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A B S T R A C T

M agnetic reconnection is a fundam ental physical process by which stored m agnetic 
energy m ay be released. I t  is already known th a t d ifferent reconnection regimes result 
fro m  changes in  the nature o f the plasma in flow  towards the reconnection site. In  th is 
thesis, we examine both  how the outflow  region responds to  changes bo th  in  the in flow  and 
ou tflow  boundary conditions and also how in troduc ing  com pressib ility  affects the results.

We find  th a t i f  the in flow  is converging^ the outflow  ve loc ity  is least, the w id th  o f the 
ou tflow  region is greatest and the ra tio  o f outflow ing the rm a l to  k ine tic  energy is greatest. 
A lso, there is one free outflow  param eter which would n a tu ra lly  be specified by the ve locity 
o f plasma leaving the reconnection site. We suggest th a t reverse currents seen in  num erical 
sim ulations may result from  the specification o f an ex tra  boundary condition.

In  add ition , we find th a t the m ain effects o f inc lud ing  com pressib ility  are: to  enhance 
convergence or divergence o f the in flow ; to  increase the m axim um  reconnection ra te  where 
the in flow  is converging; to  increase the flow  speed near the reconnection site where the 
in flo w  is diverging; to  give faster, narrower outflow  je ts ; to  increase variations between 
regimes in  the energy conversion and to  increase the ra tio  o f therm al to  k ine tic  energy in  
the ou tflow  je t.
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C H A P T E R  1 

IN T R O D U C T IO N

1.1 T h e  process o f m a g n e tic  reconnec tion

Studies o f m agnetic fie ld  reconnection have been pursued fo r m any years now, b u t there 

s t il l remains a great deal to  be learned about th is fundam enta l physical process. Its 

im portance lies in  its  a b ility  to  release stored magnetic energy, changing the topo logy of 

the  fie ld  and a llow ing lower energy states to  be accessed. I t  is though t to  be im p o rta n t 

in  m any different phenomena, b o th  in  astrophysics and the lab o ra to ry  (fo r reviews see, 

fo r example: Hones, 1984; P riest, 1984, 1985). To m ention a few examples, i t  m ay be 

occurring in  solar flares, at the dayside magnetopause and in  the geomagnetic ta il (see, 

e.g. Forbes &  P riest, 1982) . A  l i t t le  fu rthe r from  home, i t  m ay become im p o rta n t during 

star fo rm a tio n  and in  s te lla r coronae (Mestel, 1985; Bonnet and Dupree, 1981) and in  more 

exotic topics such as structure  in  je ts and magnetic viscosity in  accretion discs (Asseo & 

Sol, 1986) .

Reconnection o f m agnetic fie ld lines occurs in  sm all regions o f high m agnetic fie ld 

grad ient, where the ‘frozen in ’ approxim ation breaks down and the fie ld  diffuses through 

the plasma. Thus, when as shown in  Figure 1.1, tw o regions o f opposite ly directed fie ld 

lines are b rought together, reconnection can occur in  the current sheet (or d iffusion region) 

which form s between them . The newly reconnected fie ld lines are h igh ly  curved and 

accelerate plasma away from  the diffusion region at approxim ate ly the A lfven  speed. Thus, 

a lthough the reconnection takes place in  a very small region, the resulting reconfiguration 

o f the fie ld lines affects the global structure o f the magnetic fie ld  and releases energy from  

i t  in to  the therm al and k ine tic  energy of the plasma.

E m anating from  the diffusion region are two pairs o f slow-mode shocks; these cannot 

propagate in  a d irection  perpendicular to  the field and so stand in  the flow , increasing 

the ve loc ity  and decreasing the magnetic field strength o f the i>lasma which flows through 

them . In  w hat follows we shall consider these shocks to  d iv ide the region o f studv in to



Figure 1.1; F ieldlines (so lid) and streamlines (dashed) in  Petschek’s reconnection model.

tw o parts: an upstream  p a rt, where the fie ld lines are m oving towards the d iffusion region 

and a downstream p a rt where they are m oving away from  it .

The early models o f reconnection have been reviewed several times (see e.g. Sonnerup, 

1979; Hones, 1984; P riest, 1985; Shivamoggi, 1985) and we w ill no t a ttem p t to  repeat 

th is  here. W h a t we shall do instead is to  summarise b rie fly  those papers which are o f 

p a rticu la r relevance to  the w ork in  th is  thesis.

1.2 Some basic definitions

Before em barking on a m athem atica l description o f the reconnection process, i t  is w o rth  

gathering together the basic equations and definitions th a t w ill be used in  the rest o f th is 

thesis. A l l  o f the models th a t we w ill be discussing are based on the M H D  equations. 

Thus, fo r a compressible, steady-state, in fin ite ly  conducting plasma, we have:

V  - B  =  0 

E  — - V  X  B  

{v  • V )p  -f p( V  • v )  =  0 

p (v  ■ V )p  — 7p (v  • V )/9 =  0

p {v  • 'V )v  =  —V p  — V
2p

+  ( B .  V )

( 1.1)

(1.2)

(1.3)

(1.4)

(1.5)



Equations (1.1), (1.3) and (1.5) describe the conservation o f flu x , mass and m om entum; 

( 1.2 ) is a sim plified O hm ’s law  (which becomes E  v x  B  =  j / c r  i f  f in ite  res is tiv ity  is 

included) and (1.4) is an adiabatic energy equation. W ritte n  in  another way, (1.4) becomes

( v . V ) ^  =  0

which states th a t p j is a constant on a streamline. Equation  (1.4) can also be w ritten  

in  conservation form :

V . ( —^  -P  +  \pv '^)v  +  ^ 0, (EG)'7  -  1  ̂ p,

where 7 ^ / (7  ~ l ) = p  +  e i s  the enthalpy, e is the in te rn a l energy per u n it mass and 

E  X B } p  IS, the Poynting flux. Here, we have neglected ohm ic heating and losses due to  

ra d ia tio n  and conduction. F ina lly , we can w rite  the current e x p lic it ly  as

p j  — V  X B

In  (1.4) and ( 1 .6) 7  =  Cp/c„ is the ra tio  o f specific heats. We shall also use the follow ing 

defin itions:

1 . the sound speed, c,, is given by:

2 . the plasma beta, which is the ra tio  o f plasma to  m agnetic pressure, is given by:

3. the A lfven speed is:
B

Va —

4. the m agnetic Mach num ber is:

M  =  —  
Va

(where v is a typ ica l plasma speed);

5. the magnetic Reynolds num ber is:

(where 77 is the magnetic difTusivity]

R - i l
77



6 . the in te rn a l energy per u n it mass is:

e =  cJT — ~— —-T—; and (1.7)
(7  -  1)/)

7. the equation o f state is:
k s p T

p  ~  ----------
m

(where k s  is B o ltzm ann ’s constant and m  is the mean pa rtic le  mass).

I f  the plasma is incompressible, there are no density varia tions and these basic equations 

take a different form . The incompressible l im it  can be obtained rigorously by tak ing  

Cs/v —> 00 (or, equally, 7  00). Thus, ( 1.1), ( 1.2) and (1.5) are unchanged, while,

assuming th a t the pressure pertu rba tions are fin ite , (1.4) gives

( v .V ) p = 0 .  (1,8)

Thus, (1.3) becomes

V .v  =  0. (1.9)

and we find  th a t pressure pe rtu rba tions are no longer associated w ith  density pe rtu rba 

tions. From  the steady-state ad iabatic heat equation:

p ( r .V ) e  — ~ ( v .V ) p  =  0 (1.10)

we can see th a t, in  the  incompressible l im it ,  i f  p and p are fin ite , then there w il l  be no 

changes in  the  in te rna l energy fo llow ing  the flow . In  th is  case, the energy equation s im ply 

reduces to  the equation o f m o tion  (1.5). In  add ition , since from  (1.10) and ( 1.8) we know 

th a t

V . ( e r )  =  0 ( 1.11)

then ( 1 .6) becomes:

V .
,  ,  2 ,  E x B
{p +  ^pv^)v  -t- - = 0, (1.12)

A J

A lthough  setting 7  —* 00 does recover the incompressible forms o f the above equations, 

th is  is pure ly a m athem atica l device, since in  rea lity  7 is o f order one. Another way o f 

ob ta in ing  th is  l im it  is to  note th a t i f  /? >  1 then, since c l / v \  =  7 /? /2 , th is  im plies th a t 

Va  <  Cg. I f  a ll the plasma speeds are very much less than the A lfven sj^eed, th is in  tu rn  

im plies th a t v «C va <C Cg. Thus, i f  is large, we would expect the plasma to  behave as i f  

it. were incompressible. Th is does no t, o f course, mean th a t in  an incompressible plasma 

(5 has to  be large: i t  would equally well be possible to  have v <  Cg and Va / cs =  0 (1 ) .
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c
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Figure 1.2: The Sweet-Parker m odel o f reconnection.

