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ABSTRACT

This thesis describes an investigation the aim of which was the development of 

low pressure gas switches with the advantages of zero standby power 

consumption and instant readiness. Hydrogen thyratrons use a hollow anode to 

give the switch a convenient reverse conduction capability. The hollow anode 

structure has been shown to pass a 4 kA pulse current at 500 Hz for 10̂ ° shots. 

The use of the hollow anode structure as a cold cathode for a low pressure 

switch is proposed and triggering of the structure by ions is demonstrated. 

Under conditions of low gas pressure and high discharge voltage, electrons 

make few collisions in the cathode dark space of a glow discharge and form 

extensive beams which travel many centimetres in the gas. Current/voltage 

characteristics of this 'electron beam' type of discharge are presented for 

deuterium at pressures between 0.2 and 1.0 torr. The electron beam discharge 

was found to be space-charge limited with I  oc at pressures below about 

0.25 torr and /  oc at pressures above about 0.25 torr. It is proposed that the 

current in the electron beam discharge is limited by the flow of positive ions in 

the cathode dark space. Control of the emission area of a discharge in a hollow 

metal cylinder is demonstrated and is used as a triggering method for a new



type of low pressure gas switch. Tests in a pulse modulator at repetition rates 

up to 1 kHz show that the switch operates satisfactorily. The triggering 

mechanism is shown to depend on the properties of the cold cathode glow 

discharge which, in certain circumstances, leads to the unusual phenomenon of 

post trigger-pulse firing of the switch. The phenomenon is shown to result 

from the interaction of the trigger discharge cathode dark space and the 

geometry of the switch. The glow discharge electron beam is successfully 

applied as a triggering method in several new low pressure gas switches. In one 

arrangement, the electron beam is used to pre-ionise the switch and subsidiary 

grids are used to trigger main conduction. In another arrangement, the electron 

beam is directed into the high voltage region to trigger conduction directly. The 

designs of these switches are discussed and their operation is demonstrated.
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CHAPTER ONE 

The low pressure gas switch.

1.1 Introduction.

A low pressure gas switch is designed to exploit the insulating properties of 

neutral gas in the 'off state and the conducting properties of ionised gas in the 

'on' state, with the gas at a pressure in the region of 0.5 torr. The work 

presented in this thesis describes developments in the art of low pressure gas 

switching and draws mainly on the physics and technology used in the 

manufacture of hydrogen thyratrons. The hydrogen thyratron is the low 

pressure gas switch par excellence^ and an understanding of its application, 

design and mode of operation provides the background to this study. Hydrogen



thyratrons are used almost exclusively as switches in pulse modulators, where 

they have a long demonstrated ability to hold off voltages of 30 kV or more and 

to conduct currents in excess of 1 kA at repetition rates up to tens of kHz. The 

upper limits to the present capability of thyratrons are about 200 kV; 100 kA; 

100 kHz. Note that these limits are not achieved simultaneously in one switch 

design. In fact, EEV Ltd. manufacture in excess of 300 types of thyratron, yet, 

every week or so, a customer will require a thyratron to a specification outwith 

any of the 300. Photograph 1.1 shows a small selection of the hydrogen 

thyratrons manufactured by EEV. The motivation for the work presented in this 

thesis is the requirement for low pressure gas switches with low or zero standby 

power consumption and instant readiness for operation. Traditionally, thyratrons 

have used thermionic cathodes to provide reliable emission for operating periods 

up to 10,000 hours. The surface that provides the emission is inherently 

delicate so operating the thyratron at high cathode current densities, or at high 

average current, may seriously reduce the cathode's useful life. It is possible 

that a cold cathode with its robust and relatively simple surface could extend the 

capability of low pressure gas switches. The use of a thermionic cathode in 

thyratrons has two disadvantages, which may be critical in applications where 

energy supply is limited and immediate readiness is of prime concern ie., 

mobile systems and space systems. Depending on the thyratron type, its 

thermionic cathode may consume in excess of 500 W continuously. The 

thermal mass associated with the cathode heater may also impose a prolonged 

warm-up time of 5 minutes, or more, to attain the necessary operating



temperature. The glow discharge techniques to be described in this thesis offer 

the possibility of a low pressure gas switch with no standby power consumption 

and instant start capability. In order to provide a context for the low pressure 

gas switch, the rest of this chapter will describe the applications, design and 

principles of operation of hydrogen thyratrons. Methods whereby the 

technology may be extended to provide new low pressure gas switches will also 

be discussed.

1.2 The pulse modulator.

A pulse modulator is an electrical system which provides pulses of electrical 

energy. In the pulse modulator, energy is transferred at low peak power from 

a source to an energy store. In response to a trigger signal applied to a switch, 

the energy is released to a load at high peak power for delivery to a target 

(Figure 1.1). This general principle has been applied for thousands of years in 

devices such as the bow and arrow, the crossbow and the catapult. Today, 

radars, lithotripters, lasers and linear accelerators are examples of electrical 

systems which employ the ’pulse’ principle to deliver very high peak powers for 

detecting aircraft, pulverising kidney stones, ablatively machining semiconductor 

chips and destroying tumours. All of these systems use a particular type of 

pulse modulator which is described in the following section.



1.2.1 The line-type modulator.

The pulse modulator systems that are of concern for gas discharge switches 

(Figure 1.2) use a voltage-fed, capacitative-inductive network (lumped- 

parameter, transmission-line) for energy storage and pulse shaping, a switch to 

transfer energy on demand from the store to the load and an isolating element 

to limit both the rate at which energy is transferred from the source to the store 

and the degree of interaction between the charging and discharging circuits 

(Glasoe & Lebacqz, 1948, pp 175,355). The behaviour of the discharge circuit 

depends upon the degree of mismatch between the effective load impedance and 

the characteristic impedance of the network. The circuit of Figure 1.1 shows 

the components of a 'line-type modulator' using a thyratron as a switch. The 

circuit consists of a charging side and a discharging side and both perform their 

function as a result of firing the switch.

1.2.1.1 The discharge circuit.

During normal operation of the modulator, the DC power supply voltage is V 

and the pulse-forming network (PFN) is charged to 2V, At a given time, a 

voltage pulse is applied to the thyratron grids to initiate thyratron conduction. 

The voltage across the thyratron drops to a low value (-100 V) in tens of 

nanoseconds and the current pulse, defined by the parameters of the PFN, passes 

through the load. At the end of the current pulse, the thyratron is filled with a



conducting plasma which persists until current zero and beyond and the 

thyratron will only recover its voltage hold-off capability when the plasma 

decays. The voltages appearing at the switch anode after conduction depend on 

the degree of impedance matching between the PFN and the load. When their 

impedances are matched, all of the energy in the PFN is transferred to the load. 

If their impedances are not matched, some energy will remain on the PFN at the 

end of the normal pulse duration and this usually results in the appearance of 

a positive or negative voltage on the switch anode. If the voltage is positive, 

the plasma will be maintained and recovery of voltage hold-off will be delayed. 

If the voltage is greater than a few kilovolts negative, the switch may conduct 

in the reverse direction with consequent damage to its anode (high-voltage 

region). In practice, the impedance of the PFN is arranged to give a slight 

negative mismatch so that a small negative voltage appears on the thyratron 

anode. This initiates a period of zero current in the switch and the voltage 

hold-off capability recovers in a few tens of microseconds.

1.2.1.2 The charging circuit.

The design of the charging circuit is determined both by the need for the switch 

to recover voltage hold-off and by the pulse repetition frequency that is 

required from the system. In addition, the power losses in the charging circuit 

are usually required to be kept to a minimum. As a result, the PFN of 

capacitance C is charged from the power supply via a charging choke of



inductance L. The charging choke and the capacitance of the PFN form a 

resonant circuit of frequency

/  — ^  . 1.1 
2ns/LC

Charging with this circuit is known as resonant charging. In practice, a diode 

is included in series with the choke to hold the voltage on the PFN once it is 

charged. The system repetition frequency can then be varied up to a maximum 

of twice the resonant frequency given by equation 1.1. The circuit operation 

can be described as follows. Immediately after the thyratron switches on, its 

anode voltage falls to approximately one hundred volts. The charging choke 

then has the DC supply voltage V across it. A current grows at a rate

Æ  = f  . 1.2
dt L

and begins to charge the pulse-forming network. Since the current is initially 

small it takes tens of microseconds to remove the negative voltage left on the 

PFN at the end of the thyratron current pulse (see §1.2.1.1). In effect, the 

charging choke acts as an isolating element (Figure 1.2) which allows the 

thyratron time to de-ionise after conduction. As charging continues, the current 

through the choke reaches its peak when the PFN is charged to K With 

'perfect' matching, the current continues to flow until the PFN is charged to 2V, 

where it is held by the diode until the thyratron is triggered again.



1.2.1.3 The switch.

The range of switch technologies that can be employed in a line-type modulator 

is very wide (Burkes et al.  ̂ 1979). However, most high-power applications are 

covered now by three gas discharge switches, the spark gap, the ignitron and the 

thyratron. In order to be of use in a pulse modulator, the switch must isolate 

the voltage on the PFN from the load until the energy transfer is required. In 

response to an applied trigger signal, the switch must initiate conduction rapidly 

and provide a low impedance connection so as to minimise power dissipation. 

After transfer, the switch must recover its isolating condition so that the PFN 

may be recharged. In summary, a switch is required to:

(i) insulate high voltages;

(ii) switch on with precise timing;

(iii) conduct with small power dissipation;

(iv) recover its high voltage insulating properties rapidly.

In implementing the above four requirements, we recognise that the essential 

elements in a gas discharge switch are a cathode, a gas, an anode, and a means 

of triggering. An insulating envelope is included to support the electrodes and 

contain the gas at the required pressure. The geometry of the electrodes, their 

spacing and the gas pressure are arranged to provide a high voltage hold-off

until the switch is triggered into its conducting state. When the switch is

conducting, a plasma connects the cathode to the anode. At the end of the 

current pulse, the plasma recombines and the gas recovers its insulating
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properties. Voltage may then be applied to recharge the energy store in 

preparation for the next pulse.

The description above can be applied to two different categories of gas 

discharge switch, the high pressure switch and the low pressure switch. Spark 

gaps are high pressure devices, used widely for applications which require very 

high voltage hold-off (up to 1 MV) and high rate of rise of current. They 

operate satisfactorily at low repetition rates and because of the high energies 

involved are rarely called upon to do otherwise. The thyratron is a low pressure 

switch which can be used at voltages up to 200 kV. It can accommodate 

moderate charge transfer at high rates of rise of current up to 10'  ̂A/sec, and 

may be triggered precisely at repetition rates up to 100 kHz. With this 

performance and versatility, the hydrogen thyratron is the most widely used gas 

discharge switch in pulse modulators for commercial, scientific and operational 

military systems. The design considerations that govern its performance are 

described below.

1.3 Hydrogen thyratron design.

The variety in hydrogen thyratron design can be seen in Photograph 1.1. The 

first designs used a glass envelope with the electrodes and grids made of high 

purity nickel. The ceramic thyratron uses alumina cylinders as the envelope 

with grid and anode structures in copper, and cathodes in high purity nickel.



A further development which takes ceramic thyratrons to the highest powers 

uses an envelope which is mostly metal with alumina sections for the high 

voltage gaps.

1.3.1 Voltage design.

The design of a thyratron is governed primarily by the requirements of 

Paschen's law (Paschen, 1889), according to which, the breakdown voltage of 

an electrode/gas system is a function of the product of pressure p, and electrode 

separation d as described by

V - f ( p d )  . 1*3

The graph of this relation is of the form shown in Figure 1.3(a) and the 

breakdown voltage has a minimum at the pd  value designated pd f̂„. On each 

side of pdjniai the breakdown voltage rises fairly steeply and it is thus possible 

to find two values of pd which give the same breakdown voltage. The shape 

of the curve can be explained in terms of the electron mean free path between 

collisions. To the right hand side of pd,^, the mean free path is much shorter 

than the electrode separation d and an electron loses energy in the many 

collisions it makes as it traverses the gap. As pd  increases, the breakdown 

voltage increases. In order to cause breakdown, the applied voltage must be 

high enough to give an electron sufficient energy over one free path to make an 

ionising collision. Once this point is reached, the ionisation can multiply
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exponentially and many ions are created. The ions return to the cathode where 

they release secondary electrons and the processes constituting breakdown are 

established. To the left hand side of pd^y  the mean free path is greater than 

the electrode separation dy so an electron makes few collisions in crossing the 

inter-electrode gap. If breakdown is to occur under these conditions of low 

rates of collisional ionisation, the ions returning to the cathode must generate 

enough electrons by secondary emission to make up the collisional deficit and 

so sustain conduction. Thus, as pd  reduces, the breakdown voltage increases. 

In summary, to the right of pd^y  gas processes dominate in determining the 

breakdown voltage. To the left of pd„i„y a combination of gas and electrode 

surface processes are important. Moving further left, we arrive at the region of 

vacuum breakdown, where surface processes dominate in determining the 

breakdown voltage. These considerations are incorporated in the designs of 

thyratrons and spark gaps as illustrated in Figure 1.3(b). In the thyratron, which 

is filled with hydrogen to a pressure of about 0.5 torr, the high voltage hold-off 

is provided by the small inter-electrode spacing of about 3 mm, marked low pd 

in the diagram. Such a gap can hold-off a voltage of about 30 kV. In order 

to minimise the trigger-voltage requirement, the cathode/trigger-grid spacing, 

marked pd„i„ in the diagram, is set at about 15 mm. The right hand side of the 

Paschen curve is applied to the design of the envelope of the thyratron, which 

is usually in atmospheric air, and the high voltage electrode must have a spacing 

of about 3" from other electrodes.
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Although the high and low pd regimes both result in high voltage hold-off, they 

give rise to different behaviour when the discharge is triggered. The discharge 

behaviour is related to the ionisation coefficient y\y whose variation with Efp is 

shown in Figure 1.4. Note that, in Figure 1.4, spark gaps operate to the left of 

the maximum and thyratrons operate to the right of the maximum. On the high 

pressure, left hand side of Figure 1.4, breakdown is initiated by electron 

avalanches which propagate across the high voltage gap (Raether, 1964; 

Williams & Peterkin, 1989). Further current conduction through the ionised 

path causes heating. Since the gas density reduces with temperature, Elpy and 

therefore t], increases and the discharge concentrates into a channel, with 

conduction taking place at high current density from a very small area of the 

cathode. The concentration of energy on a small area of the cathode causes 

cathode material to evaporate. The metal vapour usually has a lower ionisation 

potential than the gas, and so a metal vapour arc develops and is maintained 

throughout the discharge. On the right hand side of Figure 1.4, the discharge 

develops as a uniform glow rather than a discrete arc channel. Any localised 

heating tends to reduce the gas density in that area and Elp increases, leading 

to a decrease in r], which acts to oppose the concentration of current to a small 

area of the cathode. The glow therefore fills the inter-electrode gap and covers 

the cathode and anode surfaces so that the surface current densities are much 

less than is the case with arc conduction. The result is that evaporation of 

electrode material plays little part in the glow discharge conduction processes 

of the thyratron.
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We have seen that gas discharge switches fall into two categories depending on 

how voltage hold-off is achieved. To the right of the Paschen minimum, where 

pd  values are large, we find the region of the spark gap. Here the discharge 

takes place in the arc mode as described above. To the left of the Paschen 

minimum we have the region of the thyratron with conduction usually taking 

place in the glow mode.

1.3.2 Cathode design.

The cathode surface in a hydrogen thyratron forms the interface between 

metallic and gaseous conduction in the discharge circuit and the electrons of the 

main current pulse are emitted through it. Figure 1.5(a) reminds us of the 

electron energy distribution in a metal. The saturation current density, J^, 

available from the cathode is given in A/cm^ by.

. i m ±  1 .
Jg = 120 g  ̂ ,

where ^  is the work function in electron volts at the operating temperature, T, 

Because of the variation in ^  with temperature it is customary to express it as

4> = <t>o(l + a T) , 1.5

where a  is the temperature coefficient of the work function
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Equation 1.4 thus becomes

-11600*0
/ç  = (120 e

1.6

It is usual to calculate Jg by using <j)o and the bracketed constant which is 

designated A. For tungsten at a temperature of 2520 K with ^  = 80 and 

= 4.54, the value obtained for Js is 0.4 A/cm .̂ For a thyratron cathode, this 

emission current density is too low and the operating temperature too high to 

be useful. In order to supply the currents demanded from a thyratron cathode 

at temperatures below 1500 K, it is necessary to find a ’low temperature’ 

cathode with an emission density in excess of 10 A/cm .̂ From equation 1.4, 

large increases in Jg can be obtained if the work function can be reduced. 

Methods for achieving a lower value of work function are discussed in the 

following paragraph.

Figure 1.5(b) shows the potential close to the surface of a clean metal in 

vacuum. The height of the potential barrier, and thus the effective work 

function, can be reduced by application of an external positive field. 

Unfortunately, in a practical cathode, it is not convenient to implement schemes 

where such a field could be applied. However, changes to the effective work 

function of the cathode surface may also occur as the result of the adsorption 

of a monolayer of foreign atoms or molecules. When the adsorbed layer is 

electropositive with respect to the substrate, its atoms become polarised with
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their positive charges outwards and the effective work function is reduced, as 

shown in Figure 1.5(c). The magnitude of the reduction in potential, V', 

depends on the charge separation, d and the number, w, of adsorbed particles so 

that,

/ _ n e dV' = 1.7

For a typical value of » = lÔ '̂  atoms/cm^ and d of the order of the atomic 

radius, F' may be as much as 3 eV (Jenkins, 1969). The work function of 

various types of atomic layers on tungsten is given in Table 1.1. Before going 

on to describe practical thermionic cathodes as used in thyratrons, it is worth 

noting that the presence of an electronegative layer on the cathode surface can 

have precisely the opposite effect to that described above. In the 

electronegative case, Figure 1.5(d), the layer is polarised with the negative 

charges away from the cathode and the effective work function is increased by 

V\ In practice, electronegative contamination is likely to result from the 

chloride ions transferred in fingerprints. Other electronegative contaminants 

may be deposited from the residual atmosphere in the assembled device, with 

oxygen, water vapour and carbon dioxide being the possible sources.

Although Table 1.1 indicates that a large reduction in work function can be 

achieved by applying a layer of say, barium, to a tungsten surface, such an 

approach does not directly offer a useful cathode, since the layer can be
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disrupted by evaporation and ion bombardment. As a result, practical cathodes 

based on the monolayer principle described above, depend on an internal 

reservoir of the active material to replenish the surface monolayer. For 

thyratron use, these 'dispenser' cathodes take two forms, the impregnated 

cathode and the 'L' cathode. The widely used impregnated cathode consists of 

a porous tungsten cylinder with barium calcium aluminate in the pores. The 

tungsten cylinder is formed from milled powder, isostatically pressed to a 

density of about 70% and machined to size. The porous cylinder and the 

imprégnant are heated to about 2000 K and the now molten imprégnant is 

drawn into the tungsten matrix by capillary action. The imprégnant is usually 

a 5:3:2 mix of barium, calcium and aluminium oxides. In order to release the 

barium and calcium, the cathode is 'activated' by heating under vacuum. After 

initial outgassing at about 700 K, the temperature is raised to about 1400 K and 

barium is produced in the matrix, probably by the reaction,

6{BaO\Al^O^ + IF Ba^^WO  ̂ + ^{BaO\Al^O^ + 3J5a. 18

The production of free barium is also assisted by establishing a discharge to the 

cathode so that it receives a bombardment by hydrogen ions. The free barium 

is a vapour at the operating temperature of the cathode and it moves through the 

tungsten matrix by a process of Knudsen flow to coat the outer surface with a 

monolayer for which ^  is about 2 eV. The process of replenishment of the 

monolayer continues through the life of the cathode. The 'U cathode, named 

after its inventor Lemmens, has a porous tungsten shell in the form of a disc or
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cylinder, which covers a cavity in a molybdenum support structure. The cavity 

contains a mixture of the oxides of barium, strontium and calcium. If the 

carbonate is used, it must be decomposed to the oxide by careful heating while 

under vacuum. Activation in the ’L’ cathode depends on the reaction,

6BaO + IF Ba^WO  ̂ + 3Ra. 1.9

The free barium flows through the tungsten cap and coats its surface as 

described earlier. The designs of both types of cathode, including the heater 

and heat shield arrangement are shown in Figure 1.6.

It remains now to describe the most widely used of all cathodes, the 'oxide' 

cathode. This type of cathode was developed by Wehnelt in 1903 and it 

consists of a matrix of barium, strontium and calcium oxides on a nickel 

substrate. Its surface can have a work function of about 1.5 eV at 1000 K and 

this gives it the advantage of producing an equivalent emission at a lower 

temperature than the dispenser cathode. In spite of the passage of almost 90 

years since its discovery, the processes by which a successful oxide cathode 

operates are still not fully understood. However, the most probable explanation 

is that the oxide is an n-type semiconductor with barium as the donor. 

Thermionic emission would also follow a Richardson-Dushman equation 

(Jenkins, 1969). The oxide layer is laid on the surface of the cathode in a 

carbonate form and processing consists of outgassing, decomposition of the 

carbonate to oxide, and then reduction of some of the oxide to barium. In the
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thyratron case, this reduction is accomplished by bombardment of the cathode 

surface by hydrogen ions and activation thus proceeds from the surface inwards. 

The whole process involves a considerable degree of care since the 

decomposition and reduction products are water vapour, carbon dioxide and 

oxygen and the deleterious effect which these electronegative gases can have on 

the cathode surface has already been described. A further complication in 

processing any cathode heated by a tungsten filament, is that the incandescent 

filament, in the presence of water vapour, invariably suffers from progressive 

oxidation of the tungsten heater, since water vapour is decomposed on the 

filament, volatile tungsten oxide is evaporated, the tungsten oxide condenses on 

any nearby cooler surface and releases its oxygen, which then recombines with 

free hydrogen to complete the cycle. Tungsten heaters which are exposed to 

water vapour in this way can easily be reduced in diameter by 20% in a few 

hours and are rendered useless. A processing schedule for ’activating’ cathodes 

is therefore designed to ensure that the partial pressure of water vapour is 

reduced to below 10“® torr before the filament is allowed to reach its operating 

temperature.

The conditions under which a cathode must operate are somewhat different in 

the thyratron than in a vacuum device. In the thyratron, emission is required 

in short pulses, which tends to allow higher emission current densities than DC, 

but the main difference is that the thyratron cathode is required to operate in a 

gas discharge rather than in vacuum. The ions in the gas discharge are
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accelerated through several hundred volts across a thin sheath in front of the 

cathode surface when large current pulses are being conducted. The result of 

this ion bombardment is likely to be the removal of barium atoms from the 

surface monolayer and a degradation in the cathode emission. On the benefit 

side, the neutral gas atoms/molecules have the effect of reducing barium 

evaporation from the surface of the cathode, thereby prolonging its life as an 

active emitter. In addition, ions and photons from the glow cause a large 

increase in the effective cathode emission density compared with the value of 

Js calculated from equation 1.6. In the oxide cathode, the hydrogen ion 

bombardment from the thyratron discharge creates dislocations in the oxide 

structure which also enhance the emission capability (Abroyan & Movnin, 

1961). In order to make an estimate of the emission enhancement achieved in 

the thyratron, one further piece of information needs to be considered. Recent 

tests at EEV have established that the cathode heat shield structures of Figure 

1.6 contribute up to about 50% of the total pulse current drawn from the 

cathode region. Assuming that 50% of the pulse current is emitted from the 

cathode, we can state that the emission current density achieved from an oxide 

cathode is about 100 A/cm^ and from a dispenser cathode about 300 A/cm .̂ If 

the cathode emission is non-uniform, these estimates could be exceeded by a 

factor of 3-5 on some of the cathode area.
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1.3.3 Trigger design.

All gas discharge switches are triggered by the introduction of free charges into 

the voltage hold-off region. The charges are rapidly accelerated by the field in 

the high voltage gap, and collisions result in the growth of ionisation to provide 

a self-sustaining discharge between cathode and anode. The free charges 

introduced can be in the form of an electron or ion beam or a plasma. The 

usual method is to use plasma by creating a secondary discharge close to the 

high voltage region. Free charges can then diffuse into the high voltage gap 

through suitable apertures. Once the thyratron is conducting, the grid loses 

control since a negative-going pulse to the grid merely causes it to develop a 

larger positive ion sheath, thus cancelling the applied potential. The thyratron 

cannot, therefore, be switched off until the anode voltage has fallen below zero 

and the plasma has recombined. In a conventional thyratron (Figure 1.7), 

voltage hold-off is obtained by locating a baffle structure close to the anode. 

The baffle structure or part of it may be used as a trigger grid and it must also 

include apertures to allow the passage of main discharge current. Subsidiary 

trigger grids are often located just below the baffle apertures.

The first requirement in designing the grid region is to prevent the deposition 

of low work function cathode materials onto surfaces which are exposed to the 

field in the anode gap. This is accomplished by baffling the cathode so that any 

direct path to the grid apertures is obstructed. Preferably, the thyratron has two



20

trigger grids (Figure 1.7), driven by seperate trigger voltages. The trigger 

voltage applied to grid 1 may be DC or pulsed, but must not initiate the main 

discharge current on its own. The trigger voltage applied to grid 2 must be in 

the form of a fast-rising pulse which creates sufficient ionisation so that 

electrons move into the anode field. At this point in the triggering cycle, the 

geometry of the aperture design becomes important (Menown, 1960). As 

Menown points out, a compromise must be struck between an open grid 

aperture and an obstructed grid aperture. The open aperture allows significant 

anode field penetration, and the longer path for electron acceleration in the 

anode field greatly assists the rapid initiation of conduction. The obstructed 

aperture has a shallow anode field penetration and deionisation in the grid slot 

rapidly isolates the anode from the post-conduction plasma in the cathode 

region, thus ensuring rapid recovery of voltage hold-off capability. Menown’s 

preferred arrangement was an annular slot with staggered baffles beneath it, 

which gave an increase in the rate of anode voltage fall of about 30% compared 

with earlier designs. The recovery time of the annular slot design is improved 

by the addition of a negative bias voltage to the grid 2 and a recovery time 

close to 10 psec can be achieved, which is adequate for most applications.

1.4 Hydrogen thyratron operation.

The electrode waveforms for a typical glass thyratron (Figure 1.7) operating in 

a radar modulator are shown in Figure 1.8. In the "off" state the thyratron has
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a voltage hold-off of up to 40 kV. In this case, conduction is initiated by 

pulsed discharges to grids 1 and 2, with voltage waveforms as shown in Figure 

1.8. The grid 1 is fired first and creates a high current plasma in the cathode 

region. A few hundred nanoseconds later, a fast, high voltage pulse is applied 

to grid 2, and the plasma moves into the high voltage region. At this time a 

voltage spike appears at the grid and it is considered to mark the onset of anode 

conduction. The voltage on the anode falls while the current begins to rise in 

a period known as the commutation phase (Figure 1.8), The anode voltage 

reaches a low value in the region of 100 V and this level is maintained for the 

duration of the current pulse. At the end of the current pulse, the external 

circuit applies a small negative voltage to the thyratron anode and the post­

conduction plasma begins to recombine. The thyratron can withstand the 

application of positive voltage as soon as the anode field penetration region has 

de-ionised and at this point the thyratron has recovered. The recovery period 

can be as short as 3 psec, after which voltage can be applied to the PFN in 

preparation for the next pulse. Each modulator application imposes particular 

requirements on the performance of the thyratron. For example, the kicker 

magnets used to direct pulsed beams in particle accelerators must be driven with 

precise timing by a current pulse with a short rise-time (Fiander et a l, 1978). 

Thyratron performance parameters and the testing required to establish them, are 

defined in British Standard BS9014, extracts of which are reproduced in 

Appendix A. The timing parameters of the thyratron are briefly described 

below. The anode time delay, is the interval between the application of the
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trigger pulse and the start of switch conduction. British Standard BS 9014 

(Appendix A) defines more precisely as the interval between the 26% point 

on the unloaded grid waveform and the onset of anode conduction as indicated 

on the grid waveform by the presence of a fast oscillation called the grid spike 

(Glasoe & Lebacqz, 1948, p 352). In a conventional thyratron, represents the 

time taken for the cathode-grid discharge to develop and for electrons in the 

grid plasma to find their way to the high-voltage region through the grid slots. 

The time taken for the plasma to reach the grid slots is 40 nsec as calculated on 

the assumption of ambipolar diffusion. This value is consistent with the 

measured of 100 nsec in a typical thyratron. Temperature variations at the 

cathode and electrode structures in the period shortly after the start of operation 

can cause a drift in the switching delay and this drift is designated 

Variation in which results from the statistical behaviour of the emission and 

gaseous conduction processes and their interaction with varying electric and 

magnetic fields, is called time jitter and is designated

The emission and conduction processes in a hydrogen thyratron are critically 

dependent on the maintenance of precise operating temperatures at the cathode 

surface and in the titanium hydride capsule which acts as a gas reservoir. 

Specifications for the heater voltages, heater currents and envelope cooling 

arrangements are included in the EEV Product Data (EEV, 1989). In all cases, 

optimum switch performance is obtained when a tetrode thyratron is supplied 

with separate trigger pulses to grids 1 and 2, with the pulse to grid 2 delayed
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by several hundred nanoseconds. A data sheet describing the capability of the 

CXI625 thyratron is included in Appendix A. The CX1625 has been tested 

under demanding conditions by McDuff and Rust (McDuff & Rust, 1985). 

They used a modulator similar to that illustrated in Figure 1.9(c), designed to 

drive a XeCl laser. Such a modulator design has two features which extend the 

thyratron towards the limit of its operating range. Firstly, the rate of rise of 

current at 10̂  ̂A/sec, is about 10 times higher than that normally encountered 

in a radar or linac modulator (Figure 1.9(a)). This means that significantly large 

currents are passing through the switch while the anode voltage is falling. 

During this commutation phase, conduction is in the form of a high energy 

electron beam originating at some point in the grid aperture annulus and 

terminating at the anode disc. There is thus a high yield of heat. X-rays and 

evaporated material from the point of impact of the beam. In the case of 

prolonged operation at low gas pressure, the beam has been known to machine 

a hole or slot in an anode consisting of a molybdenum disc of thickness 2 mm. 

McDuff and Rust have demonstrated that the use of an optimum trigger system 

can allow the CXI625 to operate at high rates of rise of current for 2-10  ̂pulses 

or more. The second feature of the XeCl modulator is that the laser load has 

a time-varying impedance which falls to a value below 1 Q in the period of the 

pulse. This invariably means that the discharge circuit is under-damped and a 

large reverse voltage appears on the thyratron anode immediately after the 

forward current pulse. Unfortunately, the thyratron has a poor reverse hold-off 

capability in the presence of the post-conduction plasma. Reverse conduction
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is thus an inevitable consequence of operation in an under-damped circuit and 

it causes extensive and, eventually, fatal damage to the anode region of a 

normal thyratron. EEV developed a method to overcome this limitation as 

reported by Menown and Neale (Menown & Neale, 1978). The method 

depends on a cavity in the anode, which becomes filled with plasma during 

forward current conduction. When the anode voltage reverses, ionisation is 

already established in the cavity and the reverse current is conducted using the 

anode cavity as a hollow, cold cathode. As demonstrated by McDuff and Rust 

(McDuff & Rust, 1985), the CXI625 anode structure conducted 2-10  ̂ reverse 

current pulses, each with a peak value of 4 kA. This performance would seem 

to indicate that the structure used for the hollow anode could be used to form 

the cathode of a low pressure gas switch. Further evidence of its capability is 

presented in the following section.

1.5 The cold hollow cathode.

We are now ready to consider the design of a cold cathode for a low pressure 

gas switch. As indicated in the previous section, the hollow anode structure 

developed at EEV has been shown to function as a cold cathode at low 

pressure. A number of results of hollow anode thyratron operation have been 

published and these results show the ability of the hollow anode to conduct 

large pulse currents and to sustain operation for a large number of shots. 

McDuff and Rust (McDuff & Rust, 1990) update the CX1625 operating
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endurance to 10̂  ̂ shots, with 4 kA reverse current at 500 Hz. Weatherup 

(Weatherup, 1984) reports a 4 kA, 15 psec reverse current pulse in a narrow 

(< 3 mm) cavity. Fiander et al (Fiander et a l, 1985) report a kicker magnet 

modulator in which the hollow anode of a CXI 671 multi-gap thyratron 

conducted a 2500 A, 2 psec reverse current pulse for 30*10® shots. Menown et 

al (Menown et a l, 1986) record tests with a CX1625 thyratron in which the 

peak reverse current was about 16 kA. On the basis of this reported 

performance, we can conclude that a hollow metal cavity of appropriate internal 

dimensions can provide pulse currents of tens of microseconds, up to tens of 

kiloamps at repetition rates in excess of 500 Hz for 10̂ ° shots, and that such a 

cavity could provide a useful cathode for a low pressure gas switch.

1.6 New low pressure gas switches.

In order to use the cold hollow cathode in a low pressure gas switch, it is 

necessary to find a reliable means of triggering it into conduction. In a 

thyratron with a hollow anode, reverse conduction is initiated by the 

post-conduction plasma which is still present in the anode cavity when voltage 

reversal occurs. For a triggered switch, some other method is required. Fiander 

et al (Fiander et al y 1985) observed that the CXI671 thyratron could conduct 

a reverse current pulse in the absence of a preceding forward current pulse if 

a trigger pulse was applied to the thyratron shortly beforehand. This unusual 

phenomenon was confirmed in a CXI 154 thyratron whose design is shown in
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Figure 1.10. It was operated in a test modulator with a circuit similar to that 

of Figure 1.9(a). It was connected 'upside down', with the hollow anode 

structure at earth potential and the cathode and grids at 25 kV positive and the 

electrode labelling in Figure 1.10 indicates the polarity of the electrodes during 

these tests. Isolating transformers were used to provide heater power and 

trigger pulses to the cathode-grid region. The cold hollow cathode was 

observed to conduct forward current pulses reliably in response to trigger pulses 

as shown in Photograph 1.2. It is apparent that conduction from the hollow 

cathode is initiated by trigger plasma ions which diffuse into the grid slots by 

ambipolar diffusion. The process is identical to that occuring in a normal 

thyratron except that ions (not electrons) are accelerated across the high voltage 

gap to initiate conduction.

The switch designs to be investigated in this thesis use a cold, hollow cathode 

for main current conduction. The processes occuring during main current 

conduction are described by cold cathode glow discharge theory. In addition, 

certain properties of the glow discharge are utilised as triggering methods for 

the switches. The following chapters therefore discuss glow discharge theory 

and describe glow discharge phenomena that can be applied to switch triggering. 

The construction and testing of several new switches is described.
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Table 1.1

Work functions of different atomic layers on tungsten, 
(after Kohl, 1967, p 498)

Atomic layer 4)0 (eV)

Zirconium 3.1

Thorium 2.7

Cerium 2.7

Barium 1.6

Cesium 1.5

Oxygen-Cesium 1.4

Oxygen-Barium 1.3



Photograph 1.1
A selection of the 300 thyratron types produced by EEV Ltd
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Figure 1.2
Block diagram of the line-type modulator.
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The hydrogen thyratron in a glass envelope.
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CHAPTER TWO 

Electron beams in the glow discharge.

2.1 Introduction.

Jan Baptista van Helmont was a Flemish physician and alchemist whose 

experiments involved the collection of vapours. Helmont was the first person 

to realise that these vapours were different substances, each with its own distinct 

properties. He observed that a vapour does not have a definite form, but 

expands to fill a closed volume. Helmont considered therefore, that vapours 

were examples of matter in disorder. In 1620, he called them 'chaos', a Greek 

word representing the formless void supposed to exist before the ordered 

universe. As a result, such a vapour is now known as a 'gas'.
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About 200 years later another level of chaos was explored when Faraday, 

amongst others, began to study the passage of electric currents through low 

pressure gases and the glow discharge was discovered. The first observation of 

electron beams, or cathode rays as they were then called, in low pressure gas 

discharges is attributed to Plücker (Plücker, 1858). In his discharge tubes he 

observed the ionised track of rays generated at the cathode, and the fluorescence 

they excited on striking the glass walls. Cathode rays in gas discharges were 

further studied by Goldstein (Goldstein, 1899). New phenomena were revealed 

in these early gas discharge tubes, leading to the development of ideas about the 

structure of matter, and the eventual discovery of the electron by J.J. Thomson. 

The principal concern of this thesis is the application of such glow discharge 

electron beams to high voltage, high current switching. However, it should be 

noted that the ability to produce directed electron beams in low pressure gases 

in a controlled way, opens up possibilities in a number of different fields. This 

chapter therefore introduces some glow discharge physics and relates it to the 

production of electron beams in low pressure gases.

2.2 The glow discharge.

2.2.1 Introduction.

When an electric field of sufficient strength and duration is applied between two 

electrodes in a low pressure gas a glow discharge results (Photograph 2.1).
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Conduction is initiated by free electrons which accelerate in the field until they 

begin to make inelastic collisions with gas molecules. The major products 

resulting from these collisions are electrons, ions and photons. The ions and 

electrons move under the influence of the field but in opposite directions. The 

electrons travel to the anode and make further inelastic collisions with gas 

molecules on the way. The ions are drawn to the cathode and collect electrons 

from its surface to become neutral particles again. Ions bombarding the cathode 

also cause extra electrons to be emitted, and thus a cycle is established which 

allows the current flow to be sustained. The discharge current grows until it is 

limited by the external circuit, usually in tens of nanoseconds. The electric field 

between the electrodes is now distorted by the presence of charges and the 

distinctive dark and bright regions of the discharge are developed. Photons are 

emitted from the bright regions, where excitation occurs, giving the discharge 

its characteristic appearance. The photons play an important role in the 

maintenance of the discharge, as some produce electrons from the electrodes, 

while others produce electrons in the gas. In the steady state, every electron 

leaving the cathode creates enough ionisation and excitation in the gas to cause, 

ultimately, one further electron to be emitted from the cathode. This is known 

as the maintenance condition. The operating conditions in the steady state are 

determined by the parameters of the circuit in which the glow discharge is 

connected.

As can be seen in the current/voltage characteristic of a typical glow discharge
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in neon (Figure 2.1) there are a number of well-defined modes. As the 

potential between the electrodes is increased, small bursts of current of the order 

of 10"̂ ® A are recorded. The electrons which initiate these bursts are released 

by the action of cosmic rays, natural radioactivity, and ultra-violet light. 

Illuminating the cathode with an intense ultra-violet source provides continuous 

emission from the cathode and gives rise to the Townsend or dark discharge 

whose position on the characteristic is indicated by the dotted line in Figure 2.1. 

As the current increases, it becomes independent of any external ionisation (at 

B), and the discharge is self-sustaining. The voltage at which this occurs is 

called the breakdown voltage. The voltage falls rapidly to a low level (after C), 

where it remains steady as the current is increased. The region between E and 

F is called the normal glow discharge and it is characterised by a constant 

discharge voltage and a constant current density at the cathode, so that as the 

current is increased, the area of the discharge covering the cathode is increased. 

At point F, the entire surface of the cathode is covered. Now, in order to 

increase the current, it is necessary to increase the electron emission per unit 

area at the cathode. The voltage across the discharge therefore rises. This is 

the region of the abnormal glow discharge (F to G). Beyond G a transition 

from glow to arc occurs, and the current is drawn from localised spots on the 

cathode surface, accompanied by evaporation of the cathode material. In the 

transition to the arc mode, the voltage drops from hundreds to tens of volts and 

huge currents may be drawn from the cathode. It is customary, therefore, to 

limit the current that can be drawn from the power supply to prevent prolonged
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operation in this damaging mode.

2.2.2 The glow discharge regions.

A glow discharge is a highly complex system in which there are many atomic 

and molecular species undergoing a variety of dynamic processes. Nevertheless, 

the main mechanisms of the glow discharge are reasonably well understood 

(Chapman, 1980; Druyvesteyn & Penning, 1940; von Engel, 1955; Francis, 

1956). The most obvious visual feature is the variation in light intensity which 

identifies the different regions and indicates a variation in their other discharge 

parameters as detailed in Figure 2.2. The cathode dark space, negative glow 

and Faraday dark space comprise the cathode regions, and they arise from the 

need to generate electrons from the cathode. The positive column, when 

present, serves principally to complete the connection to the anode. As will be 

shown, the electrons emitted from the cathode have a high velocity component 

perpendicular to the cathode surface, and under certain conditions of voltage, 

gas pressure and electrode geometry, form the distinct beams of the e-beam 

discharge.

2.2.3 The cathode dark space.

The processes essential to the maintenance of the glow discharge are driven by 

the cathode dark space (CDS). There is a strong electric field in the CDS
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which arises from the large positive space charge in this region. The exact form 

of the variation of field strength with distance from the cathode is still a matter 

of debate (Ingold, 1978), but it is usually assumed to have a high value at the 

cathode surface decreasing linearly to zero at the boundary of the negative glow, 

and this implies a uniform positive space charge density throughout the CDS.

Electrons are ejected from the cathode by the impact of ions, neutrals, and 

photons, and are accelerated by the electric field until they begin to excite and 

ionise the gas. There is a thin, completely dark area just in front of the cathode 

called the Aston dark space where the electron collisions are elastic only. At 

the point where the electron energy reaches the peak of the excitation 

probability, about 15 eV in atomic hydrogen, a very thin cathode glow is 

formed. The electron energy continues to increase rapidly beyond this point but 

excitation becomes much less probable, as may be seen in graphs of excitation 

cross-section against electron energy (Figures 2.3 and 2.4), Similar graphs for 

the total ionisation cross-section are shown in Figures 2.5 and 2.6. The 

situation for hydrogen is summarised in Figure 2.7. The cross-sections have 

broad peaks and fall off at values over 100 eV. Since the CDS will have at 

least a few hundred volts across it, many of the electrons cross the CDS without 

making any collisions and enter the negative glow with an energy equal to the 

full voltage across the CDS, This stream of high energy electrons creates 

ionisation and excitation in the negative glow. The photons arising from these 

processes are energetic enough to cause photoemission from the cathode and
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they make a significant contribution to the total electron emission.

The ions created in the CDS, and those which enter it from the negative glow, 

are accelerated towards the cathode, where they recombine and release 

secondary electrons. There are many possible collision processes in the gas, and 

the energetic particles that impinge on the cathode in an argon discharge have 

been studied by Davis and Vanderslice (Davis and Vanderslice, 1963) using a 

cathode with a small hole leading to an analyser. They found that about half 

the ions become neutrals without losing their directed energy, which makes 

charge transfer a fairly important process in the CDS. As a result of their larger 

charge exchange cross-sections, there are more fast atomic ions than molecular 

ions reaching the cathode.

2.2.3.1 Theory of the cathode dark space.

Early cathode dark space theories are based on Townsend's dark discharge 

theory (Townsend, 1915), where he assumed that the growth in electron current 

could be described by an exponential increase with distance x  from the cathode 

giving

AT/%) = N /0) , 2.1

where is the electron number density and a  is the first ionisation coefficient. 

