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A bstract

Quiescent solar prominences are amongst the most interesting and yet least understood of 

the phenomena observed on the Sun and provide both the theorist and the observer with 

equally demanding challenges.

The theoretical study of prominences is an im portant branch of solar physics as it 

contributes significantly to  the overall understanding of the Sun and its atmosphere. One 

only needs to  be presented with the illuminating fact th a t there is more mass contained 

in these bodies than  in the remainder of the entire corona to  be convinced of their im­

portance. Although many of the physical mechanisms associated with prominence theory 

are im portant in their own right, they are also of much wider relevance for various other 

astrophysical phenomena. For example, radiative and magnetic instabilities are explored in 

detail in the context of solar prominences; yet clearly these are im portant processes tha t 

relate to  many other branches of astrophysics. Prominences are intim ately associated with 

solar flares which occur when a prominence loses equilibrium. Also, prominence eruptions 

are very im portant as they are closely connected with coronal mass ejections. These ac­

count for a large fraction of the to ta l mass lost from the Sun and so are extremely im portant 

events, particularly when one considers the consequences as this plasma interacts with the 

E a rth ’s environment.

It is the period of global equilibrium of quiescent prominences, though, th a t is the 

focus of this thesis. Vaidous models are proposed to help understand both the topology 

and supporting mechanisms of the external, coronal magnetic field, and also the internal 

prominence structure and the way in which the two regimes fit together.

In Chapter 3 we extend a model for the equilibrium of a prominence sheet in a 

twisted magnetic flux-tube, given by Ridgway, Priest and Amari (1991), to  incorporate a 

current sheet of finite height. This removes the discontinuity at the edge of the tube and 

provides a shear-free outer boundary which enables the tube to  be matched onto a back­

ground potential field. In addition, internal prominence solutions are found by expanding 

the sheet to a finite width and matcliing suitable magnetic profiles across this region.

Next we consider a global model for the magnetic field structure surrounding 

a polar-crown prominence. We examine potential configurations generated from typical 

distributions of photospheric flux, and select solutions for which there is a location of dipped



magnetic field where prominence m aterial may collect and form. Once such a configuration 

is available, it is necessary to construct the ensuing prominence solution. We achieve this 

in Chapter 4 by considering a simplified form for the photospheric field. We show th a t 

the equilibrium contains a weighted, curved prominence sheet supported in the location of 

dipped magnetic field. The equilibrium requires an enhanced magnetic pressure below the 

sheet to  support the component of weight in the normal direction.

The internal equihbrium of curved or inclined prominence m aterial has not been 

considered previously and so we formulate, in Chapter 6, a simple one-dimensional isother­

m al solution for a cut across the prominence. This is developed to allow for variations along 

the sheet and in this way an internal solution for the curved prominence of Chapter 4 is 

given, which matches onto the external potential polar-crown field.

Finally, in Chapter 7, we rewrite this solution in term s of its constituent internal 

and external components and show how the composite solution switches between the two 

in a region of overlap, or transition region. From this, the internal plasma properties are 

deduced and reahstic profiles for the pressure, density and tem perature are obtained.
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C h a p te r  1

In troduction  to  P rom inences

1.1 C hapter S um m ary

In this chapter we describe the main properties of solar prominences, which have 

been a topic of great interest for hundreds of years now. We begin with a short historical 

review summarising the main observational developments and results obtained since the 

th irteenth  century. A description of the different types of prominence is given but we 

concentrate on the properties of quiescent prominences; the well-developed, slowly evolving 

category th a t have raised some pertinent questions for solar theory.



1.2 H istor ica l B ackground

Historically, solar prominences have generated tremendous interest and have been 

observed now for a period of time dating back to the thirteenth century. In fact, the first 

recorded evidence of prominences is by M uratori in 1239 when he observed the corona 

during an echpse and reported “a burning hole” in it. During a to ta l solar eclipse, a large 

prominence located at the limb of the Sun is seen brightly in emission in the lower corona and 

so, in all probability, M uratori’s observation was of a prominence. Figure 1.1 is a photograph 

showing the innermost corona during such an eclipse in which several prominences can be 

seen on the East limb. They actually appear red because of their strong emission in the 

H a  line at A6563 Â.

Figure 1.1: Prominences seen in emission at the limb (courtesy J. C. Noëns, Observatoire 

du Pic-du-Midi).



The first semi-scientific description of prominences came after an eclipse in 1733 

during which Vassenius (1733) observed three or four prominences from Gothenburg, Swe­

den. He called them  “red flames” and actually believed them  to be clouds in the lunar 

atmosphere! Many other observers were in agreement with Vassenius’ description, although 

Ulloa (1779) observed a low-lying prominence during the 1778 eclipse and a ttribu ted  it to  a 

hole in the moon. These early observations were subsequently forgotten and when the phe­

nomenon was rediscovered during the eclipse of 1842, the observers were so bewildered by 

what they saw th a t their vague and ambiguous reports influenced later scientists to  believe 

th a t prominences were actually mountains on the Sun!

1868 saw the advent of spectrographic methods which were employed during an 

eclipse in India and Malacca and it was determined tha t prominence spectra consist of 

bright lines; from then on prominences were realised to be glowing masses of gas. One 

of the observed lines, at 5876 Â, was not known to be em itted by any terrestrial atom  

and it was ascribed to  a specific solar element called Helium, after Helios, the Greek Sun 

God. Because many of the prominence emission lines are so bright, the spectrograph could 

be used even in broad daylight without the aid of an eclipse, and so prominence spectra 

were observed far more frequently using this technique. In 1869, Huggins (1869) reahsed 

th a t by opening the spectrograph slit he could obtain a series of monochromatic images of 

prominences, corresponding to the emission lines observed with a normal slit. By using this 

m ethod, the complex forms of prominences could be better studied.

In the 1890’s the spectroheliograph was invented and prominences could then be 

studied against the disc as absorption features which were later referred to  as “filaments” . 

This presented a significant advance in the observations as it enabled the study of promi­

nences as they passed from the disc to  the limb, thus providing a  more complete view of 

their overall shapes and forms. Figure 1.2 shows such a sequence of images and demon­

strates the changing face of a prominence as it passes over the limb of the Sun. Notice how 

the prominence is initially seen in absorption since the dense m aterial overlies the disc of 

the Sun and later in emission against the rarefied background atmosphere.
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Figure 1.2: A time sequence of images in H a  showing a prominence as it moves from the 

disc to the limb (courtesy S. M artin, Lockheed Solar Observatory).

This century has seen many further advances in prominence observations as im­

proved instrum entation techniques have provided us with in-depth details of plasma prop­

erties such as tem perature, density and velocity and also measurements of prominence 

magnetic fields. A description of the basic prominence properties is given in the following 

section.

We complete this historical introduction with a fascinating sketch from the book, 

“Le Soleil” , by Secchi (1875) in which he depicts sunspots against the disc and several 

prominences seen in emission at the hmb (Figure 1.3). In this book, Secchi actually refers 

to prominences as being “a universally well-known phenomenon” , yet more than a century 

later the theory of solar prominences still poses some of the most difficult and puzzling 

questions related to solar activity!



Figure 1.3: Secchi’s sketch showing prominences at the limb of the Sun (Secchi, 1875).

1.3 B asic  D escr ip tion

Prominences are cool, dense bodies of plasma located in the lower regions of the solar 

corona. Typically, they possess tem peratures which are 100 times lower than the surround­

ing atmosphere and their densities are 100 times higher. They are best observed in the H a  

line where they appear dark against the disc (due to absorption of the underlying photo­

spheric emission) and bright at the limb (as they are strong in emission in comparison to 

the tenuous corona). One of the most im portant of all prominence observations is due to 

Babcock and Babcock (1955) and relates to the magnetic field: all prominences are seen 

to overlie a magnetic polarity inversion line, where the line-of-sight magnetic field reverses 

its sign. This has proved to be a highly significant result as it paved the way for the first 

theoretical prominence models and provides a real clue as to how these dense bodies can be 

supported against the Sun’s huge gravitational pull.



1 .3 .1  M o r p h o lo g y

Several different types of prominence are observed on the Sun ranging from those which 

are dynamic, highly energetic and short lived to those which are slowly evolving, incredibly 

stable and long lived. Various suggestions have therefore been proposed as to  how they 

might be categorised but the scheme given by Zirin (1988) seems to  be as good as any. Table

1.1 shows his classification from which we see tha t prominences may basically be divided 

into two groups. The first group, active prominences, are the highly-dynamic features 

which display rapid plasma motions and are closely associated with flares, eruptions and 

the release of large amounts of energy over short time-scales.

Active (transient) 
Prominences

Quiescent (long-lived) 
Prominences

(a) Limb Flares
(b) Loops and Coronal Rain
(c) Surges
(d) Sprays

(a) Active-Region Prominences
(b) Quiet-Region Prominences
(c) Ascending Prominences

Table 1.1: Basic Classification of Solar Prominences.

W hen a flare occurs, m aterial may be driven upwards into the corona and this 

generally results in one of the many types of active prominence: surges occur when the 

ejected m aterial is well collimated, probably by a strong magnetic field; sprays are active- 

region prominences which are erupting; and post-flare loops occur as the hot m aterial cools 

and “rains” down to the surface, outlining the magnetic loop structures.

Although very dram atic, this category of prominence has received little theoretical 

attention, mainly due to  the complexity of the governing time-dependent equations. The 

second class of prominence has been studied in far more detail since they are approximately 

static features (except type (c) which relates to  their eventual eruption) and so can be 

modelled as m agnetohydrostatic structures. It is to this class of prominence we pay our 

attention and now describe.



1.4 Q u iescen t P rom in en ces

1 .4 .1  P la s m a  P r o p e r t ie s

Quiescent prominences are seen against the disc as thin, dark ribbons of dense, optically 

thick m aterial. Suspended in the lower corona, the dimensions of a quiet-region prominence 

are observed to be:

length: 60-600 Mm (average 200 Mm) ,
height: 10-100 Mm (average 50 Mm) ,
width: 4-15 Mm (average 6 Mm) ,

and so they are essentially seen as thin sheets of current and plasma. From now on we 

win refer to  “quiescent prominences” simply as “prominences” for brevity. Figure 1.4 (top) 

shows a full disc H a  image in which several prominences are seen. Notice the prominence 

at the North-W est limb which has been enlarged in Figure 1.4 (bottom ). Prominence 

tem peratures are commonly in the range 5,000 — 8,000 K  and their densities range between 

10̂ ® m~^ and 10^^ m~^. Active-region prominences are typically a factor of three or four 

smaller than  their m ature quiet-region counterparts; their tem peratures are much the same 

but their densities are rather higher. They lie a t lower altitudes and they extend to  heights 

of 20 Mm at most.

1 .4 .2  M a g n e tic  F ie ld

Prominences are always observed to  overlie a magnetic polarity inversion line (Babcock 

and Babcock, 1955) and so the magnetic field is an essential ingredient and of fundam ental 

importance to their formation, existence, evolution and eruption (see below). In fact, in 

his book on solar prominences, Tandberg-Hanssen (1974) wrote: “The single, physically 

most im portant param eter to  study in prominences may be the magnetic field. Shapes, 

motions, and in fact the very existence of prominences, depend on the nature of the magnetic 

field threading the prominence plasma ...” . Figure 1.5 depicts an active-region prominence 

against the disc showing its H a  structure and its close relation to the photospheric magnetic 

field. In the magnetogram, black areas represent positive polarity and white areas are 

negative polarity. Thus, prominences are thought to be contained in large-scale magnetic 

flux tubes (Figures 1.4, 1.10) and this field plays an essential role in supporting the dense 

m aterial over long time-scales; incredibly, quiet-region prominences can exist in the tenuous 

coronal environment for periods of up to  several months! During this time the prominence



Figure 1.4: (Top) Full disc image of the Sun in H a  showing several prominences in absorp­

tion against the disc. (Bottom ) An enlargement of the prominence at the N-W limb which 

is seen in emission (courtesy Meudon Observatory).



Figure 1.5: The relation between a prominence, filament channel and the photospheric 

magnetic field (courtesy S. M artin, Big Bear Solar Observatory).

Figure 1.6: Eclipse photograph showing limb prominences with overlying coronal cavities 

and helmet streamers (courtesy High Altitude Observatory).
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evolves very slowly and remains in quasi-static equilibrium as long as the magnetic field 

structure is not disrupted.

The magnetic field also appears to  play other roles. Overlying many prominences is 

a large-scale helmet streamer which can be seen during a total solar eclipse (Figure 1.6) and 

surrounding the prominence is a closed region of reduced density, often with a near-circular 

geometry. This is a coronal cavity (see Engvold (1989) for details) and may be considered 

to be the outline of a surrounding hehcal magnetic field. Prominences sometimes have a 

well defined upper edge (Figure 1.7) or lower boundary (Figure 1.8 (bottom )) both of which 

highlight the presence of the magnetic field.

Figure 1.7: H a  image showing a quiet-region prominence with a well defined upper edge 

(courtesy Big Bear Solar Observatory).

The direction of the magnetic field in a prominence is quite interesting. The field 

is highly sheared, typically at an angle of 20° to the long axis of the prominence (Tandberg- 

Hanssen and Anzer, 1970; Leroy et al., 1983; Kim, 1990) and so may not necessarily be 

potential (or current free). Athay et al. (1983) finds tha t the field is inclined at an angle 

of 3° to  the horizontal. In active-region prominences, the magnetic field is quite strong, 

usually ranging between 20 and 70 Gauss, yet in high-latitude (quiet-region) prominences 

it is somewhat weaker, typically 6 Gauss (Kim, 1990). Rust (1967) and Leroy et al. (1983)
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found th a t the magnetic field strength in prominences often increases with height.

Because active-region prominences are relatively low-lying, the prominence field 

has a  strong influence on the chromosphere and a well defined “filament channel” is seen 

underneath the prominence. Structurally, this is composed of fibrils aligned with the promi­

nence and polarity inversion line and is a result of chromospheric m aterial lying along the 

sheared, horizontal field. A good example of a filament channel is shown in Figure 1.5. 

In quiet-region prominences the filament channel is not nearly as well defined, because the 

chromospheric magnetic field is weaker and more vertically oriented, and so the underlying 

m aterial tends to  exhibit a  mottled structure. At the limb, the effect of this field on the 

chromospheric structure can be seen (Figures 1.7, 1.8, 1.9).

1.4.3 O ther Features

Prominences are not simply uniform, vertical sheets of plasma but possess many other 

significant attributes. Well-developed prominences reach down to  the surface in a series 

of regularly spaced feet, resembling great tree trunks (Figures 1.4, 1.8), which are joined 

by huge arches, 30 Mm across. These feet were thought to be located at the boundaries 

of supergranule cells (Ploceniak and Rompolt, 1973) but this is a subject of controversy; 

some observers now believe th a t they are located over the cell centres where the convective 

flows are upwards. M aterial continuously drains out of the main body of the prominence at 

these points with velocities of around 1 k m  s ~^. The resulting loss of mass is immense and 

would drain the prominence in a day or so if it were not being replenished somehow. Upward 

flows are observed in prominences with velocities of about 0.5 km  s~^ (Schmieder, 1989) and 

fast, horizontal motions (~  5 km  5“ ^) are sometimes observed in active-region prominences 

(Malherbe et ah, 1983). W ithin a prominence there is much fine structure in the form 

of thin, vertical threads (Figures 1.8, 1.9) of length ~  5000 km  and diameter 300 k m  or 

less (Démoulin et al., 1987) and so the m aterial in a prominence is not homogeneously 

distributed but rather clumped within these small-scale structures.

1.4.4 D evelopm ent

Prominences form either in active regions or between two adjacent active (or rem nant active) 

regions (M artin, 1990; Tang, 1987) but the birth always takes place at the location of a 

polarity inversion line. Active-region prominences typically form over the course of a  few
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Figure 1.8: Prominences at the limb showing vertical fine structure and feet (courtesy H. 

Zirin, Big Bear Solar Observatory and Sacramento Peak Observatory).
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Figure 1.9: Quiescent prominence showing fine structure (courtesy O. Engvold, Swedish 

Observatory, La Palma).

hours whilst quiet-region prominences take a bit longer, sometimes forming over a period 

of a few days. Observations show that a prominence will only form when a filament chan­

nel is already present in the chromosphere (M artin, 1990). This indicates tha t it is only 

after the correct magnetic geometry has been created (horizontal and highly sheared) that 

prominence m aterial may collect and form.

Once formed, quiet-region prominences may exist for up to several solar rotations, 

evolving very slowly and gradually increasing in length and mass. The sustained equilibrium 

is due to the magnetic field which twists and threads through the dense m aterial, somehow 

providing a form of magnetic hammock in which the plasma may rest. It is the force this
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field exerts upon the plasma, the Lorentz force, th a t needs to  be directed upwards, thus 

providing a balance against gravity.

Eventually, though, an instability will occur and the prominence then erupts in an 

event known as a “disparition brusque” . This is often a very dram atic event and, despite 

the presence of gravity, always occurs upwards! This seems counter-intuitive at first but 

it is the supporting magnetic field which has become unstable and the magnetic energy 

which is consequently released provides a driving force to  accelerate the prominence m a­

terial upwards with a velocity of several hundred kilometres per second. An eruption will 

generally occur when the height of the prominence exceeds bOMm. Examples of erupting 

prominences are shown in Figure 1.10 where the twist in the magnetic field can be clearly 

seen. Prominences do not always die by this mechanism; sometimes they disappear ther­

mally (therm al disparition brusque), although it is not obvious from a theoretical viewpoint 

how the extra heating is supplied. As long as a filament channel is present the prominence 

will usually reform again a day or two after the eruption, often assuming a very similar 

form as before, although generally there will not be as much m aterial present. Dynamical 

prominence eruptions are often associated with coronal mass ejections (or CM E’s). In this 

event, a huge body of overlying m aterial is driven outwards and accelerated to  tremendous 

velocities, often higher than  1000 km  s~^ (Hundhausen et al., 1984). The initiation of a 

CME takes place before the onset of the prominence eruption and the whole process occurs 

over a period of a few hours. Coronal mass ejections are hugely im portant phenomena as 

they represent a substantial proportion of the mass lost from the Sun.
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Figure 1.10: Examples of erupting prominences. The twist due to the magnetic field is 

clearly evident in these photographs (courtesy Naval Research Laboratory and Sacramento 

Peak Observatory).



16

C h a p ter  2

G overning E quations and  

M athem atical M odelling

2.1 C hap ter S um m ary

This chapter provides a basis for the m athem atical models presented throughout 

this thesis. Section 2.2 introduces the basic equations of magnetohydrodynamics (MHD) 

which can be broadly used to describe the interaction between a plasma (or electrically 

conducting fluid) and a magnetic field over large scales. In Section 2.3 the relevant equations 

for our m agnetohydrostatic (MHS) studies are selected from the complete set of equations 

and some im portant implications are discussed. Any additional theory which is utilised 

within the subsequent chapters is considered here. Finally, in Section 2.4 a  summ ary of 

im portant existing prominence models is given, thus completing the foundations upon which 

our work is based.
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2.2 T h e E q uations o f M agn etoh yd rod yn am ics

The interaction of ionised solar plasma with the magnetic field th a t it has remarkably gen­

erated provides a fascinating topic for study. The term  plasma refers to an electrically 

neutral m aterial which is largely ionised; by considering length scales which are far greater 

than  typical particle scales, the plasma may be treated as an electrically conducting fluid 

or a  continuum. The equations governing the behaviour of such a fluid, the magnetohy- 

drodynamic (MHD) equations, may be derived from two sets of equations: a simplified 

form of Maxwell’s equations of electromagnetism which describe the relations between the 

electric and magnetic fields and the electric charge and current densities; and the hydrody­

namic equations which interrelate pressure, density, tem perature and flow velocity. For an 

in-depth description of these equations and their derivation see Priest (1982).

Maxwell’s equations may be written

V X B = M , (2.1)

V - B  =  0 ,  (2.2)

V x E  =  (2.3)

V • E  =  ^  , (2.4)

where B is the magnetic induction (usually referred to  as the magnetic field), E  is the electric 

field, j the current density and pc the charge density, p  is the magnetic permeability and e 

the perm ittivity which, for solar plasmas, may generally be ascribed their vacuum values, 

po (— 47T X 10“  ̂ H m ~^) and cq (%: 8.85 X 10“ ^^F’m “ ^) such th a t the speed of light in a 

vacuum is given by c =  {po€q) ~ 2  .

The plasma must be essentially electrically neutral otherwise strong electrostatic 

forces would result and a ttrac t particles of the opposite charge, so neutralising the plasma. 

Therefore

pc <  e ,
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where n  is the particle density and e is the electron charge.

The first of these equations (2.1), known as Ampere’s law, states th a t magnetic 

fields are generated from the presence of electric currents or time varying electric fields. 

Equation (2.2) requires th a t there are no magnetic poles (net sources or sinks of magnetic 

field). Equation (2.3), Faraday’s dynamo equation, and (2.4) imply th a t electric fields are 

generated either by magnetic fields which are varying in time or by the presence of electric 

charges.

We are now in a position to derive the MHD equations. By assuming (a) the 

velocity uq to be non-relativistic, i.e. vq <C c, and (b) tha t the term s in equation (2.3) are 

of the same order of magnitude, we may eliminate the second term  on the right-hand side 

of equation (2.1) using an order of m agnitude argument. Therefore, this equation may be 

rew ritten as

V X B =  pj . (2.5)

Plasm a which is moving with a velocity v  in a magnetic field B is subject to a 

to ta l electric field

E  -b V X B .

Ohm’s law states th a t the current density is proportional to this electric field and may be 

written

j  =  <r(E +  V X B) , (2.6)

where cr is the electrical conductivity.

We now eliminate both E  and j  from (2.3), (2.5) and (2.6) and by using (2.2) we

find tha t

^  =  V X ( v  X B ) +  ))V“B , (2.7)

where p = (pcr)~^ is the magnetic diffusivity, taken to be uniform here. This is the induction

equation and determines the magnetic field, subject to equation (2.2), when the plasma 

velocity is prescribed.
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The first term  on the right-hand side of (2.7) represents changes in the magnetic 

field due to the coupling of the field and plasma velocity, whereas the second term  re­

sults from the effects of magnetic diffusion. By considering the ratio  of the magnitudes of 

these term s we obtain, for a typical plasma velocity i;o and length-scale Zg, a dimensionless 

param eter

/? -  kEh — ?
V

known as the magnetic Reynolds number. If >  1 the diffusion term  may be neglected

in (2.7) in an approximation known as the perfectly conducting lim it  From this, Alfvén’s 

frozen-flux theorem may be derived which states th a t in a perfectly conducting plasma (of 

which the solar corona is, in general, a good example), the magnetic field lines move with the 

plasm a as if they were frozen to it. For many solar applications this theorem holds, although 

an im portant exception occurs in magnetic reconnection theory for which diffusion effects 

are certainly im portant. This occurs when the magnetic field varies strongly over small 

length scales, for example in the neighbourhood of an X-type neutral point or a current 

sheet.

