patterns to the parental 

strain although only SSD3 included band 4. The apparent variation in the 
migration of bands 1 and 2 was pssumed to be due to differences in DNA con­

centration rather than actual size differences. The erythromycin resistant 

transconjugants SSD8 and SSD9 and the transconjugants co-resistant to 
erythromycin and streptomycin, SSD14 and SSD15, all contained band 1 only 
while the streptomycin resistant transconjugants SSD22 and SSD23 exhibited 

the same band pattern as SSD4 and SSD18. Of the samples in the second 

preparation, streptomycin resistant SSKl and SSK2 had only band 3 (possibly 

chromosomal DNA) and SSK3 contained bands 2 and 3 (band 2 was not present in 

the corresponding K55 sample). Like those tetracycline resistant transcon-



Figure 7. Plasmid preparations of strain K55 and derivatives 

after electrophoresis in 0.5% agarose.(a) K55 and 

transconjugants from matings with JH2-2.

Values to the left of the figure are the sizes (kb) 

of standard plasmid molecules. These were, from the top, 

RP4, pDB248, pBR325/Bam and pBR322. Arrow indicates 

position of chromosomal DNA. Sample volumes were 20pl.

Strain Derivation Phenotype Bands observed

K55 parental Em Tc Sm 1r 2, 4

SSD3 K55 X JH2-2 Tc 1 / 2 , 4

SSD4, SSD18 Tc 1 , 2

SSD8 , SSD9 Em 1

SSD14, SSD15 Em Sm 1

SSD22, SSD23 Sm 1 / 2

Band numbers refer to Table 19.
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Figure 7. Plasmid preparations of strain K55 and derivatives 

after electrophoresis in 0.6% agarose, (b) K55, 

transconjugants from matings with JH2-17 and cured 

derivatives.

Values to the left of the figure are the sizes (kb) 

of standard plasmid molecules. These are, from the top, 

RP4, Sa, pAJ50 and pBR325/Bam. Arrow indicates 

position of chromosomal DNA. Sample volumes were 30pl.

Strain

K55

SSKl, SSK2 

SSK3

SSK4, SSK5, SSK6 

K55C1, K55C2

Derivation

parental 

K55 X JH2-17

Storage cured 
derivatives

K55C3 Storage cured 
derivative

Phenotype

Em Tc Sm

Sm

Sm

Tc

Tc

K55C4, K55C5, K55C6,K55C7 Novobiocin cured Tc
derivatives

Em Tc

Bands observed

1 , 3, 4

3

2, 3 

2, 3 

1/ 3

1/ 3

1 , 3, 4

Band numbers refer to Table 19.
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jugants of JH2-2 matings, hand 2 was observed in SSK4, SSK5 and SSK6 but 

instead of band 1, band 3 was seen. The samples from derivatives of K55 

cured of erythromycin and streptomycin resistance - K55C1, K55C2, K55C4, 

K55C5, K55C6 and K55.C7 - all consisted of bands 1 and 3 and K55C3, the single 

derivative cured of streptomycin resistance alone, had the same band pattern 

as K55 namely bands 1, 3 and 4.

Two plasmid preparations of strain K60 and derivatives in 0.6% agarose 

gels are shown in Figure 8(a) and (b). Electrophoresis was carried out 

for 10 hours longer in Figure 8(b) than Figure 8(a). Neither preparation 

yielded any plasmid DNA from strain K60 and in both preparations, samples 

from transconjugant strains contained a prominent band co-migrating with 

DNA from JH2-l7which was probably chromosomal DNA. Of the transconjugants 

of K60 and JH2-2, all had a band of approximately 55.0kb, the differences in 

migration probably being due to disparity of DNA concentrations rather than 

actual size variation. Strain SSF18 however, contained additional bands of 

sizes 9.4 and 5.6kb neither of which had ever been observed in K60 prepar­

ations. Transconjugants of K60 and JH2-17 displayed basically the same band 

patterns as those above although the size of the band was higher at approx­

imately 65.0kb and there was a larger band visible at approximately 140.Okb

which may have been a dimer or open circular form of the smaller band./
Derivatives K60C1, K60C2 and K60C3 cured of streptomycin resistance during 

storage had a different band pattern to those derivatives K60C5, K60C6, K60C7 

and K60C8 obtained by novobiocin treatment. Excluding the probable chromo­
somal band, the former samples contained bands of sizes 65.9 and 12.Okb 
while the latter contained bands of sizes 75.2, 39.8, 15.5 and 14.6kb. The 

sample from strain K60C4, a derivative susceptible to erythromycin and 

streptomycin obtained by novobiocin treatment, appeared to consist of only 
the putative chromosomal DNA band.



Figure 8. Plasmid preparations of strain K60 and derivatives

after electrophoresis in 0.6% agarose.(a) K60 and

transconjugants from matings with JH2-2.

Values to the left of the figure are the sizes (kb) 

of standard plasmid molecules. These are. from the 

top, RP4, pDB248, pBR325/Bam and pBR322. Arrow 

indicates position of chromosomal DNA. Sample volumes 

were 2 0yl.

Strain

K60

Derivation

parental

SSF2, SSF3, SSF17 K60 x JH2-2 

SSF18 "

SSF4, SSF5, SSFll, 
SSF12

SSF9, SSFIO

SSF13, SSF14, SSF15, 
SSF16

Phenotype Band sizes (kb)

Em Tc Sm Km Nm None visible

Em Tc Sm Km Nm 55.0, 23.2

Em Tc Sm Km Nm 55.0, 26.0, 23.2, 9.4,
5.6

Em Sm Km Nm

Em Tc 

Em

55.0, 23.2

55.0, 23.2

55.0, 23.2
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Figure 8 . Plasmid preparations of strain K60 and derivatives 

after electrophoresis in 0.6% agarose, (b) K60, 

transconjugants of matings with JH2-17 and cured 

derivatives.

Values to the left of the figure are the sizes (kb) of 

standard plasmid molecules. These are, from the top, 

pGC9114, RP4, Sa, pAJ50 and pDB248. Arrow indicates 

position of chromosomal DNA. Sample volumes were 30yl.

Strain

K60

SSL1, SSL2, SSL3 

SSL4

K60C1, K60C2, K60C3 

K60C4

K60C5,K60C6, K60C7, 
K60C8

Derivation

parental 

K60 X JH2-17

Storage cured 
derivative

Novobiocin 
cured derivative

Phenotype Band sizes (kb)

Em Tc Sm Km Nm None visible

Em

Tc

Em Tc 

Tc

Em Tc

140.0, 65.0, 17.2

65.0, 17.2 

65.9, 17.2, 12.0

17.2

75.2, 39.8, 17.2,
15.5, 14.6
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Two plasmid preparations, one of K87 and transconjugants of matings

with JH2-2 the other of K87 with transconjugants of matings with JH2-17 and

cured derivatives of K87 are shown in Figure 9. The derivation of the

strains and the bands present in the preparations are also shown. In the

first preparation (Figure 9a) band 1 was not visible in the K87 sample

even with 20yl sample, but was present in several of the transconjugant

strains although it was not consistently associated with any particular
phenotype. Band 2 was present in all the strains and as this band had been

found previously to co-migrate with chromosomal DNA from plasmid free strains,
was thought perhaps to be chromosomal DNA. The staining of this band,

however, was much more intense in most of the transconjugant strains than in

the K87 sample and in JH2-17 samples (not shown) of equivalent volume.
None of the transconjugant samples contained bands 3, 4, 5 or 6. In the

second preparation (Figure 9b and c), band 1 was just visible in the K87

sample of Figure 9(c) when 40yl was applied to the gel. This band was

also seen in several transconjugant strains, including SSG12 which had

contained this band in the first preparation also, but as before it was not

associated with any particular phenotype. Band 2 was again present in all
the samples and although it appeared to co-migrate with the DNA isolated

from plasmid free JH2-17, the amount of DNA in band 2 was far in excess of
/

that in the chromosomal DNA from JH2-17. As before, the staining intensity 
of the band was variable, again conflicting with the assumption that this 

band represented linear chromosomal DNA as the samples were treated alike, 
in as much as was possible, and should therefore have contained roughly the 
same amount of linear DNA. None of the transconjugant strains contained 
bands 3, 4, 5 or 6 but the tetracycline resistant transconjugants SSM3 and 
SSM4 had bands of 32.6kb and 13.Okb respectively which were not present in 

the parent K87. In contrast, bands 3, 4, 5 and 6 were present in all the 

cured derivatives with the exception of K87C8 in which only bands 4 and 6 

were visible. All the cured derivatives contained band 2 but only those



Figure 9. Plasmid preparations of strain K87 and derivatives

after electrophoresis in 0.6% agarose. (a) K87 and

transconjugants from matings with JH2-2.

Values to the left of the figure are the sizes (kb) 

of standard plasmid molecules. These are, from the top, 

RP4, pBR325/Hind, pBR325/Bam and pBR322. Arrow indicates 

position of chromosomal DNA. With the exception of the 

K87 samples indicated, sample volumes were lOyl.

Strain Derivation Phenotype Bands observed

K87 parental Em Tc Sm Km Nm Hly 2 , 3, 4 , 5, 6

SSG15, SSG29 K87 X JH2-2 Em Sm Km Nm 1 / 2

SSG30 II Em Sm Km Nm 2

SSG8 , SSG9, SSG14 II Em Tc Sm Km Nm 2

SSG16, SSG28 II Em Tc Sm Km Nm 1 / 2

SSGl , SSG2 II Hly 1 / 2

SSG12 II Em 1 / 2

SSG17 II Tc 2

SSG23 II Em Hly 2

SSG26 Em Tc 2

Band numbers refer to Table 19.
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Figure 9. Plasmid preparations of strain K87 and derivatives

after electrophoresis in 0.6% agarose. (b) K87 and

transconjugants from matings with JH2-17 and JH2-2.

Values to the left of the figure are the sizes (kb) of 

standard plasmid molecules. These are, from the top, 

pGC9114, )RP4, Sa, pAJBO, pDB248, and pHC79. Arrow

indicates the position of chromosomal DNA. Sample 

volumes were 30yl.

Strain

K87

SSMl

SSG12, SSG13

SSM2

SSM3

SSM4

SSM6 , SSM7 

SSM8 , SSM9

Derivation

parental 

K87 X JH2-17 

K87 X JH2-2 

K87 X JH2-17

Phenotype Bands observed

Em Tc Sm Km Nm Hly 2, 3, 4, 5, 6

Em

Em

Tc

Tc

Tc

Hly

Hly

1/ 2 

1/ 2 
2

1 , 2, (32.6) 

2, (13.0)

1/ 2
2

Band numbers refer to Table 19 while values in parenthesis are sizes (kb) 

of novel bands.
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Figure 9. Plasmid preparations of strain K87 and derivatives

after electrophoresis in 0.6% agarose. (c) K87 and

cured derivatives.

Values to the left of the figure are the sizes (kb) 

of standard plasmid molecules. These are, from the top, 

•RP4, Sa, pBR325/Hind and pHC79. Arrow indicates 

position of chromosomal DNA. Sample volumes were 40yl.

Strain Derivation Phenotype Bands observed

K87 Parental

K87C1, K87C2, K87C3 Storage cured Em Tc Sm Km Nm
derivative

Em Tc Sm Km Nm Hly 1, 2, 3, 4, 5, 6

2, 3, 4, 5, 6

K87C6, K87C7

K87C8

K87C4, K87C5

Novobiocin Em Tc Sm Km Nm
cured derivative

Novobiocin Em Tc Sm Km Nm
cured derivative

Storage cured Em Tc Hly 
derivative

2, 3, 4, 5, 6 

2, 4, 6

1, 2, 3, 4, 5, 6

Band numbers refer to Table 19.
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haemolytic strains had band 1,

Since the mutanolysin method of plasmid preparation had been relatively 
successful for strain K87, it was used to prepare DNA from K87, SSMl, SSM2, 

SSM3, SSM4, SSK7, SSM8 and K87C1. Examination of the 0,6% agarose gel 

(not shown) revealed that the results obtained with the Dunny preparation 

were reproducible by this method with the exceptions that SSM4 in addition to 
band 2 and the 13.Okb band also contained a faint band of 28.Okb and that 
K87C1 did not appear to have bands 4 and 6.

Samples from two plasmid preparations are shown, the first of strain 

K88 with transconjugants from JH2-2 matings in Figure 10(a) and the second 

of K88 with transconjugants from JH2-17 matings in Figure 10(b) and with 

cured derivatives in Figure 10(c). Derivations of the strains and the sizes 
of bands observed are also given. As there were several strains which 

contained apparently novel bands, the band numbers allocated in the previous 
section (see Table 19) were not used but are shown at the side of the gel 

photographs. In the first preparation, band 1 of strain K88 appeared to be 
missing and there was an extra band at 15.4kb. The band of 20.8kb which was 

present in all the samples was possibly linear chromosomal DNA. Transcon­
jugants SSEl, SSE5, SSE6, SSE7 and SSE17 resistant to erythromycin, tetra­

cycline and chloramphenicol contained only a band of 52.5kb (K88 barid 1) 

and the 20.8kb band. Of the streptomycin resistant transconjugants in this 
preparation, SSE2 and SSE3 contained only the 20.8kb band, SSE4 contained in 
addition a 35.Okb band and SSE16 two bands of 38.0 (K88 band 2) and 25.2kb. 
Repeated preparations of SSE2 also failed to reveal any band other than a 

possible chromosomal band. The largest bands in the tetracycline resistant 
transconjugants SSE8 and SSE15 were 42.8kb and 35.Okb respectively and 

both strains possessed bands of 20.8kb and 19,2kb (.K88 band 4). The only 

transconjugant obtained whinh was co-resistant to tetracycline and chloram­

phenicol, SSE18, exhibited the same band pattern as SSEl, SSE5 etc., namely



Figure 10. Plasmid preparations of strain K88 and derivatives

after electrophoresis in 0.6% agarose. (a) K88 and

transconjugants of matings with JH2-2.

Values to the left of the figure are the sizes (kb) 

of standard plasmid molecules. These are, from the 

top, RP4, pDB248, pBR325/Bam and pBR322. Numbers 

to the right of the figure correspond to the band 

numbers of Table 19. Arrow indicates position of 

chromosomal DNA. Sample volumes were 20yl.

Strain

K88

Derivation

parental

SSEl, SSE5, SSE6 , K88 x JH2-2 
SSE7, SSE17

SSE2, SSE3

SSE4

SSE16

SSE8

SSEl 5

SSE18

SSE19

Phenotype 

Em Tc Sm Cm

Em Tc Cm

Sm

Sm

Sm

Tc

Tc

Tc Cm 

Tc

Band sizes (kb)

38.8, 20.8, 19.2, 15.4,
8.5, 4.5

52.5, 20.8 

20.8

35.0, 20.8

38.0, 25.2, 20.8

42.8, 20.8, 19.2

35.0, 20.8, 19.2

52.5, 20.8

45.0, 20.8, 13.5
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Figure 10. Plasmid preparations of strain K88 and derivatives

after electrophoresis in 0.6% agarose. (b) K88 and

transconjugants of matings with JH2-17.

Values to the left of the figure are the sizes (kb) of 

standard plasmid molecules. These are, from the top, 

pGC9114, RP4, Sa, pDB248 and pBR322. Numbers to 

the right of the figure correspond to the band numbers 

of Table 19. Arrow indicates position of chromosomal 

DNA. Sample volumes were 30|il.

Strain Derivation Phenotype Band sizes (kb)

K 88

SSNl

SSN2

SSN3

SSN4, SSN5, SSN6

parental Em Tc Sm Cm 63,0,33.2,21.5,19.5,10.0,5.4

K 88 X JH2-17 Tc 63.0,54.0,21.5,19.5

Tc 63.0,35.0,19.5

Tc 63.0,21.5,19.5

Sm 44.0,19.5
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Figure 10. Plasmid preparations of strain K88 and derivatives

after electrophoresis in 0,6% agarose. (c) K88 and

cured derivatives.

Values to the left of the figure are the sizes (kb) 

of standard plasmid molecules. These are, from the 

top, pGC9114, RP4, ,Sa, pDB248 and pHC79. Numbers 

to the right of the figure correspond to the band 

numbers of Table 19. Arrow indicates position of 

chromosomal DNA. Sample volumes were 30yl.

Strain

K88

K88C1

Derivation

parental

Storage cured

Phenotype

Em Tc Sm Cm

Tc Sm

Band sizes (kb)

63.0.35.7.23.0.20.7,
10.0.5.4

63.0.35.7.23.0.20.7,
10.0.5.4

K88C10,K88C11, Novobiocin cured Tc Sm 
K88C12 derivative

K88C13

K88C14

K8 8 C6

Novobiocin cured Tc Sm 
derivative

Novobiocin cured Tc 
derivative

Novobiocin cured Em Tc Cm 
derivative

23.0,20.7,10.0,5.4

35.7,23.0,20.7,10.0,
5.4

23.0

63.0,23.0,20.7,10.0,5.4
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K88 band 1 and 20.8kb band. In two repeat preparations of this strain, 

this pattern was also obtained. None of the transconjugants contained K88 
bands 5 or 6,

In the second preparation, the band obtained in all saaçles at 19.5kb 

in Figure 10(B) and 20..7kb in Figure 10(c) (K88 band 4) co-migrated with 

DNA obtained from the plasmid free JH2-17 and so was likely to be chromosomal 

DNA. Band 1 was visible in the K88 sample of this preparation. The 

tetracycline resistant transconjugants unlike those above, contained K88 
band 1 but as above, SSNl and SSN3 contained K88 band 3 in addition to the

19.5kh band although SSNl had an extra band of 54.0kb. SSN2 in addition to

band 1 and the 19.5kb band had a band of 35.Okb which was probably K88 band 2, 

The streptomycin resistant transconjugants were also different from those 

examined in the first preparation, having in addition to the 19.5kb band,
one band of 44.Okb. As before bands 5 and 6 were not observed in transcon-
jugants.