He then assumed that electrons are released by ions accelerated back to the
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cathode and that this gave an electron current density Nj(0) related to the 

incoming ion current density by

N/0) = - y N /0) + No , 2.2

where Nq is the emission caused by an external source and y is the second 

ionisation coefficient. Further manipulation of these equations leads to the 

equation for current growth in an externally maintained Townsend discharge

where d is the distance between the electrodes. For a self-sustained discharge 

there is no external source of ionisation and we have Nq = 0, This equation 

shows that, for there to be a current to the anode, the denominator must also be 

zero. The maintenance condition for a self-sustained discharge is then

1 + 1 = . 2.4
Y

Since a  depends on the electric field, the maintenance condition defines the 

field required to maintain a self-sustained discharge. In the CDS of normal and 

abnormal glow discharges the field is a strong function of x  and a  is replaced 

by a ' , which is defined by

OL dx , 2.5d  JO
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Since a ’ depends strongly on the gas type and pressure and y depends on gas 

type, cathode material and the cathode surface condition, it is clear that the 

properties of the CDS will depend markedly on these factors. In spite of the 

simplifications, which cause some inaccuracy in detailed predictions for the 

normal and abnormal glow discharge, insight can be gained into various 

practical situations on the basis of this simple outline. In fact, this model and 

the maintenance equation forms the basis of most presently accepted theories 

of the cathode fall.

An introduction to theories of the cathode dark space and a review of particular 

examples is given by Druyvesteyn & Penning (1940) and Francis (1956). A 

modem account of the glow discharge and theory of the cathode fall is given 

by Ingold (1978). The general approach is to relate the total current density; 

to the secondary processes at the cathode to obtain

J = Jp * h  = IpO- + Y)

or 2.6

i  = + y) .

where Np is the ion number density and is the ion velocity. Note that the 

maintenance condition is included in this equation. In order to develop the 

equation further, it is necessary to know the electric field, Z, in the dark space 

and the ionisation function of the gas. Three equations are required.
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These are:

1. Poisson’s equation:

dx
e { N  -  N,)

2.7

2. The continuity equations: 

For ions

z = 2.8

and electrons

z -
dx

N y . +e e dx
2.9

where D is the diffusion coefficient and z  is the number of ionisations/cm^.

3. The mobility equations:

= F(X) ie, h X  or , 2.10

Vg = F(X) le. b^X or y/X . 2.11

From these equations, Z, Np and can be determined as functions of x. With 

Z  = 0 atx = ^ as a boundary condition, where d is the width of the dark space, 

we have

2.12
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thus allowing the voltage across the dark space , j  and d to be determined. 

A particular example is an early theory due to von Engel & Steenbeck (von 

Engel & Steenbeck, 1934), who omitted the equations of continuity and 

introduced the experimentally determined linear field distribution

They used = bpX and a  as given by Townsend’s relation

B

where A  and B are constants, and derived

b- t/2
;  = (1 + Y )  iL  . 2.15

IT ^3

The theory compares reasonably well with experiment as shown in the curves 

of Figure 2.8.

2.2.4 The negative glow.

The negative glow (NG) is a region of almost zero field and high luminosity. 

It has a sharp boundary with the CDS and a diffuse boundary with the Faraday 

dark space. The light emitted from the NG is a by-product of the excitation of 

gas molecules by energetic electrons. In fact, the negative glow is driven by the
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stream of electrons arriving from the cathode. They lose their energy by 

making inelastic collisions with the gas and, as there is essentially no field to 

accelerate them, they rapidly thermalise. The electron energy distribution in the 

NG has been measured using a retarding field analyser technique (Gill & Webb, 

1977). It shows a significant peak of electrons which have suffered no 

collisions and have an energy equal to the cathode fall, and a tail of electrons 

going down to lower energies. Below 20 eV there is a large group of slow 

electrons, arising from ionising collisions in the CDS, having energies which 

allow them to excite the intense glow at the cathode end of the NG. The faster 

electrons lose energy in inelastic collisions in the NG until they begin to 

participate in excitation. There is, therefore, a gradually decreasing intensity 

away from the cathode. The length of the NG is essentially determined by the 

distance over which collisions reduce the electron energy below the level 

required for excitation. The statistical nature of the collision processes gives an 

indefinite boundary between the negative glow and the Faraday dark space.

2.2.5 The hollow cathode effect.

Before proceeding with the description of the glow discharge, it is appropriate 

to consider the influence of cathode geometry on the efficiency of the discharge 

sustaining processes. Figure 2.9 shows a discharge tube in which the separation 

of parallel cathode plates can be adjusted. When the plates are at their greatest 

separation, each has its own cathode regions and these regions connect to the
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anode via a common positive column. As the cathode plates are brought 

together, the positive column shortens, but no change occurs in the cathode 

regions until the negative glows begin to overlap. When this point is reached, 

the negative glow brightens and the cathode current density at a given voltage 

increases markedly. Further reduction in the cathode separation causes an 

increase in cathode current density as shown in the graph of Figure 4.3. The 

maximum cathode current density for a given voltage is obtained from a cathode 

in the form of a hollow cavity which encloses the cathode regions. The 

increased cathode current density observed with hollow cathodes is the result 

of an increased capture of photons from the negative glow by the cathode 

surface (Little & von Engel, 1954) and the effect emphasises the importance of 

photons from the negative glow in sustaining cathode emission. A second 

feature of a hollow cathode geometry is that electrons can oscillate between 

opposing cathode dark spaces and the ionisation density of the negative glow 

is increased. In summary, the use of a hollow cathode in a glow discharge 

increases the cathode current density and thus the available current, at a given 

voltage.

2.2.6 The Faraday dark space.

The Faraday dark space (FDS) is a region of near zero field, where all the 

electrons have low energies (<1 eV) due to collisions in the NG. In contrast to 

the cathode dark space, which is dark because the electrons are too fast to cause
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excitation, the FDS is dark because its electrons are too slow. As a result, the 

current in the FDS is carried by diffusion of electrons from the NG, where there 

is a high concentration of electrons and ions. However, at sufficiently low 

pressures, high energy electrons accelerated in the CDS travel through the FDS 

causing local ionisation in the path of the beam (Goldstein, 1899; Smith, Tait 

& Whiddington, 1949). At the anode end of the FDS, the field increases and 

electrons gain enough energy to excite and ionise the gas. This marks the start 

of the positive column.

2.2.7 The positive column.

The positive column (PC) is a uniform, luminous plasma whose principal 

function is to connect the FDS to the anode region. Its common use is in neon 

signs, where it will extend through twisted shapes of various lengths. In a 

system with a movable anode, it is the PC which accommodates the change in 

inter-electrode gap as shown in Figure 2.2(vi). Ionisation in this region is 

maintained against recombination and losses to the walls by the energy supplied 

to the electrons by the electric field. In contrast with the CDS, the field is low 

and constant in the PC, and Poisson's equation thus indicates overall charge 

neutrality. The electron energy is in equilibrium with the field and can be 

assumed to have a Boltzmann distribution. The greater mobility of electrons 

means that they carry most of the discharge current in the PC (Figure 2.2(v)). 

In order to maintain the continuity of current and the overall neutrality of the
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PC, electrons enter from the FDS, and ions are replaced by those moving in 

from the anode region.

2.2.8 The anode fall.

The principal role of the anode in a glow discharge is to transfer electrons to 

the external circuit. The field in the PC draws ions away from the anode region 

and a negative space charge sheath forms in front of the anode thereby giving 

rise to a potential difference called the anode fall. The anode fall must be of 

sufficiently high value to ensure that enough ions are available to balance those 

moving out of the cathode end of the PC. The energy of the electrons must 

therefore increase in the anode fall to create this ionisation. In fact the 

magnitude of the anode fall is usually found to be close to the ionisation 

potential of the gas, although the ionisation of already excited atoms may cause 

the value to be smaller (Druyvesteyn, 1937). The increased electron energy also 

gives rise to sufficient excitation to cause a reasonably bright anode glow. In 

discharges where the anode is moved into the FDS, a region where there is no 

field to draw ions away, ions and electrons diffuse together to the anode and 

charge neutrality is maintained. The anode fall may become very small or 

perhaps negative as evidenced by an abrupt change in the voltage drop across 

the discharge and the disappearance of the anode glow.
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2.3 Charged particles in the cathode regions.

The discussion above gives an introduction to the general behaviour of a glow 

discharge. As we have seen, the cathode regions of the glow discharge are 

essential for its maintenance. In fact, a discharge can be maintained with only 

a cathode dark space and a negative glow as is common in sputter deposition 

systems. We shall now examine the behaviour of electrons and ions in the 

cathode regions and describe the conditions that give rise to a well defined e- 

beam in a glow discharge. An initial appreciation of the strongly directed 

nature of the current flow in these regions can be gained from the results of two 

simple experiments. In a discharge tube whose cathode is mounted 

perpendicular to the anode, it is observed that the boundaries of the cathode 

regions remain parallel to the cathode surface and that it is the PC that deforms 

to make the necessary connection to the anode. Again, with small obstacles 

placed in the CDS, a distinct shadow is cast both on the cathode and in the NG 

(Wehnelt, 1899). These experiments lead to two important conclusions: the 

electrons have a large velocity component directed away from the cathode at 

right angles to its surface, and secondly, the ion flux is essential to the emission 

of electrons and is also directed at right angles to the cathode surface.
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2.3.1 The origin of the ions.

This raises the question 'where do the ions originate’? Going back to the model 

of the CDS presented in §2.2.3.1, it was assumed that the ionisation required to 

sustain the discharge is produced in the CDS. Using equation 2.1 and 

substituting nq for a, where n is the number density and q is the ionisation 

collision cross-section, the number of electrons at the CDS/NG boundary is 

given by

= iSr/0) , 2.16

where x  is distance from the cathode. Each electron that leaves the target is 

multiplied by in crossing a CDS of length L. This result can be applied to 

the data of Davis & Vanderslice who found a CDS thickness of 1.3 cm for a 

discharge voltage of 600 V in argon at 60 mtorr {n = 2.1-10^ )̂. Taking the 

maximum ionisation cross-section for electrons in argon at 100 eV as 2.910"^ ,̂ 

this gives an upper limit on electron multiplication of 2.2. Each of these 

electron impacts forms a new ion as well as a new electron, so that for each 

electron that leaves the cathode, ions will be formed. As each of these

ions hits the cathode, y secondary electrons are emitted and ions are

generated in the dark space. Typical values for y for most metals are usually 

less than 0.2 and this gives an ion production rate of 0.24 ions per ion. Photo­

ionisation and ion-impact ionisation may also be occurring. Unfortunately, 

accurate data for photo-ionisation in a discharge are not readily available but
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it is possible to estimate the contribution from ion-impact ionisation. Under the 

Davis and Vanderslice discharge conditions and taking an ion impact ionisation 

cross-section of 5-10"̂  ̂ cm  ̂for ions of 100 eV or so (von Engel, 1955 p.57), 

an ion multiplication factor of 1.15 is obtained. This brings the ion production 

rate up to 0.28 ions per ion. In order to maintain a steady discharge, a 

production rate of 1 ion per ion is necessary (see the maintenance condition in 

§2.2.3.1). Examination of the equation shows that this would only happen if L 

was between 3 and 4 cm and errors of this size in L are improbable. The 

alternative is to have y = 0.8, which is unlikely, although the contribution of 

neutral and photon bombardment have not been included in this analysis. It 

must be noted, however, that the q values used are the maximum possible and 

are unlikely to be realised in practice.

Druyvesteyn and Penning (1940) estimate the number of ions produced in the CDS 

and the NG for a 200 V and a 1000 V cathode fall. When an electron leaving the 

cathode creates/ qjs ions in the CDS and ions in the NG with a fraction .s of the 

electrons in the NG returning to the cathode, we have

= 1 . 2.17

In order to derive values for and Ĵ jq, they divide the CDS into four parts and 

use data for ionising efficiencies at each of the four electron energies to calculate 

the numbers of ions produced. They also give values for the length of the CDS, 

d̂ ; the electron mean free path X at half the CDS voltage; and the length I in which
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an electron of energy eV  ̂causes one ionisation. Their results indicate a significant 

amount of ionisation in the CDS of the normal glow discharge at 200 V (Table 

2.1), but a trivial amount of ionisation in the CDS of the abnormal discharge at 

1000 V (Table 2.2). Our conclusion must be that there is not enough ionisation in 

the CDS alone to support the discharge, especially in the abnormal glow, and that 

many of the electrons cross the CDS without making a collision. We thus expect 

that many of the ions which bombard the cathode will originate in the NG and that 

the electron energy distribution in the NG will have a high energy component 

which will increase in magnitude as the gas pressure is reduced and as the 

discharge voltage is increased,

2.3.2 Supporting evidence.

Experiments reported by Brewer and Westhaver (Brewer and Westhaver, 1937) 

give results which support the conclusion in §2.3.1 above. They examined the 

energy distribution of electrons at the CDS/NG boundary and concluded that less 

than 1.25 ions per electron were formed in the CDS, which is in agreement with 

the analysis above. It is interesting to note from their results that the rate of 

electron formation falls markedly as the pressure is reduced from 1 to 0.2 torr. 

They also measured the length of the NG and related it to the theory of Lehmann 

(Lehmann, 1927) for the range of fast electrons. They obtained good agreement 

and concluded that the electrons from the CDS produce the NG and that most of 

the electrons cross the CDS with no collisions.
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Gill & Webb (1977) used a differentially pumped, retarding field analyser to 

investigate the electron energy distribution in the NG of a discharge in helium. 

They applied relatively low voltages (<300 V) to create the discharge and 

produced an electron energy distribution as shown in Figure 2.10. The distinct 

peak at a retarding voltage equivalent to the full voltage across the CDS represents 

about 3% of the electron current.

Chaudri and Chaudri (Chaudri and Chaudri, 1965) used an electrostatic energy 

analyser to investigate the energy of electrons in the NG in air, oxygen and CO .̂ 

Their results at constant pressure in air are reproduced in Figure 2.11. They 

conclude that, at low pressures, the electrons are accelerated to the full CDS 

voltage and that there are an insignificant number of collisions in the CDS. They 

show the electron energy distribution at three different discharge voltages and in 

each case it consists of a narrow peak of electrons at an energy equivalent to the 

discharge voltage. The numbers of electrons with lower energies increases as the 

pressure is increased. This is consistent with an increase in the number of 

collisions in the CDS.

The weight of experimental evidence supports the conclusion from the theoretical 

considerations in §2.3.1 that, in the abnormal glow at low pressures (< 1 torr), 

electrons cross the CDS without making collisions and travel through the NG until 

their energy is dissipated in collisions.
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2.3.3 Electron beams in the glow discharge.

The conditions under which extensive, well-defined electron beams can exist in 

a glow discharge will now be outlined. When the anode is moved towards the 

cathode in a typical glow discharge with planar electrodes, the PC reduces in 

length until it disappears, leaving the other regions unaffected (Figure 2.2(vi)). 

Alternatively, it is possible to eliminate the PC by progressively reducing the gas 

pressure. When this is done, the cathode regions expand at the expense of the PC 

and eventually the NG extends to the anode Photograph 2.1(f). The NO may reach 

lengths of tens of centimetres depending on the voltage that is applied. As the 

voltage across the discharge is increased, the NG becomes more beam-like and 

high energy electrons bombard the anode to produce heating and X-rays. The 

electron beam is emitted in a direction normal to the cathode surface. If the anode 

is placed off the cathode axis, the beam is quite distinct and travels through the gas 

until its energy is dissipated in ionisation and excitation, or until it impinges on the 

wall of the vessel at the end of its trajectory.

The conditions required for the production of an electron beam in a glow discharge 

are then as follows.

(a) An unobstructed electron path: it is necessary to move the anode off-axis 

or to place suitable apertures in the anode to allow the beam to reach its 

maximum extension.
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(b) The appropriate cathode geometry: since the electrons move at right angles 

to the cathode surface, convex cathodes will produce divergent beams and 

concave cathodes will produce convergent beams; cathodes with holes in 

line with an anode aperture are particularly effective in producing well- 

defined beams,

(c) Operation in the abnormal glow regime: this will require cathode current 

densities well in excess of 100 pA/cm^ in the case where hydrogen is used.

(d) Operation at low pressure: this ensures that few collisions take place in the 

CDS and increases the range of electrons in the NG; in practice, distinct 

beams can be found at pressures below 1 torr in most gases.

2.4 The electron beam discharge.

A particular example of an electron beam discharge in deuterium is shown in 

Photograph 2.2. The electron beam extends from a hole in the anode, which is 

placed close to the cathode. We can confirm that the excitation of the gas 

molecules which mark the beam is due to energetic electrons by the direction of 

their deflection in a magnetic field (Photograph 2.3). The cathode of this device 

has a hole which is 3 mm in diameter by 15 mm deep, and the e-beam discharge 

only appears when the pressure is below 1 torr. A typical operating point for this 

arrangement is 0.3 torr, 3 kV, 3 mA. Increasing the gas pressure beyond -1 torr
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causes a change to the hollow cathode mode, and a well-defined beam is no 

longer apparent. Typical operating parameters are now 1 torr, 0.5 kV, 20 mA. 

The key difference between these two modes is a sudden change in impedance. 

The e-beam discharge is characterised by a high voltage drop and a positive 

resistance. This is in contrast to common discharges which have a low voltage 

drop and a negative resistance and require a series resistance in the circuit to 

prevent the full short circuit current being drawn from the power supply. The 

nature of the e-beam discharge will be investigated in Chapter Three.
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Table 2.1

Ionisation parameters in the normal glow.

Pdr pXdOOV) pl(200V) JcDS . Im
He 1.37 0.25 0.87 2.6 6.1

A 0.30 0.05 0.095 13.0 3.4

Hz 0.80 0.17 0.40 7.1 2.7

(after Druyvesteyn & Penning, 1940)

Table 2.2

Ionisation parameters in the abnormal glow.

Pdc _ pX(500V) pl(lOOOV) ĈDS, _Jng
He 0.50 0.80 2.23 0.25 32.0

A 0.05 0.15 0.27 0.22 30.0

Hz 0.30 0.56 1.30 0.26 27.0

(after Druyvesteyn & Penning, 1940)

The values given in the Tables above are: the length of the CDS, the electron 

mean free path X at half the CDS voltage; the length / in which an electron of 

energy eV  ̂causes one ionisation; the number of ions/emitted electron created in 

the CDS, JcDSi ^nd the number of ions/emitted electron created in the NG,
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ph 2.1 The glow discharge.
(a) Neon; 0.75 torr, 750 V, 2 mA
(b) Neon: 0.75 torr, 800 V, 10 mA
(c) Hydrogen: 0.75 torr. 840 V, 2 mA
(d) Hydrogen: 0.75 torr. 920 V, 10 mA
(e) Hydrogen: 0.25 torr. 1000 V, 5 mA
(f) Hydrogen: 0.1 torr. 3500 V, 5 mA



Photograph 2.2
Glow discharge electron beam (GDEB) guns operating in 
deuterium at 0.1 torr.



Photograph 2.3
Glow discharge electron beams bending in a magnetic field 
directed into the plane of the paper.
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Figure 2.1 (after Francis, 1956, p54)
The dependence of voltage on current for a discharge 
between copper electrodes of area 10 cm̂ , 50 cm apart in 
Neon at 1 torr.
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Figure 2.2 (after Chapman, 1980, p79)
The normal glow discharge in Neon. The luminous regions 
are drawn shaded. (see Photograph 2.1 & Figure 2.1)
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hydrogen.
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Figure 2,5 (McDaniel et al.. 1977, p533)
Total ionisation cross-sections for electrons in molecular 
hydrogen and deuterium.
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Figure 2.6 (after Chapman, 1980, p29)
Ionisation cross-sections for electrons in the noble gases.
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Total collision cross-sections for electrons in molecular 
hydrogen.
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Figure 2.8 (after Francis, 1956)
Cathode fall as a function of current density. Experiment 
compared with theory.
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Figure 2.10 (after Gill & Webb, 1977)
Electron energy distribution function close to the CDS/NG 
boundary. (Discharge of 270 V, 8 mA in helium at 15 torr 
with an electrode separation of 1 mm).
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Figure 2.11 (after Chaudri & Chaudri, 1965)
Energy of electrons in an abnormal glow discharge in air at 
low pressure for three different voltages. In each case 
the peak energy corresponds to the discharge voltage.



CHAPTER THREE 

Glow discharge electron beam guns.

3.1 Introduction.

It is usually possible to obtain electron beams in a glow discharge by 

progressively reducing the gas pressure and increasing the applied voltage to 

maintain the discharge. During this process, the discharge moves into the 

abnormal glow mode (see Figure 2.1) and emission occurs over the entire 

exposed cathode surface. In the abnormal glow discharge, the increased voltage 

ensures that the electron collision cross-section in the cathode dark space is 

much smaller than in the normal glow and the electrons make very few 

collisions. In addition, the reduced pressure means that there are less molecules
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to hit, and so, under these conditions, the electrons travel appreciable distances 

in the gas to form extensive electron beams. If the CDS is in view, it will be 

seen as a dark sheath of several mm thickness in front of the cathode. The 

electron trajectories in the CDS are directed normal to the cathode surface and 

follow the electric field lines in the CDS. The electrode geometry thus 

determines the shape and focus of the electron beam. Photograph 2.1(d), (e) 

and (Q shows the formation of an electron beam between planar electrodes as 

the gas pressure is reduced and the discharge voltage is increased. The 

discharge covers the front surface of the cathode completely and is only 

prevented from running off the rear surfaces by the insulating wall of the tube, 

which almost touches the edge of the cathode. The CDS/NG boundary is 

curved convex away from the cathode and so the electron beam diverges as it 

leaves the cathode. In Photograph 2.1(f), the divergent electron beam causes 

fluorescence on the walls of the tube all the way up to the anode. Conversely, 

the ions converge as they cross the CDS and produce a reddish pink cathode 

glow concentrated towards the centre of the cathode. In this planar electrode 

system, there does not seem to be a distinct transition that leads to the 

production of electron beams, but this is not the case when the cathode contains 

a hole of a few mm diameter as in Figure 3.1. Here, when the pressure is 

above a few torr, the discharge begins in the hollow cathode mode with a 

voltage of a few hundred volts. As the pressure is reduced, there is a sudden 

and dramatic change to a high voltage (about 1 kV) and a low current. This 

corresponds with the formation of a distinct electron beam, which emerges from
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the hole and leaves a trail of excited molecules as it passes through the gas.

In order to use these effects in a glow discharge electron beam (GDEB) gun, it 

is necessary to define the beam by limiting the extent of the discharge on the 

cathode surface; to control the focus of the beam by shaping the field in the 

CDS; and to locate the anode off the beam axis to allow the beam to reach its 

full extent. This chapter describes a number of techniques for fabricating 

GDEB guns. Current/voltage characteristics are presented for GDEB diodes 

producing electron beams in deuterium. These characteristics show that electron 

beams are produced in glow discharges which operate in a high impedance 

mode rather than in the more familiar low impedance mode. The high 

impedance discharge which produces an electron beam will be called the 

e-beam discharge. The dependence of /  upon V is obtained from the 

characteristic and the current flow in the e-beam discharge is found to be 

space-charge limited with a dependence on at high pressure and on F̂ ^̂  at 

low pressure. Mechanisms which could account for this behaviour are 

proposed. The factors which influence glow discharge electron gun design are 

discussed.

3.2 Electron beam cathode designs.

Early attempts to produce electron beam discharges for this study, revealed the 

need for good insulation over the area of the cathode that was not required for



57

e-beam generation. Failure to meet the required level of insulation resulted in 

intermittent low impedance discharges at the weak points in the insulation and 

these discharges interrupt the e-beam and overload the power supply. In 

general terms, the e-beam cathode could be shielded by solid, liquid or gaseous 

insulators. Of these, liquids can be neglected immediately because of their 

(usually) high vapour pressures and the limitations they would impose on the 

orientation of the system. Gaseous insulators are restricted to the operating gas 

of the discharge at its working pressure. A solid insulator is likely to be 

necessary in the design and is required to form at least part of the vacuum 

envelope of any e-beam device.

3.2.1 Solid insulators.

These investigations covered ceramic and glass insulation. Plastics were 

excluded since they are unsuitable for use in vacuum or low pressure systems 

for two reasons. First, they contain materials with high vapour pressures, which 

act as strong sources of contamination. Second, they deform or disintegrate at 

temperatures much above 100®C.

3.2.1.1 Flame-sprayed insulator.

Flame spraying is a technique which can be used to cover surfaces with a thin 

layer of ceramic. The system used here has the trade name ’Rokide’. The spray
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head is a modified oxy-acetylene torch which allows a rod of the ceramic 

material to be fed into the flame. The nozzle is designed to entrain the molten 

material in the flame. The ceramic emerges from the nozzle as a molten spray 

and lays down a layer of the material on the target object. The target is usually 

rotated to ensure even coverage on all sides. The insulating coating grows 

thicker as globules of molten alumina hit the surface and solidify. Since the 

ceramic on the surface is solid before fresh droplets hit it, the structure tends to 

be porous. Cathodes insulated in this way are shown in Photograph 3.1(b) and 

(c). Electron beams can be produced from ’Rokide' coated cathodes but the 

cathode performance is unsatisfactory in two respects. First, the expansion 

coefficient of the alumina and the molybdenum do not match and the heating 

of the cathode causes disruption of the coating. The maximum voltage that can 

be applied before this happens is quite low, in the region of 1.5 kV. Above this 

level the Rokide coating begins to develop cracks and the discharge concentrates 

at the breaks, intensifying the local heating to the point at which the coating 

flakes off. Second, the porosity of the structure can lead to the development of 

a spray discharge (von Engel 1955, p 207) through the alumina coating. For the 

devices shown, at voltages above 1.5 kV, emission from the pores in the 

insulator surface was observed. In essence, the coatings tested were judged to 

be unsuitable for durable, reliable devices.
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3.2.1.2 Pre-formed alumina ceramic.

High purity, alumina ceramic can be cast and fired in a variety of shapes and 

sizes, and is a common material for the production of vacuum envelopes in the 

electronic valve industry. It is a durable and robust insulator and it is relatively 

straightforward to metallise selected areas of the surface, and thus to join 

ceramics and metals using conventional brazing techniques. Ceramic cylinders 

were used as simple sleeves to insulate an e-beam cathode in a glass envelope 

as shown in Photograph 3.1(a). In a typical glow discharge regime, such as is 

found in hollow cathode light sources, this design restricts the discharge to the 

cathode hole. In the e-beam mode, where voltages in the region of 5 kV are 

applied, it is possible to initiate discharges from even the smallest breaks in the 

insulators. When voltages greater than 3 kV were applied to the devices in 

Photograph 3.1(a), discharges were observed to occur at the junction of the 

ceramic sleeve and the glass envelope. As in the ’Rokide’ case, e-beams were 

produced, but only over a limited range of voltage. Ceramic insulators can be 

more usefully employed in designs like that of Figure 3.2, where the ceramic 

forms part of the vacuum envelope.

3.2.1.3 Glass.

Glass and metal can be made to form a robust, vacuum tight seal by selecting 

the particular glass and metal so that the molten glass wets the metal and their
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respective coefficients of thermal expansion are matched over the temperature 

range from the melting point of glass to the lowest temperature at which the 

seal will be used. The glass-metal sealing process was extended in this 

investigation to provide a glass insulating layer over the complete surface of the 

cathode. The metal used was a nickel/cobalt/iron alloy (29%/17%/54%), 

known as Kovar, and the glass was an expansion-matched sealing glass. The 

cathode was formed from a Kovar rod with an axial hole drilled into one end. 

After coating the rod with glass it was sealed into a glass bulb which had a 

tungsten lead-through as anode (see Figure 3.1). Hollow tubes made from 

Kovar were used in the arrangement of Figure 3.3, in which the shaped glass 

flare on the cathode was seated on an opening in a powder glass base. The 

different expansion coefficients of the two glasses precluded joining them 

together directly. This e-beam cathode design is used as a trigger in one of the 

switches described in Chapter 5.

3.2.2 Gaseous insulator.

For obvious reasons, the only gas that can be used as an insulator in a glow 

discharge device is the working gas. The Paschen law, described in Chapter 1, 

shows that it is possible to use a gas as a high voltage insulator between two 

electrodes by arranging them in an appropriate geometry. The e-beam 

discharge appears in the low pressure region on the left hand side of the 

Paschen curve (§1.3.1). A high breakdown voltage is thus achieved by moving
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the anode close to the cathode surface to reduce the pd product. The 

breakdown voltage, as seen from Figure 1.3, can easily be made larger than the 

applied voltage, up to the point where the electric field at the cathode surface 

is strong enough (-10^-10^ V/cm) to cause field emission. An aperture in the 

anode acts to increase the pd product locally and thus a discharge occurs from 

a selected area of the cathode. Such an arrangement is shown in Figure 3.4 

with the anode closely surrounding the cathode at a distance which allows an 

e-beam discharge to be sustained.

The main advantage of the gaseous insulator is that it is self-repairing if any 

spurious discharge should occur. The solid insulator necessary to support the 

electrodes can be placed well away from the discharge region and is therefore 

protected from sputtered cathode material. In systems where the solid insulator 

is close to the discharge region, precautions against the development of 

continuous conducting films between anode and cathode, along the insulator 

surface, can be taken. However, it is more difficult to prevent deposited metal 

films from changing the shape of the electric field at the cathode and thereby 

altering the shape of the e-beam. The gas-insulated cathode represents a major 

improvement on the glass-insulated cathode since it can be designed to operate 

at much higher voltages and will withstand much higher temperatures without 

damage, A secondary advantage arises from the convenience of creating new 

electrode designs. Modifications are easily made to the metallic cathode and
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anode structures while retaining the same glass or ceramic insulator design. A 

range of possibilities is illustrated in Figure 3.5.

3.3 Electrical characteristics.

This section explores the electrical characteristics of the e-beam discharge over 

a range of pressures in deuterium using gas-insulated GDEB guns of the 

designs shown in Figure 3.4 and 3.5. Three approaches to the measurement of 

the IV  characteristic are followed in the present investigation. The first two, 

involving manual adjustment of the voltage level, are found to be of limited 

accuracy because of the rapid increase in impedance following an increase in 

power input to the cathode. The results show a drop in current with increasing 

power input. The most obvious cause of this change in impedance is a 

reduction in gas density in the cathode region as it heats. A simple analysis of 

the thermal situation at the cathode confirms that the reduction in gas density 

corresponds to the increase in cathode temperature due to the power input. In 

the third method an AC supply is used to drive the discharge, and voltage and 

current are monitored simultaneously for display on an oscilloscope. The shape 

of the AC characteristic is recorded photographically. This third method 

provides a good approach to measuring the IV  characteristic at a constant gas 

density.
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3.3.1 Manual methods of IV  measurement (1).

The manual methods to be described are all of a pseudo-DC variety. The 

experimental arrangement (1) is shown in Figure 3.6. The power is delivered 

by a switched mode supply with an adjustable output up to 20 kV at 80 mA. 

It maintains the selected voltage at a constant level and allows the current to 

vary according to the impedance of the load. The device to be tested is 

coimected in the circuit while still attached to the pumping system described in 

Appendix B. As part of the process of outgassing and cleaning the cathode, a 

discharge is established in the device, and voltage and current are recorded. 

When the impedance of the discharge is constant over three trials the device is 

considered to be conditioned. The voltage across the discharge is recorded 

using a Fluke 8021B DVM with a 1000:1 high voltage probe. The current 

through the tube is measured using an AVO 8 multimeter or a second Fluke 

8021B DVM.

3.3.2 Results obtained by manual method (1).

Immediately after the e-beam discharge is established, its current falls rapidly, 

indicating a corresponding increase in the impedance of the discharge. Graphs 

of I  against V for the cylindrical hollow cathode CHKl of Figure 3.4 are shown 

in Figure 3.7. Results at 0,6 torr for the lower graph were obtained by selecting 

a current level and increasing the voltage to maintain the current at that level
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until it became stable. As the current level in the device was increased it took 

longer for the discharge to stabilise. At the highest point of 5 mA it required 

about 5 minutes. This time-scale is consistent with an increase in temperature 

of the cathode due to discharge heating. A simple thermal analysis of the effect 

is given in §3.3.5. The graph at 0.6 torr shows a decrease in slope as the power 

input is increased. The reducing impedance of the discharge is caused by the 

decreasing gas density in the cathode region as the temperature increases.

In order to obtain IV  characteristics free from time-dependant thermal effects, 

cathode heating must be reduced. The ideal measurement method would be to 

apply a known voltage to the device and to measure the current through it when 

the discharge is established, but before substantial thermal effects have set in. 

To achieve something close to this, the following procedure was adopted. The 

discharge was established at a given voltage level, and the supply was then 

switched off. After a period of at least 1 minute, to allow the cathode to cool, 

the supply was switched on again. The voltage rose to the predetermined level 

and the current meter reading was recorded as quickly as possible. A new 

voltage level was selected and the process repeated. Results taken in this way 

at 0.5 torr gave the upper graph in Figure 3.7. It does not show a decrease in 

slope as the voltage is increased. This version of the manual IV  measurement 

method, although it is a move in the right direction, gives results which are 

limited by the response times of the current meter and the observer. An AVO 8 

multimeter and a Fluke 8021B DVM are both unsatisfactory above the level of
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5 mA in the graph (Figure 3.7) at 0.5 torr. An instrument with fast response 

and the ability to store the peak value of the measurement is required.

3.3.3 Manual methods of IV  measurement (2)

The experimental arrangement (2) is also as shown in Figure 3.6. The device 

to be tested is connected in circuit while attached to the pump system 

(Appendix B). In arrangement (2), the voltage and current signals are sent to 

a chart recorder, JJ Instruments PL2000, in order to record the 7F characteristic 

as the power supply voltage is increased manually. Unfortunately, the shape of 

the trace depends on the response time of the chart recorder in relation to the 

rate of rise of voltage applied. The maximum speed of the chart recorder (JJ 

Instruments, 1985) on the voltage axis is 0.5 ms"\ For a typical sensitivity of 

500 V/cm, the corresponding maximum rate of rise of voltage is 500 V per 20 

msec. A circuit to produce a ramp voltage with this rate of rise could have 

been constructed, but this and other forms of DC method were discontinued in 

favour of the AC method described in §3.3.7. The chart recorder was used to 

produce a sample plot (Figure 3.8) and to provide data to estimate the change 

in gas density which causes the drift in discharge operating conditions.

3.3.4 Results obtained by manual method (2).

The sample trace shown in Figure 3.8 was obtained by increasing the voltage
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in steps every 30 sec. In each interval, the voltage was manually increased to 

its new level at a steady rate in about 20 sec. The current then fell during the 

next 10 sec to give the 'sawtooth’ effect shown in the trace. As can be seen in 

Figure 3.8, the magnitude of the fall increased with increasing power input until 

the current reached a plateau level. The net effect is that the plateau current is 

lower than is appropriate for the selected (cold) gas pressure, especially at the 

higher voltage levels. This is consistent with gas density reduction in the 

cathode region due to discharge heating. It is shown in the following section 

that the decrease in gas density at the cathode results from the power input to 

the cathode.

3.3.5 Thermal effects on the e-beam cathode.

An estimate of the heating effect in the cathode can be obtained from a simple 

model of the heat flow in the cathode. A drawing of the cathode is shown in 

Figure 3.4. The cathode rod forming the e-beam emitter is made of 

molybdenum. The rate of increase of temperature of the rod is given by

dT _ Pi 
dt MS

3.1

where Pj is power input, M  is the mass of the rod and S is the specific heat 

capacity of its material. This rate of increase assumes that power losses are 

negligible. In the case considered here, the cathode is surrounded by an
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alumina sheath and the power lost by convection to the gas is likely to be small. 

The power lost by radiation to free space is given by

JP* = e o jT" , 3.2

where is radiated power, A  is surface area, e is emissivitty (estimated to be 

0.3 for the molybdenum cathode), o  is Stefan's constant and T is the 

temperature of the cathode. At a temperature of 500 K, equation 3.2 gives a 

radiated power of 1 W. Once again the presence of the alumina sheath will 

reduce this figure markedly. The indications are that most of the power 

supplied to the cathode will be removed by conduction through the support pin. 

We can calculate the temperature gradient needed to drive the heat through the 

support pin. This is given by

. 3.3
K A

where Pj is power input, I is length, A  is the cross-sectional area and k is the 

conductivity of the material. For molybdenum, K is 1.35 W cm at about 

373 K. The final equilibrium temperature of the cathode will be ÔT above the 

ambient temperature. Integration of equation 3.1 gives the time t taken to reach 

the equilibrium temperature. In practice, the time to equilibrium is found to be 

greater than t by about a factor of five because of the ongoing reduction in 

power input to the cathode as the gas density at the cathode decreases. The 

reducing gas density at the cathode and the corresponding drop in current at a
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given voltage, can be compensated for by increasing the pressure in the 

envelope. At constant power input, the ratio of the starting pressure to final 

pressure is equal to the ratio of the starting temperature to final temperature of 

the cathode, since for equal volumes

P  P
= --2 = 3.4

Pi P2

where P  is pressure, T is temperature, N  is the number of molecules, and k is 

Boltzmann’s constant. The change in gas pressure can thus be used as a crude 

thermometer. A particular example is provided by the cathode of Figure 3.4, 

operating with a voltage of 3 kV, and a current of 3 mA at a starting pressure 

of 0.4 torr. The power input is about 10 W and the radiated power is thus less 

than 10% of the conducted power. The equilibrium temperature given by 

equation 3.3 is 560 K. The final pressure required to stabilise the current at 

3 mA is 0.72 torr. The operating temperature calculated from this change in gas 

density is 520 K. This is in good agreement with the equilibrium temperature 

calculated from the heat flow.

3.3.6 Summary of manual methods (1) & (2),

The main difficulty with the measurement of IV  characteristics using the 

methods in §3.3.1 and §3.3.3 is that the power input to the cathode from the 

discharge causes its temperature to rise during the measurement. This causes
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a decrease in the gas density. As the results show, the operating point drifts 

markedly with time after ignition of the discharge. This drift tends to defeat the 

aim of observing the characteristic at a fixed gas density. Historically, this 

problem has arisen in all measurements of glow discharge properties and is 

acute in the abnormal glow at high voltages. The common method of dealing 

with it is to design a cathode with a water cooling system which can remove the 

heat generated by the discharge and keep the cathode at a constant temperature 

during the measurements.

The meters or chart recorder described in §3.3.1 and §3.3.3 cannot respond in 

a time short enough to eliminate the gas density drift. An alternative approach 

which overcomes this difficulty is to use an AC method to drive the discharge 

and to use voltage and current signals from it to drive the XY input of an 

oscilloscope (CRO). The instantaneous record of /F  which the trace gives, can 

be photographed for subsequent analysis.

3.3.7 AC method of IV  measurement.

The third experimental arrangement (see Figure 3.9) uses the AC mains supply 

to provide a controlled, repeatable voltage to the device under investigation. 

The circuit consists of a Variac for voltage control, a transformer, a high voltage 

diode and a current limiting resistor. The device sees a half-rectified sine wave 

at 50 Hz, whose magnitude is controlled by the Variac. The voltage across the
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discharge is measured by a Tektronix P6015 high voltage probe with a 1000:1 

ratio, and the current is measured as the voltage across a 994 ohm Welwyn 

wirewound resistor. These signals are fed to the X  and Y  inputs of a cathode 

ray oscilloscope (CRO) and they produce a trace typically like the one of 

Photograph 3.2.

The procedure for obtaining such a trace is as follows. Gas is admitted to the 

device until it has reached the required pressure. The voltage applied to the 

device is adjusted and the sensitivity of the CRO is optimised. The power 

supply is switched off to allow the device to cool to room temperature (~18®C). 

After an off period of at least three minutes, the power is applied and a 

photograph of the trace is taken immediately. The time interval between 

switch-on and shutter release is less than 0.5 sec. The shutter speed is set at 

1/8 sec and the photograph records 6 excursions to full voltage. A complete 

record of the characteristic is thus obtained in less than 30 cycles. This is much 

better than the DC case, since the voltage is not applied for 50% of the time. 

During the on-time, the instantaneous power P  at phase angle 6 is given by the 

product of the instantaneous voltage V and instantaneous current /. Assuming 

a resistive load.

F = 7^ sin 0 3.5

I  - Ip sin 6 , 3.6
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where Vp and Ip are the peak AC values applied. Integrating between 0 and Jt 

to obtain the power delivered during one on-period gives

P = - V .  1 ,7 1  . 3.7
2 ^

This is half the power delivered during the same time (half period) for the case 

in which the DC level is Vp. The heating effect of the discharge in the AC 

method is therefore only 25% of the heating effect of the methods used in 

§3.3,1 and §3,3,3. In fact, since the discharge current depends on F ” where 

«>1, the current waveform will enclose an area smaller than in the resistive case 

assumed above and the power delivered to the cathode will be somewhat less 

than 25% of the DC case. The AC method was therefore used for measuring 

the /F  characteristic of glow discharge electron beam diodes for the rest of this 

investigation,

A further, large reduction in cathode heating could be achieved by the use of 

a zero voltage switch on the input of the transformer of Figure 3.9, arranged to 

allow one cycle of the mains waveform to be applied on command. This would 

allow one IV  characteristic to be recorded on the oscilloscope, with a reduction 

in heating by up to 20 times. Limiting the heating in this way would enable 

studies of temperature effects to be made with greater precision.
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3.3.8 Results obtained by AC method.

Typical IV  characteristics are shown in Photographs 3.2 and 3.3. The curve 

begins at the origin with I  and V equal to zero. As the voltage increases, no 

current flows until the breakdown voltage is exceeded, at which point the 

current jumps above zero. Once the current is established, it climbs smoothly 

as the voltage increases until the maximum voltage set by the Variac is reached. 

The current then falls back close to its original track and drops evenly to zero. 

Close inspection of the photographs shows that there is a definite hysteresis in 

the trace, which becomes more pronounced as the pressure is reduced. The 

încreasing Hmb of the trace is identified by the discontinuity at striking and is, 

therefore, the lower part of the curve. The Hmb has higher values of

current for a given voltage. It may be that ion pumping towards the cathode is 

significant during the trace and that the trace corresponds to

a higher gas density at the cathode, in line with the general trend of the 

characteristic to have higher currents at higher pressures. It might also be that 

surface effects cause a change in emission from the cathode during the cycle 

but, if this is the case, the surface recovers during the off-cycle as evidenced 

by the lack of drift in the 6 superimposed cycles on the photograph. For the 

purposes of this study, data was taken from the trace as being

representative of the gas density indicated by the pressure meter.

Data is extracted from a photograph by carefully scribing the x = 0 line
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vertically followed by a set of lines parallel to the y = (1 line at convenient 

points on the graticule. The coordinates of points on the curve are measured 

with Vernier callipers. The coordinates are converted to V (volts) and I  (amps) 

using the measured graticule spacing and the sensitivity of the CRO for each 

axis. The data derived from the photographs of the /F  characteristic of cathode 

CHKl (Figure 3.4) are presented in Figure 3.10 with pressure as a parameter. 