I f  we use /? —> oo to  obta in  the incompressible l im it ,  then we w il l  have an incompressible 

plasm a in  which j3 is large. Th is is ra ther different from  ta k in g  the l im it  7  —> oo, where 

we could have an incompressible plasma w ith  (3 a rb itra ry .

1.3 Previous models

Studies o f m agnetic reconnection can be traced back to  the early the models o f Sweet 

(1958) and Parker (1963) . Here, the magnetic fie ld  is ann ih ila ted  in  a current sheet 

form ed when tw o regions o f opposite ly directed m agnetic fields are brought together. I f  

p,- and po are the pressures at the in flow  and outflow  o f the sheet (æ =  0 , \y\ =. t j 2 and 

|.r| =  T / 2 , p =  0 in  F igure 1,2) and pjq is the pressure at the neu tra l po in t (æ =  0 , p =  0 ), 

then pressure balance across the sheet requires th a t

Pi ^ ^ = P N

For the ou tflow ing  plasma, B e rno u lli’s equation gives (since, to  lowest order, there is no 

m agnetic fie ld)

, pi’o 
P N  =  Po  +  —

E quating  the in flow  and outflow  pressures gives the outflow  speed as



T im s plasma flows out o f the current sheet at a speed equal to  the A lfven  speed at the 

in flow .

Assum ing incom pressib ility, conservation o f mass gives

I  =  (1 13)

such th a t, fo r small reconnection rates, the current sheet is long and th in . The w id th  

o f the sheet is determined by a.balance between the ra te  a.t w h ich the m agnetic fie ld  is 

convected in  and the rate at which i t  diffuses away. I t  is given by

V
V i

Thus from  (1.13)

where Rm i =  LvAiJt).

T h is  h igh ligh ts the m ain problem  w ith  the Sweet-Parker m odel. For most astrophysical 

applications, the global scale length , L q (which in  th is  m odel is equal to  the leng th  o f the  

current sheet, L )  is very large and correspondingly the reconnection rate M,- is very sm all.

Th is  d ifficu lty  was overcome by Petschek (1964) who realised th a t slow-mode shocks 

(or th e ir incompressible equivalent, discrete slow-mode compressions) would emanate from  

the d iffusion region (see F igure 1 .1). These stand in  the flow , decreasing the m agnetic 

fie ld  strength and increasing the ve loc ity  o f the plasma which flows through them . The 

boundary layer between these tw o shocks is very th in  and so, fro m  1.1

and

Petschek assumed th a t

1 . the outflow  ve locity is a function  only of

2 . pressure gradients can be neglected;

3. the plasma is incompressible

and obtained from  the p-component o f (1.5)

BiBopViVQ = -------



Thus, silice from  the steady-state assumption, the electric fie ld is un ifo rm , we have V{Bi =  

vqB q and so the outflow  ve loc ity  is ju s t VAi> This is ju s t equal to  th a t from  the Sweet- 

Parker current sheet, a lthough in  th a t case, the plasma acceleration was due to  the action 

o f pressure forces, whereas in  th is  case i t  is due to  the tension in  the reconnected field 

lines.

Petschek then calculated the fie ld outside the boundary layer by no ting  th a t since the 

m agnetic fie ld inside is known (and the norm al component o f the fie ld m ust be conserved 

across the shock), then the norm al component o f the fie ld on the in flow  boundary o f the 

shock is also known. Since the m agnetic field in  the in flow  is po ten tia l th is  is sufficient to  

specify the in flow  field.

In  Petschek’s model, then, the d iffusion region could be much smaller than the global 

scale length and so m uch la rger reconnection rates could be achieved. Petschek estimated 

the m axim um  reconnection ra te  possible w ith  th is  m odel b y  evaluating the change in  the 

m agnetic fie ld strength as i t  approached the diffusion region. He found th a t

B i  =
7T \  L

P u ttin g  B i  =  H g/2 gave Petschek a m axim um  reconnection rate of

7T
8 In  R m e

which is much larger than  the Sweet-Parker value and lies between 0.01 and 0 .1 .

One extension o f Petschek’s m odel which is p a rticu la ry  relevant to  the w ork in  the next 

few chapters is th a t by Green &  Sweet (1967). They considered the effects o f a non-uniform  

in flow  and concluded th a t i f  the  in flow  magnetic fie ld decreases w ith  distance from  the 

p-axis, then the downstream fie ld  w il l  be curved in  a d irection  opposite to  th a t in  Figure 

1.1. Th is  requires a reversal o f the tangentia l magnetic fie ld  d irection  at the shock, bu t, 

as shown by K a n tro w itz  and Petschek (1966) there are no stable, physical solutions o f the 

conservation equations fo r shock waves w ith  th is property. Green and Sweet concluded 

from  th is , th a t, in  the generalised case o f a non-uniform  in flow , Petschek’s solution is 

inva lid .

Petschek and Thorne (1967) resolved th is d ifficu lty  by suggesting th a t in  cases where 

the downstrean solution required a reversal in  B f  th a t th is  could be achieved by fin ite- 

am plitude in term edia te  waves which w ould stand in  the flow , ahead o f the slow shocks. 

These waves would also be required i f  there was a comi^onent o f the field out o f the x — p 

plane, or i f  there was an asym m etry across the .r-axis.



M ore recently, the effects o f asymmetries have been investigated by Semenov et al. (1983b) 

and Heyn et al. ( 1986,1988:p rep rin t). They find  th a t ro ta tiona l (A lfven) waves, slow 

shocks, rarefaction waves (expansion fans) and a contact d iscon tinu ity  may occur, depend

ing  on the in flow  conditions. A lso, Semenov et al. (1983a) have produced a compressible 

fo rm  o f Petschek’s model, inc lud ing  a lowest-order downstream solution.

Even higher reconnection rates than  those in  Petschek’s model (possibly o f order one) 

were proposed by Sonnerup (1970) (see also the fam ily  o f models by Yeh and A x fo rd  (1970) 

o f which Sonnerup’s is the on ly  nonsingular member). In  th is  case, the in flow ing  fie ld lines 

are s tra igh t, ra the r than curved as in  Petschek’s model, and the necessary change in  the ir 

d irection  is accomplished by two sets o f waves: discrete slow-mode compressions s im ila r to  

Petschek’s and, upstream  o f these, slow-mode expansion waves. A lthough th is  m odel has 

the advantage th a t i t  is exact, i t  has the disadvantage th a t the expansion waves m ust be 

generated at corners in  the in flow  region. They trave l inwai'ds to  intersect at the diffusion 

region. I t  is d ifficu lt to  th in k  o f a physical s itua tion  in  which tli is  would arise na tu ra lly .

Vasyliunas (1975) suggested th a t a Sonnerup-like solution could be achieved w ith  a 

slow-mode expansion spread th roughou t the in flow  region. In  Petschek’s model, on the 

o ther hand, the in flow  undergoes a fast-mode expansion and Vasyliunas suggested th a t 

the differences between the tw o models could be understood in  terms o f differences in  the ir 

in flow  regions. I f ,  as in  these cases, the density is un ifo rm , then the ra tio  o f the magnetic 

fie ld  strength to  the length o f a fie ld  line  is a constant (since B / l  =  p). For Petschek-like 

reconnection (see F igure 1.1) he assumed th a t as the plasma flows in  towards the d iffusion 

region, the fie ld  strength is un ifo rm  at e ither side o f the region, b u t decreases on the 

axis. Thus I decreases and the streamlines m ust converge. The pressure is, however, also 

un ifo rm  at e ither side, so i t  m ust decrease on the axis. The fact th a t th is fa ll in  pressure is 

linked  w ith  a decrease in  m agnetic fie ld  strength means th a t th is  is a fast-mode expansion. 

On the other hand, fo r Sonnerup-like reconnection, the fie ld  is un ifo rm  on the axis, but 

increases at e ither side. Thus I increases and the streamlines must diverge. Since the 

pressure is also un ifo rm  on the axis, th is  means th a t there m ust be a pressure drop on 

e ither side. Hence, since we have a fa ll in  pressure linked w ith  an increasing magnetic 

fie ld, th is  is a slow-mode expansion.