The derivative obtained after storage which was susceptible to erythro­

mycin and chloramphenicol, did not appear to be different from the parental 

strain. In contrast, of those with the same phenotype obtained after

novobiocin treatment, K88C10, K88C11 and K88C12 did not contain bands 1 or 2
/

and K88C13 was missing band !. One derivative, K88C6 was obtained which had 
lost streptomycin resistance only and this strain did not contain band 2.

The sole derivative which did not contain bands 5 and 6 was K88C14 which had 
been cured of all but tetracycline resistance. It also lacked bands 1 and 

2 and only band 3, which had also been observed in four of five tetracycline 
resistant transconjugants, was present.

Plasmid preparations of SB94, transconjugants of JH2-2 and JH2-17 

matings, and cured derivatives are shown in Figure 11 along with the 

derivations of the strains and the bands observed (numbered according to
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Table 19). As noted previously, there is the possibility that the band 2, 

present in all the samples, is chromosomal DNA and it did indeed co- 

migrate wi'th DNA from the plasmid free JH2-17. Both the erythromycin 

resistant and the tetracycline resistant transconjugant strains had the 

same bands present i.e. bands 1 and 2, but none had bands 3 or 4. 

Erythromycin resistant transconjugants contained in addition a novel band 

of 61.5kb whi'ch may have been an open circular form of band 1 although if 

this were, so, it should have been visible in at least some of the other 
samples. Tetracycline resistant SS02 appeared to have two bands with 

similar migration rates, one of which was probably band 1.

Among the cured derivatives, no difference in the bands present could 

be seen between the various phenotypes and SB94, even in the antibiotic 

susceptible strain although the amount of band 1, as judged by the intensity 
of staining, was variable being greatest in the derivatives which had lost 

erythromycin and streptomycin resistance during storage. An exception was 

the derivative cured of erythromycin and aminoglycosides resistances by 

novobiocin treatment, SB94C8, which in addition had a novel band of 18.2kb.

As no transfer of antibiotic resistance was obtained in matings with K46 

donors. Figure 12 shows plasmid preparations of K46 and cured derivatives 

only, after electrophoresis in 0.35% (w/v) agarose. K46C1 was isolated 

after storage, the other derivatives were obtained by novobiocin treatment. 
The sizes of the bands observed are also given. It was not clear whether the 
faint bands in the K46 samples at 34.7 and 32.9kb were in fact the same as 
the major band at 38.5kb and an artefact caused perhaps by the low gel 

concentration, or were separate plasmid species. In support of the former, 

all four K46 samples, which had been processed individually, showed the 
same band pattern and a similar effect was seen with the cccDNA band of the 

standard plasmid pSa.. Against this, however,^was the fact that all the 

derivatives with the exception of K46C11 had similar but not identical



Figure 11. Plasmid preparations of strain SB94, transconjugants 

from matings with JH2-2 and JH2-17 and cured 

derivatives after electrophoresis in 0 .6 % agarose.

Values to the left of the figure are the sizes (kb) 

of standard plasmid molecules. These are, from the 

top, ‘RP4, Sa, pBR325/Hind, pBR325/Bam and pHC79. 

Arrow indicates the position of chromosomal DNA. 

Sample volumes were 30pl.

Strain

SB94

SSH5, SSH6 , 
SSH7

SSCI, SS03

SS02

Derivation

parental 

SB94 X JH2-2

SB94 X JH2-17 

SB94 X JH2-17

SB94C1, SB94C2, Storage cured 
SB94C3 derivative

SB94C8

Phenotype

Em Tc Sm Km Nm 

Em

Tc

Tc

Tc

SB94C4, SB94C5 
SB94C6

SB94C7

Novobiocin Tc
cured derivative

Novobiocin Em Tc
cured derivative

Novobiocin Antibiotic
cured derivative susceptible

Bands observed

1, 2, 3, 4 

(61.5), 1, 2

1, 2
(54.0), 1, 2 

1, 2, 3, 4

1, 2, (18.2), 3, 4

1, 2, 3, 4

1, 2 , 3, 4

Band numbers refer to Table 19. Values in parenthesis are sizes (kb) 

of novel bands.
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Figure 12. Plasmid preparations of strain K46 and cured

derivatives after electrophoresis in 0.35% agarose.

Values to the left of the figure are the sizes (kb) of 

standard plasmid molecules. These are, from the top, 

RP4, Sa, pBR325/Hind and pBR325/Bam. Arrow indicates 

position of chromosomal DNA. Sample volumes were 50yl.

Strain Phenotype Band sizes (kb)

K46 Em Lm Tc Sm Km Nm Ap Pn 80.0,61.2,38.5,34.7,32.9,17.2

K46C1, K46C5, K46C7, 
K46C16, K46C18

Em Lm Tc Ap Pn 64.2,58.0,38.5,24.7,17.2

K46C6 Em Lm Tc Ap Pn 61.2,38.5,34.7,25.8,17.2

K46C17 Em Lm Tc Ap Pn 64.2,58.0,38.5,34.7,17.2,14.3

C46C11 Em Lm Ap Pn 61.2,34.7,17.2

K46C12,K46C13,K46C14 Em Lm Sm Km Nm Ap Pn 64.2,58.0,38.5,34.7,17.2

K46C15 Tc Ap Pn 64.2,59.4,38.5,34.7,23.2,17.2,
9.0
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patterns in that the 3 8.5 and 34.7kb hands were visible but never the 32.9kb 

band. Also the relative intensity of these two bands was variable between 

derivatives which was not the case in the K46 samples. All the K46 

samples contained bands at 80.0 and 61.2kb but none of the derivatives 

contained the 80.Okb band.. As to the 61.2kb band, only K46C6 and K46C11 

contained one band of the same size, all the other derivatives having two 

bands of 64.2 and 58.Okb. The band of 17.2kb which migrated fastest in

K46 was also observed in all the derivatives although in some, noteably 

K46C5, K46C7, K46C12, K46C13, K46C14, K46C16 and K46C18 and to a lesser 

extent K46C1, this band was more prominent and possibly composed of two co- 

migrating bands, This did not however relate to any particular resistance 
phenotype. The band patterns of all the derivatives were therefore very 

similar with only four exceptions. K46C6 unlike the other strains of the 

same phenotype, had an additional band of 25.8kb while another of the same 

phenotype, K46C17, had a novel band of 14.3kb. The derivative cured of 

tetracycline and aminoglycosides resistance, K46C11, had only bands at 61.2, 
34.7 and 17.2kb, missing the 38.5kb band. K46C15 which was susceptible to 
erythromycin, lincomycin and aminoglycosides, had a band of 64.2kb but, 
instead of an accompanying band of 58.Okb, had a band of 59.4kb. In 

addition to bands of 38.5, 34.7 and 17.2kb this strain also had two,bands 

of 23.2 and 9.Okb. It seems probable that these extra bands, particularly 
the smaller ones, were fragments of the larger plasmids.
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RESTRICTION ENDONUCLEASE DIGESTION OF PLASMID PREPARATIONS

From the preceding plasmid preparations, it was not possible to 

relate the resistance phenotypes of the parental strains to the plasmids 

which they contained in particular because, in many instances, there was 

no apparent difference between the bands observed in parental and deriv­

ative strains or between transconjugants of different phenotypes. It was 

thought therefore that a study of the fragments obtained By restriction 

endonuclease digestion of preparations from parental strains and their 

derivatives could serve to clarify the situation, perhaps by indicating 

insertions into or deletions from plasmids found in derivatives or by 

demonstrating the presence of different plasmids of the same apparent size. 

After digestion and electrophoresis in 0.8% agarose gels, the sizes of 
fragments in the samples were estimated using a standard Hindlll digest 
of A to construct standard curves.

Restriction digests of K55 and derivatives using the enzymes EcoRl and
Pstl were carried out and are shown in Figure 13 with undigested samples

containing the same amount of DNA included for comparison. Figure 13(a),
(c), (d) and (e) shows K55 samples which were prepared and digested

individually and the fragment sizes given in Table 20 are the mean of those
/

calculated from (a), (c), (d) and (e) for EcoRl digests but only (c), (d) 

and (e) for Pstl digests as the K55 Pstl digestion in (a) was incomplete, 

probably due to the presence of inhibitor such as a trace of ethanol.
Under the conditions used, Pstl would therefore appear to be more sensitive 

to inhibition and so digestion in other samples may likewise have been 
fallible. There, was no reason to suppose however that the activity of 
EcoRl was affected.

Both EcoRl and Pstl digests of K5.5 produced nine visible fragments 

designated A to I (.Table 20), the former enzyme giving in total estimated



Figure 13. Restriction endonuclease digestion patterns of plasmid

preparations from K55 and derivatives after electrophoresis 

in 0 .8 % agarose.

Lane at the far right of figures contains Hindlll digest of X.
Sample volumes were 50pl. Letters to the left correspond to K55
Pstl digestion fragments and letters to the right, to K55 EcoRl
digestion fragments.
(a) Lanes 1 , 4 , 7  and 10 contain undigested preparations from strains 

K60 (Em Tc Sm), SSKl (Sm), SSK2 (Sm) and SSK3 (Sm) respectively. 
Lanes 2, 5, 8 and 11 contain the respective preparations digested
with EcoRl and lanes 3, 6 , 9 and 12 contain the preparations
digested with Pstl .

(b) Lanes 2, 4, 7 and 10 contain undigested preparations from strains
K55C3 (Em Tc), K55C5 (Tc), K55C6 (Tc) and K55C7 (Tc) respectively.
Lanes 2, 5, 8 and 11 contain the respective preparations digested
with EcoRl and lanes 3, 6 , 9 and 12 contain the preparations
digested with Pstl .

(c) Lanes 1, 4, 7 and 10 contain undigested preparations from strains
K55 (Em Tc Sm), SSK4 (Tc), SSK5 (Tc) and SSK6 (Tc) respectively.
Lanes 2, 5, 8 and 11 contain the respective preparations digested
with EcoRl and lanes 3, 6 , 9 and 12 contain the preparations
digested with Pstl .
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Figure 13 (continued)

(d) Lanes 1, 4, 7 and 10 contain undigested preparations from strains 
K55 (Era Tc Sm), K55C1 (Tc), K55C2 (Tc) and K55C4 (Tc) respectively 
Lanes 2, 5, 8 and 11 contain the respective preparations digested 
with EcoRl and lanes 3, 6 , 9 and 12 contain the preparations 
digested with Pstl .

(e) Lanes 1 , 3 , 6  and 9 contain undigested preparations from strains 
K55 (Em Tc Sm), SSD6 (Em), SSDlO (Em) and K55 respectively.
Lanes 2, 4, 7 and 10 contain the respective preparations 
digested with EcoRl and lanes 5, 8 and 11 contain SSD6 , SSDlO and 
K55 respectively digested with Pstl.
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Table 20 Restriction endonuclease fragments of strain K55.

197

Fragment Fragment size (kb) after digestion with
EcoRl

23.21 ± 0.91 

14.29 ± 0.95 

10.00 ± 0.20 

9.45 ± 0.26 

8.62 ± 0.28 

4.84 ± 0.06 

4.58 ± 0.06 

3.73 ± 0.06 

3.42 ± 0.15

Pstl

25.60 ± 2.72 

14.05 ± 1.18 

9.93 ± 0.30 

8.00 ± 0.20 

6.60 ± O .06

4.50 ± 0.00 

3.80 ± 0.06 

2.38 i 0.12

1.50 ± 0.10

TOTAL 82.14 ± 2.93 76.36 ± 4.74
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size of 82.14kb while the latter gave, a. size of 76.36kb. Although somewhat 

lower than the. EcoRl estimate., it was possible that one of the Pstl bands 

could have represented two fragments of the same size, a good candidate 

being the 8.Okb fragment D which consistently appeared more fluorescent 

after staining. Nevertheless, both estimates fell short of the expected 

total had all four undigested bands in Table 19 actually been different 

plasmid species and supported the view that one or more of these bands 
represented open circular on linear DNA.

Digestion of DNA from streptomycin resistant transconjugants SSKl and 
SSK2 with EcoRl, shown in Figure i3(a), resulted in elimination of the band 

suggesting that this was not plasmid but chromosomal DNA although Pstl 
digestion had no effect, probably because of inhibition of activity. The 
remaining streptomycin resistant transconjugant, SSK3, which in Figure 7(b) 
had two bands, yielded EcoRl fragments A, C, D, E, F and I with a total size 
of 59.54 + l.Bbkb. The same EcoRl pattern was seen in all those cured 

derivatives susceptible to streptomycin and erythromycin, resistant to 

tetracycline. Figure 13(b) and (d), and in tetracycline resistant transcon- 

jugants SSK4, SSK5 and SSK6, Figure 13(c), although SSK4 and SSK6 had 
additional fragments at 33.60 and 4.20kb. The Pstl digest of SSK3 contained 

one band of large size near the origin which was probably undigested DNA and 

another band of 38.Okb at approximately the same position as the putative 
chromosomal DNA. However, the staining of this band was much more intense 
than that of the undigested sample indicating that at least partial digestion 
had taken place. A similar effect was seen with Pstl digestion of all the 
other transconjugant strains, tetracycline as well as erythromycin resistant, 
and EcoRl digestion of erythromycin resistant transconjugants, but was not 
observed when cured derivatives were digested with either enzyme. As all 

the samples were prepared at the same time using the same materials, method 

etc., the reason for this discrepancy between parental strain and cured
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derivatives on the one hand and transconjugants on the other was not clear.

Pstl digestion of derivatives cured of streptomycin and erythromycin 

resistance, K55C1, K55C2, K55C4, K55C5, K55C6 and K55C7, yielded fragments 
B to I of total size 50.76 + 2.02kb. Without taking into account the 

possibility of two fragments at D, this value was comparable with that 

estimate (59.5 + 1.86kb) for the EcoRl fragments observed in these strains 

and this total was in turn similar to the estimated size of band 1 

(51.5 + 5.9kb) in undigested K55 preparations. Only one derivative,
K55C3 was obtained which was susceptible to streptomycin but remained 

resistant to erythromycin and tetracycline and, on digestion, samples of 

this strain had exactly the same restriction profiles for both enzymes as 
the parental strain. It therefore appeared that EcoRl fragments B, G and 
H total size 22.6 + 2.72 were equivalent to Pstl fragment A, size 25.60 + 

2.72kb, and probably associated with erythromycin resistance. A band of 
size 23.75 + 1.60kb (band 3) was observed in undigested K55 preparations 

although in previous preparations of K55C3 itself, Figure 7(b), bands 1, 3 
and 4 were observed.

Samples of strain K60 and derivatives before and after endonuclease 

digestion are shown in Figure 14. EcoRl and Pstl digestion of K60 produced 

sixteen and eight fragments respectively with total fragment sizes of 
127.45kb and 99.45kb. As above with the K55 samples, there was some doubt 

as to the efficiency of digestion by Pstl especially in the transconjugant 
samples. The erythromycin resistant transconjugants of matings with JH2-17 
shown in Figure 14(a), SSLl, SSL2 and SSL3 had similar EcoRl fragment patterns 
to K60 but fragments A, C, G, D and L were missing. The total size of the 

remaining fragments was 68.10kb which corresponds well with the band size 

65.Okb observed previously in these strains (Figure 8b). The Pstl digests 
were probably incomplete under the conditions used but nevertheless, fragments 

A, D, E, F, G and H were clearly visible in SSLl and SSL2 with a total size 

of 60.50,kb. In contrast, the tetracycline resistant transconjugant SSL4



Figure 14. Restriction endonuclease digestion patterns of plasmid 
preparations from K60 and derivatives after electro­
phoresis in 0.8% agarose.

Lane at the far right of figures contains Hindlll digest of X.
Sample volumes were 50yl. Letters to the left correspond to K60 Pstl
digestion fragments and letters to the right, to K60 EcoRl digestion
fragments.

(a) Lanes 1, 4, 7 and 10 contain undigested preparations from strains 
K60 {Em Tc Sm Km Nm), SSLl (Em), SSL2 (Em) and SSL3 (Em) respect­
ively. Lanes 2, 5, 8 and 11 contain the respective preparations
digested with EcoRl and lanes 3, 6, 9 and 12 contain the preparations
digested with Pstl.

(b) Lanes 1, 4, 7 and 10 contain undigested preparations from strains 
SSL4 (Tc), K60C1 (Em Tc), K60C2 (Em Tc) and K60C3 (Em Tc) respect­
ively. Lanes 2, 5, 8 and 11 contain the respective preparations
digested with EcoRl and lanes 3, 6, 9 and 12 contain the preparations
digested with Pstl.

(c) Lanes 1, 4, 7 and 10 contain undigested preparations from strains 
K60C4 (Tc), K60C5 (Em Tc), K60C6 (Em Tc) and K60C7 (Em Tc) respect­
ively. Lanes 2, 5, 8 and 11 contain the respective preparations
digested with EcoRl and lanes 3, 6, 9 and 12 contain the preparations
digested with Pstl.
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Table 21. Restriction endonuclease fragments of strain K60.
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Fragment Fragment size (kb) after digestion with
EcoRl

29.25

21.75

19.20

11.50

9.10

6.85 

4.15

3.85 

3.60 

3.50

3.00 

2.90 

2.65 

2.45

2.00 

1.70

Pstl

29.25

23.50

15.45

9.80 

7.90 

6-35 

4.40

2.80

TOTAL 127.45 99.45
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yielded manifestly different restriction profiles. EcoRl fragments A, F,

G, H and L, total size 47.00k.b, were present but there were in addition 

seven fragments of sizes 5.45, 4.70, 4.30, 3.95, 1.90, 1.75 and 1.60, 

total 23.65kb, giving an overall size of 70.65 which was comparable to 

that obtained for SSLl, SSL2 and SSL3. Pstl digestion of SSL4 appeared 
to give fragments A, B, C, D and E and novel fragments of 11.20, 6,20 and 

4.95kb, total 22.35kb, but the combined size at 108.25kb was greater than 

that calculated for EcoRl fragments. This could possibly reflect incom­
plete digestion of the larger fragments.