The curves are shifted to higher voltages as the pressure is reduced and, at 

pressures below 0.3 torr, each curve has two sections with a transition region 

between them.

3.4 Analysis of the IV  characteristics.

The /F  characteristic of a glow discharge provides an important insight into the 

physical mechanisms of the discharge. In the normal glow, as discussed in 

Chapter 2, the voltage dropped across the discharge is small and remains nearly 

constant over many orders of magnitude of current. In fact, the discharge 

behaves as if it has a negative resistance and the current grows without limit if 

a ballast resistor is not included in series with the power supply. In contrast, 

the e-beam discharge has a high voltage drop and a positive resistance, 

allowing it to be run without a ballast resistor. The e-beam discharge is thus 

a high impedance discharge and high voltages, generally in the range from 1 kV 

to 10 kV and above, produce currents in the milliampere range. Its 7F 

characteristic has a distinct concave-upwards shape which is maintained until
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the device undergoes a transition to a low impedance mode, or until the limit 

of the power supply or electrode design is reached. The general shape of the 

IV  characteristic with its concavity upwards, suggests that the curve can be 

described by a power law of the form

/  «  7 »   ̂ 3 , 8

where n > l .  In previous work (Holliday & Isaacs, 1 9 7 1 ;  McClure, 1 9 6 1 )  with 

glow discharges conducting in the 'e-beam mode' ( § 3 . 1 ) ,  experimental results 

yield empirical relationships between I  and V  of the following form,

I  oc 7 2 5   ̂ 3 . 9

and

I  «  7 2 -® . 3 . 1 0

It is well known that the Child-Langmuir theory of space charge limited 

electron current in a vacuum diode gives an IV  characteristic of the form

which is confirmed by experimental results obtained with vacuum diodes. Thus, 

we see that the empirical values of n in the IV  characteristic of a diode can lie 

between 1.5 and 2.9 depending on whether the diode is a vacuum diode or a gas 

diode. Whilst theory of the TV characteristic of vacuum diodes is established 

as definitive, theoretical developments for gas diodes generally are in a more
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primitive state and, for gas diodes operating in the e-beam mode, theory 

appears not to have progressed beyond statements of the empirical forms given 

in equations 3.9 and 3.10. In order to explain the mechanisms of the e-beam 

discharge, we will apply the theory of Child-Langmuir and show that a law of 

is applicable when the pressure is below a certain range. The theory 

requires modification to allow for mobility limited charge motion (Chapman, 

1980) and a law of becomes appropriate. Before embarking on a discussion 

of the law relating /  and F  for the data presented in this thesis, it is worth 

recalling the theoretical situation as regards the space charge limitation of 

current.

3.4.1 Space charge limited current in vacuum.

The simplest case of space charge limited current flow occurs between parallel 

plate electrodes of separation d and applied potential F, arranged so that the 

field is uniform between the electrodes and the trajectories of the charge carriers 

are straight lines. It is customary to consider one plate to be an emitter of 

electrons and for a vacuum to exist between the plates so that the model 

represents the situation in a vacuum diode with a thermionic cathode. It is not 

necessary for the charge carriers to be electrons however, and von Engel (von 

Engel, 1955, p 75) describes a Kunsman electrode which can emit ions. 

Naturally, the mass of the particle has a direct influence on the flow of charge 

in the diode, and mass is introduced in the development of the equation relating
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current density and potential when the energy term is considered. The variation 

of potential V with distance x  from the cathode in this system is governed by 

Poisson's equation,

d^V
dx'^ ®o

where p is the space charge density and Bq is the permittivity of free space. The 

current density vector /  is related to p by

y = p v  ,

where v is the particle velocity.

Two other relations apply, the equation of continuity.

3.13

V-jr* = 0 3.14

and the energy equation.

•i m = e 7  , 3.15

where e and m are the charge and mass of the particle. It is assumed that v is 

small compared with the velocity of light. For charge carriers of one sign only, 

these relations combine to give the differential equation,

dx^ \,2c,
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In the simple case of rectilinear flow considered here, this equation can be 

solved on the assumption that the charge emitter has a uniform potential, the 

emission velocities are zero and that there is no limitation on the flow except 

that due to space charge. Solving the equation and adding the boundary 

conditions for a parallel plate electrode system gives

or

3.18V 2

This equation is known as the Child-Langmuir equation or the 'three-halves 

power law'. The solution of the equations for non-planar electrode geometries 

is difficult, but it is interesting to note that current density still depends on 

Ivey (Ivey, 1954, p 152) points to a number of studies (e.g. Langmuir & 

Compton, 1931) confirming that the three-halves power law is valid in any 

electrode system. Ivey also discusses a number of factors which have an 

influence on the validity of the Child-Langmuir equation in thermionic cathode 

systems. Of these, the relevant factors for a glow discharge electron beam 

arrangement are:

(i) Positive ions.

In a glow discharge, positive ions are a necessary part of the discharge
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sustaining process. Since they tend to have lower velocities than the 

electrons and a correspondingly higher space charge density (j = pv), one 

positive ion can neutralise the space charge effect of many electrons. 

They would therefore tend to increase the observed current to a value 

greater than that predicted by the Child-Langmuir equation.

(ii) Initial velocities.

In practice, very few of the electrons emitted have initial velocities of 

zero. Electrons emitted with non-zero initial velocities will tend to 

increase the observed current.

(iii) Relativistic effects.

At an anode voltage of 30 kV, electrons are accelerated to a velocity one 

third that of light and relativistic effects become increasingly significant. 

The relativistic electron velocity, v, (Cobine, 1941, p 553) is given by

V = c 1 -  I
1 + j l ""

mc^

3.19

The increase in mass acts to reduce the current below the level expected.

(iv) Electron reflection and secondary emission.

Electron reflection and secondary emission at the anode or target
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increases the space charge density near the anode and causes the 

observed currents to be less than predicted.

It should be noted that the Child-Langmuir law applies to charges of either 

sign. However, it is not immediately clear how the presence of gas will effect 

the law through collisions or how the presence of positive and negative charges 

together with the factors (i)-(iv), above, might change the law. An empirical 

expression based on data collected in the present studies is developed in the 

next section.

3.4.2 The empirical IV  laws.

The purpose of this section is to determine the law relating /  and V for the data 

obtained in §3.3.8. The Child-Langmuir equation described above, indicates 

that the relationship between /  and V for the e-beam discharge is likely to be 

of the form

y = a jc" . 3.20

This equation can be reduced to the form y = /nx + c by taking logarithms to 

a base 10 of both sides to give

log y ~ « log X + log a . 3.21

If the data conforms to y = ax " then plotting log y against log x produces a
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straight line graph. A direct application of this approach to the data obtained 

from the IV  curve photographs leads to values of n which are different for each 

pressure. The reason for this can be seen from an inspection of the curves in 

Figure 3.10. The fact that the curve is offset along the V axis by a voltage Vq, 

which is different for each pressure, means that the law of the curve is actually

I  ~ a { V ' )n  , ^*22

where V  is (V ^ ^  -  V̂ ). Obtaining the value V  is equivalent to shifting the 

curve to the origin and allows n to be determined independently of pressure. 

The intercept voltage is equivalent to the minimum voltage required to keep a 

current flowing and it can be obtained directly from the TV characteristic 

photograph at each pressure. Once the curve is shifted to the origin, the law 

relating I  and V  can be determined from the log I  versus log V' graph. A set 

of log I  versus log V  graphs are shown in Figures 3.11 & 3.12. Inspection of 

these graphs indicates that the upper portions of the curves, ie. high current 

densities, have the same slopes. Figure 3.11 covers the pressure region above 

0.25 torr and Figure 3.12 covers the region below 0.25 torr. In practice, rather 

than measuring the slopes of the graphs, it is more convenient to feed the 

logarithms of /  and F ' to a computer programme which can calculate a and n 

directly from the data, based on the approach outlined in Appendix C.

As it turns out, the experimental results indicate that there are two laws. At 

pressures below a critical pressure region, I  is proportional to F̂ ^̂ . At pressures
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above this critical region, I  is proportional to V^. The three-halves dependence 

on voltage at lower pressures indicates that the current in this region is space 

charge limited in accordance with the Child-Langmuir equation. It remains 

now to consider the phenomena occurring in the higher pressure region where 

/  is proportional to F^.

3.4.3 Space charge limited current (mobility).

We shall now consider the pressure region where the /F  characteristic is of the 

form /  oc F^. As has been seen in the derivation of the Child-Langmuir 

equation (§3.4.1), the current in the diode is determined by the movement of 

charges in the electric field £. In the derivation of the Child-Langmuir 

equation, the charges are assumed to be falling freely (without collision) in the 

field and their velocity is given by

V = 1/ 3.23F .
m

At higher pressures the charges make collisions as they move in the field and 

thus acquire a drift velocity in the direction of the electric field E  given by

V = \iE  , 3.24

where p is the charge mobility. The current density j  is then given by the
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continuity equation

j  -  n e v  = ne\3^E 3,25

Combining 3.24 with Poisson's equation gives

EdE dx 3.26

Integrating 3.25 with respect to x  gives

E = 2  ̂ ^  
dx

3.27

Integrating again gives the potential difference, V, between the electrodes

2J
1 3

3.28

The current density is, therefore.

Yl
d^ ’

3.29

which agrees with the empirically determined form, /  oc

We now appear to have explanations for both the and the laws for the 

IV  characteristics of the e-beam discharge. In each case, the experimental 

results are consistent with the proposal that the e-beam discharge current is 

determined by the flow of charges under the influence of their own space charge
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in response to an applied potential. In the following section, this proposal will 

form the basis of a description of the e-beam discharge.

3.4.4 The glow discharge in the e-beam mode.

Observations of the glass-insulated GDEB guns of Figure 3.1 reveal that a 

distinct sheath is formed in front of the cathode surface. This sheath is the 

cathode dark space (CDS) discussed in §2.2.3, where it was described as a 

region with a large positive space charge. This is illustrated in Figure 2.2(iv), 

which shows the space charge density as a function of axial position between 

the electrodes. In the GDEB gun designs of Figures 3.4 & 3,5, the anode is 

spaced from the cathode by a distance of several mm and the discharge is 

restricted to the region of the aperture in the anode. For the pressures and 

voltages at which the e-beam discharge appears and at which the TV 

characteristics were obtained, it is reasonable to assume that the CDS occupied 

the space between cathode and anode. We can now propose that the 

experimental laws relating I  and V for the e-beam discharge arise from the 

space-charge limited flow of ions in the cathode dark space of the discharge. 

In the low pressure case, below 0.25 torr, the ions fall freely as they cross the 

CDS and a V '̂  ̂ law is applicable. In the high pressure case, above 0.25 torr, 

the ions are colliding with molecules in the CDS and a V^ law results.

Positive space-charge limited flow also occurs in the CDS of the normal glow
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discharge (M.I.T., 1943, p 211). However, the current flow through the normal 

glow discharge is not observed to be space-charge limited, and the reason for 

this is that the CDS width can change in response to discharge conditions. As 

can be seen from equations 3.17 and 3.29, if d can change, then the discharge 

current is constrained only by the external circuit. In the GDEB gun of 

Figure 3.4 however, the CDS width is restricted by the position of the anode 

and current flow is thus observed to be space-charge limited. Positioning the 

anode in the CDS would usually cause the discharge maintaining voltage to rise 

to such a high value that current flow would cease (Figure 3.13), but, in the 

e-beam discharge, the aperture in the anode permits the flow of ions from the 

NG to maintain the discharge.

A schematic of the e-beam discharge is shown in Figure 3.14. As in a normal 

glow discharge, it is assumed that all the electrons emitted from the cathode are 

generated by the action of positive ions or fast neutral atoms on the cathode 

surface and that photoemission is negligible because of the geometry. The 

emitted electrons travel through the CDS without creating ions and form the 

electron beam or negative glow (NG) extending away from the anode aperture. 

As a result of the low electron collision cross-section in the CDS, all the ions 

which reach the cathode originate in the electron beam (NG) and diffuse into 

the cathode region from there. The ions move through the CDS under mobility 

or free-fall space-charge limitation to complete the discharge cycle.
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3.5 Vacuum electron guns.

In general, electron guns are used to produce, accelerate and focus free electrons 

to form a beam (or beams) which can then be used for microscopy, heat 

treatment, welding, machining, excitation of phosphors, microwave generation, 

etc. Each of these applications has its own requirements for beam properties 

and these requirements strongly influence the design of the electron gun to meet 

the limitations imposed by the transport of free charges.

Conduction in a metal is carried by electrons moving through a lattice of 

positive charges so that charge neutrality is maintained. In an electron beam, 

however, each electron experiences the force produced by the presence of the 

surrounding space charge. The current density j  in the space between parallel 

plates of area .4 and separation ^ in a vacuum is related to the voltage between 

the plates by the Child-Langmuir equation (developed in §3.4.1). The current 

/  is thus given by

/ = i e„ A . 3.30
9 I m j

For a given voltage F, the current I  depends on the value of a constant 

consisting of a geometrical factor and fundamental constants. This constant 

provides a 'design' term in the equation since electrode area and gap spacing are 

at the discretion of the designer. It is given the name perveance (K). As
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Langmuir and Compton demonstrated (Langmuir & Compton, 1931), the 3/2 

law holds for electrodes of any geometry. Thus, in any diode system, the 

perveance is defined as

The equation shows that, in order to maximise the current available at a given 

voltage, the perveance of the electrode system must be maximised. The 

perveance of a vacuum diode is analogous to the conductance G of a metal, 

given by

G = -  . 3.32
V

From equation 3.30, increasing the area or decreasing the length of the vacuum 

gap increases the perveance, just as increasing the area or reducing the length 

of a piece of metal increases its conductance.

One of the major and more demanding applications for vacuum electron guns 

is in the generation of microwaves. The demands that this application puts on 

the properties of an electron beam will now be outlined. The energy of the 

electron beam is determined by its voltage. The current in the beam is then set 

by the perveance of the gun. It is generally desirable to have a large current at 

low voltage, so the perveance must be maximised. A further constraint on the 

beam is imposed in travelling wave tube design, where the beam radius is 

determined by the desired frequency of operation. This introduces the beam
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current density as an important parameter since the gun must be designed to 

produce a beam of the required radius. As will be seen later in this section, the 

challenge in electron gun design is to produce an electron beam with a high 

perveance and a high current density, simultaneously.

An overview of electron guns and beams is shown graphically by Figure 3.15. 

The perveance of the gun is plotted against maximum beam current density. 

The diagonal line L/r represents the axial distance of travel in units of beam 

radii for the beam to expand to twice its radius plotted as a function of 

perveance. Applications above this line have beam expansions which are not 

consistent with the required perveance and a method of limiting the expansion 

of the beam is needed.

A range of electron guns is shown in Figure 3.16. Guns for electron 

microscopes (Figure 3.16(b)) in which only very small currents are required, can 

utilise the electrons from a hot tungsten filament and focus them with electric 

and magnetic lenses. Guns for cathode ray tubes (Figure 3.16(c)) produce 

currents up to tens of mA (Moss, 1968). They use flat circular cathodes and 

employ beam limiting stops, so that only a small fraction of the current, perhaps 

less than 5%, is finally focused onto the screen. In contrast to this, guns for 

klystrons and other high power microwave tubes (Figure 3.16(a)) deliver more 

than 99.9% of the emitted electrons to the output beam. In order to produce 

the desired microwave output, these devices require beams with current densities
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of 1-500 A/cm  ̂at energies of 1-50 kV which travel through the appropriate 

structures for distances of 100 -  1000 beam diameters. The electrons in beams 

with these current densities experience space charge repulsion which is strong 

enough to cause them to expand by a factor of two in travelling a path length 

of 1 -  10 beam diameters. This beam spread makes some kind of focusing 

essential to maintain current density and thereby introduces particular 

requirements which the optical quality of the gun must satisfy.

In order to provide a theoretical basis for electron gun design, Pierce (Pierce, 

1949) considered only those situations for which exact solutions of the space 

charge equations for electrons leaving a space charge limited cathode are 

known, that is, infinite parallel planes, concentric cylinders and concentric 

spheres. The case of most interest for klystron and TWT design is that of flow 

from a spherical cathode to form a converging cone of electrons. The electrons 

emerge from the gun as a solid beam with cylindrical symmetry. Pierce treats 

this as a segment of flow between concentric spheres as shown in Figure 3.17. 

It is only possible to treat mathematically an electron gun design in which the 

flow is rectilinear, laminar or homocentric; in other words, in guns where the 

electrons are emitted in directions which are normal to the cathode surface and 

thereafter travel in straight lines. When the electrodes are segments of 

concentric spheres, the beam is brought to a focus at the centre and enters a 

magnetic focusing system. Unfortunately, the anode segment must have an exit 

hole for the beam and this introduces a major constraint to the performance of
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the gun. Attempts to increase the perveance of the electrode design by 

decreasing the electrode spacing are penalised by a concomitant increase in 

anode hole size. The influence of the hole on the field in the inter-electrode 

space creates an electrostatic lens (Davisson & Calbick, 1931) which increases 

the divergence of the beam. Electron gun design is therefore an attempt to find 

the best compromise between these competing factors.

In order to reduce spread of the beam in the gun, the charge-free regions 

outside the beam must contain certain fields which mimic the effect of the 

missing space charge and thus oppose the radial expansion of the beam. Pierce 

(Pierce, 1949, p 171) has shown that this can be accomplished by introducing 

a surface at cathode potential inclined at 67.5® to the edge of the beam. Such 

a gun is shown in Figure 3.18(a). The curves of perveance shown in Figure 

3.18(b) relate to this design. The perveance is shown as a function of the half 

angle of the cone of flow, and the ratio of cathode-anode spacing to cathode 

radius. From these curves it can be seen that, in order to obtain a high value 

of perveance, it is necessary to have a large cone angle and/or a small 

cathode-anode spacing. In decreasing the cathode-anode spacing, we note that 

the anode moves into the cone of electron flow and the hole must necessarily 

become larger to avoid intercepting the beam (Figure 3.19). Unfortunately, this 

requires removal of the very metal that provides the field to accelerate the 

beam. The option of decreasing the cathode-anode spacing is therefore limited 

in what it can achieve in terms of high perveance. Attempts to increase the
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perveance by increasing the cone angle are only partially successful because 

beam aberrations are introduced. These aberrations increase the diameter of the 

beam at the focal plane and thus reduce the current density. Also, the high 

divergence increases the difficulty of injecting the beam into the focusing 

structure of a klystron or TWT. These factors combine to limit the maximum 

perveance that can be achieved in practice. High power klystrons have a 

maximum perveance of about 2T0"®. Other high power microwave tubes 

achieve a maximum perveance of about lOTO"®. In general terms, the higher 

the perveance the more difficult gun design becomes (Pierce, 1949, p 168).

3.5.1 Electron beam focusing methods.

Once an electron beam has been created and converged to a desired radius, it 

is necessary to apply some force to keep it in shape while it travels through the 

succeeding structure. Electrostatic or magnetic means can be used to do this. 

It is the intention here to introduce only the use of an axial magnetic field in the 

mode proposed by Brillouin (Brillouin, 1945), since it is simple and widely 

used. The beam of electrons injected into the magnetic field, move in helical 

paths in the cylindrical beam. In the ideal case, the centrifugal force and the 

electrostatic force are in balance with the magnetic force and
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Substituting the expressions for the forces,

1 .  A2— + fwrG -  -qrbBQ  , 3.34

where 0 is angular velocity. Equation 3.34 can be rewritten in terms of the

cyclotron frequency (0̂  = 1̂  and the plasma frequency co = (r)p/Eo)  ̂to give

è + ^  û)̂  = 0 , 3.35

SO

6 = > 3.36

This has real solutions when

Wg = y^ (0̂  . 3.37

Thus, the applied magnetic field B must be greater than or equal to the 

’Brillouin field’ given by

in order for smooth flow to result.
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3.5.2 Space charge forces in electron beams.

Assume that the beam is substantially cylindrical with an energy corresponding 

to an axial voltage and that conditions of laminar flow exist so that the 

space charge produces an electric field only in the radial direction. The field 

acting at the circumference is

r  = — 2—  h   , 3.39
» 2 negro 2 7te„v/g

where q is the charge per unit length, 4  is the total beam current and is the 

beam radius.

Within the beam, the charge per unit length, g, is

3.40

and the current density, 4?» is

4) ~ 2 * ^'41
% Tq

The space charge field at radius r is given by

Er = — 2-------- . 3.42
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The field inside and outside the beam is shown in Figure 3,20. The potential 

difference between the beam axis and the beam edge can be obtained by 

integrating equation 3.42 from r = 0 to r = to give

K  = - r ^ — --------   —  > 3.43

where rj = elm. In a beam of 1 A at 10 kV the value of is 150 volts. An 

electron that has traversed from the centre to the beam edge therefore, will have 

a radial velocity given by

= /̂2r\ yjV̂  . 3.44

If an arbitrary limit for the onset of space charge effects is chosen as an 

expansion of 1 beam diameter in travelling 1000 beam diameters, then the ratio 

of Vj. to Va is 1/1000. Dividing equation 3.43 by gives

n  _ 1 4
K, 4 ^ e g v ^  I  ■ 3.45

Space charge effects can thus be expected to occur at values of perveance above 

10"̂ . The analysis given above applies when the electron beam is travelling 

through a vacuum, so we can expect that the presence of a gas will modify the 

results considerably. Collisions with gas molecules will create ions in the path 

of the beam and these ions will tend to reduce the space charge forces acting 

to expand the beam diameter. In fact, the field in the electron beam
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(Figure 3.20) will tend to retain ions near the beam axis and thus reduce the 

electron space charge repulsion. The beams shown in Photograph 2.2 are thus 

benefiting from this gas focusing.

3.6 GDEB guns.

This chapter has shown that the electron beam discharge has an/F  characteristic 

which indicates that the current flow in the discharge is space-charge limited. 

It has been proposed (§3.4.4) that the space-charge limitation occurs in the CDS 

where there is a large positive space charge due to ions. The description of 

vacuum electron guns has identified some of the factors that are important in 

designing high perveance guns and these factors are also relevant in GDEB guns 

where it is desirable to achieve higher ion currents at lower voltages in the 

interest of maximising the electron beam current. In this study, GDEB guns are 

of particular interest because they offer the possibility of directing high energy 

electrons to a remote location in a low pressure gas switch where they can cause 

ionisation in the gas and thus initiate a discharge through the switch. We have 

already observed in the previous section that the presence of the gas reduces the 

electron beam expansion. We might also expect that the gas will reduce the 

range of the beam. The average range of energetic electrons in a gas is 

described by their mean free path.
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The mean free path X is related to the microscopic cross-section q by

Nq

where N  is the number density of the gas. According to Lehmann 

(Lehmann, 1927), an electron beam with an energy corresponding to 650 V in 

hydrogen at 1 torr has a range of about 12 cm. Since the beams created by the 

GDEB guns described in this chapter have energies of several kV, it is apparent 

that they will travel several meters through the gas. In any case, for application 

to triggering in a low pressure gas switch, the beams will not be required to 

travel more than about 5 cm. As will be seen in Chapter 5 (§5.3 and §5.6), the 

GDEB gun does successfully trigger a low pressure gas switch.
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Photograph 3.1
Glow discharge electron beam (GDEB) guns with (a) alumina 
and (b & c) 'Rokide' insulated cathodes.
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Figure 3.1
A glass-insulated e-beam diode. (Kovar cathode with 1 mm 
diameter hole, 10 mm deep, filled with deuterium to 
0.5 torr.
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Figure 3.2
A ceramic-insulated e-beam diode.



C A T H O D E  n
/ : /  7 - 7

A N O D E

Figure 3.3
A glass-insulated Kovar cathode mounted in a Pyrex powder 
glass base.
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Figure 3.4
A gas-insulated molybdenum cathode of the design used for 
CHKl and CHK2.
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Figure 3.5
Gas-insulated e-beam cathode designs.
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Figure 3.6
The circuit arrangement for the measurement of the IV 
characteristic by methods (1) and (2).
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Figure 3.7
Graphs of the IV characteristic of cathode CHKl at 0.5 torr 
(upper trace, measurement at switch on) and 0.6 torr (lower 
trace, measurement after current stabilisation).
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Figure 3.8
A chart recorder plot of the IV characteristic of cathodes 
CHKl and CHK2 at 0.4 torr (overlaid on the same axes) . The 
voltage was increased at 30 second intervals. The falling 
side of each hump lasted 10 seconds.
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Figure 3.9
The circuit arrangement for the measurement of the IV 
characteristic by method (3).
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Figure 3.10
IV characteristics for CHKl in deuterium plotted on a 
linear scale.

Log I against Log V for CHK1.
1.5

Decreasing P ressure ( to rr)

-2

-2 .5

-3
?

-3 .5
0 .4  mA

-4

0 .2 50 .4 0 .3—4.5 -
1.0 0.6 0 .5

2.6 2.8 3.2 
log (V)

3.4 3.6 3.B

Figure 3.11
IV characteristics for CHKl at pressures above 0.25 torr 
plotted on a log scale.
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Figure 3.12
IV characteristics for CHKl in deuterium at pressures below 
0.25 torr plotted on a log scale.
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Figure 3.13 (after Francis, 1956, p83)
Discharge maintaining voltage as a function of electrode 
seperation showing the steep increase in maintaining 
voltage when the anode is close to the CDS/NG boundary.
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Figure 3.14
A schematic of the e-beam discharge. The CDS is a region 
of positive space charge where the electrons make very few 
collisions. Ions in the CDS enter from the NG.
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Figure 3.15 (after Brewer, 1967, p25)
An overview of electron guns and beams.
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Figure 3.17
A segment of electron flow between concentric spheres
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Figure 3.18 (after Pierce, 1945, p3l4)
Perveance curves used in design of vacuum electron guns.
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Figure 3.19
Equipotential lines in guns of different perveances. 
Field shaping electrodes are used to optimise the focus 
of the beam, but they cannot prevent the diverging 
effect of the anode aperture.
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CHAPTER FOUR 

The triggered hollow cathode switch.

4.1 Introduction.

In a conventional thyratron operating in a line-type modulator, conduction is 

initiated by creating a dense plasma between a trigger grid and the hot cathode, 

as described in Chapter 1. On triggering, the plasma diffuses into slots in the 

grid, where it comes under the influence of the anode field and causes the 

switch to conduct a large current pulse which may have a peak value of 

thousands of amps. Hot cathodes are considered to be essential in the thyratron 

to produce precise, reliable switching with low dissipation. As has been 

outlined in Chapter 1, a cold cathode switch would offer the significant 

advantages of instant readiness and low standby power consumption if a
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performance similar to a thyratron could be achieved.

In this chapter, we describe the design and operating characteristics of a cold 

cathode switch with the potential to sustain large pulse currents. The design of 

the switch is as follows: a conventional thyratron structure is used to achieve 

voltage hold-off; a hollow box serves as the cathode for the main discharge 

current; and the normal glow discharge is exploited as a triggering method.

The triggering method is based on the constant current density which is a 

characteristic of the normal glow discharge. As more current is drawn from the 

cathode, the area covered by the glow increases. In principle, this effect allows 

the area of emission of the cathode to be controlled by adjustments to the 

current drawn from it. The first step towards designing a switch to be triggered 

by this principle was to study the behaviour of glows on the inside of a long 

tubular cathode.

Experience gained from life-testing of glow modulators shows that hollow 

cathodes having diameters of 1 mm and depths of 15 mm, running a discharge 

of 15 mA in 25 torr of neon, exhibit sputtering erosion at some point down the 

hole, in a way that might indicate a preferred running depth. Consideration of 

the current flow in a long hollow cathode also suggests the hypothesis that it 

may be beneficial to the discharge to increase its current density at some given 

depth, rather than to penetrate further into the cathode. The chapter therefore
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commences with an investigation of a gas diode with a hollow cylindrical 

cathode. The penetration of the emission area into the cathode cylinder as a 

function of current is investigated, to determine if the relationship is linear or 

if there are limits to the penetration that can be achieved. The results of the 

investigation are applied to triggering a hollow cathode switch. The influence 

of the triggering arrangement on the switching properties is also reported.

4.2 A discharge with a cylindrical cathode.

4.2.1 Introduction.

In a low pressure discharge, the normal glow occurs at a current density for 

which the ionisation processes are at their most efficient. In consequence, the 

area of cathode participating in conduction grows in proportion to the current 

being drawn from it. The voltage across the normal glow discharge with planar 

electrodes has a value of a few hundred volts and this voltage is maintained at 

a nearly constant level as the current varies over several orders of magnitude as 

shown in the VI characteristic of Figure 2.1. At the smallest currents, when the 

discharge diameter on the cathode approaches the width of the cathode dark 

space, the loss of ions by lateral diffusion requires the voltage to increase to 

maintain conduction. At the largest currents, the entire cathode is utilised and 

a further increase in current entails an increase in current density which again 

requires an increase in voltage. Between these limits the discharge area simply
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expands or contracts to maintain a constant current density on the cathode.

4.2.2 The cylindrical cathode.

The shape of the cathode surface does not influence the principle of the 

optimum ionisation efficiency giving rise to the constant current density in the 

normal glow, but, for a different cathode shape, the constant current density 

may take a different value than in the case of the planar cathode. The growth 

of the discharge over the cathode surface can be studied in the hollow 

cylindrical cathode of the test diode shown in Figure 4.1. The cathode is a tube 

of nickel gauze which has the anode entering it through one end. The anode is 

insulated over most of its length by a high voltage ’pant leg’ structure which is 

used in glass thyratrons to prevent long path breakdown from the anode to the 

outside of the cathode.

Notwithstanding the attempt to restrict the discharge to the inside of the 

cylinder, a glow does appear on the outside of the cathode cylinder when the 

pressure is in the range from 1 torr to 10 torr. Under these conditions, the 

discharge originates on the outside surface of the cathode cylinder and passes 

through a small break at the junction between the cylinder and the end face to 

complete the connection to the anode inside the cathode cylinder. Investigations 

in the pressure range above 1.0 torr were conducted by initiating the discharge 

at 0.5 torr and admitting gas until the desired pressure was reached. The
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discharge remained inside the cathode cylinder during the pressure increase. At 

pressures under 0,1 torr, a discharge was not observed for an applied voltage up 

to 2 kV. The pressure range below about 0.1 torr, used in conjunction with 

thyratron high voltage structures, presents conditions which are too far to the 

left of the Paschen minimum to be of interest for high current switching in a 

glow discharge mode and was not investigated further. In the pressure range 

0.1 to 1 torr, which is the area of interest for thyratron switching, the discharge 

was active only inside the cathode cylinder. As a general description of its 

behaviour, when the discharge is established in the diode at a pressure of 

0.5 torr, the discharge glow remains near the anode. As the current is increased, 

the discharge glow moves up the cylinder away from the anode and more of the 

cathode cylinder wall participates in conduction. The cathode region of the 

discharge can thus be made to move up or down the inner surface of the 

cylinder by adjusting the current drawn from it.

A rather curious effect was observed when the current was raised to the point 

where the cathode regions spread outside the open end of the cylinder. As can 

be seen in Photograph 4.1, a sequence of coaxial plasma toroids, reminiscent of 

'smoke rings’, encircle the cathode cylinder. Their number can be increased by 

simply increasing the current. It is not clear how these rings arise or what 

influences their dimensions, but as they are not important for the application of 

the normal glow to triggered switching, they will be left for the consideration 

of the reader.
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4.2.3 The cathode structure.

Nickel gauze was chosen for the cathode to allow easy observation of the 

discharge. However, this choice could also influence the detail of the processes 

occurring at the cathode. For example, a substantial fraction of the photons 

created in the glow will escape through the nickel gauze. One consequence of 

this loss is that the cathode current density will not be enhanced by 

photoemission to the same extent as it would for a solid cathode. The direct ion 

flux will be similarly modified, with some ions going directly through the 

cathode. The reddish glow outside the cylinder observed in Photograph 4.1 may 

thus be due to ion impact excitation. Ions that do escape through the holes in 

the gauze are not ultimately lost, since they are retarded both by the space 

charge of other ions outside the cathode and by the electrostatic image force so 

that they eventually return to the cathode. With this modified ion bombardment, 

there is a strong possibility that the secondary emission coefficient will be 

different for a gauze cathode as compared with a solid cathode. In practice, 

these effects, if present, did not appear to cause a large deviation from normal 

glow discharge behaviour.

When the discharge emerges from the open end of the cylinder and generates 

the plasma toroids, the cathode dark space folds over the end and begins to 

extend back down the outside of the cathode. This leads to the interesting 

situation of two cathode dark spaces back to back and able to communicate
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through the holes in the gauze. The possibility then arises that ions oscillate 

back and forth through the holes in the gauze in a way somewhat similar to the 

behaviour of electrons oscillating between the cathode dark spaces of a hollow 

cathode discharge.

4.2.4 The discharge properties.

The discharge property that primarily determines the penetration of the 

discharge into the cylindrical cathode is the current density at the cathode 

surface. Glow discharge theory can be used to give an estimate of this and 

other properties and the formulae and data required are included in Appendix 

D. For the diode of Figure 4.1, the cathode material is high purity nickel and 

the gas is hydrogen. All the values reported below are for a pressure of 

0.5 torr. Using Appendix D, the running voltage of the discharge is calculated 

to be about 300 V, the striking voltage to be slightly larger and the normal 

current density to be about 18 pA/cm^. For various reasons, the accuracy 

claimed for the last value is low and it may be out by a factor of 3 either way. 

An experimentally determined value is likely to be of more use. The 

experimental data tabulated by von Engel (von Engel, 1955, p 197) gives a 

normal current density of about 18 pA/cm^ and a running voltage of about 

210 V, which is lower than the theoretical value of about 300 V. His data for 

the CDS width, d, in hydrogen do not include nickel as a cathode material but 

the result for iron should be adequate for a qualitative approach. For a pressure
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of 0.5 torr, d is 18 mm in the normal glow. The negative glow width, is 

usually assumed to be equal to the maximum range of electrons having the 

energy of the cathode fall. An estimate of the NG width can be obtained from 

the graph of Figure 4.2. For the conditions in the cylindrical cathode, a value 

of 2 cm is indicated. With these values for the CDS and NG widths, it is 

obvious that the hollow cathode effect discussed in Chapter 2 should be 

considered. Figure 4.3 shows the increased current density available from a 

parallel plate cathode as a function of the plate separation. For the cathode of 

Figure 4.1, an estimate of the hollow cathode effect can be made by substituting 

the cathode internal diameter for the plate separation. When this substitution 

is made, the graph of Figure 4.3 indicates that the hollow cathode effect will 

increase the cathode current density in the test diode at pressures below about

1.2 torr. At a pressure of 0,5 torr, for example, the test diode’s cathode current 

density is multiplied by a factor of about 7. Therefore, the hollow cathode 

effect must be taken into account when making a prediction of the cathode 

current density for the test diode.

4.2.5 Cathode penetration results.

Penetration of the discharge into the cathode of the test diode (Figure 4.1) was 

measured as a function of current. The diode was processed as described in 

Appendix B and filled with hydrogen. It was left on the pump system to allow 

different pressures to be selected. The diode was connected in a circuit similar
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to that of Figure 3.6. The penetration of the discharge into the cathode cylinder 

was estimated by visual observation in low ambient light conditions and 

measured against a scale fixed to the discharge tube. The scale zero was set to 

the tip of the anode rod. Although it was convenient to fix zero at this point, 

it left an area of the cathode which was not included in the measurement of the 

discharge penetration. There is thus an offset error in the penetration data, but 

the error will not effect the form of the variation of penetration with current 

drawn from the cathode. The offset is equivalent to about 1.5 cm, with an 

accuracy depending on how much of the end disc is used by the discharge. The 

value of 1.5 cm offset will be used in calculations of cathode current density.

Penetration results for a discharge in hydrogen are shown in Figure 4.4. At the 

higher pressures of 1.57 and 2.98 torr, the data lie on reasonably straight lines, 

while at 0.58 torr, the data lie on a curve concave downwards. The curves for 

0.58 and 1.57 torr are almost coincident.

The trend of the penetration depth curves should follow the current density 

variation with pressure predicted from the theory of the normal glow discharge. 

This theory (Acton & Swift, 1963, p 214), indicates that the relationship is

4.1

where /  is a constant for a given gas and p  is its pressure. The value of J  for 

hydrogen is 7T0’ (Acton & Swift, 1963, p 238). In the arrangement of
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Figure 4.1 therefore, equation 4.1 can be used to obtain the cathode penetration 

depth Dp, so that

where /  is cathode current and is the cathode radius. The depth thus increases 

as the inverse square of pressure. Equation 4.2 shows that, compared to the

2.98 torr discharge, the 1.57 torr discharge would be expected to penetrate about 

4 times as far and the 0.58 torr discharge about 25 times as far. This 

expectation is confirmed in the results for 1.57 torr, where the penetration factor 

measured from Figure 4.4, lies between 3 and 5 at currents above 24 mA. 

Below 24 mA the results lose accuracy because of the offset error mentioned 

earlier.

The fact that the penetration depths for 0.58 torr are not as large as expected 

indicates that some other factor is increasing the cathode current density at this 

pressure. The likely cause is the hollow cathode effect, as described in §2.2.5. 

For the test diode at 0.58 torr, Figure 4.3 indicates that the discharge was well 

into the hollow cathode regime and predicts a cathode current density increased 

by a factor of about 5. Thus, the penetration depth for a pressure of 0.5 torr is 

predicted to be 5 times (rather than 25 times) larger than for a pressure of

2.98 torr. The measured factor for the 0.58 data lies between 2.8 and 5 for 

currents above 24 mA and is consistent with the predicted increase in current
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density from the hollow cathode effect.

A graph of current density against current is plotted in Figure 4.5 for 2.98 and 

0.58 torr. The 0.58 torr curve shows a linear growth in current density as 

current is increased, so that increasing the current by a factor of 3 causes a 1,5 

times increase in cathode current density. From the data in §4.2.4, and 

including the hollow cathode effect, the calculated value of current density is 

about 120 pA/cm^, which is indeed within a factor of three of the measured 

values of 170 -  300 pA/cmg. The graph of voltage against current (Figure 4.6) 

also shows a linear increase. The estimated value of 300 V is in reasonable 

agreement with the measured values. It is apparent that the current density and 

voltage both increase as the current is increased (je. as the discharge penetrates 

further into the cathode) in contrast to the planar cathode situation. The 

explanation for this is likely to lie in the fact that in the cylindrical cathode, the 

current from all parts of the cathode must converge into the same path to the 

anode, giving a central column with a non-uniform axial current density.

The conclusion of this study with the cylindrical hollow cathode is that the 

discharge broadly follows simple glow discharge theory. The discharge does 

spread over the cathode surface as the current is increased and the discharge can 

be made to extend to the limit of the cathode cylinder (10 inches in this case) 

and beyond. There does not therefore, seem to be a preferred running depth for 

the discharge in a DC discharge. The current density and voltage of the
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discharge both increase faster for a cylindrical cathode than for a planar cathode 

(Figure 2.1) but this does not present difficulties in controlling the discharge. 

The cylindrical cathode arrangement of Figure 4.1 therefore lends itself to 

control of the penetration of the discharge into the cathode. The next section 

will describe how this effect can be used to trigger the main discharge in a cold 

cathode switch.

4,3 The normal glow triggered switch (NGTS).

The triggered hollow cathode switch combines the cathode arrangement 

investigated above and the high voltage hold-off structure typical of glass 

thyratrons. The switch is shown in Photograph 4.2 and the design is shown in 

Figure 4.7. It has a conventional glass thyratron design with an anode closely 

surrounded by a metal structure at cathode potential. The high voltage hold-off 

arises from the design of the baffle structure, placed so that the anode is 

completely surrounded, at a distance of a few millimetres, by surfaces at the 

cathode potential so as to operate on the left of the Paschen minimum where the 

pd product permits a high voltage (> 25 kV) to be applied between anode and 

cathode without breakdown. The baffle incorporates holes or slots in a 

staggered double-layer, which does not compromise the voltage hold-off 

capability of the switch, but allows a discharge in the cathode cylinder to 

connect to the anode for initiation and conduction of the main current pulse. 

The cathode of the device is formed from two hollow cylindrical structures
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connected to the baffle and closed at the end remote from the anode. The main 

triggering electrode is a tungsten rod which penetrates the cathode cylinder at 

the closed end. The rod is isolated from the cathode box by a long glass tube 

similar to the glass insulator at the anode. This electrode will be referred to as 

the trigger rod. The switch also includes another trigger electrode placed below 

the baffle and isolated from it by small ceramic insulators. This will be referred 

to as the trigger grid.

Switching function is related to the structural elements described above in the 

following way. The anode with its surrounding box and baffle forms the high 

voltage hold-off region. The box below the baffle forms the main discharge 

cathode. The trigger rod has the same function as the anode in the device of 

Figure 4.1 and initiates a discharge which is then driven up the cathode cylinder 

by increasing the current until it reaches the baffle slots and fires the switch. 

A more detailed examination of the trigger process and the trigger options 

available is given in the next section.

4.3.1 Triggering the switch.

In principle, the switch is triggered by a method which introduces electrons into 

the high voltage region. The design in Figure 4.7 provides two electrodes to do 

this. In the simplest case, a discharge is initiated in the cathode cylinder by a 

positive voltage pulse applied to the trigger rod. The expected sequence of
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events in the switch would then be as follows: a discharge is initiated between 

the cathode cylinder and the rod electrode, with a delay which depends on the 

number density of free electrons in the cathode box; the trigger discharge 

penetrates further into the cathode in the direction of the grid slots as the trigger 

current increases; the anode field captures electrons released by the trigger 

discharge near the baffle slots and the processes leading to switch conduction 

are initiated. The inclusion of a second triggering electrode, and the use of a 

DC bias, was intended to offer flexibility in testing the performance of the 

switch. In fact, the voltages required to drive the trigger electrodes in this 

device were found to be higher than those normally encountered in hot cathode 

thyratrons and the design of the trigger grid coimection was such that 

breakdown to the outside of the cathode box occurred when a pulse was applied 

to it alone. The use of a bias discharge to the trigger rod allowed the grid to 

be pulsed without spurious breakdown. The triggering options were therefore 

as listed below.

(i) trigger rod with pulse and trigger grid earthed

(ii) trigger rod with pulse and DC bias and trigger grid earthed

(iii) trigger rod with pulse and trigger grid with DC bias.

In the investigation which follows, the voltages applied to the trigger electrodes 

were positive and current was therefore drawn from the cathode box both for 

the trigger discharge and for the main discharge.
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4.3.2 Trigger discharge conditions.