Th is  idea, th a t d ifferent reconnection regimes result from  different in flow  conditions 

was explored fu rthe r by Priest Sz Forbes (1986) who developed a whole fam ily  o f incom 

pressible models o f which Petschek-like and Sonnerup-like soutions are pa rticu la r cases.



I I

(i)

Figure 1.3; D ifferent classes of solution (from  Priest Sz Forbes 1986).

The different members o f the fa m ily  are characterised by a param eter 6q, which essentially 

is a measure of the transverse ve loc ity  on the in flow  boundary. For example, bo =  0 gives a 

Petschek-like solution, bo =  1 gives a Sonnerup-like so lu tion  and 0 <  6q <  1 gives a hyb rid  

regime w ith  a fast-mode expansion on the y-dods and a slow-mode expansion at the edges 

(|æ| =  1) o f the system (see F igure 1.3). Also, 6q <  0 gives slow-mode compressions w ith  

slower reconnection rates , while  bo > 1 produces slow-mode expansions known as a 'flu x  

p ile -up ’ regime, in  which the reconnection rate can be faster, the diffusion region is long 

and the flow  diverges as i t  comes in .

In  the lim it  as 6q becomes very much greater than one (a lthough here nonlinear effects 

become im p o rta n t) i t  seems th a t the solutions tend towards the stagnation po in t flow  

solution o f Sonnerup and Priest (1975) (see also Parker (1963) and Priest and Sonnerup 

(1975)). Th is is an exact solu tion o f the resistive M H D  equations fo r field ann ih ila tion  in  

a current sheet. The fie ld lines are stra igh t and the flow  diverges as i t  comes in , fo rm ing  a 

stagnation po in t at the neutra l po in t. The reconnection rate is a rb itra r ily  large and there 

is both  a slow-mode expansion at low  values o f y and a fast-mode compression, associated 

w ith  nonlinear effects, at large values o f y.

M ore recently, G ra tton  a l  (19SS) have generalised the stagnation po in t flow  solutions 

to  allow  for viscous effects, while Heyn ct a l  (1988, p re p rin t) have introduced a norm al 

component o f the magnetic fie ld as a pe rtu rba tion  and solved the resu lting equations



num erically.

The Priest-Forbes fa m ily  o f models has therefore been an im p o rta n t step in  our under

standing o f previous reconnection models and the ir re la tion  to  each other. Since i t  form s 

the basis fo r much o f the w ork in  th is  thesis, we w ill devote the next section to  a b rie f 

sum m ary o f the m ethod and results.

1.4 T h e  P rie s t-F o rb e s  fa m ily  o f re co n n e c tio n  m ode ls

We here review brie fly  the m ain  features o f the Priest Sz Forbes model o f reconnection, 

whose in flow  region occupies the region |.r| <  1, 0 <  y <  1. The solution is obtained by 

expanding the basic M H D  equations fo r an incompressible plasma (see (1.1), (1.2), (1.5) 

and (1.9)) in  powers o f the in flow  M ach number, M ^, such th a t

n =  Vo +  cv i - f e^V2 +  • • •,

where v i / vq ~  0 (1 )  etc. and e is a small param eter o f order Me. Expanding about a 

un ifo rm  magnetic fie ld ( B q =  B q̂ x ) and a sta tionary plasma (%  =  0) in  the in flow  region

therefore gives as a solution o f (1.1) to  (1.4) fo r the m agnetic fie ld, electric current, plasma

pressure and plasma velocity:

B ix  =  X )  [(M +  J )7t (1 -  y)] -  cos [(?z - f \)'nx\^ }  , (1.15)
n = 0

oo

E ly  =  a „ cosh [(?i -F | ) 7r ( l  -  y )] sin [(n  |);rœ ] , (1.16)
n = 0

oo

=  X ]  ^rihn{n -f- \ ) tî cosh [(?z -t- |)7 t(1  -  y)] , (1 .17)
n = 0

2 oo r 1
Pi =  " i T  sinh (n  |)7 T( 1 -  y) , (1.18)

V2y =  (1.19)

where

V 2x -  - M e  [i?iy -  AOiæ] , (1.20)

4:M e  sin 1̂(7?- -(- ^ )7tX|
(1.21)

L {n  +  cosh ĵ (î?. F  l ) 7rj

IVe have re-cast these equations in  the dimensionless variables B  =  B fB e ,  v —

P =  P/Pe, j  =  3 / Be and p =  p/pe- We ide n tify  Bq. t 'l ,  Po and po w ith  the values o f the 

m agnetic fie ld strength, ve loc ity  and pressure at large distances from  the diffusion region 

and denote them by a subscript e (e.g. Bq =  Be).

10



B j\t is given by MeB^, L  is tlie  length of the diffusion region and the global scale length 

(Xg) is taken as un ity . As noted by Jardine k. Priest (1988a) the second-order m agnetic 

fie ld  component m ay then be obtained from  the solution o f

d p

As can be seen from  (1.15), (1.17), (1.18), or (1.20), the boundary conditions on the 

sides X  =  ±Xe, namely the functiona l forms o f B ix ,  j i ,  P i or determ ine the values of 

the constants bn- In  pa rticu la r, we here fo llow  Priest k  Forbes in  setting =  bo fo r a ll 

n. A n  im p o rta n t po in t to  note about these solutions is th a t, because o f the m ethod used 

(a p e rtu rb a tio n  about stra igh t fie ld lines), they are on ly va lid  fo r fie ld  lines w ith  a small 

degree o f curvature, of the order o f Me- Because the discrete slow-mode compression 

can on ly advance in to  the plasma at a speed p ropo rtion a l to  the norm al component o f 

the m agnetic fie ld, B]\r, the position at which the wave w il l  be s ta tiona ry  depends on 

the curvature o f the upstream magnetic field. As a resu lt, we would expect the wave 

to  advance a distance o f the order o f Mg, which w ill therefore define the w id th  o f the 

downstream  region.

One fu rth e r rem ark about these solutions concerns the boundary conditions used i.e.

1. B i x  even in  x  (and therefore B iy  odd in  z )

2 . d B i y j d x  =  0 on z =  1

3. B ix  “  9 on y — 1

4. B iy  ~  f ( x )  on y =  0 

where
f ( x )  =  2X?Ar X <  z <  1

=  2 B j\ rx fL  0 <  X  < L

This choice o f B n  was made from  considerations o f the speed o f the shocks. I t  is used to  

determ ine the value o f and w ill be used la te r in  the ju m p  relations.

Using these solutions. P riest and Forbes were able to  evaluate the fie ld strength at the 

entrance to  the diffusion region, B {,  from

B i  =  i?g +  0 )
0C»

~  Be d- X /  ^^n{bo — l )  sinh[(7?- +  ?)/r]. (1.22)
>1 = 0

11



Now, since the e lectric fie ld is un ifo rm ,

V iBi =  VeBe (1.23)

and

( A ) '  (1.24)

Hence, fo r each value o f bo there is a unique re lationship between and M ,. Thus, for 

solutions w ith  5o <  1 there is a"^maximum value o f Me, while fo r solutions w ith  &o >  1

there is a m axim um  value o f M { .  For the case bo =  I  there is no change in  the magnetic

fie ld  on the y-axis and so B{ =  Be-

The length  o f the diffusion region can also be calculated from  (1.24). The balance 

o f d iffusion and convection o f m agnetic fie ld lines w ith in  the diffusion region gives its  

thickness as

£ =  r i /v i  (1.25)

w hile  mass conservation gives

Lv i  =  ivA i  (1.26)

E lim in a tin g  £ from  (1.25) and (1.26) gives fo r the length o f the diffusion region:

r _  V V A i

vf

or, from  (1.23)

L =

Thus (1.24) gives

The m ain result, then, from  th is  piece o f work is th a t the in flo w  boundary conditions 

are crucia l in  determ ining the type  o f reconnection which is tak ing  place and hence not 

on ly the fo rm  o f the solutions bu t also the reconnection rate itse lf.

12
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C H A P T E R  2 

W E A K L Y  N O N L IN E A R  T H E O R Y

2.1  In t ro d u c t io n

The dem onstration by Priest and Forbes o f the role o f the external boundary conditions 

in  determ ining the reconnection regime raises some im p o rta n t questions about the recon

nection process. For example, given th a t the upstream  boundary conditions determ ine 

the fo rm  o f the upstream  so lu tion  and the reconnection rate, w hat is the role o f the 

downstream boundary conditions? In  some num erical experiments (e.g. Biskamp (1986)) 

conditions are specified at b o th  the upstream and the downstream boundaries and cer

ta in ly  the results do not appear to  resemble those o f ana ly tica l models. Another question 

then m igh t be whether we are free to  prescribe anyth ing  downstream and i f  so, w hat 

are the effects o f d ifferent choices? How does the choice o f in flow  parameters affect the  

downstream solution?