Derivatives of K60 which had lost streptomycin resistance on storage 

(Figure 14b), K60C1, K60C2 and K60C3, had EcoRl restriction profiles 

resembling those of the erythromycin resistant transconjugants but additional 
novel fragments of 8.50 and 1.75kb as well as fragment L were present. 

The sum of the novel fragments was 10.25kb giving a total size of 81.25kb 

which compared favourably with the sum (77.9kb) of the sizes of suspected 

plasmid bands in these strains (Figure 8b). The Pstl digests contained 

fragments A, D, E, F, G and H with a novel fragment of 14.3kb giving a 

total size of 74.80kb. Derivatives with the same phenotype in Figure 14(c) 
but which had been obtained by novobiocin treatment, K60C5, K60C6 and 

K60C7 had slightly different restriction profiles. As with the derivatives 

obtained on storage, the EcoRl digests contained the same fragments as those 
observed in transconjugants SSLl, SSL2 and SSL3 but had in addition, fragment 
L and novel fragments of 8.30, 3.95, 1.75 and 1.65kb. The sum of the novel 
fragments was 15.65kb, the combined size of the EcoRl fragments being 
86,5Okb. The Pstl digests were also similar but the novel fragment was 

larger at 17.50kb giving a total fragment size of 78.00kb. Although the 

sums of the fragments obtained from derivatives of both sources were similar 

the sizes of the respective novel fragments were obviously different from 

those obtained on storage. The combined size of the bands in undigested
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K60C5, K60C6 and K60C7, excluding the probable chromosomal DNA, was 

145.10kb, Figure 8b, indicating that not all the bands were cccDNA.

In contrast to the tetracycline resistant SSL4, K60C4 which was resistant 

to tetracycline alone did not appear to contain any plasmid as neither 

undigested nor digested samples had visible Bands or fragments.

Plasmid preparations of strain K87 with transconjugants and cured 

derivatives before and after digestion with EcoRl and Pstl are shown in 
Figure 15. The samples of K87 shown in Figure 15(a), (c), (d) and (e) 
were processed individually, the fragment sizes estimated and the mean and 

standard deviations calculated (Table 22), with the exception of EcoRl 

fragment M which was very faint and visible only in (a). EcoRl digestion 
of K87 samples yielded thirteen fragments designated A to M with a total 
size of 89.42kb. Comparison with undigested sample, showed that band 5 
was not digested - the faint band seen under this and band 6 was assumed to 

be an artefact due to the high plasmid concentration at this agarose concen­

tration. Addition of band 5 to the total (94.52kb) resulted in a value 

20.58kb less than the total sizes of bands 1 to 6 (Table 19) suggesting 

either that one or more of the fragments was not clearly separated or that 

not all the bands listed in Table 19 were cccDNA. In this respect, bands 

3 and 4 could have been open circular or linear forms of bands 5 and 6 or 
band 2 could have been chromosomal DNA. Nevertheless, the total of EcoRl 
fragment sizes was such as to suggest that, although band 1 was not visible 
in undigested K87 samples of this preparation, there was sufficient present 
to produce visible fragments after digestion, as more ethidium bromide 
could intercalate into the linearised DNA. Digestion of K87 with Pstl 
produced only three fragments of sizes 6.lOkb, 4.92kb and 4.66kb. Bands 2 

and 6, possibly hand 4 and, presumably, band 1 were not digested by this 

enzyme. The fact that band 2 was not digested was contrary to the suggestion 

that it may have been chromosomal DNA. It was likely that fragment B

'"/'-y



Figure 15. Restriction endonuclease digestion patterns of plasmid 

preparations from K87 and derivatives after electro­

phoresis in 0 .8 % agarose.

Lane at the far right of figures contains Hindlll digest of X.
Sample volumes were SOjJl. Letters to the left correspond to K87
Pstl digestion fragments and letters to the right, to K87 EcoRl
digestion fragments.

(a) Lanes 1, 4, 7 and 10 contain undigested preparations from 
strains KB7 (Em Tc Sm Km Nm Hly), SSMl (Era), SSG12 (Em) and 
SSG13 (Em), respectively. Lanes 2, 5, 8 and 11 contain the 
respective preparations digested with EcoRl and lanes 3, 6 , 9 
and 12 contain the preparations digested with Pstl .

(b) Lanes 1 , 4 , 7  and 10 contain undigested preparations from 
strains SSM6 (Hly), SSM7 (Hly), SSM8 (Hly) and SSM9 (Hly) 
respectively. Lanes 2, 5, 8 and 11 contain the respective 
preparations digested with EcoRl and lanes 3, 6 , 9 and 12 
contain the preparations digested with Pstl .

(c) Lanes 2, 4, 7 and 10 contain undigested preparations from 
strains K87 (Em Tc Sm Km Nm Hly), SSM2 (Tc), SSM3 (Tc) and /
SSM4 (Tc) respectively. Lanes 2, 5, 8 and 11 contain the 
respective preparations digested with EcoRl and lanes 3, 6 , 9 and 
12 contain the preparations digested with Pstl.
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Figure 15 (continued)

(d) Lanes 1, 4, 7 and 10 contain undigested preparations from 
strains K87 (Em Tc Sm Km Nm Hly), K87C1 (Em Tc Sm Km Nm),
K87C2 (Em Tc Sm Km Nm) and K87C3 (Em Tc Hly) respectively.
Lanes 2, 5, 8 and 11 contain the respective preparations digested 
with EcoRl and lanes 3, 6 , 9 and 12 contain the preparations 
digested with Pstl .

(e) Lanes 1, 4 , 7  and 10 contain undigested preparations from strains 
K87 (Em Tc Sm Km Nm Hly), K87C5 (Em Tc Hly), K87C6 (Em Tc Sm Km 
Nm) and K87C8 (Em Tc Sm Km Nm) respectively. Lanes 2, 5, 8 and 11 
contain the respective preparations digested with EcoRl and lanes 
3, 6 , 9 and 12 contain the preparations digested with Pstl .
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Table 22. Restriction endonuclease fragments of strain K87.
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Fragment Fragment size (kb) after digestion with 

EcoRl Pstl

M

21.60 ± 0.33 

15.84 ± 0.43 

12.50 ± 0.25 

9.56 ± 0.32 

8.95 ± 0.25 

6 . 8 6 ± O.30 

4.40 ± 0.26 

2.80 ± 0.03 

1.70 ± 0.03 

1.55 ± 0.13 

1.28 ± 0 . 1 0  

1.23 ± 0.15 

1.15

6.10 ± 0.20 

4.92 ± 0.10 

4.66 ± 0.08

TOTAL 89.42 15.68
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represented band 5 with one Pstl site but the origin of fragments A and C 

was not clear.

Digestion with EcoRI of the sairqple prepared from strain SSMl, an 

erythromycih resistant transconjugant from a mating with JH2-17, produced 

poorly resolved fragments indicative of incomplete digestion while with 

Ps tl, no diges tion was observed. This was probably due to inhibitory
substances present in the sample. Strains SSG12 and SSG13, erythromycin

resistant transconjugants from matings with JH2-2, each showed the same 
EcoRl digestion fragraenfis. Only fragments A, E, J, K, L and M visible in 

K87 samples were seen in SSG12 and SSG13. Between fragments A and E were 

two novel fragments of 17.90kb and lO.SOkb and between E and J were fragments 

of 3.30, 2.90, 2.75, 2.55, 2.45 and 2.10kb giving a total of 80.21kb.

Pstl digestion of SSG12 and SSG13 appeared to be incomplete although five 

fragments of sizes 18.20, 10.90, 7.00, 5.80 and 3.50kb, none of which 

corresponded to fragments in K87 digests, were visible. Including the 

undigested band 2, the sum was 72.10kb.

Of the haemolytic transconjugants, SSM6 and SSM7 were clearly different 

from SSM8 and SSM9. Digestion of the former with EcoRl produced fragments

B;,and C with novel fragments of 10.70, 9.20 and 7.50kb giving a total
/

size of 55.74kb. Pstl digestion yielded three fragments of 23,50, 17.40

and IS.lOkb with a total size of 56.00kb corresponding to that of EcoRl 
fragments. This value was less than expected if these samples contained 

both K87 hand 1 and band 2 as observed in Figure 9(b). However, preparations 

from SSM6 and 8SM7 bad reproducihly much less DNA in the band 2 position 

than other K87 derivatives and so it is possible that in these strains band 2 

was composed of chromosomal DNA only. In contrast, SSM8 and SSM9 digested 

with EcoRl had fragments A, B, C, D and E with one novel fragment of 2.65kb. 

In addition, barely visible were fragments J, K, L and M giving a total size 

of 76.31kb. No digestion of these samples by Pstl was observed.
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The sample from the tetracycline resistant transconjugant SSM2 was 

inefficiently digested with. EcoRl and not digested at all by Pstl.

The EcoRl digests of SSM3 and SSM4 however were similar having the same

major fragments, but were not identical with many minor fragments, some

of which were probably incomplete digestion products. In addition to 

EcoRl fragments A and E, the sizes of the prominent fragments of SSM3

were 11.0, 7.70, 5.65, 4.50, 3.90, 3.15 and 2.80kb. Fragments I, J and

K were also visible giving a total size of 73.78kb. The EcoRl digest of

SSM4 also had fragments A, E, I, J and K and fragments of sizes 11.0,
3.90, 3.15 and 2.80kb in common with SSM3 but fragments of 16.20, 4.25 

and 3.30kb were present. The sum of these fragments was slightly higher 

than SSM3 at 79,68kb. In neither case did the sum of the fragment sizes

add up to what would have been expected if the bands seen in undigested

samples (Figure 9b) were different plasmid species i.e. 119.00kb for SSM3 
and 39.80kb for SSM4. Neither SSM3 nor SSM4 was digested with Pstl.

Non-haemolytic derivatives K87C1 and K87C2, and streptomycin susceptible 

derivatives K87C4 and K87C5 all had identical Pstl digestion profiles to 
the parental K87 and the EcoRl profiles differed only in that fragments B 

and C were not visible in the derivatives. The EcoRl profile of the non- 
haemolytic derivative K87C6 was the same as K87C1 and K87C2 but the Pstl 

digestion appeared different due to the incomplete digestion of bands 3 

and 5. K87C8 which was also non-haemolytic and in undigested samples
lacked bands 3 and 5, had a similar EcoRl profile but in addition to B, C 
and undigested band 5, was missing only fragment F. The size of this 

fragment, 6.86kh, was larger than the estimated size of hand 5 and smaller 

than theestimated size of band 3 hut the fact that only one fragment 
appeared to be missing lent support to the suggestion that band 3 may 

represent open circular band 5. In the Pstl digest of K87C8, only 

fragment B was missihg. Since bands 2 and 6 were not digested by Pstl
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and K87C8 did not contain band 1, Pstl fragments A and C may have origin­

ated from band 4. Bands 4 and 6 could not in that case represent different 
forms of the same plasmid..

Restriction digests of K88, transconjugants of matings with JH2-1 

and cured derivatives are shown in Figure 16. Each of the gels contains 

K88 samples which were prepared and digested individually and the mean 
estimated sizes of the fragments are shown in Table 23.

EcoRl digestion of K88 yielded fifteen fragments designated A to 0 

and undigested band 6 with a combined size of 109.16kb which is considerably 

lower than the combined size of 163.3kb of bands 1 to 6 in Table 19.
Fragment 0 and fragments M, N and 0 are outwith the area of Figure 16(a) 

and (c) respectively and not visible in Figure 16(b). There was no 

visual evidence that any of the larger bands were not digested and so it 

would appear that not all K88 bands 1 to 6 in Table 19 represent ccc plasmid 
DNA. The total of the estimated fragment sizes of K88 digested with Pstl 
was 83.51kb but certain of the large bands were not digested. The un­

digested bands, band 1 in Figure 16 (a), bands 1 and 2 in Figure 16 (b) 

and (c)_, varied between preparations, due perhaps to incomplete digestion 

of band 2. If this were so, the combined size of fragments and band 1 
was 141.93kb.

On digestion with EcoRl, the tetracycline resistant transconjugants 
SSNl, SSN2 and SSN3 exhibited only fragment A, the size of which corresponded 
to that of band 4 in Table 19, and no undigested bands (Figure 16a).
This was in spite of the fact that they had two or more bands in the un­
digested samples and would imply that these bands were linear, open circular 

or multimeric forms of the same plasmid species. Pstl digestion of these 

samples resulted in alteration of the mobilities of the undigested bands, 

suggesting incomplete digestion, and the production of â  fragment of 

similar size as EcoRl fragment A. Digestion of the streptomycin resistant



Figure 16 Restriction endonuclease digestion patterns of

plasmid preparations from K88 and derivatives 

after electrophoresis in 0.8% agarose.

Lane at the far right of figures contains Hindlll digest of 
X. Sample volumes were 5Qpl. Letters to the left correspond
to K88 Pstl digestion fragments and letters to the right, to K88 
EcoRl digestion fragments.

(3 ) Lanes 1, 4, 7, 10, 13 and 16 contain undigested preparations from 
strains K88 (Em Tc Sra Cm), SSNl (Tc), SSN2 (Tc), SSN3 (Tc), K88C13
(Tc Sm) and K88C14 (Tc) respectively. Lanes 2, 5, 8, 11, 14 and
17 contain the respective preparations digested with EcoRl and 
lanes 3, 6, 9, 12, 15 and 18 contain the preparations digested with 
Pstl .

(b) Lanes 1, 4, 7, 10, 13 and 16 contain undigested preparations from 
strains K88 (Em Tc Sm Cm), SSN4 (Sm), SSN5 (Sm), SSN6 (Sm),
K88C2 (Em Tc Cm) and K88C3 (Em Tc Cm) respectively. Lanes 2, 5, 8, 
11, 14 and 17 contain the respective preparations digested with EcoRl 
and lanes 3, 6, 9, 12, 15 and 18 contain the preparations digested 
with Pstl .

(c) Lanes 1, 4, 7, 10, 13 and 16 contain undigested preparations from
strains K88 (Em Tc Sm Cm), K88C6 (Em Tc Cm), K88C1 (Tc Sm) ,
K88C10 (Tc Sm), K88C11 (Tc Sm) and K88C12 (Tc Sm) respectively.
Lanes 2, 5, 8, 11, 14 and 17 contain the respective preparations 
digested with EcoRl and lanes 3, 6, 9, 12, 15 and 18 contain the 
preparations digested with Pstl.
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Table 23. Restriction endonuclease fragments of strain K88

211

Fragment Fragment size (kb) after digestion with 

EcoRl Pstl

A 23.50 ± 0.00 

14.77 ± 0.50 

13.83 ± 0.60 

12.63 ± 0.39 

10.88 ± 0.63 

8.20 ± 0.91 

3.67 ± 0.12 

3.42 + 0.12 

2.95 + 0.05 

2.13 ± 0.06 

2‘.05 ± 0.08 

1.63 ± 0.10 

1.55 

1.45 

1.30

25.82 ± 0.82 

15.63 ± 0.77 

13.27 + 0.73 

8.32 + 0.40 

7.80 ± 0.36 

6.42 ± 0.35 

4.75 ± 0.18 

1.50

TOTAL 103,96 83.51
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transconjugants SSN4 and SSN5 with EcoRl resulted in fragments A, G, J 

and L with two novel fragments of 21..7kb and 3.65kb giving a total of 

56\28kb (Figure. 16b), Thé EcoR.1 digestion of SSN6 also produced fragments 

A, G, J and L but novel fragments of 19.80, 15,6*5 and 3.65kb were also 

present, giving a total of 70,03kb. Pstl digestion of all three trans^ 

conjugants resulted in three fragments and no undigested bands. The 
largest fragment (28,15kb) was slightly larger than Pstl fragment A while 
the two smaller fragments of sizes 15.65kb and 14.OOkb could have corres­

ponded to fragments B and C. The total size of Pstl fragments was 57.80kb 

which was comparable to the total of EcoRl fragments from SSN4 and SSN5 
but less than the EcoRl total of SSN6.

One derivative, K88C14, was obtained which was resistant to tetra­

cycline only. As with tetracycline resistant transconjugants, EcoRl and 
Pstl digestion (Figure 16a) produced a fragment of approximately 23.50kb 

although in the Pstl digestion a large band appeared which was not present 
in the undigested saiqple. Presumably this was partially digested DNA 

of very large size which, in the undigested sample, would remain in the 

sample well. In the previous preparation (Figure 10c), this derivative 
contained only one band of 23.OOkb,

By their restriction profiles, the tetracycline and streptomycin 
resistant derivatives cured of resistance to erythromycin and chloramphenicol 

could be divided into two groups. Derivatives K88C1 (Figure 16c) which 
was obtained after storage, and K88C13 (Figure 16a) obtained after novo­

biocin treatment, were found to bayé EcoRl fragments A, B, C, F, G, J, L 

N. with a total size of 69.,,18kh, and undigested band 6 (5.2kb) and^Pstl 

fragments A, B̂  C, D, G and H with a total size of 6'9.29kb. These strains 

had been shown previously to contain bands 2, 4, 5 and 6 although K88C1 

also contained band 1. Derivatives K88G10, K88C11 and K88C12 (Figure 16c), 

obtained after novobiocin treatment showed only EcoRl fragments A and F
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giving a total of 31.70kb, and undigested band 6. On digestion with Pstl,

K88C10 and K88C12 had fragments A and G with a total of 30.57kb and while
K88C11 had the same fragments, it also contained what appeared to be 

partially digested band 6 and band 5. That band 5 was present when Pstl 

digestion of band 6 was incomplete but absent on complete digestion of 
band 6 as in K88C10 and K88C12 samples, indicated that band 5 could have 

been the open circular form of band 6,. Almost certainly, Pstl fragment G 

was linearised band 6. In the previous undigested preparation, K88C10, 
K88C11 and K88C12 were found to contain only bands 4, 5 and 6 which would

result in a total size of 27.50kb if bands 5 and 6 were the same plasmid
species.