The values for the discharge properties obtained in §4.2.4 require only minor 

modification for the NGTS. The cathode is again nickel gauze with dimensions 

as shown in Figure 4.7. The gas is deuterium at a pressure of 0.5 torr when the 

reservoir heater voltage is at 6.3 V. Adjusting the reservoir voltage from 5.0 -  

7.0 V adjusts the pressure from about 0.2 -  0.7 torr. The calculated value for 

the cathode current density is about 70 pA/cm^. The measured values from the 

test diode indicate that this should be increased by a factor of 3 to give a value 

of about 200 pA/cm^. Since the total cathode area is about 100 cm^ this gives 

an estimate of at least 20 mA required to drive the cathode emission area close 

to the baffle slots to cause triggering.

4.3.3 Switch operation.

The discussion in §4.3.2 and §4.3.3 has shown that the discharge properties in 

the NGTS are different to those found in conventional thyratrons and 

consequent differences in switch operation are to be expected. In the NGTS, the 

cathode regions of the glow discharge are essential to the maintenance of 

electron emission firom the cathode and the operation of the switch is likely to 

be strongly influenced by factors which alter the parameters of the cathode dark 

space and negative glow. The principal factor to be considered is the gas 

density variation in the cathode box which results from discharge heating. As
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discussed in Appendix F, the gas density in the cathode box when the switch 

is operating may drop to half its room temperature value and the pressure 

measured external to the switch envelope can be expected to give a poor 

indication of the effective pressure in the discharge region. A further factor to 

be considered is the pulse repetition frequency. At the end of switch 

conduction, the ionisation left in the switch is dissipated by diffusion and 

recombination processes. Since the ionising processes have ceased, there is a 

gradual decay of ionisation with time. If this decay is not complete at the end 

of the inter-pulse period, the development of the subsequent trigger discharge 

is influenced by the degree of ionisation which remains in the cathode box. 

Thus, as the pulse repetition frequency gets higher and the inter-pulse period 

gets shorter we might expect switch parameters such as jitter and to be 

reduced. The anode time delay, as defined in Appendix A, is the interval 

between the application of the trigger pulse and the start of switch conduction. 

In order to measure properly, the 26% point on the unloaded trigger pulse 

must be aligned with a defined position on the oscilloscope screen. This is 

easily done in the course of a regular test procedure, but was not convenient for 

the investigation carried out here. Because of the variability of the rising edge 

of the trigger pulse as the conditions in the switch change, it is not possible to 

define a fixed point on the rising edge of the loaded trigger pulse. In the 

measurements that follow therefore, will be taken to start when the trigger 

pulse comes above zero. This is not as accurate as the BS 9014 method, nor 

does it allow direct comparison with typical thyratron results. For comparison
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purposes, it should be noted that the values of measured here are 30-60 nsec 

longer than those measured by the BS 9014 method. In a conventional 

thyratron, represents the time taken for the cathode to grid discharge to 

develop and for electrons in the grid plasma to find their way to the high 

voltage region through the grid baffles. The electrons move from the cathode- 

grid plasma by ambipolar diffusion at a speed such that is about 100 nsec in 

a typical thyratron. The processes defining the t„d of a normal glow triggered 

switch are different from those in the hot cathode thyratron. Figure 4.8 shows 

a cross-section of the trigger discharge in the NGTS. As already described, the 

CDS and NG regions propagate into the hollow cathode by spreading laterally 

over the surface. The t̂ d of the NGTS will therefore depend on the statistical 

and formative times for the discharge to fill the cathode.

4.4 Characterisation of the NGTS,

4.4.1 Introduction.

This section introduces the methodology and equipment used in the NGTS 

characterisation. The performance of the switch under the different triggering 

conditions is described below. The device was processed as described in 

Appendix B and filled with deuterium to a pressure of 0.5 torr. To test its 

performance, the device was used as the switching element in a conventional 

line-type modulator, with a circuit similar to that illustrated in Figure 4.9. The
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particular conditions of operation of the switch are described later for each of 

the triggering options tested. The trigger pulse was supplied by a trigger unit 

designed to have an output of a maximum of 2 kV with a source impedance of 

100 Q, at a repetition rate adjustable in the range 20 -  1000 Hz, with a pulse 

width of 1 psec. The circuit of this unit is shown in Figure 4.10. When 

required, the trigger pulse was fed to a 3:1 pulse transformer giving a 6 kV 

pulse. The pulse transformer design is described in Appendix E. A DC supply 

with an output of 2 kV (+ve) and 100 mA was also used to provide a ’keep­

alive’ or bias supply for the trigger electrodes.

In order to characterise the performance of the switch in the modulator, the 

fast-rising, short-duration voltage and current pulses on the various electrodes 

entering the device need to be recorded. In addition, measurements of the 

pulses yield information on the magnitude and time relationship of some of the 

discharge phenomena. The pulse waveforms were displayed using a high 

bandwidth oscilloscope (Tektronix 2465, 300 MHz) and were recorded 

photographically. Voltages were measured with 1000:1 probes (Tektronix 

P6015) and the currents were measured with current transformers (Ion Physics) 

with sensitivities of 1 A/V and 10 AA .̂
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4.4.2 Initial Behaviour

In the first experiments with the normal glow triggered switch, it was connected 

into the modulator circuit of Figure 4.9 with the trigger rod pulsed and the 

trigger grid earthed. Photograph 4.3 shows the switch successfully operating at 

Epy, 10 kV; 1 ,150 A; p.r.f., 400 Hz and the results described in the following 

paragraphs were obtained.

The trigger rod voltage and current waveforms in the absence of anode voltage, 

are shown in Photograph 4.4. A variety of electrode waveforms when anode 

voltage was applied, are shown in Photographs 4.5, 4.6 and 4.7. The lower 

waveform in Photograph 4.5 is the trigger voltage pulse. The onset of anode 

conduction is clearly marked by the 'grid spike' described in §1.4. The 

measured from this photograph is about 600 nsec. The anode voltage and 

current are shown in Photograph 4.6. The anode voltage (lower trace) collapses 

within 20 nsec and the current (upper trace) rises in about 100 nsec as 

determined by the discharge circuit. The traces shown in Photograph 4.6 are 

similar to those expected from a thyratron. The anode voltage trace shows the 

effect of the inductance of the switch during the current rise-time. During 

this time, the measured anode voltage is elevated by

V, = 4 — . 4.3
'  dt
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A similar but opposite voltage appears during the current fall-time and this is 

also apparent on the anode voltage trace. During the flat portion of the current 

pulse, the measured anode voltage corresponds to the voltage across the switch 

and we shall call it the running voltage. The importance of the running voltage 

lies in the fact that it determines the energy dissipated in the switch at a given 

current. Unfortunately, it is difficult to measure reliably, the main problem 

being that the running voltage is very small in relation to the hold-off voltage. 

One way of dealing with this difficulty is to measure energy dissipation in the 

switch by a calorimetric method in addition to more convenient probe methods 

so as to obtain an independent check. In any case, switch running voltages 

measured with high voltage probes (Tektronix P6015) alone should be treated 

with some caution. In order to achieve the best fidelity from the probes in this 

study, their compensating boxes were set up in the manner recommended in the 

P6015 handbook (Tektronix, P6015 handbook, 1987) using a pulse generator 

with a high rate of rise. The running voltages reported here were taken from 

the oscilloscope screen or the recorded photographs. The width of the trace 

means that an accuracy of about ±50 V can be associated with the 

measurements. The running voltage measured from Photograph 4.6 is about 

900 V.

The anode current pulse is shown in Photograph 4.7, The jitter over 400 

pulses, estimated from the trace width, is greater than 40 nsec. More precise 

measurements of all these parameters are reported later. The tube was operated
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in the modulator for a period of 30 minutes.

On a second attempt to run the tube, it demonstrated erratic triggering (missed 

pulses) and the jitter had increased to 100 nsec. Reliable operation was restored 

by running a DC discharge of a few mA to the rod and applying the trigger 

pulse to the grid, as in the circuit of Figure 4.11(a). A further 8 hours operation 

was achieved. The jitter was measured at 40 nsec as shown in Photograph 4.8, 

but reducing the resistance in series with the grid from 100 Q to 25 Q brought 

the jitter down to 10 nsec.

At the end of 8 hours the triggering was again found to be erratic. The switch 

was removed from the modulator and the electrode insulation was checked using 

a high voltage insulation tester (Megger). The insulation was good to the 

maximum level of 500 V and the test confirmed that no substantial conducting 

films had been deposited on the insulators during the previous runs. The 

measurements of IV characteristic, striking voltage and maintaining voltage 

were repeated. The DC measurements before and after are laid out in Table 

4.1. They have all increased by a few tens of volts. The IV characteristics 

before ageing are shown in Photographs 4.9 and 4.10 and after ageing in 

Photographs 4.11 and 4.12. In contrast to the DC measurements, they show that 

the voltage required to obtain a given current has decreased by about 100 V for 

both trigger electrodes after ageing. These measurements indicate that the 

cathode surface changed during the first eight hours of operation, presumably
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due to the sputtering which gave the metallic film on the glass envelope 

adjacent to the cathode. The magnitudes of the shifts in the DC measurements 

and the IV characteristics do not indicate that triggering should necessarily be 

more difficult, and the change in triggering behaviour remains unexplained.

In response to the difficulty experienced at the end of the 8 hour run, the 

triggering arrangement was changed to apply DC bias to the grid and a trigger 

pulse to the rod (Figure 4.11(b)) and reliable triggering was restored. The jitter 

was measured from the anode voltage fall in Photograph 4.13 as 6 nsec, which 

is encouragingly close to thyratron capabilities.

These initial runs established the switch concept and revealed some useful 

information about its operation. Firstly and not unexpectedly, the switch 

cathode ages (Acton & Swift, 1963, p 268) over a period of eight hours 

operation under the conditions given above. This ageing leads to a requirement 

for a higher voltage trigger drive and/or the inclusion of a source of ionisation. 

Secondly, and in line with thyratron experience, the triggering circuit 

arrangement has a marked impact on the performance of the switch. The 

triggering options and their effect on the switch performance will be 

investigated in the following sections.
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4.4.3 Pulse on the rod.

The simplest trigger arrangement for the switch is to supply a voltage pulse to 

the trigger rod only, with the trigger grid earthed. In view of the difficulties 

encountered earlier with the trigger discharge to the rod, it was decided to 

increase the trigger voltage by feeding it through a 3:1 step-up pulse 

transformer of the design described in Appendix E, The output pulse from this 

transformer is shown in Photograph 4.14. As a consequence of using a higher 

voltage trigger drive, the switch operated reliably in the single trigger pulse 

mode. The voltage and current waveforms of the trigger rod discharge, driven 

by the 3:1 transformer and measured in the absence of anode voltage, are shown 

in Photograph 4.15. The current pulse trace had a small initial peak, which 

coincided with the rising edge of the voltage pulse. This peak was due to 

displacement current as the voltage pulse charged the 20 pF trigger rod 

capacitance. The displacement current peak stands out more clearly in some of 

the later photographs {eg. 4.18 -  4.21). As soon as the voltage on the trigger 

rod had grown sufficiently, the initiation of the trigger discharge began and, 

after a delay of less than 50 nsec in Photograph 4.15, the trigger current grew 

rapidly. We would expect the NGTS to trigger as soon as the trigger discharge 

has filled the cathode box, so the trigger current rise-time will have a direct 

influence on the anode time delay In practice, the trigger current rise-time 

seen in the photograph is a convolution of the rise-time of the applied current 

pulse and the formation and propagation times for the discharge, so it is
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somewhat difficult to separate the various contributions. However, the trigger 

current is observed to rise in about 100 nanoseconds to a peak level of 12 A. 

Based on the cathode current densities of §4.3.2, this pulse should be more than 

large enough to fill the cathode and trigger the switch.

When the anode voltage is applied and cathode-anode conduction occurs, the 

trigger rod waveforms change to those shown in Photograph 4.16. The 

discharge breakdown voltage is higher, the is longer and the trigger current 

pulse smaller. The transition to a higher breakdown voltage is thought to arise 

from the decrease in gas density due to discharge heating of the cathode. This 

hypothesis was tested by running the trigger discharge without anode voltage 

at a reduced gas pressure. The trigger rod waveforms at reduced gas pressure, 

shown in Photograph 4.17, were found to be similar to those observed with 

anode voltage at the higher initial gas pressure. Thus the change in the trigger 

discharge seems to be due to the gas density change (see Chapter 1). The 

reduced trigger current pulse observed under conditions of lower gas density, 

is a result of a feature of the trigger unit design (Figure 4.10). The trigger unit 

includes an internal resistance of 300 Q on the output of the pulse transformer 

to allow a voltage pulse amplitude to be set while the output is otherwise 

unloaded. Thus, if trigger breakdown occurs late in the voltage pulse, much of 

the stored energy is dissipated in this internal load, and the trigger current pulse 

is smaller.
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The same reduced current pulse was observed when the repetition rate was 

varied. The ionisation created by the cathode-anode current recombines in the 

cathode box during the interpulse interval; its presence assists the initiation of 

subsequent trigger pulses. Operation at high frequency favours early breakdown 

of the trigger voltage pulse and this was indeed observed over the range of 

pulse repetition frequencies in Photographs 4,18 -  4.21, where the measured 

values are 1200 nsec at 400 Hz and 640 nsec at 1000 Hz.

Photograph 4.22 shows the anode voltage and current pulse. At a voltage of 

10 kV applied to the anode, the peak current in the switch is 100 A and 

compares favourably with a thyratron under the same conditions. During the 

flat portion of the current pulse, when the voltage probe does not record an 

inductive voltage, the running voltage is about 600 V. This is higher than the 

typical running voltage of less than 200 V for a hot cathode thyratron under 

similar conditions. However, the reservations expressed in §4.4.2 about the 

reliability of the probe measurement should be borne in mind.

The minimum for this trigger mode was found under the conditions of 

Photograph 4.15, and was measured as 650 nsec. The jitter was measured from 

Photograph 4.23 as 10 nsec. This was a minimum value and small variations 

in trigger voltage or gas density caused the jitter to increase to a maximum of 

about 60 nsec. The minimum current pulse which will initiate conduction at an 

anode voltage of 5 kV was found to be 800 mA. The NGTS switching
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performance data available from the photographs for all the trigger options is 

summarised in Table 4.4.

4.4.4 Pulse and bias on the rod.

One of the features of a cold cathode discharge is the large statistical time-lag 

between the application of voltage and the initiation of current conduction. The 

statistical time-lag is a result of the very low numbers of suitably placed &ee 

electrons created in the discharge volume by the action of cosmic rays, natural 

radioactivity and ultra-violet photons (Llewellyn-Jones, 1966, pp 105, 129). 

For the NGTS, statistical time-lag would be expected to show up as jitter. 

When repetitive switching has been established, residual ionisation from the 

main discharge current remains in the cathode box at the end of each 

inter-pulse period. The trigger pulse is initiated in the presence of ionisation 

of a density which depends on the pulse repetition frequency (p.r.f.) and its 

statistical time-lag will be reduced. Thus, we might expect to see a reduced 

jitter at high p.r,f. The presence of ionisation in the cathode box also has an 

influence on the formation of the trigger discharge and, as we have seen in 

§4.4.3, the anode delay time, has a resulting sensitivity to changes in the 

pulse repetition frequency. To avoid this sensitivity, a steady source of 

electrons can be provided by running a low level DC bias discharge ('keep 

alive’) from the cathode to the trigger rod. The trigger pulse can then be 

imposed on top of the DC bias in order to initiate conduction in the switch.
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The circuit needed to implement the bias-trigger system is shown in 

Figure 4.11(c). The trigger rod waveforms that result from this arrangement 

were as shown in Photograph 4.24. The trigger voltage (upper trace) starts at 

a voltage above zero equal to the bias discharge running voltage. The time 

delay from trigger voltage breakdown to trigger current initiation is so short as 

to seem simultaneous, so the bias discharge appears to be pre-ionising the 

cathode box as planned. When anode voltage is applied, the trigger rod 

waveforms were as shown in Photograph 4.25. The measured from the 

photograph was about 600 nsec and was observed to be largely independent of 

pulse repetition frequency which confirms that the ionisation from the bias 

supply stabilises the formation time of the trigger discharge. After a few 

minutes running, it was found that the trigger pulse extinguished the DC 

discharge and thereby prevented the triggering of the main discharge. The 

'blow-out' phenomenon was observed after the device had been switching anode 

current pulses for some time, and the loss of the DC discharge prevented the 

development of the trigger pulse and so caused anode conduction to cease. 

Occasionally the DC discharge re-struck and the cycle repeated. The reason for 

the 'blow-out' can be found in Photograph 4.25, which shows that the voltage 

on the trigger rod goes to zero after anode conduction. The voltage was 

observed to remain at zero for up to 60 microseconds as shown in 

Photograph 4.26. The period of zero voltage is likely to be a consequence of 

the large random electron current available from the post-conduction plasma. 

In contrast, in the absence of the main current pulse (Photograph 4.24), the bias
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voltage on the trigger rod began to rise immediately after the end of the trigger 

pulse. The post-conduction plasma acts as an effective short circuit for the 

trigger supply until recombination reduces the random electron current below 

the supply’s current capability. The effect is also found on the positive and 

negative grid supplies of thyratrons. As a result of main discharge current 

conduction and the existence of post-conduction plasma, the nominally DC 

voltages from the bias supplies are found to have waveforms similar to those 

of Photograph 4.26. In the thyratron case, it is unknown for the discharge to 

be extinguished. In the NGTS, the failure of the discharge to re-establish at the 

end of the zero voltage period is due to the striking and running voltage of the 

discharge becoming higher than the voltage level available from the bias supply. 

Reasons for this could include a reduced gas density due to heating or transient 

gas density fluctuations as a result of ion pumping. In any event, the bias 

discharge was not able to re-strike and switching ceased. In order to obviate 

the effects of 'blow-out', the DC bias supply was modified to provide an output 

voltage of 4 kV maximum, to ensure that the bias discharge could be re-struck 

and run under all circumstances. With this modification, the bias discharge 

remained stable and the switch triggered reliably.

The anode voltage and current are shown in Photograph 4,27. The running 

voltage of the switch in this trigger mode appears to be about 800 V, which is 

unexpectedly higher than in the absence of bias (§4.4.3). The jitter was 

measured on 400 current pulses at an anode voltage of 10 kV and was found
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to have a minimum value of 4 nsec, which is a big improvement on the 10 nsec 

jitter achieved with trigger pulse alone (§4.4.3). A jitter of 4 nsec for the 

NGTS puts it on a par with glass thyratron jitter performance and seems to 

confirm that a DC bias discharge can reduce the statistical time-lag of the 

trigger discharge. As in §4.4.3, the minimum current pulse which will initiate 

conduction at an anode voltage of 5 kV was found to be 800 mA.

As discussed in Chapter 1, the trigger discharge parameters have a large effect 

on the performance of a hydrogen thyratron. Amongst other benefits, the and 

jitter are minimised when the trigger pulse current prior to switch conduction 

is maximised. It seems reasonable that the in the NGTS could see a similar 

reduction as the trigger current is increased. In a simple scenario, the NGTS 

fires when the trigger current is large enough, as determined by the cathode 

current density, to cause the emission area to enter the baffle slots. 

Accordingly, an increased trigger current would reduce by causing the firing 

current to be reached more quickly. In order to establish if the trigger discharge 

current has such an effect on in the NGTS, various trigger currents were 

selected by adjustment of the trigger unit voltage. The p.r.f. was fixed at 

400 Hz and the series impedance was 220 Q. The trigger voltage and current 

traces are shown in Photographs 4.28 -  4.32. It should be noted that is 

increased by about 50 nsec at the lowest selected trigger voltage because of a 

shift in trigger voltage breakdown point. However, the trigger current has a 

much greater influence on As measured from the photographs, increases
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from its minimum value of 250 nsec, achieved at a trigger current of 8 A, to a 

value of 600 nsec at a trigger current of 1.2 A. The trigger current traces 

shown in the photographs are oscillatory. The first trigger current peak is due 

to capacitative current as described in §4.4.3. The second peak is due to the 

trigger discharge and it appears that firing occurs at some point after the trigger 

discharge current peak and that the firing point moves closer to the trigger 

discharge current peak as the trigger current is increased. The presence of the 

delay between the trigger current pulse peak and anode conduction suggests that 

the simple scenario for NGTS triggering , proposed earlier in this section, does 

not give the full picture and it may be necessary to consider factors other than 

cathode current density (eg, the propagation speed of the discharge or the 

penetration of the cathode dark space into the baffle slot) in order to explain the 

processes underlying the triggering behaviour. In any case, it can be stated that 

the fhe NGTS is decreased as the trigger current is increased.

The Photographs 4.33 -  4.37 show an increase in t„d of about 50 nsec as the 

trigger series impedance is increased from 47 Q to 1000 Q. The increase in 

impedance gives a trigger current reduction of about 25% as estimated from the 

photographs and corresponds with a increase of about 25%, which seems to 

confirm the conclusion of the previous paragraph.

A small decrease in t̂ d of about 30 nsec was also observed as a result of 

increasing the bias current from 13 mA to 30 mA as seen in Photographs 4.38
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and 4.39 and the improvement may be related to a reduced discharge formation 

time as a result of the higher pre-ionisation density when the bias current was 

30 mA.

The conclusion that can be drawn from the investigation above is that the 

provision of a DC pre-ionisation current in the cathode box has a stabilising 

effect on the under various conditions of gas density and pulse repetition 

frequency and reduces the jitter from 10 nsec to 4 nsec. The DC bias current 

does not seem to have a marked effect on in the range 15-30 mA. The 

is mainly determined by the trigger current and a limiting value of about 

250 nsec can be reached with the equipment and methods used here.

4.4.5 Pulse on the rod, bias on the grid.

A variation of the above method of obtaining pre-ionisation in the cathode box 

is to use the second trigger electrode provided in the switch. This section will 

examine the effect of having the DC bias discharge running to the trigger grid 

of the switch using the circuit shown in Figure 4.11(b). With this arrangement, 

electrons are drawn from the cathode box surface to the trigger grid. When the 

voltage pulse is applied to the trigger rod, electrons created in the bias discharge 

begin to flow to the rod. As the pulse current grows to be much larger than the 

DC bias current, the discharge can be said to have transferred to the pulsed 

electrode. The effect of the bias current on the trigger rod waveforms is shown
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in Photographs 4.40 -  4.42. An increased bias current reduced the breakdown 

voltage and advanced the initiation of the trigger current. When anode voltage 

was applied, the trigger waveforms were as shown in Photograph 4.43. The 

upper trace shows the DC bias and how its voltage changes in response to the 

changing discharge conditions. The initial positive humps mirror the trigger rod 

voltage (middle trace) before anode conduction causes the large positive kick 

followed by a collapse to zero. Photograph 4.44 is noteworthy because it 

illustrates the shorting of the bias supply by the post-conduction plasma as 

discussed in §4.4.4. The grid remains at zero for about 60 psec after switch 

conduction.

While recording the photographs described above, a change was noted in the 

bias discharge and it was suspected that this was due to a reduced gas density. 

In order to study the effect of a lowered gas density, the anode voltage was 

switched off to allow the cathode to cool and a reduced gas pressure was 

selected by setting the reservoir heater voltage to 5.5 V. When the bias current 

was increased to 15 mA, it was apparent that the discharge ran in one of two 

modes. The first mode had a domed pink glow on the grid disc and a blue 

glow extending into the lower cathode cylinder. The second mode ran at a 

higher voltage, with a domed blue glow on the grid disc and a pink glow which 

did not penetrate the lower cathode cylinder. A comparison of the running 

voltages of the two modes is given in Table 4.2. At a reservoir heater voltage 

of 6.0 V, mode 2 was observed only at currents below about 4 mA and a
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transition to mode 1 occurred if this current was exceeded. At 6.5 V on the 

reservoir heater, mode 2 did not appear. It is known that the cathode dark space 

width increases as gas density reduces and, for the conditions under which mode 

2 appears, the cathode dark space width could become as large as the lower 

cathode cylinder radius (Figure 4.7). The development of a negative glow in 

the lower cylinder would thus be prevented. The absence of the NG, with its 

essential contribution to discharge maintenance, could explain why the discharge 

does not penetrate the lower cylinder when the gas density is reduced. In 

§4.2.4, the cathode dark space width at 0.5 torr was estimated to be about 

18 mm, which would fill the lower cathode cylinder and prevent the discharge 

forming there. Under some operating conditions and especially when switching 

higher powers, the switch failed to trigger on all trigger pulses. The failure to 

trigger may have been due to a temporary reduction of gas density to the point 

where the running voltage of the bias discharge was higher than the voltage 

output of the DC bias supply. The significance of these observations for switch 

design improvements will be discussed in §4.5.

To return to the triggering of the switch, once the discharge has transferred from 

the grid to the rod, it would be expected to grow over the surface of the cathode 

box and trigger the switch in the manner already described in §4.4.3 and §4.4.4. 

In fact, a new type of triggering appears when anode voltage is applied to the 

switch. It is observed that anode conduction does not start until the trigger 

pulse is over (see Photograph 4.45). This is in spite of a well established
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discharge in the cathode box with a peak current of 10 amps. We shall call this 

phenomenon 'post-trigger firing'.

A closer examination of the trigger waveforms in Photograph 4.45 indicates that 

the switch fires during the period of voltage and current reversal at the end of 

the current pulse. It is possible that the switch was being triggered by the 

negative-going portion of the trigger waveform. This possibility was rejected 

when a test with an inverted trigger pulse, shown in Photograph 4.46, failed to 

trigger the switch. Another hypothesis is that for this trigger arrangement 

happens to be of about the same duration as that of the trigger pulse. This was 

checked by adjusting the trigger pulse length. A simple modification to the 

trigger unit circuit (Figure 4.10) allowed the pulse length to be extended from

1.1 psec to 1.75 psec. Once again, as can be seen in Photograph 4.47, anode 

conduction did not occur until after the end of the trigger pulse. Extending the 

trigger pulse duration simply extends the It seems that firing of the switch 

occurs in the first 100 nsec after trigger current zero (Photograph 4.45). It is 

likely that the switch is actually triggered by the decaying ionisation which 

diffuses into the baffle slots at the end of the trigger pulse. Reducing the 

density of ionisation at the end of the trigger pulse by reducing its peak current 

does delay the onset of anode conduction, as shown in Photographs 4.48 -  4.51. 

Reducing the trigger pulse current below 1 A delays firing by about 700 nsec. 

This extra delay gradually reduced to about 300 nsec as the current was 

increased to 1.7 A. The importance of the trigger current is confirmed by
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Photographs 4.52 and 4.53 which show the appearance of an extra delay when 

the grid series impedance is increased from 1 kQ to 4.7 kQ thus reducing the 

current to about 1 A.

The effect of grid bias current on jitter was particularly strong in this trigger 

arrangement as laid out in Table 4.3. At 15 mA bias current, the switch 

achieved 3 nsec jitter, its lowest figure for any trigger mode.

The anode voltage and current waveforms are shown in Photographs 4.54 and 

4.55. The anode voltage trace in Photograph 4.54, indicates that the running 

voltage is almost 2 kV for the duration of the pulse. In fact, the impedance of 

the discharge is large enough to reduce the peak current by about 40 A. The 

higher impedance of the discharge also causes a positive mismatch between the 

pulse forming network and the load (Figure 4.9) and a second small current 

pulse is observed. The running voltage during the second pulse is back to a 

normal level. In Photograph 4.55, the reservoir heater voltage has been raised 

to increase the gas density. Now, although an initial high impedance transient 

is observed, the running voltage remains low (» 350 V) and a normal current 

pulse is passed. The circumstance which gives rise to the high impedance 

discharge seems to be the presence of a reduced gas density in the switch. We 

can speculate that the main pulse current at reduced gas density is drawn in a 

discharge mode similar to mode 2 for the bias discharge. This will be discussed 

further in §4.5.
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4.4.6 Bias on the rod, pulse on the grid.

The final trigger option is to apply DC bias to the trigger rod and pulse to the 

trigger grid as shown in Figure 4.11(a). As mentioned in §4.3.1, the grid 

connection suffered surface flashover on its insulation ceramic when the 5 kV 

trigger pulse from the 3:1 pulse transformer was applied and the trigger unit was 

run at 40% -  65% of full voltage during the investigation reported in this 

section. Samples of the trigger waveforms at two voltage levels are shown in 

Photograph 4.56 and 4.57. The traces appear similar to previous trigger pulse 

traces such as Photograph 4.41, albeit with a reduced trigger voltage peak. The 

upper and middle traces of Photograph 4.58 record the trigger waveforms with 

the switch operating and the lower trace shows the anode current, again starting 

after the trigger current goes to zero. It appears that the use of the trigger grid 

is correlated with the phenomenon of post-trigger firing. A possible 

explanation for post-trigger firing will be presented in §4.5.

The operation of the bias discharge in the absence of anode voltage was 

checked at reduced gas pressure to compare it with the findings of §4.4.5. No 

evidence of two modes of operation was found in this case. The 'two modes' 

phenomenon (Table 4.2) for the trigger discharge, is thus almost certainly a 

feature of the geometry of the cathode in relation to that of the trigger grid disc.

The anode voltage and current are shown in Photograph 4.59. The running
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voltage of the switch in this trigger mode appears to be about 200 V, which is 

the lowest value recorded for all of the trigger arrangements. This may indicate 

that the presence of the bias on the trigger rod forces the trigger discharge to 

pre-ionise the lower cathode cylinder and that this pre-ionisation assists the 

development of the main discharge pulse over the entire cathode surface. The 

constraints imposed on the trigger voltage for this electrode prevented a 

comparative set of measurements of from being taken. However, the 

indications are that the behaviour of is broadly similar to that in §4.4.5, with 

no anode conduction until after trigger pulse current zero as illustrated in 

Photograph 4.50. The firing point is largely identical to that in Photograph 4.47 

and we can conclude that the trigger grid is instrumental in preventing the 

initiation of the main current pulse until the trigger current pulse has terminated.

4.5 The behaviour of the switch.

The normal glow triggered switch (NGTS) depends for its operation on the 

properties of the cold cathode glow discharge. Thus there are distinct 

differences between the NGTS and the hydrogen thyratron. In both switches, 

triggering depends on the development of a discharge between the cathode and 

a trigger grid. The thermionic cathode of the thyratron, with a cathode current 

density capability of 10 A/cm^ (Jenkins, 1969), can easily support the emission 

required for the trigger discharge. The ready availability of electrons from the 

thermionic cathode makes the CDS and NG regions of the glow discharge either
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small or absent (Cayless, 1957). The discharge current from the thyratron 

cathode therefore connects to the grid via a positive column and triggering of 

the thyratron takes place as a result of the diffusion of charges from this column 

into the high voltage region of the switch. The NGTS, on the other hand, 

creates a discharge from a cold cathode and the 'constant’ cathode current 

density of about 2T0”̂  A/cm^ (§4.3.2) causes the emission area to expand into 

the high voltage region of the switch, where electrons are emitted directly into 

the anode field to trigger the main current pulse. An extraordinary feature of 

the operation of the NGTS when positive bias is applied to either of the two 

trigger electrodes is the phenomena of post trigger pulse firing described in 

§4.4.5 and §4.4.6. In both cases, anode conduction occurs a few tens of 

nanoseconds after the current zero of the trigger pulse. The mechanism of this 

behaviour is not immediately obvious, since the effect occurs under two 

different conditions. However, the use of the trigger grid is a significant 

common factor.

It can be assumed that when the cathode emission area can penetrate the baffle 

slots and inject electrons directly into the anode region, the main discharge will 

develop rapidly thereafter. The fact that the main discharge does not occur 

implies that the emission area has not reached the grid slot or that it has reached 

the slots but at such a low charge density that the main discharge channel 

cannot develop. In the case of a plasma filling the cathode box, sheaths can be 

expected to form at all surfaces in contact with the plasma, including the baffle
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slot walls and the trigger grid. The trigger grid is within about 3 mm of the 

baffle slot, so a thick sheath on the grid or on the baffle slot itself could act to 

prevent the movement of charge through the baffle slots. Tlie characteristic 

thickness of a sheath in a plasma is determined by the Debye length Xg, the 

distance for which a voltage perturbation in a plasma is reduced to 1/e of its 

initial value, given by

4.4
M

where the universal constants are permittivity, Boltzmann’s and electron charge 

and rtg and are electron density and temperature. Unfortunately for this 

argument, using values of electron temperature = 12000 K and electron 

number densitv_/$._^_10E/m i as found in the thyratron plasma (Kune & 

Gunderson, 1983), the Debye length takes a value of 0.75 pm. This value for 

is about 1000 times too small to explain why the grid slots might be 'choked 

off.

The assumption of plasma-like conditions is not generally valid for all the 

regions of a cold cathode glow discharge, since electron emission from the cold 

cathode depends on the formation of a cathode dark space and a negative glow 

(see Chapter 2). These two regions, rather than a plasma, are likely to be 

occupying the space in the NGTS cathode box and thus, the trigger discharge 

in the NGTS is fundamentally different from the trigger discharge in a
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conventional thyratron. The sizes of the cathode regions have been estimated 

in §4,2,4, where a CDS width of 18 mm and a NG width of 20 mm were 

obtained. Two competing effects could modify these estimates. Glow discharge 

theory indicates that the cathode dark space width will tend to increase as the 

gas density is reduced (ie. when the switch is operating). Against this, when the 

trigger discharge expansion is restricted, as it must be if it cannot move into the 

baffle slots, the cathode current density is forced to increase. As the cathode 

current density is increased, the width of the cathode dark space tends to 

decrease. The graph of Figure 4.12 indicates that the CDS width is reduced 

from a value of about 18 mm at a voltage of about 400 V before the trigger 

voltage is applied, to a value of about 6 mm at a voltage of about 900 V during 

the trigger pulse (Photograph 4.44). It seems reasonable therefore, to estimate 

that the cathode dark space, for the conditions in the NGTS during the tests 

reported in §4.4.5 and §4.4.6, was likely to have a width of about 6-10 mm. 

In support, the discharge of Photograph 2.1(d) in hydrogen at 0.75 torr has a 

CDS width which appears to be about 10 mm.

With these considerations and estimates now in mind, it can be seen that the 

position of the grid electrode in the NGTS (Figure 4.7) can influence the 

behaviour of the trigger discharge. The cathode dark space has a width which 

is about equal to the gap between the edge of the grid disc and the cathode 

cylinder wall. In the NGTS, the growth of the trigger discharge in the cathode 

box eventually brings the cathode dark space close to the trigger grid. As
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shown in Figure 3.13, the voltage required to maintain a given current density 

in a discharge increases very steeply when the anode is moved into the cathode 

dark space. Figure 3.13 indicates that a high voltage would be required to 

obtain current emission from the area of the NGTS cathode surface close to the 

trigger grid. In the trigger discharge, this voltage is not available and so the 

cathode emission area is effectively prevented from reaching the baffle slots 

when the trigger grid is acting as an anode for the trigger discharge, as it does 

in the trigger arrangements of §4.4.5 and §4.4.6. This argument seems to offer 

an explanation of post-trigger firing and it is reasonable to conclude that, when 

the trigger grid is in use, the switch is triggered by the diffusion of electrons 

from the trigger pulse afterglow.

It is now possible to suggest a number of design changes to the cathode box and 

trigger electrodes of the NGTS to improve its switching performance. To deal 

with the trigger electrodes first, the study shows that the best overall switching 

performance arises from the use of two trigger electrodes. The location of a 

trigger electrode close to the baffle slots causes switch conduction to be delayed 

until the end of the trigger pulse. It is not yet clear if some advantage can be 

gained from the delayed switch conduction, but, if a short is required, it is 

necessary to place the trigger electrodes at least 20 mm away from the baffle 

slots. As regards the cathode box, the results show that the switch occasionally 

operated in a high impedance mode as a result of a reduced gas density in the 

switch. In order for the main discharge to utilise the entire cathode, the cathode
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cavity dimensions should be selected to ensure that the pd product in the cavity 

is such that pd & 10 torr cm for deuterium. The final desideratum is to gain 

control of the temperature of the switch and especially the cathode so that a 

reasonably constant gas density can be maintained. Designs to implement this 

are under consideration. If the temperature of the cathode box can be 

controlled, benefits would accrue in the stability of the cathode running voltage, 

and jitter. Moving into speculation, it is likely that advantages could be 

gained from the use of other metals or structures for the cathode and perhaps, 

from the use of other gases.

In conclusion, the normal glow triggered switch is a cold cathode switch with 

a switching performance that is comparable with a glass thyratron of a similar 

size. It has the potential for development to the status of a commercial product 

and could find ready use in applications where a combination of low standby 

power, instant readiness and thyratron-like switching precision is required.
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Table 4.1

Striking and running voltages for the trigger electrodes after 8 hours 
operation. The values at the start of operation are given in brackets. All

values taken at = 6.3 V

Striking 
Voltage (V)

Running 
Voltage (V)

Trigger rod 900 (820) 420 (408)

Trigger grid 345 (330) 418 (386)

Table 4.2

Grid bias voltage measurements showing two modes.

Running Voltage (VI (a) V«=5.5 V
@ 5 mA @ 10 mA @ 15 mA

Mode 1 930 456 453
Mode 2 1034 1100 1030

Table 4.3

NGTS jitter as a function of grid bias current. 
All values taken at = 6.3 V.

Grid current fmAl 8 9 10 12.5 15
Jitter fnsec^ 24 15 10 5 3



%a.
-o«-J

(X
•a C/9

t
•o I

18

-O

a

I I I o

{/}

I§ I

C OIH C O
T3

.M

Q) X>C O



Photograph 4.1
À hydrogen discharge at 0.75 torr in the test diode of 
Figure 4.1, drawing sufficient current to cause the glow 
to emerge from the open end of the cathode.



Photograph 4.2
The normal glow triggered switch (NGTS)



Photograph 4.3
The normal glow triggered switch operating in the test 
modulator.
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Figure 4,1
Cross-section of the test 
cylindrical gauze cathode.
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Figure 4.2 (after Brewer & Westhaver, 1937)
Negative glow width as a function of cathode fall 
voltage for a discharge in hydrogen with an aluminium 
cathode.
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Figure 4.3 (after von Engel, 1955)
Current density as a function of inter-cathode 
separation for a glow discharge at 400 V in hydrogen 
with an iron cathode.
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Figure 4.4
Penetration depth as a function of current for a 
hydrogen discharge in the test diode of Figure 4.1.
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Figure 4.5
Current density as a function of current for a 
hydrogen discharge in the test diode of Figure 4.1,
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Figure 4.6
Discharge voltage as a function of current for a 
hydrogen discharge in the test diode of Figure 4.1.
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Figure 4.7
Cross-section of the normal glow triggered switch (NGTS)
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Figure 4,8
Cross-section of the trigger discharge in the NGTS showing 
the movement of the discharge towards the baffle slots.
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Schematic of the NGTS test modulator circuit.
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Figure 4.10
Circuit diagram for 2 kV trigger unit
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Cathode dark space width as a function of cathode 
fall Vc for an iron cathode in hydrogen.



CHAPTER FIVE 

The e-beam triggered switch.

5.1 Introduction.

In this final chapter we will consider possible future directions for the 

development of the low pressure gas switching principles described in this 

thesis. The ideas to be presented here have been the subject of several 

successful patent applications and the granted patent documents form the main 

substance of the chapter. A number of switches based on the concepts 

described in the patents have been constructed and the initial results of tests 

conducted on these switches are included with the appropriate patent. The 

switches use the hollow, metallic cathode already established in Chapters 1 & 

4. Their unusual feature is that they utilise the glow discharge electron beam
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gun of Chapter 3 to assist or initiate the cathode action. In addition to the 

benefits of cold-cathode, instant-start operation, it is possible that the projection 

of electrons directly into the high voltage region of the switch as described in 

UK patent GB 2194674 could offer improvements in and jitter compared to 

conventional thyratron performance. Each of the following sections consists of 

a short introduction, applicable results and the patent document.
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5.2 UK Patent GB 2153140B UK, Japan, USA, Europe.

Apparatus for forming electron beams.

This patent describes novel methods by which a single electron beam or a 

multiplicity of beams may be produced in a low pressure gas. A variety of 

applications of the beams are described and include: flat addressable arrays for 

display devices; bombardment-heated, rapid-start thermionic-cathode switches; 

and electron beam pre-ionised, cold-cathode switches.
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SPECIFICATION

Apparatus for forming electron beam s

5 This Invention relates to apparatus for,forming  
electron beam s, and to apparatus requiring 
the formation of electron beam s, such  as, for 
exam ple, display devices  and thyratrons.

The present invention seek s  to provide im- 
1 0  proved apparatus for forming electron beam s.

According to a first aspect  of the invention  
there is provided apparatus for forming an 
electron beam  comprising, within an en vel­
ope,  an anode member; a ca thode m em ber of  

1 5 electrically conductive material; and a gas  
filling, and wherein, except for part of a front 
surface of said cathode m em ber, at least su b ­
stantially the w hole  of the surface of said 
cathode m em ber which would otherwise be 

2 0  exp osed  to the gas filling within said en ve lop e  
is covered with an electrically insulating ma­
terial; the w hole  arrangement being such that 
upon the application of a suitably high voltage  
b etw een  said anode m em ber and said cathode  

2 5  m em ber an electron beam  is formed extensive  
in a direction away from said part.of said front 
surface.

According to a secon d  aspect, of the inven­
tion there is provided apparatus for forming  

3 0  an electron beam comprising, within an en vel­
ope, an anode member; a cathode m em ber of 
electrically conductive material and having a 
hole in a front surface thereof; and a ,g a s  
filling, and wherein, except within said hole, 

3 5  at least substantially the w hole  of the surface  
of said cathode m em ber which would other­
w ise  be exposed  to the gas filling within said 
envelope  is covered with an electrically insu­
lating material, the w hole  arrangement being  

4 0  such that upon the application of a suitably  
high voltage between  said anode m em ber and 
said cathode m em ber an electron beam  is 
formed extensive in a direction away from 
said hole.

4 5  According to a third aspect  of the invention, 
the anode m em ber is located in front of the 
front surface of the cathode mem ber.

Preferably a control grid electrode is in­
cluded through which operation the electron  

5 0  beam  passes, enabling the intensity or energy  
of the electron beam, to be m odulated.

Preferably the apparatus includes a plurality 
of e longate  cathode m em bers arranged in a 
grid formation, and a plurality of e longate  

5 5  anode m em bers arranged in a grid formation  
with said grid of anode m em bers superim ­
posed  over said grid of cathode m em bers, but 
spaced  therefrom, with said anode m em bers  
in crossing relationship with said cathode  

6 0  m em bers to form a matrix, each of said cath­
ode m em bers having a series of holes enter­
ing into its surface facing said grid of anode  
m em bers and each of said anode m em bers  
having a series of holes passing therethrough,  

6 5  with each hole in an anode m em ber aligned

with a hole in a different on e  of the cathode  
m em bers,  and all surfaces of said cathode  
m em bers,  excep t  for surfaces within said  
holes in said ca th ode m em bers,  which would  

7 0  otherwise be ex p o se d  to said g a s  filling are 
isolated therefrom by electrically insulting m a­
terial, and the w h o le  arrangement being such  
that by applying a high potential betw een  on e  
of said an od e  m em bers  and one of said cath- 

7 5  o d e  m em bers  an electron beam  is formed at 
the crossing point of said last-mentioned two  
m em bers, said electron beam  being extensive  
in the sp a ce  b etw een  the mouth of the hole in 
the cathode m em ber at said crossing point 

8 0  and said an od e  m em ber, said beam  being
arranged to penetrate through the correspond­
ing hole in said addressed  anode m em ber.