In  th is  chapter we shall answer these questions by find ing  a solu tion fo r the downstream  

region and m atch ing i t  to  the existing  upstream solution. Th is m atching is carried ou t 

using the ju m p  relations across the wave which separates the tw o regions. These coupled 

solutions then give a global p ic tu re  o f the reconnection process and show not on ly how the 

downstream region responds to  changes in  the in flow , bu t also how a ltering the downstream  

boundary conditions affects the result.

2.2  T h e  d o w n s tre a m  re g io n

For th is  region also we expand (1.1), ( 1.2 ), (1.5) and (1.9) in  powers of in  th is  case 

about a un ifo rm  flow  w ith  uoz =  the external A lfven  speed. In  add ition , since the 

w id th  o f the region w ill be o f order i\/e , we rescale the y-coordinate as y — ey', where e is 

a small param eter o f order 3/e. The lesu lting  form idable set o f equations can be reduced 

to  a tractab le  form  as follows. From  equations (1.1) and (1.9) we deduce th a t Doy is only

13 a



a func tion  o f x (as indeed are voy and Uiy, although in  th is  case sym m etry demands th a t 

these are bo th  zero everywhere). Then, using the result from  the jum p  re lations th a t 

Boy =  0 on y =  M ^x  (i.e. at the wave), ( 1.2) implies th a t

and

Bç)y =  0

B iy  =  MeBe (2.2)

(and hence from  ( 1 .1) Rqx =  Rox(y))-

The Ï/-component o f (1.5) gives po +  =  c i, a constant (again using the jum p

relations) and hence po =  po(y). The æ-component gives dBo^ /dy =  0 and hence from  

sym m etry

Boa; =  0 (2.3)

and

Po -  Cl, (2.4)

while fin a lly

P i =  P i{x ) ,  (2.5)

which is therefore determ ined by the jum p relations.

We m ay therefore reduce the expanded forms o f (1.5) to  ( 1.1) to  five equations:

(2.1)

^  =
1

pVAe ( / i / ) ) l/2
OBi^  

dy  ’ (& 6 )

"^Ix — (2.7)

dp ’ ( 2 .8)

^  -
d B 2y 

dy  ’ (2.9)

d
t ÿ P2 + % =  0 .

From  (2.7), (2.9) and (2 .6 ) we can obta in  a single equation fo r B\^^

which has the general solution

H i.r( .r , y) =  f i y  -  Mex)  +  g{y  +  Mex) ,

(2 .10)

( 2 .11)

(2 .12)

14



where /  and g are a rb itra ry  functions.

The pa rticu la r form  o f th is  so lution, in  which the ju m p  relations are used as a boundary 

cond ition  on the wave, is outlined  in  A ppend ix A . The essential result, in  the lim it  {L  <  1) 

where the length o f the d iffusion region and hence its  influence on the downstream solution 

is neglig ib le, is th a t over the greater pa rt o f the downstream  region:

‘1
2M,

-{y +  ÀîeX) i y  -  Mex)

I
a „ sinh +  |)7r] S — cos

+  cos

2Mg
{n  +  ^ )7r(p  +  M çx)

( n +  l ) - { y  ~  Mex)
(2.13)

and

— , ) l /2( ^ p ) l /2 2M ,
■{y A M ex)

2Af,
CO

■(y ~  M ex)
-

g  a„  sinh [(n  +  1 ) jt ]  h o  -  cos

(»̂  + I M y rJ 4 i Ol+oos[(n + l H } ,

(71 +  l ) i r { y  +  M ^x )

— cos (2.14)

where a superscript u refers to  a q u a n tity  measured ju s t upstream o f the wave, on p =  0 

o f the upstream  solution. In  add ition , we have from  the ju m p  relations:

Po — Pe +  — ,

and

B.

— -----   sinh [(?% +  k )7r l cos [(?i +  ^)rcx
^  n = 0

w hile  Am pere ’s law  ( j  =  V  x  B f / j , )  gives

pjo

(2.15)

(2.16)

(2.17)

and hence from  (2.13)

//■Jo — —
f

y i  cin{n +  i ) 7Tsinh [(??. +  h)-J < sin
(n + y)"(p + M^x[  

234

— sin
(77- +  y )"  (p — 3 /t.r

234 (2.18)



We m ay also find  V2y from  (2 .6) and (2.8):

=  (2-19)

while (2.7) gives

B 2y {x , y )  =  (2 .20)

where a rb itra ry  functions o f in tegra tion  have been removed by invok ing  sym m etry or by 

using the jum p  relations.

A ll th a t is needed now to  complete the solution is a knowledge o f the exact fo rm  o f the 

ju m p  re lations and th e ir role in  lin k in g  the upstream and downstream  solutions.

2.3 T h e  ju m p  re la tio n s

I f  we assume a steady-state, two-dimensional, incompressible plasma, then the ju m p  rela

tions m ay be obtained by in teg ra ting  (1.1), (1.2),(1.5) and (1.9) across a one-dimensional 

wave to  give (e.g. Jeffrey &  T a n iu ti, (1964))

U,! =  '^An^

[Ufx] =  0 ,

[■ŷ ] =  — (^jpp/2 [Bt]->  ̂ (2 .2 1 )

[R„] = 0,

[ p + f ]  =  0 .

where vau is the A lfven  speed based on the norm al component o f the m agnetic field, 

subscripts n  and t  refer to  components norm al to  and transverse to  the wave respectively 

and [AT] denotes the change in  a quan tity  X  on crossing the wavefront.

W rit in g  these in  terms o f x  and p-components and expanding in  powers o f gives 

(see A ppend ix  B fo r details)

ta n  0:0 =  0 , ( 2 .22)

tana-i =  Me, (2.23)

ta n a 2 =  (2.24)

=  0, (2.25)

4 =  0 , (2.26)

' =

= 0, ( ^ 2 ^
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± B ^

=

K  = 

K  = 
K  =

Po =

P Î

P i

%  +  (PP)’ /^(»2,  -  ^2i ) ,  

0,

M ,{±B t -

p“  +
H'

% ) ,

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35) 

(2.3G)

where superscripts u and d refer to  upstream  and downstream , respectively, a  is the angle 

made by the wave to  the æ-axis (see F igure 2 .1(a)) and the ±  signs refer to  the orien ta tion  o f 

and (see F igure 2 .1(b )). Note the tw o possible downstream orientations, depending 

on whether >  0 and Uy <  0 or <  0 and Uy >  0 . In  order to  decide which are the 

appropria te  signs fo r the downstream solution obtained in  Section 2 .2 (b), we note from  

equation (A .9) in  Append ix A  th a t

+ Pi
C3,(/Zp)l/2 pvAe

a constant. A  choice o f the negative sign fo r B f^  in  (2.29) would then give B j^  =  a 

constant, which from  (1.15) is clearly incorrect; choosing the positive sign gives instead 

'^ix — ^  constant. In  add ition , from  (2.19) we have, using (2.29) and (2.35)

■̂2y — (p p )V 2 l
1

234
■{y +  Mex)

% 234
■{y -  Mex)

}■ (2.37)

which is positive. Hence the downstream solution is o f the fo rm  shown in  F igure 2 .2 . 

From  (2.37) and (2.27) we m ay also find  B^y'-

% (2.38)

From (2.24) th is  defines tan  Og and hence, by in teg ra tion  (since tan a  =  d y jd x  on the wave) 

the value o f a  at every po in t on the wave and hence the wave shape. Thus the position of 

the wave is eiven bv

Pi

P2

=  34 X  

3 4
Be

(2.39)

% - 3  /
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(a) Upstream

■ & - X

(b) Downstream

Figure 2 .1: The m agnetic fie ld and plasma ve loc ity  vectors.

(a) Upstream , (b) downstream  o f the wave (where a  is the angle made by the wave to  the 

.r-axis).
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(a) Sketch o f the fie ld lines and flow  

ve locity  vectors in  the downstream  region.
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-0-03

-0-06

■Iv,

o y

(b) V aria tion  o f the second-order ^/-component o f 

ve loc ity  V2y w ith  y a t æ =  1 .