The restriction profiles of the derivatives susceptible to strepto­
mycin but resistant to erythromycin, tetracycline and chloramphenicol were 

variable (Figure 16b,c). EcoRl digestion of K88C2, obtained after storage, 
yielded fragments A, B or C, F, G, J, L and undigested band 6 giving a total 
of approximately 59.10kb and Pstl digestion yielded fragments A, B, C, D and 

G giving 67.79kb. K88C3 obtained after novobiocin treatment had EcoRl
fragments A, B, D, E, F, G, H, I, J, K, L, M and undigested band 6 with a 

combined total of 92.58kb. Pstl digestion of both K88C3 and K88C6 yielded 
fragments A, B, C, E, F and G with a total of 73.69kb. It appeared 

however that these digests also contained undigested band 1. Previous 

preparation of K88C6 had shown the presence of bands 1, 4, 5 and 6 and 
assuming 5 and 6 to be the same plasmid, the combined sizes of these bands 
would he 85,80kb which is close to the values estimated from EcoRl digestion 
fragments.

Figure 17 shows three individual SB94 samples with transconjugants and 
cured derivatives before and after digestion with EcoRl and Pstl. Although 

a large proportion of high molecular weight DNA was isolated in the SB94 

sample of Figure 17(c) which caused the smearing seen in the digested



Figure 17. Restriction endonuclease digestion patterns of

plasmid preparations from SB94 and derivatives after 

electrophoresis in 0 .8 % agarose.

Lane at the far right of figures contains Hindlll digest of X.
Sample volumes were 50|ll. Letters to the left correspond to SB94
Pstl digestion fragments and letters to the right, to SB94 EcoRl
digestion fragments.

(a) Lanes 1, 4, 7, 10, 13 and 16 contain undigested preparations 
from strains SB94 (Em Tc Sm Km Nm), SSOl (Tc), SS02 (Tc),
SS03 (Tc), SB94C1 (Tc) and SB94C2 (Tc) respectively. Lanes 
2, 5, 8 , 11, 14 and 17 contain the respective preparations 
digested with EcoRl and lanes 3, 6 , 9, 12, 15 and 18 contain the 
preparations digested with Pstl .

(b) Lanes 2, 4, 7, 10, 13 and 16 contain undigested preparations from 
strains SB94 (Em Tc Sm Km Nm), SB94C3 (Tc), SB94C4 (Em Tc),
SB94C5 (Em Tc), SB94C6 (Em Tc) and SB94C7 (antibiotic susceptible), 
respectively. Lanes 2, 5, 8 , 11, 14 and 17 contain the respective 
preparations digested with EcoRl and lanes 3, 6 , 9, 12, 15 and IB 
contain the preparations digested with Pstl ♦

(c) Lanes 1, 4, 7, 10 and 13 contain undigested preparations from 
strains SB94 (Em Tc Sm Km Nm), SSH5 (Em), SSH6 (Em), SSH7 (Em) 
and SB94C11 (Tc) respectively. Lanes 2, 5, 8 , 11 and 14 contain 
the respective preparations digested with EcoRl and lanes 3, 6 , 9, 12 
and 15 contain the preparations digested with Pstl .
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Table 24. Restriction endonuclease fragments of strain SB94
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Fragment Fragment size (kb) after digestion with

EcoRl Pstl

19.93 ± 1.15 

18,35 ± 0.95 

9.90 ± 0.41 

7.33 ± 0.46 

4.72 ± 0.19 

4.00 ± 0.10 

3.37 ± 0.12 

2.87 + 0.12

24.08 ± 1.01 

8.97 ± 0.55 

7.57 ± 0.33 

6.25 ± 0.20 

4.77 ± 0.15 

3.70 ± 0.23 

3.50 ± 0.20

TOTAL 70.47 ± 3.50 58.84 ± 2.67
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aliquots, the relevant fragments could still be distinguished.

Digestion of SB94 with EcoRl produced eight fragments A to H and with 
Pstl, seven fragments A to G. Band 4 of the undigested sample was not 

digested by EcoRl but did appear to have one Pstl site producing fragment E. 

The sizes of the fragments were estimated relative to thé Hindlll digest 

of X and the mean sizes from the three samples are shown in Table 24. The 

combined total of EcoRl fragments (70.47kb) was higher than that of Ps tl 
fragments (58.84kb) possibly because band 3 (10.9kb in Table 19) was 

undigested by Pstl and its presence concealed by fragment B. Alternatively 

if band 3 were the open circular form of band 4 and EcoRl fragment D was 

also open circular band 4, the values would be more comparable. In support 

of the latter, in almost all the samples containing band 4, there appeared 

to be a decrease in the amount of the band in EcoRl aliquots and a concom­
itant increase in the amount of fragment D although why there should have 

been such a conversion from cccDNA to open circular form was not clear.
Also, between Figure 17(a) and (c) and Figure 17(b) there was a small but 

discernable decrease in migration rate of band 3 in the undigested sample 
and a corresponding decrease in migration rate of EcoRl fragment D.

EcoRl digestion profiles of tetracycline resistant transconjugants 
(Figure 17a) were similar although not exactly the same and quite dissimilar 
to the parental strain. SS02 contained fragments A, B, E and G but the 

majority of fragments obtained were not seen in SB94. The sizes of these 
fragments were 23.50, 14.70, 10.50, 4.30, 3.80, 3.30, 2.80, 2.35, 1.90,

1.75, 1.50, 1.30 and 1.25kh and, together with fragments A, B, E and G, 
the total size was 121,47kb which was close to the total expected (131.Okb) 

if each of the bands in the previous undigested preparation (Figure 11) 
represented a distinct plasmid species. Strains SSOl and SS03 fragment 
patterns were almost identical to each other. In common with SS02, they
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had only fragment E and fragments of sizes 14.70, 10.50, 4.30, 3.80,

2.15, 1.75 and 1,5Okb but also had fragments of sizes 26.65, 23.50, 21.25, 
16.35, 9.50, 8.60, 8.00, 7.10, 6.35, 5.40, 3.00 and 2.70kb giving a total 

size of 181.82kb. This value was far in excess of that expected from 

Figure 11 where undigested samples possessed only bands ] and 2 with a 
total size of 77.Okb indicating, therefore, the presence in these strains of 

more than one plasmid of similar size. Nevertheless, as none of the samples 

was efficiently digested by Pstl, it was conceivable that EcoRl digestion 

was likewise inhibited and that some of these fragments were the results 

of only partial digestion.

Digestion of the erythromycin resistant transconjugants with EcoRl 

(Figure 17c) produced profiles resembling the tetracycline resistant trans­
conjugants but again unlike the parental strain. SSH5 had fragments of 
sizes 23.50, 22.00 (compare SSOl, SS03, 23.50 and 21.25kb) 10.60 (SSOl,

SS02, SS03, 10.50kb) and 4.95kb; SSH6 had fragments of 23.50, 22.0, 17.40, 

10.60 and 4.05kb; SSH7 had fragments of 23.50, 17.40, 10.60 and 4.95kb.
The total sizes of SSH5, SSH6 and SSH7 were 61.05, 77.55 and 56.45kb res­

pectively. The SSH6 profile was a * composite*’ of the other two strains 

suggesting, if it was assumed that all the transconjugants contained the 
same plasmid, that some of the fragments were partial digestion products.

The previous preparation showed that the strains contained a 61.5kb band, 
bands 1 and 2 (Figure 11) giving a total size therefore of 148.5kb.
Possibly if band 2 were, as suspected, chromosomal DNA and the 61.5kb band 

was open circular band 1, the profile of SSH7 with a size of 56.45kb may 
represent the complete digestion of band 1.

All the cured derivatives had been shown previously to contain all the 
undigested parental bands (Figure 11). EcoRl digestion of tetracycline 

resistant strains susceptible to erythromycin and streptomycin, SB94C1,
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SB94C2, SB94C3 and SB94C11 produced profiles similar to each other and 

to the parent. SB94C1 and SB94C2 had EcoRl fragments C, D and E as well 

as undigested band 4 but the larger fragments were different at 23.50 

and 17.70kh. Pstl digests resulted in fragments C, D, E and F as well 
as fragments of 21.25, 16.35 and 14.50kb. The combined sizes of fragments 

were 63.15kb and 74.39kb for EcoRl (including fragment D) and Pstl digests 

respectively. EcoRl digestion of SB94C3 produced fragments A, B, C, D, E,
G, H and undigested band 4 and additional fragments of 21.00, 13.30 and 

3.60kb giving a total of 104.37kb, while Pstl digestion gave all the fragments 
found in the parent strain and additional fragments of 19.95, 13.80, 12.50,

10.75, 7.40 and 6.25kb giving a total of 129.49kb. Digestion of SB94C11 
with EcoRl produced fragments A, B, D, E, G with a novel fragment of 

5.25kb totalling 58.95kb and undigested band 4. Digestion with Pstl was 
incomplete as seen by the presence of a faint band 4 and the band which 

appeared at the position of fragment C was probably open circular band 4.

The only cured derivative obtained which was susceptible to tetracycline,

SB94C7, was also susceptible to erythromycin and streptomycin. EcoRl 

digestion produced fragments C, D, E F and G novel fragments of 22.85,
19.95 and 13.2kb with a total size of 85.32kb and undigested band 4. 

Unfortunately, the Pstl digestion was incomplete and produced only partially 
digested band 4 and a fragment of 26.50kb.

The remaining derivatives SB94C4, SB94C5 and SB94C6 were all resistant 
to erythromycin and tetracycline and all had the same restriction profiles.
Only EcoRl fragments C and D were in common with the parental strain , 
there being novel EcoRl fragments of 24.80, 21.00, 19.10, 16.65, 14.80,
13.30 and 3.65kb totalling 130.53kb as well as undigested band 4.

Similarly, only Pstl fragments C and E were seen in the derivatives but 

novel fragments of 21.00, 16.70, 12.95 and 10.50kb were produced giving a 

total of 73.49kb.
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Two separate plasmid preparations were attempted in order to obtain 

samples of K46. and derivatives for endonuclease digestion. Unfortunately, 
neither preparation yielded sufficient material to be visible either 

before or after digestion.



DISCUSSION
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This study was undertaken to investigate antibiotic resistant and 

haemolytic group D streptococci isolated locally and to examine the location, 

chromosomal or otherwise, of the relevant determinants. The five strains 

of faecalis and two of fàécium were isolated and identified in a 
previous study in which the susceptibility of the strains to erythromycin, 

tetracycline, streptomycin, gentamicin, penicillin G and ampicillin was 
also tested (Blankson, 1981; Bayne jet al_., 1983). The strains were chosen 

for further study because they displayed resistance to two or more antibiotics 
in the original screen.

To expand the information available on the antibiotic resistance pheno­

type, the MICs for six more antibiotics were estimated. As expected, 
the five faecalis strains, originally found resistant to erythromycin, 

are co-resistant to lincomycin and the strephogramin B-type antibiotic, 
pristinamycin lA, and hence display the typical MLS resistance phenotype, 

the result of N^, N^-dimethylation of adenine in 23S rRNA (Graham and 

Weisblum, 1979) which prevents binding of the drugs to the ribosome 
(Shivakumar and Dubnau, 1981). The faecium strain K46 however, although 
resistant to erythromycin and lincomycin, is susceptible to pristinamycin 
possibly indicative of a different basis for resistance. This would be 

unlikely to be mutation causing altered ribosomal proteins since the binding 
sites for all the MLS antibiotics are the same or at least overlapping 
(Gale Êi. al_., 1981) but could possibly be due to differential permeability 
of the cytoplasmic membrane. Alternatively, this strain may be particularly 
susceptible to pristinamycin IIB (synonym for streptogramin A) which was 
present as a trace amount in the antibiotic preparation.,

MLS resistance in faecalis can be expressed constitutively or can 

be induced by sub-inhibitory concentrations of erythromycin. An example 

of constitutive expression of resistance is that of strain DS5 and the 
response of this strain to challenge after growth in an inducing concen-
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tration of erythromycin was compared with the responses of the six 

erythromycin resistant strains under the same conditions. The growth 

curves of the latter strains were the same as that for DS5 indicating 

that erythromycin resistance is constitutively expressed. This result 

does not exclude, however, the possibility that a strain may harbour more 
than one MLS determinant, one of which could be inducible since in such a 
circumstance, with the experimental conditions used, the inducible nature 

of a determinant would be obscured by the presence of constitutively 

expressed MLS resistance. In order to test such a possibility, it would 

be necessary to screen a number of transconjugant and cured derivatives 

for segregation of inducible and constitutive MLS resistance. Although 

several MLS resistance genes have been described in streptococci, both 

inducible, such as those located on Tn917 of faecalis (Tomich e_t al,

1980) and pyogenes plasmid pACl (Weisblum e_t al, 1979), and constitutive, 
for example those of £. faecalis plasmid pAMgl (Weisblum et al, 1979) and 
the chromosomally located transposon of pneumoniae, Tnl545 (Carlier 

and Courvalin, 1982) - there have nevertheless been no descriptions of 

strains which exhibit both modes of expression.

Tetracycline resistance is commonly encountered among enterococci 

(van Embden et al, 1977; Finland, 1979) and indeed, all the strain^ in 
this study were resistant to the drug. Investigation of the expression 

of resistance showed that all the strains display constitutive resistance 
although this again does not rule out the possibility of there being more 
than one type of determinant present. Indeed, unlike the situation for 
MLS resistance, there are examples of streptococcal strains which harbour 

different loci determining both constitutive and inducible tetracycline 

resistance, such as pneumoniae B109 (Inamine and Burdett, 1982) and 

S. faecalis JHl (Banai and LeBlanc, 1983). Moreover, of 31 S. faecalis
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strains examined by Burdett ^  al̂  (1982b) for DNA homology with tetL 

(constitutive.) and te.tM (inducible) probes, 30 hybridised with both probes 

and a single isolate contained tetL alone. It would appear therefore 

that strains of faecalis whihh harbour only one type of determinant 

are exceptional.

The strains were tested for resistance to five aminoglycoside- 

aminocyclitol antibiotics. All were resistant to streptomycin, four were 

also resistant to kanamycin and neomycin but none was gentamicin or spectin- 
omycin resistant. While recognising that, due to the resistance mechanism 

which involves a balance between drug uptake and inactivation, susceptibility 

to a particular drug need not necessarily correlate with absence of a modif­
ying enzyme, it is nevertheless possible to speculate as to the classes of 

enzyme produced in these strains. Streptococcal aminoglycoside modifying 
enzymes constitute a sub-set of those produced by staphylococci and are 

different from those found in Gram-negative bacteria (Carlier and Courvalin, 
1982). Using the compilation of modifying enzymes published by Foster (1983) 

and the information given by Carlier and Courvalin (1982), resistance to 

streptomycin is probably mediated by the enzyme AAD(6) which adenylates the 

6-hydroxyl of the streptidine ring of streptomycin, and resistance to 

kanamycin and neomycin is mediated by an APH(3’)(5") type III which'phos- 

phorylates 3’- and 5"-hydroxyl groups and which is commonly found in 

streptococci. It is of course possible that resistance to streptomycin may 
not be due to the production of a modifying enzyme but instead to ribosomal 
resistance caused by mutation resulting in an alteration in the ribosomal 

target site. Indeed, in the study by Eliopoulos et £l. (1984), half the 
streptomycin resistant faecalis were rihosomally resistant while the 
others produced AAD(6). Only the latter resistance mechanism would however 
be transferable by conjugation.
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None of the faecalis strains was found to be resistant to B- 

lactam antibiotics but the faecium strains K46 and SB69 were resistant
"'"'1 T* Ito 40ug ml penicillin and lOyg ml ampicillin. No evidence of g-

lactamase activity could be obtained using standard methods and so it is 

assumed that resistance in these strains is due to alteration in PBPs.
A similar lack of g—lactamase activity has been shown in studies of 

penicillin resistant fàecium (Le Bouguenec and Horodniceanu, 1982) and 

pneumoniae (Collatz ^  al. 1984).

One faecalis strain, K88, was resistant to chloramphenicol but 

the resistance was only fully expressed after growth in an inducing, sub- 

inhibitory concentration of drug. Although inducible resistance to 
chloramphenicol due to decreased cytoplasmic membrane permeability has been 

reported in Gram-negative organisms (Gaffney at 1981), resistance to 

the drug in streptococci has been found, without exception, to be associated 

with the induction of the inactivating enzyme CAT. In faecalis, 
chloramphenicol resistance has been shown to be transferable (van Embden, 
et al. 1977).

faecium strain SB69 in addition to being antibiotic resistant, was
a-haemolytic on horse blood while £. faecalis strain K87 was B-haemolytic

/
and hence assigned to the subspecies zymogenes. The latter strain appeared 

to be typical of B“haemolytic faecalis in that it was also bacteriocin- 
ogenic with activity against the plasmid free strain JH2-Î. Previous 
studies of the haemolysin-bacteriocin traits of faecalis strains have 
indicated that they are. two activities of the same molecule (Tomura ejt al. 
1973; Dunny and Clewell, 1975) and in all strains examined, haemolysin- 

bacteriocin activity has been associated with a conjugative plasmid 

(Clewell, 1981; Bordercn ^  al. 1982). One other faecal is strain SB94 

showed weak bacteriocin produced against strain JH2-l^but no haemolytic 

activity. Several strains of S. faecalls have been described which produce
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bacteriocin not associated with haemolysin, for example strain DS5 which 

in addition to pAMyl encoding haemolysin-bacteriocin, harbours pAMy2 

encoding a second bacteriocin (Clewell e_t al̂ ., 1982b), but in these strains 
a haemolysin-bacteriocin plasmid is also present (Clewell, 1981). Against 

a derivative of strain K87, strain SB94 was clearly bacteriocinogenic 

indicating the production of a bacteriocin at least different from that 
produced by K87 since K87 itself normally had no activity against this 
indicator.