It will be appreciated that by suitably ad­
dressing se lec ted  o n e s  of said anode and 

8 5  cathode m em bers  an electron beam  m ay be  
created which , by varying the se lection of 
anode and ca th ode m em bers addressed  may  
be caused  to be animated.

Preferably, insulating material is interposed  
9 0  betw een  said grid of cathode m em bers and  

said grid of an od e  m em bers, which insulating  
material has p a ssa g e s  therethrough aligned  
with said ho les  in said cathode and anode  
m em bers w hereb y  to permit com m unication  

9 5  betw een  o n e  ca th ode hole and the appropriate  
an ode hole but im pede com m unication  be­
tw een  that ca th ode hole and any other anode  
hole.

Preferably, said last-mentioned interposed  
1 0 0  insulating material is provided in the form of a 

slab having ho les  extending b etw een  its major 
surfaces and forming the said p assages ,

A control grid electrode may be located on  
the side of the grid of anode m em bers other 

1 0 5  than that on which  the grid of cathode m em ­
bers is located, or alternatively it may be 
located b etw een  the grid of cathode m em bers  
and the grid of an od e  m em bers, and w here  
insulating material is interposed b etw een  the  

1 1 0  cathode and a n o d e  grids the control grid
electrode may be em b ed d ed  in the interposed  
insulating material.

The an ode m em ber may be to one side of 
the axis of the electron beam formed in oper- 

1 1 5 ation, such that said beam p asses  by said
anode. It has b een  found by the inventors that 
the electron beam  may be formed along the  
axis of the hole even  though the anode m em ­
ber is d isplaced to the side of its path,

1 2 0  According to a forth aspect  of the invention  
the an ode m em ber is located behind said 
front surface of the cathode m em ber, and 
again in this configuration the electron beam  
may be formed along the axis of the hole,

1 2 5  rather than along the shortest path b etw een  
the anode and cathode m em bers.

Preferably the an ode m em ber is co-axial 
with the ca th ode mem ber. Preferably a grid is 
included through which in operation the elec- 

1 3 0  tron beam  p asses ,  enabling it to be modulated
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in intensity or energy, although of course, this  
may be achieved  by varying the high voltage  
b etw een  the anode and cathode m em bers.

Preferably there are included a plurality of 
5 elongate  anode m em bers, each having aper­

tures therein; and a plurality of s tem m ed  
ca th ode m em bers, each having a hole in the  
front surface thereof and arranged such that  
its stem  extends through one of said aper-  

10  tures, such  that each an ode m em ber is lo­
cated behind the front surfaces of cathode  
m em bers  w h o se  s tem s pass through apertures  
in said anode member, w hereby by applying a 
high potential betw een  an an ode m em ber and  

1 5 o n e  of the cathode m em bers extending
through an aperture therein an electron beam  
is formed extensive in a direction away from  
the hole in said on e  of the cathode m em bers.

As previously described w here the grid of 
2 0  anode m em bers are located in front of the  

grid of cathode m em bers, by addressing s e ­
lected cathode and anode m em bers an e le c ­
tron beam  may be formed in a desired loca­
tion, or number of such beam s formed simul-  

2 5  taneously  if cathode m em bers may be indivi­
dually addressed.

Preferably a cathode m em ber extending  
through an aperture in one anode m em ber is 
electrically connected  to another cathode  

3 0  m em ber extending through an aperture in 
another anode m em ber and also preferably a 
connector connecting two cathode m em bers  is 
spaced  from the anode m em bers by electri­
cally insulating material.

3 5  Preferably w here the apparatus in accor­
dance with this invention is included in a 
display device a phosphor layer is included  
and is arranged so that w hen  an electron  
beam  is formed it im pinges upon a spot upon  

4 0  said layer w hereby to excite the sam e and 
preferably said envelope  has a portion formed  
as a faceplate on the interior of which said 
phosphor layer is provided.

According to a feature of this invention a 
4 5  video signal reproducing apparatus includes  

apparatus as described above.
According to a feature of the invention in its 

third aspect a cathode ray tube apparatus  
com prises  a plurality of e longate  cathode  

5 0  m em bers arranged in a grid formation, a
plurality of elongate anode m em bers arranged  
in a grid formation with said grid of anode  
m em bers superim posed over said grid of cath­
ode m em bers, but space therefrom, with said 

5 5  anode m em bers in crossing relationship with 
said cathode m em bers to form a matrix, each  
of said cathode m em bers having a plurality of 
holes entering into its surface facing said grid 
of anode m em bers and each of said anode  

6 0  m em bers having a plurality of holes  passing  
therethrough, with each hole in an anode  
m em ber aligned with a hole in a different one  
of the cathode m em bers and, superim posed  
over said grid of anode m em bers on the side  

6 5  thereof remote from said grid of cathode

m em bers,  a phosphor screen, the two grids  
being en c losed  within an en ve lop e  having a 
g as  filling from which  all surfaces of said  
cathode m em bers,  excep t  for surfaces within > 

7 0  said holes  in said ca th ode m em bers, which  
would  otherw ise be exp osed  to said gas  filling 
are isolated therefrom by electrically insulating  
material, and the  w h o le  arrangement being  
such that by applying a high potential be- 

7 5  tw een  on e  of  said an od e  m em bers and one of  
said ca th ode m em bers  an electron beam  is 
formed at the crossing point of said last- 
m entioned  tw o  m em bers,  said electron beam  
being extensive  in the. sp a ce  b etw een  the  

8 0  mouth of the hole in the cathode m em ber at 
said crossing point and said an ode m em ber,  
said beam  penetrating through the corre­
sponding  hole  in said addressed  an ode m em ­
ber to im pinge upon a spot upon said phos-  

8 5  phor w hereby  to excite the sam e.
According to a fifth aspect  of the invention  

the longitudinal axis of said hole is oblique to 
the normal of said front surface, and the  
electron beam  is form ed normal to said front 

9 0  surface of said hole. The inventors d iscovered  
that, w hen  the hole  is arranged with its longi­
tudinal axis inclined to the normal of the front 
surface, an electron beam  is not formed paral­
lel to the aforesaid axis as might be expected  

9 5  but is in fact, surprisingly, formed in a direc­
tion normal to the front surface. W here in this  
specification the term "normal" is used, it 
should be taken to include "substantially nor­
mal". Apparatus utilising this principle may  

1 0 0  be useful where, for exam ple, sp ace  is re­
stricted and it would  not be possible to e m ­
ploy a device  in which  the hole is arranged  
normal to the surface of the cathode. Also  
manufacture of the dev ice  is facilitated s ince  

1 0 5  only the direction of the front surface n eed  be 
accurately m achined.

Such apparatus m ay include a plurality of 
holes in said front surface, at least on e  of said  
holes having its longitudinal axis oblique to 

1 1 0  the normal of said front surface at that hole, 
such that upon the application of said suitably  
high voltage electron b eam s are formed exten­
sive normal to said front surface at and in a 
direction aw ay from respective holes. S ince  

1 1 5 the configuration of the front surface w a s
found by the inventors to determine the direc­
tion of electron b eam s produced, a desired  
pattern of electron b eam s or concentration of 
electron b eam s m ay be achieved without  

1 2 0  costly m achining. For exam ple, if a plurality of 
b eam s which are mutually parallel are re­
quired the holes  need  not be drilled in precise  
relationship to each  other, as might have been  
thought, as only the front surface need  be 

1 2 5  m ade flat. Of course the front surface can be  
curved if more com plex  patterns are required, 
and b ecau se  of leniency in the disposition of 
the holes  the cath ode m em ber may be more  
conveniently  sh aped  for a desired application.

1 3 0  According to a sixth asp ect  of the invention
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there is provided apparatus for forming e lec ­
tron beam s comprising, within an en velope ,  
an anode member; a cathode m em ber of 
electrically conductive material having a front 

5 surface which is curved; and a gas  filling, and  
wherein, except for a plurality of discrete parts 
of the said front surface, at least substantially  
the w hole  of the surface of said ca th ode  
m em ber which would otherwise be ex p osed  to 

1 0  the gas filling within said en v e lo p e  is covered  
with an electrically insulating material, the  
whole arrangement being such  that upon the  
application of a suitably high voltage  b etw een  
said anode m em ber and said cath ode m em ber  

1 5 electron beam s are formed extensive  normal 
to said front surface at and in a direction away  
from respective parts.

It is preferred that, w here there are a plural­
ity of electron beam s formed, the front surface  

2 0  is curved such that they are focu ssed  or
concentrated at a point or small region. This is 
a particularly useful configuration providing  
apparatus suitable for inclusion in an electron  
beam  welder, or as a point source of soft X- 

2 5  rays or incandescent black body radiation.
According to a seventh  aspect  of this inven­

tion there is included a layer of phosphor  
material on a v iewable screen arranged such  
that upon the application of said suitably high  

3 0  voltage the electron beam  im pinges  upon said  
phosphor layer and so  excites the sam e.

According to a feature of the seventh  aspect  
of this invention a display apparatus c o m ­
prises, within an envelope , a layer of phos-  

3 5  phor material on a viewable screen; remote  
from said phosphor layer, a metallic ca th ode  
mem ber having a hole formed in a front 
surface thereof; betw een  said cathode m e m ­
ber and said phosphor layer, an apertured  

4 0  anode electrode; and a gas  filling, and  
wherein, except within said hole, at least  
substantially the w hole  of the surface of said  
cathode m em ber which would otherwise be  
exposed  to the gas filling within said en ve lop e  

4 5  is covered with an electrically insulating m a­
terial, the w hole  arrangement being such  that 
upon the application of a suitably high voltage  
between said anode m em ber and s^id cath ode  
m em ber an electron beam  is formed extensive  

5 0  in the sp ace  betw een  the m outh of the hole in 
said cathode m em ber and said an ode m e m ­
ber, and is arranged to penetrate through an 
aperture in said anode m em ber to im pinge  
upon said phosphor layer and so  excite the  

5 5  sam e.
Preferably said envelope  has a portion 

formed as a faceplate upon the inner surface  
of which said phosphor layer is provided.

The apparatus may include a m odulating  
6 0  grid provided to affect the strength or inten­

sity of the electron beam  impinging upon said  
phosphor layer.

Said modulating grid may be a perforated  
grid or gauze provided either b etw een  said 

6 5  anode m em ber and said phosphor layer or

b etw een  said an od e  m em ber and said ca th ode  
m em ber. In other em b od im en ts  of the Inven­
tion said m odulating grid com prises  a ring 
grid provided within the mouth of said hole in 

7 0  said cathode m em ber. In this last m entioned  
case  preferably an electrical connection  for 
said grid is taken out, in insulated fashion  
through said cath ode m em ber in a direction  
away from said an ode member, i.e. through  

7 5  the base of said cathode m em ber.
Where, as is preferable, electrical c o n n e c ­

tion to said cathode m em ber is provided for 
by m ean s of an electrical connector con n ected  
to the base of said ca thode m em ber, said last 

8 0  m entioned connector is preferably in the form  
of a hollow cylinder with an electrical c o n n e c ­
tor for said grid passing, in insulated fashion,  
therethrough.

There may be provided a s ingle  hole in said  
8 5  cathode m em ber with a corresponding s ingle  

aperture in said anode m em ber but alterna­
tively a plurality of holes may be provided in 
said cathode m em ber with a corresponding  
plurality of ho les  in said anode m em ber.

9 0  W here a plurality of holes and apertures are 
provided th ese  may be in ring formation, with  
or without a central d isposed  hole and aper­
ture.

According to a feature of the se c o n d  asp ect  
9 5  of the invention thyratron apparatus c o m ­

prises, within an en velope ,  an an od e  m em ber;  
a cathode m em ber of electrically cond uctive  
material and having a hole in a front surface  
thereof; and a gas  filling, and wherein, except  

1 0 0  within said hole, at least substantially the
whole of the surface of said cathode m em ber  
which would otherwise be exp osed  to the g a s  
filling within said "envelope is covered  with an  
electrically insulating material, the  w h o le  ar- 

1 0 5  rangem ent being such that upon the applica­
tion of a suitably high voltage b etw een  said  
anode m em ber and said ca thode m em ber an 
electron beam  is formed extensive in a direc­
tion away from said hole.

1 1 0  Preferably said cathode m em ber has a plu­
rality of holes in the front surface thereof, 
such that upon application of a suitably high  
voltage electron b eam s are formd extensive  in 
a direction away from respective holes, and it 

1 1 5  is preferred that said front surface is curved,  
such that so m e  focussing of the electron  
beam s to a point may be obtained. Also it is 
preferred, where the front surface is curved,  
that at least on e  of said holes  has its longitu-  

1 2 0  dinal axis oblique to the normal of said front 
surface at that hole. The cathode m em ber  
may form the cathode of a thyratron, or 
advantageously  thermionic material may be  
included and arranged such that w h en  an 

1 2 5  electron beam  or beam s are formed they heat  
the sam e. This heating may be direct or 
indirect. For exam ple, a substrate carrying the  
thermionic material may be exp osed  to the  
electron beam  or beam s and heat transmitted  

1 3 0  to the thermionic material by conduction.
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Alternatively, w hen  the electron beam  is 
formed, it may be arranged to ionize th e  gas  
filling in a localised region, and so  improve  
operating characteristics of a thyratron, and  

5 advantageously  the longitudinal axis of the  
hole is oblique to the normal of said front 
surface at the hole, enabling the  ca th ode  
m em ber to be accom m od ated  in a restricted  
space .  Of course, more than o n e  such  cathode  

10  m em ber may be em ployed .
According to an eighth asp ect  of the inven­

tion said front surface is sh aped  to focu s  said 
electron beam . Thus even  w here only on e  
hole is em ployed  the electron beam  m ay be 

1 5 focussed . Each point of the surface around the  
mouth of the hole and at its e d g e  m ay be  
thought of as directing co m p o n e n ts  of the  
electron beam  normal to the surface at resp ec­
tive points. Thus by providing the surface with 

2 0  a certain configuration, for exam p le  a convex  
sh ape or advantageously  a frusto-conical con­
figuration, with the hole being centrally lo­
cated, a desired degree  of focu ss in g  m ay be  
obtained. For exam ple, the electron beam  may  

2 5  be focussed  to a point ot ir could be focu ssed  
merely en ough  to aid in further collimation of 
the electron beam .

Generally the, or each hole in a ca th ode  
m em ber is blind, and preferably of circular 

3 0  cross-section.
Preferably said insulating material insulating  

surfaces of said cathode m em ber, or plurality 
of cathode m em bers, from said gas  filling is 
glass, but where said ca thode m em ber, or 

3 5  m em bers, is of an anodisable metal, such as 
aluminium or titanium, the insulating material 
may be anodisation.

Preferably said cathode and anode m em ­
bers are of Kovar (R.T.M.) but other m etals or 

4 0  alloys may be used, such as aluminium m
copper or tungsten, or of m olybdenum , tanta­
lum or other refractory metals for high current 
use.

Generally said en velope  is of g lass  or 
4 5  quartz.

Preferably the side wall and b ase surfaces  
of each hole is entirely, free of a covering of 
electrically insulating material.

A number of gases ,  or mixture of gases ,
5 0  may be used for said g a s  filling including  

helium a n d /o r  argon a n d /o r  deuterium an­
d /o r  neon. The hole size and vo ltages  applied  
are related to the type of gas  em ployed .  
Typically, hole sizes for argon are 0 . 2  to 0 .1  

5 5  of the size of those for helium, giving the 
possibility of more com pact devices .

Preferably said gas filling is at a pressure of 
betw een  0 .5  and 2 .5  mB.

Normally the higher voltage utilised to ad- 
6 0  dress the anode and cathode m em bers  is from 

1 to 5 kV and preferably b etw een  1 and 2 .5  
kV.

The invention is further described by way of 
exam ple with reference to the accom pan ying  

6 5  drawings in which;

F ig u r e  1 is a schem atic  cross-section of o n e  
sim ple electronic display dev ice  in accordance  
with the present invention;

F ig u r e  2  a n d  3  illustrate modifications of 
7 0  the device illustrated in Fig. 1, like references  

being used for like parts in Figs. 1 to 3;
F ig u r e  4  a n d  5  are explanatory graphs;
F ig u re  6  sh ow s ,  in longitudinal cross-sec­

tion, another exam ple of an electron beam  
7 5  device in accordance with the present inven­

tion;
F ig u re  7  is a schem atic  cross-section  

through a flat screen cathode ray display  
device in accordance with the present inven-  

8 0  tion;
F ig u re  8  illustrates in perspective part of  the  

insulating slab 2 0  of Fig. 7;
F ig u r e  9  illustrates, part broken away, o n e  

elongate anode m em ber A used in the dev ice  
8 5  of Fig. 7;

F ig u r e  7 0  illustrates, part broken away, o n e  
elongate  ca th ode m em ber C utilised in Fig. 7;

F ig u re  7 7 is a perspective view, part broken  
away, of an assem b ly  of ca thode and an od e  

9 0  m em bers with the slab of insulating material  
shown in Fig. 8  san dw iched  therebetw een;

F ig u re  72  is a schem atic  diagram illustrat­
ing the operation of the device  illustrated in 
Figs. 7 to 11 ;

9 5  F ig u re  1 3  is a schem atic  cross-section
through another flat screen cathode ray d ev ice  
in accordance with the present invention;

F ig u re  1 4  illustrates in perspective part of  
the device of Fig. 1 3;

1 0 0  F ig u re  7 5  illustrates in perspective part of  
the device of Fig. 13; with like references  
being used  for like parts;

F ig u re  76  is a schem atic  cross-section of  a 
display device in accordance with the inven-  

1 0 5  tion;
F ig u re  7 7 is a schem atic  cross-section of  

another display dev ice  in accordance with the  
invention;

F ig u re  78  is a perspective view, part broken  
1 1 0  away, and

F ig u re  1 9 a  cross-sectional view, of yet  
another d evice  in accordance with the inven­
tion;

F ig u re  2 0  sh o w s  a longitudinal section of a 
1 1 5 further apparatus in accordance with the in­

vention;
F ig u re  2 7  is a longitudinal section of  

another apparatus in accordance with the in­
vention;

1 2 0  F ig u re  2 2  illustrates a thyratron in accor­
dance with the invention;

F ig u re  2 3  illustrates another thyratron in 
accordance with the invention;

F ig u re  2 4  sh o w s  yet another thyratron in 
1 2 5  accordance with the invention;

F ig u re  2 5  illustrates a cathode m em ber in 
accordance with the invention;

F ig u re  2 6  sh o w s another cathode member;  
and

1 3 0  F ig u re  2 7  illustrates another device  in a c ­
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cordance with the invention.
Referring to Fig. 1, a d ev ice  com prises  a 

quartz en velope  of  which only one portion 1 is 
sh ow n . The en ve lop e  portion 1 is provided as  

5 a faceplate having on its interior a layer 2  of  
phosphor material similar to that used  in con­
ventional cathode ray display tubes.  Associ­
ated with the phosphor layer 2  is a transpar­
ent metal layer (not sh ow n  but som ew h at  akin 

10  to the transparent metal layer forming part of  
the screen of a conventional cathode ray tube)  
b etw een  the layer 2 and th e  faceplate. The 
faceplate formed by the portion 1 of the 
en velope  of the d evice  is transparent.

1 5 Within the en ve lop e  and at the end thereof  
opposite  to the faceplate portion 1, is a cath­
od e  m em ber 3 which com prises  a block 4  of 
Kovar having a blind hole 5 formed therein, in 
this case  by drilling coaxially with the axis of 

2 0  cylindrical sym metry 6 of the device.  The  
open mouth of the hole 5 faces  the phosphor  
layer 2. In the base of the block 4 ,  adjacent  
the blind end of the hole 5, a con nect ing  pin 
7 is inserted so as to enab le  electrical connec-  

2 5  tion to be m ade to the Kovar block 4.
All of the external surfaces of the Kovar 

cathode block 4 .  with the exception of the  
wall and base surfaces of the blind hole 5, 
which would otherwise be exp osed  to a gas  

3 0  filling within the en ve lop e  of the d evice  are 
covered by electrically isolating material repre­
sented at 8. In this exam ple, the insulating 
material 8 is glass.

Between the cathode 3 and the phosphor  
3 5  layer 2 is an anode electrode 9 which has a 

circular hole 1 0  passing therethrough. Circular 
hole 10  is coaxially aligned with the blind 
hole 5 within the Kovar block 4 .

it will be noted that the cathode 3 is devoid  
4 0  of a heater as such, or any electron em iss ive  

cathode material,'such as barium.
The en velope  of the tube is filled with  

helium at a pressure of b etw een  0 . 2  and 10  
mB.

4 5  As so  far described the device is in its 
simplest form. For the m om ent it will be  
assum ed that grid 1 1, sh o w n  b etw een  the  
anode electrode 9 and the phosphor layer 2, 
is absent.

5 0  Provided that the d im ensions  of the cathode  
and an ode holes 5 and 1 0  and the spacing of 
the anode 9 to the cathode 3 is suitably  
chosen , a type of electrical d ischarge will be 
established b etw een  the an ode 9 and the 

5 5  cathode 3 which results in the formation of an 
electron beam  along the axis 6 of the coaxially  
aligned anode and cath ode holes w hen  a 
potential difference in the range of from se v ­
eral hundred volts to several thousand volts is 

6 0  established b etw een  the an ode 9 and the  
block 4  of ca thode 3. Within limits, the e le c ­
tron beam  acquires energy  approximately  
equal to the anode to cathode potential differ­
en ce  and so extends into the region beyond  

6 5  the anode hole 1 0  to im pinge, finally, upon

th e  phosphor layer 2  thus exciting It.
Thus, in operation, w h en ever  a potential as  

aforesaid is established  b etw een  an o d e  9 and  
block 4  of ca th ode 3, the resulting electron  

7 0  beam ca u se s  a spot to appear on the screen  1 
due to excitation of the  phosphor layer 2.  
Whilst the aforem entioned  d im ensions  and  
spacing m ay be  arrived at empirically, in th e  
particular exam p le  illustrated in Fig. 1, the  

7 5  cathode and an od e  ho les  w ere  of  5 mm  
diameter. With a g a s  filling of helium at a 
pressure of 2  mB and a potential d ifference  
betw een  an o d e  9 and cathode 3  of approxi­
mately 1 .5  kV, the d ev ice  w as  found to  

8 0  operate with a spacin g  b etw een  the plane of  
the an ode 9 and the  surface of the phosphor  
layer 2  of up to a few  centim etres, and a 
spacing b etw een  the an ode 9 and the cathode  
3 of at least 3 m m . With th e  ab ove-m entioned  

8 5  potential difference of 1 .5  kV the current 
drawn from the  cathode, w a s  of the  order of  
1 5 mA.

Reverting to the aforem entioned  grid 
1 1 — by introducing a control grid,, modula-  

9 0  tion of the intensity or energy  of the electron  
beam  arriving at the surface of the phosphor  
layer 2 may be ach ieved  by varying a p oten­
tial applied to  the  grid 1 1 .  Alternatively or 
additionally varying the potential betw een  the  

9 5  anode 9 and th e  ca th ode 3 will produce or 
en h an ce  a modulation effect but, of course, it 
is much less con ven ient  to apply modulation  
at high potential.

Referring to Fig. 2, the essential difference  
1 0 0  between  the d ev ice  sh ow n  in Fig. 2  and the  

device sh ow n  in Fig. 1 resides in the fact that  
a m esh grid such  as 1 1 in Fig. 1 is not 
provided b e tw e en  the an ode 9 and the p h os­
phor layer 2. Instead, a ring grid 1 1 '  is 

1 0 5  provided within the m outh of the blind hole 5 
in the Kovar block 4 .  Electrical connection  is 
m ade to the ring grid 1 1 ' by m eans of a 
connector passing  out through the b ase of the  
Kovar block 4 .  In fact, instead of a pin 7 

1 1 0  making contact with the block 4  the contact,  
here referenced 7',  is cylindrical with the 
connecting  lead for the grid 1 1' passing coax­
ially therethrough in insulated fashion. Al­
though not sh o w n  in Fig. 2, insulting material 

1 1 5 would be provided to support the connecting  
lead for the grid 1 1 within .the cylindrical 
connector 7'.

Referring to Fig. 3, in this case ,  com pared  
to Fig. T, the position of the grid 1 1 is 

1 2 0  ch an ged . Instead of providing this b etw een  
anode 9 and the phosphor layer 2 it is pro­
vided b etw een  the an od e  9 and the cathode
3. In so m e  ca s e s  this may be preferred since  
a relatively lower vo ltage is required com pared  

1 2 5  to that required with the grid in the position  
shown in Fig. 1.

The graph of Fig. 4  sh o w s  the relationship  
b etw een  beam  current I and cathode fall vo l­
tage V (i.e. the vo ltage  applied b etw een  anode  

1 3 0  and cathode) for different gas  filling pressures.
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for a device as described ab ove  having cath­
od e  and anode holes  of 5 mm in diameter.

In any of the em b odim en ts  described above  
with reference to Figs. 1, 2 and 3, instead of  

5 a s ingle cathode hole and a single an ode hole  
a plurality of blind holes  may be provided in 
the Kovar block 4  with each cathode hole  
being coaxially aligned with a corresponding  
hole passing through the anode m em ber 9.

1 0  Typically in such  a case ,  the holes  will be  
arranged in a ring formation, with or without  
cathode and an ode holes on-centre. The effect  
achieved using a plurality of cathode and 
anode holes  in a sim ple device as illustrated 

1 5 in Figs. 1 to 3 ,  is that the areas of excitation  
thus created in the phosphor layer 2  tend to 
m erge to produce a larger illuminated spot (or 
other prescribed pattern as determined by the  
pattern of holes on the faceplate 1) than  

2 0  would otherwise be the case.
The graph of Fig. 5 sh o w s parameters for 

this last-mentioned case  corresponding to 
those  sh ow n  in the graph of Fig. 4  for this 
em b odim en t show n in Fig. 1.

2 5  One application for a device as described  
ab ove is in large area displays such  as those  
som et im es  found in public p laces in order to 
impart information, e .g .  in airport terminals or 
sports areas. By arranging devices  such as 

3 0  those  described ab ove in rows and co lum ns  
and addressing individual d ev ices  appropri­
ately, letters and words— and even gra­
phics— may be produced.

Referring to Fig. 6, another device  in accor- 
3 5  dance with the invention includes a glass  

envelope  1 2 which is of generally circular 
cross-section and has a transversely extending  
side-arm 13  about mid-way along its length. 
An anode m em ber 1 4  extends through the  

4 0  end wall of the side-arm 1 3 and into the main 
part of the vo lum e enclosed  by the en velope
1 2 .

A cathode m em ber 1 5 p a sses  through an 
end wall of the envelope  1 2. It has a stem  

4 5  portion 1 5A and an enlarged end 1 5B with a 
blind hole 1 6 of circular cross-section in its 
front surface. All of the surfaces of the cath­
od e  m em ber 15  contained within the en vel­
op e  1 2, except for the side wall and base  

5 0  surfaces of the hole 1 6, are coated with a 
layer of g lass  17 .  The envelope  12  contains  
helium at a pressure of 2 mB.

In operation, a potential difference of about  
1 kV is applied across the anode and cathode  

5 5  m em bers 1 4  and 15  and an electron beam  is 
formed along the axis A -A  of the hole 1 6,

The en velope  1 2 has a length of about 7 
cm  and a diameter of about 3 .5  cm.

The anode and cathode m em bers 1 4  and 
6 0  15  are separated by approximately 1 cm in 

the axial direction and 0 . 5  cm in the 
transverse direction. The diameter of the hole  
16 is 5 mm, with a depth (i.e. axial length) of 
3 mm.

6 5  Referring to Figs. 7 to 1 1 a display device

com prises  a plurality of e longate  cathode  
m em bers  C l to 0 4  arranged parallel to on e  
another to form a grid. Each cathode m em ber,  
as sh ow n  in Fig. 1 0 ,  com prises  a bar of Kovar 

7 0  having at regular intervals along its length  
blind holes  1 8 .  The holes  1.8 extend into the  
sa m e  planar surface of  the ca thode m em ber.  
Each cathode m em b er is provided with an 
electrical conn ector  (not shown) by m ean s  of 

7 5  which it may be  individually addressed.
S up er im p osed  ab ove  the grid of ca th ode  

m em bers is a grid of  parallel e longate  anode  
m em bers  A1 to  A 5  each  of which consists  of  
a bar of Kovar having a series of holes  1 9 

8 0  passing therethrough from o n e  planar face  to 
its opposite  planar face  as  illustrated in Fig. 9 .  
The pitch of the  holes  1 9 in an anode m em ­
ber corresponds to the spacing b etw een  the  
cathode m em b ers  in the ca th ode grid and the  

8 5  spacing of the a n o d e  m em bers  in the anode  
grid corresponds to the pitch of the cathode  
holes  18  in a ca th od e  m em ber so  that each  
cathode hole 1 8  is a ligned with an an od e  hole  
1 9 at the crossing point of the an ode and  

9 0  cathode conductors in w hich  th o se  particular 
holes  appear.

S and w ich ed  b etw een  the grid of cathode  
m em bers and the grid of an ode m em bers is a 
slab 2 0  of g la ss  w hich  has rows and co lum ns  

9 5  of holes 21 therein extending from on e  major 
planar face to its opposite  major planar face,  
as illustrated in Fig. 8 .  The rows and co lum ns  
of holes  are sp aced  such  that w hen  the slab is 
sandw iched  b etw een  the grid of cathode  

1 0 0  m em bers  and the grid of an ode m em bers,  as  
shown in Fig. 1 1, each  aligned cathode and  
an ode hole at th e  crossing point of an an ode  
and cath ode m em b er is also aligned with a 
hole in the slab of insulating material 2 0 .

1 0 5  Thus, the h oles  21 in the Insulating slab 2 0  
permit com m unication  betw een  appropriate  
o n es  of the ca th ode and an ode holes  1 8  and  
1 9 but im pede com m unicat ion  b etw een  each  
cathode hole and other than the an ode holes  

1 1 0  with which  it is directly aligned. Thus the
ten dency  for so-called "long path" d ischarges  
to take place is reduced.

Super im p osed  over the grid of anode m em ­
bers is a phosphor screen comprising of a 

1 1 5 layer of phosphor material 2 2  on the inside of  
part of an en clos in g  en v e lo p e  which is formed  
as a faceplate 2 3 .  A ssociated  with the layer 
2 2  of phosphor material is a transparent layer 
of conductive  material (som ew hat akin to the  

1 2 0  transparent metal layer of the phosphor screen  
of a conventional ca th od e  ray tube device)  
b etw een  the phosphor layer 2 2  and the face­
plate 2 3 .  The e n v e lo p e  in this ca se  is of g lass  
and en c lo ses  the an od e  and cathode m em bers  

1 2 5  together, of course, with the interposed slab 
of insulating material 2 0 .

The en v e lo p e  has a gas filling of helium  
and, as illustrated only in Fig. 7, each cathode  
m em ber C is entirely covered with an eiectri- 

1 3 0  cally isolating layer 2 4  of glass, except within
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the holes .1 8. Thus, save  for the wall and b ase  
surfaces of the holes 18  all surfaces of the  
cathode m em bers which would otherwise be  
exposed  to the  helium g a s  filling are isolated  

5 therefrom. In fact, save for the interior sur­
faces of the holes 1 8  as aforesaid, all surfaces  
at cathode potential are so  isolated from the  
gas filling. In this particular case  the wall and 
base surfaces of the holes 18  are entirely free 

TO from glass. In this particular exam ple the  
cathode and anode holes 1 8  and 21 are of 
circular cross-section with a diameter of 5 
mm. The helium gas  filling is at a pressure of  
2 mB. The distance separating the grid of 

1 5 cathode m em bers from the grid of anode  
m em bers (i.e. the thickness of the slab 2 0 )  is 
a few millimetres whilst the distance separat­
ing the grid of anode m em bers from the  
phosphor layer 2 2  is in the region of 0 . 5  to 2 

2 0  cm.
If now, and referring particularly to Fig. 12 ,  

a 1 ,5  kV potential difference is established  
b etw een  cathode m em ber C2 and anode  
m em ber A 4 than en electron beam  will be 

2 5  formed in the region of the crossing point of 
m em bers C2 and A 4  which beam  extends  
from out of the mouth of the cathode hole 1 8  
at the crossing point through the correspond­
ing hole in the insulating slab 2 0  to penetrate  

3 0  through the corresponding an ode hole 19  in 
anode m em bers A 4 and im pinge upon the  
phosphor screen to form a spot as represented  
at S in Fig. 1 2 .  By addressing different c o m ­
binations of anode m em bers and cathode  

3 5  m em bers corresponding spots  may be caused  
to appear on the screen at any of the crossing  
points and by suitably changing the com b ina­
tion of crossing points se lected  an animated  
display may be achieved.

4 0  No mention has so  far b een  m ade of grid 
2 5  show n in Fig. 7 as located b etw een  the  
grid of anode m em bers A and the phosphor  
layer 2 2 .  The purpose of this grid, if provided, 
is to modulate the intensity or energy of the  

4 5  electron beam s arriving at the phosphor.
Alternatively, with or without the grid 2 5 ,  

the overall intensity or energy of the electrons  
beam s may be rhodulated or adjusted by 
appropriate alterations to the an ode to cath- 

5 0  od e  discharge current as determined by the  
voltage applied b etw een  the cathode and an­
ode m em bers.

In another em b odim en t a grid 2 6  is e m ­
bedded in the slab 2 0 .  as sh ow n  in Figs. 1 3  

5 5  and 1 4, and may com prise a gauze or as  
metal plate having holes which correspond to 
the anode and cathode holes, as illustrated in 
Figs. 1 5.

It will be noted particularly the ab sen ce  of  
6 0  any form of conventional electron gun. No  

cathode heaters are em ployed  in the device  
illustrated, the cath odes  being cold cathodes,  
and no cathode material such as barium is 
em ployed.

6 5  With reference to Fig. 16 ,  another em b odi­

m ent of the Invention includes a cathode  
m em ber 2 7  of Kovar having a hole 2 8  of  
about 5 mm diameter in its front surface and  
being en closed  in a g lass  en velope  2 9  which  

7 0  also contains helium gas  at a pressure of  
about 2  mB and has a layer of phosphor on 
its inner surface to form a screen  3 0 .  The 
surfaces of the cathode m em ber 2 7 ,  except  
the side wall and b ase of the hole 2 8 ,  are 

7 5  covered in a g lass  layer 3 1 ,  which electrically  
insulates the cathode m em ber 2 7  from the  
helium gas  filling. Electrical connection  to the  
cathode m em ber 2 7  is m ade via a pin 3 2  
which is sheathed  with a layer 3 3  of g lass .

8 0  An anode m em ber 3 4  is located betw een  
the front surface of the cathode m em ber 2 7  
and the phosphor screen  3 0 ,  being about 2  
cm from the ca thode m em ber 2 7 ,  and 2  cm  
from the screen 3 0 .  The anode rnember 3 4  is 

8 5  also offset from the axis X -X  of the hole 2 8 ,  
being about 2 cm  to the right as shown.

W hen a 1 .5  kV potential difference is es tab ­
lished b etw een  the cathode m em ber 2 7  and 
the anode m em ber 3 4 ,  an electron beam  is 

9 0  formed along the axis X -X  of the hole, even  
though the anode m em ber 3 4  is offset from  
that axis. The electron beam  im pinges on the  
phosphor screen 3 0  to form a spot.

The intensity of the spot may be varied by 
9 5  modulating the vo ltage applied to a grid e le c ­

trode 3 5 ,  sh ow n  in this em b odim en t to be  
positioned b etw een  the screen 3 0  and the  
anode m em ber 3 4 ,  although it could be lo­
cated betw een  the anode and cathode m em -  

1 0 0  bers 3 4  and 2 7 .
A further em b od im en t  of the invention is 

illustrated schem atically  in Fig. 17 .  A cathode  
m em ber 3 6  of Kovar has a hole 3 7  in its front 
surface and is coated with an electrically insu- 

1 0 5  lating layer of g lass  3 8 .  The cathode m em ber  
3 6  is contained within a g lass  en velope  3 9  
having on its inner surface a layer of p hos­
phor which acts as a screen 4 0 ,  and enclos in g  
helium gas at 2 mB pressure. The ca th ode  

1 1 0  m em ber 3 6  is electrically connected  via a pin 
4 1 ,  which is also coated in g lass 4 2 ,  forming  
a stem . In this em b odim en t a Kovar anode  
m em ber 4 3  is located behind the front surface  
of the cathode m em ber 3 6  and is positioned  

11 5 co-axially with it about the pin 4 1 .  '
W hen in operation a potential difference of

1 .5  kV is applied betw een  the ca th ode and 
anode m em bers 3 6  and 4 3 ,  an electron beam  
forms along the axis Y -Y  of the hole 3 7  and  

1 2 0  im pinges on the screen 4 0 .
As in the previously described em b odi­

m ents, a m odulating grid may also be in­
cluded, a n d /o r  modulation may be carried out  
by varying the potential difference applied.

1 2 5  The hole 3 7  has a diameter of about 5 mm  
and the front surface of the ca th ode m em ber  
3 6  may be between  a few  millimetres and a 
few  centim etres from the screen  4 0 .

Yet another em b odim en t of the  invention is 
1 3 0  now  described with reference to Figs. 1 8 and
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1 9 .  A plurality of Kovar strips, only tw o  o f  
which 4 4  and 4 5  are shown, are arranged  
parallel to each other on a g lass slab 4 6 .  Each 
of the strips has a plurality of apertures  

5 through it, only four of which, 4 7 ,  4 8 ,  4 9  
and 5 0 ;  5 1 ,  5 2 ,  5 3  and 5 4  are sh ow n  for 
each  strip. Each strips forms an an ode m em ­
ber, electrical signals being applied to them  
via rods 5 5  and 5 6 .

1 0  Cathode m em bers 5 7  to 6 4  are of Kovar 
and have s tem s extending through the aper­
tures in the strips 4 4  and 4 5 ,  there being one  
cathode m em ber to each aperture, and pass­
ing through the g lass slab 4 6 .  The surfaces of 

15  each cathode member, including the con n ect­
ing pin comprising its stem , are coated in 
glass  layers 6 5  and 6 6  except for the side  
wall and base of the s ingle hole in each on es  
front surface.

2 0  The en d s of the cathode m em bers 5 7  to 6 4  
on the side of the g lass slab 4 6  other than the  
an ode Strips 4 4  and 4 5  are connected  via 
rods 6 7 ,  6 8 ,  6 9  and 7 0 ,  such that on e  
cathode m em ber associated with one strip is 

2 5  electrically connected  to a cathode m em ber  
associated  with each of the other strips, giving  
a crossing relationship b etw een  the cathode  
and anode m em bers. Thus, by applying a 
potential difference between  a suitable cath- 

3 0  od e  m em ber and an ode strip, an electron  
beam  may be formed in front of that cathode  
member.
• By placing the structure within an envelope  

filled with helium at 2 mB pressure, and  
3 5  having a phosphor screen on its inner surface, 

a display may be produced.
The front surfaces of the cathode m em bers  

5 7  to 6 4  may be as little as 5 mm from the  
surface of the screen, and a potential differ- 

4 0  en ce  b etw een  the anode and cathode m em ­
bers of 1 .5  kV would be required.

With reference to Fig. 2 0 ,  a thorated tung­
sten cathode m em ber 71 has a stem  7 2  via 
which electrical connection is made, and is 

4 5  covered with a layer 7 3  of electrically insulat­
ing glass which also extends to the stem  7 2 .  
An anode m em ber 7 4  surrounds and is coax­
ial with the stem  7 2 .

The cathode m em ber 71 has a front surface  
5 0  7 5  in which is formed a blind hole 7 6  of 

circular cross-section, being 5 mm d eep  and  
having a diameter of about 1 .5  mm, and 
having surfaces which are free of the layer 7 3  
of glass . The front surface 7 3  is inclined with 

5 5  respect to the hole 7 6  such that the longitudi­
nal axis of the hole 7 6 ,  sh ow n  as broken line 
7 7 ,  is oblique to the normal 7 8  of the front 
surface 7 5 at that point, the angle betw een  
them being about 3 0 ° .

6 0  The cathode and anode arrangement is en ­
closed within a g lass envelope which also  
contains a gas filling of deuterium at about 2 
mB pressure.

In operation, w hen  a suitably high voltage,  
6 5  say 2 kV, is established b etw een  the anode

and the ca th ode m em bers 7 4  and 7 1 ,  an 
electron beam  is formed extensive  in a direc­
tion away from the hole 7 6  and normal to the  
front surface 7 5 .  If, as illustrated a wall 7 9 ,

7 0  which might be for exam ple the wall of the  
envelope  or so m e  other obstruction, is pre­
sent, this could restrict the sp ace  available to  
the arrangement. By giving a suitable incline 
to the front surface 7 5  the hole 7 6  can have a 

7 5  depth which might not be possible if its 
longitudinal axis 7 7  were arranged to be 
parallel to the normal 7 8  to the front surface  
7 5 .

With reference to Fig. 2 1 ,  a thorated tung-  
8 0  sten ca thode m em ber 8 0  is connected  to stem  

81 and is contained within an envelope  (not 
shown) together with a deuterium gas  filling 
at about 2 mB pressure and an anode m em ­
ber 8 2 ,  which is coaxial with and surrounds  

8 5  the stem  8 1 .
The cathode m em ber 8 0  and stem  81 are 

coated with a layer 8 3  of g lass which electri­
cally insulates them  from the deuterium gas  
filling.

9 0  A plurality of ho les  8 4  ar formed in a front 
surface 8 5  of the cath ode m em ber 8 0 ,  each  
of them  being of circular cross-section with a 
diameter of about 1 .5  mm and a depth of 5 
mm and having surfaces which are free of the  

9 5  layer 8 3  of g lass . The front surface 8 5  is
curved, for exam ple, it may be parabolically or 
spherically sh aped, rather than the flat surface  
7 5  sh ow n  in Fig. 2 0 .

In operation, w h en  a voltage of about 2 kV 
1 0 0  is applied b etw een  the cathode and anode  

m em bers 8 0  and 8 2  a plurality of electron  
beam s are formed extensive normal to the  
front surface 8 5  at and in directions away  
from respective holes,  and co m e  to a focus at 

1 0 5  a point 8 6  which is located according to the  
configuration of the front surface 8 5 .

Although the holes  8 4  are illustrated as  
being d isposed  mutually parallel, they could  
be arranged in s o m e  other way, s ince  their 

1 1 0  attitude d o es  not affect the directions of the  
electrons b eam s which  are formed during op ­
eration.