F igure 2 .2 : The magnetic fie ld and plasma ve loc ity  downstream.
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Figure 2.3: V a ria tion  o f the shape o f the discrete slow-mode compression w ith  bo.

Y 2  sinh [(n  -f- | ) x ]  |~2& o  +  ^ ”  cos[(n +  i ) 7ra:] j(2.40)

F igure 2.3 shows the resu lting  shape o f the wave fo r several values o f bo.

2.4 The effect of varying upstream conditions

Now th a t we have the complete downstream solution to  firs t order, i t  is possible to  examine 

the response o f the so lu tion to  changes in  the upstream configuration. The general fo rm  

o f the downstream region is as shown in  F igure 2.2(a). To firs t order, the streamlines are 

s tra igh t and the m axim um  ve loc ity  is atta ined on the æ-axis (see Figure 2.4). We also 

find  th a t the fie ld lines are curved in  such a way th a t the tension acts to  propel plasma 

away from  the d iffusion region. Th is is in  fact w hat would be expected from  the work 

by Green &  Sweet (1967) (see also comments in  Chapter 1 ) since the upstream magnetic 

fie ld strength always increases vcith. x. To second order, the flow  is converging (see Figure 

2 .2(b)). The lowest order current density is always negative, decreasing in  m agnitude w ith  

X from  a m axim um  near the d iffusion region and increasing close to  the wave (see Figure 

2.5). The perturbed pressure (p i)  also decreases w ith  x, in  th is  case to  zero at x = l  (see 

Figure 2 .6 ).

Surprisingly, perhaps, to  firs t order, not only the pressure, bu t also the m agnetic field 

and current density are independent o f the type o f upstream configuration. This can be
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0 005 0-010
y

t  = 0

-2 4

Figure 2.4: P rofile  o f V\a; across the downstream region fo r several values o f 6q>

seen quite clearly from  equations (2.17), (2.13) and (2.18), which have no 6o-<iependence. 

In  add ition , since V2y involves on ly terms independent o f (from  (2.19)), i t  also w ill be 

insensitive to  the form  o f the upstream solution. In  fact, to  firs t order, the on ly downstream 

variable which depends on 6q is the ve locity (u i* ) : th is  increases in  m agnitude lin ea rly  

w ith  6o (see Figure 2.7) w hile  re ta in ing  the same profile  across the region shown in  F igure 

2.4. For >  0,3, we note th a t vix  is positive and the downstream  flow  is greater than 

VAei the A lfven  speed based on the upstream external m agnetic fie ld.

One other result o f a va ria tion  o f the upstream boundary conditions is a change in  the 

curvature and the position  o f the wave. W hile  to  firs t order the wave is s im ply s tra igh t, to  

second order i t  appears curved and varies w ith  6q as shown in  F igure 2.3. As bo is increased 

th rough a slow compression to  a flu x  pile-up regime, the wave closes down, m aking the 

downstream  region narrower, and its  cuiu'ature increases.

A ll  th is , o f course, has im m ediate im plications fo r the energy conversion process tak ing 

place as plasma flows through the reconnection site and its  dependence on the p a rticu la r 

upstream configuration. Th is w ill be discussed in  Chapter 4

2.0  T h e  effect o f v a ry in g  d o w n s tre a m  co n d itio n s

W h ile  the downstream solution is certa in ly affected by the choice o f upstream conditions, 

i t  is also sensitive to  the choice of conditions downstream. From  Section 2,3 i t  can bo
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(a) Across the downstream region (w ith  £C =  1).

10

-  -2 0 0

-400

(b) A long the downstream region (w ith  y — 0 ).

F igure 2.5: V a ria tion  o f the electric current ( / iio )  downstream.
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' - 0  06

- 0-12

F igure 2.6: V a ria tion  o f the perturbed pressure along the downstream region (w ith

y = 0).

• Vlxhe

- 0  8

<-5

-1 0

-15

-2 0

F igure 2.7: V a ria tio n  w ith  ho o f the perturbed downstream velocity I'la 

The ve loc ity  is measured at .r =  1 , ?/ =  0, and is the upstream A lfven speed.
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seen th a t the five jum p  re lations (2 .21) w il l not determ ine the six unknowns downstream 

(the tw o components o f ve loc ity  and magnetic fie ld, pressure and wave pos ition  (a ) )  since 

Va: is a rb itra ry . To lowest order, we have taken th is  to  be the external A lfven  speed, 

VAe, w h ile  the firs t-order choice is only restricted in  our analysis to  solutions which give 

a short d iffusion region (Z  «C 1), since in  th is case, B jx  ~  0 a t æ =  Z  and hence from  

(2.29) V i^ ~  Z"a;(Z, 0 )/(/i/?)^/^, which fo r Z  <C 1 is ju s t v a i , the A lfven  speed based on the 

m agnetic fie ld strength at the in flow  to  the diffusion region (fo r details see A ppend ix A ). 

Hence the downstream solutions we have considered so fa r are in  fact on ly a particu la r 

class fo r which these choices o f vqx and via; apply; a d ifferent choice would have given a 

d ifferent configuration.

In  summary, then, a free param eter exists in  the downstream  solution which may 

be specified by a boundary condition there. Th is  result supports the w ork by Forbes 

&: P riest (1987) who examined the role o f boundary conditions in  bo th  num erical and 

ana ly tica l models o f reconnection. From  a consideration o f the  characteristic slow-wave 

paths they also concluded th a t there is a free param eter downstream  (see also Soward 

&  Priest (1977) fo r an analysis o f the characteristics). T h is  essential result is unchanged 

by the inclusion of the effects o f com pressibility (see Chapter 5). In  the compressible 

case, there is an extra  jum p  re la tion  which is obtained from  the energy equation (which 

reduces to  the mechanical energy equation or m om entum  equation in  the incompressible 

l im it ) .  The inclusion, however, o f density as an ex tra  variable means th a t there is s t il l one 

undeterm ined free param eter downstream.

Th is is an extrem ely im p o rta n t po in t to  bear in  m ind  when in te rp re ting  numerical 

models o f reconnection, since the result m ay be strongly influenced by an imposed down

stream boundary condition, such as the specification o f the norm al ve locity a t the outflow . 

Using a diffusion region model developed by Sonner up (1988) we shall show in  Chapter 3 

th a t the free param eter may be jDrescribed by the ve loc ity  o f plasma leaving the diffusion 

region (see also Jardine &  Priest, 1988b). If, therefore, as in  the num erical reconnection 

experiments o f Biskamp (1986), the norm al ve loc ity  is also prescribed at the downstream 

outflow  boundary, th is w ill cause a m ism atch in  velocities at the d iffusion region and hence 

a region o f reverse current. Indeed, Forbes Sz Priest (1987) have shown th a t many features 

o f Biskamp's experiments can be understood in  terms o f th e ir unified reconnection models, 

so th a t his claim  to  have disproved Petschek’s mechanism is false; ra ther, Petschek’s model 

is one o f a much larger fa m ily  o f models. A n  im p o rta n t issue which is beyond the scope of
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the present work is the tem pora l development o f reconnection, fo r which num erical exper

im ents are invaluable: fo r example Ugai (1987) has shown how fast steady reconnection 

can develop in  response to  a localised enhancement o f res istiv ity .

2.6 Summary

In  th is  chapter we have extended the Priest &  Forbes (1986) fa m ily  o f models o f recon

nection to  the next order in  the expansion parameter. A ttached to  the d iffusion region 

in  these models is a discrete slow-mode compression in  each quadrant which divides the 

region o f in terest in to  an upstream  and a downstream p a rt (See Figures 1.3 and 2.1). In 

the upstream  region the  d iffe rent members o f the fam ily , characterized by a param eter 6q, 

can have m arkedly different configurations, from  a slow-mode compression (&o <  0 ) w ith  

a converging flow  to  a flu x  pile-up regime (6q >  1) w ith  a d iverging flow . W h ile  to  lowest 

order the downstream  region is insensitive to  the value o f 6o, tak ing  the next-order con tri

bu tio n  has dem onstrated th a t in  fact a more general fa m ily  o f solutions exists downstream 

fo r each o f the  Priest Sz Forbes solutions.