The motion of the plasma is described by the equations of continuity and motion. 

Conservation of mass yields the continuity equation

where p is the plasma density and

■ ^  +  pV • V =  0 , (2.8)

D t ~  ^

is the convective time derivative.

The equation of motion can be written as

P ^  =  - V p - b j  X B - b p g  +  pz/ -t- ^ , ( 2 .9 )

where p  is the plasma pressure, g the acceleration due to gravity and u the coefficient of 

kinematic viscosity, which is assumed to be uniform throughout the plasma. (2.9) states 

th a t a volume of plasma will experience an acceleration due to the various forces acting upon 

it, namely the plasma pressure gradient, the magnetic (or Lorentz) force, the gravitational
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force and any frictional force arising from viscosity, A comparison of the magnitudes of the 

term s in (2.9) gives the ratio of the inertial effects to viscous effects as

P _ IqVq

where Rç is the Reynolds number (cf. the magnetic Reynolds number, Rm)- For many 

aspects of solar theory the Reynolds number is far greater than  unity, allowing viscous 

effects to  be neglected. W hen considering a plasma at rest, such as is the case for the global 

equilibrium of prominences, equation (2.9) reduces to the m agnetohydrostatic equation. 

More win be said about this in Section 2.3.

The plasma pressure is assumed to be given by the ideal gas law, i.e.

2 ) = ^ ,  (2.10)

where T  is the tem perature and R  is the gas constant, p, is the mean atomic weight, or the 

average mass per particle in term s of the proton mass, and so for a fully ionised hydrogen 

plasma, p  = 0.5.

Finally we have an energy equation

p r —  =  - £  , (2.11)

where s is the entropy per unit mass of the plasma and C is the energy loss function due 

to  all the sources and sinks of energy. This may be written as the energy loss minus the 

energy gain, i.e.

=  V • q  +  L r  h ,
<7

where q  is the heat flux due to particle conduction, T,. is the net radiation, i^/cr is the

ohmic dissipation and h  is the sum of all the remaining sources of heat. (2 .11) may be

rew ritten in term s of the plasma pressure and density as

(2 .12)
'y — 1 Dt  \p'^ J (7

where 7 is the ratio of the specific heat of the gas at constant pressure to th a t at constant 

volume. If 72 =  0 entropy is conserved and a therm al equilibrium is reached in which the 

energy gains balance the energy losses. This has im portant prominence applications (for
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example, see Hood and Priest (1979a); Priest and Smith (1979); Oran et al. (1982); Poland 

and Mariska (1986); Mok et al. (1990); Antiochos and Klimchuk (1991); Van Hoven et al. 

(1992); and references therein) as certain solutions permit cool, dense m aterial to  remain 

in equilibrium within the hot coronal surroundings. In this case the heat gained through 

conduction along the field lines is radiated away from the dense m aterial in a steady-state 

solution.

Im portant velocities associated with the plasma are the sound speed

V p
and the Alfven speed

B
va —

For a typical prominence plasma, these have the values of Cs «  10 k m  5“  ̂ and va 

90 k m  s~^.

To summarise, the basic equations of MHD are 

th e  in d u c tio n  e q u a tio n ;

th e  c o n tin u ity  e q u a tio n :

th e  e q u a tio n  o f  m o tio n :

f +  , V . v  =  0 ,

= - V p  + j  X B  + pg + pv  ( v ^ v  +

th e  id ea l gas law :

p R T

a n d  th e  e n e rg y  e q u a tio n :

'f -  1 Dt  \p'^ J a
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This set of equations determines v , B , /?, p and T  subject to  the condition

V B  =  0 .

In addition, j and E are given by A m p ere’s law:

V  X B  =  p j  ,

and O hm ’s law:

j =  (r(E +  V X B ) .

2.3 T h e E q uations o f  M agn etoh yd rosta tics

The study of quiescent prominences involves structures which are either static or only 

very slowly evolving in time. When the flow speed uq is much less than  the sound speed 

{lPofpo)K  the Alfven speed Bq/{ppq )2  and the gravitational free-fall speed {2glo}^, for a 

vertical length-scale Iq, the equation of motion reduces to

0  = - V p - I - j  X B - t - p g  . ( 2 . 1 3 )

This, coupled with the equations

j  =  v . B = o ,
p p

and an energy equation for the tem perature, constitute the set of m agnetohydrostatic (MHS) 

equations.

If gravity acts in the negative p-direction then resolving forces along a field line

gives

p =  po exp ( -  £  , (2.14)

where po is the pressure at p =  0 and H{y)  is the pressure scale-height given by the ideal 

gas law as

H{y)  =  . (2.15)
PQ
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If we consider an isothermal atmosphere then H  is constant and (2.14) becomes

p =  Po . (2.16)

(2.14) and (2.16) sta te  th a t the pressure along a given magnetic field line decreases expo­

nentially with height. These equations represent the background hydrostatic atm osphere 

in which gravity tends to stratify the atmospheric pressure along the magnetic held. In the 

corona, the scale-height is approximately 10®m (=  lOOMm) and in a prominence it is two 

orders of m agnitude lower.

The magnetic term  (the Lorentz force) in (2.13) is particularly interesting. It is 

directed across the magnetic held so th a t any motion or density variation along held lines 

m ust be produced by gravity or pressure gradients. Using (2.5) it may be broken down into 

two term s, i.e.

On the right-hand side of this equation, the first term  represents a  magnetic tension force 

which acts in a direction perpendicular to  curved field Lines. This is a resultant restoring 

force which arises from the tension, of magnitude along the field. Thus, field lines

have a similar restoring property to elastic strings: in a catapult, the restoring force from 

the stretched elastic can be used to fire missiles large distances, whereas here the magnetic 

tension from kinked field lines may provide the force to support dense prominence sheets 

against gravity. The second term  in (2.17) results from gradients in magnetic pressure 

(H ^ /2/.i) and acts from locations of strong field to locations of weak field. In vertical 

prominence sheet models, this force opposes the outwards plasm a pressure gradient and 

acts to  confine the plasma to  a thin sheet. Along lines of force (field lines) the magnetic 

tension and pressure forces cancel so th a t the resultant force j  x B  acts perpendicularly to 

the field.

The ratio  of plasma pressure to magnetic pressure is known as the plasm a beta,

w ritten

a _

for a  given plasma pressure po &nd magnetic pressure In the corona, (3 % 10“  ̂ and
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in a prominence, (3 % 10” .̂ Thus, magnetic forces dominate pressure variations so th a t it 

is difficult for plasma motions to distort the held.

2 .3 .1  F o rce-F ree  F ie ld s

If the typical length-scales of a coronal structure, such as a prominence, are much less 

than  the coronal scale-height then gravitational forces may be neglected when compared to 

plasm a pressure gradients. In addition, if the plasma beta  is much less than  unity, these 

pressure gradients are negligible in comparison to Lorentz forces. If these two cases hold 

then the equation of m agnetohydrostatic equilibrium (2.13) reduces to

j X B =  0 . (2.18)

Magnetic fields satisfying this condition are said to  be “force-free” . In this approximation, 

no significant Lorentz force can result because any pressure gradients would be too weak to 

balance it. (2.18) implies tha t the electric current must flow along magnetic held lines and 

by using (2.5) it may be rewritten

(V X B ) X B =  0 , (2.19)

and so

V X B = aB  , (2.20)

where a  is some function of position. Taking the divergence of (2.20) yields

(B  . V )a  =  0 , (2.21)

since V - B  =  0. Thus, a  is constant along a held line or, alternatively, B and j lie on

surfaces of constant a. W hen a  is constant, the curl of (2.20) reduces to

(V^ +  C(:̂ )B =  0 , (2.22)

which is the equation of a constant-a or linear force-free field. In general, (2.19) does 

not reduce to  a linear equation and solutions are particularly difficult to find. In this

case, progress can be made by assuming the field to  be invariant in one direction. For
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prominence models, this is usually taken to  be the direction of the prominence long axis, 

which we specify to be the z-direction here. Writing the held in term s of a vector potential

B  =  V x A ,  (2.23)

ensures th a t V • B  =  0 is satisfied. Taking

A =  A{x ,y )  z ,

where A{x, y) is a scalar flux function, gives the following expression for B in Cartesian 

coordinates:

B

where a third field component, Bz{x.,y) is included. After substitution of (2,24) in (2.19) 

and equating the components it can be shown that

%  =  B , ( A )  and V ’ A + ^  =  0 ■ (2.25)

This is a form of the Grad-Shafranov equation, derived independently by Lust and Schliiter 

(1957), Shafranov (1958), and Grad and Rubin (1958) for non-const an t-a  force-free fields. 

It can be verified th a t (B  • V )/l =  0 and so A  (and hence Bz)  is constant along field lines.

The Grad-Shafranov equation may be solved for A  if Bz{A)  is prescribed and then 

(2.24) allows the field components Bx  and By to be explicitly determined. For example, 

taking Bz{A)  — a  A  implies th a t

{V^ + a^)A = 0 .

This is the linear Helmholtz equation which yields constant-a force-free fields. Taking

Bz{A)  =  2a A 2 implies th a t

V ^ A  = -2 o ?  ,

which is Poisson's equation corresponding to a constant current force-free field. The twisted 

flux tube model presented in Chapter 3 uses such a field. Other forms of Bz{A)  for which 

there are known analytical solutions are Bz{A) = and Bz{A) = A~^.

An im portant case occurs for which Bz{A) = a. Here we obtain
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V U  =  0 ,

which implies th a t the electric current is zero. These are potential fields in which there are 

no volumetric currents and are discussed in the next section.

2 .3 .2  P o te n t ia l  F ie ld s

W hen j =  0, (2.5) implies tha t

V X B  =  0 , (2.26)

and so no electric currents are generated through gradients in the magnetic field. Keeping 

the assumption th a t all quantities are independent of z, the x  and y—components of (2.26) 

require th a t Bz  must now be constant and the z-component gives

dBy _  dBx  
dx dy

Also, from (2.2) we have

(2.27)

^  • (2.28)OX dy

We now note th a t (2.27) and (2.28) take the form of Cauchy-Riemann equations, the general

solution of which is given by an analytic function

H(W) =  Py +  i , (2.29)

of the complex variable w = x i y.

Furthermore, we can define a holomorphic function (or complex flux function), 

F(w),  given by

F{w)  =  A(x, y) + i $(æ ,y) , (2.30)

and so B may be written as

B =  - V $  , or B =  V X (Az) ,

or
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Then

A (x,y) =  Re —B{w) dw^  =  constant ,

defines field lines and

$(æ, y) =  Im ~ B ( ‘w) dw^  = constant ,

defines orthogonal curves to the field lines.

Equation (2.29) allows the field to be written in term s of a single complex vari­

able, lu, and so many of the powerful tools of complex variable theory may be applied. For 

example, in Appendix A the integrals over an infinite domain are transform ed to contour 

integrals and easily evaluated by seeking the appropriate residues; branch cuts in the com­

plex plane can be used to  represent discrete current sheets (Chapters 4 , 6 , 7) since they are 

the location of a tangential discontinuity in B{w);  and conformai mappings may be used 

to  transform  the geometry of these fields to produce additional solutions (Aly and Amari, 

1989). Tills la tte r technique is not used in this thesis, but the related work of Amari (1988) 

provides good evidence of the versatility of this method.

Now we have introduced the relevant equations and techniques we present a short 

review of im portant existing models for the equilibrium of quiescent solar prominences.

2.4  S um m ary o f P rom in en ce M od els

This summ ary of significant m agnetohydrostatic equilibrium models is intended to  provide 

the background information for subsequent chapters. It is by no means a complete review 

as we only focus on particular models which describe the external and internal equilibrium 

properties of quiescent prominences and the surrounding magnetic field. For additional 

information on this subject the books and conference proceedings by Tandberg-Hanssen 

(1974), Poland (1986), Priest (1989) and Ruzdjak and Tandberg-Hanssen (1989) provide an 

extensive range of contributed papers and reviews on all aspects of theoretical modelling.

2 .4 .1  E x te r n a l M o d e ls

First we consider some im portant models which concentrate on the global equilibrium of 

prominences. In these models the prominence is represented either by a line current or a
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current sheet supported in an external force-free or potential coronal magnetic held. Priest

(1989) suggested that such models can be categorised as either normal polarity or inverse 

polarity^ depending on whether the magnetic field passes through the prominence in the 

same direction as the underlying photospheric field or the opposite direction, respectively. 

The development of such models began with Kippenhahn and Schliiter (1957) who 

gave a simple model for the support of a prominence in a normal-polarity configuration. 

The basic topology is shown in Figure 2.1 where the prominence is represented as a sheet

I pP

mg
77f̂ 7777f̂ 77777777777777f7777rp~,

■I

Figure 2.1: The external potential field of the Kippenhahn-Schliiter model showing also the 

image sheet (-/)  and the associated forces.

with current J  at a height h above the photosphere. The current is directed out of the 

plane and results from a discontinuity in the vertical field component. If the photospheric 

footpoints are line-tied during the formation of the prominence, the preservation of the 

footpoint position can be modelled by adding an image current (—7) at a distance h below 

the photosphere to the original arcade and prominence sheet. Thus the prominence mass 

m  is supported against gravity both by the line tying (the repulsion p.P/{47rh) between I  

and (-/))  and also by the Lorentz force I B  acting on I  in the original background field B  

at height h.

An alternative magnetic topology (inverse-polarity) was proposed by Kuperus and 

Raadu (1974) where the magnetic field passes through the prominence in the opposite 

direction. They represent the prominence by a line current embedded in the background 

field of a vertical neutral sheet. Again, to simulate the line-tying during the formation, an 

image current is required and this provides the upward repulsive force pP{{A-kK) to balance
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(a) (b)

X

Figure 2.2: The Kuperus-Raadu solution. The final equilibrium (c) is obtained from the 

superposition of the neutral sheet field (a) and the line current system (b).

the weight of the filament. A unique equilibrium position for the prominence can then be 

found from the balance of forces. Figure 2.2 shows the construction of this solution. In 

this case the current in the filament must be in the opposite direction to the Kippenhahn- 

Schliiter sheet and Anzer (1984) postulated that this may be achieved through an upward 

stretching and opening of the arcade field through the action of the solar wind or an MHD 

instability. For the Kippenhahn-Schliiter case, the correct current sign may be produced 

by a simple deformation of the arcade due to gravity. Anzer and Priest (1985) developed
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Anzer’s idea by considering a current sheet which has formed due to the opening of the held. 

In their model the current sheet moves downward, cools and contracts to a line filament 

of inverse polarity. However, if the current is conserved, the hnal equilibrium position of 

the  hlament is lower than  the observed prominence heights. They tried to  extend this 

model to incorporate a vertical current sheet but the upper part of the sheet is not in local 

equilibrium. Anzer (1989) explained that this is a common defect of inverse-polarity current 

sheet models and occurs because the internal attraction of the current elements in the sheet 

gives rise to a self-pincliing effect. This results in a downward force on the upper part of 

the  sheet which dominates over the repulsion force from the image sheet and hence there is 

no equilibrium.

Models of Kuperus-Raadu type have the appealing feature tha t the prominence is 

located within a region of closed magnetic field. Thermal conduction is weak across field 

lines and so this type of configuration helps to shield the prominence from the corona and 

keep it in a cool equilibrium. Low and Hundhausen (1995) have suggested th a t such closed 

field lines may form the coronal cavity which is observed to surround prominences.

Van Tend and Kuperus (1978) and Kuperus and Van Tend (1981) extended the 

work of Kuperus and Raadu by allowing for an additional background field. Given the form 

of this field they found that increasing the current I  results in a state  of non-equilibrium 

when it exceeds a critical value, possibly leading to a dynamic evolution such as an eruption.

non equilibrium pt.

>h

Figure 2.3: The variation of I{h) as a , the shear param eter, is adjusted in the model of 

Démoulin and Priest.
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However, the weak feature of their order of magnitude model is that the background field is 

imposed in an ad hoc manner. Amari and Aly (1989) gave a more detailed analysis including 

the ambient field in a self-consistent manner. Once again, they modelled the prominence as 

a line of mass and current, but this time supported in a constant-a force-free field in which 

the flux function satisfies

V^A -b c?A — 6{x)6{y — h) ,

where the delta functions represent the line current at a; =  0, y =  h. When the current is 

negative the field is of inverse polarity and when I  is positive it is of normal polarity. They 

did not find a state of non-equilibrium, but this was discovered by Démoulin and Priest 

(1988) when they generalised the work to include the second harmonic of the basic arcade 

field. They found that the prominence can erupt when the current and a shear param eter, 

a , are too large since the functional form of J(/i) changes from monotonie to one with a 

maximum and minimum as shown in Figure 2.3.

h ~

X X

(b)

Figure 2.4: Examples of Malherbe-Priest configurations showing normal-polarity ((a), (b)) 

and inverse-polarity ((c), (d)) prominence solutions.

Malherbe and Priest (1983) used complex variable theory to generate prominence 

equilibria in potential magnetic fields. They found particular solutions of both normal and 

inverse polarity in which the prominence sheet is represented as a branch cut in the complex 

plane. It is supported against gravity by the tension forces from the discontinuous vertical
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X X

Figure 2.4

field component. Examples of some of their solutions are shown in Figure 2.4. They also 

examined the effect of slow (<  100 ms~^)  converging and diverging photospheric flows at 

the base of the magnetic structures and suggested that these are responsible for the upward 

plasma motions observed by Malherbe et al. (1983). The method of inspection used by 

Malherbe and Priest produces a large class of prominence models and is a very valuable 

technique. However, it does not allow the observable properties (e.g. the normal field

Figure 2.5: Anzer’s normal-polarity current sheet model.
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component in the prominence and the photosphere) to be prescribed a priori. Tliis re­

quires a different approach which was first applied by Anzer (1972). He considered the 

problem in which the normal field components are imposed as functions of position at the 

photosphere and across the current sheet which extends from the photosphere to a finite 

height as sketched in Figure 2.5. Assuming a potential field to exist outside the sheet, the 

resulting mixed boundary-value problem can be solved to obtain the field throughout the 

corona. Unfortunately, the numerical solutions he found are unphysical due to a down­

ward Lorentz force acting in the lower part of the sheet. This problem was resolved by 

Démoulin et al. (1989) by considering the base of the prominence sheet to be detached from 

the photosphere. This introduces a free parameter (the flux between the base of the sheet 

and the photosphere) which can be physically adjusted to give the correct behaviour of the 

Lorentz force. They were able to find both normal and inverse-polarity solutions using tliis 

formulation. More recently, Ridgway, Amari and Priest (1991, 1992) have made significant 

developments by generating current sheet solutions in a constant-current force-free field for 

bo th  normal and inverse-polarity topologies, although not aU of their solutions are bounded. 

Amari and Aly (1990,1992) gave a method to calculate bounded solutions for current sheets 

in a constant-a force-free field but their inverse-polarity configurations are still subject to 

the self-pinching effect at the top of the sheet.

Priest et al. (1989) proposed a twisted flux tube model to give better agreement

Figure 2.6: The Priest, Hood and Anzer twisted flux tube model showing the various stages 

as the twist is increased.
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with some of the observed features. For example, against the disc active-region promi­

nences often display plasma motions in a transverse direction, i.e. along the long-axis of 

the prominence. Also, these prominences sometimes appear to have one end rooted in a 

sunspot. Both of these features contradict the Kippenhahn-Schliiter model. The scenario 

for the model is shown in Figure 2.6 in which the basic geometry is a large-scale curved 

flux tube. Twist of the tube may be created by general evolutionary footpoint motions. 

Coriolis forces or flux cancellation. As the twist increases, a dip with upwards curvature 

is created at the summit of the tube and at this point the prominence can form either by 

condensation or chromospheric injection of plasma (Figure 2.6b). The existence of dipped 

field lines is a necessary condition for formation by thermal condensation as it creates a well 

in which material can collect without falling down to the solar surface. As twisting or flux- 

canceUation continues, the prominence grows in length (Figure 2.6c) and ultimately, when 

the twist or prominence length is too large, the tube becomes unstable and the prominence 

erupts, filling the tube with plasma and reveafing the helical structure for the first time 

(Figure 2.6d). A classic example of this is in the huge eruptive prominence in Figure 1.10 

where the twist is particularly evident.

Van Bahegooijen and Martens (1989) presented an alternative mechanism through 

which the helical structure is formed via reconnection processes, driven by converging pho­

tospheric motions that act on a sheared arcade (Figure 2.7). Initially, a potential arcade

Figure 2.7: The model of Van Bahegooijen and Martens which provides a possible solution 

for the formation and eruption of a twisted flux tube.
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is sheared due to photospheric motions parallel to the polarity inversion hne. Converging 

motions then bring the footpoints of the sheared field lines together so that strong current 

gradients are produced and the effects of magnetic diffusion are no longer negligible. This 

allows field lines to reconnect, producing a short, highly curved field line (which submerges 

due to the magnetic tension forces) and a long field line around which subsequently re­

connected field lines wrap themselves. In this way, a helical structure is formed along the 

polarity inversion line in which dense material can collect in the lowest points of the heli­

cal windings. Eventually, the overlying arcade is unable to confine the flux tube, allowing 

it to erupt. The ‘cancelling magnetic features’ which occur as the reconnected field fines 

submerge are in good agreement with the videomagnetographs of Martin (1986,1990).

Ridgway, Priest and Amari (1991) found constant-current force-free solutions for 

the local equilibrium of a prominence sheet in a twisted flux tube, neglecting the large-scale 

curvature of the tube, although in their solution the sheet does not vanish at the edge of the 

flux tube. That is a feature which we rectify in Chapter 3 by considering further harmonics 

in the series solution.

We conclude our discussion on external models by considering a particular category 

of prominences to which little theoretical attention has been paid in the past. These are 

polar-crown prominences and are almost always observed to be of inverse polarity (Leroy 

et ah, 1983). In a recent paper, Demoufin and Priest (1993) suggested a modification to a

p r o m i n e n c ez

X+pole

Figure 2.8; A possible topology for a polar-crown prominence suggested by Demoufin and 

Priest.



36

quadrupolar configuration could be used to model these prominences. Their idea is given in 

the sketch in Figure 2.8 but they did not proceed with any calculations. Anzer (1993) has 

stressed the need for a reasonable polar-crown prominence model and in some preliminary 

calculations using appropriate flux distributions he reported th a t he could not find a suitable 

configuration with field line dips (Anzer, 1994) although his study was not exhaustive. In 

Chapters 4 and 5 we are able to overcome this difficulty and find solutions for the equilibrium 

of a polar-crown prominence.