Apparatus according to the invention in 
which the surface is curved to produce such  

1 1 5 focussing might find application in an electron  
beam  welder, for exam ple,  in which case  the  
piece being w eld ed  may also be for exam ple  
contained within the envelope . It might also  
find application in the production of a point 

1 2 0  source of soft X-rays, having a w avelength  of  
about 6 . 1 0 "  "^m, for u se  in spectroscopy for 
exam ple, or to generate  a point source of 
incandescent black body radiation.

With reference to Fig. 2 2 ,  a thyratron in 
1 2 5  accordance with the invention includes a glass  

envelope  8 7 ,  containing a gas filling, an an­
ode 8 8 ,  a screen grid 8 9  and control grids 9 0  
and 9 1 ,  such  as might be found in a co n v en ­
tional thyrarron. However, instead of the con-  

1 3 0  ventionally provided heated cathode, the cath-
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ode comprises a cathode m em ber 9 2  of tu n g­
sten having a plurality of holes 9 3  in its front 
surface, facing the anode 8 8 .  The surface of  
the cathode m em ber 9 2  is entirely covered  

5 with a glass layer 9 4  except for the walls and  
b ases of the holes 9 3 .  W hen the thyratron is 
required to b ecom e conducting a suitably high  
voltage is applied between the anode 8 8  and  
the cathode m em ber 9 2  such  that an electron  

1 0  beam  is formed extensive in a direction away  
from each hole. The gas filling b e c o m e s  ion­
ized and a conduction path is established  
b etw een  the anode 8 8  and cathode m em ber  
9 2 .

1 5 Referring to Fig. 2 3 ,  another thyratron in 
accordance with the invention includes a g lass  
envelope  9 5  containing a gas  filling, an anode  
9 6 ,  a screen grid 9 7  and controls grids 9 8  
and 9 9 .  It also includes a conventional heated  

2 0  cathode, comprising a hollow cylinder 1 0 0  of 
thermionic material and a heater filament  
1 0 1 .  ■

Two cathode m em bers 1 0 2  and 1 0 3  are 
located within the glass envelope  9 5 .  Each 

2 5  has a hole 1 0 4  and 1 0 5  in its front surface  
and is coated with a glass layer 1 0 6  and 1 0 7 .  
The longitudinal axes of the holes 1 0 4  and 
1 0 5  are oblique to the front surfaces of the  
cathode m em bers 1 0 2  and 1 0 3 .  The cathode  

3 0  m em bers 1 0 2  and 1 0 3  also have stem  por­
tions 1 0 8  and 1 0 9  which are surrounded by 
coaxial anode m em bers 1 10  and 11 1 resp ec­
tively.

During operation of the thyratron, the ther- 
3 5  mionic material 1 0 0  is heated by the heater  

filament 101 causing electrons to be emitted  
from its surface. The emitted electrons ionize 
that part of the gas filling between the c o n ­
trols grids 9 8  and 9 9  and the cathode to 

4 0  establish a primary discharge. Then co n v en ­
tionally, to trigger the thyratron, a positive  
voltage pulse is applied to the control grids 
9 8  and 9 9 ,  allowing the discharge to p e n e ­
trate through them to initiate the main dis- 

4 5  charge, and thus to render the thyratron c o n ­
ducting. However, in addition to this, a vol­
tage may be applied between  the cathode  
m em bers 1 0 2  and 1 0 3  and the cathode  
m em bers 1 1 0  and 11 1 respectively, such  that  

5 0  electrons beam s are formed extensive of the  
holes 1 0 4  and 1 0 5  and normal to the front 
surfaces of the cathode m em bers 1 0 2  and  
1 0 3 ,  their path being shown by broken lines  
1 1 2 and 1 1 3 .  These beam s may be formed  

5 5  sim ultaneously with, or shortly before or after, 
the application of the voltage pulse to the  
control grids 9 8  and 9 9 .  The beam s are 
arranged to pass through apertures in the  
control grids 9 8  and 9 9  and penetrate into 

6 0  the vo lum e beyond them, to ionize the g a s  
filling.

The cathode m em bers could be located  
elsew here within the en velope  9 5  if it is 
desired to promote ionization in other regions  

6 5  of the thyratron, and of course only one, or

more than tw o  cathode m em bers could be 
used.

With reference to Fig. 2 4 ,  another thyratron 
includes a g lass  en velope  1 1 4 ,  gas filling, an 

7 0  an ode 1 1 5 ,  a screen grid 1 1 6  and control 
grids 1 1 7  and 1 1 8 .  The thyratron includes a 
thermionic cathode 1 1 9  having thermionic  
material 1 2 0  carried by a substrate 121  of  
high thermal conductivity which may be  

7 5  nickel, for exam ple.  A cathode m em ber 1 2 2  
of tungsten  is positioned on the substrate side  
of the cath ode 1 2 0 .  The cathode m em ber  
1 2 2  has a plurality of holes 1 2 3  in its front 
surface which is concave .  The surface of the  

8 0  cathode m em ber 1 2 2 ,  except for the walls  
and bases  of holes  1 2 3 ,  are covered with a 
layer 1 2 4  of glass . An anode m em ber 1 2 5  
surrounds the cathode m em ber 1 2 2 .

In operation, a voltage is applied b etw een  
8 5  the an ode m em ber 1 2 5  and the cathode

m em ber 1 2 2  such  that a beam of electrons is 
formed extensive  of each hole. The curved  
surface of the block 1 2 2  g ives  a focussing  
effect, and the electrons are directed to im- 

9 0  pinge on the substrate 1 2 1 ,  their kinetic e n ­
ergy being converted into heat. Heat is con ­
ducted to the thermionic material 1 2 0  causing  
electrons to be emitted to produce ionization 
of the gas filling.

9 5  With reference to Fig. 2 5 ,  a cathode m em ­
ber is formed by inserting a tungsten  cylindri­
cal rod 1 2 6  into a hollow tube 1 2 7  of an 
electrically insulating material, such as a cera­
mic or glass.

1 0 0  Fig. 2 6  illustrates another cathode m em ber  
in which a tungsten  rod 1 2 8  is Inserted into a 
hollow metal tube 1 2 9 ,  which may also be of  
tungsten, and a ceramic tube 1 3 0  is fitted 
over the metal tube 1 2 9 .  Any metal surfaces  

1 0 5  which would be exposed  in use to a gas filling 
may then be covered with an insulating layer. 
By em ploying cathode m em bers of this type  
no drilling is required, as it is with those  
previously described.

1 1 0  With reference to Fig. 2 7 ,  a device in 
accordance with the invention com prises  
within an en ve lop e  (not shown) which also  
contains a gas  filling, a cylindrical cathode  
m em ber 131 having a stem  portion 1 3 2  via 

1 1 5 which electrical connection  is m ade to the  
cathode m em ber 1 3 1 .  The cathode m em ber  
131 has a front surface 1 3 2  of circular 
transverse cross-section which is of a 'dished' 
or frusto-conical configuration, the front sur- 

1 2 0  face being inclined such that the length of the  
cathode m em ber 1 31 along its axis Z -Z  in­
creases from its centre to its circumference.  
Other surface configuration may of course be  
em ployed  if desired. A hole 1 3 3  is located in 

1 2 5  the centre of the front surface 1 3 2  and is
coaxial with axis Z -Z  of the cathode m em ber  
1 3 1 .  The surfaces of the cathode m em ber  
131  and the stem  portion 1 3 2  are covered  
with a layer 1 3 4  of electrically insulating  

1 3 0  glass, and an an ode m em ber 1 3 5  surrounds
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and is coaxial with the stem  portion 1 3 2 .
W hen a voltage is applied b etw een  the  

cathode m em ber 1 31 and the an ode m em ber  
1 3 5  an electron beam  is formed extensive of 

5 the hole 1 3 3 .  The beam  is formed in a 
direction normal to the front surface 1 3 2 .
Since at the ed g e  of the hole 1 3 3  the front 
surface 1 3 2  is inclined, com p on en ts  of the  
beam  at points around the e d g e  of the hole  

10  1 3 3  are directed towards the axis Z-Z, such  
that the beam is brought to a focus F. The  
position of the focus F d ep en d s  on the  
am ount of inclination of the front surface.
Such a device may thus produce a lens-like 

1 5 action, without the need for electron lens.
If the front surface is flat then a beam  is 

produced which, although it is highly colli­
mated, tends to diverge to so m e  extent b e­
cau se  of, for exam ple, scattering p rocesses .

2 0  By using a front surface having a small d egree  
of dishing, this ten dency  may be counter­
acted. *

CLAIMS
2 5  1. Apparatus for forming an electron

beam comprises, within an en velope , an an­
ode member; a cathode m em ber of electrically 
conductive material; and a gas filling, and 
wherein, except for part of a front surface of 

3 0  said cathode member, at least substantially  
the w hole  of the surface of said cathode  
m em ber which would otherwise be exp osed  to 
the gas filling within said en velope  is covered  
with an electrically insulating material, the  

3 5  whole arrangement being such that upon the  
application of a suitably high voltage between  
said anode m em ber and said cathode m em ber  
an electron beam  is formed extensive in a 
direction away from said part of said front 

4 0  surface.
2. Apparatus for forming an electron  

beam  comprising, within an en velope ,  an an­
ode member; a cathode m em ber of electrically 
conductive material and having a hole in a

4 5  front surface thereof; and a gas  filling, and  
wherein, except within said hole, at least  
substantially the w hole  of the surface of said  
cathode m em ber which would otherwise be  
exposed  to the gas filling within said en velope  

5 0  is covered with an electrically insulating m a­
terial, the w hole  arrangement being such that 
upon the application of a suitably high voltage  
betw een  said anode m em ber and said cathode  
m em ber an electron beam  is formed extensive  

5 5  in a direction away from said hole.
3 . Apparatus as claimed in claim 2 and 

wherein the anode m em ber is located in front 
of the front surface of the ca thode mem ber,

4 . Apparatus as claimed in claim 3 and 
6 0  including a control grid electrode through

which in operation the electron beam  passes.
5. Apparatus as claimed in claim 3 or 4  

and including a plurality of e longate  cathode  
m em bers arranged in a grid formation, and a

6 5  plurality of e longate  anode m em bers arranged

in a grid formation with said grid of anode  
m em bers superim posed  over said grid of cath­
ode m em bers, but spaced  therefrom, with  
said anode m em bers  in crossing relationship 

7 0  with said ca thode m em bers to form a matrix, 
each of said cathode members having a series  
of holes entering into its surface facing said  
grid of anode m em bers  and each of said 
anode m em bers having a series of h o les  pass-  

7 5  ing therethrough, with each  hole in an an ode  
m em ber aligned with a hole in a different on e  
of the cathode m em bers,  and all surfaces of  
said cathode m em bers, except for the surfaces  
within said holes in said cathode m em bers,

8 0  which would otherwise be exposed to  said gas  
filling are isolated ^therefrom by electrically  
insulating material, and the whole arrange­
ment being such  that by applying a high  
potential b etw een  one of said anode m em bers  

8 5  and one of said cathode m em bers an electron  
beam is formed at the crossing point of  said  
last-mentioned two m em bers,  said electron  
beam  being extensive in the sp ace b etw een  
the mouth of the hole in the cathode m em ber  

9 0  at said crossing point and said anode m e m ­
ber, said beam  being arranged to penetrate  
through the corresponding hole in said ad­
dressed anode member.

6 .  Apparatus as claimed in claim 5 and  
9 5  wherein insulating material is interposed be­

tween  said grid of ca thode m em bers and said 
grid of an ode m em bers, which insulating m a­
terial has p assages  therethrough aligned with 
said holes in said cathode and anode m em -

1 0 0  bers w hereby to permit com m unication  b e ­
tw een  on e  cathode hole and appropriate an­
ode hole but im pede com m unication between  
that cathode hole and any other an ode hole.

7. Apparatus as claimed in claim 6 and 
1 0 5  wherein said interposed insulating material is

provided in the form of a slab having holes  
extending between  its major surfaces and  
forming the said passages .

8 .  Apparatus as claimed in claim 5, 6 or 7 
1 1 0  and including a control grid electrode located

on the inside of the grid of anode m em bers  
other than that on which the grid of cathode  
m em bers is located.

9. Apparatus as claimed in claim 5, 6 or 7 
1 1 5  and wherein a control grid electrode is located

betw een  the grid of cathode m em bers and the  
grid of anode m em bers.

10 . Apparatus as claimed in claim 9 w h e n  
d ependent  on claim 6 or 7 and wherein the

1 2 0  grid electrode is em b ed d e d  in the interposed  
insulating material.

11 .  Apparatus as claimed in claim 2 and  
wherein the an ode m em ber is located to o n e  
side of the axis of the electron beam formed

1 2 5  in operation.
1 2_. Apparatus as claimed in claim 2 and  

wherein the an ode m em ber is located behind  
said front surface of the cathode m em ber.

13. Apparatus as claimed in claim 1 2  and 
1 3 0  wherein the an ode m em ber is co-axial with
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the cathode member.
1 4 .  Apparatus as claimed in claim 1 2  or 

1 3 and including a grid electrode through  
which in operation the electron beam  passes .

5 15 .  Apparatus as claimed in claim 1 2 ,
13 ,  or 1 4  and wherein there are included a 
plurality of elongated anode m em bers, each  
having apertures therein; and a plurality of 
s tem m ed  cathode members, each having a 

1 0  hole in the front surface thereof and arranged 
such that its stem  extends through on e  of said 
apertures, such that each anode m em ber is 
located behind the front surfaces of cathode  
m em bers w h o se  stem s pass through apertures  

1 5  in said an ode member, w hereby by applying a 
high potential between  an anode m em ber and  
on e of the cathode m em bers extending  
through an aperture therein an electron beam  
is formed extensive in a direction aw ay from  

2 0  the hole in said one of the cathode m em bers.
1 6 .  Apparatus as claimed in claim 1 5 and  

wherein a cathode m em ber extending through  
an aperture in one anode m em ber is electri­
cally connected  to another cathode m em ber  

2 5  extending through an aperture in another an­
o d e  member.

1 7. Apparatus as claimed in claim 1 6 and 
wherein a connector connecting two cathode  
m em bers is spaced  from the anode m em bers  

3 0  by electrically insulating material.
1 8. Apparatus as claimed in any preced­

ing claim and including a phosphor layer 
arranged so that w hen an electron beam  is 
formed it inipinges upon a spot upon said 

3 5  layer w hereby to excite the sam e.
1 9. Apparatus as claimed in claim 1 8  and 

wherein said envelope has a portion formed  
as a faceplate on the interior of which said 
phosphor layer is provided.

4 0  2 0 .  A video signal reproducing apparatus
including apparatus as claimed in any preced­
ing claim.

2 1 .  Cathode ray tube apparatus compris­
ing a plurality of elongate cathode m em bers  

4 5  arranged in a grid information, a plurality of 
e longate  anode m em bers arranged in a grid 
formation with said grid of anode m em bers  
superim posed  over said grid of cathode m em ­
bers, but spaced  therefrom, with said anode  

5 0  m em bers in crossing relationship with said 
cathode m em bers to form a matrix, each of 
said cathode m em bers having a plurality of 
holes entering into its surface facing said grid 
of anode m em bers and each of said anode  

5 5  m em bers having a plurality of holes passing  
therethrough, with each hole in an anode  
m em ber aligned with a hole in a different one  
of the cathode m em bers and, superim posed  
over said grid of anode m em bers on the side  

6 0  thereof remote from said grid of cathode  
m em bers, a phosphor screen, the two grids 
being enclosed  within an envelope  having a 
gas filling from which all surfaces of said 
cathode m em bers except for surfaces within  

6 5  said holes in said cathode members, which

would otherw ise be exp osed  to said g a s  filling 
are isolated therefrom by electrically insulating  
material and the w h o le  arrangement being  
such that by applying a high potential be-

7 0  tw een  one of said anode m em bers and on e  of 
said cathode m em bers, an electron beam  is 
formed at the crossing point of said last- 
m entioned tw o  m em bers, said electron beam  
being extensive in the sp ace between  the

7 5  mouth of the hole In the cathode m em ber at 
said crossing point and said anode m em ber,  
said beam  penetrating through the corre­
sponding  hole in said addressed an ode m em -  
be’r to im pinge upon a spot upon said phos-

8 0  phor screen w hereby  to excite the sam e.
2 2 .  Apparatus as  claimed in claim 2  and 

wherein the longitudinal axis of said hole is 
oblique to the normal of said front surface,  
and the electron beam  is formed normal to

8 5  said front surface at said hole.
2 3 .  Apparatus as claimed in claim 2 2  and  

including a plurality of holes in said front 
surface, at least o n e  of said holes having its 
longitudinal axis oblique to the normal of  said

9 0  surface at the hole, such  that upon the appli­
cation of said suitability high voltage electron  
b eam s are formed extensive normal to said  
front surface at and in a direction aw ay from 
respective holes.

9 5  2 4 .  Apparatus as claimed in claim 2 3  and
wherein said front surface is curved.

2 5 .  Apparatus for forming electron b eam s  
comprising, within an envelope ,  an anode  
member; a ca th ode m em ber of electrically

1 0 0  conductive material having a front surface  
which is curved; and a gas filling, and  
wherein, except for a plurality of discrete parts 
of the said front surface, at least substantially  
the w hole  of the surface of said cathode

1 0 5  m em ber which would  otherwise be exp osed  to 
the gas filling within said envelope  is covered  
with an electrically insulating material, the 
w hole  arrangem ent being such that upon the  
application of a suitably high voltage betw een

1 10  said anode m em ber and said cathode m em ber  
electron b ea m s are formed extensive normal 
to said front surface at and in a direction away  
from respective parts.

2 6 .  Apparatus as  claimed in claim 2 4  or
1 15 2 5  and wherein  said front surface is curved

such that the electron beam s formed are fo ­
cu ssed  at a point.

2 7 .  Apparatus as claimed in claim 2 2 ,
2 3 ,  2 4 ,  2 5  or 2 6  and wherein said anode

1 2 0  m em ber co-axially surrounds and is behind  
said front surface of said cathode m em ber.

2 8 .  Apparatus as claimed in claim 2  and 
including a layer of phosphor material on a 
viewable screen arranged such that upon the

1 2 5  application of said suitably high voltage the  
electron beam  im pinges upon said phosphor  
layer and so  exc ites  the sam e.

2 9 .  Apparatus as claimed in claim 2 8  and  
wherein said an ode m em ber has an aperture

1 3 0  therein and is located between  said cathode
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m em ber and said phosphor layer, said e lec­
tron beam being arranged to penetrate  
through said aperture.

3 0 .  Apparatus as claimed in claim 2 9  and
5 wherein the hole in said cathode m em ber and

said aperture in said anode m em ber are coaxi­
ally aligned.

3 1 .  Apparatus as claimed in claim 2 8 ,  2 9  
or 3 0  and wherein said envelope  has a por-

1 0  tion formed as a faceplate upon the inner 
surface of which said phosphor layer is pro­
vided.

3 2 .  Apparatus as claimed in any of claims  
2 8  to 31 including a modulating grid pro-

1 5 vided to affect the strength or intensity of the  
electron beam impinging upon said phosphor  
layer.

3 3 .  Apparatus as claimed in claim 3 2  and  
wherein said modulating grid is a perforated

2 0  grid or gauze provided betw een  said anode  
m em ber and said phosphor layer.

3 4 .  ' Apparatus as claimed in claim 3 2  and  
wherein said modulating grid or gauze is 
provided between  said anode mem ber and

2 5  said cathode member.
3 5 .  Apparatus as claimed in claim 3 2  and  

wherein said modulating grid com prises a ring 
grid provided within the mouth of said hole in 
said cathode member.

3 0  3 6 .  Apparatus as claimed in claim 3 5  and
wherein an electrical connection for said grid 
is taken out, in insulated fashion, through said 
cathode member in a direction away from said 
anode member.

3 5  3 7 .  Apparatus as claimed in any of claims
2 8  to 3 6  wherein electrical connection to said
cathode member is provided for by m ean s of  
a first electrical connector connected to the  
base of said cathode member.

4 0  3 8 .  Apparatus as clajmed in claim 3 7  and
wherein said first electrical connector is prefer­
ably in the form of a hollow cylinder.

3 9 .  Apparatus as claimed in claim 3 8  and  
wherein, where said modulating grid com -

4 5  prises a ring grid provided within the mouth  
of said hole in said cathode member and an 
electrical connection for said grid is taken out, 
in insulated fashion, through said cathode  
m em ber in a direction away from said anode

5 0  member, a second electrical connector for said  
grid passes  through said hollow cylinder.

4 0 .  Apparatus as claimed in any of claims  
2 8  to 3 9  wherein a plurality of holes are 
provided in said cathode m em ber and a corre-

5 5  spen din g  plurality of holes are provided in 
said anode member.

4 1 .  Display apparatus comprising, within  
an envelope,  a layer of phosphor material on
a viewable screen; remote from said phosphor

6 0  layer, a metallic cathode m em ber having a 
hole formed in a front surface thereof; be­
tween said cathode m em ber and said p h os­
phor layer, an apertured anode electrode; and 
a gas filling, and wherein, except within said

6 5  hole at least substantially the w hole  of the

surface of said cathode m em ber which would  
otherwise be exp osed  to the gas filling within  
said en ve lop e  is covered with an electrically  
insulating material, the w hole arrangement  

7 0  being such  that upon the application of a 
suitably high voltage b etw een  said anode  
m em ber and said cathode m em ber an electron 
beam is formed extensive  in the sp ace  be­
tw een  the mouth of the hole in said cathode  

7 5  m em ber and said an ode mem ber, and is ar­
ranged to penetrate through an aperture in 
said an od e  m em ber to im pinge upon said 
phosphor layer and so excite the sam e.

4 2 .  Thyratron apparatus comprising,
8 0  within an en velope , an anode member; a

cathode m em ber of electrically conductive  m a­
terial and having a hole in a front surface  
thereof; and a gas  filling, and wherein, except  
within said hole, at least substantially the  

8 5  w hole  of the  surface of said cathode m em ber  
which would otherwise be exposed  to the gas  
filling within said en ve lop e  is covered with an 
electrically insulating material, the w hole  ar­
rangem ent being such that upon the applica-  

9 0  tion of a suitably high voltage betw een  said 
anode m em ber and said cathode m em ber an 
electron beam  is formed extensive  in a direc­
tion away from said hole.

4 3 .  Apparatus as claimed in claim 4 2  and  
9 5  wherein said ca th ode m em ber has a plurality

of holes in the front surface thereof, such that  
upon application of a suitably high voltage  
electron b ea m s  are formed extensive in a 
direction aw ay from respective holes.

1 0 0  4 4 .  Apparatus as claimed in claim 4 3  and
wherein said front surface is curved.

4 5 .  Apparatus as claimed in claim 4 4  and
wherein at least one of said holes has its 
longitudinal axis oblique to the normal of said

1 0 5  front surface at that hole.
4 6 .  Apparatus as claimed in any of claims  

4 2  to 4 5  and including thermionic material 
arranged such  that w hen  an electron beam , or 
beam s are formed they heat the sam e.

I 10  4 6 .  Apparatus as claimed in claim 4 2  and
wherein, w hen  said electron beam  is formed it 
is arranged to ionize the gas filling in a 
localised region.

4 8 .  Apparatus as claimed in claim 4 7  and
I I  5 wherein the longitudinal axis of said hole is

oblique to the normal of said front surface at 
the hole.

4 9 .  Apparatus as claimed in claim 2 and  
wherein said front surface is shaped  to focus

1 2 0  said electron beam.
5 0 .  Apparatus as claimed in claim 2 or 4 9  

and wherein said front surface is substantially  
frusto-conical, the hole being centrally lo­
cated.

1 2 5  5 1 .  Apparatus as claimed in any of claims
2 to 5 0  and wherein the or each hole in a 
cathode m em ber is blind.

5 2 .  Apparatus as claimed in any of claims  
2 to 51 and wherein the or each hole in a 

1 3 0  cathode m em ber is of circular cross-section.
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5 3 .  Apparatus as claimed in any of cla im s  
2  to 5 2  and wherein the side wall and b ase  
surfaces of the or each hole in a ca thode  
m em ber is entirely free of a covering of elec-

5 trically insulating material.
5 4 .  Apparatus as claimed in any preced­

ing claim and wherein said insulating material 
insulating surfaces of said ca thode m em ber or 
plurality of cathode m em bers from said g a s

1 0  filling is glass.
5 5 .  Apparatus as claimed in any preced­

ing claim and wherein said ca th ode m em ber,  
or plurality of cathode m em bers,,  is of Kovar.

5 6 .  Apparatus as claimed in any preced-
1 5 ing claim and w here said an ode m em ber, or

plurality of anode m em bers, is of Kovar.
5 7 .  Apparatus as claimed in any preced­

ing claim, and wherein said en ve lop e  is of  
glass .

2 0  5 8 .  Apparatus as claimed in any preced­
ing claim and wherein the said g a s  filling is 
helium.

5 9 .  Apparatus as claimed in any p reced­
ing claim and wherein said gas filling is at a

2 5  pressure of b etw een  0&5 and 2 . 5  mB.
6 0 .  Apparatus as claimed in any preced­

ing claim and wherein the high voltage ap­
plied b etw een  the anode m em ber and the  
cathode m em ber is betw een  1 and 2 .5  kV.

3 0  6 1 .  Apparatus as claimed in any preced­
ing claim and wherein said cathode m em ber  
is of thorated tungsten.

6 2 .  Apparatus substantially as illustrated 
in and described with reference to Fig. 1 of

3 5  the accom panying drawings.
6 3 .  Apparatus substantially as illustrated 

in and described with reference to Fig. 2 of 
the accom panying  drawings.

6 4 .  Apparatus substantially as illustrated
4 0  in and described with reference to Fig. 3 of

the accom panying  drawings.
6 5 .  Apparatus substantially as illustrated 

in and described with reference to Fig. 6 of 
the accom panying drawings.

4 5  6 6 .  Apparatus substantially as illustrated
in and described with reference to Figs. 7 to 
1 2  of the accom panying drawings.

6 7 .  Apparatus substantially as illustrated 
in and described with reference to Figs. 13  to

5 0  1 5 of the accom panying drawings.
6 8 .  Apparatus substantially as illustrated 

in and described with reference to Fig. 1 6 of 
the accom panying drawings.

6 9 .  Apparatus substantially as illustrated
5 5  in and described with reference to Fig. 1 7 of

the accom panying drawings.
7 0 .  Apparatus substantially as illustrated 

in and described with reference to Figs. 1 8 
and 19 of the accom panying  drawings,

6 0  7 1 .  Apparatus substantially as illustrated
in and described with reference to Fig. 2 0  of  
the accom panying drawings.

7 2 .  Apparatus substantially as illustrated 
in and described with reference to Fig. 21 of

6 5  the accom panying drawings.

7 3 .  Apparatus substantially as illustrated 
in and described  with reference to Fig. 2 2  of 
the accom pan ying  drawings.

7 4 .  Apparatus substantially as illustrated 
7 0  in and described with reference to Fig. 2 3  of

the accom p an y in g  drawings.
7 5 .  Apparatus substantially as illustrated 

in and described  with reference to Figs. 2 4  of  
the  accom pan ying  drawings.

7 5  7 6 .  Apparatus substantially as illustrated
in and described with reference to Fig. 2 5  of  
the accom pan ying  drawings.

7 7 .  Apparatus substantially as illustrated 
in and described  with reference to Fig. 2 6  of

8 0  the  accom pan ying  drawings.
7 8 .  Apparatus substantially as illustrated 

in and described  with reference to Fig. 2 7  of  
the accom p an y in g  drawings.

Prin ted in th e  U n ited K ingdom  for
Her M ajesty 's  S ta tionery  Office. Dd 8 8 1 8 9 3 5 .  1 9 8 5 , 4 2 3 5 .  
P ublished at The P aten t Office. 2 5  S o u th am p to n  Bu ildings,
London, W C2A  1AY, from  w hich copies m ay be ob ta ined .
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5.3 UK Patent GB 2169131B UK, Japan, USA

Gas discharge devices.

Conventional thyratrons make use of thermionic cathodes and thus require a 

minimum heating time of 5 minutes before operation can commence. Failure 

to observe this requirement results in a rapid and fatal degradation of the 

cathode's emissive properties. UK Patent GB 216913 IB describes a means of 

providing a cold cathode in the form of a hollow metallic box pre-ionised by 

a multiplicity of electron beams. This box cathode has the ability to sustain 

electron emission for the main switch current from an instant start without 

suffering damage.

An embodiment of this concept is shown in Photograph 5.1 where the internal 

structures of the switch are contained in a glass envelope which is penetrated 

by nine glow discharge electron beam (GDEB) guns similar to that illustrated 

in Figure 3.1. The switch was processed as described in Appendix B, filled 

with deuterium to 0.5 torr and connected into a line-type modulator similar to 

that of Figure 4.9. The switch was able to hold-off 23 kV at the selected gas 

pressure. Referring to GB 216913IB Figure 1, a negative DC voltage of about 

3 kV with respect to the cathode box 7 was applied to the GDEB guns 13. The 

cathode box 7 was observed to be filled with ionisation. It is worth noting that 

the GDEB guns were connected in parallel without the benefit of individual 

series ballast resistors on each gun. Current sharing between multiple, parallel
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GDEBs is a feature of their operation. The switch was then triggered by the 

application of pulses from a trigger unit of the design in Figure 4.10 to the 

control grids 4 & 5 and the switch passed a 1 kA main current pulse at a pulse 

repetition frequency of 200 Hz.



Photograph 5.1
À switch employing glow discharge electron beam (GDEB) 
guns to pre-ionise a hollow cold-cathode.
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SPECIFICATION

G as d isc h a r g e  d e v ic e s

5 This Invention relates to g a s  discharge d ev ices  
and more particularly, but not exclusively to  
thyratrons,

A thyratron includes an anode and a cath­
od e .  The cathode may be what is termed a 

10 'cold cathode',  that is, one which em its e lec ­
trons when it is subjected to a large enough  
electric field. Such cold ca th od es  have advan­
tages  over heated cath odes  in that they b e ­
c o m e  emitting a s  so o n  as  a discharge voltage  

15 is established b etw een  the anode and the
cathode. A lso  a cold cathode d o e s  not require 
a heater filament.

However, conventional cold cath odes  suffer  
from a significant d isadvantage w hen  used  in 

2 0  thyratrons or lasers in that the lifetime of  a 
cold cathode is generally short, being of  the 
order of 5 0  to 10 0  hours.

According to a first a sp ec t  of  the invention  
there is provided a gas discharge device, in- 

2 5  eluding; an anode, an enclosure m em ber hav­
ing an aperture therein and substantially en­
closing a volume of a gas  filling, and m eans  
for producing ionization of  the g a s  filling 
within the volume, such that during operation  

3 0  of the device the enclosure m em ber and the 
ionization com prise a cathode, and a con d u c­
tion path is established b etw een  the interior of  
the cathode and the anode through the aper­
ture.

3 5  According to a se co n d  a sp ec t  of  the inven­
tion there is provided a g as  discharge device,  
including: an anode, an enclosure member  
having an aperture therein and substantially 
enclosing a volume of a gas  filling, and m eans  

4 0  for introducing electrons into the volume to 
produce ionization of the gas  filling within the 
volume such that during operation of the d e­
vice the enclosure member and the ionization 
com prise a cathode, and a conduction path is 

4 5  established b etw een  the interior of the cath­
o d e  and the anode through the aperture.

The invention may be advantageously used  
in any device requiring the production of a 
plasma to establish a discharge in a g a s  filled 

5 0  device, for example, it may be u sed  in a laser 
or thyratron.

By employing the invention cathode lifetimes 
of the order of thousands of hours may be  
achieved.

55  Where electrons are introduced into the vol­
ume to produce ionization of the g as  filling, 
they must have an energy sufficient to give a 
plasma of positive ions and electrons. The 
plasma c a u se s  electrons to be emitted by the 

6 0  inner surface of the enclosure member, and 
thus the ionization and enclosure member  
com bine to act as an effective cathode.

Preferably electrons introduced into the vol­
ume are arranged to p ass  through said aper- 

6 5  ture. The ionization produced by the electrons

after they have p a ssed  through the aperture 
may then be used  to trigger the main dis­
charge of the thyratron.

it is preferred that the m eans for introducing 
7 0  electrons com prises  one or more electron em ­

itting m em bers outside of  the enclosure m em ­
ber and each communicating with the said vol­
ume via a respective hole in an outside wall of 
the enclosure member.

7 5  Preferably the electrons introduced into the 
volume are produced by an electron emitting  
member having a hole in a surface thereof and 
wherein, excep t  within the hole, at least sub­
stantially the w hole  of the surface of the elec-  

8 0  tron emittiqg ijiember is covered  with an e lec ­
trically insulating material, an electron beam  
being produced extensive of the hole w hen  a 
suitably high voltage is applied b etw een  the 
electron emitting m em ber and an assoc ia ted  

8 5  anode. Such an electron emitting member is 
described in our co-pending UK patent applica­
tions Nos. 8 3 3 3 8 7 9 ,  8 3 3 3 8 8 0  and 8 4 1 3 7 9 1 .  
The electron emitting m em ber produces a 
beam of electrons which tends to be well col- 

9 0  limated. This is an advantage in that the e lec­
tron emitting m em ber may be placed so m e  
distance from the enclosure m em ber and the 
electron beam directed through a hole in the 
enclosure m em ber to the volume. Thus the 

9 5  electron emitting m em ber may be sp aced  from 
the volume in which ionization takes place and 
which may cau se  deterioration of  the electron  
emitting member.

Preferably the enclosure m em ber acts  as  an 
1 0 0  anode for the electron emitting m em ber al­

though a separate anode may be provided, for 
.example, it might surround the electron emitt­
ing member and be placed behind the surface  
in which the hole is formed. A lso  it is pre- 

105 ferred that a plurality of electron emitting 
m em bers are included.

Preferably the g as  filling is o f  hydrogen al­
though deuterium or s o m e  other gas ,  or mix­
ture of g a s e s ,  may be em ployed. It is also  

1 1 0  preferred that the m em ber is of molybdenum,  
although for example it could be of  high purity 
nickel or of tungsten.

Preferably the m em ber is integral with a 
support structure for another, element, such as  

115 for example a control, grid in a thyratron, giv­
ing added strength and rob u stn ess  to the 
apparatus, although it may of course, be se p a ­
rate.

The device is advantageously a thyratron.
1 2 0  The invention is n o w  further described by 

w ay of example with reference to the a c c o m ­
panying drawing in which:

Figure 1 is part of a longitudinal sect ion  of a 
thyratron in accordance with the invention;

125  and
Figure 2 is part of a longitudinal section  of 

another thyratron in accordance with the in­
vention with like references being u sed  for like 
parts.

13 0  Referring to Figure 1 a thyratron includes a
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glass  envelope 1 (only part of  which is 
shown) which contains a filling o f  hydrogen  
g as  at a pressure of about 0 .5  Tofr. An an­
od e  2, screen grid 3 and control grids 4  and 

5 5 are also contained within the envelope 1 
and are similar to  th o se  em ployed  in a c o n ­
ventional thyratron.

A hollow cylindrical enclosure m em ber hav­
ing a height and diameter o f  about 5 0  mm  

10 and enclosing a volume 6, is also  contained  
within the envelope 1, and co n s is ts  of a side  
wall 7 and end walls 8 and 9 o f  molybdenum.  
The cylindrical enclosure m em ber Is co-axial 
with the longitudinal axis X-X o f  the thyratron, 

15 the screen grid 3 ,  and control grids 4  and 5 
lying b etw een  it and the anode 2. An annular 
aperture 11 is included in the end wall 8  
which is nearest the control grid 5 .  The side  
wall 7 includes nine apertures 12 having a 

2 0  diameter of a few  millimetres, only tw o  of  
which are sh ow n . The apertures 12 are 
sp aced  equidistant around a circumference of  
the side wall 7.

Nine electron emitting m em bers in the form 
2 5  of cylindrical rods 13 of  tungsten, again only 

tw o  of  which are sh ow n , are arranged around 
the outside of  the enclosure member and are 
also sp aced  equidistant around the circumfer­
ence,  each being assoc ia ted  with a respective  

3 0  aperture 12. Each rod 13 has a hole 14 in its 
front surface extending along its longitudinal 
axis which is perpendicular to the axis X-X of  
the thyratron. Each hole 14 is aligned with the 
aperture 12 assoc ia ted  with that rod 13. The 

3 5  whole surface of each rod 13 contained within 
the envelope 1 is coated  with a g lass layer 
15, except for that part of the surface forming 
the b ase  or wall of the hole 14.

In operation, the walls 7, 8 and 9 of the 
4 0  enclosure member are earthed and a positive  

potential is applied to the anode 2. W hen a 
thyratron is to b ecom e conducting a negative 
potential is applied to the rods 13, the enclo­
sure member thus being at positive potential 

4 5  with respect to them. An electron beam then 
forms extensive of each hole 14 and in a 
direction aw ay from it. The electron b eam s  
p ass  through the apertures 12 and enter the 
volume 6. T hese electrons cau se  ionization of  

5 0  the gas filling contained by the enclosure  
member to produce a plasma of positive ions  
and electrons. Thus the enclosure member  
and the ionization within the volume 6 c o m ­
bine to form a cathode 10. The main dis- 

5 5  charge then occurs when the thyratron is trig­
gered into its conducting state.

The thyratron could be arranged such that 
the rods 13 are always maintained at negative 
potential to produce beam s of electrons, and  

6 0  the main discharge is initiated by vo ltages of  
up to 5kV applied to the control grids 4  and
5.

An alternative form of operation is to pulse  
the rods 13 with a current of up to 5 0 0  A for 

6 5  up to 1 .0 m icrosecond before a pulse is ap­

plied to the grids 4  and 5.
The cathode 10 formed by the enclosure 

member and the ionization is capable of su s ­
taining curent pulses of 10 -15  kA lasting from 

7 0  10— 15 m icroseconds.
With reference to Figure 2  a thyratron is 

sh ow n  which is similar to that of Figure 1. 
However, instead of having nine rods spaced  
around the circumference of the side wall 7,

7 5  tw o  cylindrical tungsten rods 16 and 17 are 
located adjacent the end wall 9. Each of the 
rods 16 and 17 has a hole 18 and 19 respec­
tively in its front surface, and the surface of  
each rod, save  for within the hole, is coated  

8 0  with a laypr 2 0  and 21 respectively of  glass .  
Each of the holes 18 and 19 is aligned with a 
respective aperture 2 2  and 2 3  in the end wall 
9. Anode m em bers 2 4  and 2 5  coaxially sur­
round the rods 16 and 17 respectively and 

8 5  are located behind their front surfaces.
When a suitably high voltage is applied be­

tw een  the rods 16 and 17 and their re sp ec­
tive an odes  2 4  and 2 5  electron beam s are 
formed extensive of the holes 18 and 19 and 

9 0  penetrate via the apertures 2 2  and 2 3  into the 
volume 6 w here the gas  filling b eco m e s  ion­
ized. The rods 16 and 17 are also aranged to  
be aligned with aperture 11 in the end wall 8 
such that the electron beam s penetrate there- 

9 5  through. Thus ionization may also be produced  
within the region b etw een  the end wall 8 and 
control grid 5, and may be used to trigger the 
main thyratron discharge.

1 0 0  CLAIMS
1. A gas discharge device, including; an an­

ode, an enclosure member having an aperture 
therein and substantially enclosing a volume of  
a gas filling, and m eans for producing ioniza-

105  tion of the gas filling within the volume, such  
that during operation of  the device the enclo­
sure member and the ionization comprise a 
cathode, and a conduction path is established  
b etw een  the interior and the cathode and the

1 1 0  anode through the aperture.
2. A gas discharge device, including; an an­

ode, an enclosure m em ber having an aperture 
therein and substantially enclosing a volume of  
a gas filling, and m eans for introducing elec-

115  trons into the volume to produce ionization of 
the gas filling within the volume such that dur­
ing operation of the device the enclosure  
member and the ionization comprise a cath­
ode,  and a conduction path is established be-

1 2 0  tw een  the interior of the cathode and the an­
ode through the aperture.

3. A device as  claimed in claim 2 and 
wherein electrons introduced into the volume  
are arranged to p a ss  through said aperture.

125  4. A device as claimed in claim 2  or 3 and
wherein the m eans for introducing electrons  
com prises one or more electron emitting 
m em bers outside of the enclosure m em ber  
and each communicating with the said volume

1 3 0  via a respective hole in an outside wall of the
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enclosure member.
5. A device as claimed in claim 2, 3 or 4  

and wherein the electrons introduced into the 
volume are produced by an electron emitting

5 member having a hole in a surface thereof and 
wherein, except within the hole, at least sub­
stantially the whole of the surface of the elec­
tron emitting member is covered with an elec­
trically insulating material, electrons being pro- 

10 duced extensive of the hole when a suitably 
high voltage is applied between the electron 
emitting member and an anode.

6. A device as claimed in claim 4 or 5 and 
wherein the enclosure member acts as an an-

15 ode for the electron emitting member.
7. A device as claimed in claim 4, 5 or 6 

and including a plurality of electron emitting 
members spaced equidistant around the enclo­
sure member.

20 8. A device as claimed in any preceding
claim and wherein the gas filling is hydrogen.

9. A device as claimed in any preceding 
claim and wherein the enclosure member is of 
molybdenum.

25 10. A device as claimed in any poreceding
claim and wherein the enclosure member is 
integral with a support structure for another 
element.

11. A device as claimed in any preceding 
30 claim and wherein the gas filling is at a pres­

sure of approximately 0.5 Torr.
12. A device as claimed in any preceding 

claim, and wherein the device is a thyratron.
13. A thyratron substantially as illustrated in 

35 and described with reference to Figure 1 of
the accompanying drawings.

14. A thyratron substantially as illustrated in 
and described with reference to Figure 2 of 
the accompanying drawings.

Prin ted in the United K ingdom for
Her M n jesty 's  S tationery  Office. Dri 8 8 1 8 9 3 5 , 1 986 . 4 2 3 5 , 
Published a t The P aten t Office, 25  S ou tham pton  Buildings, 
London. W C 2A  1AY, from  which cop ies m ay bn ob ta ined .
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5.4 UK Patent GB 2191628B UK, Japan, USA

Electron beam apparatus.

The essence of this patent is a glow discharge electron beam (GDEB) whose 

power is increased by an electrode arrangement which forms the electron beams 

in a cascaded sequence. By arranging a coaxial series of electrodes so that they 

are alternately cathode and anode with respect to each other, the electron beam 

from the cathode maintains its coaxial path into the anode which is itself acting 

as a cathode for the next cylindrical electrode. Thus, the electron beams join 

sequentially and remain confined to the axis of the series of electrodes. Such 

beams have been found to excite Ar II states associated with the Ar II laser in 

prototype systems (Carman, 1986).

Reference.