To firs t order, the downstream  configuration is o f the fo rm  shown in  F igure 2.2(a): the 

wave and the streamlines are s tra igh t and the fie ld lines are curved. To second order, 

the wave is curved and the flow  is converging. Bo th  the pressure and the current density 

decrease w ith  increasing x,  b u t whereas the pressure is constant across the w id th  o f the 

region, the current density reaches a m axim um  on the wave (see F igure 2.5). As bo 

is increased th rough a slow compression to  a flu x  pile-up regime, the m agnitude o f the 

downstream  ve loc ity  increases linearly , the wave curvature increases and the w id th  o f the 

downstream region decreases. In  contrast, the magnetic fie ld, pressure and current density 

are, to  the orders calculated here, unchanged; as indeed is the second-order ?/-component 

o f velocity, which determines the degree of divergence o f the flow .

Perhaps the most in teresting  feature to  emerge has been the existence o f a free pa

ram eter downstream. From  an exam ination o f the role played by the ju m p  re lations at 

the wave in  re la ting  the upstream  and downstream solutions, we have shown th a t one 

boundary cond ition  m ay be specified downstream. Th is result is extrem ely im p o rta n t in  

ana lytica l or num erical models o f reconnection, since they may be strongly influenced by 

the choice o f th is  boundarv condition .
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C H A P T E R  3 

C O M P A R IS O N  W IT H  N U M E R IC A L  R ESU LTS

3.1 Introduction

Since the early models of Petschek and Sonnerup there have been several num erical ex

perim ents on reconnection. We w ill not a ttem pt to  review a ll o f them  here, bu t ra ther to  

describe a few as illu s tra tive  examples.

Q uite  recently, Biskamp (1982; 1984a,b; 1986) has published some num erical sim ula

tions which show features which would not be expected from  previous models (see F igure 

3.1). The in flow  region is h igh ly-nonuniform , the current sheet is long and th in  and the 

ou tflow  region is wide, w ith  a very slow flow  (approxim ate ly 0.2 VAi fo r the case Rme ~  873 

in  Biskam p, 1986). A t  the outflow  edges o f the current sheet are small regions o f reverse 

current (see F igure 3.1). Plasma flow ing out o f the d iffusion region at approxim ate ly vaî 

appears to  be deflected by these currents and flows instead in  tw o fast jets along the sépa

ratrices (the  magnetic fie ld lines which pass through the neutra l p o in t). As or R,ne is 

increased, bo th  the length and w id th  o f the diffusion region increase (which is exactly  the 

opposite o f w hat would be expected from  Petschek’s so lu tion). Biskamp concluded from  

th is  th a t Petschek did not have a va lid  solution and suggested th a t the reason fo r th is  was 

th a t the diffusion region was not properly matched in to  the solution.

A  ra the r different conclusion was reached by Lee Fu. T h e ir num erical experiments 

(Lee Sz Fu, 19S6a,b and Fu Sz Lee, 1985) were s im ila r to  B iskam p’s in  th a t they found th a t 

the length  o f the diffusion region increases w ith  Mg. They realised, however, th a t as Me 

is increased, the nature o f the in flow  changes, from  one having a. fast-mode expansion to 

one having a slow-mode expansion. Using the way the dimensions of the diffusion region 

varied w ith  Me, Forbes &: Priest (1987) were able to  show th a t as Me varied from  0.05 to 

0 ,20 , bo varied from  -2 (slow-mode compression) to  4 (flu x  p ile-up). They also examined 

Biskam p's results and showed th a t his scaling o f the diffusion region w ith  Mç or i?,„eCould 

be explained by a progres-sion through different reconnection regimes.
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Figure 3.1: Streamlines (top ) and fie ld lines (b o tto m ) from  Biskamp (1986). 

Values o f Rme &re (a) 1746, (b) 3492 and (c) 6984.

F igure 3.2: C urrent density plots from  Biskamp (1986).

The current is concentrated in  the diffusion region and the shock. Note also the region of 

reverse current near the diffusion region.



3.2 Reverse currents and separatrix jets

B u t w hat o f the other unexpected features in  B iskam p’s work? Schindler &  B irn  (1987) 

suggested th a t the separatrix jets result from  nonun iform ities in  the upstream fie ld  and a

self'consistent model for them  has been developed by Soward &  Priest (1986) .The presence

of reverse currents, on the other hand, (seen also in  Forbes Sz P riest, 1982a; 1983a,b) can 

be explained in  the lig h t o f the results o f Chapter 2 (see also Jardine and Priest, 1988a). I t  

was shown there th a t in  the downstream region there is a free param eter, fo r example the 

r-com ponent o f velocity, which can be specified as a boundary condition. The ve loc ity  o f 

plasma leaving the diffusion region is, however, determ ined by the inflow  parameters and 

so th is  would seem na tu ra lly  to  determ ine the one unknown downstream. If, as in  the w ork 

by Biskamp and Forbes &  Priest, the ve locity  is also specified at the outflow  boundary 

[œ| =  1 o f the downstream region, there w ill,  in  general, be a m ism atch in  ve loc ity  at the  

ex it to  the diffusion region (and therefore, from  E  =  —v  X JB, a ju m p  in  the m agnetic 

fie ld  strength there) which w ill give a current spike.

3.3 T lie  effects of a velocity mismatch

In  order to  find some qua lita tive  estim ate o f w hat the effects o f specifying such a boundary 

cond ition  w ould be on the coupled models o f Chapter 2, we firs t need a better model o f 

the  d iffusion region. One approach is to  use a series expansion m ethod (see also Biskam p 

1986 and Sonnerup 1988) .

As an example to  demonstrate the m ethod, we could t r y  expanding the resistive M H D  

equations as

% =  Go(z) 4- ü 2 (F )f 4- 04(3;)^ +  ' "

¥  =  6 i ( F )ÿ - f  Ô3 (^)ÿ^H-&5 (^ ) 2f +  •••

where .4 and $  are the flu x  function  and stream function , respectively, such th a t E  =  

V .- l X z and u =  x  z. We also nondimensionalise in  the usual no ta tion  as ÿ  — y / i ,  

X =  B  =  B JB {,  V ~  v /v { ,  $  =  ^  jV iL ,  A  — A f B { L .
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The three lowest powers of y  (y°, y ’̂  and then give, respectively:

1 — a'^M f — 2tt2 — ûq6i =  0 (3.1)

+  663) — h 'f lM ih ”  +  6Ô3)

—2a2{^Mf ü!q +  2^2) +  aQ{2Mf a'2 +  2404) =  0 (3.2)

2^2^! — M f 0-2 — 12(24 ~ ®2 î — 3flo^3 — 0 (3.3)

where we note that (3.2) may be rewritten using (3.1) and (3.3) as

■ H -h'{' +  —-h  +  (cq)^ +  -  ao<2o"l M /
0% J

“ 2a .o^ +  2(oo)^&i -  ^ 0 ------------------------------------------ (3.4)

Thus if, fo r example, ao and 6i  are chosen, these three equations w il l  determ ine tt2, 

(%4 and 63. Thereafter, each higher power w ill determ ine another unknown. The choice 

o f these tw o coefficients is d ic ta ted by the facts th a t they m ust be o f a su ffic iently simple 

fo rm  th a t the in teg ra ting  facto r in  (3.4) can be evaluated and also th a t, since

By  =  —M i  "h 4 . ..

Bx — 2(222/ 4" 4(24^^ +  * • •

Vy — ~  (b'{ÿ -j- 63^^ +

â? =  — +  3i»3ÿ  ̂ +  • •

we know  th a t

1 . Vx is odd in  x, even in  y

2 . By is odd in  .t, even in  y

3. Vy is even in  .t, odd in  y

4. Bx  is even in  x, odd in  y

W ith  a.Q =  hi =  — tanhnf we then have

Vx =  ^  ( -  tanh(F) +  3^3^  +  • • •)

Vy =  s e d r { x ) y  -  +  ■ • •

E x — (1 +  3/j^)sech^(.'i‘ ) (/ +  4c(4F^ +  - - -

~By =  M i  ( ta n h (7 ) +  (1 +  M f  )soch'^(T) ta i ï h { x )Ÿ  -  O4F ' -}-•••)
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where

(%4 =  ^ ( 1  +  M l )sech^(.T) |M j^  -  3 tanli^(a;)J -  l |  +  ^ ta iih (z )Ù 3

^  tanh(a;)sech(æ) In tanh +  -  tanh(æ)sech^(æ) +  K  tanh(æ)sech(a,')

and K  is a constant.

Th is would then give the ve loc ity  and magnetic fie ld strength w ith in  the diffusion 

region as functions of x and y. The problem  w ith  th is  p a rticu la r example is th a t as æ —)• 0, 

63 —> CO. I t  does, however, demonstrate the k ind  o f approach which could be used. Using 

the results o f Append ix A  a downstream solution fo r a fin ite  diffusion region could then 

be found.