2 .4 .2  In te r n a l M o d e ls

As in the previous section, an appropriate place to start is with the internal model proposed 

by Kippenhahn and Schliiter (1957). They set up a simple model for the m agnetohydrostatic 

support of a vertical sheet of m aterial by assuming tha t the tem perature (T) and the 

horizontal field components (Bx ,Bz )  are constant while the vertical field By,  pressure p, 

and density p, depend on x alone. The horizontal and vertical components of the force 

balance equation (2.13) then reduce to

r2 JJ2
=  (2.32)

and

=  (2.33)

where By approaches as x tends to Too and p approaches zero. The magnetic field

plays two roles. According to (2.32) it compresses the plasma sheet laterally and increases 

the plasma pressure in the sheet by a small amount equal to the external magnetic pressure 

{ByQ/2p.) associated with the vertical field. In addition (2.33) indicates th a t the tension in 

the magnetic field supports the plasma against gravity. The solution of (2.32) and (2.33) 

may be written as

By = tanh(æ/7) , p =  (ByQ/2p.)sech^{x/l) , (2.34)

where the prominence half-width I is given by

I = 2 ^ H  ,
ByO
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H being the prominence scale-height. Figure 2.9a shows the field fines through the promi­

nence interior.
4— 2l —>

u
(a) (b)

Figure 2.9: (a) The internal Kippenhahn-Schliiter model in which the curved field fines sup­

port dense prominence material, (b) A modification to the K-S model to include variations 

with height.

Several generalisations of this solution have been constructed. Poland and Anzer 

(1971) allowed for imposed spatial variations T{x)  of the tem perature so that

[  dxfl{x)  
Jo

By =  Byota.nh

Low (1975) also found hydrostatic equilibria with the tem perature varying as

T ~  A t ,

where A is the flux function. The resulting solution has the property that the magnetic 

field tends to a constant value as |x| ^  oo and therefore A — const x |z | This implies that 

T  const X and so the tem perature tends to infinity at large distances. Thus, taking 

a low prominence tem perature at z =  0 allows the tem perature profile to reach coronal 

values for large enough values of x. Beyond this value the solutions become unphysical, 

though, and so they must be somehow matched onto a correct coronal solution.

Milne et al. (1979) coupled the magnetohydrostatics to a simple energy balance 

equation and found that the solutions depend on the plasma beta and the prominence shear
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angle. Prominence-like solutions are found when (3 is less than a critical value.

A further modification was presented by Ballester and Priest (1987) to allow slow 

variations with height by writing the magnetic field as

B  =  B o (x ) -t- € B i(x ,y )  ,

where Bo(z) is the Kippenhahn-Schliiter solution. The result is that the width of the 

prominence decreases slowly with height (Figure 2.9b), while the field lines become less 

curved and the field strength increases, in agreement with observations.

In order to compute a more complete prominence solution it is necessary to match 

the external current sheet solution onto an appropriate internal solution. Hood and Anzer

(1990) achieved this and found a global model for a normal-polarity prominence in which 

a cool, internal MHS solution matches onto a hot, external arcade solution with field lines 

rooted in the photosphere. A sketch of their matched field lines is shown in Figure 2.10.

-a

Figure 2.10: The field lines in the Hood-Anzer prominence model showing how the current 

sheet has been replaced by a finite internal region.

In Chapters 6 and 7 we construct matched internal-external solutions for a polar- 

crown prominence model in which the support of slanted and curved material is required. 

Firstly, though, we present a modification to the twisted flux tube model of Ridgway, Priest 

and Amari (1991) which includes both a finite-height current sheet and an appropriate 

matched internal solution.
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C h a p te r  3

T w isted  F lux Tube P rom inence  

M odel

3.1 C hap ter S um m ary

In tliis chapter the twisted flux tube model for the support of a prominence sheet 

with constant axial current density, given by Ridgway, Priest and Amari (1991), is consid­

ered.

The model is extended in Section 3.3 to incorporate a current sheet of finite height. 

The sheet is supported in a constant current density force-free held in the conhguration of 

a twisted flux tube. The mass of the prominence sheet, using a typical height and field 

strength, is computed. Outside the flux tube the background magnetic held is assumed to 

be potential but the matching of the flux tube onto this background field is not considered 

here.

Instead our attention is focussed, in Section 3.4, on the interior of the prominence. 

An expanded scale is used to  stretch the prominence sheet to a finite width. We analytically 

select solutions for the internal magnetic held in this region which m atch smoothly onto the 

external force-free solutions a t the prominence edge.

The force balance equation applied inside the prominence then yields expressions 

for the  pressure and density and a corresponding tem perature may be computed.
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3.2 In tro d u ctio n

Theoretical prominence models have tended to fall into one of two groups. These 

are current sheet and internal models. Current sheet models assume th a t the prominence 

thickness is so small, when compared with coronal length scales, th a t it is replaced by a 

current sheet. This allows a surface with a jum p in the vertical magnetic field component. If 

the  external coronal field is potential, then complex variable theory can be used to describe 

this field and the current sheet becomes a branch cut in the complex plane. This technique 

has been used by several authors (see for example Anzer (1972); Malherbe and Priest (1983); 

Démoulin, Malherbe and Priest (1989)). The basic idea of replacing the prominence by a 

current sheet has been used by Amari and Aly (1990) for a linear, forceTree coronal field and 

by Ridgway, Amari and Priest (1991,1992) for a constant current density coronal field. All 

of these authors have assumed Cartesian geometry th a t is invariant in the axial direction.

Recently it has been proposed th a t a prominence can form inside a large, twisted, 

flux tube. Priest et al. (1989) suggested th a t slow twisting motions could create the neces­

sary magnetic field hue dip for the formation of a prominence. They proposed th a t, after 

the  formation of a cool condensation, a current sheet would form but now in cylindrical 

geometry. Depending on the source of twist either a normal or inverse polarity prominence 

can be formed. Van BaUegooijen and M artens (1989) suggested th a t a tw isted, flux tube 

could be formed by suitable shearing and converging photospheric flows and magnetic re­

connection. The resulting prominence wiU always be of inverse polarity type. Their ideas 

were based on an earlier model by Pneum an (1983) although the mechanisms by which the 

flux tube is formed are different. Pneum an considered the emergence of a bipolar region 

which is distented outward, into the corona, by pressure gradients. At low heights the 

pressure forces cannot balance the Lorentz force, provided the field lines remain line-tied. 

This causes an inward collapse of the field and subsequent reconnection a t the neutral line 

occurs to form the helical flux tube. Inhester et al. (1992) extended this idea of flux tube 

formation in a detailed numerical simulation. A natural result of the form ation of a twisted, 

flux tube is an enhanced density th a t could trigger prominence formation.

An investigation of a current sheet prominence model in a twisted, flux tube was 

carried out by Ridgway, Priest and Amari (1991). Their model was based on a constant 

axial coronal current density and contained no singularities near the origin. They showed 

th a t a current sheet could be in equilibrium out to the edge of the flux tube. Anzer (1989)
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explains th a t this equilibrium is of fundam ental importance and can only be achieved if 

the Lorentz force is directed vertically upwards at every point in the sheet. However, one 

weakness of their model, th a t will be rectified in this chapter, in Sections 3.3.3 and 3.3 .4 , 

is th a t the current sheet does not vanish a t the outer edge. This will create problems when 

m atching to  an unsheared external field.

One im portant drawback to all current sheet models is th a t the internal prominence 

structure is not considered and quantities like the density and pressure are determined from 

horizontal and vertical force balance and are not free to be chosen. Internal models consider 

the  local behaviour within the prominence without worrying about m atching onto a suitable 

external magnetic field. The isothermal models of Menzel (1951) and Brown (1958) have 

been extended to a non-isothermal model proposed by Hood and Anzer (1990) th a t links 

the internal and external fields in a self-consistent m anner giving the typical structure of 

a normal-polarity prominence. A two-tem perature prominence, of finite height, has been 

investigated in the numerical studies of Fiedler and Hood (1992,1993). Thus, it is im portant 

th a t any internal solution matches onto a realistic external equilibrium solution. This will 

be considered in Section 3.4.

There have been many pubhcations on magnetic equilibria of coronal fields th a t 

could be used in a prominence model. The main requirement is the existence of a dip in 

the held. Some of the recent 3-D equilibria presented by Low (1991; see references within) 

offer possibilities of modelling realistic coronal fields.

This chapter is concerned with the twisted, magnetic flux tube model of promi­

nences. The flux tube is represented in cylindrical coordinates and is assumed independent 

of variations in the axial direction. In Section 3.3 the basic equations and a current sheet 

model for constant axial current density is presented. Section 3.4 “expands” the current 

sheet giving an internal description of the prominence. The internal solution is matched 

onto the previous external solution. Finally the results and conclusions are discussed in the 

last section.
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Br

Figure 3.1: The notation used for a flux tube in which a current sheet is supported along 

the line 6 = tt.

3.3  C urrent S h eet P ro m in en ce  M od el

3 .3 .1  B a s ic  S o lu t io n

The basic geometry is shown in Figure 3.1. A cylindrical geometry is taken in which the 

magnetic field is assumed to be invariant in the axial direction. In cylindrical coordinates 

the magnetic field can be represented in terms of a flux function A{r, 0) as

where the arbitrary  function Bz{A)  is selected as

(3.1)

JBa(yl)==: 2cyis . (3.2)

Thus, for realistic solutions (Bz  real) we require the external boundary of the flux tube to 

lie on A{r,6)  — 0 so th a t the flux tube region is defined by A{r,6) > 0. The surface A  = 0
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is not a cylindrical one (there is a radial dependence on 6) but Bz{A — 0) =  0 so the field 

can be m atched to  an unsheared external potential field there.

In addition, there is a background hydrostatic atmosphere, based on an isothermal

corona,

p  = , p  = , (3 .3)

for the  pressure and density. The pressure scale height is defined as

^  , (3.4)
MS' Po9

with the choice of Bz{A)  given by (3.2) and using (3.3) the force balance equation

V p = i ( V x B ) x B  +  p s ,
P

reduces to

-h 2c2 = 0 . (3.6)

Thus, the axial current density, — is a constant. (3.5) may be solved by superimpos­

ing a non-potential, cylindricaUy symmetric solution Ap th a t has no current sheet, and a 

potential solution Ac th a t does possess a  current sheet. The cylindricaUy symmetric field 

is simply the particular solution

Ap = -  r^) , (3.6)

where h i s  a constant. The potential solution

V^Ac  =  0 ,

can be obtained using complex variable theory but we restrict attention to simple separable 

solutions of the form

Ac ~  cos kd . (3.7)
k

To avoid singularities in the current at r  =  0 we require /c > 1, but a sign change

in Be within the flux tube is only avoided by taking k > 2. For non-integer values of k  there
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is a current sheet, or equivalently a  jum p in the value of Br sX 9 -  ±%. For simplicity we 

restrict k to

1
h =  n +  — , n > 2 . (3.8)

Finally, we give some physical meaning to  the constant c by defining the field 

strength  to  be Bo at r  =  0. Hence,

Thus, the flux function is given by

A = A p A A c  = -  r^) +  cos(n +  )a 9 , (3.10)
n = 2

for A > 0. Special solutions are now presented th a t depend on the number of term s 

considered in the series.

3 .3 .2  O n e  T erm  in  th e  S e r ie s  in  (3 .1 0 )

Following Ridgway, Priest and Amari (1991), only one term  in the series in (3.10) is con­

sidered. Thus

A =  ^ ( h ^  -  r^) +  62î’2 cos ^  , (3.11)

where B \  = >/2Ho/4 > 0 .

If we scale 7’ so th a t r =  f h  and define A =  then

A =  B \ h

giving field components

(1 — r^) +  Xr2 cos ^

_  1 d A  _ 5 „  . , 5f f

’■ “  Af gg "  2 2 ’

Be =  =  2 B ir +  | s i ( - A ) r §  cos ^  . (3.12)

For a current sheet a t =  tt th a t provides support, H,.(f,7r) m ust be positive, since

Beir^'ïï) > 0 , and so — A > 0 .
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The mass density of the current sheet, per unit area mA,  was obtained by Ridgway, 

Priest and Amari (1991) as

, (3.13)
P 9

where [H,.] is the jum p in Br across the prominence from 9 = —tt to ^ =  tt. Thus

[Br](f) =  5 B i ( - A )  f 2 . (3.14)

Pressure balance across the prominence gives the plasma pressure a t the sheet as

As we have mentioned, A  must be positive for real values of Bz  (equation 3.2) so th a t A =  0 

defines the outer surface of the flux tube, passing through the line (r  =  h, 9 — 1̂ ). Outside 

this surface a potential field can be m atched onto this solution.

However, in general it is only possible to match the average field strength a,round 

this surface and the boundary is not in equilibrium. The one exception to this situation 

is when the boundary is circular. Low (1993) used image currents to  make this matching 

surface circular and derived a consistent equilibrium for both regions. This analysis can be 

done but the complexity of the solutions obscures the properties of the held and current 

sheet without substantially altering the behaviour.

There is also a surface inside which B q is always positive and there is an X-type 

neutral point at

B r =  0

Be =  0

27T
T  ’

4
(3.15)

L5(-A)J '

Note th a t this is not a neutral point of the 3-D field, as Bz  /  0. It is a neutral point 

of the projected field onto the (r, (9) plane. Figure 3.2c illustrates such a projection. The 

restriction th a t this X-type neutral point lies outside the edge of  the current sheet flux tube, 

defined by A =  0, bounds the value of —A. Thus, there is a maximum value for the potential 

solution when compared with the non-potential field. Using (3.15) and (3.11) gives

-  A < ^  =  0.535 . (3.16)
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Ridgway, Priest and Amari (1991) do not mention this restriction. However, their field line 

plots are stiU valid since their param eter choices satisfy this constraint.

One obvious weakness of solution (3.12) is tha t H,., and hence the current density 

in the current sheet, increases with radius. Thus, the current density is non-zero at the 

outer edge of the flux tube. This is rectified in the next section.

3 .3 .3  T w o  T erm s in  th e  S e r ie s  in  (3 .1 0 )

Consider two term s in the series for A( j \ 6 )  so th a t

A  — B i h
b2h 2^5 5^ . bsh2 7̂(1 _  f  ) -f- —  f 2 cos-— -1- 79

r 2 cos — (3.17)Hi 2 Hi

Now A(r  =  1 ,7r) =  0 defines the edge of the flux tube and

0 < f  < 1 .

If, additionally, we take 63 =  662/ 7/1 we can satisfy [H,.](f =  1) =  0 and so the current sheet 

has a finite height.

Thus, we have

A = B i h

with A defined as before.

The field components are

Br =

r , .  - 2 .  , . - 1  /  5 »  5 .  7 0 \(1 -  r  ) -f Ar2 I cos —  -f - r  cos -y  ) (3.18)

Be =  2 H i f - f - r 2 H i ( - A )

H,

56» 5f

(3.19)

SB'( ( (1 -  f^) +  Aft f cos ~  -f ^  cos
2 ' 7 2 y

As before, the current within the current sheet is given by [H,.] so th a t

[Hr](f) =  5 f # H i ( - A ) ( l  -  f )  . (3.20)

We observe th a t —A must be positive (62 < 0) for [H^j to  be positive near f  =  0 . There

will be a similar restriction to (3.16) on the value of A which can be adjusted to  give a

physically realistic solution involving no X-type points, but we can still increase the mass 

of the current sheet by increasing H i.
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Figure 3.2: Magnetic field configurations in the (r, 9) plane of a  twisted flux tube in which 

2 term s in the series equation (3.10) have been taken, as in Equation (3.18). Hi =  4.0 and 

(a) -A  =  0.20, (b) -A  =  0.26, (c) -A  =  0.33

The field lines projected onto the (r,9)  plane are shown in Figure 3.2a and the 

effect of varying A is illustrated in Figures 3.2b and 3.2c, where Figure 3.2b corresponds to 

the critical value of A (equation 3.21) and Figure 3.2c illustrates an unphysical solution.

We find th a t the solution will have no X-type points (and so the edge of the flux 

tube at A =  0 is closed) for values of A such tha t

A <
1

3.86
=  0.259 . (3.21)

The variation of the field components as a function of f  at d =  t t  is shown in Figure 

3.3a where we observe the current sheet behaviour as Br reaches a  maximum and then falls 

to  zero a t the edge of the tube (f =  1). The variation of Br as A is changed is shown in 

Figure 3.3b where we observe th a t the magnitude of the current density in the current sheet 

drops as we decrease —A. Figure 3.3c shows the mass density along the current sheet. As 

expected, the mass drops to zero at the ends of the current sheet.
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Figure 3.2b

Figure 3.2c
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Figure 3.3: (a) The variation of the magnetic field components, given by Equation (3.19), 

along the prominence sheet for -A  =  0.2. (b) The variation of the radial field component, 

given by equation (3.19), along the current sheet for various values of A. (c) The variation 

of mass density, given by equation (3.13), along the sheet for -A  =  0.2.

The to ta l prominence mass (per unit length in the z direction) is

M -  f  mA{r)h 
J o

Ï dr =
40B f/i(-A )

63f . ig
(3.22)

Thus, the prominence mass falls as —A is decreased from its critical value given by (3.21). 

If we take A =  and let Be{^,  tt) = 50 X 10"'*T then with h = 50 X 10®m we find a value 

of

M  =  1.2 X 10® kg m - 1

This is of the observed order of magnitude.

From (3.19), [Br] and Be{9 — t t ) increase with B\ .  Hence the Lorentz force is 

increased and this must be balanced by a corresponding increase in the prominence mass. 

From (3.22) we see th a t M  is increased with Bi  and so this condition is indeed satisfied.
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Alternative choices for the constants k  in (3.7) will give a similar expression for 

the mass but with an ex tra  constant term . For example, if we take

T P
R =  M , P  <  q  , 

then  the modified mass density equation becomes

niAl^g =  A ) , (2  +  0  [1 -  f] sin (2  + 7T X

2 ^ 1  f  +  B i ( — ^ j  ^ c o s  ^ 2  +  -  J t t  — 7" s in  ^ 2  +  - J  tt c o t  ^ 3  +  -  J  tt 

3 .3 .4  T h r e e  T erm s in  t h e  S e r ie s  in  (3 .1 0 )

Taking three term s in the series allows even more flexibility. For example it is possible to 

have not only [Br] = 0 but also d[Br]/dr =  0 at the edge of the current sheet.

Figure 3.4: Magnetic field configurations in the (r^O) plane of a flux tube in which 3 term s 

in the series solution have been taken, as in equation (3.23). B \  = 8.0 and (a) —A =  0.001, 

(b) -A  =  0.066, (c) -A  =  0.2
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Figure 3.4b

Figure 3.4c



53

However, other possibilities also exist. For example, the shape of the edge of the flux tube 

can be made more circular in order to simplify the matching onto an external potential 

field.

For illustration the first suggestion is considered and

A = B \ h (1 -  f^) + Af 2 l̂ cos ^  cos ^  cos56» . 10 . 7^ . 5.0
2

Thus, across the prominence

(3.23)

[Br](f) =  5 f# ^ i( -A )( l  -  f)" , (3.24)

and the to ta l prominence mass is now reduced by approximately a factor of 3. The projected 

field lines are shown in Figure 3.4 for various values of A. Observe the near-circular topology 

for the low value of —A. The critical value of A for a physically realistic field is now 

approximately

-A  < 1  = 0.125 .
o

Figure 3.4c illustrates the topology of an unphysical solution.

Thus, as the number of term s in the series is increased the critical value of —A 

decreases.

Figure 3.5a shows the variation of along the current sheet and clearly demon­

strates the way in which Br drops to zero smoothly. The mass distribution is shown in 

Figure 3.5b. Obviously more and more term s could be considered but instead a simple 

description of the internal structure of the prominence is now considered.

3.4  In tern al P ro m in en ce  S tru ctu re

To obtain information about the internal structure the prominence is assumed to be of finite 

thickness lying between

TT — 0 < 6 < 7 T  +  6 , 6 «  1 .

The external solution is given by the two-term solution (3.17) and the hydrostatic back­

ground atmosphere:
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Figure 3.5: (a) The variation of Br along the current sheet for 3 term s in the series, with 

—A =  0.1. (b) The variation of mass density along the current sheet for 3 term s in the 

series, with —A =  0.1.
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A  - B \ h (1 -  2(1 _  f)

B t ~ (3.25)

This solution, for <5 < <  1, will be matched onto the internal solution. Since Br must change 

rapidly from the value given by (3.25) at ^ =  7 r  -  6  to zero at ^ =  t t ,  for symmetric solutions, 

it is useful to define an expanded scale with

'K — 6
<i> (3.26)

The prominence now lies between —l<(f>< l . Taking the same expression for Bz{A),  the 

force balance equation in cylindrical coordinates is

 ̂+  MCOS,) -  +  2c"] , (3.27)

2c' (3.28)
I dp _  1 dA
- - - p g s m e - - - —

Expressing (3.27) and (3.28) in term s of f  and <f> and expanding cos ^ and sin ^ in powers 

of 8 gives
1 dp
h dr

1 —— — fi’— ') H  — +  2c^
r 1i^ dr  V dr )  r'^h‘̂ 8 '̂  d(fA

1 dp 1 dA _ L  A  , 1 d^A
rK^ dr  \  /  f ‘̂ h^8 ‘̂ dcjP

+  2c'

(3.29)

(3.30)

th a t

h8 r d(j) p h 8 r dcf)

In order to m atch to  the external solution, given by (3.25) at ^  =  1, it is necessary

=  0(1) and ^  =  0 (i) .df

This can be achieved if

A = B ih { l  -  f^)  + SA i i f ,  <P) + 0{S^) 

Then the leading order behaviour of (3.30) gives



2p
d A i \  

rh  V dcf) ) .
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(3.31)

M atching the pressure to  the external solution, expanded about ^ =  t t  — 6 ,  gives

26
(3.32)

z/z
where (3 = 2 j ipofBi  is the plasma beta  associated with the cylindricaUy symmetric compo­

nent of the field.

Using (3.31) in (3.29) gives the leading order behaviour of the density as

- 2^1 , W p
(3.33)

Thus, for a positive density d'^Ai/dcf)^ must be negative.

It is possible to  have a jump in density at the edge of the prominence but if 

d'^Ax/dcfP' =  0 at </> =  1 then the order unity pressure gradient term  must also be included.

Since the pressure and magnetic field components m atch to  the external solution, 

to  leading order, one way to  proceed is to specify A i(f, 0) and deduce the pressure from 

(3.31), the density from (3.33) and the tem perature from the gas law

p  =  p R T  . (3.34)

In reality the tem perature is determined from an appropriate energy equation and restricts 

the choice of A \  and hence the equiUbrium. The energetics are not, however, considered 

here but A\  is selected such th a t suitable reaUstic density and tem perature profiles are 

achieved.