Carman R.J., DC glow discharge electron guns for the excitation of rare gases., 

Ph.D. Thesis, p 115, University of St. Andrews, (1986)



(12) UK Patent ,„GB ,,„2 191 628,«B

(54) Title of Invention

Electron beam apparatus
(51) INTCL»; HOIS 3/09

(21) Application No (73) Proprietor(s)
8710444.4 English Electric Valve

Company Limited
(22) Date of filing

1 May 1987 (Incorporated in United
Kingdom)

(30) Priority data
106 Waterhouse Lane

(31) 8614541 Chelmsford CM1 2QU
Essex

(32) 14 Jun 1986 .
(72) Inventor(s)

(33) GB Dr Arthur Maitland
Clifford Robert Weatherup

(43) Application published
16 Dec 1987 (74) Agent and/or

Address for Service
(45) Patent published G Cockayne

17 Jan 1990 The General Electric
Company pic
Central Patent Dept
Marconi Research Centre
West Hannlngfield Rd
Gt Baddow

I. Chelmsford
(52) Domestic classification Essex CM2 8HN

(Edition J)
H1C CSX 0218 C34Y 0470

(56) Documents cited
GB 2189074 A
GB 1390309 A
EP 0015297 A1
US 3543182 A

(58) Field of search

As for published application
2191628A v/z;
UK0LH1CH1D
INTCU H01J HOIS
updated as appropriate



( 1 2 ) UK Patent Application n„ GB ,i„ 2 191 628  3,A
(43) Application published 16 Dec 1967

(21) Application No 8710444 (51) INTCL*
* HOIS 3/09

(22) D ateoffiling l May 1987
(52) Domestic classification (Edition 1)

(30) Priority data H1C21834Y470BX

(31) 8614541 (32) 14Jun1986 (33) GB (56) Documents cited
GB 1390309 US 3543182

• EPA10015297
(71) Applicant

English Electric Valve Company Limited, (58) Field of search
NIC

(Incorporated in United Kingdom), HID
Select edU S specifications from I PC sub-clasr-s H01J

106 W aterhouse Lane, Chelmsford, Essex HOIS

(72) Inventors
Dr Arthur Maitland,
Clifford Robert Weatherup

(74) Agent and/or Address for Service
6 . Cockayne, The General Electric Company pic. Central 
Patent Dept, Marconi Research Centre, Gt Baddow, 
Chelmsford, Essex

(54) Electron beam apparatus

(57) A laser arrangement includes electron beam apparatus comprising a plurality of electrodes 4,5,6 and 7 each of 
which has an aperture 8,9,10 and 11 therethrough. The apertures are aligned along the longitudinal axis X-X of an 
envelope 1 which surrounds them. The electrodes are electrically connected such that each is at a lower potential than 
an adjacent one. An electron beam is produced between the first electrode 4 and an adjacent electrode 5, and is 
accelerated along the axis, the electron current also increasing in magnitude. The electron beam produced is used to 
provide pumping power to a gas contained within the envelope 1 such that it acts as a laser active medium.
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SPECIFICATION 

Electron beam apparatus

5 This invention relates to electron beam apparatus 
and more particularly, but not exclusively, to laser 
apparatus which includes the use of an electron 
beam.

It is known, for example as described in our UK 
10 Patent Application, publication serial no. 2153140A, 

that an electron beam may be formed in a device 
comprising an anode and cathode arranged within a 
gas filled envelope, the cathode having a hole in a 
surface and, except for the area within the hole,

15 being substantially covered by a layer of insulating 
material. An electron beam is obtained on 
application of à suitably high voltage between the 
anode arid the cathode: when à gas discharge is 
formed. The electron beam originates from within 

20 the hole and emerges from the hole in a direction 
which is normal to the metal surface of the cathode 
in which the hole is located.

According to this invention, there is provided 
electron beam apparatus comprising meansfor 

25 forming an electron beam ; an electrode contained 
withln.a gas-filled envelope, said electrode having an 
aperture therethrough and, except within the 
aperture, being coated over substantially ali its 
surfacewith electrically insulating material; and 

30 meansfor accelerating electrons of the beam
throughthe aperture. Apparatus in accordance with 
the invention enables the energy of the electron 
beam and the magnitude of thé beam current to be 
increased. Such apparatus is particularly useful 

35 therefore in devices such as for example lasers, x-ray 
sources, and in electron beam welding apparatus. 
The electrode tends to keep the electron beam well 
collimated, reducing dispersion and enabling a 
relatively long path length to be achieved.

40 Preferably, the means for forming an electron
beam comprises, within the envelope, a cathode 
having a hole therein and, except within the hole, 
being coated over substantially all its surface with 
electrically insulating material; and an anode, the 

45 arrangement being such that when a suitably high 
voltage is applied between the cathode and the 
anode an electron beam is formed extensive in a 
direction away from said hole. Some meansfor 
forming an electron beam may be arranged to 

50 produce a well collimated, highly directional
electron beam. It may be advantageous that the hole 
is an aperture which extends through the cathode 
from one face to another, but it could of course be 
closed or blind. Where the means for forming an 

55 electron beam includes a cathode and anode as 
mentioned above, the electrode may conveniently 
and advantageously be arranged to be the anode.

Alternatively, an arrangement for forming an 
electron beam may be used which is similar to that 

60 described above but in which the cathode is not 
coated with electrically insulating material. The 
anode is then spaced from the bare cathode surface 
by such a distance that there is substantially no 
discharge between them, except in the region of the 

65 hole, when the potential difference is applied

between them. The spacing between the cathode 
and anode is appropriately chosen in accordance 
with Paschen's law, and depends on the gas 
pressure and voltage employed.

70  It is preferred that a plurality of electrodes are
included, each having an aperture therethrough and 
being arranged such thatthe electron beam passes 
through each of the apertures in turn. In such an 
arrangement, some amplification occurs at each 

7 5  electrode, giving a larger resultant beam current 
than would be obtained from a single electrode. It is 
preferred thatthe electrodes are arranged such that 
the aperturej? are aligned, this being a particularly 
convenient arrangement. Preferably, for an adjacent 

80  pair of electrodes, the one which the electron beam 
is arranged to passthrough first is at a lower 
potential than the other. Thus, where several 
electrùdôs are spiced apart along an axis, with their 
apertures being coaxially aligned, each is 

?5  maintained at a higher potential than a preceding 
* one, and thus acts as the means for accelerating 

electrons of the beam through the aperture of the 
preceding electrode. An increase in electron energy 
and electron current is obtained at each electrode.

90  Since the electron beam Is collimated as it emerges 
from each aperture, the total path length ofthe 
electron beam from the first electrode to the last rriay 
be made as long as desired, for example, a metre or 
more which is desirable in some applications ofthe 

9 5  apparatus. To obtain an electron beam over a 
substantial length in a gas would normally require 
thatthe beam be confined by a rnagnetic field of a 
long solenoid. Apparatusin accordance with the 
invention does not require a solenoid to obtain a 

100 long, well collimated electron beam.
The or each electrode may have more than one 

aperture therethrough, with respective electron 
beams being arranged to pass through respective 
apertures. This may prove particularly suitable in 

105  apparatus in which it is desired, for exarhple, to 
direct a relatively large amount of energy from the 
electron beams within a given volume, since each 
beam may deliver substantially the same amount of 
energy as a single one would, or where it is required 

110 to irradiate a body or region over a relatively large 
area.

According to a feature of this invention, a laser 
arrangement includes apparatus in accordance with 
the invention, wherein the or an electron beam is 

115 arranged to provide pumping power to material 
which is arranged to form at least part of a laser 
active medium, and preferably, the envelope 
containsthWlectrodes and the material. Apparatus 
in accordance with the invention is particularly 

120 useful in a laser arrangement, since the apertures of 
the electrodes may be arranged along the optical 
axis ofthe laser, the electron beam then being 
created and directed through the region where it 
desired to produce the laser radiation. Where the or 

125 an electron beam is obtained by employing a
cathode having a hole in a surface thereof, the hole 
advantageously passes through |he cathode to 
present an unobstructed path through the apparatus 
to laser radiation.

1 30  The invention is now further described byway of
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exam ple with reference to the accom panying  
drawings, in which:

Figure /  is a schem atic longitudinal section of a 
laser arrangement in accordance with the invention;

5 Figure 2  illustrates an alternative com ponent of 
the apparatus of Figure 1 ; and 

F/firt/z-es 5 and 4  illustrate schem atically in 
longitudinal and transverse section respectively 
another laser arrangement in accordance with the 

10 invention.
With reference to Figure 1, a laser arrangement 

includes a cylindrical ceramic envelope 1 having 
w indow s 2 and 3 at each end. Electrodes, only four of 
which 4 ,5 ,6  and 7 are shown, are spaced apart from 

15 one another along, and co-axially about, the . 
longitudinal axis X-X, which is the optical axis ofthe  
laser. Each ofth e electrodes 4 ,5 ,6  and 7 is a metal 
cylinder, having a cylindrical aperture 8 ,9 ,1 0  and 11 
respectively therethrough, the a pertures being 

2Q aligned along the longitudinal axis X X.
Substantially the w hole ofth e surface of each ofth e  
electrodes 4 ,5 ,6  and 7 Is coated with a layer 12 of 
electrically insulating material, which may 
conveniently be for exam ple, glass or ceramic. The 

25 walls ofthe apertures 8 ,9 ,1 0  and 11 are not coated  
with the electrically insulating material but are left 
bare. Each o fth e electrodes is connected to an 
electrical conductor 13,14, ISand 16 which p asses  
out ofth e envelope via one o f a plurality of side arms, 

30 and is also coated with electrically insulating 
material. The electrodes 8, 9 ,10  and 11 .are 
connected spch that on e end electrode 4 is . 
maintained at a .low potentiaLand the qther end 
electrode 7 is.màintàined at a higher potential, with 

35 intermediate electrodes being maintained at
potentials lying between these two extrem es, being 
arranged such thatthe electrode potentials 
progressively increase along the axis X-X. The 
envelope 1 also contains a gas which is to be 

40 pumped by the electron beam to form a laser active 
medium. A suitable gas may be argon, for exam ple, 
at a pressure of several hundred millitor (tens of Pa). 
Typically, an electrode has a length of 3cm and a 
diameter of 1cm, with an aperture diameter of about 

45 2mm. Adjacent electrodes may be spaced apart by 
3cm, Thus for an electron beam length of about 1 m 
fifteen of such electrodes would be required.

‘During operation ofthe arrangement show n in 
Figure 1, one end electrode 4 is maintained at earth 

50 potential, the adjacent electrode 5 at a potential of 
2kV, the next at 2kV higher and so  on. The difference 
in potential between the end electrode 4 and the 
adjacent electrode 5 is large enough to cause an 
electron beam to be formed extensive in a direction 

55 away from the aperture 8 from the electrode 4, the 
adjacent electrode 5 acting as an anode. The electron 
beam is accelarated through the aperture 9 ofthe  
electrode 5 because ofth e potential difference wich  
exists between the electrode and the adjacent 

60 electrode 6. As the electron beam is accelerated 
through the aperture 9, additional electrons from the 
surface ofth e aperture 9 add to the beam and the 
electron beam current is thereby increased. The 
increase in electron beam current also occurs at 

65 subsequent electrodes to give a larger beam current

atthe final electrode 7 than that which is produced at 
the first electrode 4.

The amplified electron beam current provides 
pumpirig power to the gas contained within the 

70 envelope 1 and may be m ade great enough to cause  
laser action to be initiated along the axis X-X.

With reference to Figure 2, although each o fth e  
electrodes 8 ,9 ,1 0  and 11 o fth e arrangement show n  
in Figure 1 is coated overall its surfaces with 

75 electrically Insulated material, except for the surface 
ofth e hole, only the surface 16 parallel to the axis 
may be coated to provide the insulating material 
over substantially all its surfaces, leaving the en d s 18 
and 19 free oj electrically insulatirig material.

80 With reference to Figures 3 and 4, a laser
arrangement is similar to that described with 
reference to Figure 1, except that in this case each  
electrode includes a plurality of apertures 20 passing, 
froth One of its s t r a c e s  to the other. This.enablés 

85 increased pdwehto be delivered to the gas contained  
w ithiathe envelope and thus aids in creating laser 

j action.

CLAIMS
90

1. Electron beam apparatus comprising m eans  
for forming an electron beam; an electrode within a 
gas-filled envelope, said electrode Having an 
aperture therethrough and, except within the

95 aperture, being coated over substantially all its 
surfacewith electrically insulating material; and 
m eans for accelerating electrons of the beam  
throughthe aperture.

2. Apparatus as claimed m claim 1, and wherein  
100 the m eans for forming an electron beam s com prises,

within the envelope, a cathode having a hole therein 
and, except within the hole, being coated over 
substantially all its surface with electrically 
insulating material, and an anode, the arrangement 

105 being such that when a suitably high voltage is 
applied between the cathode and the anode, an 
electron beam is formed extensive in a direction 
away from said hole.

3. Apparatus as claimed in claim 2, and wherein  
110 said hole is an aperture extending through the

cathode from one face to another.
4. Apparatus as claimed in claim 2 or 3 and 

wherein the said electrode is arranged to act as the 
anode.

115 5. Apparatus as claimed in any preceding claim
and including a plurality of electrodes, each having 
an aperture therethrough and, except within the 
aperture, being coated over substantially all its 
surface withflectrically insulating material, the 

120 electrodes being arranged such thatthe electron 
beam p asses through each of them  in turn.

6. Apparatus asclaim ed in claim 5, and wherein  
the electrodes are arranged such thatthe apertures 
are aligned along the longitudinal axis ofthe

125 envelope.
7. Apparatus as claimed in claim 5 or 6 and 

wherein an adjacent pair of electrodes are arranged 
such that that which the electron beam  p asses  
through first is at a lower potential than the other.

130 8. Apparatus as claimed in any preceding claim
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and wherein the, or each, electrode includes a 
plurality of apertures therethrough and respective 
electron beam s being arranged to passthrough  
respective apertures.

5 9. A laser arrangement including apparatus as
claimed in any preceding claim and wherein the or 
an electron beam is arranged to provide pumping 
power for a material which is arranged to form at 
leastpartof a laser active m edium .

10 10. An arrangement is claim ed in claim 9, and
wherein the envelope contains the electrodes and 
the laser active medium.

11. Apparatus substantially as illustrated in and 
described with reference to Figure 1 ofthe

15 accompanying drawings.
12. Apparatus substantially as illustrated in and 

described with reference to Figures 3 and 4 ofthe  
accom panying.drawings.

Prin ted fo r Her M ajesty 's  S ta tio n e ry  Office by 
C roydon P rin ting C o m p an y  (UK) Ltd, 10/87, D8991685.
P ub lished  by  The P a ten t Office, 25 S o u th a m p to n  B u ild ings, L ondon, WC2A 1 AY, 
from  w hich  co p ie s  m ay  be  o b ta in ed .
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5.5 UK Patent GB 2194673B UK, Japan, USA,
Europe, Australia

Apparatus for forming an electron beam sheet.

This patent describes how an electron beam in the form of a sheet can be 

produced by a cathode slot of suitable dimensions in a gas discharge at low 

pressure. The advantage of the sheet form is that the pre-ionisation density is 

higher than that provided by a single cylindrical beam. A further benefit is that 

the sheet generating electrodes can be conveniently stacked as shown in GB 

2194673B Figure 3 to provide pre-ionisation of an extensive volume. The 

generation of the electron beam sheet has been demonstrated in a test device 

and sheet generating electrodes have been incorporated in a cold-cathode gas 

switch.
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(54) A p p a ra tu s for form in g  an  e le c tr o n  b e a m  s h e e t

(57) D ischarge apparatus, eg  a thyratron or a g a s  laser, includes, in a gas-filled envelope, a metal cathode  
m em ber having an e longate slo t in a surface thereof and an anode m em ber such that applying a large 
potential difference th ereb etw een  c a u se s  electron  em ission  in the. form o f a beam  sh eet from the length o f  
the slo t. In the thyratron o f Fig. 1, cath ode m em ber 5 is annular with an annular slo t 6  and is m ounted in 
the en velop e wall adjacent a grid 4  b etw e en  main cath ode 2  and an ode 1. By applying a few  kilovolts 
b etw een  the cath ode 5  and grid 4  an electron  beam  sh ee t is produced a cross the width o f the thyratron 
causing ionisation w hich esta b lish es the main discharge current. A further anode m em ber (12 , Fig. 2 , not 
show n) form ing part o f the en velop e wall m ay be located  b etw een  the slotted  cathode m em ber and the 
main cath od e. In the thyratron of Fig. 3  (not show n) a plurality of slo tted  ca th od es together with a further 
cath ode having a plurality of s lo ts  are provided.

In the ga s laser of Fig. 4  ceram ic en velop e  tube 2 5  contains cylindrical cathode m em ber 2 4  being a 
plurality o f longitudinal s lo ts  2 6 , a millimetre or s o  w ide, which are aligned with the rod anode m em ber 2 7  
along the longitudinal axis.

F/g .4 .

Fig . / .

The drawings originally filed were informal and the print here reproduced is taken from a later filed formal copy.
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SPECIFICATION

A p p a ra tu s for form ing an  e le c tr o n  b ea m  
s h e e t

5
This invention relates to  apparatus for forming  
an electron  beam , and m ore particularly for 
forming an electron beam  sh e e t  w hich exten d s  
over a relatively large region.

10 A ccording to  th is invention, there Is pro­
vided  apparatus for forming an electron  beam  
sh e e t  com prising a m etal ca th od e m em ber  
having an elongate slo t in a surface thereof 
and an an ode m em ber the cath od e and anode  

15 m em bers being arranged within a gas-filled en ­
velop e , and the arrangem ent being such  that 
on application o f a suitably large potential dif­
feren ce b etw een  the an ode and cath ode m em ­
bers an electron beam  sh e e t is form ed exten-  

2 0  sive  in a direction aw ay from the slo t. By 
"electron  beam  sh eet"  it is m eant that the  
electron beam  is produced along substantially  
the w h ole  of the length o f the s lo t and ex ­
ten d s outw ards from it. The potential differ- 

2 5  en ce  required to  obtain the electron beam  
sh ee t  d ep en d s on the particular arrangem ent 
em p loyed  and is typically a few  kilovolts. The 
electron beam  sh ee t is produced a s  a result o f 
g a s  discharge p r o c e sse s , in w hich the w alls o f 

3 0  the s lo t are bom barded by ions produced on 
application o f the large potential difference, 
causing secon dary em ission  of electrons from  
the slo t su rfaces which add to  the beam  
sh ee t. The electron beam  sh e e t  obtained is 

3 5  highly collim ated, and, ab ove a certain thresh­
old current, its w idth and length are deter­
m ined by the width and length o f the slo t.
The direction in which the electron beam  
sh e e t is form ed is determ ined by the configu- 

4 0  ration o f the cathode m em ber surface in which  
the s lo t is located, the sh e e t being produced  
normal to  the surface of the cath od e m em ber 
at the slo t. S o m e degree o f focusing m ay be 
obtained by curving the surface in which the  

4 5  slo t is located. Substantially all su rfaces o f the 
cath ode n^ember may be coated  with a layer 
of electrically insulating material, ex cep t within 
the slo t, sin ce this ten d s to  enable a larger 
electron beam  sh ee t current d en sity  to  be ob- 

5 0  tained for a given current than w hen  such  an 
insulating layer is not em ployed .

In a thyratron in accordance w ith the inven- 
‘ tion, the an ode m em ber m ay b e arranged to  
- b e the main cathode itself, or o n e  of th e thy- 

5 5  ratron grids, or another electrod e included  
specifically for that purpose.

The s lo t m ay be any con ven ient configura­
tion for exam ple it may b e helical, but it is 
preferred for m any applications that the slo t 

6 0  be arcuate. It m ay be ad van tageou s that the 
slo t is continuous, that is, that it h as no en d s, 
for exam ple it may b e circular. The surface 
configuration o f the cath ode m em ber around 
the slo t may be ch osen  such  that the electron  

6 5  beam  sh e e t is form ed in a substantially single

plane, or it could b e m ade conical, for 
exam ple. W here the electron beam  sh e e t  is 
arranged to  extend  in a single plane it m ay be  
arranged to  extend  substantially continuously  

7 0  over an area defined by the slo t, such  that 
w here the s lo t is circular, the electron beam  
sh ee t is produced over substantially all the  
area surrounded by the slo t.

A dvantageously , for so m e applications a 
7 5  plurality o f s lo ts  are included in the apparatus. 

An electron beam  sh e e t  is then produced ex ­
ten sive  o f each  o f the s lo ts , and each  electron  
beam  sh ee t h as an energy and m agnitude 
w hich is substantially unaffected by th e pres- 

8 0  en ce  o f the. others. Thus the total energy  
available m ay b e increased over that available 
w hen  only on e s lo t is included in the appara­
tus.

A ccording to  a first feature of the invention, 
8 5  a thyratron arrangem ent includes apparatus in 

accordance with the invention, w herein the 
electron beam  sh e e t  is arranged to  produce 
ionisation within the thyratron. The electron  
beam  sh ee t m ay then be u sed  to  trigger the  

9 0  thyratron into the conducting sta te . Preferably 
a control grid electrode is included in the thy­
ratron, being arranged b etw een  the main an­
o d e  and main cath ode, and the electron beam  
sh ee t is arranged to  be directed into the re- 

9 5  gion o f the grid apertures.
A dvantageously , the electron beam  sh ee t  

m ay be directed s o  a s  to  produce uniform 
ionisation over substantially all o f a c r o s s - s e c ­
tional area b etw een  the thyratron main an ode  

1 0 0  and cathode, thus reducing jitter and rise tim e 
o f the main d ischarge current b etw een  the  
main cath ode and anode.

The electron beam  sh ee t may advantage­
ously be arranged to  produce a primary d is- 

1 0 5  charge b etw een  a cath ode and a grid within 
the thyratron, prior to  the thyratron conducting  
its main current. More than on e ca th od e m em ­
ber may be included, for exam ple on e m ay be  
u sed  to  produce a primary discharge and 

1 1 0  another arranged to  trigger the thyratron.
A dvantageously , the anode m em ber may 

form part o f the wall of the thyratron, and 
on e anode m em ber m ay be a sso c ia ted  with  
m ore than on e slot.

1 1 5  A ccording to a seco n d  feature of the inven­
tion, a laser arrangem ent includes apparatus in 
accordance with the invention, wherein the  
electron beam  is arranged to  provide pumping 
p ow er to  a material which is arranged to  form  

1 2 0  part at least of a laser active m edium .
S om e w a y s in which the invention m ay be 

performed are n ow  further described  by w ay • 
of exam ple with reference to the accom pan y­
ing draw ings in which;

1 2 5  Figures 1, 2  and 3  are schem atic sectional 
v ie w s  of resp ective thyratron arrangem ents in 
accordance with the invention; and

Figure 4  schem atically illustrates a laser ar­
rangem ent in accordance with the invention. 

1 3 0  With reference to  Figure 1, a thyratron ar-
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rangem ent includes a thyratron an od e 1 and a 
main cath ode 2 located  within a ceram ic en ­
ve lop e  or wall 3 , being sp aced  apart from  on e  
another and having a control grid e lectrod e 4  

5 located  b etw een  them . The en velop e  3  a lso  
contains a hydrogen g a s  filling at a typical 
thyratron pressure, say  a fraction o f  a torr or 
so . A metallic cath ode m em ber 5  is located  
b etw een  the grid 4  and the ca th od e 2  and 

10 com p rises a metallic ring s e t  into the thyratron 
wall 3 . A slo t 6  is included in the front sur­
fa ce  o f the cathode m em ber 5  and ex ten d s  
continuously and circumferentially around the  
inside o f the cathode m em ber 5 , M ost o f the  

15 cath ode m em ber 5 is surrounded by the en ­
ve lop e  3  and a layer 7 o f electrically insulating 
material is laid d ow n on its front surface to  
insulate the metallic cathode m em ber 5 from  
the g a s  filling, excep t for within the slo t 6 ,

2 0  the su rfaces of which are bare o f insulating 
material. An electrical lead 8  en ab les the cath­
o d e  5 to  be attached to a sou rce o f suitable  
potential.

The grid 4  is maintained at a negative po- 
2 5  tential to  prevent breakdown and conduction  

b etw een  the anode 1 and main cath od e 2  of 
the thyratron during the hold-off period. W hen  
it is desired to trigger the thyratron into co n ­
duction, a relatively large p ositive potential o f  

3 0  a few  kilovolts is applied to  the grid 4 , result­
ing in a electron beam  sh ee t being produced  
along the length o f the slot 6 o f the cath ode  
m em ber 5 and acro ss  the w idth of the thyra­
tron. Thus ionisation is produced and a main 

3 5  d ischarge current is estab lished  b etw een  the 
anode 1 and main cathode 2.

With reference to Figure 2 , In another thyra­
tron arrangem ent a cathode m em ber 9  is lo­
cated  in the en velop e wall 10  and has a slo t  

4 0  11 in the surface thereof which fa c e s  the in­
terior of the thyratron; In this em b odim en t, no  
electrically insulating material co v ers its front 
surface. An an ode m em ber 12 is located  b e­
tw een  the cathode m em ber 9 , and the main 

4 5  cath ode 2 . A control grid 13 is p ositioned  
b etw een  the main anode 1 and the cath ode  
m em ber 9 . During operation, a potential differ­
en ce  Is estab lished  b etw een  the an ode m em ­
ber 12 and the cathode m em ber 9  such  that 

5 0  an electron beam  sh eet Is produced exten sive  
of the slot 11. The resulting ionization a c ts  a s  
a primary d ischarge, so  that w hen  a trigger 
potential is applied to  the control grid 13, the  
main d ischarge current Is estab lish ed  quickly 

5 5  and with low  jitter.
Figure 3 illustrates another thyratron ar­

rangem ent, In which tw o  cath ode m em bers 14  
and 15 are included having s lo ts  16  and 17  
respectively, and which are included to  pro- 

6 0  vide triggering of the thyratron w h en  desired .
In this em bodim ent the an ode m em ber 18 is 
located  b etw een  the tw o  cath od e m em bers  
14 and 15. A further an ode m em ber 19 is 
also  included in the arrangem ent adjacent a 

6 5  cath ode m em ber 2 0 ,  which has a plurality of

parallel s lo ts  21 around its circum ference.
Prior to triggering the main thyratron d ischarge  
current, a potential difference is applied b e­
tw een  the cathode m em ber 2 0  and anode  

7 0  m em ber 19 to produce an electron beam
sh ee t extensive o f each  o f the s lo ts  21  in the  
region b etw een  the grid 2 2  and the thyratron 
main cathode 2 3 . Thus a primary d ischarge is 
obtained, which reduces jitter and d ecr ea ses  

7 5  the main current rise time w hen current c o n ­
duction through the thyratron is required. The 
surfaces of the triggering cathode m em bers  
14  and 15 are curved to  provide so m e  fo c u s­
ing o f the electron beam  sh ee ts .

8 0  With reference to  Figure 4 , a laser arrange­
m ent includes a cylindrical cath ode m em ber  
2 4  which Is surrounded by a ceram ic en velop e  
tube 2 5  and includes a plurality o f s lo ts  2 6  
which each have a width of a millimetre or s o  

8 5  and which are aligned with the longitudinal 
axis o f the tube 2 5 . A rod an ode m em ber 2 7  
is located along the longitudinal axis o f  the 
tube 2 5 . W in dow s (not show n) are included  
at each end of the tube 2 5 . The tube 2 5  and 

9 0  cathode m em ber 2 4  contain a gas or vapour 
at a pressure of a fraction of a torr or s o ,  
such that w hen  a suitably high potential differ­
en ce  o f a few  kilovolts is applied b etw een  the  
anode m em ber 2 7  and cathode m em ber 2 4  a 

9 5  plurality of electron beam  sh e e ts  are produced  
extensive o f the s lo ts  2 6 . The electron beam  
sh e e ts  cau se excitation o f the g a s  filling, en ­
abling laser action to  be achieved.

1 0 0  CLAIMS
1. Apparatus for forming an electron beam  

sh eet com prising a metal cathode m em ber  
having an elongate slo t in a surface thereof  
and an anode m em ber, the cath ode and an ode

105  m em bers being arranged within a gas-filled en ­
velope, and the arrangement being such  that 
on application of a suitably large potential dif­
ference b etw een  the anode and cathode m em ­
bers, an electron beam  sh ee t is form ed exten-

11 0  sive in a direction aw ay from the slot.
2 . Apparatus as claim ed in claim 1 and 

wherein the slot is arcuate.
3 . Apparatus a s  claim ed in claim 2  and 

wherein the slo t is continuous.
115  4 . Apparatus a s  clairried in claim 1, 2  or 3

and wherein the electron beam  sh ee t is ar­
ranged td extend substantially continuously  
over an area defined by the slot.

5. Apparatus a s  claimed in claim 1, 2 , 3  or
1 2 0  4  and wherein the surface of the cathode

m em ber in which the slot is located is curved  
s o  as to focu s the electron beam  sh eet.

6 . Apparatus as claim ed in any preceding  
claim and w herein the an ode m em ber is ar-

1 2 5  ranged to be substantially parallel to , and o f  
the sam e length as, the slot.

7 . Apparatus as claim ed in any preceding  
claim and w herein a plurality of elongate s lo ts  
are included in the surface of the cath ode

1 3 0  m em ber, such  that on application o f a suitably
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large potential difference b etw een  the anode  
and cath ode m em bers, resp ective electron  
beam  sh e e ts  are form ed exten sive  o f each  
slot.

5  8 . A thyratron arrangem ent including appara­
tus a s  claim ed in any preceding claim and 
w herein the or an electron beam  sh ee t is ar­
ranged to  produce ionisation within the thyra­
tron.

10 9 . An arrangem ent a s  claim ed in claim 8
and wherein production o f the or an electron  
beam  sh ee t  is arranged to  trigger the thyra­
tron into conduction .

10. An arrangem ent a s  claim ed in claim 9
15 and including a control grid electrode, the or

an electron beam  sh ee t  being arranged to  be 
produced in the region o f an aperture o f the 
said grid.

11. An arrangem ent as claim ed in claim 8
2 0  and w herein the or an electron beam  sh e e t  is

arranged to provide a primary discharge within 
the thyratron prior to  conduction of a main 
discharge current.

12. An arrangem ent as claim ed in any of
2 5  claim s 8 to  11 and w herein the or a slo t is

located  circumferentially around the inside of 
the thyratron en velope.

13. An arrangem ent a s  claim ed in any of 
claim s 8 to  12 and wherein the an ode m em -

3 0  ber form s part o f the wall o f the thyratron.
14. A laser arrangem ent including apparatus 

a s  claim ed in any o f claim s 1 to 7 and 
wherein the electron beam  sh ee t is arranged 
to  provide pumping p ow er to a material which

3 5  is to  form part at least o f the active laser 
m edium.

15. A thyratron arrangem ent substantially a s  
illustrated in and described with reference to  
Figure 1, 2  or 3 o f the accom panying draw-

4 0  ings.
16. A laser arrangem ent substantially as d e­

scribed and illustrated in Figure 4  of the a c­
com panying draw ings.

Published 1988  a t The P a ten t Office. S ta te  H ouse. 6 6 /7 1  High H olborn. 
London W C IR  4TP. Further cop ies  m ay b e  ob ta ined  from  
T he P aten t Office. S ales Branch, S t M ary Cray, O rping ton. Kent 8R5 3RD. 
P rin ted by B u rgess & S on  (A bingdon) Ltd. Con. 1 /8 7 .
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5.6 UK Patent GB 2194674B UK, Japan, USA, Europe

Gas discharge devices.

The switches described in this patent use the GDEB gun of Chapter 3 to project 

electrons directly into the high voltage region of the switch and these electrons 

initiate main current conduction without the use of subsidiary trigger grids. The 

absence of trigger grids represents a simplification in the construction of the 

switch. A proposed advantage of the switch is that the GDEB guns can be 

placed behind baffles in the cathode box where they would be substantially 

protected from any transient voltage that might arise during the initiation of 

main current conduction. In thyratrons, such a voltage appearing on a trigger 

grid is known as a grid spike and it can be severe enough to cause arcing at the 

grid insulator or destruction of the trigger circuit components.

In arrangements where the electron beam passes through the cathode box, the 

functions of cathode box pre-ionisation and triggering are combined. In 

particular, the switch shown in GB 2194674B Figure 3 allows a staggered-slot 

baffle to be used with an annular or cylindrical electron beam parallel to the 

switch axis by placing a metallic surface in the baffle slots so that primary and 

secondary electrons from the metal surface are directed into the high voltage 

region.

Photograph 5.2 shows a number of test devices which were constructed to
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establish the principle of direct triggering of the switch by the electron beam. 

In order to simplify their construction, the devices employed GDEB guns 

producing electron beams parallel to the switch axis and double layer baffles 

with holes or slots to allow passage of the electron beam into the high voltage 

region as shown in Figure 5.1. Tests established that the e-beam provides an 

effective trigger for low pressure gas switches.



(a) ( d )

Photograph 5.2
Switches employing a cylindrical or annular glow 
discharge electron beam (GDEB) gun to trigger anode 
conduction directly.
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Figure 5.1
The electron beam triggered switch (BTS) with an annular 
GDEB gun.
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SPECIFICATION

Gas discharge devices

5 This invention relates to  gas d ischarge d e­
v ices .

G as d ischarge d ev ices are typically u sed  as  
closin g  sw itch es  in pulse p ow er s y s te m s  and  
generally com prise an anode and a ca th od e in 

10  a g a s  filled en velop e. The device m ust tSe 
constru cted  s o  a s  to  w ithstand a high p oten ­
tial different until triggered into conduction .

The present invention se ek s  to  provide a 
g a s  d ischarge closing sw itch triggered by an 

15 electron  beam .
A ccording to  the invention there is provided  

a g a s  d ischarge d evice com prising, within a 
g a s  filled en velop e, an anode and a ca th od e  
and m ean s for injecting electrons Into a high 

2 0  field region b etw een  them  w hereby a d is­
charge is initiated within the d evice. A s the  
electron s are injected into the high field re­
gion , they are accelerated and a relatively high 
d egree of ionisation is achieved through colli- 

2 5  sion  p r o c e sse s . This enables rapid turn-on of 
the d evice to  be achieved and ten d s to  pro­
d uce a uniform discharge across the d ev ice . 
The cath ode may com prise a volum e o f ion­
ised  g a s  substantially contained within a 

3 0  m etallic enclosure, the required ionisation b e­
ing produced during operation of the d ev ice . 
W here such a “ hollow  cathode box" is em ­
p loyed  preferably the electrons injected into 
the high field region are arranged to  p a ss  

3 5  through the volum e which is substantially con ­
tained within the enclosure. In another em ­
bodim ent o f the invention, the e lectrons are 
injected directly into the high field region, that 
is , they are not required to p ass through inter- 

4 0  vening apertures in a cathode structure.
A dvantageously , injected electrons are ar­

ranged to be incident on a surface such  that 
they are reflected into the high field region.

Preferably the electrons are produced by an 
4 5  electron beam -form ing device com prising a 

beam  cath ode m em ber having a hole in the 
surface thereof and an anode m em ber being  
arranged such  that, w hen a sufficiently high 
potential difference is applied b etw een  them , a 

5 0  collim ated beam  of electrons is form ed ex ten ­
sive  o f the hole. Such an arrangem ent en ab les  
high energy electrons to be produced and, 
sin ce  they are w ell collim ated, the path tra­
velled  by the injected electrons m ay b e accu-  

5 5  rately controlled. The cathode of the d ev ice  
m ay be arranged to  act as the an ode m em ber, 
and the hole m ay be circular or be a slo t, 
such  a s  for exam ple an annular channel.

S o m e w a y s In which the invention m ay b e  
6 0  perform ed are n ow  described by w ay of  

exam ple with reference to the accom panying  
draw ings in which:

Figures 1 , 2 , 3  and 4  schem atically illustrate 
resp ective g a s  discharge sw itch es in accor- 

6 5  dance with the invention.

W ith reference to  Figure 1 a g a s  discharge  
sw itch  includes an anode 1 and a cath od e  
structure 2 , the electrode assem b ly  being co n ­
tained within a ceram ic envelope w hich a lso  

7 0  contains hydrogen at 1 torr pressure. The 
cath ode structure 2  is generally cylindrical in 
configuration having an upper part 2 A , w hich  
is a double layer portion having apertures 3  
therein, and a low er part 2B, The ca th od e  

7 5  structure 2 substantially en c lo ses  a volum e 4  
which com p rises the cathode of the sw itch  
w hen  it contains ionised gas during operation  
o f the device. The apertures 3  in o n e  layer of 
part 2A  are o ffse t  from th ose in the other.

8 0  The sw itch  also  includes a beam  cath ode  
m em ber 5 within which are located  a plurality 
of h o les 6 . The h o les  6  are located in fa ce s  
of the cathode m em ber 5 which are inclined 
with resp ect to  the surfaces of the upper part 

8 5  2A  o f the cathode and the anode 1. The . 
h oles 5 are drilled normal to  the su rfaces o f  
the beam  cathode m em ber 5 in which they  
are located and are aligned with the aperture 
3  in the cathode structure 2 to  point in a 

9 0  direction tow ards the anode 1. The low er part 
2B of the cathode structure 2 is located  c lo se  
to , but sp aced  apart from, the beam  cath ode  
m em ber 5 , conform ing to its surface configu­
ration.

9 5  During operation o f the gas d ischarge  
sw itch , a positive voltage is applied to  the  
an ode 1 and the cathode structure 2  is main­
tained at earth potential. W hen it is w ish ed  to  
initiate conduction, a voltage o f — 10 kV is 

1 0 0  applied to  the beam  cathode m em ber 5 . This 
c a u se s  collim ated electron beam s to b e  

. form ed extensive o f each o f the h o les  6  in 
directions indicated by the broken lines 7 . The 
electron beam s are arranged to  p a ss  through  

1 0 5  apertures in the part 2B, through the apertures 
3 in the part 2A  and into the high field region  
8 b etw een  the an od e 1 and the cath od e  
structure 2 , causing ionisation to  be produced. 
Positive ions are attracted tow ards the cath- 

1 1 0  o d e  structure 2  causing secondary em ission  of 
electrons from its surfaces and the volum e 4  
b eco m e s  filled with plasm a and the w alls d e­
fining the volum e together.

W ith reference to  Figure 2 , in another g a s  
1 1 5  d ischarge sw itch  in accordance with the inven­

tion, a helium filled envelope 9  con tains an 
anode 10 and a cath ode structure 11 , the  
cath ode structure com prising a double layer 
part 1 1A and a cylindrical part 1 1B and an 

1 2 0  upper cylindrical portion 11C which is an e x ­
ten sion  of part 1 1B. A plurality of beam  cath ­
o d e  m em bers 12 are located around the cir­
cum ference of the sw itch  and have h o les  13  
in their front su rfaces, which are located  in 

1 2 5  the volum e b etw een  the anode 10  and cath ­
o d e  structure 11 . The upper cylindrical portion  
l i e  is located coaxially within the en v e lo p e  9  
in front of the beam  cathode m em bers 12  and 
h as apertures 14  therein which are in register  

1 3 0  w ith  the h oles 13. During operation o f th e
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sw itch , a high field region e x is ts  b etw een  the 
a n od e 10  and cath od e structure 1 1 , th e latter 
being at earth potential. W hen  it is w ish ed  to  
estab lish  a d ischarge within th e sw itch  a 

5 n egative potential is  applied to  the beam  cath­
o d e  m em bers 12 su ch  that a potential differ­
e n c e  o f  approxim ately 10  kV e x is ts  b etw een  
them  and the ca th od e structure 11. A colli­
m ated  electron beam  is produced ex ten siv e  of 

10 each  hole 13 and is injected into the high field 
region. This c a u se s  ionisation within that re­
gion  and a plasm a is produced within a vol­
um e 15 defined by the ca th od e structure 11. 
The ionisation s o  produced and the enclosure  

15 togeth er act a s  a cath ode, and conduction  o c ­
curs b etw een  it and the an od e 10.

W ith reference to  Figure 3 . a g a s  discharge  
sw itch  h as an en velop e  16 within w hich is 
contained  hydrogen at about 1 torr pressure. 

2 0  An an od e 17 is contained within the en velop e
16 togeth er with a cath ode structure 18  
w hich is cylindrical and substantially e n c lo ses  
a volum e 19. The cath ode structure 18 in­
c lu d es a double layer part having o ffse t  aper-

2 5  tures and an angled  portion 2 0  connecting the 
tw o  layers. A beam  cath ode m em ber 21 is 
a lso  included within the en v elo p e  16 and has 
an annular slo t 2 2  in its front surface, that is 
in the surface directed tow ard s the anode 17. 

3 0  W hen  it is w ish ed  to  trigger a discharge  
within the sw itch , the beam  cath od e m em ber 
21 is m ade negative with resp ect to  the cath­
o d e  structure 18 causing an annular collim ated  
electron  beam  to  b e produced from the slot. 

3 5  The elec tron s are directed tow ard s the anode
17 through the apertures in th e cath ode struc­
ture 18 w here they are incident on the in­
clined part 2 0 , their path being sh ow n  by 
broken lines. They are reflected  from the sur-

4 0  fa ce  2 0  into the high field region b etw een  the  
an o d e  17 and th e ca th od e structure 18. Colli­
sion  o f  the electron s with the surface 21 m ay  
a lso  ca u se  secon d ary  e lec tron s to  b e em itted, 
producing additional ionisation and enabling 

4 5  ionisation to  b e ach ieved  rapidly within the  
volum e 19. The inclined portions 2 0  m ay be  
m ade of material w hich has g o o d  secon dary  
em iss io n  characteristics to  enab le a large num­
ber o f relatively high energy e lec tron s to  be  

5 0  produced .
W ith reference to  Figure 4 ,  another g a s  d is­

charge d ev ice  is similar to  that illustrated in 
Figure 1, but a lso  includes a grid 2 3  located  
in the en c lo sed  volum e. This en ab les m odifica- 

5 5  tion o f the triggering characteristics an d /or re­
covery  characteristics o f the sw itch  if desired.

high field region directly.
3 . A d evice a s  claimed in claim 1 or 2 

wherein the cath ode com prises a volum e of 
ionised gas filling substantially contained

7 0  within a metallic enclosure, the required ionisa­
tion being produced during operation of the 
d evice.

4 . A d evice as claimed in claim 3  w herein  
the electrons injected into the high field region

75  are arranged to  p a ss  through the said volum e.
5. A device a s  claimed in any preceding  

claim wherein injected electrons are arranged 
to  be incident on a surface prior to  entering 
the high field region.

8 0  6 . A device a s  claim ed in any preceding
claim wherein the electrons to be injected into 
the high field region are produced by an e lec ­
tron beam  forming device com prising a beam  
cathode m em ber having a hole in a surface

8 5  thereof and an an ode m em ber, being arranged 
such that, w hen  a sufficiently high potential 
difference is applied b etw een  them , a colli­
m ated beam  of electrons is form ed exten sive  
of the hole.

9 0  7. A device a s  claimed in claim 6  wherein
the anode m em ber is part o f the cath ode.

8 . A device a s  claim ed in any preceding  
claim and including a control grid.

9. A device a s  claimed in claim 8 and,
9 5  w hen the cath ode com p rises a volum e o f ion­

ised g a s  contained within a metallic enclosure, 
the grid is located  in the enclosure.