To gain information on the relationship between and location of the 

different determinants in each strain the three approaches used were 

firstly to define their transfer characteristics in broth culture and on 

membrane filters, secondly, to determine the genetic stability of the 

phenotypic traits and thirdly, to correlate the phenotype of parental strains 

and their derivatives with plasmid content. Strain DS5 was included in 
the former sets of experiments as a well characterised control organism 

which has been shown to be an efficient donor of haemolysin and tetracycline 
resistance in broth culture (Dunny and Clewell, 1975) and capable of acting 

as a donor of erythromycin resistance in filter matings (Hershfield, 1979).

After mating experiments, transconjugant colonies were selected on 
nutrient agar containing the antibiotic of interest as well as either 

fusidic acid or rifampicin. Initially, donor and recipient strains were 
tested individually at the end of mating on selective antibiotic agar for 
spontaneously occurring mutations but this was found not to be a problem 
in most cases because the transfer frequency was far higher than the 
mutation rate. However, particularly in those matings which produced 

low frequency transfer of aminoglycoside resistance, for example in 
broth matings of K55 donors with JH2-2 and JH2-17, it is possible that 

colonies obtained on selective agar were in fact recipient mutants.
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They were not donor mutants as all such colonies were resistant to the 

non-se.lected agent, rifampicin, in the case of JH2-2 matings or were 
thymine auxotrophs in the case of JH2-17 matings.

The. mutation frequencies observed were comparable to published fre­

quencies for fàécàlis spontaneous mutation to streptomycin resistance
— 9 • — g(10 ; Horodniceanu ejt , 1979a), fusidic acid resis tance (4 x 10 ;

Jacob and Hobbs, 1974), erythromycin resistance (< 10 Engel et al.,
-101980) and tetracycline resistance (< 10 ; Franke and Clewell, 1981) which in

-12this study was found to be extremely low (10 ).

Evidence for the mechanism of transfer i.e. transformation, trans­
duction or conjugation, was not obtained in this investigation. Rather 

the assumption was made that transfer occurred by a conjugal mechanism based 
on the extensive efforts of others which show that faecalis is not 

naturally transformable and that no transducing phages have been associated 
with antibiotic resistance transfer in this species (Jacob and Hobbs, 1974; 
Jacob £l•» 1975; Dunny and Clewell, 1975). Clewell (1981) has reported 
that in a screen of 200 faecalis, none was transformed to antibiotic 

resistance under conditions in which transformation of sanguis was readily 

obtained although it has recently been reported that faecalis protoplasts 

may be transformed (Smith and Clewell, 1984).

The transfer frequencies obtained with DS5 donors in broth culture 
were comparable to those reported by Dunny and Clewell (1975). In this 

system, the MLS resistance plasmid pAMBl, although conjugative, does not 

transfer due to inhibition by pAMyl, while the non-conjugative tetracycline 
resistance plasmid pAMal is mobilised by pAMyl, pAMy2 or pAMy3 at 

frequencies 100- to 1000-fold lower than haemolysin transfer. The pheno­
types of the transconjugants were as expected, with haemolytic transcon- 

3ugants susceptible to tetracycline and erythromycin although the percentage
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of transconjugants selected on tetracycline which were haemolytic was 

higher than previously reported (Dunny and Clewell, 1975). One broth 

mating however, gave atypical results in that the transfer frequencies 

for haemolysin and tetracycline were increased and intermediate frequency 

transfer of erythromycin was detected. In addition, instead of the usual 

drop in recipient viable count due to sensitivity to the donor bacteriocin, 

the viable count actually increased. Analysis of the transconjugant 

phenotypes from this experiment showed no difference in the percentage 
of types selected on tetracycline or with fusidic acid, blood agar and of 

the six single colonies obtained on erythromycin, five were co-resistant 

to tetracycline and one resistant to tetracycline and haemolytic. The 

reason for this anomalous result is not clear but recipient growth implies 

that in the donor starter culture the bacteriocin encoded by pAMyl was in 
some way inactivated (the bacteriocin of pAMy2 has no activity against 

JH2-2; Dunny and Clewell, 1975).. For this to have happened, it would 

have to be assumed that either there was a substance inhibitory to 

bacteriocin in the culture medium on this one occasion or that all the 

colonies picked from stock culture plates were lacking the bacteriocin 
but not the haemolysin component of pAMyl. Either a mutation resulting in 

inactivity is also associated with the relaxation of inhibition of pAMBl 

transfer or more likely, the mere fact that the recipient cells are no 
longer killed, results in increased transfer of all markers to such an 
extent that transfer of erythromycin is observed.

The transfer frequencies of DS5 markers after filter matings have not 
generally been reported although it is known that the recipient under these 
conditions is not noticeably susceptible to bacteriocin (LeBlanc and Lee,

-71982) and that transfer of pAHBl can occur at low frequency (2 x 10 per 

donor; Hershfield, 1979). The transfer frequency for haemolysin remained 

unchanged but the frequency for tetracycline resistance transfer increased

along with an increase in the percentage of non-haemolytic, tetracycline
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resistant transconjugants.. ''

Selected transconjugants were tested for bacteriocin production 
against JH2.-J and as anticipated, Kaemblytic transconjugants were also 

bacte.riocin.ogeni'c, However, all the ërythromycin resistant transconjugants 

and two of the tetracycline resistant transconjugants which were non- 
haeraolytic nevertheless produced bacteriocin against JH2-rl. Since pAMy2 
encoded bacteriocin is inactive against JH2 (Dunny and Clewell, 1975) and 
pAMy3 does not encode bacteriocin ÇOlewell et al., 1982b), activity in these 

strains must arise from pAMyl. However, as haemolysin and bacteriocin 
activities are two functions of the same protein encoded by pAMyl (Dunny 

and Clewell, 19.75), this would require that there be a mutation in the

plasmid solely affecting expression of haemolysin although no previous «j

studies of haemolysin-bacteriocin plasmids have suggested that this may occur

The response of DS5 and transconjugants to CIA produced by recipient |

strain JH2-1 was tested. The titre obtained for DS5 response was higher -y

than that reported by Dunny jet a]̂ . (1979) for a derivative of DS5 cured of 
pAMgl but it was not clear in the latter case if the strain was also cured 
of pAMy2 or pAMy3 which, presumably contributed to the overall response of 

DS5. Response of transconjugants to JH2-1 CIA was not observed regardless 

of the phenotype. The same was true for almost all transconjugants tested 

in this study and it has been shown that JH2-2, harbouring a plasmid which 
encodes a pheromone response, does not aggregate due to an inability to 
recognise and take up exogenous CIA even although isogenic strains may 
exhibit normal responses (JCke and Clewell, 19.84), It would therefore appear k

that JH2.-17 is likewise, unable to process efficiently exogenous CIA.

Alternatively,, it is possible that the. aggregates are simply not visible 
without magnification and indeed, this is supported By the fact that the |

retransfer frequencies of the haemolysin marker in broth matings were 

comparable to those obtained originally. In the absence of a pheromone system S

"I
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transfer in broth culture, would he drastically reduced.. From obser­

vations of bacteriocin activity the. implication that erythromycin trans­

conjugants contain, a plasmid other than pAMyl, is reinforced by the 
retransfer results which show low frequency transfer of erythromycin res- |
is tance, in broth, culture, hince. pAMBl is inhibited by pAMyl and since 

detectable transfer of pAMBl normally requires cell-to-cell contact obtained |

on filters, it is probable that in these broth matings, the plasmid is

utilising the gratuitous pheromone system of a plasmid such as pAMy2 or |

pAMy3. The reason, why no retransfer of tetracycline resistance was 

observed is unclear as it seems likely that at least two of those trans­
conjugant strains tested contained one of the pAMy plasmids, all of which 

are capable of mobilising pAMal (jClewell et al., 1982b).

Growing cultures of DS5 overnight in the presence of acridine orange or 
ethidium bromide, Clewell et al. (.1974) were unable to demonstrate loss 
of pAMyl or pAMal but pAMgl was cured in 1 to 2% of colonies tested while w

spontaneous loss of pAMBl occurred at a frequency of 0.1% or less.
Although it is not possible to compare directly the curing frequencies 
obtained with different methods these results are nevertheless in marked 

contrast to those obtained in this study after storage of DS5 at room 

temperature for 12 months. Here, 96% of colonies tested were non- 

haemolytic. Presumably on storage at room temperature the viable count 

after 12 months would be extremely low and hence the culture which grew on 

transfer to fresh nutrient medium was derived from only a few cells. If 
most of these, cells had lost pAMyl during storage, this method would select 
for a very high proportion of non-haemolytic cells in the culture» An 

alternative, view could be that after 12 months storage, those surviving 
cells would be in a metabolically *̂*poor*̂*' state and on transfer to fresh 
medium, use. their remaining energy for chromosomal replication and possibly 

replication of smaller plasmids but, in the absence of environmental pressure
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large plasmids would be lost., A similarly increased curing frequency 

of a 40k.b conjugative, antibiotic resistance plasmid from a strain of 

faecalis after storage has been reported (Harder and Kayser, 1977). 

Neither of the above explanations would apply to pAMgl and pAMal as they 

were maintained in 99.5% and 100% of colonies tested, comparable to the 

results of Clewell and coworkers (1974). Treatment with novobiocin 

resulted in a frequency of 86.5% non-haemolytic derivatives which is very 

much higher than the. curing frequencies (1.6 to 3.4%) of the plasmids 

described by Borderon and coworkers (1982) after similar treatment.

As with loss on storage., none of the colonies from the novobiocin treated 
culture had lost tetracycline resistance and only 0.6% were erythromycin 
sensitive.

Cured derivatives of DS5 were tested for response to CIA and,

unlike transconjugants, were capable of responding. Those obtained after 
storage which were resistant to erythromycin and tetracycline did not 

aggregate indicating that, in addition to loss of pAMyl, plasmids pAMy2 

and pAMy3, which also specify pheroraone response, were not present. One 
tetracycline resistant derivative obtained after storage and two such 

derivatives obtained after novobiocin treatment however, showed response 

titres of 4 or 8 which is less than the parent but implies the presence of 

pAMy2 and/or pMIy3. The haemolytic, tetracycline resistant derivative 

obtained after novobiocin treatment had response titre of 16 due, at least 
in part, to pAMyl.

Surprisingly, when the cured derivatives were tested for bacteriocin 
activity against JH2-J, the three obtained after storage which had not 

responded to CIA were bacteriocinogenic and by the semi-^quantitative 
criterion of zone diameter, appeared to be more bacteriocinogenic than 
the parent DS5, while the tetracycline resistant derivative obtained at 

the same time did not produce bacteriocin. Possible explanations are
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that there is in the former strains a mutant pAMyl encoding defective 

haemolysin and pheromone response, or less likely, another gene for bacter­

iocin exists in DS5 unrelated to a plasmid encoding pheromone response. 

Derivatives obtained after novobiocin treatment were also bacteriocinogenic 

regardless of whether they produced haemolysin. In addition to observing 

clear zones where the growth of the indicator organism was inhibited, 

around the stabs of derivatives from storage, and extending further than 

the clear zone, were opaque zones. The nature of the opaque zones is 

unclear but they were not simply due to test organism spreading outward 

from the stab under the overlay and the opacity was in fact in the agar of 

the overlay.. These zones were thought initially to resemble the "halos" 
described by Ike and coworkers (1983), but they related halo formation with 
response to CIA and three of the four derivatives in this study showed no 

pheromone response. Instead, it is possible that the opaque zones represent 

precipitation of a substance in the agar possibly due to liberation of excess 
acid in a process which is repressed in the parent.

Although strain DS5 was originally included in the study as a known 

plasmid containing control, a number of anomalous results have been obtained, 

particularly in relation to the three pAMyl plasmids which have only recently 

been described. In order to resolve the questions raised by this study, it 

would be necessary to investigate more deeply the plasmid content of the 
derivatives obtained in relation to their phenotypes. The scarcity of 
publications dealing with DS5 plasmids in their original host probably 
reflects the difficulty in interpretation of results due to interaction of 
the five plasmids.

The transfer of resistance markers from faecalis strain K55 was
found to occur in broth culture at intermediate or low frequency. Erythro­

mycin resistance consistently transferred at a frequency 10- to 100-fold 

higher than did tetracycline and streptomycin resistance suggesting that the
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latter genes were at a different location from the erythromycin resistance 

determinant. With the streptomycin and, to a lesser extent, the tetra­

cycline resistance genes transfer was not always detected, probably because 
of small but deleterious changes in experimental procedure. As the transfer 

frequencies of these markers were close to the level of detection in these 

experiments, a slight decrease in mating efficiency could easily result in 
no transconjugants being obtained.

Strain K55 responded to JH2-1 CIA with a titre of 4 which is a common 

value for antibiotic resistant S. fàécàlis isolated from clinical sources 

(Dunny et al., 1981b). However, transfer in broth culture of plasmids 
which specify response to pheromone normally occurs at frequencies at least 

1000-fold higher than those observed for K55 markers, indicating that the 

K55 resistance loci do not reside on the plasmid which encodes pheromone 
response in this strain. Enhanced transfer of an erythromycin resistance 
plasmid by a plasmid encoding pheromone response has been reported (Dunny 

ejt ^ . , 1981b) and it is probable that these conjugative elements in K55 

make use of the cell-to-cell contact afforded by the pheromone system.
The transfer frequencies on membrane filters which would, in the absence of 
pheromone assistance for broth transfer, be expected to be higher due to 

the enforced cell-to-cell contact, were in fact within the same frequency 
range with tetracycline and streptomycin markers again showing a 10- to 

100-fold lower frequency compared with that for erythromycin resistance. 
Mating on membrane filters, however, did produce more reproducible results 
particularly for the tetracycline resistance determinant. This effect 
could simply be due to the increased cell numbers and incubation time used 
for membrane filter matings, or it could reflect a greater stability of 

mating pairs or aggregates on a solid support..

Analysis of the transconjugant phenotypes confirmed that erythromycin 

resistance could be transferred independent of the other resistance markers
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although, a high proportion of transconjugants selected on erythromycin -s

were co?resistant to streptomycin.. This was not foreseen especially in -f

those, transconjugants selected after broth culture matings in which the 

transfer frequencies of the two markers were so different, and suggests 

some temporary association between the determinants whereby the erythromycin 

gene is located on a plasmid which facilitates transfer of streptomycin 
resistance. This association could be mobilisation such as described for 
pAMcxl in DS5 (Dunny and Clewell, 1975) or formation of a cointegrate %
Structure such as the intermediates described during transposition of Tn917 

from pAD2 to pADl (Clewell ^  , 1982a). The former is more likely in
cases where transconjugants selected on streptomycin were resistant to 
that drug only. Again,' this has been demonstrated in fâécàlis strain 

DS16 which harbours pADl and pAD2, where transfer of pAD2 usually occurs 

as a result of cointegrate formation but can occur at low frequency due to 
mobilisation without concomitant pADl transfer (Tomich et al., 1979).

Study of the retransfer frequencies also suggests that the streptomycin gene 

must be mobilised by erythromycin resistance plasmid since the streptomycin 4

resistance locus alone was incapable of retransfer. The frequency of retransfer: 
erythromycin was not tested because of the difficulty in obtaining transcon- 4 

jugants resistant to the drug alone after matings between K55 and JH2-17. |

Regardless of the means of resistance transfer, however, the fact that such 4
a high proportion of erythromycin selected transconjugants were strepto- %
mycin resistant implies that the transfer frequency of the latter should 4
have, been higher than that actually observed and hence that there is an J
initial delay ih expression, of streptomycin resistance on transfer to JH2-2. -4

None of the transconjugants selected on tetracycline was resistant .5

to eifher erythromycin or streptomycin although the transfer frequencies J
for streptomycin had been similar. The tetracycline determinant, however, 1 

was not capable of self-transfer at least in a JH2—17 background.

1

-..If'-
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Loss of antibiotic resistance was observed both after storage at 

room temperature and after novobiocin treatment. On storage, 2% of 

colonies tested were susceptible to streptomycin and 1.5% susceptible to 

streptomycin and erythromycin. With novobiocin treatment there was a high 
percentage curing (19.2%) of erythroirycin and streptomycin resistance, again 

suggesting some, at least temporary, linkage of the two determinants. The 

lack of success in curing tetracycline resistance was not surprising in 
view of previous studies which have been unable to obtain curing of small, 

multicopy tetracycline resistance plasmids (Clewell et al., 1974; Burdett,
1980) or of conjugative elements located on the chromosome (Tomich et al., 

1979; Smith et al., 1981) although in the latter case apparent curing due 
to point mutation could be obtained at a frequency of 10 (Smith et a]̂ .,

1981). Curing of large conjugative tetracycline resistance plasmids such 

as pJHl has been demonstrated (Jacob and Hobbs, 1974) although in its 
original host, curing would not have been observed under the conditions of 

this study as strain JHl contains in addition a chromosomal tetracycline 
resistance locus (LeBlanc and Lee, 1982).

To relate the presence or absence of certain markers with pheromone 
response, cured derivatives were tested for response to JH2-1 CIA. Since 
erythromycin was probably the only determinant capable of self-transfer, it 

was expected to be the only resistance associated with pheromone response 
but this was clearly not the case. All the tetracycline resistant ' deriv­
atives responded to the CIA which suggests, in agreement with transfer 
frequency values, that the strains contain another cryptic plasmid which 
encodes pheromone response, A less likely alternative is that the tetra­

cycline resistant locus resides on a conjugative element which could be 

either an autonomous replicon or a chromosomal insertion but which specifies 

pheromone response. Presumably, in the former case, transfer to a JH2-17 

host would involve loss of conjugative ability by deletion of transfer genes



234

or hy integration into the chromosome of the new host as has been observed 

for tetracycline resistance plasmid pIP685 in faecalis (Horodniceanu 
e£ al̂ ., 1982b}..

To locate the resistance genes, a study of the plasmid content of the 

parental strain and its transconjugants and cured derivatives was made.