Obviously, the solutions must be checked to see if they are physicaUy relevant. For 

example, we choose

=  - ^ ( - A ) r = ( l  -  f)F{4>) ,

where F{<p) is an arbitrary function th a t must satisfy

(3.35)

f (1) =  1, ( f ( - 1) =  1) 

y(i) = 1, (y(-i) = -1)
F^(0) =  0

y%(^) > 0

matching to (3.25) ,

Br is continuous at edge 

Br is zero at centre , 

f r o m  (3.33) .

(3.36)
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(0 ,0)

Figure 3.6: The magnetic field lines across the prominence with the expanded scale defined 

by (3.26) and the internal held given by F{fi) in (3.37).

We now present the results for some different functions, F(<f).

C ase i)

A simple function, satisfying these constraints is

Thus

The held lines are shown in Figure 3.6 for the expanded scale. 

Using (3.32), (3.31) becomes

(3.37)

2 fi
+  ^ (-A )^ f^ ( l -  fŸ cos  ̂ ^ (3.38)

Since is zero a t <̂ =  1, the 0(1) term s in (3.33) must be considered and so
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Figure 3.7: The variation with 6 for the matched internal and external solutions for a) 

density b) tem perature with 6 =  0.1, —A =  0.01 and f  =  0.6. c) Solutions for the internal 

prominence tem perature as A is varied with ^ =  0.1 and r =  0.6.
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(3.39)

Also

Rp{f,4>) ■

We observe th a t the external, coronal tem perature is given by

3 X 10  ̂A' .

The variations of density and tem perature, at constant radius, for the matched 

internal and external solution are illustrated in Figures 3.7a and 3.7b respectively.

If we assume a tem perature profile tha t increases monotonically from a minimum 

value at the centre of the prominence {4> = 0) to the value given by the external solution 

( g H /R )  at the edge {4> = ±1) then there is an additional restriction on the value of A given
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by

-A  < 0.05 .

The variation of tem perature with (f> for different values of A is shown in Figure 3.7c.

This restriction on A is quite severe. It means th a t the held is inclined to the hori­

zontal by an angle of less than  three degrees. However, relaxing the monotonie assumption 

of the tem perature allows us to  retrieve the earlier restriction (3.21). In addition, modify­

ing the internal magnetic held structure wiU modify the tem perature and the addition of a 

realistic energy balance equation wiU also inhuence the tem perature. Thus, this restriction 

should not be considered too seriously.

Contours of density, on the expanded scale are shown in Figure 3.8a. Note th a t 

the wedge shape only applies to the low-density contours and for high-density values the 

contours are almost elliptical. Figure 3.8b shows a surface plot of the density in which the 

wedge is clearly seen.

C ase ii)

Now

and

(3.40)

(3.41)

In this case we see th a t 0 at 0 =  1 so the order unity term s in the expression for

p{‘}\ (f)) may be neglected:

Ë l
h 6

7 ' 2 (1 -  r) (3.42)

It can be seen from (3.41) th a t the internal pressure increases from the external 

value at =  T l  to a  maximum at the centre {(j) = 0). However, (3.42) indicates th a t 

the density is independent of (j) and so it can be deduced from (3.34) th a t, although the 

tem perature drops rapidly, as before, at the edge (^  =  ±1) from the external coronal value, 

there is a slight increase to  a local maximum at the centre (4> = 0).

On this basis it seems th a t the more physically realistic function is th a t given in

case i).
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(0.0)

D E N S I T Y  S U R F A C E  P L O T

(b)

Figure 3.8: a) Contour plot of the density using the expanded scale defined by (3.37). 

b) Surface plot of the density highlighting the wedge shape.
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3.5 D iscu ssion

Following the work of Ridgway, Priest and Amari (1991), the external force-free 

solution for a current sheet with constant axial current density has been modified to  model 

a  finite height current sheet. By considering two term s in the series solution in (3.10), the 

jum p in the radial field component, [By], along the current sheet can be made to vanish 

at both the axis and at the lower edge of  the flux tube thus enabling the flux tube to  be 

m atched onto a background potential coronal field. If additionally, a  th ird  term  in the series 

is included it is possible for the current to drop to zero in a smooth m anner and also for 

the outer edge of the flux tube to be made more circular^ both of which facilitate an easier 

m atch onto the background field.

From Figure 3.3a we observe th a t the value of B q (ie. the shear of the field 

through the prominence) goes from oo to  0 as f  increases from 0 to 1 so the top of the sheet 

is infinitely sheared whereas the base has zero shear. This is not observed in prominences 

but the model could be rectified by scaling r so tha t the sheet lies somewhere between the 

origin and the edge of the flux tube.

We have also observed tha t there is a critical value of —A, a dimensionless pa­

ram eter proportional to the current in the current sheet, above which the outerm ost field 

line of the tube {A = 0) ceases to  be a simple closed contour but opens out to include an 

unphysical field topology with two X-type neutral points. Thus, there is a limit on the size, 

in term s of the mass and current, of the current sheet. However, this can be compensated to 

some extent by increasing the axial magnetic field. The critical value of — A is also affected 

by the additional requirements we impose on the magnetic fleld as the number of term s in 

the series is increased.

In Section 3 the prominence sheet is expanded to a narrow but finite width, of angle 

26, to allow an analysis of the internal structure of the prominence. Two appropriate forms 

of the internal magnetic field have been selected th a t m atch smoothly onto the external 

force-free field at the edge of the prominence. This allows the internal pressure and density 

to be evaluated, to leading order, from the force balance equation (3.27) and (3.28) and 

hence the tem perature from the gas law (3.34).

Using the first of these internal solutions we have successfully modelled a promi­

nence th a t has an enhanced density and reduced tem perature in comparison with the exter­

nal coronal environment. There is a further restriction, however, on the value of —A if the



63

tem perature profile is assumed to increase monotonically from the centre of the prominence 

to  the edge.

Following this m ethod, different forms of the internal field could be tried in an 

a ttem pt to  adjust the internal structure of a prominence, for example modelling inhomo­

geneities in the density. Also, it is possible to consider variations in the prominence width 

with height, rather than  taking a wedge shape of constant angle.
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C h a p te r  4

P olar-Crown P rom inence M odel

4.1 C hap ter S um m ary

In this chapter we present a 2-D potential field model for the magnetic field struc­

ture in the environment of a typical quiescent polar-crown prominence. The field is com­

puted using the general m ethod of Titov (1992) in which a curved current sheet, representing 

the prominence, is supported in equilibrium by upwardly directed Lorentz forces to balance 

the prominence weight. The mass density of the prominence sheet is computed in this solu­

tion using a simple force balance and observed values of the photospheric and prominence 

magnetic field. This calculation gives a mass density of the correct order of magnitude. 

The prominence sheet is surrounded by an inverse-polarity field configuration adjacent to 

a region of vertical, open polar field in agreement with observations.

A perturbation analysis provides a method for studying the evolution of the current 

sheet as the param eters of the system are varied together with an examination of the 

splitting of an X-type neutral point into a current sheet.
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4.2 In trod u ction

Prominences th a t are observed at high latitudes (>  45°) are known as polar promi­

nences and an array of such prominences, known as polar-crown prominences^ is often seen 

to  form a ring or crown around the pole as they overlie an East-W est oriented polarity 

inversion line (PIL). This PIL separates the region of open flux, which constitutes the polar 

coronal hole, and adjacent large scale magnetic regions of lower latitude (McIntosh, 1980). 

In contrast to  the general behaviour of sunspots and active regions which move towards the 

equator as the solar cycle progresses, the polar-crown PIL actually migrates towards the 

pole. It does so at an increasing rate  so th a t the overlying prominences appear to  “rush 

to  the poles” (Waldmeier, 1957). Towards the end of the solar cycle, the polar-crown PIL 

reaches the pole and the prominences disappear as the polar polarity reverses and the new 

solar cycle begins. Occasionally, the migration of a second band of polar-crown prominences 

will occur, following the first band after an interval of two or three years (Waldmeier, 1973).

Leroy et al. (1983) describe many of the general properties from an observed sample 

of 120 polar-crown prominences. They find th a t an average field strength of 8 G is present 

in the sample, th a t the field is more or less constant except for a tendency to  increase (at 

a rate  of 0.5 X 10“  ̂ G km “ ^) with height, and tha t the average field shear angle is 25° 

to  the prominence long axis. There is an average filling ratio of 0.1, i.e. only a  ten th  of 

the prominence’s to ta l width along the line of sight is comprised of dense m aterial, being 

clumped in the form of fine threads. They also describe the variation of polar prominence 

properties with the solar cycle. For example, the maximum field strength at the cycle 

maximum is double th a t at the beginning of the cycle, and there is a  reversal of the field 

direction along the inversion line a t each new cycle. Finally, and very im portantly, they 

find th a t the associated magnetic field of polar-crown prominences is of inverse-polarity.

In this chapter we suggest th a t polar-crown prominences form and are supported 

in field line dips which may occur between the open field of the pole and a neighbouring 

bipolar region. The resulting field topology naturally allows inverse-polarity prominence 

equilibria to  exist, an example of which is computed in Section 4.4 using complex variable 

theory to  generate an appropriate potential field.

Many authors have used complex variable theory with a current sheet to model 

a 2-D prominence supported in the magnetic field. The current sheet may be represented 

by a branch cut in the complex plane where a tangential discontinuity in the field appears
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Anzer (1972); Malherbe and Priest (1983); Wti and Low (1987); Démoulin et al. (1989)). 

The interaction between the magnetic field and the current in the sheet produces a Lorentz 

force. In order to  sustain the support, and hence the equilibrium of the sheet, this force 

m ust be directed vertically upwards a t every point in the sheet (Anzer, 1989).

Due to the considered asymmetric distribution of photospheric fiux, the resulting 

solutions will contain prominence sheets th a t are non-vertical and even curved. Previously, 

Wu and Low (1987) published a paper which demonstrates the support of curved current 

sheets in a potential field. However, they only found particular solutions for the case of two 

dipoles on the photosphere, in which the current sheet forms an arc of a  circle. Aly and 

Amari (1988) presented a more general method which generates other equiUbria by using a 

known solution and an appropriate conformai mapping but this m ethod does not allow the 

imposition of the observed normal photospheric field component. T hat problem is resolved 

in this chapter as we adapt a technique, due to Titov (1992), th a t constructs general 2-D 

potential fields with curved current sheets from a given photospheric distribution. We utilise 

this technique to generate a suitable field configuration for the case of a curved polar-crown 

prominence supported in equihbrium between a region of uniform vertical field and a dipole 

field. The evolution of the prominence sheet, as the external param eters are varied, is 

studied in Section 4.5.2 together with an analysis of the splitting of an X-type neutral point 

into a current sheet of either normal  or inverse sense (Section 4.5.3). These cases are both 

considered to produce prominence solutions in different configurations with an emphasis on 

the solutions th a t are of inverse-polarity type, the polar-crown prominences.
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Figure 4.1: The held topology as the bipolar region pushes against and interacts with the 

polar held.

4.3 D escr ip tio n  o f th e  M od el

We consider a  region of uniform vertical magnetic held to represent the open polar held 

and investigate the interaction of a bipolar region as it pushes into this held (Figure 4.1a). 

Reconnection of the held lines will occur a t the X-type neutral point th a t appears due to 

the oppositely directed contiguous helds (Figure 4.1b). Above the neutral point, a location 

of dipped magnetic held is formed and it is here tha t suitable conditions arise for cool, 

dense m aterial to  collect and form into the familiar quiescent prominences th a t are readily 

observed in the corona. This “pre-prominence” held conhguration is discussed in more detail 

in Chapter 5 where we study the behaviour of the dips for various possible distributions of 

the photospheric hux.

It is the object of this chapter, however, to  compute an appropriate potential held 

structure th a t contains a weighted current sheet (representing the prominence), supported 

in equilibrium at the location of these dips and so we use a very basic distribution of hux 

for simplicity.
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4.4  F orm ulation  o f  th e  P ro b lem

4 .4 .1  I n tr o d u c to r y  E q u a tio n s

The m agnetohydrostatic force balance is given by

-  Vp +  j  X B + /?g =  0 (4.1)

with

j  — ^  ^  ^  and V • B =  0 . (4.2)
p

In the coronal region, but outside the current sheet, the gas pressure is much less 

than  the magnetic pressure (/? <  1) and so we may neglect the pressure gradient term

in (4.1). By considering length scales, Z, th a t are significantly less than  the pressure scale

height (I ^  H  = 10® m ), (4.1) reduces to the force-free equation

j  X B =  0 . (4.3)

In particular, a potential field with j  =  0 may be used to represent crudely magnetic con­

figurations supporting current sheet prominences.

Following from the analysis given in Chapter 2 we may write the field in term s of 

the complex variable, w = x i y, so th a t

B{w) =: By i Bx . (4.4)

Thus, the imaginary part of the magnetic field represents the horizontal field component, 

Bx,  and the real part equates to  By,  the vertical field component. We now consider a 

simple example, without a current sheet, which may be used to  represent approximately 

the pre-prominence polar magnetic field.

4 .4 .2  P u r e ly  P o te n t ia l  C a se

We adopt a Cartesian system of coordinates where the (æ, y) plane represents a section across 

the prominence, the long axis of the prominence lying in the z-direction. The photosphere 

may be taken to be the horizontal plane y =  ?/ph > 0 such th a t /̂ph <  Viy where yi is the 

vertical coordinate of the lower end-point, wi,  of the prominence. In this way, a dipole at
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{y — 0) producing the bipolar flux is submerged below the surface. For simplicity, though, 

we refer to the plane y =  0 as being the photosphere.

To introduce a semblance of (current free) shear into the field, a constant third 

component, Bz z, is included in the configuration without invalidating the assum ption th a t 

the whole field be potential (j =  0). The field in the {x,y)  plane may then be w ritten in 

term s of the complex variable w (=  z +  iy) as in equation (4.4).

By superimposing the two potential fields of (a) a dipole of strength m  and position 

(0 ,0) and (b) a constant vertical field of magnitude Byo, we obtain, in complex notation

B{w) ~  B{x  +  nj) -- Byo +  ^  iv  > 0) . (4.5)

This field exhibits the general properties illustrated in Figure 4.1b.

As w —̂ 00 , B{w) Byo , a constant vertical value, as required. The neutral point is 

located a tw ^ ,  given by

Byo H ^  ~  0 . (4.6)

One such field is shown in Figure 4.2a. Note th a t the values of Byo and m have been set 

to  unity in this and all subsequent figures. In each field line plot, constant intervals of the 

fiux function. A,  have been taken and the separatrix lines have been included as a  dashed 

field line. Field lines close to the dipole have been om itted in aH plots.

In Figure 4.2a, a small region of field line dips is apparent above the neutral point 

and a current sheet could assume a curved geometry in this vicinity. It must be noted 

th a t, although we form this sheet by changing the param eter values (e.g. increasing m)  

and partially or completely prohibiting reconnection at the neutral point, this is purely a 

m athem atical trick for setting up a current sheet which then represents the prominence. In 

this model, prominence formation could occur in a dip in the field and would be controlled 

by the appropriate physical mechanism responsible for formation. It may be, for example, 

the traditional mechanism of therm al instability or the less traditional mechanism of lifting 

m aterial from below the photospheric inversion line due to a spatial evolution of magnetic 

field on the photosphere (Titov et ah, 1993). For the subsequent considerations it does 

not m atter which mechanism forms the prominence, since only its final result, i.e. the 

m agnetohydrostatic equilibrium configuration, wiU be the focus of this chapter.
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4 .4 .3  In c lu s io n  o f  th e  C u rr e n t S h e e t

To make progress we utilise the m ethod of Titov (1992) to calculate general 

2-D potential fields with neutral current sheets. The main result for an arbitrary  photo­

spheric component By{x,0)  is

B(w,  re) =  -^ Q h p (» . re)

where I'e =  { x i , y i ,X 2 , y 2 ) represents the endpoints (wi ,W 2) of the current sheet and

Qhp{w, re) -  [(w -  wi)(w -  W2){w -  wi){w  -  Wg)]: (4.8)

=  [(w -  x i f  + yf^  ̂ [(w -  X2Ÿ +  %/#]%

the overbars denoting complex conjugates, (^hp determines branch cuts in the complex

plane for the current sheet and its image sheet in ̂  < 0 .

The image sheet which extends from wi  to W2 ensures th a t the normal component 

By{x,  0) of the field on y =  0 (the photosphere) from the purely potential case (as in section 

4.4.2) is preserved.

Consider a distribution of flux on y = 0  given by

By{x,0)  = Byo +  m7c6\x)  ,

where 6 is the Dirac-delta function and 6  ̂ is its derivative.

Writing Q(x)  to  represent the x  dependence of the function Qhp(:r, r^) for conve­

nience and substituting By(x,0)  into (4.7) we obtain

, < „ )

where the identity

r+oo
/  / ( a )   ̂ (P -  a) da = f  (p) ,

J  — CO

is used. It is possible to  show th a t equation (4.9) reduces to the purely potential case as 

Wi,W2 (Appendix A). All th a t remains is for the end-points, r^ , of the current sheet
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(a)

0 ^ 5  0 5  0.75

Figure 4.2: The field lines in the (x,y) plane for (a) the purely potential case with vertical 

field at infinity, and (b) the neutral sheet case with the same boundary conditions.
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to be determined. There is one degree of freedom here, fixed by a physical mechanism of 

m aterial accumulation in the prominence (which we do not consider here) so if we impose the 

vertical extent (3/2 — 2/i), say, of the current sheet, three conditions are needed to determine 

x i ,  X2 and 3/1. These come from the asymptotic behaviour of the field as w 00. Equation 

(4.9) then determines the field subject to  these conditions.

N e u tra l  C u r r e n t  S h ee t

For a large value of w the unipolar source of field on the photosphere will behave as a point 

source of strength

L+ 00
ByQ *

•00
In general, Byo will be a function of x,  as we model finite sources of photospheric flux 

and so this integral will be convergent. In this example, however, our infinite photospheric 

distribution leads to  a divergence of the integral, but this may be easily resolved, although 

it requires a more extended analysis (see Appendix C).

The resulting magnetic field (4.9) can be considered as the superposition of the 

initial purely potential field and the field generated by the current sheet and its image. 

Physically, the contribution of the la tte r to the resultant field has only a dipolar asymptotic 

behaviour (~  1/w^), so we require th a t our formal solution must behave, to order l /w , as

][ f + OO
-^('^ji'e) —̂ Ow T Ow H / Byo cl  ̂ , (4.10)

7TW J -0 0

which gives the  same asymptotic behaviour as the purely potential field (4.5). Comparing 

these coefficients of w with those of the general field (4.9) gives our three required conditions, 

derived in Appendix B. The solution of these three nonlinear and transcendental equations 

determines r@.

For the above boundary conditions (4.10), we obtain the field given in Figure 4.2b. 

The neutral sheet is clearly seen near the location of the previous neutral point and has 

a curved geometry as expected. The field becomes vertical at large distances, as required. 

There is a tangential discontinuity in the field across the sheet. This sheet, however, does 

not yet represent a prominence since the field is tangential to the sheet and so no supporting 

Lorentz force results.
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Figure 4.3: (a) The field lines for the boundary conditions given by (4.11) containing a 

neutral sheet (no mass), (b) The field components along the sheet showing also the jum p 

in the tangential component, Bi,  across the sheet.
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P ro m in e n c e  S h ee t

If the current sheet is to represent a prominence then it must be a sheet comprising dense 

m aterial. The equilibrium of such a sheet is only possible if it is subject to a  purely 

vertical force along its entire length to balance gravity. This force is magnetic and comes 

from the Lorentz force, j  X B . I f  this is to be directed upwards, the field which threads 

through the sheet must be purely horizontal since j  is in the z-direction. The simplest 

way of providing this force is to  superimpose a constant horizontal field (~iBa;o) on the 

configuration. However, if we take our asymptotic and photospheric conditions as before 

the result will be field lines th a t are slanted at infinity, i.e.

B{w)  ~  Byo -  iBxo ,

as w —> oo. Thus, we must modify our conditions shghtly, by changing the constant term  

in (4.10) so th a t

1 p + c o
B{w,re )  Ow +  iB^o u) 4-------- / Byo . (4.11)

WW J—oo

Again, the derivation of the equations th a t determine the end-points of the sheet is given 

in Appendix B. This results in a field, given by (4.9), containing a neutral current sheet 

with a slanted field at large distances as illustrated in Figure 4.3a. Figure 4.3b shows the 

field components along this neutral sheet from w =  wi (s = 0) to w = W2 (s = s*). From 

now on, we take s to measure distance traversed along the sheet in a left-right direction.

Hence, our final field, vertical at a large distance and incorporating a prominence 

sheet is given by

{ /; :  H- i g » ! } .

This field is displayed in Figure 4.4a.

A new X-type neutral point appears just below the lower end of the prominence 

sheet which is of inverse-polarity type, i.e. the field through the prominence is in the 

reverse direction to the underlying photospheric field. The tangential discontinuity in B  is 

now evident from the field lines th a t thread the prominence.
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0 .5 1.00.01.0 0 .52 .0  - 1 .5 X

Figure 4.4: (a) Field, lines with a prominence sheet (thick curve), (b) The magnetic pressure 

variation with x  across the sheet at a constant height ys = Xs indicates the

position of the sheet.
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The Lorentz force may be written

=  =  , (4 .13)

where the first term  on the right-hand side represents a magnetic tension force due to  the 

curvature of field lines and the second term  is a magnetic pressure force which acts from 

areas of strong field to  areas of weak field.

It is interesting to identify the effects of these two components in Figure 4.4a. 

The tension force clearly acts along the current sheet and balances the component of the 

prominence weight in this direction (t) . There is a jum p in the magnetic pressure (B^) 

across the sheet (illustrated in Figure 4.4b), the to ta l field being stronger on the 

lower/equatorward side of the sheet, and it is the resulting magnetic pressure gradient tha t 

balances the component of prominence weight in the normal direction (n).