The solutions we have available, however, are fo r cases where the length o f the diffusion 

region is o f the order o f Me (see Chapter 2 ) and so the va ria tion  across the w id th  o f the 

diffusion region m ay (for these models) be neglected. Taking, then, the outflow  ve locity 

to  be ju s t its  value on the axis {vAi)^ we can see th a t since the electric fie ld is constant, 

a m ism atch in  the axia l value o f w il l be associated w ith  a m ism atch in  By. Thus, 

By  m ust change w ith in , essentially, a diffusion length, r j /v .  For a ve locity a global 

scale leng th  Le, a m agnetic Reynolds num ber Rme =  ’̂ AeEel'r} and a diffusion region length 

L  — Le f  R m e M e ^ ^ , th is is  ju s t, to  lowest order, 6x =  {M eLeY  (where we have followed 

the analysis o f Chapter 2 in  selecting the case L /L e  =  (9 (M e)). Hence, by Am pere ’s law, 

the current produced is
6B, 6B.,

l(M ,T c )3  M , T J  '

In  pa rticu la r, since i?2y =  —{i-^pY^'^MeVix, a m ism atch in  Vix w ould give a current

O Svix

Now, the current w ith in  the d iffusion region is approxim ate ly

= %

(3.5)

(3.6)

(3.7)

and so i f  >  0 a m ism atch in  ve locity  w ill give rise to  a current opposite in  d irection 

to  th a t w ith in  the diffusion region. Obviously, th is  approach cannot give cpiantitative 

predictions for the h igh ly nonlinear regime o f the num erical experiments. The essential 

result remains valid, however: th a t the specification o f the norm al ve loc ity  at the outflow  

w ill lead to  a m ism atch and hence a reverse current at the d iffusion region.
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C H A P T E R  4 

G L O B A L  E N E R G E T IC S  O F  F A S T  M A G N E T IC  R E C O N N E C T IO N  

4.1 In t ro d u c t io n

Now th a t we have a global fa m ily  o f reconnection models, one o f the most in teresting 

aspects o f them  to  explore is the way th a t energy is transferred in  the reconnection process. 

We would expect th a t the energy o f the in flow ing m agnetic fie ld would be converted in to  

the k ine tic  and therm al energy o f the outflow  je t, bu t the details o f th is  process are unclear. 

In  exam ining the energetics o f these solutions, we w ill show how the energy conversion 

differs betweeen the various reconnection regimes and explore the con tribu tion  o f the wave 

to  the energy conversion.

4.2 E n e rg y  tra n s fe r

In  an incompressible, steady-state plasma, conservation o f energy m ay be expressed as

V . (pH- ~pv^)v  +  — =  0. (4.1)
P J

In teg ra ting  th is over a volum e and using Gauss’ theorem gives, in  the two-dim ensional 

case,
/"C r P , n i  fO r P R 1

/  (P +  ~  dx =  -  (p 4- l p v ^ ) v x    dy, (4.2)
J B  L M J  JD L P i

which sim ply states th a t the to ta l am ount o f energy which flows in to  the region through

the upper boundary {B C  in  F igure 4.1) m ust be equal to  th a t which flows out o f the side

(C D ).T h e  firs t te rm  on either side represents the therm al energy, the second the k inetic

energy and the th ird  the m agnetic energy.

I f  we now dimensionalise as

P  =  p p e ,  V =  V l 'e ,  B  =  B B e

w ith

B  =  VeBe 
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B C

A  D

Figure 4.1: Schematic d iagram  o f one quadrant o f the reconnection model.

and expand bo th (4 .2 ) and the length  D Y  in  powers o f Mg, such th a t, fo r example,

=  Fq +  f l ' i  +  e^î'2 +  • • •

where e is a sm all param eter o f order Mg and

^  =  0 ( 1), ^  =  0 ( 1), etc.

we ob ta in , a fter s p litt in g  the side boundary in to  tw o parts,

0 (e):

( A ) t h  +  ( 2 ) mag 1(1  +  /3 e )th  +  ( l ) k l J (4.3)

O(e^):

%  +  î ' O  th  (fa:

+ 1(1 + A)lh + (l)kinl (4.4)

(where we note th a t a te rm  in  VeBç/2^  has been cancelled on both sides). The subscripts 

‘ t h ’ , ‘k in ’ and ‘m ag’ label the therm al, k ine tic  and magnetic contributions.
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We note here th a t we have chosen to  study only cases w ith  L  <C 0 {M ^ )  i.e. £ <C 

O (M ^ ) .  The reason fo r th is  is th a t, as shown in  A ppend ix A , some o f the characteristics 

o f the  downstream  solution propagate ou t from  the d iffusion region in to  the downstream 

region. Thus, i f  the diffusion region is o f significant dimensions, then some p a rt o f the 

downstream  region is traversed by these characteristics and so the solu tion fo r the whole 

o f the downstream region can on ly be known i f  there is a fu l l so lu tion  fo r the d iffusion 

region. G iven th a t th is  is not arvmlable, we choose to  make the diffusion region small. 

Th is  ensures th a t the ‘region o f influence’ o f the diffusion region is also small. In  fact, th is 

‘region o f influence’ o f the diffusion region corresponds to  the fin ite  thickness o f the wave, 

which we have neglected. The problem arises i f  we a ttem p t to  m atch  a d iffusion region of 

f in ite  w id th  to  a wave o f negligible w id th ; th is  m atching is on ly  possible i f  we also neglect 

the w id th  o f the d iffusion region.

Equations (4.3) and (4.4) express the global energy conservation o f the system. The 

term s on the le ft-hand side represent energy flow ing in to  the system through the upper 

boundary, w h ile  the terms on the righ t-hand side represent a flow  o f energy in  o r out 

th rough  the side boundary. In  (4.3), then, therm al and m agnetic energy enter th rough the 

upstream  (top ) boundary, while therm al and k ine tic  energy leave th rough the downstream 

side boundary; there is no con tribu tion  from  the upstream  side boundary. To th is  order, 

then, the energetics o f the system are fa ir ly  simple: the m agnetic energy o f the upstream 

region is converted in  equal parts in to  the therm al and k in e tic  energy o f the downstream 

flow . We note th a t a ll o f th is  energy conversion takes place at the wave; there is no energy 

conversion w ith in  e ither the upstream  or the downstream region. To th is  order, the to ta l 

am ount o f energy flow ing in to  the upstream region is

dx
l-i J

and the ra tio  o f therm al to  k ine tic  energy flow ing out o f the downstream region is

Jo V^x dy

■\Miile the to ta l am ount o f energy converted depends on the ra te at which plasma is 

in troduced in to  the system (essentially Ve) and on the value o f the external plasma beta 

(Je )' the ra tio  o f therm al to  k ine tic  energy produced in  the downstream  region depends 

on ly on Jg. The ^alue o f bo, which characterises the type o f upstream  solution, has no 

effect on the energetics at firs t order.

A t second order the s itua tion  is a l i t t le  more complex. As can be seen from  (1.15). (1.18)
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and (1.19) the le ft-hand side is zero, ind ica ting  th a t to  th is  order there is no extra  energy 

flow  th rough the upper boundary, w hile the terms on the righ t-hand  side depend no t only 

on 13e and M g, b u t also on 60• The way in  which the energy conversion depends on the 

reconnection regime can best be understood by considering the upstream  and downstream 

regions separately. In  the upstream region the balance o f energy flow ing th rough the side 

and th rough  the wave respectively can be expressed as

where the righ t-hand  side is evaluated at 3/ =  0. Th is m ay be re w ritte n  using (1.15) to 

( 1.20) as

X _  / 2dn [(n + l) , ] \  I
I V ("+2)' /th V <"+2)' J,^^}

W hen bo is negative there is a slow compression upstream  such th a t the flow  is strongly 

converging and the m agnetic fie ld  strength decreases towards the diffusion region. Corre

spondingly, from  (4.5), the therm al energy increases and the m agnetic energy decreases as 

plasm a flows th rough the region. As bo is increased beyond zero in to  the slow expansion 

regimes (fo r example, the flu x  pile-up regime, where the flow  is strong ly d iverging and the 

m agnetic fie ld strength increases towards the diffusion region) there is a decrease in  the r

m a l energy and an increase in  the magnetic energy o f the plasma as i t  flows through the 

region. Thus to  th is  order while the amount o f energy flow ing ou t o f th is  region depends 

(from  (4 .5)) on Mg, (3̂  and 60, the ra tio  o f therm al to  m agnetic energy depends on ly on

/?e.