On agarose gels, four bands were observed in strain K55 although all four 

bands were not present in each preparation, which indicates that one or 
more of these bands could be open circular or linear forms of a plasmid.

It was hoped that examination of the plasmid content of transconjugant 

strains and cured derivatives, particularly those which displayed resistance 
to a single antibiotic, would clarify this problem. Conceivably, band 1 
could have represented a cointegrate structure between bands 2 and 4 such 
as was suggested by transfer experiments involving erythromycin and strepto­

mycin resistance loci. However, since all tetracycline resistant trans­
conjugants of matings with JH2-2 and all derivatives cured of erythromycin 

and streptomycin resistances also contained band 1, this therefore seemed 

unlikely. A further complication in the plasmid analysis was that some 

tetracycline resistant transconjugants appeared to contain exactly the 

same plasmids as streptomycin resistant transconjugants and one tetracycline 
resistant strain had a hand pattern identical to K55, implying co-transfer 

of all the parental plasmids. Only one derivative cured of streptomycin 
resistance but resistant to erythromycin and tetracycline was obtained 
and this also had a band pattern identical to the parental strain. In this 
case. It is possible that loss of streptomycin resistance was due to 
mutation..

To resolve the potential problem of there being open circular forms 
of plasmid which were complicating the band patterns, samples were digested 

with the restriction endonucleases EcoRl and Pstl. Digestion of the K55 

sample with either enzyme resulted in nine fragments the sums of which were
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comparable. The tetracycline resistant transconjugants and derivatives 

cured of erythromycin and streptomycin resistance all contained the same 

EcoRl fragments and Pstl fragments which gave a total size of 59.40 and 
50.76kb respectively. Although the value for Pstl is somewhat lower 

than for EcoRl, it is possible that one band may represent more than one 
fragment, for example Pstl fragment D. Nevertheless, both estimations are 

close to the size calculated for band 1 of 51.5kb and the results suggest 
that this is a conjugative plasmid designated pSK551 which may encode tetra­

cycline resistance. This would be supported by results of transfer 

experiments in as much as this determinant was always transferred alone but 

would not explain why the resistance was not retransferred. If pSK551 

does specify tetracycline resistance, on transfer, a deletion affecting 

conjugative ability but which was too small to detect in these digests must 

have occurred. A conjugative tetracycline resistance plasmid, pCF-10, 
of similar size (53kb) has been described in faecalis (Dunny et al.,

1979) but transfer in broth culture occurred at high frequency due to 

pCF-10 encoded pheromone response (Dunny et al., 1981b). In contrast, the 

low frequency transfer of K55 tetracycline resistance suggests that a 

pheromone system is not directly involved. It therefore seems more likely 
that pSK551 is in fact a conjugative cryptic plasmid which encodes pheromone 
response and that the tetracycline resistance determinant is located on 
the chromosome but capable of transfer by conjugation.

Of the streptomycin resistance transconjugants, endonuclease digestion 

showed that two contained only chromosomal DNA, as had been suggested in 

undigested preparations, and one contained EcoRl fragments which appeared 

identical to those of pSK551, lending support to the proposal that this 

plasmid may not be associated with antibiotic resistance. Although it is 
possible that streptomycin resistance is chromosomally determined but
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capable of transfer either by transposition to a conjugative plasmid or 

by conjugative transposition (Gawron-Burke and Clewell, 1982), this 
conclusion would be in conflict with curing data in which a high percentage 

of streptomycin susceptible derivatives were obtained. The streptomycin 
resistance gene could instead be located on a non-conjugative plasmid 

which is capable of existing as an autonomous replicon or as a cointegrate 

with an erythromycin resistance plasmid, but which on mobilisation, 

without concomitant transfer of erythromycin resistance, could integrate 

into the host chromosome. Integration of autonomous replicons is not 

an unknown phenomenon in streptococci (Horodniceanu ^  , 1982b, c).

EcoRl fragments B, G and H were present in all K55 samples and in the 

erythromycin resistant derivative cured of streptomycin resistance and 
probably represent another plasmid encoding erythromycin resistance, 

pSK552, which is approximately 22.60kb in size. It has one Pstl site 

producing 25.60kb fragment A which is equivalent to band 3 in undigested 

K55 samples. A conjugative erythromycin resistance plasmid of this 

size would be within the size range of similar plasmids isolated from 
many different streptococcal groups (Clewell, 1981). The discrepancies 

in this proposal are the digested samples from erythromycin resistant 

transconjugants in which both enzymes produced only one novel fragment 

of size 38.5kb. The most likely explanation is that digestion in these 

samples was incomplete since otherwise the generation of such fragments 
would involve insertion of DNA with concomitant inactivation of two EcoRl 

sites, or the existence of an entirely different erythromycin resistance 
plasmid.

Strain K60 is a faecalis subsp. liquefaciens which is resistant 
to MLS antibiotics, tetracycline, streptomycin, kanaraycin and neomycin.
In broth culture, all markers were transferred with high or intermediate
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frequencies usually observed in pheromone utilising systems although 

only erythromycin showed consistently high frequencies. On membrane 

filters, transfer was slightly more efficient with the frequency of 

erythromycin transfer reaching a value of 1. The transfer frequencies 
would suggest the close association of streptomycin, kanamycin and neo­

mycin resistance loci and possibly of tetracycline but not of the 
erythromycin determinant.

The phenotypes of the transconjugants seemed to confirm the latter 
with by far the greater percentage of erythromycin selected transcon­

jugants being resistant to that drug only. That the percentage resistant 

to erythromycin alone was higher on filter probably reflected the higher 
relative transfer frequencies obtained for erythromycin. As would be 

expected with transfer frequencies of 1, all transconjugants obtained 

after filter matings were erythromycin resistant, whatever the selective 

antibiotic. Although the majority of transconjugants selected on tetra­
cycline were co-resistant to erythromycin and aminoglycosides, a small 

percentage of those from broth matings were resistant to tetracycline alone 

indicating that the gene is not closely linked to the aminoglycoside 

resistance loci, but is capable of independent transfer or is mobilised 

by a conjugative plasmid. Regardless of the aminoglycoside used for 

selection, all transconjugants were co-resistant to the other aminogly­

cosides and to erythromycin. Similar results have been reported in 

£.* fa.ecalis DS16 where the phenotype was related to stable cointegrate 
formation between pAD2 and the co-resistant plasmid pADl (Clewell ^  £l., 

1982a) and in faecalis strain JHl in which the resistance genes are 

located on pJHl (Banai and LeBlanc, 1983). In the latter case, deletion 
analysis confirmed that the aminoglycoside resistance genes were located 

on a 16.5kb segment of the plasmid while the tetracycline resistance gene
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was located elsewhere, hence the ability to obtain deletion derivatives 

resistant to tetracycline alone. Erythromycin, or erythromycin and 

aminoglycoside co-resistant transconjugants were shown to contain hybrid 
plasmids consisting of fragments of pJHl inserted into pJH2 and indeed 

the erythromycin resistance gene has been found to be located on Tn3871 
which is probably identical to Tn917 of £, faecalis DS16 (Banai and LeBlanc, 
1984a).

The erythromycin and tetracycline resistance determinants of K60 

were tested for the ability to retransfer. No retransfer of tetracycline 

resistance was detected indicating either a loss of conjugative ability 

on primary transfer or the necessity of a co—resident conjugative plasmid 

to mobilise the resistance determinant. Retransfer of erythromycin 

resistance was observed but at greatly reduced frequencies, comparable 

in fact to frequencies expected for transfer in the absence of a pheromone 

system, possibly reflecting the poor aggregation response in a JH2-17 
background due to impaired ability of the host either to recognise or to 
take up exogenous pheromone (Ike and Clewell, 1984).

After storage at room temperature for 12 months, almost half the 
colonies tested retained the original phenotype while the remainder was 

susceptible to the aminoglycosides. Neither erythromycin nor tetra­

cycline sensitive derivatives were obtained. On treatment with novobiocin, 

one derivative was obtained which was resistant to tetracycline only but 
none was isolated which was tetracycline sensitive. This again reflects 
the common inability to cure tetracycline resistance in streptococci 

although the effect could also be due to inability of the technique used 

here to distinguish between two determinants such as are found in 

f&GC&lis JHl (LeBlanc and Lee, 1982). The finding that a large 

percentage of colonies tested either after storage or novobiocin treatment
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were susceptible to aminoglycosides is contrary to reports of other 

2' faecalis strains, for example DS16 and JHl, which have similar resistance 

phenotypes but in which loss of aminoglycoside resistance is accompanied 

by simultaneous loss of erythromycin resistance (Tomich et al., 1979;

Banai and LeBlanc, 1983). The erythromycin resistance marker also differs 

from other streptococcal MLS plasmids such as pAMgl and pIPSOl (Clewell 

et ^1., 1974; Horodniceanu et al., 1979a) by the extremely low curing 

frequency and high transfer frequency in this strain.

Response of cured derivatives to JH2-1 CIA, which cannot be tested 
with transconjugants in a JH2-2 (Ike and Clewell, 1984) or JH2-17 background, 
was correlated with phenotype and transfer characteristics. The parental 

strain had a response titre of 4 which is a common value in clinical 

isolates (Dunny et al., 1981b). Derivatives which were resistant to 
erythromycin, responded to CIA but had variable titres while no response 

was observed with the erythromycin susceptible derivative. These results 

along with transfer data suggest that the erythromycin resistance deter­

minant is located on a conjugative plasmid which specifies pheromone 
response.

Attempts made to isolate plasmid DNA from strain K60 were either 

completely unsuccessful or not reproducible although all bands which 

were observed, were large (53 to 140kb). The reason for the difficulty 

in isolation of plasmid DNA from this strain is not clear as DNA other 

than chromosomal was easily isolated from cured derivatives. Plasmid 
DNA was also isolated after transfer to another host but there appeared 

to be no correlation between phenotype and plasmid content. For example, 

in all transconjugants from matings with JH2-2, bands of approximately 

the same size were observed regardless of phenotype. A similar situation 
was seen in transconjugants of JH2-17 matings and cured derivatives
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although more bands were observed particularly in those derivatives 

cured of aminoglycoside resistance.

Since it seemed probable therefore, that there was more than one 

plasmid of similar size present, samples were digested with restriction 
endonucleases. As with the other strains in this study, Pstl digestion 

of DNA isolated from transconjugants was unreliable due to the sensitivity 

of this enzyme to inhibitory substances in the preparations.

Digestion of the K60 sample with EcoRl resulted in sixteen fragments 

and with Pstl, eight fragments. The sum of the Pstl fragments was 28kb 

less than that for EcoRl fragments which indicates that a band or bands 

in the Pstl digest may represent more than one fragment. Comparison of 

EcoRl fragments obtained after digestion of erythromycin or tetracycline 

resistant transconjugants would indeed suggest the presence of two plasmids 

of similar size, the fragments observed in erythromycin resistant trans­
conjugants being complementary to those in the tetracycline resistant 

transconjugant. The exception to this was fragment F which was present 

in both phenotypes but it is conceivable that a fragment of this size 

could have been derived from two different plasmids.

Digestion with EcoRl of derivatives cured of streptomycin resistance 

revealed the same fragments present as those in the erythromycin resistant 
transconjugants. It is possible therefore that the erythromycin 

resistance determinant is located on an approximately 68kb conjugative 

plasmid, designated pSK601, which can be present as a dimer (140kb) in 

undigested samples. In addition to those fragments, the cured derivatives 

which were co-resistant to tetracycline also had novel fragments the sum 

of which was 10.25kb or 15.65kb depending on whether the strains were 

obtained after storage or novobiocin treatment respectively. Indeed 

bands of similar size are seen in corresponding undigested samples from
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these strains but no such bands have been observed in the parental strain, 

The situation was similar with Pstl digestion, and although initially it 
would appear that this is an example of transposition, the fact that 

none of the pSK601 fragments has been altered in size by an insertion, 
suggests that the novel fragments are derived instead from separate 

replicons. The origin of these replicons could be the chromosome, a 
possibility which is not entirely without precedent in Gram-positive 

bacteria. For exançle, elements integrated in the chromosome which 

confer tetracycline resistance have been shown to be capable of autonomous 

replication in S. mutans (LeBlanc ^  al., 1982) and B. subtilis (Shishido 

—  — ' ' 1983). Similarly, autonomous replicons originating from the 
chromosome have been recognised in Streptomyces (Bibb et , 1981).
Alternatively, since these strains are cured of resistance to aminogly­

cosides, the novel fragments could be derived from a larger plasmid from 

which a segment containing the genes conferring aminoglycosides resistance 
had been deleted but which retains the capability for aitonomous repli­
cation

In addition to fragments complementary to pSK601 the tetracycline 
resistant transconjugant also had novel EcoRl fragments with a total size 
of 23.60kb and although it is possible that these fragments arise from 

transposition such as obtained with the 16kb Tn916 (Franke and Clewell,
1981). it is again not clear into which fragment the novel D M  could have 

transposed. Therefore the same argument for a separate replicon derived 
either from the chromosome or by deletion of another larger plasmid, can 
be applied here although an equivalent sized band was not seen in the 

undigested sample. It is reasonable to assume that the fragments common 
to K60 and the tetracycline resistant transconjugant represent an approx- 
imately 47kb plasmid, pSR602, whiph determines resistance to tetracycline 

and which is non-conjugative but can be efficiently mobilised. The single
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band of around 65kb seen in undigested samples could be derived from a 

cointegrate of pSK602 and the novel replicon.

The lack of fragments on digestion of the tetracycline resistant 

derivative cured of erythromycin and aminoglycosides resistance indicates 

a chromosomally encoded determinant and would explain the difficulty in 

obtaining tetracycline cured derivatives. If this were the only tetra­

cycline resistance determinant in strain K60, it must represent an element 

capable of inordinately high frequency transposition into a conjugative 

plasmid to allow high frequency transfer. This need not be so however 

if there is,as seems likely, a second tetracycline resistance determinant 
located on pSK602 such as has been described in faecalis JHl (LeBlanc 

and Lee, 1982), The possession of two classes of gene namely tetL and 

tetM, has been found to be a common phenomenon in faecalis (Burdett 
j ^ a l . , 1982a,b).

There is no clear evidence to indicate the location of the amino­

glycosides resistance genes. In the EcoRl digests, only fragment C is 

present in K60 but absent in transconjugants and cured derivatives. The 

size of this fragment compares favourably with the 16.5kb segment known 

to be associated with streptomycin and kanamycin resistance in pJHl 

(Banai and LeBlanc, 1983) but in pJHl these resistances are contiguous 

with and always deleted with erythromycin resistance in cured derivatives. 

EcoRl fragment C could encode streptomycin, kanamycin and neomycin resistance 
and either suffer frequent independent deletion from pSK601 or represent 

a separate replicon which is mobilised to high frequency transfer by 
pSK601. It is also feasible that aminoglycosides resistance genes are 

chromosomally located and capable of transposition to pSK601, although 
the transposition frequency would have to be excessively high to obtain 
the transfer frequencies observed.
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faecalis strain K87 was found to be resistant to MLS antibiotics, 

tetracycline and the aminoglycosides streptomycin, kanamycin and neomycin.

It is also 3-haemolytic and bacteriocinogenic and hence an example of the 

subspecies zymogenes. Transfer to JH2-2 of the g-haemolytic trait was 

observed in broth culture at high frequency and to JH2-17 at intermediate 

frequency. High frequency transfer of g-haemolysin production has been 
demonstrated in many faecalis strains (Dunny and Clewell, 1975; Jacob 
at , 1975; Borderon et al., 1982) and in all cases, it has been shown 
that this activity is conferred by conjugative plasmids, of similar size, 

which share extensive DNA homology (LeBlanc at , 1983). As expected 

from the high transfer frequencies, strain K87 responded to JH2-1 CIA 
with a titre of 16.

Transfer of antibiotic resistance in broth culture was not observed 

in two of four experiments and could have been due to inhibition of transfer 

by a haemolysin-bacteriocin plasmid, similar to that of pAM31 by pAMyl 
observed in strain DS5 (Clewell jet , 1982b). Alternatively, since 

the donor is bacteriocinogenic resulting in reduction of viable recipient, 
viable antibiotic resistant transconjugants may not have been detected 
if the transfer frequency was low. In the other two broth mating 

experiments however, antibiotic resistance transfer was observed at inter­
mediate or low frequency. As was the case when anomalous transfer 

frequencies were obtained in a mating between DS5 and JH2-2, the recipient 

viable count did not decrease in either mating presumably due to the 
absence of active bacteriocin. Under normal circumstances, only those 

cells which had received bacteriocin resistance, encoded by the haemolysin- 
bacteriocin plasmid, would survive but without active bacteriocin, anti­

biotic resistant non-haemolytic recipients could be isolated.

Mating on membrane filters had little effect on transfer of g-haemolysin
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but greatly improved the reproducibility of antibiotic resistance 

transfer, because under these conditions, bacteriocins appear to have 
little effect on the viability of recipient cells (LeBlanc and Lee, 1982). 
As the transfer frequencies for all resistance markers were similar, it 
was not possible to infer any linkage between loci. However, analysis 

of transconjugant phenotypes showed that erythromycin and tetracycline 

resistances could be transferred independently while transfer of resistance 
to aminoglycosides always involved concomitant transfer of erythromycin 

resistance. None of the haemolytic transconjugants was antibiotic 

resistant. The percentage of antibiotic resistant phenotypes obtained 

was dependent on the mating method, most noticeably when transconjugants 

were selected for erythromycin resistance. This indicates that the 

antibiotic resistance transfer observed in broth culture is not simply 

contingent on the increase in viable recipients but must be dependent 
on another unknown variable. If, as is the case in strain DS5 (Clewell 

^  al̂ ., 1982b), the presence of a haemolysin plasmid normally inhibits 
transfer in broth culture of an antibiotic resistance plasmid, it is 

conceivable that a mutation which affects bacteriocin production could 
also affect such transfer inhibition.