Force balance at the sheet gives

j  X B =  - p g  ,

which leads to  the result

mA il g = [B(](g) Ba,o , (4.14)

where tua is the mass per unit area of the current sheet surface and [Bt](a) is the jum p in 

the tangential field component across the sheet. Note tha t

[5,](a) =  B u W --S < f lW  = 213,1,(3) ,

where is the tangential component a t the left edge of the neutral sheet. Thus, the solid 

curve in Figure 4.3b, showing [B^], gives the basic variation of mass density along the sheet.
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4.5  P ertu rb ation  A n a lysis

The param eters of this system are ByQ and m. From these we can form one dimen- 

sionless param eter,

R* — ^^0 )nyo
which gives a measure of the angle of the held lines from the vertical, as w — oo. We 

also note th a t the combination m/Byo  has dimensions of (length)^ and so the natural non- 

dimensionalisation for the variables is

B .  ^  B   ̂ ^  V .......

yJmlByo

The three dimensionless end-point equations may then be w ritten using the vector

notation

F (r : ,B :o )  =  0 ,  (4.15)

where F )(r|,B *o) represents the expression given by equation (B 1), (B 2) or (B 3) as i

assumes the integer value of 1, 2 or 3, respectively. If we expand these equations about the i
Î

hxed point solution (R ^ , B^g) we obtain j
j
Î

dF dF  :

+  second order term s 4 - . . .  =  0 , (4.16)
I

where :

i
F ( % ,% o )  =  0 .  (4.17) i

I
Henceforth the stars will be dropped for brevity. »

We may write the expansion (4.16) using the notation

f(o) +  +  f ( 2) + . . .  =  0 :

where the superscripts represent the order of the terms in the expansion. In this way, any :

single term  of order j  may be w ritten as , (i =  1..3).
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In this expansion, the order-zero terms provide the system of equations which 

determine the end-points of the current sheet while the first-order term s allow small changes 

in the end-points to be evaluated, given a corresponding perturbation of the system. It will 

be shown th a t this perturbation analysis holds except for the particular instance in which an 

infinitesimal current sheet forms from the neutral point as the system is initially perturbed. 

In this case, the second-order term s must be introduced to enable a  complete solution for 

the sheet. The details of this analysis are given in the following subsections.

4 .5 .1  O rd er  Z ero T erm s : F ix e d -P o in t  S o lu t io n

The vector equation (4.17) may easily be solved for the neutral point case, R g  =  rjv. In 

this case, only two of the component equations [i — 1,2) are needed to solve for and 

t/jV, whilst the third equation happens to be a consequence of the first two, as expressed in 

the following linear combination:

. (4.18)

Hence, we obtain

Bxo -  , ^ x n Vn  =  - (a ;^  +  Vn Ÿ  , (4.19)

from which the solution, with m > 0 and Byo > 0, may be explicitly w ritten (Appendix D) 

as

XN =  ---------------!  ------------  5 VN ~   T".------------------  • (4.20)
i - i - ( y B 2 g - b i _ B ^ ) 2

Figure 4.5 shows the position of the neutral point as is varied. The neutral point 

approaches the origin as B^o —̂ Too, corresponding to a horizontal background held. For 

Bxo — 0, the held lines are vertical at a large distance and the neutral point is located at
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Figure 4.5; (a) The dependence of x n  and yjv on (b) The path  of the neutral point 

as Bxo is varied.
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4 .5 .2  F ir s t-O r d e r  T erm s : E v o lu t io n  o f  th e  C u rren t S h e e t

Now consider equation (4.16) taken to the first order, i.e.

8F, 8F, 8F, 8F,
8x \ 8x2 8yi 8v2

M h. 8F2
8x1 8X2 8yi 8y2

g a M k 8F^ a a
8x \ 8x2 9yi 8v2

SX2 

%

V I

+

\  /

0

\ o /
This system may be solved for ÔVq by imposing (a) the change in height {6 h 

^V2 — ^Vi) of the current sheet, and (b) a perturbation, ôB^q. Then we find

/ dxi

dF>.
dxi

m\  dxi

dF,
8X2

8Fo.
8x2

8F, , g f i .  \  
8yi dv2

Mk 4. Mk
8yi ' 8v2

8F^ 9F? [ afx
8x2 8yi ' 8y2 /

Sx, \ f  9 F i \
8Bxo 

8F>> xO

(  8Fx \
9  3/2

8F-,
8v2

\ 8v2 j

Sh

or

4  X  =  Y  +  Z , 

and so, if d e t(4 ) 7̂  0, we may invert A  to find the solution:

X  =  4 - \ Y  +  Z) .

Thus, given a small perturbation of the param eter, ÔB^o, and a small change in the height 

of the current sheet, the corresponding increment, X , in the end-points is determined and 

so the new end-points are given by

re =  R g  +  ^re ,

where 5re =  {6 x \ , 8 y \^ 8 x 2 ,Sh  -f 8 y \) . In this way a linear iterative scheme may be set up 

so th a t the evolution of the current sheet is studied as the external param eters are varied.
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D e g e n e r a c y  o f  th e  S o lu t io n

A problem occurs when considering the initial step in this iteration, i.e. the splitting of 

the X-type neutral point, =  («iv» yv), into an infinitesimal cmYQui sheet with

end-points re =  r]^ -f- 6re- Due to the bifurcation of the neutral point, which is essentially 

two coincidental end-points, into two distinct end-points, the m atrix A  evaluated at r ^  is 

degenerate with Rank(4 )  =  2. In this case, the initial 3 x 4  m atrix in this section contains 

two pairs of identical columns, since

dxi
dFj
dX2

dFj
dxN

%
dyi

dF.
OyN

( t =  1 . . . 3 )

Then the m atrix equation reduces to

(  9£l
dxN

dF-,
dXN

m .\  8xî^

8F, \
8vn

M k
8 v n

M k  
8vn /

/  \  

-f 6^2

\

I  \8BxQi

8F-,

/

8Bxq

Æ L\  8B^o /

6B

and so only the ‘m id-point’, (6%% -f 6 x 2 , 8 yi -t- 61/2), of the infinitesimal sheet may be 

ascertained. Again, the third equation may be written in terms of the first two so th a t

(4.21)

However, since 63/2 — ^yi is imposed, the vertical coordinates of the sheet may be 

explicitly determined, although x \  and X2 are not explicitly known, nor is the orientation 

of the sheet. Thus, to determine exactly the position of this sheet, the second-order terms 

in the expansion must be considered.

4.5 .3  Second-O rder Terms ; D eterm ination  of th e Infin itesim al Sheet

We now make a change of variable :

6^1 = — 8 x -

8X2 =  6Z4 4- 8x^

àyi =  8y^ -  8y-

+  ^y -
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so th a t the subscripts (+ ) and (—) represent the mid-point values and the increments in 

the width and height {8h =  26i/_) of the sheet, respectively.

The system, to  second order, is now written

f P  +  f P ^  =  0  ( i  =  l . , . 3 ) ,

since the zeroth-order term s are identically zero (fixed point solution).

To solve this system, we take the combination given by equations (4.18) and (4.21),

namely

( f F  +  f F )  -  =  0 .

Under this algebraic combination, the first-order terms drop out, due to (4.21), as do 

the purely quadratic term s. Only the mixed terms of second order are left and so the 

resulting equations may easily be solved, after back substitution of and 6y+, for our 

final unknown, 6 x - .  The whole solution is given by

VN  (3 Vn  -  ^ n )

Sy^ = (4.23)
( 4  +

+  y l r f ' "  si^/2 , (4.24)

S x . ,  = y N - ^ ^ % y N - ( f  + y % f \ h / 2 .  (4.25)

It is interesting to  note th a t there are in fact two solutions for Sx... Consider the product
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Inverse
sense

Normal
sense

Figure 4.6: Splitting of the X-type neutral point to produce infinitesimal current sheets of 

either normal or inverse sense.

of the gradients of these two sheets :

by-
êx-2

— —f ,+  9y^)

and hence these solutions represent perpendicular infinitesimal sheets. Which of these 

solutions arises will depend on whether the field is compressed or stretched at the X-point. 

The two corresponding field topologies will result in sheets th a t have oppositely directed 

currents (see Figure 4.6). From now on, we will refer to these two types of solution as either 

normal or inverse sheets as they tend to generate solutions th a t correspond to normal or 

inverse-polarity prominences, respectively. This is because, for the required upward Lorentz 

force on the sheet, the current direction determines the sign of the applied prominence field, 

Bxo- For example, we refer to the sheet in Figure 4.2b as an inverse sheet.

The above solutions, (4.22) - (4.25), with (4.20) tell us th a t the mid-point of the 

infinitesimal sheet and its orientation tangent, S y - f 6 x -  , depend purely upon the value of 

Bxo- The variation of the sheet angle with Bxo is shown in Figure 4.7. Considering the
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Sheet orientation
(degrees) 2 0 0 -i

1 5 0 -

— inverse current 
-• norm al current

i d

5 0  —

-1 0 - 5 10

- 5 0 -

100 - *

Figure 4.7: Orientation of the infinitésimal sheet for the normal and inverse sheet cases.

inverse sheet, we see th a t for B^o = 0, the sheet is inclined at an angle of a rc tan (l +  

a/2) =  67.5° to the horizontal. As Bxo is increased, this angle decreases and the sheet 

moves clockwise along a path  close to th a t in Figure 4.5b. It approaches the origin, as 

Bxo oo, and the sheet becomes horizontally oriented. As Bxo is decreased from zero, the 

angle increases until the sheet is vertical (when Bxo = l / \ / 3  and =  -æ  at/a/3) and as 

B x o  — C O ,  the angle asymptotes to 135°.

4 .5 .4  C a lc u la tio n  o f  th e  C u rren t in  t h e  In f in ite s im a l S h e e t

Consider the sheet to be a small perturbation about the neutral point, i.e.

Wi =  w n  +  6wi 

Wi =  wjv +  6wi

W2 — WJV +  Sw2 , 

W2 =  Wn +  6w2 .

Now make an expansion of the field (4.9) to  investigate its behaviour in the neighbourhood 

of this current sheet. Setting w =  iun +  ^w, where 6w i , 6 w2 <C 5w <  1, we have
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Q(w)  =  —— [{6w — 6wi){6w — 6w2){Sw — 6w ii-2 iyN ){6w  — ÔW2'\'2iyM)]^
7T 7T

2î/JV6w S w i \  f  Sw2 \ f .  . 6 w ~ ê w i \ f  Ôw - 6 w2\]^^
' - ■ t e  j V +

The held in the neighbourhood of the infinitesimal sheet will behave like the field 

due to a line current,

5 ( » )  = ^  -

where s is a real constant. Thus, the coefficient of the 0 ( 1 / 6w) term  in the expansion of 

(4.9), which we now denote by //, will give the total current in the current sheet. We should 

see, then, th a t the imaginary part of this coefficient is zero.

The dominant l / 6 w  term  in the expansion of —{i/rr)Q{w) is given by

, k = 1,2 ,
7t6w

where we have allowed for the two solutions, 6x-^ and Sx-^ ,  by setting

=  (5æ_  ̂ +  iôy- .  This term  is multiplied by the 0 (1 ) term  which is contained in 

the braces in the expression (4.9) for B(w).  In this case the integral may be evaluated 

analytically by expressing it as a contour integral (as dem onstrated for the analogous integral 

in Appendix A), i.e.

Tc (^ -  Wjv)^(^ -  Wn)
where the contour C  encloses the whole of the upper-half plane. This is solved by finding 

the residue at the double pole, ^ =  w ^ .

Thus we obtain.

It. = ■

After use of equation (4.19) we can show that, for the dimensionless current,

as required.
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4 .5 .5  R e s u lts  for  th e  I n f in ite s im a l S h e e t

We note here th a t it is impractical to impose the param eter since this implies an infinite 

sheet width, as the sheet becomes horizontal. It is better to  study the behaviour of

the current and forces on the sheet for an imposed sheet length, Ss.

The inclination, a, of the sheet, illustrated in Figure 4.7, is given by

h -tan a /j —

and is fixed for an imposed value of As the sheet is infinitesimally small, we may

consider it to  be a straight element of length 6s such that

=  6x^_  ̂ +  dy'i

and so

6y-  =  siTi{ak)6s .

Therefore, the current in the sheet is modified to

Using the previous result th a t the two sheet solutions are perpendicular, i.e. 

t a n a i  •tan o !2 =  — 1, it is easily shown th a t 7q =  —I 12, so the currents in the two sheets are 

indeed oppositely directed and of equal magnitude.

In order to obtain a prominence solution, we superimpose a counter-horizontal 

field, BxOk, threading the sheet and so the force on the sheet is proportional to  Iif.BxOk' 

Figure 4.8 shows this force and the current in the sheet for the inverse current sheet solution 

as the value of Bxo is varied. The results for the normal current sheet are obtained by a 

reflection in the x’-axis.

For the inverse current sheet we observe tha t prominence solutions are only valid 

for Bxo >  0 (since the Lorentz force must be positive). This means th a t the field threading 

the prominence, B^q̂  < 0. The opposite is true for the normal current sheet.
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Figure 4.8: The variation of current and force on the infinitesimal sheet of inverse sense.

4.6  R esu ltin g  S o lu tion s for a F in ite , C urved  P ro m in en ce

4.6.1 Field Topology

Once the infinitesimal sheet has been computed, it is a simple m atter to expand the sheet, as 

described in Section 4.5.2, to produce the final configuration incorporating a finite, curved 

prominence sheet. An illustration of the evolution of the current sheet from the neutral 

point is shown in Figure 4.9. The paths of the two end-points are traced and a series of 

interm ediate positions of the sheet is shown.

The ultim ate shape and orientation of the sheet is determined by several factors. 

For example, the initial value of controls the orientation of the infinitesimal sheet 

(Figure 4.7) and then varying the ratio 6Bxo/Sh  at each step in the iteration allows a whole 

class of sheet shapes and sizes. In the examples of Figure 4.9, the initial value of B^o is 

zero and we have fixed Sh = 2 SBxo^
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Figure 4.9: The growth of (a) inverse and (b) normal current sheets, as the external pa­

ram eters are varied. The dotted lines illustrate intermediate sheet positions.
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An example of a final prominence field for the inverse current sheet solution was previously 

shown in Figure 4.4a. This solution is suitable as a model of the field for a polar-crown 

prominence.

Figure 4.10 demonstrates two normal current sheet solutions where we observe a 

different field topology. Figure 4.10a was formed from an infinitesimal sheet oriented at an 

angle of 25° {Bxo =  —2.0). Here, the prominence sheet lies in a locally arcade-like region of 

field with an X-type neutral point appearing above the prominence! The final value of Bxo 

has been increased to -2 .2 , yet for observed values of the horizontal component (\Bxo\ ~  1.0) 

the  sheet’s orientation will be very close to the horizontal. The sheet in Figure 4.10b is 

located in a topologically different region of field such tha t the field lines th a t pass through 

the prominence are open. This time, the sheet is inclined at a small negative angle. Again, 

large angles are not possible, since, in this case, a positive value of Bxo would be required 

resulting in a downward Lorentz force. In this example, the final value of B^o is only —0.1.

This normal sense current cannot give rise to polar-crown prominence fields as the 

resulting solutions aU lie in normal-polarity fields which is contrary to  the observations. In 

any case, it would seem unlikely th a t these types of prominence would have chance to  form, 

due to  the lack of field line dips in the limit as the sheet tends to  zero. However, it does 

dem onstrate nicely the alternative solutions available using this method.

4 .6 .2  T o ta l M a ss o f  th e  P r o m in e n c e

If (4.14) is integrated along the sheet we may obtain the mass per unit length (in the 

z-direction) of the sheet as

rs*
Adi =  / m ^(a) ds ,

Jo
where the integration is term inated at w =  wg (a =  s*).

As an example, taking photospheric values of Byo = 10~^ T  (10 G) and dipole 

moment =  10“  ̂ T  with a prominence field of Bxo =  5 X 10"^ T  (5 G), we obtain a value 

of

Adi =  1.5 X 10® kg m~^ , 

which is of the observed order of magnitude, based on a particle density of 10^^ m~^ and
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(a)

(b)

Figure 4.10: Prominence field configurations for a normal current sheet.
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typical dimensions for the vertical extent and height of a m ature high-latitude quiescent 

prominence.

4 .7  D iscu ssion

In this chapter we have set up prominence sheet equilibria in a potential field for 

a photospheric distribution th a t includes a dipole superimposed on an infinite domain of 

constant vertical flux. The direction of the current in the sheet determines whether the 

prominence thus formed wifi be of normal or inverse-polarity.

Considering the normal-polarity solutions (Figure 4.10), we observe th a t the sheet 

win always be slanted towards the horizontal since the more vertically oriented sheets require 

a large positive value of which would result in a downward force in the final prominence 

solution. These solutions almost certainly lie in unstable magnetic configurations and the 

lack of pre-prominence dips (in the limit as the sheet tends to zero) raises the question: how 

does the dense m aterial originally collect there? Thus it seems improbable th a t a  normal- 

polarity prominence would form in such a polar field configuration. This is reflected in the 

observations.

Conversely, on examination of the inverse-polarity solutions we see th a t the sheet 

lies in a  tripolar configuration. The dips present in such a field are sufficiently large to  allow 

prominence m aterial to  collect and form into a sheet th a t is stable to  small perturbations 

of the field. As the dips lie in a curved geometry the prominence assumes a similar shape, 

its upper section tilted towards the equator: yet every point on the prominence is still 

subject to  an upwardly directed Lorentz force. The mass density of this type of prominence, 

computed by taking observed values of the photospheric and prominence magnetic field, is 

of the correct order of magnitude.

Given a finite sheet solution, the first-order terms in the expansion of the end-point 

equations aUow changes in the sheet to be computed for a perturbation in the param eters 

Bxo and h. In the purely potential case, however, where the end-points are coincident, the 

first-order terms only determine the mid-point of the infinitesimal sheet and so the next 

order must be considered. This perm its two perpendicular solutions of opposing current 

sense th a t are associated with either a compression or stretching of the field at the neutral 

point.

This model, which considers an infinite domain of vertical flux, does not account
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completely for the original scenario iUnstrated in Figure 4.1a, because the bipolar region 

would have to  move across such field lines. Thus, a modified distribution is required to 

include finite sources of flux. This forms the subject of the next chapter, although we do 

not consider the construction of the prominence sheet there.

The generation of curved, weighted current sheets, with a prescribed distribution 

of photospheric flux, as presented here, has not previously been possible and so we consider 

this analysis to be a significant advance within this branch of prominence modelling.



93

C h a p te r  5

M odified P hotospheric F lux  

D istrib u tion

5.1 C h ap ter Sum m ary

In this chapter we investigate various potential fields generated from finite sources 

of photospheric flux to  obtain a better approximation for the pre-prominence polar magnetic 

field. We do not construct the resulting prominence solutions here, although we mention 

some technical difficulties th a t may arise in such a formulation, given the considered flux 

distributions. For each case we study the behaviour of the neutral points, both the position 

and the orientation, to determine which param eters give field fine dips. Solutions are 

selected for which good dips exist and for which the polar field has the correct type of 

behaviour. The effect of the solar wind in stretching out the field is included. A possible 

evolution sequence is given where a region of bipolar flux interacts with the polar field to 

produce dips, and an alternative formation mechanism is mentioned.
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5.2 In tro d u ctio n

In Chapter 4 a model for the magnetic configuration and m agnetohydrostatic 

support of a polar-crown prominence was presented. This model is based on the supposition 

th a t the pre-prominence magnetic field possesses a location of dips in which prominence 

m aterial may collect and form into the quiescent, elongated structures th a t are readily 

observed near the poles of the Sun (McIntosh, 1980). The resultant field of the  model 

consists of a dipole superimposed on an infinite domain of uniform, vertical field. Although 

this generates the basic structure of the pre-prominence field, it is a somewhat crude flux 

distribution and needs to be modified by using separate, finite sources of flux. This allows 

the dipole to  be replaced by a more realistic region of bipolar flux and also enables the 

evolution of the pre-prominence field to  be studied. In the original model, the infinite 

domain of flux prevented such an analysis as it is not feasible to  consider a dipole passing 

through fixed footpoints of open field!

This chapter concentrates on developing a more realistic flux distribution for which 

the pre-prominence field is a  closer fit to  the observations. A preliminary analysis is made in 

Section 5.3 using point sources of flux to help gain some insight into a possible configuration. 

This is complimented with a study of the behaviour (examining the position and orientation) 

of the neutral point to determine which param eter values produce magnetic field line dips. 

This experiment is performed firstly for a series of three sources and then in Section 5.4 for 

five sources to  obtain a symmetric configuration (about the pole) in which the polar field is 

vertical. A more elaborate model is introduced in Section 5.5 using finite regions of flux to 

generate a more realistic field. This incorporates the effect of the solar wind in stretching out 

the  field a t large distances from the surface. Finally, a discussion in Section 5.6 highlights 

the main features of these models including the various weaknesses and aspects th a t need 

to be rectified and improved in further modelling.
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5.3 T h ree-S ou rce D istr ib u tio n  (A sy m m etr ic  C ase)

We first consider three separate charges located along the æ-axis to  represent roughly the 

polar photospheric distribution by a positive source of unit strength at the pole (% =  0) 

and a bipolar pair of strength - m  and -\-m located at x = 1 and x = xq, respectively. The 

potential field generated from this distribution may be written in complex notation as

 ̂ =  1  _  , (5.1)
W  W  ~  1 W  -  X q

where >  1 and ?n > 0 .

Two neutral points (nuUs) are present in the field. They are complex conjugates 

and are located at

xq + 1 -  m{xQ -  1) y[m{xo  -  1) -  (zo +  1)]^ -  4xq 
W N  =  X N  +  i  V N  = ---------------   ±    -̂------------------  . (5.2)

Note th a t, in the model, we do not consider any null in the lower-half plane since the 

photosphere is taken to  be the æ-axis (or a horizontal cut just above it). Thus, only the 

region above this axis, i.e. the corona, is of concern. Naturally, the whole field is symmetric

in the æ-axis (by reflection) as the point sources are aU positioned along it.

5 .3 .1  L o c a tio n  o f  D ip s

Prominence formation may occur due to a therm al instability in a location of horizontal 

or dipped (concave upward) magnetic field where the plasma can condense without falling 

down to the solar surface. We therefore seek in this analysis the range of param eters for 

which dips occur. This can be determined by the orientation of the neutral point and it 

is there th a t the subsequent prominence sheet will appear, after utilising the techniques 

presented in Chapter 4. If the neutral point, which is an X-type neutral point, has the same 

orientation as th a t depicted in Figure 5.1a, i.e. the séparatrices are locally inclined at 7t/ 4 

to the axes, then dips wiU be present and prominence m aterial may collect, at least locally 

above the null. However, if the neutral point has the structure of a "4-" symbol, e.g. the

point W N  = 0 in the field B  — (Figure 5.1b), then there will be no dips and any

condensing plasma at the null wiU be free to slide away, along the lines of force. Of course, 

this is just a local analysis and there may well be dipped locations in other areas of the
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(a) Maximum dips: prominence (b) No dips: prominence material
material may collect here. will slide away along the field lines.

B(w) = w = x+iy

Gravity

* < := >

B(w) = w = y-ix

Figure 5.1: The relationship between the orientation of the null and the local existence of 

field line dips.

field, but tha t is not considered here.