10. Gas d ischarge device substantially a s  il­
lustrated in and described with reference to

100  Figures 1, 2 , 3 or 4  of the accom panying  
drawings.

Published 1988  a t  The P a ten t Office, S ta te  H ouse, 6 6 /7 1  High Holborn, 
London W C1R 4T P . Fu rther cop ies m ay b e  ob ta in ed  from  
The P aten t Office, S aies Branch, S t Mary Cray, O rping ton, K en t BR5 3RD. 
Prin ted by B u rgess & S on  (Abingdon) Ltd. Con. 1 /8 7 .

CLAIMS
1. A  g a s  d ischarge d ev ice  com prising,

6 0  within a gas-filled en velop e , an an od e and a 
ca th o d e and m ean s for injecting e lectrons into 
a high field region b etw e en  them  w hereby a 
disch arge is initiated within the d ev ice .

.2. A d ev ice  a s  claim ed in claim 1 wherein  
6 5  e lec tron s are arranged to  b e  injected into the
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Liquid Cooled, Deuterium Filled, 
Metal/Ceramic Pen tode Thyratron 0X1625

The data to  be read in conjunction w ith th e  Hydrogen 
Thyratron Preamble.

ABRIDGED DATA
Hollow anode, deuterium-filled pentode thyratron with metal/ 
ceramic envelope, featuring high peak current, high rate of 
rise of current, low jitter and 50% voltage current reversal. It 
has been developed specifically for use in low inductance 
circuits associated with excimer lasers.
The patented hollow anode structure enables the tube to 
cope with inverse voltage and current without consequent 
reduction in its high voltage hold off capability due to 
electrode damage.
A reservoir normally operated from a separate heater supply is 
incorporated. The reservoir heater voltage can be adjusted to 
a value consistent with anode voltage hold-off in order to 
acheive the fastest rate of rise of current possible from the 
tube in the circuit.
Peak forward anode voltage . . . .  35 kV max
Peak forward anode current . . . .  15 kA max
Peak reverse anode current .......................... 7.5 kA max
Average anode c u r r e n t .................................... 5.0 A max
Rate of rise of current   >100 kA/jis
J i t t e r ................................................................... 1.0 ns
Pulse repetition r a t e   2000 p.p.s. max

GENERAL DATA 

Electrical
Cathode . . . barium aluminate impregnated tungsten 
Cathode heater voltage (see note 1 ) . . .  6.6 ± 0.2 V
Cathode heater c u r r e n t ..............  37.5 A
Reservoir heater voltage 

(see notes 1 and 2 ) ......................................... 6.3 ^  V

Reservoir heater current ............................... 7.0 A
Tube heating time (minimum) . . . .  10.0 min

Mechanical
Seated h e i g h t ....................  240 mm (9.449 inches) max
Clearance required below 

mounting flange . . . .  80 mm (3.150 inches) min 
Overall diameter (excluding

c o n n e c tio n s ) .................... 122 mm (4.803 inches) max
Net weight . . . . . . .  3.6 kg (8 pounds) approx
Mounting p o s i t io n ................................................... see note 3
Tube c o n n e c t io n s  see outline

Cooling
The tube must be cooled by total liquid immersion, for 
example in force-circulated transformer oil (see EEV 
Technical Reprint No. 108 The cooling of oil-filled electrical 
equipment, with special reference to high power line-type

J '

pulse generators' by G. Scoles). Care must be taken to 
ensure that air is not trapped inside the tube end cover.
In addition to 275 W of heater power, the tube dissipates 
from 100 watts per ampere average anode current, rising to 
300 W/A or greater at the highest rate of rise and fall of 
anode current.

1990 EEV Limited August 1990



PULSE LASER SERVICE
MAXIMUM AND MINIMUM RATINGS (Absolute values)
These ratings cannot necessarily be used simultaneously.

Min
Anode
Peak forward anode voltage (see note 4)   -
Peak inverse anode v o l t a g e ...................................................  -
Peak forward anode c u r r e n t ..........................................................-
Peak reverse anode c u r r e n t ...................................................  -
Average anode c u r r e n t ........................................................  -
Pulse d u r a t i o n ........................................................................ -
Rate of rise of anode current (see note 5 ) .....................  -
Pulse repetition r a t e .............................................................  -

Grid 2 (Voitage driven)
Unloaded grid 2 drive pulse voltage (see note 6) . . 600
Grid 2 pulse duration .............................................................  -
Rate of rise of grid 2 pulse (see notes 5 and 7) . . . . 10
Grid 2 pulse delay (see note 8 ) .............................................. 0.2
Peak inverse grid 2 v o l t a g e ...................................................  -
Loaded grid 2 bias voltage (see note 9 ) .............................. —100
Impedance of grid 2 drive circuit (see note 10) . . . .  25

Typicai

>100

0.5

Max

35
25
15
7.5
5.0
0.5

2000

2000

3.0
450

-3 0 0
200

kV
kV
kA
kA
A

ixs
kA/|is
p.p.s.

V
M'S

kV/jxs
ixs
V
V
n

Grid 0 and 1 -  Puised (Current driven) (see no te  11)
Unloaded grid 1 drive pulse voltage   300 -  2000 V
Grid 1 pulse duration .............................................................  2.0 -  -  |xs
Rate of rise of grid 1 p u l s e ...................................................  1.0 -  -  kV/|xs
Peak inverse grid 1 v o l t a g e ...................................................  -  -  450 V
Loaded grid 1 bias voltage ...........................................................................................................see note 12
Peak grid 1 drive current (see note 9)   15 20 35 A

Cathode
Heater v o l t a g e ............................................................................  6.4 6.6 6.8 V
Heating time ................................................................................. 10.0 -  -  min

Reservoir
Heater v o l t a g e ............................................................................  6.0 6.3 7.0 V
Heating time ................................................................................. 10.0 -  -  min

CHARACTERiSTICS
Critical d.c. anode voltage for conduction .........................  -  0.5 1.0 kV
Anode delay time .  .............................................................  -  200 250 ns
Anode delay time drift (see note 1 3 ) .................................... -  15 25 ns
Time jitter (see note 14) ........................................................  -  1.0 5.0 ns
Recovery time (see note 1 5 )   -  20 -  |xs
Cathode heater current (at 6.6 V )   30 37.5 45 A
Reservoir heater current (at 6.3 V ) ......................................... 6.0 7.0 8.0 A

CXI 625, page 2



NOTES
1. The reservoir heater can be supplied from a trans­

former common to the cathode heater supply or a 
separate transformer. If a common transformer is 
used, the reservoir lead (red sleeve) must be 
connected to the mounting flange, (see Fig. 1 below). 
Each tube is labelled for the single transformer case.

6626 MOUNTING FLANGE

' CATHODE HEATER RESERVOIR HEATER . '

YELLOW
SLEEVE

COVER

Fig. 1. Connections w hen using S ingle Transform er
When a separate transformer is used it must be 
connected between the reservoir lead (red sleeve) and 
cathode heater lead (yellow sleeve). Care should be 
taken to ensure that excessive voltages are not applied 
to the reservoir heater circuit from the cathode heater 
supply because of high impedance cathode heater 
connections. For example, in the worst case, an open 
circuit heater lead will impress almost double voltage 
on the reservoir heater, especially on switch-on, when 
the cathode heater impedance is minimal. This situa­
tion can be avoided by ensuring that the two supplies 
are in anti-phase. The reservoir heater circuit m ust 
be decoupled w ith suitable capacitors, for example, 
a 1 |jlF capacitor in parallel w ith a low inductance 
1000 pF capacitor.
The heater supply systems should be connected 
directly between the cathode flange and the heater 
leads. This avoids the possibility of injecting voltages 
into the cathode and reservoir heaters. At high rates of 
rise of anode current, the cathode potential may rise 
significantly at the beginning of the pulse, depending 
on the cathode lead inductance, which must be 
minimized at all times,

2. The reservoir system of the CXI 625 contains a 
barretter but variations of the reservoir supply voltage 
within the limits given will alter the gas pressure. 
Highest gas pressure is obtained at the highest 
reservoir heater supply voltage, provided the tube base 
is adequately cooled.

3. The tube must be fitted using its mounting flange.
4. The maximum permissible peak forward voltage for 

instantaneous starting is 30 kV and there must be no 
overshoot.

5. This rate of rise refers to that part of the leading 
edge of the pulse between 25% and 75% of the pulse 
amplitude.

6. Measured with respect to cathode.
7. A lower rate of rise may be used, but this may result in 

the anode delay time, delay time drift and jitter exceed­
ing the limits quoted.

8. The last 0.25 |uls of the top of the grid 1 pulse must 
overlap the corresponding first 0.25 jxs of the top of 
the delayed grid 2 pulse.

9. The high grid 1 peak currents specified are essential for 
fast rise time. The required level of grid 2 negative bias 
depends upon the peak grid 1 current used.
If the peak grid 1 current used is too high for the 
applied grid 2 negative bias, detrimental switching may 
occur with the grid 1 pulse, instead of the grid 2 pulse 
as intended.

10. During both the drive pulse period and during recovery 
when the current flow is reversed.

11. The current pulse must be shared between grid 0 and 
grid 1, preferably in the ratio igo : igi =  1 : 10.

12. D.C. negative bias voltages must not be applied to 
grid 1. When grid 1 is pulse driven, the potential of 
grid 1 may vary between -1 0  V and +5 V with respect 
to cathode potential during the period between the 
completion of recovery and the commencement of the 
succeeding grid pulse.

13. Measured between the second minute after the appli­
cation of h.t. and 30 minutes later.

14. A time jitter of less than 1 ns can be obtained if the 
cathode heater voltage is supplied from a d.c. source 
and the rate of rise of the grid 2 pulse is in excess of 
20 kV/|is.

15. Measured after a current pulse of 1000 A, with a grid 2 
bias voltage of -1 0 0  V, a recovery impedance of 500 Ü 
and a 1.0 kV anode probe.

HEALTH AND SAFETY HAZARDS
EEV hydrogen thyratrons are safe to handle and operate, 
provided that the relevant precautions stated herein are 
observed. EEV does not accept responsibility for damage or 
injury resulting from the use of electronic devices it pro­
duces. Equipment manufacturers and users must ensure 
that adequate precautions are taken. Appropriate warning 
labels and notices must be provided on equipments incor­
porating EEV devices and in operating manuals.

High Voitage
Equipment must be designed so that personnel cannot 
come into contact with high voltage circuits. All high voltage 
circuits and terminals must be enclosed and fail-safe inter­
lock switches must be fitted to disconnect the primary 
power supply and discharge all high voltage capacitors and 
other stored charges before allowing access. Interlock 
switches must not be bypassed to allow operation with ac­
cess doors open.

X-Ray Radiation
X-rays may be emitted by the CXI 625 but the radiation is 
usually reduced to a safe level by the steel panels of the 
equipment in which the tube operates.

CXI 625, page 3



OUTLINE (All dim ensions w ithout limits are nom inal)

GRID 2 FITTED 
WITH 8 -32  UNC 
SCREW

GRID 1 FITTED 
WITH 8-32 UNC 
SCREW

GRID 0 FITTED 
WITH 8-32 UNC 
SCREW immt

SEE NOTE 1

END COVER 
SEE NOTE 3

CATHODE HEATER & 
RESERVOIR HEATER 
(YELLOW)

ANODE CONNECTION 
FITTED WITH 
'A UNC SCREW

Ref Millimetres Inches

A 285 .0  max 11.220 max
B 122.0 max 4 .8 0 3  max
C 208 .0 8 .189
D 131.0 5.157
E 80.0 3 .150
F 46 .0 1.811
G 2 .50 0 .100
H 111.0 4 .3 7 5
J 111.0 4 .375
K 75.00  max 2 .953  max
L 7 0 .0  max 2 .756  max
M 305 .0 12.008
N 15.00 max 0.591 max
V 6.50 0 .256
W 95 .25 3 ,750

Inch dim en sion s have b een  derived from millim etres.

MOUNTING FLANGE 
SEE NOTE 2

TO FIT 'A UNC TERMINAL

RESERVOIR HEATER 
(RED)

TO FIT 'A UNC TERMINAL

Detail of Mounting Flange

6 HOLES 0 V  
EQUALLY SPACED 
ON W PCD

REDYELLOW

Outline Notes
1. This dimension also applies to the clamping 

screws and lugs.
2. The mounting flange is the connection for the 

cathode and cathode heater return.
3. The end cover Is at heater potential and must 

not be grounded.

W hilst EEV has taken care to  en su re  th e  accuracy of th e  information con tained herein it accep ts no responsibility for th e  co n seq u en ces  of any u se  the reof 
and also reserves th e  right to  change the  specification of good s w ithou t no tice. EEV accep ts  no liability beyond tha t s e t  out in its standard cond itions of 
sale  in resp ec t of infringem en t of third party paten ts  arising from  th e  u se  of tubes  o r o the r devices in acco rdance with inform ation con tained herein.

CXI 625, page 4 Printed in England



BS 9014
Issue 2j February 1979

BRITISH STANDARD SPECIFICATION FOR 

PULSE MODULATOR HYDROGEN THYRATRON TUBES 

OF ASSESSED QUALITY : GENERIC DATA AND 

METHODS OF TEST

1. GENERAL MATTERS

1.1 SCOPE

This standard forms part o f  the system  o f  common standard s p e c i f i c a t i o n s  fo r  
e l e c t r o n i c  components o f  a s s e s s e d  q u a l i t y  and should  be read in  con ju n ct io n  w ith  
the standards in  the s e r i e s  BS 9000 to  BS 9009, I t  a p p l ie s  to  p u ls e  modulator  
hydrogen thyratron  tubes as d e f in ed  in  1.3 and g iv e s  the term s, d e f i n i t i o n s ,  sym bols,  
t e s t  methods and o ther  m a te r ia l  required  fo r  implementing the d e t a i l  s p e c i f i c a t i o n s  
fo r  th ese  tu b es ,

The m a te r ia l  h e re in  s h a l l  be a p p l ic a b le  only  when c a l l e d  up by the d e t a i l  
s p e c i f i c a t i o n ,  ex cep t  fo r  1,6 to 1.18 which are mandatory requ irem ents,

1.2 RELATED DOCUMENTS

Dimensions o f  e l e c t r o n i c  tubes and v a lv e s .

L e t te r  sym bols, s ig n s  and a b b r e v ia t io n s .

B asic  environm ental t e s t i n g  p roced u res .

Graphical symbols fo r  e l e c t r i c a l  power, t e l e commuriication and 
e l e c t r o n i c s  diagrams (lEC P u b l ic a t io n  117).

G lossary o f  e l e c t r o t e c h n i c a l ,  power, te lecom m u n ica tion s , e l e c t r o n i c s ,  
l i g h t i n g  and co lo u r  terms.

Sampling procedures and ta b le s  fo r  in s p e c t io n  by a t t r i b u t e s .

General requirem ents fo r  e l e c t r o n i c  components o f  a s s e s s e d  q u a l i t y .
Part 1, General d e s c r ip t io n  and b a s i c  r u le s .

Rating system  fo r  e l e c t r o n i c  tubes and v a lv e s  and analogous  
sem iconductor d e v ic e s .

lEC 151-20 Methods o f  measurement o f  th yratron  p u lse  modulators

1.3 TERMINOLOGY

For the purpose o f  t h i s  B r i t i s h  Standard, the fo l lo w in g  terms and d e f i n i t i o n s  ap p ly ,  
in  a d d it io n  to those  from BS 4727; Part 1: Group 06.

NOTE. A number o f  the fo l lo w in g  d e f i n i t i o n s  are i d e n t i c a l  w ith  those  g iven  in  
lEC p u b l i c a t io n s ;  th ese  are in d ic a te d  by the in c lu s io n  o f  th e  r e le v a n t  lEC 
r e fe r e n c e  in  paren th eses  .at the end o f  the d e f i n i t i o n .

1 .3 .1  P u lse  m odula tor  hydrogen th y r a tr o n  tu h e ,  A th y ra tro n ,  as d e f in ed  in  3401 o f  
BS 4727: Part 1: Group 0 6 ,  but which sw itc h e s  energy from a s t o r i n g  c i r c u i t  to  
another tube , u s u a l ly  a magnetron, in  p u lse s  o f  sh o rt  d u rat ion .

1 .3 .2  P u lse  and o th e r  r e l e v a n t  c h a r a c t e r i s t i c s  are d e f in ed  below and in  F ig ,  1.

(1) P u ls e  a m p l i tu d e .  The maximum va lu e  o f  a smooth curve through the average o f  
the v a r ia t io n s  on the top o f  the p u l s e ,  e x c lu s iv e  o f  s p ik e .

* The t e s t s  r e fe r re d  to in  th i s  document are to BS 201!; 1967. These w i l l  
be reviewed where n ecessa ry  in  the n ex t  amendment.

BS 448

BS 1991

BS 201 1*

BS 3939

BS 4727

BS 6001

BS 9000

lEC 134
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(2) P u lse  d u ra t io n .  The time i n t e r v a l  between the i n s t a n t s  at which the v a lu e
of the parameter eq u a ls  70 % o f  the p u ls e  am plitude u n le ss  o th erw ise  s t a t e d
(151-20  2 ,3 )

(3) P u l s e  r i s e  t i m e .  The time requ ired  fo r  the p u lse  to  r i s e  from 26 % to  70 % 
o f  the p u lse  am plitude. (151-20  2 .4 )

(4) P u l s e  f a l l  t i m e .  The time "required fo r  the p u lse  to  f a l l  from 70 % to 26 % 
o f  the  p u lse  am plitude. (15 1-20 2 .5 )

(5) S p i k e .  A surge  above the p u lse  am plitude o f d u ra t io n  l e s s  than 10 % of  the 
p u lse  d u ra t io n .

(6) S p i k e  d u r a t i o n .  The time in t e r v a l  between the in s t a n t s  when the sp ik e  departs
from and retu rn s  to  the p u lse  am plitude l e v e l .  (15 1-20 2 .7 )

(7)  S p i k e  a m p l i t u d e *  The maximum e x c u r s io n  o f  the sp ik e  above the p u lse  am plitude.  
(151-20 2 .8 )

(8) P u l s e  r e p e t i t i o n  r a t e .  The average q u a n t i ty  o f  p u ls e s  in  u n i t  t im e .  (U nless  
o th e r w ise  s t a t e d ,  u n i t  time i s  one s e c o n d .)  (151-20  2 .1 0 )

(9 )  A v e r a g e  r a t e  o f  r i s e  o f  a n o d e  p u l s e  c u r r e n t .  The q u o t ie n t  o f  the change o f  
current  during the p u lse  r i s e  time to  the p er iod  o f  the r i s e  t im e. (See F ig .  2 . )  
(151-20  2 .1 7 )

(10) C r i t i c a l  d . c .  a n o d e - v o l t a g e  f o r  c o n d u c t i o n .  The minimum d . c .  v o l t a g e  at  the  
anode which causes conduction  under s p e c i f i e d  c o n d i t io n s .  (1 5 1 -2 0  2 .2 1 )

(11) U n lo a d e d  g r i d  p u l s e  v o l t a g e .  The p u lse  amplitude a t  th e  g r id  term inal w ith  
r e s p e c t  to  cathode w ith  the tube removed from the so c k e t  and the g r id  d r iv e  
supply s e t  to  the o p era t in g  c o n d i t io n s .

(12) Anode d e l a y  t i m e .  The time i n t e r v a l  between the in s t a n t  a t  which the  
unloaded g r id  p u lse  reaches 26 % of the p u lse  amplitude and the i n s t a n t  when 
anode conduction takes p la c e .  In m u l t i - g r id  tubes the  r e fe r e n c e  g r id  p u lse  
shou ld  be s t a t e d .  (151-20  2 .3 7 )

(13) A n o d e  d e l a y  t i m e  d r i f t .  The change in anode de lay  time a f t e r  a s p e c i f i e d  
d u ra t io n  o f  o p e r a t io n .

(14) J i t t e r  ( p u l s e  j i t t e r  t i m e ) .  P u lse  to  p u ls e  v a r i a t i o n  o f  the  anode d e la y  t im e .

(15) P e a k  f o r w a r d  a n o d e  v o l t a g e .  The maximum p o s i t i v e  v o l t a g e  a p p l ie d  to  the  
anode w ith  r e s p e c t  to  the ca th od e .

(16) P e a k  i n v e r s e  a n o d e  v o l t a g e .  The maximum n e g a t iv e  v o l t a g e  a p p lie d  to  the anode 
w ith  r e s p e c t  to  the cathode.

(17) A n ode  h e a t i n g  f a c t o r .  The product o f  peak forward anode v o l t a g e ,  anode 
p u lse  current  and p u lse  r e p e t i t i o n  r a t e .

(18) U n lo a d e d  g r i d  b i a s  v o l t a g e .  The n e g a t iv e  d . c .  v o l ta g e  a t  the  g r id  term inal  
w ith  r e s p e c t  to  cathode w ith  the tube removed from the s o c k e t  and the g r id  b ia s  
supply  s e t  to  the o p era t in g  c o n d i t io n s .

(19) L o a d e d  g r i d  b i a s  v o l t a g e .  The i n t e r - p u l s e  n e g a t iv e  d . c .  v o l t a g e  a t  the  
g r id  w ith  r e s p e c t  to  the ca th o d e ,  when the tube i s  o p e r a t in g .

(20) A v e r a g e  r a t e  o f  r i s e  o f  u n l o a d e d  g r i d  p u l s e  v o l t a g e .  The q u o t ie n t  o f  the  
change o f  v o l t a g e  during the p u lse  r i s e  time to  the p e r i o d .o f  the  p u lse  r i s e  
tim e. (151-20 2 .3 0 )

(21) P r i m i n g .  The i n i t i a t i o n  o f  a l o c a l  d is c h a r g e  between cathode and g r id  I o f  
the te tr o d e  thyratron  tube,

NOTE. Priming may be a ch ieved  e i t h e r  by th e  a p p l i c a t io n  o f  a d . c .  v o l ta g e  to  
gr id  1 so m ain ta in in g  a continuous d isc h a r g e  current or by the a p p l i c a t io n  to  
grid  1 of a p r e - p u ls e .  The purpose o f  priming i s  to  reduce p u ls e  j i t t e r  and anode 
d ela y  t im e,

(22) U n lo a d e d  g r i d  1 d . c .  p r i m i n g  v o l t a g e .  The d . c .  v o l t a g e  measured at the  
g r id  I so c k e t  term inal w ith  the tube removed from i t s  so c k e t  and the g r id  1 d . c .  
priming v o l ta g e  supply s e t  to  the o p e r a t in g  c o n d i t io n s .
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(23) G r i d  2 p u l s e  d e l a y .  In a p u lse  primed tu b e , the time in t e r v a l  between the  
v o l ta g e  p u lse s  on g r id  1 and g r id  2 term in a ls  w ith  the tube removed from i t s  
s o c k e t ,  measured a t  26 % o f  the p u ls e  am plitude, on the le a d in g  edge of each  
p u ls e .

(24) G r i d  f i r i n g  t i m e .  The time i n t e r v a l  beUveen the in s t a n t  o f  s im ultaneous
a p p l ic a t io n  o f  cathode h e a te r ,  r e s e r v o ir  h e a te r  and s p e c i f i e d  g r id  v o l t a g e s ,
and the in s t a n t  when the  g r id -c a th o d e  gap breaks down.

(25) F o rw a rd  g r i d  c i r c u i t  i m p e d a n c e .  The output impedance o f  the gr id  d r iv e  and 
b ia s  c i r c u i t .  (51-20  2 .3 3 )

(26) R e c o v e r y .  The r e -e s ta b l i s h m e n t  o f  g r id  c o n tr o l  fo l lo w in g  in t e r r u p t io n  of  
forward anode cu r r e n t .

(27) R e c o v e r y  im p e d a n c e ^  Zj .̂ The impedance through which the decaying  io n -  
recom bination  g r id  cu rren t f low s  during the recovery  p e r io d .  Recovery impedance 
can be c a lc u la t e d  from the fo l lo w in g  form ula;

2  = tantaneous g r id  v o l t a g e )  -  (Loaded b ia s  v o l t a g e )
R (In sta n ta n eo u s  io n -reco m b in a t io n  g r id  current)

(28) R e c o v e r y  t i m e .  The time requ ired  a f t e r  c e s s a t io n  of forward anode cu rren t  
fo r  the g r id  to re g a in  c o n t r o l ,  under s p e c i f i e d  o p era t in g  c o n d i t io n s .

(29) R e s e r v o i r .  A d e v ic e  in s id e  the tube fo r  c o n t r o l l i n g  the gas p r e s s u r e .

(30) D .C .  r e s i s t a n c e  b e t w e e n  g r i d  a n d  c a t h o d e .  The r e s i s t a n c e  measured between  
the g r id  and cathode term in a ls  w ith  the tube removed from i t s  c i r c u i t .

(31) T ube  h e a t i n g  t i m e .  The time req u ired  for  a l l  e s s e n t i a l  p a r ts  o f  the tube to  
a t t a i n  temperatures such th a t  the tube w i l l  o p era te  s a t i s f a c t o r i l y .

(32) R e s o n a n t  c h a r g i n g .  The c o n d it io n  a ch ieved  when the p u lse  r e p e t i t i o n  
frequency i s  equal to  tw ice  the n a tu r a l  resonance frequency o f  the charging  
inductance  w ith  the c a p a c ita n c e  o f  the p u lse - fo rm in g -n eO fo rk , so th a t  the  
f i r i n g  p u lse  occurs when the v o l t a g e  on the c a p a c ita n c e  i s  maximum; the network  
i s  d isch arged  and recharges to a t t a i n  the maximum v o l t a g e  o f  the moment o f  
in c id e n c e  o f  the n e x t  s u c c e s s i v e  f i r i n g  p u ls e .

(33) C h a r g i n g  d i o d e .  A d io d e  in s e r t e d  between the supply and the p u lse  forming  
network to  preven t  any cu r r e n t  from the  network f lo w in g  back in t o  the  su p p ly .

(34) I n v e r s e  d i o d e .  A diode in  s e r i e s  w ith  a r e s i s t a n c e  p la ced  in  p a r a l l e l  w ith  
the modulator tube to  d i s s i p a t e  the  n e g a t iv e  charge o f  the p u lse - fo rm in g -n e tw o rk  
and in  a d d i t io n  to l i m i t  the peak in v e r se  v o l t a g e  a f t e r  i t  has d isch arged  through  
the tube.

(35) S u r f a c e  t e m p e r a t u r e  ( e n v e l o p e  t e m p e r a t u r e ) .  The tem perature measured a t  
s p e c i f i e d  p o in t ( s )  on the su r fa c e  o f  the tube. (BS 2011: P art  1»; 4 .5 )

(36) T r i p .  In te r r u p t io n  o f  the power supply  by an o p e r a t io n  o f  an over lo a d  r e la y .
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Maximum instantaneous (peak) value of spike

Spike
amplitude , Spike duration

100 */.

Pulse
amplitude

25 %

Time of r ise  (fpr) Pulse duration (/p ) Time of  fall  ( / p f )

F ig .  1, General p u lse  c h a r a c t ie r i s t ic s
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I 0 0 ”/o Smooth peak

Smooth peak\00l,

707;

267c

C a th od e'" / 
or zero /  
reference level

Neg bias

F ig .  3. Unloaded g r id  v o l t a g e  p u lse
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1.4  LETTER SYMBOLS, SIGNS AND ABBREVIATIONS

For the purpose o f  t h i s  B r i t i s h  Standard, the fo l lo w in g  l e t t e r  symbols apply;  

dJa(p)
dt average r a te  o f  r i s e  o f  anode p u lse  current

V , . \ c r i t i c a l  d . c .  anode v o l ta g e  fo r  conductiona ( c r i t )

V . , , peak fort^ard g r id  v o l t a g eg(pk)

V , , v .  peak in v e r se  anode v o l t a g ea (p k ) in v

^aCpk) peak forward anode v o l t a g e

I  f s anode p u lse  currenta(p)

average anode current

^a(pk) peak anode current

anode h e a t in g  f a c t o r

Text, d e l e t e d

p . r . r .  p u lse  r e p e t i t i o n  r a te

' anode d e l a y  time

anode de lay  t im e d r i f t

p u lse  f a l l  time 

p u lse  j i t t e r  time 

tp p u lse  d u ration

recovery  time 

p u lse  r i s e  time  

recovery  impedance 

TUT tube under t e s t

anode p u lse  v o l ta g e  

anode d . c .  v o l ta g e  

grid  1 n e g a t iv e  d . c .  v o l ta g e  

-V ^2  gr id  2 n e g a t iv e  d . c .  v o l ta g e
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1001/1

METHOD 1 0 0 1 .  INSTANTANEOUS (S N A P -O N )  START

PURPOSE

To ensure that fo l lo w in g  the s p e c i f i e d  tube h e a t in g  time, the tube o p era tes  w i th in  
a s p e c i f i e d  number o f  attem pts to  s t a r t .

Charging inductor
Charging diode

Pulse forming network

Anode
inductorTUT _  i

Inverse diode

DC supply

Driving pulses

L oad or 
energy 
conserving  
circuit

To CRO to 
view current 
pulse

Inverse diode load

Overload
relay

F ig .  1001

PROCEDURE

(1) Apply h e a te r  and g r id  v o l ta g e s  and a llow  the rated tu b e -h e a t in g  t im e.

(2) Apply anode v o l ta g e  d i r e c t l y  at s p e c i f i e d  va lue  w h i l s t  o b serv in g  cu rren t  
p u ls e s  on the o s c i l l o s c o p e ;  examine fo r  immediate s t a r t in g  and fo r  continued  
normal op era tion  over a t  l e a s t  the fo l lo w in g  10 s .

(3)  In the even t  o f  a t r i p ,  rep ea t  procedure ( 2 ) ,

I n t e r v a l s  between s u c c e s s iv e  attem pts s h a l l  be not l e s s  than 10 s nor more than 
30 s .
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1006/1

Î1ETH0D 1 0 0 6 .  ANODE DELAY T IM E , t ad

PURPOSE

To measure anode de lay  time and anode d e la y  time d r i f t ,

TEST CIRCUIT

Use the c i r c u i t  shown in  F ig .  1001, hut w i t h  a n  o s c i l l o s c o p e  c o n n e c t e d  b e t w e e n  
c o n t r o l  g r i d  an d  c a t h o d e  for  m onitor ing  the gr id  p u lse  v o l t a g e ,

PROCEDURE

Anode d e l a y  t i m e .  Observe the wave form of the  gr id  p u lse  v o l t a g e  d isp la y e d  on the  
o s c i l l o s c o p e ,  f i r s t l y  w ith  the tube removed then w ith  the p re -h ea ted  tube connected*.  
The anode d e la y  time i s  the time in t e r v a l  between the in s t a n t  a t  which the unloaded  
g r id  p u ls e  reaches 26 % of the p u lse  amplitude and the in s t a n t  when anode conduction  
takes p la c e .  The occurrence o f  anode conduction  i s  in d ic a te d  on the loaded g r id  p u lse  
by a sudden change o f  s lo p e .  An example o f  a p o s s ib le  waveform i s  g iv en  in  F ig .  1006.

Anode finng point

-Spike
Unloaded grid pulse waveform

2 6 %  level

F ig ,  1006

A n od e  d e l a y  t i m e  d r i f t .  The anode d e lay  t im e s h a l l  be measured as above a t s p e c i f i e d  
i n t e r v a l s  during op era t ion  o f  the tube. The maximum d i f f e r e n c e  between any two 
measurements i s  the anode d e lay  time d r i f t .

* For measurements on m u l t i - g r id  tubes the r e fe r en ce  p o in t  i s  read on the  d r iv e  p u lse  
a p p l ie d  to th a t  gr id  which i s  the l a s t  t o  be tr ig g e r e d .
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1011

METHOD 1 0 1 1 .  PULSE J I T T E R  T I M E ,  t .
PJ

PURPOSE

To measure the v a r ia t io n  in  anode f i r i n g  time.

TEST CIRCUIT 

See F ig .  1001.

PROCEDURE

D isp lay  the current p u lse  and/or the gr id  d r ive  p u lse  (p r e fe r a b ly  both s im u lta n eo u s ly  
on two t r a c e s ) .

Measure over a large  number o f  p u lse s  the spread in  time o f  the in s t a n t  o f  anode 
f i r i n g ,  i . e .  the a r i th m e t ic  d i f f e r e n c e  between the lo n g e s t  and s h o r t e s t  anode d e lay  
tim es (Method 1006) ,

The r e feren ce  p o in t  fo r  m u lt ig r id  tubes i s  read on the  d r iv e  p u lse  a p p lied  to  th a t  
g r id  which i s  the l a s t  to  be t r ig g e r e d ,

CONDITIONS PRESCRIBED IN THE DETAIL SPECIFICATION 

As in  2 . 4 . 5 .
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APPENDIX B

B Device Processing.

The fabrication of consistent and reliable gas discharge devices requires that 

particular attention is paid to the cleanliness and purity of the materials used in 

their construction. For example, in order to avoid the loss of hydrogen by 

chemical combination, the nickel used for thyratron cathode and grid structures 

is required to have an impurity content of lower than 0.005% for aluminium, 

sulphur and magnesium. It is also vitally important to remove surface 

contamination prior to device assembly. Surface contaminants may include 

machining oils, particulates and oxide layers, introduced during the manufacture 

and storage of parts. Suitable treatments to remove these contaminants include 

degreasing, ultrasonic cleaning and electropolishing. Clean room conditions are 

necessary for subsequent storage and assembly. Once the device is assembled 

in its vacuum envelope, the atmosphere must be removed. The constituents of 

the normal atmosphere are mainly nitrogen and oxygen in the ratio of 80% to 

20% together with small traces of inert gases, carbon dioxide, hydrogen and a 

variable quantity of water vapour depending on ambient temperature and 

humidity. The partial pressures of these constituents are shown in Table B.l. 

At room temperature and normal atmospheric pressure, one cubic centimetre of 

air contains approximately 2.5-10^  ̂ molecules. When the device is evacuated, 

the number of molecules/cm^ and the molecular impingement flux are reduced
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as shown in Table B.2. Notice that, even at a pressure of 10"̂  torr, there are 

still 3.5T0^ molecules/cm^ present. Gases such as Nj, Og, CO and CO2 are also 

present in the bulk of many metals. In order to reduce the amount of desorption 

of these gases during the life of the device, pretreatment of the device sub- 

assemblies includes a fumacing stage in which the component is heated in an 

atmosphere of at 1000°C for several hours. Nj, Oj, CO and CO2 are 

released and some of the hydrogen is absorbed into the metal. The presence of 

hydrogen as a bulk sorbed gas does not generally present any problems in a 

thyratron. The atmosphere in the device at the end of assembly and processing 

is removed by evacuating the device on a pumping system of the design shown 

in Figure B.l. The pumping process is designed to remove adsorbed 

atmospheric contamination both from the pump system and from the device 

before pure gas of the required type is admitted. The pump system is heated 

to 120®C under vacuum to release air and water vapour from the internal 

surfaces of the system and the device itself is heated to about 500°C. This 

ensures that most adsorbed gas is removed by the end of four hours of 

processing. In the devices made for this study, final pressures of < 2T0"^ torr 

were recorded at the end of pumping. Cleaning of the cathode surface was 

accomplished by running a discharge in the required gas, followed by pumping 

and refilling.
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The constituents of the normal atmosphere.
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Partial Pressures of Atmospheric Constituents

Gas Partial Pressure (torr)

Nitrogen 596

Oxygen 159

Argon 7.1

Water vapour -7.0

Carbon Dioxide 0.23

Neon 1.4*10”̂

Helium 3.8'10-^

Krypton 7.6-10-^

Hydrogen 3.810-^

Xenon 6.810-^

Table B.2
Gas density and impingement flux at various pressures.

Pressure (torr) Molecules/cm^ Impacts/cmVsec

760 2.5'10'^ 3'1(F

1 3.510^^ 410^

10"̂ 3.510^ 410'^

10"̂ 3.5'10'^ 4-10'^

10'^ 3.510'° 410"'

10"̂ 3.510^ 4*10"



—Anode
—Anode

Ca t h o d e
Ca t ho de

I o n i s â t  i onj 
g a u g e

C a p a c ) t a n c e  
Manomet er

Pi r a n  
Gauge

LN,
CO I d 
t r a p

R o t a r y
PumpPump

D e u t e r l u m  
B o t t  I e

I Figure B.l
A schematic of the pump system used to process the devices 
constructed for this thesis.
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APPENDIX C

C Linear Regression.

Regression is used to draw the ’best-fit’ straight line through points on a graph. 

The analysis is aimed at finding values for m and c in the equation

y = m x  + c , C l

The values m and c are deduced from a set of co-ordinate values in such a way 

that the sum of the deviations of the values from the straight line y = mx + c

is a minimum.

The values of m and c which conform to the above requirement can be obtained 

from the two equations:

C.2
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Eliminating to give m and c

m = -  E ^ £ y

E y - m E x
N

C.3

For the purpose of analysing the data of Chapter 3, these formula were included 

in a computer programme, enabling values of m and c to be easily generated for 

a set of IV  characteristic data.
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APPENDIX D

D Glow discharge formulae and data.

The formulae presented here arise from the theory of the glow discharge 

(Acton & Swift, 1963, pp 239-241) and they allow some of the normal glow 

discharge parameters to be estimated for cases of practical interest. The data 

required for the formulae are included in tables at the end of this Appendix.

D.l The maintaining voltage.

The maintaining voltage of the discharge, V„, depends on gas filling and 

cathode material. The cathode surface condition may cause the actual value of 

ln(l/y) to be different to the value quoted in Table D.2. As the gas pressure is 

increased, the maintaining voltage falls asymptotically to a value given by

K  — log— . D.l
Tl, Y

where Vg and ti  ̂are constants of the gas and /n(l/y) depends on the type of the 

bombarding ion and the nature of the cathode surface. The values of these 

constants are given in Tables D.l and D.2.
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D.2 The striking voltage.

The striking voltage of a cold cathode depends on the gas filling, the cathode 

surface and the product of pressure and cathode-anode spacing, pd. At a 

certain value of pd, takes a minimum value, designated F^, given by

D.2

where F) and are constants of the gas. The data required for this equation 

are given in Tables D.l and D.2. The value pd,̂ in for which F̂  is a minimum 

is given by

D.3
m

where depends only on the gas type ant takes values as given in Table D.3. 

For values of F, greater than 2F^, F̂  can be found from

K  = B(pd) D.4

where B depends on the gas type, with values as given in Table D.3.

D.3 The normal current density.

An indicative value of the cathode current density in the normal glow is given
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by

D.5

where /  is a constant depending on gas type, with values as given in Table D.3. 

Estimates of j  obtained from this equation differ from the value obtained in 

practice by as much as a factor of 3.

Reference.

Acton J R. & Swift J.D., Cold Cathode Discharge Tubes, Heywood & Company 
Ltd, London (1963)

Table D.l

Gas K K %

He 24.5 20.0 0.012 0.020

Ne 21.5 17.0 0.015 0.022

A 15.6 12.5 0.022 0.029

Hz 15.4 15.0 0.015 0.015



Table D.2
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Gas
ln(l/y)

Mo (s) Ni(s) Ni Mg Ba (ev)

He 1.8 2.30 2.60 1.80 1.22

Ne 2.0 2.65 3.05 2.25

A 2.6 3.60 4.50 2.45 1.70

% 4.2 4.35 - — 2.20

In the table above, (s) denotes a sputter-eroded surface and (ev) denotes that the 

surface is an evaporated film.

Table D.3

Gas /•lO® Zm B

He 2 50 1

Ne 2 100 5

A 10 200 20

H2 70 120 35



160

APPENDIX B

E The pulse transformer.

The pulse transformer used to increase the trigger pulse voltage for the NGTS 

testing described in Chapter 4 is shown in Figure E.l. The equivalent circuit 

of the pulse transformer is shown in Figure E.2. The design of a pulse 

transformer is an iterative process, described as follows. For the sake of 

simplicity, we will consider a 1:1 transformer. For a given core, the 

magnetising inductance is given by

F t
> B.1

where V  is the input voltage, x is pulse duration and I^ag is magnetising current. 

M̂AG is usually required to be about 5%-10% of the output current and thus sets 

the minimum value of The number of turns N  needed to achieve the 

required magnetising inductance is given by

E.2
'

where, is permittivity, 4 is air gap length and^ is magnetic core area. It is 

necessary to establish that N  is large enough to prevent the flux density in the
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core rising above the saturated flux density The minimum value of N  

which prevents saturation is given by

N  = V X
^SAT ^

E.3

The larger of the two values of N  from equations E.2 and E.3 gives the 

minimum number of turns required in the winding. If the value is too large to 

be accommodated in the winding design, then the values of and A must be 

changed and a new minimum turns value must be calculated. The pulse 

transformer in Figure E.l is designed to produce a 6 kV output from a 2 kV 

input with a risetime of about 100 nsec. The risetime is determined by the time 

constant

^2
Rr

E.4

Lj and L2 are the leakage inductances of the windings and is the load 

resistance. Lj and L2 were minimised in the design of Figure E.l by dividing 

the windings between two limbs of the core and by reducing the spacing 

between the primary and secondary windings to the minimum consistent with 

the dielectric strength of the insulating bobbins.
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Figure E.l
The 1:3 step-up pulse transformer used in Chapter 4.



Figure E.2
The equivalent circuit of the pulse transformer where L.j and 
Lg are leakage inductance, is magnetising inductance and 
El is load resistance.
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APPENDIX F 

F Gas density in low pressure gas switches.

It is worth considering how the gas density in the low pressure gas switch is 

changed as a result of passing the current pulse. The electric field across the 

switch during conduction draws ions to the cathode where they are neutralised 

and returned to the gas thus creating transient gas density gradients. The gas 

density transient is likely to propagate adiabatically as a sound wave in the gas 

(Tabor, 1979, p 74) with a velocity given by

yP  F.l

where y is the ratio of specific heats, P  is pressure and p is density. For a mole 

of gas having mass Af in a volume F, we have

V = \
y P V  

M ~ \
y R T  f .2

M  ’

where R is the molar gas constant and T is absolute temperature. Asy,  R and 

M  are constants for a given gas, it follows that the velocity of sound in a gas 

is independent of pressure if T remains constant. The velocity of sound in 

deuterium is 890 m/sec (Weast, 1981, p E-45) and a pressure transient will
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propagate at this speed. Expressing it roughly, the wave will travel at about 

1 mm/jLisec and at this speed, the gas density build-up at the cathode will not 

dissipate in the time scale of the pulse. We might expect it to take many tens 

of psec to come back to normal. In addition to the transient effect described 

above, the input of energy to the cathode during the current pulse tends to 

reduce the average gas density in the cathode box as a result of the rise in 

cathode temperature. Under the conditions of operation experienced by the 

NGTS in Chapter 3, the cathode may have reached temperatures of several 

hundred degrees centigrade, especially as it was isolated thermally in the glass 

envelope. Thus, at the operating temperature, the gas density may have been 

reduced to as little as half its room temperature value.
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