The conjugative ability of the markers was tested by retransfer to 

another recipient. Erythromycin resistance retransferred in broth culture 
at frequencies 10^- to 10^-fold higher than in primary transfers suggest­

ing that there is in fact transfer inhibition in the parental strain.

Since the transconjugants tested for retransfer were selected from broth 

matings however, the possibility exists that the resistance loci in these 

strains could have undergone recombination with DNA specifying conjugative 

ability from another source before primary transfer. The tetracycline 

resistant transconjugants were unable to retransfer resistance and so 
this resistance appears not to be linked to the erythromycin determinant,
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despite the similarities in primary transfer frequency values. The 

initial efficient transfer but subsequent lack of conjugative ability 

infers that the determinant is located on a non-conjugative plasmid which 

can be efficiently mobilised either by an erythromycin or haemolysin 
plasmid. Similar high frequency mobilisation of the non-conjugative 
pAMal has been reported (Dunny et al., 1978). Surprisingly, the 

retransfer frequencies of haemolysin were reduced 10^- to 10^-fold 

and there was no retransfer observed from one primary haemolytic trans­

conjugant. This impairment of transfer probably reflects the inability 
of the new host strain to recognise exogenous CIA and a similar effect 

with the retransfer of the haemolysin plasmid pADl has been reported 

(Ike and Clewell, 1984). Nevertheless the retransfer frequencies may 
be underestimated due to the difficulty of recognising g-haemolytic 

colonies when the background concentration of non-haemolytic recipient 

cells is high and zones of haemolysis around strain K87 consequently are 
small.

Neither storage at room temperature nor treatment with novobiocin 

caused loss of erythromycin and tetracycline resistance markers. In 

the latter case, this was not unexpected in view of the reports describing 

the inability to cure small, non-conjugative tetracycline resistance 

plasmids in group B strains (Burdett, 1980) and pAMal of faecalis 

strain DS5 (Clewell at , 1974) possibly due to the high copy number,

50 and 10 copies per cell respectively, of such plasmids (Clewell et al., 
19 74). In contrast spontaneous loss of plasmid encoded erythromycin 

resistance from group D hosts can often be demonstrated (Buu-hoi et al., 
1984).

Although not as striking as that obtained with DS5, there was a high 

percentage loss of haemolytic activity after storage, while curing of
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haemolysin trait by novobiocin treatment resulted in a frequency 

comparable to that obtained by Borderon and coworkers (1982) for group D 

haemolysin plasmids. Resistance to aminoglycosides was eliminated but 

only at low frequency and after storage. The loss en bloc of resistance 

to streptomycin, kanamycin and neomycin confirms the close linkage of 
the genes demonstrated in transfer experiments and since the other markers 

were not eliminated simultaneously, infers that the aminoglycoside 
resistance loci are encoded by a separate non-conjugative replicon.
Such a non-conjugative plasmid conferring resistance to aminoglycosides 
alone would be rare among streptococci (Clewell, 1981). However, it is &lso 

conceivable that erythromycin and aminoglycoside resistance genes are 

normally on the same plasmid and that the erythromycin gene is capable of 
transposition to another co-resident plasmid as is the case with pAD2 of 

2" faecalis DS16 (Clewell et , 1982a) and pJHl of faecalis JHl 

(Banai and LeBlanc, 1983; 1984a). Both the latter plasmids encode 

resistance to streptomycin and kanamycin and in the case of pJHl, tetra­

cycline resistance also, and carry erythromycin resistance transposons,

Tn917 and Tn3871 respectively (Clewell ^  al., 1982a; Banai and LeBlanc, 

1984a) which can transpose to co-resident haemolysin-bacteriocin plasmids. 

There are nevertheless several differences between the situation in strain 
K87 and that in DS16 and JHl not least being that erythromycin resistance 

of K87 is constitutive while that of Tn917 and Tn3871 is inducible and 

that the erythromycin resistance determinant of K87 is capable of high 

frequency retransfer independent of other markers.

The response of cured derivatives to JH2-1 CIA was greatest by those 

which were haemolytic. This was anticipated since all haemolysin plasmids 
of faecalis examined determine pheromone response with the possible 
exception of pPD5 (LeBlanc et al., 1983). The antibiotic resistant, non-
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haemolytic derivatives also responded with a low titre suggesting the 

presence of either an antibiotic resistance specifying plasmid which 

also encodes pheromone response or another plasmid encoding pheromone 

response but neither antibiotic resistance nor haemolysin activity such 

as pAMy2 and pAMyS of £. faecalis DS5 (Clewell et aJ., 1982b) and pPDl of 
1* faecalis 39-5 (Yagi et al., 1983).

In addition to haemolysin production, strain K87 was also bacterio­
cinogenic when tested against the indicator organism JH2-1. On testing 

transconjugant strains, only those which were haemolytic also produced 

bacteriocin against JH2-1 although from the zone diameters there appeared 
to be quantitatively more bacteriocin produced by transconjugants, which 

could reflect an increase in gene dosage or a derepression of bacteriocin 

production. Surprisingly, all the cured derivatives displayed detectable 

bacteriocin production regardless of whether they were haemolytic which 
supports the suggestion that there could be plasmids present such as 

pAMy2 and pPDl both of which encode bacteriocin but not haemolysin (Clewell 
j^al., 1982b; Yagi et al., 1983).

With respect to antibiotic resistance and haemolytic activity, 

indicator strain K87IO is phenotypically identical to K87 and was isolated 
during a curing experiment from replica plates containing streptomycin on 
which it appeared very susceptible to bacteriocin of derivatives cured 

of haemolysin activity. Bacteriocin activity against K87IO in the absence 
of antibiotic was almost completely the opposite of that observed against 
JH2-1 with the exception of non-haemolytic derivatives obtained after 

novobiocin treatment, which were weakly bacteriocinogenic against both 

indicators. This observation could not be due to loss by K87IO of 

bacteriocin resistance which is encoded by haemolysin-bacteriocin plasmids 
since the strains with activity against K87I0 were inactive against JH2-1



248

which has no resistance, but instead suggests that more than one 

bacteriocin is produced. As strain K87 is inactive against K87IO, it 

would appear that expression of the bacteriocin with activity against 
K87I0 is repressed in the parental strain, and hence the situation must 
be very different from that in strains DS5 and 39-5 where both bacteriocins 
are readily demonstrable.

As K87IO was isolated from agar containing streptomycin, bacteriocin 

production was tested on antibiotic agar. None of the tetracycline or 

erythromycin resistant transconjugants, which were bacteriocinogenic 

without antibiotic, was active when the agar contained streptomycin.

Because these strains were susceptible to streptomycin and therefore would 

be unable to grow, this would have been predicted but for the observation 

that haemolytic transconjugants, also streptomycin susceptible, not only 
became bacteriocinogenic to K87IO but, on the basis of zone diameter, 
appeared to produce an unprecedented level of activity. This observation 

was repeated with derivatives obtained after storage regardless of whether 

they were haemolytic or streptomycin resistant and increased production 
of bacteriocin was obtained from derivatives cured of haemolytic activity 
by novobiocin treatment. The reason for this high level of bacteriocin 

on streptomycin agar, particularly since some strains are streptomycin 
susceptible, is unclear. It is possible that a combination of sufficient 

cell divisions taking place in the overlay agar coupled with a derepress­

ion of bacteriocin production by the action of the drug could produce 

such an effect. Derepression could also be brought about by streptomycin 

induced transposition causing mutation analagous to the hyperexpression 

of haemolysin sometimes observed on transposition of Tn916 into pADl 
(Gawron-Burke and Clewell, 1982). It would be interesting to test 
bacteriocin production on agar containing other aminoglycosides and 

against a streptomycin resistant mutant of JH2. On erythromycin and
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tetracycline agar, activity was greatly reduced and there was no

bacteriocin produced by any transconjugants although K87 showed weak 
activity.

In addition to the clear zones of growth inhibition around bacterio­
cin producers, opaque zones like those observed around certain DS5 

derivatives were visible and associated only with haemolytic transcon­

jugants and cured derivatives obtained after storage. That opacity was 
observed around stab inocula of both JH2 and K87 derivatives argues 
against a strain specific activity. The production of opaque zones 

also appears independent of phenotype but could nevertheless be related 

to the presence of one or more plasmid molecules. The reason why none 

of the novobiocin treated derivatives produce opaque zones and the nature 
of the opacity itself are obscure.

In undigested plasmid preparations from K87, a band could be seen 
of a size 59.7kb within the range expected for faecalis haemolysin- 

bacteriocin plasmids (Clewell, 1981; Borderon e£ £l., 1982). As observed 
in strain DS5, the apparent presence of one band can conceal the existence 

of more than one similarly sized plasmid molecule (Clewell et al., 1982b) 
and so K87 band 1 could be composed of a bacteriocin encoding and a 

haemolysin-bacteriocin encoding plasmid. It was hoped that analysis of 

the plasmid content of haemolytic transconjugants would verify an assoc­
iation of band 1 with haemolytic activity but while four such transcon­
jugant contained bands 1 and 2, another three strains contained only 

band 2. Nevertheless, it is possible that the failure to observe band 1 

in the latter strains was due to the irreproducibility of band 1 isolation 

already encountered in repeated preparations of K87. Further discrep­
ancies, however, were found such as the absence of correlation between 

the presence of band 1 and bacteriocin production^ and the presence of
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band 1 in antibiotic resistant transconjugants. No correlation of the 

remaining bands with antibiotic resistance could be made except that 

the possession of bands 3, 4, 5 and 6 appeared to be unrelated to any 

phenotypic marker which implies that these bands represent cryptic 
plasmids.

Restriction endonuclease digestions were carried out to analyse 
further the plasmid content of K87, its transconjugants and cured 

derivatives. Unfortunately, digestion patterns did not clarify or 

support the conclusions based on transfer and curing data. For example, 

erythromycin resistance was thought to be encoded by a conjugative plasmid. 
Digestion of samples prepared from transconjugants, while showing the 
presence of several fragments in common with K87, revealed the presence 

of eight novel fragments, the origin of which is speculative. Tetra­

cycline resistant transconjugants had digestion patterns resembling those 

obtained for erythromycin resistant transconjugants but the novel frag­
ments were different in number and size. The generation of novel 

fragments suggests recombination between different molecules such as 

can occur on transposition but, if the novel fragments represent 

erythromycin or tetracycline resistance transposons, they must be 
structurally quite different from the well characterised streptococcal 
transposons Tn917 and Tn916 which have no EcoRl sites (Clewell et al., 

1982a; Gawron-Burke and Clewell, 1982). Alternatively, it is possible 
that during transfer, interaction of different plasmid molecules is 

producing hybrid plasmids in a process like that described in strain JHl 
where recombination between the haemolysin-bacteriocin plasmid and the R 

plasmid may result in cointegrates composed of both plasmids or hybrids 

composed of portions of one or both plasmids (Banai and LeBlanc, 1983). 

Nevertheless, it is difficult to envisage how such recombination could 

result in the generation of so many novel restriction fragments.
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Moreover, in the JHl system, antibiotic resistant transconjugants were 

almost exclusively haemolytic, which is clearly not the case in K87 

matings although the erythromycin and tetracycline resistant transcon­
jugants whose fragment patterns were similar, all displayed bacteriocin 

activity against K87X0.

Digestion of haemolytic transconjugants demonstrated two different 
restriction patterns although the phenotypes with regard to pheromone 
response and bacteriocin production were indistinguishable, suggesting 
the co-existence of two plasmids both of which encode haemolysin- 

bacteriocin but which must be sufficiently different from each other to 

be compatible within the K87 host. This would be highly unusual among 

faecalis since examination of several plasmids by DNA hybridisation 

has demonstrated not only homology between haemolysin-bacteriocin genes 
but extensive plasmid DNA homology extending beyond the genes (LeBlanc 

et al., 1983). Indeed pAMyl and pADl have been shown by DNA hybridisation 
and restriction endonuclease analysis, to be identical and display 
incompatibility (Clewell et al., 1982b; LeBlanc e^ al., 1983).

The restriction profiles of cured derivatives were identical regardless 

of the phenotype with the exception of K87C8 which was without bands 3 

and 5, and so no correlation of digestion patterns and the absence of a 

phenotypic trait could therefore be made. It is probable that bands 3 

and 4, and bands 5 and 6 represent open circular and cccDNA forms 

respectively of two cryptic plasmids, pSK871 and pSK872. pSK871 is not 

digested by EcoRl but has one Pstl site (fragment B) while pSK872 is not 
digested by Pstl and has at least one EcoRl site producing fragment G.

The transfer of antibiotic resistance from K88 donors in broth 
culture was inefficient occurring sporadically and at low frequency.
However, the fact that transfer was observed at all in broth culture
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suggests the presence of a pheromone system (Clewell, 1981) although, in 

view of the low frequencies, not necessarily encoded by a resistance 

plasmid. Indeed, in the presence of JH2-1 pheromone, strain K88 does 

exhibit an aggregation response, possibly specified by a conjugative 

cryptic plasmid an example of which is pAMyS (Clewell et al., 1982b), and 

the cell-to-cell contact thus obtained may aid transfer of antibiotic 
resistance. Alternatively, since strain K88 is a subspecies 

liquefaciens and produces protease which is known to inactivate CIA (Dunny 

et , 1979), destruction of pheromone could lead to fewer mating 

aggregates and inefficient transfer. No such effect was noted, however, 
for strain K60 which is another liquefaciens subspecies.

Transfer frequencies of resistance markers after matings on membrane 

filters were of either intermediate or low frequency but the reproducibility 

of transfer was markedly superior. This could be due to the increase in 
incubation time and viable count of donors and recipients but could in 

part be caused by greater stability of mating aggregates on a solid support 

allowing the transfer of conjugative elements which do not confer pheromone 
response (Clewell, 1981), The transfer frequencies observed after filter 
matings were in general lower than those reported for intraspecific 

transfer of faecalis conjugative resistance plasmids using comparable 

methods (Malke, 1979; van Embden et al., 1977; Horodniceanu et al., 1982b; 

Buu-hoi al•> 1984) and were closer to the frequency range expected of 

chromosome located conjugative transposons (Franke and Clewell, 1981; 

Horodniceanu » 1982c). The low transfer frequencies could alter­

natively reflect inefficient mobilisation of a non-conjugative resistance 

plasmid or interaction of plasmids causing transfer inhibition similar 
to that of pAMgl by pAMyl (Clewell et al., 1982b)*

The percentage of different phenotypes obtained were similar for
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broth, and filter matings. The streptomycin resistance locus was always 

transferred independently and therefore is unlinked to the other resistance 

genes. The majority of tetracycline resistant transconjugants were 

susceptible to the other resistance markers demonstrating that this locus 

is also capable of independent transfer. Almost all other transconjugants 

were co-resistant to erythromycin, chloramphenicol and tetracycline 

suggesting that erythromycin and chloramphenicol genes are linked and 

possibly mobilised by a conjugative tetracycline resistance plasmid.
One exception was isolated which was susceptible to erythromycin.

Study of the ability to retransfer demonstrated that the tetracycline 

resistance determinant was indeed capable of self-transfer during filter, 
but not broth, matings at frequencies comparable to the primary transfers 
and so is probably located on a conjugative plasmid which does not specify 

pheromone response. Streptomycin resistance was retransferable in broth 
culture at frequencies 100-fold higher than those obtained on primary 

transfer. This increased transfer frequency indicates the location of 

the resistance gene on a conjugative plasmid which specifies response to 

CIA. In the new host, pheromone produced by the recipient would not be 

subject to proteolysis or, alternatively, increased transfer frequency 
may reflect transposition of the streptomycin resistance gene to n 

cryptic conjugative plasmid. Such increased transfer of tetracycline 
resistance is observed on transposition of Tn916 to conjugative haemolysin 
plasmids (Franke and Clewell, 1981).

Examination of the phenotypes of derivatives obtained after storage 

or treatment with novobiocin revealed that, like the previous parental 
strains, tetracycline resistance could not be eliminated. As expected 

from the transfer experiments, streptomycin resistance could be lost 

independently of other markers but erythromycin and chloramphenicol
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resistances were always eliminated together..

The response of cured derivatives to CIA contrasted with the results 

of transfer experiments which suggested that streptomycin resistance is 
encoded by a conjugative plasmid specifying pheromone response. Neither 

the derivatives resistant to tetracycline and streptomycin nor the 
derivative resistant to tetracycline alone responded to pheromone but 

two derivatives cured of streptomycin resistance did respond. This again 

raises the possibility of there being an independent cryptic plasmid 
which specifies pheromone response.

Plasmid preparations of K88 revealed the presence of six bands but 

correlation of the presence of bands with the phenotypes of transconju- 

gants and cured derivatives was difficult. Bands 5 and 6 which were 

always present in cured derivatives regardless of phenotype, but absent 

in transconjugants probably represent open circular and cccDNA forms 

respectively of the same cryptic plasmid, designated pSK881. Further 

evidence for this was demonstrated by the appearance of bands of 
topoisomers under band 5 in one undigested plasmid preparation (not shown) 
and by the fact that both bands appear to have no EcoRl sites and one 

Pstl site which produces a single fragment of the same size.

The majority of tetracycline resistant transconjugants and deriv­

atives possessed band 4. Both EcoRl and Pstl digestion of DNA from 
transconjugants and the derivative cured of all but tetracycline 
resistance resulted in a single fragment of size comparable to band 4.
It appears therefore that K88 harbours a tetracycline resistance plasmid 

of approximately 23,5kb capable of transfer on membrane filters and 

designated pSK882.