To investigate which param eters have well developed locations of dips, we need to 

make an expansion of the field about the neutral point and determine the rotation of the 

local field from the classic X-point field of Figure 5.1a.

5 .3 .2  O r ie n ta tio n  o f  th e  N e u tr a l P o in t

Setting lu = +  6w in (5.1) we obtain, for 6iu <C 1 ,

B{6w) = —i
1 m

+
m

wN
(5.3)

dB{w)
dw

Sw +  0(6w^) evaluated at w =

If the coefficient of 6w is written in polar notation, then its argum ent, 0, determines the 

rotation of the local field from the field B = 6w,  and hence the nature of the dips is known.
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O r i e n t a t i o n  o f  N e u t r a l  P o i n t
10

m

8

6

= —2 tt4
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0
0 1 2 3 5 X,4

Figure 5.2: Param eter space plot showing the orientation of the neutral point for the asym­

metric case.

Various orientations are shown in Figure 5.2 in the param eter space plot where we note tha t 

maximum dips aie given by the solid curves and no dips occur along the dashed curves.

We now make a qualitative analysis to study the behaviour of the neutral points 

as m  is varied.

5 .3 .3  B e h a v io u r  o f  th e  N e u tr a l P o in ts

In this analysis, xq remains fixed and the argument of the square root in (5.2),

wa  =  [m(æo -  1) -  (æo +  1)]^ -  4æo , (5.4)

is considered. There are three separate cases here corresponding to wa  > 0, u>a  = 0 and

ÎÜA < 0 .

C a se  i) >  0 . O ii-a x is  N u lls

If Wa is positive then ~  0 and the two nulls lie on the æ-axis equidistant from a central



point

This occurs if either

*JV0 = . (5.5)

\ 3:0 T  1 — 2x q  ,
a) m  <  77i_ =  -------------— — ; æ̂ v > 0 (weak bipole)

%o —1

or

1 2 ^  ̂ 2
b) m  > =  —— ------ ^ — ; x n  < 0 (strong bipole)

hold. The orientation of these nulls is given by

0 =  (2n +  1)— , n e Z  ,

i.e. they are “+  - type” neutral points. First consider the case m  < 7n_. This holds when 

the bipole strength is so weak th a t the polar source dominates and the nulls are located 

between the bipole pair, i.e. 1 < x ^  < xq , Vn  ~  0 . An example of the field lines for this 

case is shown in Figures 5.3 (a and b). The corresponding region of param eter space lies 

below the solid curve 0 =  0 in Figure 5.2.

As m  is increased, the two nuUs move together and actually coalesce when m  = m,-. 

This is the special case ii)

C a se  ii)  wa ~  0 . C o in c id e n t  N u lls

W hen m  =  rri- (or m  = m +), the argument of the square root is zero and the niiUs coincide 

a t the point {xj<[q , 0). There is a sudden change in the orientation here to  ^ =  0 (or 

9 — —27t) corresponding to  a  location of maximum dips. This is shown in Figure 5.3c. Note 

th a t there were large dips already present in case i) but this was the combined effect of two 

adjacent “+  - type” nulls.

As m  is increased further, the nuUs move apart but this time in a direction away 

from the æ-axis.

C a se  ill)  <  0 . O fF-axis N u lls

Here m  > and -y/wÂ is imaginary so yN is no longer zero. The nulls are located at 

(æjvo , ±2/iv) where yj^ =  . Initially, good dips are present above the upper
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Fi el d  l i n e s  f o r  w e a k  b i p o l e :  w * > 0  , m < m _
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Field l i n e s  f o r  w e a k  b i p o l e :  w ^ > 0  , m < m _
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(b)

Figure 5.3: Field line plots for three charges with the weak bipole case, (c) shows the case 

of coincident nuUs.
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F ie l d  l i n e s  f o r  c o i n c i d e n t  n u l l s :  w . = 0  , m  =  m _
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(c)
Figure 5.3c

neutral point (æ^ro , +VN)  but as the bipolar strength is increased, 6 decreases to a value 

of --7r/2 as the null rises and rotates to a “+  - type” orientation (see lower dashed curve 

in Figure 5.2 and Figure 5.4a). Further increase in the bipole strength causes the null to 

ro ta te  more and rise to  a maximum height of yj^ = when m  = (aio +  l)/(a;o — 1) (Figure 

5.4b). In addition, it has moved in the horizontal direction and now lies on the ?/-axis. One 

can show th a t 9 = —tt here and so the local dips are again maximised.

At this point the bipole begins to dominate the polar source, and as it is increased 

further, the null loses height, moves further to  the left, rotates through another minima of 

dips {$ =  —37t/2 , Figure 5.4c) and eventually reaches the z-axis again when 9 =  —2?r and 

m =  (Figure 5.4d). Finally, case i) is again achieved with wa  > 0 and m  > At 

this point, the bipolar held is fuUy dominant and so the nuUs have been ‘forced’ back onto 

the z-axis.

It should be stressed here th a t this sequence is mainly of m athem atical and topo­

logical interest and cannot be applied to the physical situation because the param eter values 

are generally far from the observed ones for most cases (the possible solutions are discussed 

in the following subsection). However, it is a thorough analysis from which we may learn 

about aU the possible topological states and the behaviour of the nuUs in order th a t we may
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Fie ld l i n e s  f o r  o f f - a x i s  null:  Wy^<0 , m > m _  , tt
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Figure 5.4: Field line plots for three charges showing the behaviour of the neutral point 

(and the associated dips) as the bipolar strength is increased.
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F ie l d  l i n e s  f o r  o f f - a x i s  nul l :  w^^<0 , m_<m<m^ , 0=-37t/ 2
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Figure 5.4c

Fie ld l i n e s  f o r  c o i n c i d e n t  nul l s :  w ^ = 0  , m  =  m +  , d =  - 2 n
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Figure 5.4d
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apply this knowledge and experience to  the more elaborate model which follows.

5 .3 .4  C o m m e n ts  o n  th e  T h r e e -S o u r c e  D is tr ib u t io n

The observed values of m  and a?o lie in the ranges

2 < m < 10 ; 1.2 < æo < 2 ,

although it is difficult to  place an exact range on ap as the observations vary enormously. 

However, taking xq = 1.5 fixes the locations of the two polarity inversion lines a t x — 0.5 

and X = 1.25, the relative positions of which seem reasonable on examination of a number 

of magnetograms which show this type of flux distribution. A study of Figure 5.2 then 

teUs us th a t the weak bipole case (m < m _) is not possible. These solutions would be 

rejected anyway on the grounds th a t there is no bipolar structure and the polar source is 

the dominant field. The case m  > is possible for these param eters but the polar field

has been completely swamped by the strength of the bipole and a glance at Figure 5.4d

surely eliminates this as a reafistic configuration! The remaining possibility for good dips 

then are solutions close to the 9 — —tt curve, but again, on examination of Figure 5.4b we 

note th a t the polar field is far from vertical and still very distorted.

In order to achieve a good field structure at the pole with a vertical polar field line, 

it is be tter to  consider a symmetric distribution of sources. This is the aim of the model in 

the next section.

5.4 F ive-S ou rce D istr ib u tio n  (S ym m etr ic  C ase)

In this section, we again search for the param eters producing field line dips and present 

some relevant field line plots. For the required symmetry, we add to  the previous field a 

pair of image sources located at æ =  — 1 and x  =  —zo, thus obtaining the expression

B{w)  = +  — -------- ^  . (5.6)
W W — 1 W -  X q  W -j- 1 W X q

The positions of the nulls are found from the quartic equation

wff  +  |̂ 2m(.To ~ I) ~  (^’o T I)] =  0 . (5.7)

The coefficients of this equation are real and so the solutions occur in complex conjugate
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O r i e n t a t i o n  o f  N e u t r a l  P o i n t
10
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Figure 5.5: Param eter space plot showing the orientation of the neutral point for the sym­

metric case.

pairs. Also, there are no odd powers of (due to the symmetry of the problem) and so 

the positions of aU four nuUs may be determined if we know just one solution, simply by 

reflections in the axes. Once determined, the behaviour of the nulls may again be considered.

5 ,4 .1  B e h a v io u r  o f  th e  N e u tr a l P o in ts

Let us consider the null in the first quadrant. The solution curves for its orientation are 

shown in Figure 5.5. For small values of m, the behaviour of the null is similar to  the case 

with three sources. As m  is increased above m _, where

X q  -  1
2(.ro T 1)

the null leaves the æ-axis, rises and rotates through a “+  - type” orientation {0 

As m  tends to  , given by

Xq T 1
-  2(*o -  1) ’

the null approaches the y-axis where it has a height of yj\j — y/2xo and an orientation of
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F ie l d  l i n e s  f o r  n o  d i p s :  m _ < m < m +  , 6 =  — t x / 2
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Figure 5.6: Field line plots for the symmetric case with five charges showing the various 

topologies as the bipolar strength is increased.
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F ie l d  l i n e s  f o r  c o i n c i d e n t  n u l l s :  m =  m+ , 0 = —tt
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Figure 5.6c

Fie ld l i n e s  f o r  o n - o x i s  nul l s:  m > m +
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Figure 5.6d

:
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6 =  —TT. Here the behaviour is différent to the three-source case, because at this point 

the two nulls in the upper-half plane have coalesced (coincident nuUs). As m  is increased 

further (m  > m +), the nulls again separate and move along the ?/-axis where they possess 

the “-f - type” orientation.

Figure 5.6 shows various stages in this evolution for zo =  1.5 and y > 0 including 

(a) 9 = —7t / 2  (no dips), (b) $ =  — S i r / i  (intermediate dips), (c) 9 =  — tt  (maximum dips; 

coincident nulls) and finally (d) m  > m +, the case of on-axis nuUs.

5 .4 .2  C o m m e n ts  on  t h e  F iv e -S o u r c e  D is tr ib u t io n

For the case of five charges, it is clearly seen from the field line plots th a t the behaviour 

of the polar field is more realistic, with a vertical polar field line as required. Figure 5.5 

indicates, for the observed ranges of the param eters, th a t the best chance of attaining good 

dips is for 9 to lie in the range —tt < 9 <C —tt/2 . Maximum dips occur for m =  (Figure 

5.6c) but this would imply a prominence forming at the pole which is not observed. Thus, 

the most likely possibility is a plot similar to Figure 5.6b. The dips are still sufficient to 

allow some prominence m aterial to  collect, and we could assume th a t this dip will deepen 

as the m aterial continues to  condense. There are problems though, concerning both  the 

structure of the polar field and the technical construction of current sheet prominence 

solutions from this configuration. The former point arises due to  the orientation of the 

séparatrices above the nulls. This causes the polar field to be squeezed inwards, contrary to  

the usual observation th a t the polar field expands with height. This may be a consequence 

of our Cartesian geometry but more likely it is a physical effect th a t needs to be included in 

the model. Such an effect is incorporated in the next section. The technical problem occurs 

in the second quadrant. For the formation of prominence sheets an asymm etry is introduced 

a t the stage where we impose a horizontal field component at infinity. This will cause the 

current sheet in the second quadrant to have a bad orientation so th a t when the counter 

horizontal field is applied, this sheet will either be subject to a downward Lorentz force or 

will have a very fiat orientation, which is equally undesirable. Also, when the counter field is 

applied, the polar field will become non-vertical, thus discounting the possibility of forming 

a full solution by reflection of the first quadrant in the y-axis. Possibly, a more sophisticated 

m ethod, e.g. a conformai mapping, would yield the desired solution - a possibility certainly 

worth consideration.
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Tlie next section develops the ideas further by using finite sources of photospheric 

flux. It is an asymmetric distribution, but the effect of the solar wind is included which has 

the advantage of allowing a vertical polar field plus a more realistic field structure.

5.5 F in ite  Sources and E ffect o f  Solar W in d

In this section we use finite regions of photospheric flux to give a better representation of 

the surface field distribution. Figure 5.7 illustrates the considered distribution and shows 

the notation and param eters we adopt. The polar flux is confined to  the domain [—xi^xi]  

and has unit strength while the bipolar flux is given by two unequal regions [^2, 3:3] and 

[^3,^ 4] of strength respectively. Thus, the bipolar field strength has been normalised 

to  the polar value given by Bp % 10 G. Notice th a t this gives rise to  two polarity inversion 

lines located at x m  , where x \  < xj^i < X2 , and another at x n 2 = ^3 • AU lengths have 

been normaUsed to the radius of the Sun (Æ© % 700 M m )  and so the equator is located at 

X  =  7 t / 2  .

Distribution of Photospheric Flux for Finite Regions

Location of polarity 
inversion lines

B = + By 
+ + + + + + +

B = -B,
+ + + + + + + + + + + + + + o

n/2-X

(Pole) (=Xn2) (Equator)

Figure 5.7: The distribution of flux for finite regions showing the notation used. 

The purely potential field may be expressed as 

B{w) - I n
'w 4- æi"

+  A - l n
7T w -  æi. TT

{w -  x ^y
{w -  X2)i'U) -  3:4)

(5.8)
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As w oo y the behaviour of this field is given by

^  _ _ l i  _|_ ---   (%2 -  2^3 +  0:4) , (5.9)
TTW TTW

which is equivalent to the field generated by a point source of strength 2 x i + B b ( x 2 — 2 x 3 + X 4 )  

located at the origin. Thus, the field lines become radial at large distances.

5 .5 .1  O b ser v e d  P a r a m e te r  R a n g e s

Observational da ta  fixes or constrains some of the param eter values as follows. As stated 

in Section 5.3.4, the flux ratio is given by

< (3:3 -  ^ 2 ) Bh < 103:1 .

The value of , which approximately defines the boundary of the polar coronal hole, is

taken to  be 0.3 . Also, the two polarity inversion lines are generally located within the

ranges

0.6 < x m  < 0.9 and 1.0 < x n 2 = ^ 3  < 1-2 .

At this stage, it is useful to write the param eters in term s of normalised fluxes, i.e.

(5.10)
3̂1 3/’i

S O  there are four free param eters: X 2  ; X 3  ; F* and F |  , subject to  the conditions

2 < F f  < 10 (5.11)

x m  < x'2 < X3 (5.12)

F9 7T
3:3 < 3:4 =  3:3 +  — (3:3 -  X2 ) < -  (equator) . ' (5.13)

5 .5 .2  In f lu e n c e  o f  th e  S o lar  W in d

The purely potential field (5.8) is a good approximation to the observed field for small 

values of w, but as w 0 0  the field fines become radial. Observations, however, (for
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example, eclipse photographs) show th a t the actual field becomes stretched out at a height 

comparable to the solar radius above the surface . Although our model does not include a 

circular photospheric boundary (a possibility for future modification), we can incorporate 

the  effect of this stretching by requiring th a t the field is vertical at a given height (i.e. radial 

in spherical geometry). The modified field

B(w)  =  +
7T y tanh  J(iy  — a?i)

possesses such behaviour, since the horizontal component tends to zero as y —» 1 . For this 

field the neutral point (in y > 0) needs to  be computed numerically and the height of the 

nuU must lie in the range

0.05 < yN < 0.15 ,

for prominence applications.

5 .5 .3  P o s s ib le  P r e -P r o m in e n c e  S o lu t io n s

Despite the restrictions (5.11-5.13) on some of the values, we still have four free param eters 

to  consider. Keeping 3:3 free allows us to  examine solutions for various positions of the 

second polarity inversion line (at x — 3:^ 2)- Let us also keep F2 free and consider the 

behaviour of the field for 3:2 =  1.0 and F f  =  2.0 .

S o lu t io n s  for  =  2.0 a n d  X 2 =  1.0

Relevant pre-prominence solutions may be selected when the null is

(i) a t a height of y^r =  0.1 , say,

(ii) located approximately above a polarity inversion line, and

(iii) well orientated, such th a t field line dips are present.

Figure 5.8a shows the param eter values for which (i) is satisfied. Solutions for 3:3 < 1.06 

are neglected as this results in the value of Bb exceeding 10 which is too large. Any given
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Figure 5.8: (a) Param eters for which =  0.1 and (b) the corresponding relation between 

Bb and 0:4.

point along this curve determines both Bb and X4 , from (5.10), and so the relation between 

Bb and .̂ 4 for which yj\f = 0.1 is shown in Figure 5.8b. As X3 increases, Bb drops (to ensure 

=  2) and increases (to  prevent the nuU from rising). These effects all imply th a t X4
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must increase so th a t the to ta l size of the bipolar region is enlarged.

Figure 5.9 (a, b, c) shows various configurations as X3 is increased. The values of 

Bb are respectively 8, 6 and 4 in these plots. It can be seen th a t there is good polar field 

structure in aU three plots - the field is almost vertical at the pole and the width of the 

coronal hole increases with height as observed. There is slightly more distortion to  the

(a)
1111 ; I I I IT I I

(b)
Figure 5.9: Field lines for finite sources, (a)-(c) demonstrates the effect of increasing 0:3 

in accordance with the requirements of Section 5.5.3. (d) shows the purely potential field 

(without the wind effect) for comparison.
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Figure 5.9c
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(d )
Figure 5.9d

polar field as is increased, e.g. Figure 5.9c, but even here the field structure seems 

reasonable. Good dips are apparent in all three cases. This is due to  the low value of yj\f 

(maximum dips occur as the nuU hits the photosphere). Also, the null overlies the polarity 

inversion line at x = x ^ i  and so this is certainly a possible location for a prominence to 

develop. For comparison. Figure 5.9d shows the field for the purely potential case without
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the effect of the solar wind. The param eters are the same as for Figure 5.9b but it can 

be seen th a t, although locally the two configurations are similar, there is poor behaviour 

a t large distances where the field becomes radial. A consequence of this is th a t the polar 

field is particularly distorted and so we must conclude th a t the effect of the solar wind is 

certainly im portant in retaining the basic overall structure of the field there.

5 .5 .4  E v o lu t io n  o f  t h e  F ie ld

Finally, it is interesting to consider a possible development of the field prior to  the pre­

prominence configuration, as the bipolar region moves towards and pushes against the open 

polar field. Figure 5.10 shows a sequence of plots for different locations of the bipolar region. 

Throughout the evolution the width and strength of this region is kept fixed, although, in 

reality, these param eters will probably vary slightly.

Initially (Figure 5.10a), there is a case of on-axis nulls which converge as the 

bipolar field approaches the pole. After some time, they coalesce (Figure 5.10b) and further 

evolution causes the nuU to rise (due to reconnection of the field lines) into the correct 

pre-prominence location (Figure 5.10c). As this reconnection takes place, the rising field 

lines may transport dense photospheric/chromospheric m aterial up into the corona giving 

rise to a slow flow associated with the field as it progresses through a series of quasi-static 

equilibria. Such a mechanism has been proposed by Titov et al. (1993) and Priest and 

VanBallegooijen (1995). This provides an alternative mechanism for the form ation of the 

prominence.

Of course, this is only one possible evolution scenario. The final field may be 

a consequence of several effects, such as variations in the strengths or the sizes of the 

sources (we have taken the bipolar region to  be of uniform strength), newly emerging flux, 

submerging flux, or possibly a combination of various effects.

5 .5 .5  C o m m e n ts  on  th e  F in ite -R e g io n  D is tr ib u t io n

Although we have not made an exhaustive study of this problem, we have shown for cer­

tain  param eter values tha t it is possible to achieve a polar-crown configuration th a t fits 

reasonably weU with the observations. The solutions we obtain are scaled to the correct di­

mensions and include a neutral point with dips at a height of 2/at =  0.1 , which corresponds 

to  an actual height of 70M m  . The field is stretched out by the solar wind so th a t it is
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(a)

(b)

(c)

Figure 5.10: A possible evolution sequence of the field to  the final pre-prominence configu­

ration
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vertical at a height of one solar radius, and this has the effect of m aintaining a well developed 

field structure with a near-vertical polar field line. The dips are naturally located above a 

polarity inversion line, a necessary condition for prominence formation.

5.6 D iscu ssion

In this chapter, we have made an extensive study using various distributions of 

flux to  generate potential polar-crown field configurations which possess suitable sites for 

prominence formation. Anzer (1994) has briefly addressed this problem but in his analysis, 

which was less thorough, he was unable to find acceptable solutions with a location of 

dipped magnetic field.

The models presented here use distinct regions or sources of photospheric flux and 

so are more realistic than the original model of Chapter 4 in which an infinite domain of 

flux was used. It is found th a t a simple distribution of three charges (necessary to  generate 

an inverse-polarity prominence topology at the pole) is not sufficient to obtain the requisite 

features. For observed values of flux, field line dips are possible but the polar field is 

completely disrupted by the relatively high strength of the bipolar field. Using a  symmetric 

distribution of five charges avoids this problem and allows a vertical field bne a t the pole 

(for the pre-prominence field, at least), but for good dips the nulls are too close to the pole, 

resulting in a compression of the polar field with height. A distribution of finite-flux regions 

presents similar problems: the asymmetric case causes a non-vertical polar field, but this 

may be resolved when the effect of the solar wind is incorporated so th a t the field becomes 

stretched in the vertical direction.

In order to  construct final prominence equilibria from these configurations we may 

use the general m ethod of Titov (1992) which requires the photospheric flux distribution to 

be known. For the cases where charges are used, fully analytical current sheet solutions are 

possible. However, for the five-charge distribution, the formation of two current sheets wiU 

result, and as the horizontal field component is applied, the symmetry is lost and one of the 

sheets will either be very flat or subject to a downward Lorentz force. The distribution of 

finite sources results in a numerical solution, but in theory a well-behaved final prominence 

sheet equilibrium is possible, with the effect of the solar wind included.

There are still some weaknesses in the model, however. In reality, large variations 

in three dimensions are present, and observations indicate a high degree of shear at the
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prominence location (e.g. Tandberg-Hanssen and Anzer (1970); Leroy et al. (1983); Kim 

(1990); M artin (1990)) so the potential field assumption used here may not be so reabstic, 

although uniform shear may still be artificially superimposed. In this model, there are 

two polarity inversion lines present, yet it is not possible to  obtain neutral points with 

dips above both from these calculations. Observations, though, indicate th a t prominence 

form ation can occur at both of these locations. In addition, a spherical geometry should 

be used as the effect of the curvature of the Sun’s surface is certainly im portant over these 

length scales.

In spite of these points, the analysis presented here does at least give an approxi­

m ate indication of possible large-scale flux distributions which are required for prominence 

form ation to  occur within the polar-crown magnetic field. In particular, the distributions of 

Section 5.5 give a reasonable approximation, rectifying Anzer’s model to some extent, and 

hence providing the basis to  construct a modified polar-crown prominence equilibrium.
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C h a p ter  6

T he Internal Structure o f a  

C urved P rom inence Sheet

6.1 C h ap ter Sum m ary

In the previous two chapters, magnetic configurations associated with a curved 

prominence sheet have been considered. In such a solution, the prominence is represented 

by a discrete sheet of mass and current, and so no information about the internal structure 

is available.

In this chapter, a one-dimensional internal analysis of Kippenhahn-Schliiter type 

is applied to a sheet of prominence m aterial inclined at an angle 0 to  the horizontal. It is 

found th a t the magnetic pressure across the prominence no longer has a symmetric profile, 

but is stronger on the lower side of the sheet. The excess in magnetic pressure there is 

necessary to balance the component of prominence weight in th a t direction, A matching 

function is derived and allows for variations along the length of the sheet, enabling the 

internal prominence solution to be linked onto a given background potential field. In this 

way a curved prominence sheet in a potential field may be resolved. A smooth profile for the 

m agnetic field and a continuous variation of plasma pressure across the prominence region 

is then possible. This analysis is applied to the polar-crown prominence model of Chapter 

4 to  obtain a matched internal and external solution in which the basic properties of the 

prominence are determined.
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6.2 In tro d u ctio n

Solutions to  the m agnetohydrostatic equation have been investigated by many au­

thors (see Chapter 2 for a short review) to  gain information about the internal prominence 

properties such as pressure, density and tem perature. One of the classic approaches is 

th a t of Kippenhahn and Schliiter (1957) in which a simple isothermal solution for a ver­

tically oriented prominence sheet was found by assuming th a t the horizontal components 

(both normal and axial) of the field are constant and th a t the vertical component and the 

plasm a pressure vary only in the normal direction. Appropriate boundary conditions lead 

to  solutions in which the magnetic field has a dipped structure, providing support, and a 

distribution of pressure, and hence density, th a t rises from zero outside the prominence to  

a maximum at the prominence centre. Hood and Anzer (1990) extended this theory by 

finding a class of two-dimensional, cool internal solutions th a t m atch smoothly onto a hot 

background coronal arcade.

AH of these models, however, have all been appHed to  straight, vertical prominence 

sheets, but it is one of the objectives of this chapter to dem onstrate how a similar analysis 

may be applied to  slanted m aterial, with a view to generalising further to  the equiHbrium 

of a curved prominence.

This chapter is set out as follows. In Section 6.3, the basic equations are intro­

duced for the interior region of a prominence sheet incHned at an angle 0 to the horizontal. 

The retrieval of the original Kippenhahn-Schliiter (K-S) solutions for a vertical sheet is 

dem onstrated, and a comparison of the two sets of results given. In Section 6.4, the model 

for a polar crown prominence proposed in Chapter 4 is considered. By using a matching 

function technique, the theory of Section 6.3 is appHed so th a t the interior structure of 

the prominence may be included in the model. It is worth clarifying here th a t, although 

a K-S analysis is appHed locaUy in the prominence region, the global magnetic field of the 

prominence retains its inverse (Kuperus-Raadu) type polarity. Results of this analysis are 

presented and a discussion is given in the final section.
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Figure 6.1: The local coordinate system for a sheet of material inclined at an angle 0 to the 

horizontal.

6.3 E q u ilib rium  o f a S lanted  P rom in en ce S h eet

6.3.1 Basic Equations

We here consider an isothermal plasma at rest in the presence of a magnetic field and under

the influence of a constant gravitational field, g, so the m agnetohydrostatic equations may

be applied:

-  Vp +  j  X B + pg = 0 , (6.1)

V * B  = 0 ,  (6.2)

and for a fully ionised hydrogen gas,

P = =  pgH , (6.3)
P

where H is the gravitational scale height.

A local system of coordinates is used in which we consider a sheet of plasma at an 

angle 0 to the horizontal as shown in Figure 6.1. Variations in the z-direction are ignored.
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If the normal and axial components of the magnetic field, Bn and respectively, are 

constant and the transverse gradients of the other values in the sheet are much greater than 

the longitudinal ones, i.e. d /d l  >  d/ds^  then these values depend on I as a param eter and 

(6.1) may be w ritten as follows:

where Br{l)  and p{l) are the local values of the tangential magnetic field component and 

the plasm a pressure, respectively.

Also, the magnetic field,

B  = [Bn,Br{ l ) ,Bz)

satisfies equation (6.2).

6.3.2 Analytical Solution

Dividing (6.4) by (6.5) we obtain

+  =  — c o ts  (6.6)
dB'j- y 2po J  P'O

from which it follows tha t

_ d2 p
P  = ---- \  + — cots (Br  -  JStl) • (6.7)

z/io Mo

Here we have taken into account th a t, if / —̂ —oo , p —> 0 and B-r —> BrL- Also, if we 

require th a t as I —> +oo , p —> 0 and Br BrR  we obtain from (6.7)

2Bn cot 0 = BrL +  BrR  . (6.8)

It is useful when solving (6.5) and substituting for p to  rewrite (6.7) as

1

so th a t we obtain



Br = taah { B r R  -  B r h )  COSÛ
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(6.9)
2(BrR +  BrL)H

Consider the prominence field to be the superposition of two fields: (a) the field 

due to  a neutral current sheet th a t contains no mass but finite current in the axial direction; 

this field tends to  a constant value of ipBsh s as / —> ±00 and p —> 0; and (b) a uniform 

horizontal field, —B^o x , which is the component of the field th a t contributes to the upwards 

Lorentz force on the sheet, thus providing the support of dense m aterial. Then we have

BrL —  Bsii BxO COS 0 ,

BrR  — -^sh BxO cos 9 ,

and

Bji — Bxo sin 9 .

Substituting these expressions into (6.9), we obtain

Br -  -B x o  cos 9 -  Bsh tanh • (6.10)

Also, from (6.7)

p =  ^  c o s h -2  . ( 6 .1 1 )
2M0

Note th a t we are considering here a straight slanted element of sheet so th a t i?sii is a 

constant, but we shall show in Section 6.4 how this may be adapted to allow for a more 

general curved sheet.

6 .3 .3  R e tr ie v a l o f  t h e  K ip p e n h a h n -S c h liite r  S o lu t io n

The original K-S solution corresponding to a vertical sheet may be obtained from equations 

(6.10) and (6.11) by setting

9 — 90° , Bsh. = Byo , I = X y Br — By ,

and so we have
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Figure 6.2: (a) The variation of Br  across the sheet for a vertical (K-S) sheet (dashed) and a 

sheet inclined at an angle 60° to  the horizontal (solid), (b) The variation of plasma pressure 

(dotted), and magnetic pressure for vertical (dashed) and slanted (solid) cases. Param eter 

values used are Bsh. =  1.0 , B^q =  0.5 , H  = 0.25 .
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By =  —ByQ tanh

with

f  B yo  X

\2Bxo H

6 .3 .4  C o m p a r iso n  o f  R e s u lts

It is useful, a t this stage to  make a comparison of the results of the vertical and slanted 

cases. Figure 6.2a shows the variation of Br  in the normal direction and it can be seen 

th a t, for the slanted case (sohd curve), this is no longer a symmetric profile. Figure 6.2b 

neatly illustrates the balance of forces between the magnetic and plasm a pressure gradients. 

For the vertical case, the magnetic pressure exerts a force towards the centre of the sheet 

equally from both sides. The role of this force is simply to  confine the plasma by balancing 

the outwardly directed plasma pressure gradient. The magnetic pressure at the edge of the 

sheet (p =  0) thus takes the same value as the plasma pressure at the centre of the sheet,

i.e. 5gj^/2po ■ For the slanted case, however, there is an excess in magnetic pressure on the 

lower (/ > 0) side of the sheet. This is necessary as there is now a component of weight 

in this direction, and so the excess is required for supporting the additional weight of the 

plasma.

These points are illustrated in the governing equations. If we rewrite equation 

(6.4) as follows

B'^
p +  = geos $ / p{l) dl +  const ,

2po

and integrate using the boundary condition as / —̂ — oo, we obtain

d2 _  jd2
p-{---- ^ —  — g COS 9 .  (6.12)

2po

Similarly, (6.5) gives

=  m{l) g sin 9 , (6.13)

where m (—oo) =  0 and m (+oo) =  M , the mass per unit area of the sheet. [Br] is the jum p

j
i

,..J
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in Br  across the region of integration, i.e.

[Br]  =  B r  -  B r L  •

Equation (6.12) gives the force balance in the normal (1) direction and highlights 

the relation between these forces. The magnetic pressure force acts inwards towards the 

point Ic given by

I — _  arctanh ( cos
Bsh \B sh  y

and is the position at which the forces due to plasma pressure and gravity cancel. For I < Ic, 

the plasm a pressure gradient dominates the weight and so the magnetic pressure force must 

act in the positive 1-direction. For I > Ic -, the reverse is true. This effect is illustrated 

in Figure 6.2b. In the tangential direction, the effects of force balance, given by equation 

(6.13), are basically the same as in the vertical case, in which the tension in the field lines 

is required to  balance the component of weight in this direction. Of course, for the  vertical 

case, it is the resultant prominence weight which acts in this direction.

Plots of the magnetic field lines are shown in Figure 6.3. The enhanced magnetic 

pressure on the lower side of the sheet can be clearly seen for the slanted cases. Figures 6.3a 

and 6.3b show the field lines through the prominence region for the vertical and slanted 

cases, respectively, and a value of FT =  0.25 . The prominence half-width may be defined 

by the value of I at which the plasma pressure has fallen to a fraction a  of the central value. 

Using this definition with a  =  0.5 we have shaded the prominence region in these figures. 

Figures 6.3c and 6.3d illustrate the effect as H  tends to zero for which the current sheet 

case is retrieved.
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(a)

(b)

Figure 6.3: Field lines through the prominence region for both vertical and slanted cases, 

(a) and (b) are plotted for H = 0.5 and (c) and (d) show the current sheet case, i.e. Ff 0.



127

(C)

Figure 6.3c

(d)

Figure 6.3d
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6.4  C urved P ro m in en ce  Sheets: M atch in g  th e  In tern al and  

E xtern a l S o lu tion s

6 .4 .1  A p p lie d  E x a m p le

We now dem onstrate how the above internal analysis may be developed to  enable this 

type of prominence solution to  be included in a more general magnetic configuration. We 

consider the model for the polar-crown prominence given in Chapter 4 in which a curved, 

weighted current sheet is supported in equilibrium in a background potential field.

The resultant field, shown in Figure 4.4a may be decomposed into the sum of 

two components: the field with a neutral current sheet (no mass), B q {w ), and a constant 

horizontal field, —iBa;o . B q {w ) is computed using the general m ethod given by Titov 

(1992) and is shown in Figure 4.3a. The ambient field, —iBxo, is superimposed on B q {w ) 

and serves two purposes: firstly, to  provide weight for the current sheet (thus simulating the 

dense prominence) by exerting upon it an upwardly directed Lorentz force which must be 

balanced by gravitational forces; and secondly to achieve a vertical field at large distances, 

thus representing the open field at the poles of the Sun.

The separation of the two components, B q {w ) and —iB^Oi is the key to  con­

structing an appropriate matching function. This allows the internal solution to  be linked 

smoothly onto the external potential configuration.

6 .4 .2  T h e  M a tc h in g  F u n ctio n

The relations (6.10) and (6.11) describe the local behaviour of the magnetic field and pres­

sure inside the prominence sheet. Let us now consider how to construct the relations 

m atching this local behaviour with the global behaviour given by

B{w)  =  By 4- iBx = B q {w ) -  iBxo ; p =  0 . (6.14)

For this purpose we need to  introduce two new values lsh{w) and Bsh{w). These 

values are obtained from the field B q {w ) by projecting the given point w onto the sheet 

along the curve which passes perpendicularly through each magnetic field line as shown 

in Figure 6.4. This projection curve is determined by the following ordinary differential 

equation:
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dw
~dï

B Q (6.15)(fZ |BQ| '

where B q  is the conjugate of B q  . We denote the length of this curve by /gh • If, for some

Figure 6.4: The projection of the point w onto the current sheet along the curve defined by 

orthogonal held hues. Zgh(u)) is the length of this curve and Bgh(w) is the magnetic held at 

the end of the “projection curve” .

w, this curve does not intercept the sheet we simply set Zsh(îü) —̂ +oo . Bsh{w) is dehned 

as the value of the magnetic held at the end of this curve, i.e. a t the position of the  sheet.

Using the concepts of Zgh(w) and Bgh(w) one can construct the matching function 

for the magnetic held as

B{w) — tanh
Bsh(w)

^xO
^sh('^)

2 ^
^BxO 5 (6.16)

which, for sufficiently small values of H  provides a good approximation for both the internal 

and external magnetic helds in the prominence model.

In a similar way, one can write the matching function for the distribution of pres­

sure in the prominence:

p(w) =  cosh-2
2fJ,Q

^sh (^ )
B xO

Zsh(^)
2H~

(6 .17)
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These functions are both  dependent on the positions of the end-points of the sheet. The 

internal solutions are only significant for /gh — 0 { H )  and for Ish H  the potential solution 

with a current sheet holds.

-0.3  \■S

lit!!

Figure 6.5: The matched field lines through the prominence region.

6 .4 .3  M a in  R e s u lts

Figure 6.5 depicts the field lines through the interior of the prominence (solid lines) for 

H  =  0.05 and shows how these m atch onto the original potential field (dashed) lines. The 

discontinuity in the dashed field fines has clearly been replaced by a smooth and continuous 

profile, as has the pressure distribution which is shown in Figure 6.6a for a  cut across the 

middle part of the sheet. Figure 6.6b shows contours of pressure for a central section of the 

sheet.
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Figure 6.6: The pressure through the interior of the prominence showing (a) the variation 

along a  cut through the middle of the sheet and (b) the contours in the central section of 

the prominence region.
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For the case H  = 0, the current and mass densities are given by the expressions

and mA(s) =  L M f lË ïO  ,
Ao fJ'09

respectively. Here, [Bsh] =  (-Hsh)i? — (-Bsh)L — 2Hsh , represents the jum p in the value of 

Bsh across the sheet. The variation of [.Hsh] is shown in Figure 6.7a, from which we can see 

th a t the quantities of mass and current reach a maximum at 5 =  . This corresponds to

the lower section of the contour map of Figure 6.6b where the pressure, and hence density, 

reaches a maximum value. If the outer boundary of the prominence is defined by a particular 

contour of pressure then it can be seen from Figure 6.6b th a t the prominence cross-section 

will assume an elongated, curved oval-like shape. At the end-points of the sheet, Bsh =  0 , 

and so the pressure and hence the width of the prominence are zero. The variation of the 

prominence width, defined by the contour

Ptü — where B^n — Bsh »
l= 0 , s= S m

and 0 < a  < 1 is shown in Figure 6.7b for a  =  0.5. This has been computed from the

expression

which is a good approximation for sufficiently smaU values of H  . Using this definition 

we see th a t tti =  0 for Bsh = cà  B ^  and so the prominence exists in the region given 

by okBm  < Bsh < -Bm • Of course, this actually excludes the end-points of the current 

sheet from the prominence region, but it is a reasonable representation of the prominence 

boundary and allows some insight into this property.
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Figure 6.7: (a) The variation of the mass density along the sheet for the case H  =  0. (b) 

The variation of the prominence width along the sheet.
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6.5 D iscu ssion

In this chapter, we have generalised the one-dimensional analysis of Kippenhahn 

and Schliiter to include prominence sheets which are inclined away from the vertical. The 

equilibrium of such a prominence is made possible by means of an enhanced magnetic field 

strength at the lower side of the sheet. This results in an asymmetric pressure balance 

across the sheet in which the surplus magnetic pressure force on the lower side is required 

to balance the component of weight in th a t direction. For the K-S case, no weight acts in 

th a t direction and so the magnetic pressure assumes a symmetric profile, its associated force 

required solely to confine the dense m aterial by balancing the outwardly directed plasma 

pressure gradient.

In Section 6.4, a matching function technique has been applied enabling this type 

of internal solution to be incorporated in a more general model. We considered a specific 

example in which a curved prominence sheet of inverse magnetic polarity is embedded in 

a background configuration representing the polar-crown field, but this m ethod may easily 

be applied to other similar models with non-vertical current sheets such as those of Wu and 

Low (1987).

The field around the current sheet can be separated into two fundam ental com­

ponents, namely the field due to a neutral current sheet and th a t of an ambient horizontal 

field. This allows a cut across the sheet to  be considered by taking a curve which passes 

orthogonally to  the field lines of the neutral sheet. Along this curve, the magnetic field 

given by the internal solution tends to a constant value as we move away from the centre 

of the sheet, this being the value of the magnetic field in the potential model just a t the 

edge of the current sheet. In this way the two solutions are matched together providing us 

w ith a more detailed model in which both the global field structure and the interior of the 

prominence are given. It is possible to determine the width of the prominence in this model 

by defining the boundary of the prominence to lie along a contour of constant pressure, thus 

enabling the cross-section of the prominence to be examined. In our example this assumes 

the form of an elongated oval which is widest in the central section of the prominence. Such 

variations in prominence width and curvature are often found in observations.
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C h a p ter  7

A n A lternative A pproach to  

M atching th e  Solutions

7.1 C hap ter Sum m ary

In the previous chapter we dem onstrated how an internal m agnetohydrostatic 

prominence solution can be asymptotically matched to an external potential solution for 

the case of a non-vertical, curved sheet of prominence m aterial. This m ethod, however, 

has the shortcoming th a t it generates only an approximate solution and so, in general, the 

m agnetic field will only be divergence-free in an asymptotic sense (as the internal scale 

height tends to zero). T hat discrepancy is resolved in this chapter by using a slightly dif­

ferent approach which is applied to a basic example with a vertical current sheet. In the 

analysis the composite solution switches smoothly between the internal and external solu­

tions through a region of overlap, or transition region, and it is possible to  show th a t the 

field is divergence-free in each of these regions. The pressure, density and tem perature are 

determined to  check th a t the solutions are physically realistic.
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7.2 B asic  E xam p le

Consider an inverse-polarity prominence solution obtained by the superposition of a poten­

tial field B q {w ) ,  which has a vertically oriented neutral sheet, and a constant, horizontal 

background held, B^o . A simple example is given by the held

Bp(w)  = Bpy  4- i Bpx = B q { w ) +  i B^o ,

in which

B q {w ) = w ^(w  — i)^ and w = x + i y .  (7.1)

The held lines for the neutral sheet component are shown in Figure 7.1a where we note tha t 

the sheet extends along the y-axis from the origin to y  = 1. Figure 7.1b shows the resultant 

prominence held, Bp{w),  in which a weighted sheet, with surface mass density, ?n^(î/), is 

supported by upwards tension forces tha t arise from the Idnked held lines at the sheet. An 

X-type neutral point is located at

L  1 A +  4 % ^
2 ----------2 J •

We now set B^o = 1/2  here (and for the remainder of this chapter) and so w n  is given by 

The surface mass and current densities at the sheet are given by the expressions

=  a i M ,
Aog Ao

where [By]{y) =  2^2 (1 — y'jk is the jum p in the vertical held component across the sheet.

From the analysis of the previous chapter, we can show th a t the m atched held 

through the prominence region for a given internal scale height, e, may be w ritten as

Bp{w) = B q { w )  tanh  ^  , (7.2)

where f ( y )  is the value of the external potential held, B q {w )  ̂ at the edge of the sheet, i.e.

f { y )  =  =  y H ^  ~ y ) ^  , o < y < i .
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(a)

(b)

Figure 7.1: Field lines for (a) the neutral sheet and (b) the inverse-polarity prominence 

sheet.
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Note th a t in this case, where a vertical sheet is used, our coordinate system has 

been altered slightly by setting l s h { z )  ~  x  and J5sh(^) =  f{y)-  This means th a t a slightly 

different cut across the current sheet has been taken; we do not need to consider a path  

across orthogonal neutral field lines here, although generally this is not possible for the case 

of a curved sheet.

The associated plasm a pressure is given by

(7.3)

We now dem onstrate how the matched magnetic field solution, Bp{w),  may be 

re-written so as to be explicitly expressed in terms of its constituent internal and external 

components. This allows us to examine the behaviour of the solutions through the two 

regions and shows how the composite solution switches between them  across a region of 

overlap.

7.3 In tern al and E xtern a l S o lu tion s

In this analysis we consider only the region 0 < y < 1 corresponding to the vertical extent 

of the prominence sheet.

The external potential solution is given by the expression

=  5 q (w) +  i  i

with field components

(7.4)

Making an expansion of B q { w ) at a small distance x  = 8  from the sheet, we obtain the 

following:

0 < y  < 1

=  A y )
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=  f ( y )

=  f ( y ) - i S f ' { y )  +  0 { s ^ ) .

Therefore, the held components close to  the edge of the sheet are approximately given by

B i  = f { y )  ; B i  = 1/2 -  x f \ y )  , (7.5)

as long as the conditions

6 <€. y and 6 <  1 -  y , 

are satisfied. This means th a t the solution is valid only in the region

X <€. y <. I -  X .

Thus, an internal solution, w ritten as

^  -  ^ f { y )  tanh ( j i y ) - ' ^  ; =  f { y )  tanh  ( ^ / ( 2 / ) ~ )  , ( 7 .6 )

tends to  the correct values, given by (7.5), as the inner variable, X  =  z /c , tends to infinity 

(c 0). Similarly, the external solution (7.4) tends to the same values as the outer variable, 

X, tends to  zero.

Thus, our complete composite solution is given by

=  B r * + B r '  -  , (7 .7)

where B°  represents the overlap of the two solutions.

Figures 7.2 (a and b) show the internal, external and matched solutions for a value 

of e =  0.1 and y =  0.7 . Here we see how the composite solution (solid curve) switches 

smoothly between the internal and external solutions. As e is decreased, the composite 

solution converges to the external solution as the internal solution tends to, and hence 

cancels with, the overlap term . This effect can be seen in Figure 7.2 (c and d) in which a 

value of e =  0.01 is used.

Note th a t the composite solution is identical to the original matched solution (7.2) 

for this case, although this is actually a consequence of our chosen function B q { w ) and will
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Figure 7.2: The field components of the internal (dashed line), external (dotted) and com­

posite (solid) solutions for e =  0.1 (a,b) and c =  0.01 (c,d).
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not, in general, be true. Also, the solutions are sensitive to  the nature of the cut across 

the sheet and so slight differences in the solutions may arise depending on how this cut is 

taken. Here, though, the cut is the same for both cases.

The matched field lines are shown in Figure 7.3 (dashed), where they have been 

superimposed onto the external, potential field lines (solid) for comparison. It can be seen 

th a t they smoothly m atch onto the external field, thus removing the discontinuities a t x = 0 

and resolving the prominence sheet into a distinct internal region of finite width. The field 

lines near the top and bottom  of the sheet have not been plotted as this is the region in 

which the expansion breaks down. A modified analysis would be needed to cope with this 

region.

Figure 7.3: Plot of the external field fines showing also the m atched solution (dashed fines) 

through the internal region.