From the transfer characteristics and curing data, it was expected 

that streptomycin resistance would be specified by a conjugative plasmid 

with a size of greater than 50kb as all plasmids yet described which
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specify pheromone response are at least this size (Clewell, 1981;

Dunny et al., 1981b). However, DNA preparations of streptomycin resistant 
transconjugants contained either no plasmid bands or a band similar 

in size to K88 band 2. Derivatives cured of erythromycin and chloram­
phenicol resistances either possessed only pSK881 and pSK882 or band 2, 
pSK881 and pSK882 or bands 1 and 2, pSK881 and pSK882. Digestion of 

DNA samples from transconjugants generated novel fragments in addition to 

some fragments visible also in K88 digests. The presence of novel 

fragments implies recombination between plasmids or transposition of DNA 
from the chromosome. As streptomycin resistance can be easily eliminated, 

however, it is unlikely that the gene is located in the chromosome even 

although digestion of samples from some cured derivatives resistant to 
streptomycin and tetracycline revealed the presence of only pSK881 and 
pSK882. The location of the streptomycin resistance gene therefore 
r emains une1ear.

Transconjugants resistant to erythromycin, chloramphenicol and tetra­

cycline all contained K88 band 1 while the derivative cured of streptomycin 
resistance contained band 1, pSK881 and pSK882. The single transconjugant 

resistant to tetracycline and chloramphenicol exhibited the same band 

pattern as those co-resistant to erythromycin suggesting that erythromycin 

susceptibility in this case may be due to mutation of the methylase gene. 

While it is possible that band 1 is a cointegrate formed between pSK882 

and another non-conjugative plasmid encoding erythromycin and chloram­

phenicol resistance,similar sized bands were also visible in erythromycin 
and chloramphenicol susceptible strains. Digestion of samples with EcoRl

and did not aid interpretation as most of the fragments generated

were also visible in samples prepared from erythromycin and chloramphenicol 

susceptible strains. The location of the erythromycin and chloramphenicol
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determinants is therefore also unknown but as with the streptomycin 

resistance locus, the relatively high curing efficiency makes a chromo­

somal site unlikely.

iaecalis strain SB94, in addition to being antibiotic resistant, 

was found to be bacteriocinogenic with weak activity against JH2-1 but 

greater activity against K87I0. With the latter indicator, incorporation 

of streptomycin in the test agar resulted in increased activity similar, 
although less striking, to that observed by K87 derivatives. Plasmids 

encoding bacteriocin alone are not uncommon in fàécàlis for example 
the conjugative plasmids pAMy2 and pPDl (Clewell et al., 1982b; Yagi et al., 
1983) and the non-conjugative pOB2 (Oliver et ^ . , 1977) although these 

plasmids are found in strains which also harbour haemolysin-bacteriocin 
plasmids.

The transfer of antibiotic resistance at high or intermediate frequency 
in broth culture was demonstrated. Such transfer frequencies in broth 

culture suggest that the resistance genes reside on one or more plasmids 

which either specify pheromone response or are efficiently mobilised 
by a plasmid encoding pheromone response. Strain SB94 exhibits a response 

to JH2-1 pheromone typical of antibiotic resistant £. faécalis (Dunny et , 

1981b). Mating on filter membranes had either little effect on transfer 
frequencies or produced a 10- to 100-fold increase but this increase 

could be attributed to the longer incubation time and higher cell density.

Analysis of the transconjugant phenotypes indicated that erythromycin, 

tetracycline and aminoglycosides resistance loci can be unlinked and 
that erythromycin resistance is probably capable of independent transfer. 

While tetracycline resistance may be capable of self-transfer, it is 
possible that mobilisation occurs by an erythromycin resistance plasmid 

in a process similar to that described for the mobilisation of non-
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conjugative tetracycline resistance plasmids by erythromycin resistance 

sex factors (Burdett, 1980). That attempts to retransfer tetracycline
resistance failed, supports this latter proposal. Transconjugants 

resistant to aminoglycosides were always co-resistant to erythromycin 

indicating that the aminoglycoside resistance determinants are incapable 
of independent transfer.

The phenotypes of derivatives obtained after storage or novobiocin 

treatment confirmed the results of transfer experiments with respect to 
the separate locations of the resistance genes. After storage, a very 
high percentage of derivatives were susceptible to erythromycin and a 
smaller percentage susceptible to aminoglycosides suggesting that the 
resistance genes were located on discrete plasmid molecules. On 

treatment with novobiocin, erythromycin and aminoglycoside resistances 
were lost en W £ c  at low frequency and one derivative was obtained which 
was also tetracycline susceptible. This was the only instance of 

elimination of tetracycline resistance among the £. faecalis strains 
examined and it infers that the resistance gene is not located on the 

chromosome where it would be maintained (Horodniceanu et al., 1982c) but 

IS located on a plasmid. It is conceivable however that the resistance 
gene could be encoded by a transposable element capable of existence in 
either location and that apparent curing is due to point mutation which 
in S. pneumoniae can occur at 0.1% frequency (Smith et ^ . , 1981).

The response of cured derivatives to CIA did not correlate with 

the transfer data in that tetracycline resistant derivatives exhibited 
the same or greater response than those resistant to erythromycin and 

tetracycline. Since tetracycline resistance appears to be located on a 
non-conjugative plasmid, no response would have been expected and this 
anomaly raises the possibility that these strains may contain conjugative
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plasmid perhaps encoding bacteriocin.

Examination of the plasmid content of strain SB94 revealed the 

presence of four DNA bands on agarose gels. Bands 3 and 4 were present 
in none of the erythromycin or tetracycline resistant transconjugants.

Like the bands of similar size found also in strains K87 and K88, they 
have no EcoRl sites and only one Pstl site and are probably open circular 

and cccDNA forms respectively of the same cryptic plasmid, pSK941. It 

is interesting that strains isolated from very different locations, a 

hospital and a sewer outlet, contain plasmids with such similarities.

Other small cryptic plasmids have been described in several £, faecalis 

strains (Clewell, 1981). The S.lkb cryptic plasmid pPD4 of £. faecalis 

strain 39-5 can be mobilised by conjugative co-resident plasmids and has 
been found incompatible with the tetracycline resistance plasmid pAMal 

(Yagi al., 1983). This latter plasmid is known to dissociate into 
two autonomous replicons the smaller of which, pAMalA2, is capable of 

replication in S. faecalis (Perkins and Youngman, 1983). pAMalA2 is 

similar to plasmids pSK87% pSK881 and pSK941 in that it is S.lkb, cryptic, 
has one Pstl site and no EcoRl sites and such comparisons raise the possibility 

that the plasmids described in this study represent deleted tetracycline 
resistance plasmids.

Erythromycin and tetracycline resistant transconjugants all had the 

same undigested DNA bands present. Digestion with EcoRl demonstrated 

that samples from each phenotype contained some fragments in common but also 

several novel fragments and the digestion patterns were generally dis­

similar to the parental strain. The similarities in restriction profiles 

between transconjugants suggest a molecule in common but with large inserts 

producing novel fragments. The total of the EcoRl fragments from 
tetracycline resistant transconjugants, however, is at least twice the
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size of SB94 band 1 and it is possible therefore that there are two 

plasmid molecules of similar size one encoding tetracycline resistance 
present in these strains. If this were so, one of these molecules would 
presumably be present in the parental strain at such a low copy number as 

to make it impossible to visualise on agarose gels. A non-conjugative 

plasmid of such a size would not be unprecedented among £. faecalis as 

pPD6 of strain 39-5 is 53kh (Yagi ̂  al,, 1983). This hypothesis would 

concur with the observation that the derivative cured of tetracycline 
resistance appeared to contain the same plasmid bands as the parent but 
the possibility remains that the resistance gene may be located on a 

transposon capable of integration into the chromosome and that curing 
represents mutation or deletion.

Likewise, the eiythromycin gene could be located on a chromosomal 
element capable of transposition to a conjugative plasmid producing novel 

restriction fragments although the high curing efficiency makes this less 
likely. It is more plausible that the gene is located on a conjugative 
plasmid with an approximate size of 56kb which may be a third molecule 

migrating to the position of band 1 in undigested samples with the result 

that erythromycin susceptible derivatives would appear to retain band 1 

and could have similar restriction profiles to the parent.

No evidence was obtained from plasmid preparations on the location 

of aminoglycosides resistance determinants except that they are not 
located on bands 2, 3 or 4 of the parent. Since transfer of resistance 

to aminoglycosides never occurred without co-transfer of erythromycin 

resistance, it is possible that the aminoglycoside resistance loci are 
chromosome specified but capable of transposition to the conjugative 

erythromycin resistance plasmid. Loss of resistance would therefore 

be dup to deletion from the chromosome during storage in non-selective
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conditions and would not be linked to erythromycin resistance.

An alternative explanation of the results is that, as in £. faecalis 

JHl (Banai and LeBlanc, 1983; 1984a), the antibiotic resistance genes are 

located on the same conjugative plasmid, hence the high proportion of 

transconjugants which received all the resistance markers. From this 

plasmid, the erythromycin determinant could be capable of transposition 

to another conjugative plasmid of similar size, perhaps encoding bacteriocin 
production, resulting in transconjugants resistant to this drug alone. 

Tetracycline resistant transconjugants could arise on transposition of a 

second chromosomal element to the putative bacteriocin plasmid although 
this would not explain why the resistance was not retransferable. As 

has been shown in JHl, the production of hybrid plasmid molecules could 
give rise to transconjugants resistant to erythromycin and aminoglycosides 

and deletion of these determinants either together or independently could 

result in the phenotypes observed on curing. Aside from the similarities 

in restriction profiles of erythromycin resistant and tetracycline resistant 

transconjugants, however, there is little visual evidence on gels for such 
transpositions and deletions.

The lack of transfer of antibiotic resistance in broth culture from 
the £. faecium strains SB69 and K46 to the £. faecalis recipient was 
anticipated not only because this would require interspecific transfer 

which, with the exception of erythromycin resistance plasmids, is rare 
(Horodniceanu et al., 1982b, c; Buu-hoi et al., 1984) but also because 

only £. faecalis strains can respond to sex pheromones (Clewell, 1981;
Dunny ££ , 1981b). On membrane filters however, while no resistance

transfer was observed from strain K46, in two experiments very low frequency 
transfer of tetracycline resistance from SB69 was obtained.
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No curing of SB69 antibiotic resistance was observed either after storage 

or novobiocin treatment and repeated attempts to demonstrate plasmid DNA 

in the parental strain and tetracycline resistant transconjugants proved 

negative.

It seems likely therefore that in strain SB69, all resistances are 

chromosomally encoded but that tetracycline resistance is present on a 

conjugative transposon. The transfer frequencies obtained were similar 

to those described for the plasmid free transfer of Tn916 (Franke and 

Clewell, 1981) and other, chromosoma11y located, resistance markers from 

£. faecium strains (Le Bouguenec and Horodnideanu, 1982),

Since plasmid encoded 3-lactam resistance has only recently been 

reported in streptococci and is as yet extremely rare (Murray and Mederski- 

Samaros, 1983), it was not surprising that the evidence indicated resistance 
specified by the chromosome presumably involving changes in PBPs 

(Eliopoulos ££ si.* j 1982; Fontana et al., 1983b). Streptomycin resistance 
of SB69 is also determined by the chromosome.

None of the K46 resistances was transferable in broth culture or on 

membrane filters. However, the observation that streptomycin resistance 

was cured on storage, and erythromycin, tetracycline and streptomycin 
resistances could be cured by novobiocin treatment, suggested that these 

resistances were plasmid encoded. Loss of these resistance loci occurred 
independently as would be observed with unlinked genes but resistance to 

penicillin and ampicillin was never eliminated supporting the conclusion 
above that resistance is chromosome borne. Since there was some doubt 

as to the basis of erythromycin and lincomycin resistance in this strain, 

erythromycin susceptible derivatives were tested and all were found to be 
lincomycin susceptible also.
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Preparation of sufficient plasmid DNA from strain K46 proved extremely 
difficult but the reason for this is not clear. Although K46 reproducibly 

contained six DNA bands, it is likely that not all of these bands represent 

individual plasmids. For example, bands of 34.7kb and 32.9kb may be 

artefacts produced by the 38.5kb band or topoisomers of the 17.2kb band, 
the 38.5kb band being the open circular form. That all the derivatives 

also contain 38.5kb and/or 34.7kb bands as well as the 17.2kb band 

supports that latter proposal. It is impossible to assign resistance 

genes to plasmids by comparison of the derivatives of different phenotypes 

as the band patterns are generally similar. Certain derivatives contained 

novel bands suggesting the ability of plasmids to undergo deletions although 

this feature again failed to correlate with phenotype. Several £. faecium 
isolates have been shown to contain plasmids (Dunny et al,, 1981b) some 

of which may confer antibiotic resistance and be transferable (Le Bouguenec 

and Horodniceanu, 1982). Recombination between plasmids as well as 
deletion formation and transposition of resistance genes probably takes 

place in some of these strains (Le Bouguenec and Horodniceanu, 1982).

Although the resistance phenotypes of the strains in this study are

similar i.e. resistance to MLS antibiotics, tetracycline and aminoglycosides,
/

it is clear from comparison of restriction endonuclease digestion patterns 

that the strains contain structurally different plasmids. The exception 

seems to be the small cryptic plasmids of strains K87, K88 and SB94. In 

a number of cases, it is probable that transfer of resistance involves 

either inter molecular recombination or transposition of chromosomal genes 
into plasmid molecules which makes interpretation of restriction fragment 

profiles extremely difficult and this in turn makes allocation of resistance 
genes to a particular location speculative.

Comparison between the multiple resistant haemolytic S. faecalis



263

strains JHl and DS16 have revealed a number of similarities (Banai and 

LeBlanc, 1983)  ̂ Results of DNA-DNA. hybridisation experiments showed 

extensive homology between respective haemolysin-bacteriocin plasmids 

(LeBlanc et al., 1983), and chromosome situated tetracycline resistance 

(Tn916) as well as plasmid located erythromycin resistance transposons 
(Tn3871 and Tn917) have been demonstrated in both strains (LeBlanc and 

Lee, 1982; Banai and LeBlanc, 1984a). Additionally, both strains confer 
plasmid specified resistance to streptomycin and kanamycin. A prelim­
inary report on twelve group D isolates which have resistance phenotypes 
resembling JHl, DS16 and the strains in this study, has indicated that 

the erythromycin resistance genes of five isolates were located on Tn917 
and in six strains, hybridisation of plasmid DNA to a pJHl probe showed 
significant homology (Dee et al., 1984). It is indeed possible that the 
strains in this study may contain chromosome specified tetracycline 

resistance located on a transposon and this could explain the rarity of 

cured derivatives although, where high primary transfer frequencies have 

been observed, it is likely that tetracycline resistance is also plasmid 

specified. Erythromycin resistance encoded by Tn917 is however less 
likely in these strains as the resistance is expressed constitutively.

Future experiments would therefore be designed to clarify the'results 
already obtained. It is likely that more than one class of tetracycline 
resistance gene exists in the £. faecalis strains which accounts for the 
difficulty in obtaining cured derivatives. A comparison of the MICs 
of parental strains and transconjugants and determination of the MICs of 

the related antibiotics, minocycline and chelocardin, would help to resolve 
this question as it is known that different classes of determinant confer 
different resistance levels (Burdett et al., 1982b). Such comparison of 

MICs led to the discovery of the two tetracycline loci in £. faecalis JHl
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(LeBlanc and Lee, 1982).

In this investigation, transconjugants displaying one phenotypic 

trait or derivatives cured of one trait were chosen preferentially for 

study of retransfer ability and for comparison of plasmid content. It 
would be interesting and informative, however, to examine retransfer from 

transconjugants of strains K55, K60, K87 and SB9A co-resistant to 
erythromycin and aminoglycosides to ascertain whether the resistance loci 

are retransferred in unison from the transconjugants. Curing data from 
these parental strains indicate that these determinants need not be closely 
linked and could be present on different molecules but, particularly in 

the cases of K60, K87 and SB94, the fact that no transconjugants selected 

on aminoglycosides are erythromycin susceptible demonstrates that co­

transfer of erythromycin resistance is a prerequisite for aminoglycoside 

transfer. This could arise if 1. the resistance loci were on the same 
plasmid molecule, 2. a non-conjugative aminoglycoside resistance plasmid 

were mobilised via cointegrate formation with a conjugative MLS resistance 
plasmid or 3. aminoglycoside resistance genes were capable of transposition 

to a conjugative MLS plasmid. Comparison of the plasmid content of trans­
conjugants resistant to erythromycin alone and those co-resistant to

/aminoglycosides could give some indication as to which of these alternatives 
is most likely.

A major problem in interpreting and relating phenotype to the plasmid 

content of parental strains, transconjugants and cured derivatives, has 
been the presence and possible transfer of more than one plasmid species 

and so, in order to resolve this difficulty, the individual plasmids in 

each parental strain should be isolated. This could be accomplished by 

sucrose density gradient centrifugation, electroelution from agarose gels 

or isolation from low melting point agarose, although preliminary results
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using the Latter method with DS5 plasmids have indicated difficulty in 

separating plasmids in this agarose. Following isolation, plasmid DNA 

could be used to transform £. sanguis to antibiotic resistance although 

it should be noted that certain plasmids do not transform £. sanguis, 
for example pAMal (LeBlanc and Hassel, 1976) and pJHl (Banai and LeBlanc, 

1984b). Comparison of the restriction profiles of purified plasmids 
with those from transconjugants and cured derivatives would help to identify 

and clarify possible intermolecular interactions.

Knowing the phenotypes conferred by difficult plasmids, it would be 

interesting to investigate the precise location and the relationships 

of the resistance genes to determinants isolated from other sources by 

DNA-DNA hybridisation. Probes specific for tetL and tetN have been 
described (Burdett a£., 1982) as well as a probe containing the 

erythromycin resistance locus of pANgl (Burdett et , 1982b) which, in 
contrast to that described by Ounissi and Courvalin (1982), fails to 
hybridise to Tn917 (Clewell et al., 1982a). The probe containing the 

haemolysin-bacteriocin determinant of pADl has been shown to hybridise to 
all £. faecalis haemolysin-bacteriocin plasmids studied but not those 

specifying bacteriocin alone (LeBlanc ^  al., 1983). It would also be 
interesting to test by reciprocal DNA-DNA hybridisation experiments the 

hypothesis that pSK871, pSK881 and pSK941 are similar to pAMalA2.
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