D iv erg en ce  o f  B

We now check tha t the composite solution (7.7) is divergence-free!

It is easy to show th a t V • =  0. In fact we may find a vector potential,
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for the internal solution :

=  - e ln  ^cosh ( /(? /)“ ) )  +  v !^  • (7.8)

This satisfies

“  -  dy dx ^  '

and so V • =  0 is autom atically guaranteed.

The external solution, 5®̂ * (̂uj) =  +  i , is an analytic function of the

complex variable w and so the Cauchy-Riemann equations are satisfied, ensuring

and hence V • B®̂ "̂  =  0 .

Finally, it is easily shown th a t V • B° =  0 , with a corresponding vector potential, 

A° =  —æ /(y), thus completing the proof of

V • B p  = 0 .

7.4 O th er P ro p ertie s

Once the fuU magnetic field solution, given by equations (7.4)-(7.7), has been obtained, it 

is im portant to  investigate the other main properties, such as the  current, pressure and 

density to  check th a t they are physically realistic. Firstly, we need to evaluate the current 

density, jz  .

7 .4 .1  C u rren t D e n s ity

The volume current density, j***, in the external region is zero, as this part of the solution 

is potential and hence current-free (by definition). It also foUows th a t the overlap current, 

is zero and so the only contribution comes from the internal region. This is determined 

by the curl of the magnetic field, i.e.

d T  '
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In term s of an inner variable, X  =  %/e, this can be written in powers of e as

f s e d i \ f X ) (7.9)

where /  represents the function / (y )  and f ,  i t ’s derivative.

Note th a t the leading term  is of order 1/e and so the current profile spikes a t % =  0 

as e —» 0. The volumetric current density is infinite at this point, as By is discontinuous,

but the surface current density is finite with a value of

2 /  _  l By ] ( y )  _

as stated  earlier. This can easily be shown by integrating the leading order term  of (7.9)

across the sheet between the limits x = —oo and x =  +oo.

7 .4 .2  P r e s s u r e  a n d  D e n s i ty

Once the current has been obtained, the plasma pressure can be evaluated from the hori­

zontal force balance equation, i.e.

I d x  -  •

It is given by

P = ^ s e c h ^ ( y X )  +  0(c*) +  F{y) (7,10)

where F{y) is a constant of integration. This represents the background hydrostatic pres­

sure, F (y)  =  po , where po is the pressure at the height of the lower end of the

prominence (y — 0) and H q is the coronal scale height.

Force balance in the vertical direction allows us to solve for the density.

dp
dy

j z  B ^ -  p  g

from which we find

P g = Po
A - / / '  + 0(c) sech^(/X ) +  ^  

B-0

Note th a t the 0 (1 ) term  from jz  B^ has cancelled with the contribution

(7.11)
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X ^ [ 3 e c h ^ ( ; X ) l  ,
from the vertical pressure gradient.

N orm alisation

We now fuUy non-dimensionalise these equations as follows.

In the function / ,  y has effectively already been normalised to  the vertical extent, 

Apr , of the prominence, i.e

y =  hpj.y* , 0 < y * < l ,

and so, if we write /  =  Byo /*  =  Byo y*  ̂(1 -  y*)^ , with Byo -  1, and set p = po p* , we 

obtain for the pressure

V* =  V s e c h “(/* X ) +  +  0 (£* ) , (7.12)
Po

where /3q =  (2po Po)/ByQ is the coronal plasma beta, e* =  e/Ho is the ratio  of scale heights 

in the internal and external regions, and h* = Apr/Ho is the ratio of the vertical extent of 

the  prominence to  the coronal scale height.

For the density we set p ~  po P* = {Po/9Ho) P* •> and so we have

F  ^ r ; " + o ( £ ' )

7.4 .3  Tem perature

Finally, the tem perature may be found from the ideal gas law, i.e.

IT* =  . (7.14)

This should be checked, of course, to confirm th a t it gives a realistic value. We now use the 

following values to plot solutions for the pressure and density:

/?o =  0.06 ; A* =  0.25 ; e* =  0.01 .
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Figure 7.4: Profiles of pressure, density and tem perature for various cuts across the sheet.
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V a r ia tio n s  A c r o ss  th e  S h e e t

Profiles of the pressure, density and tem perature for various cuts across the sheet are shown 

in Figure 7.4. In the external region (corona), jX | oo, and so p* = p* ~  with

T* = 1. This is the background hydrostatic atmosphere, i.e.

p = Poe p =  Poe

As the centre of the sheet is approached, X  —>■ 0 and so the pressure and density profiles 

gain maximum values of

P* ^  and p* ^  - — -  .
Po Po c*

Also, the tem perature reaches a minimum value of approximately T* ~  e*. For the above 

param eter values, this gives a central density 500 times higher than  the corona and a 

tem perature 100 times lower. Moving away from the sheet centre, the tem perature remains 

close to  this value for a few scale heights before rapidly rising to m atch onto the coronal 

value.

These solutions across the sheet are basically the original Kippenhahn-Schliiter 

solutions superimposed on a background hydrostatic atmosphere. However, variations along 

the sheet have also been considered in our analysis which we will now discuss.

0.5

0.0

-0.5

2f*f'

- 1.0
0.8 1.00.2 0.4 0.60.0 1.0 y

Figure 7.5: The variation of the function /*  and its derivatives.
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V a r ia tio n s  A lo n g  th e  S h e e t

It is im portant to  remember at this stage th a t the solutions cease to  be valid close to  the 

end-points of the sheet where the expansion of B q  breaks down. Also, the nature of the 

function f*  implies th a t its derivative, becomes infinite at these end-points. This can 

be rectified in the expression for the density, however, since it is the product, 2 f* f* ' th a t 

occurs in the order unity term , and this is equal to {f*^Y  =  1 — 2y* which tends to finite 

values ( i l )  at the end-points. More wiU be said about tliis later. The behaviour of these 

functions is shown in Figure 7.5 for interest.

The pressure along the sheet basically depends on f*  and so has a symmetric 

profile with a small correction due to  the hydrostatic term. This can be clearly seen in 

Figures 7.6a and 7.6b and also in Figure 7.4a, which shows th a t the maximum pressure at 

y* = 0.3 is slightly higher than  at y* =  0.7 due to the influence of the background term .

The density, however, possesses an asymmetric distribution. The leading order 

term  is the same as th a t in the pressure but with a factor of l/c* which causes an enhance­

ment of two orders of magnitude! This is plotted as a dashed curve in Figure 7.6c. The 

0 (1 ) term  provides the asymmetry, as it gives rise to a negative correction for y* < 0.5 and 

a positive correction for y* > 0.5. The solid curve is the complete solution (to order unity), 

highlighting well the effect of this asymmetry. Note th a t an additional problem occurs near 

the end-points where the 0 ( l/e * )  term  drops to  zero yet the 0 (1) term  remains finite. This 

results in the density tending to the values

*L* 1e-y*^ Zf
h*Po

at the base and the top of the sheet, respectively. These large deviations from the hydrostatic 

values would cause a problem for the matching in the vertical direction, indeed, the density 

even becomes negative close to y =  0, but this is clearly an area th a t requires a separate 

and more elaborate treatm ent which we do not consider in this analysis. Figure 7.6d shows 

density contours for 0.1 < y* < 0.9, thus avoiding the problem region.
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Figure 7.6: (a), (c) and (e) show profiles of the pressure, density and tem perature along 

the sheet. Contours of these properties are shown in (b), (d) and (f). In each plot, the 

end-points of the sheet are excluded.
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Finally, the tem perature distribution along the sheet is shown in Figures 7.6e and 

7.6f. Again, the leading order behaviour is plotted as a dashed curve given by the expression

which is approximately constant along central section of the sheet. The solid curve and the 

contour plot show the full solution where, again, the poor behaviour a t the end-points is 

noted.

7.5 D iscu ssion

In this chapter we have made a slightly different approach to the m atching of 

internal and external solutions through a prominence sheet by considering expHcitly the 

two regions of concern. This has been done to enable a separate check of the constituent 

components of the solution to confirm th a t the solutions are well behaved and satisfy the 

original equations. In the example used, this approach yields a composite solution which is 

identical to  the original solution (7.2) as long as a simple horizontal cut is taken and not a 

pa th  orthogonal to  the neutral sheet field. This is a consequence of the chosen functional 

form of the sheet, though, and in general the two solutions will differ slightly, with the 

original solution satisfying V • B =  0 only in an asymptotic manner.

The other physical properties of this solution are quite interesting. To leading 

order, the basic Kippenhahn-Schliiter solution is found across the sheet in which the inter­

nal variables m atch smoothly onto the background hydrostatic corona. Along the sheet, 

however, variations are included in this analysis resulting in an asymmetric density profile 

and a tem perature profile th a t increases gradually with height along the central section of 

the sheet. Problems are found, though, since the solutions cease to  be valid as the ends of 

the sheet are approached. This is partly due to the expansion of B q  breaking down and 

also because of the fact th a t the order unity term  in the density does not drop to zero there. 

This causes the density to become too large a t the top of the sheet and negative close to  the 

bottom  of the sheet which is unsatisfactory. A modified analysis would clearly be needed 

here to deal with this effect and ensure th a t the internal and external solutions could be 

m atched in this direction.
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C h a p te r  8

C onclusions

The work we have presented includes various analytical solutions for the equilib­

rium and structure of quiescent prominences supported in the Sun’s magnetic field. The 

physical mechanisms by which these dense objects are supported against gravity are a key 

solar issue and must be studied in great depth if we are to develop our overall understanding 

of the Sun. In our work we have concentrated on magnetic configurations th a t are capable 

of providing such support, and by addressing relevant problems we have formulated and 

developed models to improve or further our ideas on these incredible features.

In Chapter 3 we extended the twisted flux-tube model, originally form ulated by 

Ridgway, Priest and Amari (1991), to aUow for the support of a finite  height prominence 

sheet. This model is particularly encouraging as it provides good agreement with many 

of the associated observations. For example, twist is often in evidence in large quiescent 

prominences, especially whilst erupting; the inverse-polarity field commonly associated with 

quiescent prominences is a  natural consequence of the geometry of the tube; the helical field 

lines provide a means of shielding the cool prominence m aterial from the hot neighbour­

ing environment and give a possible explanation for the surrounding coronal cavity; and 

since the solution perm its a shearless outer edge, the tube can be m atched onto a potential 

background configuration (Schonfelder and Hood, 1995), for example a large-scale helmet 

stream er, so th a t the tube forms the cavity within its base (see Low and Hundhausen 

(1995)). Also, the magnetic field in the sheet increases with height by a factor of approxi­

m ately 50% which is in good agreement with the observations of Rust (1967) and Leroy et 

al. (1983).

By using an expanded scale and fitting a suitable magnetic field through the inter­
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nal prominence region, we have dem onstrated tha t cool, dense prominence solutions may 

be smoothly m atched onto the external flux tube solution, thus resolving the current sheet 

and providing a more detailed description of the prominence interior. Realistic tem perature 

and density profiles are achieved and they m atch onto the external values at both the edges 

and the ends of the prominence. In addition, Longbottom and Hood (1994) have examined 

the stability and find realistic stable and unstable loop lengths for observed prominence 

param eters when the axial magnetic field does not vanish.

In Chapters 4 and 5 we proposed a scenario for the formation of the large-scale 

polar-crown field and presented solutions for the subsequent equilibrium in which a promi­

nence has formed. Given a typical distribution of photospheric magnetic field, we found 

th a t it is possible to  obtain a pre-prominence configuration which includes a location of 

dipped magnetic field. This represents an advance over the preliminary calculations of 

Anzer (1994) as he was unable to  find such dips.

The overall topology is tripolar (as the region of bipolar flux interacts with the 

large-scale source of unipolar field at the pole) which naturally gives rise to inverse-polarity 

solutions. For a  more convincing geometry, the effect of curvature of the solar surface should 

be included, although this will not significantly alter the model’s main qualitative features. 

Also, the field is restricted to two dimensions but this does, at least, give an indication 

of the basic configurations possible. We suggest tha t the effect of the solar wind should 

be incorporated, as this tends to stretch the field out at large distances and preserves the 

correct behaviour of the polar field.

The final solution consists of a curved prominence sheet supported in the location 

of dips; the equilibrium requires an enhanced magnetic pressure in the region below the 

prominence to  support the component of weight in the normal direction. The stability of 

such a solution has yet to be examined, though it is liighly likely th a t the m aterial in the 

upper part of the sheet, which is largely slanted and not contained in significant dips, will 

be prone to  sliding away, along the field lines to  the surface. The field there is anchored in 

the dense photosphere but the field on the other side of the prominence is open and does 

not return  to the surface. It may still be line-tied, however, the effect of the solar wind 

possibly providing additional stability.

The model presented here does not reflect the common idea of a  prominence within 

a symmetric, large-scale helmet stream er and so new evidence is clearly required to  check 

if this scenario is a real possibility. Examples of slanted prominences a t the hmb have been
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observed but they are not particularly common; it would be a valuable exercise, therefore, 

to  make a detailed search of polar-crown prominence observations to  see if they differ in 

this way from their lower-latitude counterparts.

In Chapter 4, we were able to construct curved prominence sheet solutions by 

adapting the general m ethod of Titov (1992) and superimposing a suitable horizontal promi­

nence field. In this way, a whole class of prominence solutions with asymmetric boundary 

conditions may be generated and so this technique clearly provides a very useful application 

of his method.

The potential model of Chapter 4 gives no information about the internal promi­

nence structure and so we have studied methods, in Chapters 6 and 7, in which an internal 

m agnetohydrostatic solution may be incorporated. Previous internal models have only con­

sidered vertical structures and so we have formulated a solution, based on the original model 

of Kippenhahn and Schliiter (1957), which gives the equilibrium of a sheet of slanted m ate­

rial. Once obtained, this solution represents a general cut across a curved prominence sheet 

and so, by allowing for the variations along the sheet, it is possible to  m atch the internal and 

external solutions together. The drawback with this method is th a t it is only an approxi­

m ate solution and so the field is not necessarily divergence-free. A way of avoiding this is to 

reformulate the matched solution by writing it in terms of its constituent components. In 

this way the composite solution is w ritten as a linear combination of the internal solution, 

the external solution and a solution for the region of overlap. It can be shown th a t aU of 

these components are divergence free thus resolving th a t particular discrepancy. Another 

problem arises, though, since the solution breaks down near the end-points of the sheet and 

so a separate treatm ent m ust be applied there. Hood (1995) has suggested a possibility by 

considering an expansion about the end-points, although this work is yet to  be completed 

and so remains as a possible future extension.

We have dem onstrated this alternative matching technique by considering a simple 

example with a vertical sheet, but it is clear th a t this may be applied to more general, curved 

situations. Once formulated, the solution may be used to find expressions for the current, 

pressure and density and these can be matched onto a background hydrostatic atmosphere 

as we dem onstrated in Chapter 7. Another extension to this would be to drop the internal 

isotherm al assumption and solve for the field with a given tem perature variation.

It is worth stating th a t aU of the models we have presented are either two- 

dimensional or invariant in the axial direction and so they represent a fairly crude, yet
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nonetheless invaluable, approximation. Little work has been done on modelling promi­

nences in three dimensions, although Wu and Low (1987) and Démoulin, Priest and Anzer 

(1989) have made encouraging progress; this certainly presents a challenge for future work. 

In order to  advance with the fundam ental question of prominence support, it is often nec­

essary to neglect many of the other inherent properties such as fine structure, feet and 

internal plasma flows. However, these are aU im portant features and we must continue to 

study them  separately with the ultim ate aim of constructing a global, integrated model 

which win provide a better overall understanding. In addition, one also needs to  consider 

the overall development, from the formation stage to the eventual eruption, to  help provide 

explanations for other related events such as flares and CM E’s. Until such time, the study of 

quiescent prominences remains an enormous challenge to both the theorist and the observer 

and we may continue to  wonder about the mysteries behind these intriguing entities.
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A p p e n d ix  A

R ed u ction  o f E quation 4.9 to  th e  

X -poin t C ase and R ecovery o f th e  

P u rely  P oten tia l Solution

We investigate the behaviour of the general solution (4.9) as the current sheet 

solution is reduced to  the case containing an X-type neutral point.

As wi^W 2 WN = {xN ,yN ,^N ,yN )  and so

Q{w) -» (w -  w ^)(w  -  w n ) = {w -  xjsff' +  yN •

The integral

L (6 -  w)Q(^)
may be transform ed into a contour integral as follows:

((( 1. r yl im
f+ ^ d j ( f  r

J - R  (f -  w)Q(C “ H-So { j c  U  -  w ) Q U )  J rr ^ coJ - r  ( (  -  w )Q (^ )  R-^oo { J c  ~  w) Q{ ^)  J r { ^ - w ) Q i O

where F =  {^ G C : j ^ |=  R, Im (^) > 0}

and C =  {^ G C : ( (  € T) U ( - jZ < Ae(^) < 7Z)} .

Using complex variable theory the integral evaluated on the semicircle, F , vanishes 

as the radius, R , of the semicircle tends to  infinity. Thus, the evaluation of I is reduced 

to  finding the residues of the contour integral (contained in C ), i.e. the residues in the 

upper-half plane.



159

There are two simple poles, at ^ =  w , and ^ — wjv- Thus,

/  + 00 

-OO

1

=  2wi res
L(6 - w ) 0 (6)

=  27TZ +
1

.Q{w) (WN -  w){WN -  Wn ).
and so

S M  = _ 1 q ( ^ ) /H !Ù Ë s 5  +  ?JLi?y2 +  ™ Q '( 0)
 ̂  ̂ ^ l Q ( » )  2iyN{wN -  w)  w:Q(Q) ^  wQ^(0)

_  D A, , î-Syû , irn Q(w) imQ'(O) Q(w)
"°V w  “ Q(o) Ç2(0) W ■

Collecting powers of w gives

B (w ) = iByo 2im xN  
+

VN i^N +  Vn )^
W  + Bvo |1  -  i —  1 +

4im xj^
+

im
W ‘

To recover the purely potential solution, i.e.

B{w ) =  ByQ +  iBxo +
im

we require th a t the 0 (w) term  is zero and th a t the constant term  reduce to  Byo +  iB^o- 

Hence,

—  +  Ï  i ' T ' l  ,2 = O ^ R e \ B y o  + iB .o  + ^ >  = 0 .  VN + 3/̂ )2 I I
Also,

_  R  _L „
^  VN  X%  +  v I j { x j f  +  7/^)2 ■

Using (A 1), this simplifies to

(A l)

m

and it follows from here tha t
im

I m  ■{ Byo T  iBxo H 5- / — 0 .
wN

(A2)

Hence, from equations (A 1) and (A 2) we deduce th a t the expression for the field 

reduces to the purely potential case iff Wjv is a neutral point of this configuration.
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A p p e n d ix  B

D erivation  o f th e  E quations th at  

D eterm in e th e  E nd-points o f th e  

Current Sheet

As w oo we may make an expansion of r^) as follows:

Q{w) — [(w -  Wi)(w -  Wi)(w -  W2)(w -  W2)]2

=  'Up'

— 'W

w w
Xl +  X2

lU

Thus,

- 1

B{w )  =  I mwQ'iO)

=  — (w'^ -  (æi +  X2)w +  
7T \

Q (0)tü2 Q'^(0)'w

Q ( 0

+
m7T 77î7rQ'(G)

G(0)w2
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Now we must fix the asym ptotic behaviour of this field (as w oo) for the 

following two cases:

1
(a) Neutral sheet : B (w )  —» Ow +  Ow H------- / Byo ,

TTV) J —CO

1 /’+°°
(b) Prominence sheet : B(w) -» Ow +  iB^ow  H / Byo .

TTW J —oo

Thus, the first equation for the end-points, determined by the 0 (w ) term , is the 

same for both cases, i.e.

The second equation is given by the behaviour of the constant term  (w*^), i.e.

where the upper and lower conditions correspond to  cases (a) and (b), respectively. Using 

(B 1) this reduces to

Finally, the third equation is given by the behaviour of the (w~^) term:

Using (B 1) the 0 (1 ) term s cancel and if (B 2) is applied there is much simplifi­

cation so th a t the th ird  expression is given by

j ' y - « . 1 + . , ,  « >

/-oo So ■ w P  ■ i
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A p p e n d ix  C

T reatm ent o f th e  Integrals in 

E quations (B 2) and (B 3)

As Ç 00, Q iO  ^  0  ( l  -  +  0 ( r " ) )

and so the integral in (B 2), namely

L  W ) " L  T ’
which is clearly divergent. Thus one should consider this integral in the sense of the principle 

value. It may be transform ed, however, to  a normal integral if we note th a t

f+ o o  c
p> I ^/+00 c

-CO-CO 6  ̂+  1
so we can combine it with the integral of (B 2) without altering the to ta l value. Hence,

p  / + “’ ( A  ae = d(
i-oo Vq(0  0  + 1/  ̂ i-oo (0 + i)Q(f)

Now there is cancellation of the cubic term s in the num erator and the integrand behaves as

as ^ oo. The integrand remains finite, however, at ^ =  0 and so the integral is convergent 

with a finite sum.
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Now, consider the integral in (B 3), i.e.

/+ “  e  -  Q io
Q ii)   ̂ ■

This too is divergent and so we must apply a similar treatm ent. For example, 

As ^ > oo, the integrand may be written:

( 0  + 1 )  [0  -  0  ( i  -  ^  + o ( r " ) ) ]  -  «X I +  X2) [o  ( i  -  ^  +  o ( r " ) ) ]

( 0  + 1)<3(«

The denominator is of degree four but the num erator simplifies to

+  1) [^(«1 +  X2 ) +  0(1)] -  (a’l +  Z2) [ f  -  6^(zi +  X2 ) +  0 ( 0 ]  ,

and so the third-order term s cancel as well.

Thus, this integral now behaves as

f+oo 2̂ f+ o o/+ 0 0  c - i  M

^  " y_oo r  '
as required.
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A p p e n d ix  D

N eu tra l Point E quations

Consider the expressions given by equation (4.19), i.e.

D ~  Vn  V N= -%  =    %----
^ x n Vn  ^Vn  2.Tjv

and

+If) •2«iv2/iV
Now if we make the following change of variables:

Xn  + Vn  = and —  =  5 < 0 , (D l)
V N

then the expression for is given by

and so

« =  -  \ / %  +  1 • (D2)

Similarly, may be written

2 2 ( / b V M - B . o )
=    /    •

1 +  +1  -

Rewriting (D 1) and using (D 2) and (D 3) it follows tha t

(D3)

^  ”  Bxq)
X N  = ----------- /    , V N  =  / ̂      • (D 4)

1 +  ( / %  +  ! -  B,o)2 1 +  ( y %  +  1 -  B ^ )2
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