Across the wave, conservation o f energy requires th a t

=  % [ ( ( 1 + A p ' i ) , ^

+  2 ( /J “ r -

mag_
dx
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(where superscripts u and d refer to  upstream and downstream  quantities respectively) 

or, using the results o f (1.15) to  (2.40)

Here, the fo rm  o f the upstream  solution affects the  energy conversion m ostly  through 

the size and m agnitude o f the tangen tia l component o f the m agnetic fie ld  (to  th is  order, 

essentially B ix ) .  Thus i f

T  Ë

the the rm a l energy w ill decrease (increase); i f

 ̂5  I'- - " ' ° <>"l
the k ine tic  energy w ill decrease (increase) and i f

the  m agnetic energy w ill decrease (increase).

W ith in  the downstream  region, the s itua tion  is s ligh tly  d ifferent, in  th a t the energy 

conversion is independent o f the fo rm  o f the upstream solution. Conservation o f energy 

m ay be w ritte n  as

f  [((1  -  A ) %  +  A M - ) . ,  +  ( 2% ( 0 ) -  +  2 { b 'L  -  a " , ( o ) ) _

= {((i + AM* + AM)„(3tjf )̂„„g}rf!/ + ^ { { i  + A),). + (i)ki„}

dx
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or

4 M .
E  +  \ ) ^ L ]  ( -  f ( l  +  A ) 6 o  +  ( 1  -  A ) ! ^ ^

+  ( 6 0 - 2 + = ; ! ^ )  + ( 2 _ 2 ± ± 2̂ )  
V ( "+ 2K  \  (»+2^  J,

th

Idn \  2 /  niag

4M,
Ê  { (  ( 1 + A) 5o  -  ( 1 +

i  [ ( " + I V ? ;  "  ' I V  '  '  '  ( "+ & ) '

5o -  I . (4,7)
< " + 2 > ’'  / k i n J

Thus, to  th is  order, the therm a l energy and the k ine tic  energy increase at the expense 

o f the  m agnetic energy which is released as the tension in  the curved field lines accelerates 

plasm a away from  the d iffusion region. A lthough  the fina l ra tio  o f therm al to  k inetic 

energy which flows out o f the downstream region depends on the change in  energy 

w hich takes place w ith in  the downstream region is independent o f e ither /?e, Me or &o- 

I f  we now re tu rn  to  the energetics o f the system as a whole and consider the sum of 

the 0 (e ) and O(e^) contribu tions together, we can see th a t the to ta l amount o f energy 

w hich flows in to  the upstream  region (and is therefore available fo r conversion in to  other 

form s) increases as e ither Me or (3e is increased and decreases on going from  solutions w ith  

60 <  0 to  those w ith  60 >  0 (see F igure 4.2). Th is corresponds to  a change from  a strongly 

converging flow , which draws plasm a in  th rough the side boundary, to  a strongly diverging 

flow , which pushes plasma out. O f the  energy which flows out o f the side boundary, the 

ra tio  o f the (to ta l)  therm al to  k ine tic  contributions i.e.

Jo pvxdy
^pv^v^dp

also varies w ith  bo (see F igure 4.3), decreasing linea rly  w ith  bo, such th a t, w ith in  the 

downstream  region, therm al energy dominates fo r bo <  0.3 and k ine tic  energy dominates 

fo r bo >  0.3. As Mg is increased, and the size o f the perturbed components increases, 

these variations w ith  60 become much more pronounced; th is  behaviour is also seen in  the 

va ria tion  o f the to ta l energy converted w ith  bo (F igure 4.2). F ina lly , Figures 4.2 and 4,3 

also show the varia tion  o f the downstream energy ra tio  and the to ta l energy converted 

w ith  Jg: an increase in  (3e s im ply rescales these energies, w ith o u t changing the ir in trins ic  

va ria tion  w ith  bo or Me-
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Figure 4.2: The varia tion  o f the to ta l energy in flow  w ith  6o and the in flow  A lfven hlach 

num ber (il/e ).

Jc is the upstream plasma beta.
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4.3 S u m m a ry

We have examined the global energetics o f the recent weakly nonlinear models fo r fast, 

steady state reconnection described in  Chapter 2. Th is shows th a t, to  firs t order, the 

energy conversion is insensitive to  the type o f solution (such as slow compression or flux  

p ile -up), which is characterised by a parameter bo. To the next order, however, bo th  the 

am ount o f energy produced and the ra tio  o f therm al to  k ine tic  energy produced-depends 

s trong ly  on the type o f solution. In  add ition , there is a dependence at bo th  orders on 

the value o f the external Mach number, and the external plasma beta, j3^. These 

varia tions are such th a t in  the region o f accelerated plasm a downstream  o f the wave, 

the rm a l energy dominates where Me and /5g are large and the upstream  flow  is strongly 

converging, whereas k ine tic  energy w ill dom inate where Me is large, /?e is sm all and the 

upstream  flow  is strongly diverging. The to ta l am ount o f energy converted is greatest 

when b o th  Me and (3e are large and the upstream flow  is strong ly converging.
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C H A P T E R  5 

C O M P R E S S IB jL E  M O D E L S  O F  R E C O N N E C T IO N

5.1 In t ro d u c t io n

In  m any reconnection models (inc lud ing  those ju s t described in  Chapters 1 , 2 ) the as

sum ption o f incom pressib ility  is used, p a rtly  because i t  can be the on ly way o f rendering 

the problem  tractab le  and p a r tly  because i t  is assumed th a t com pressibility w ill no t es

sentia lly  affect the reconnection process. In  rea lity, however, reconnection is often tak ing  

place in  a fu lly  compressible plasma (such as the solar corona) and so i t  is im p o rta n t to  

understand w hat the results o f neglecting com pressibility are.

In  th is  chapter, we examine the effects o f inc lud ing com pressib ility on the global re

connection models o f Chapters 1 and 2 . We fo llow  the analyses o f these chapters closely 

in  order th a t in  the l im it  o f 7  —>• oo we m igh t recover the previous incompressible results. 

Th is allows us to  assess the v a lid ity  o f the incompressible assumption in  studying different 

aspects o f the  reconnection process and to  show the m odiffcations th a t are introduced 

when th is  assumption is relaxed.

5.2 T h e  u p s tre a m  re g io n

We expand the M U D  equations (1.1) to  (1.5) fo r a compressible, steady-state plasma in  

powers o f the in flow  M ach num ber, il/g  as described in  Chapter 1. Expanding about a 

un ifo rm  density and m agnetic fie ld  (B q =  B q̂ .x ) and a sta tionary plasma (uq =  0 ) gives a 

so lu tion o f (1.1) to  (1.5) fo r the m agnetic field, electric current, plasma pressure, plasma 

ve loc ity  and density as:

Ria- =  ^hih ^{n - f |)7 t(1  -  y ) j -  cos [(??. -f |)7 t.t] }  ,
n =0

CO

Rp/ =  (In cosh [(n  +  | ) 7 t ( 1  -  ?/)] sin [(?% +  I ) 7r r ]  ,
n=0
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^ n h n i n  +  c o s h  [(?! +  | ) 7 t ( 1  -  y ) ]  ,

03
J 2  « n i'n  s in h  [(?1 +  i ) 7 r ( l  -  ? /)] , 

V2y ~

n = 0

Pi
2_

/?e n = 0  

V2x ~ B ly 1 + /2JX (5.1)

(5.2)

where we have used dimensionless variables as described in  Section 1.4. Note th a t the firs t 

five equations above are iden tica l to  (1.15) to  (1.19) found by Priest Sz Forbes.

The boundary conditions used to  obta in  (1.15) to  (1.19) and (5.1) to  (5.2) are s im ila r 

to  those used by Priest &  Forbes, i.e.

1 . B ix  even in  x  (and therefore B iy  odd in  x)

2 . d B iy J d x  =  0 on x =  1

3. B ix  =  0 on y =  1

4. B iy  -  f { x )  on y =  0 

where
f { x )  — 2 B n  L  <  X <  1

=  2 B jq x jL  0 <  Æ <  L.

B]\j =  MeBe is the component o f the magnetic fie ld norm al to  the shock. Th is  choice o f 

f ( x )  was made from  considerations o f the speed o f the shocks; fo r the case o f a compressible 

plasma we generalise th is  to  f { x )  =  k B n  and obta in  fo r the constant an’

2kMq sin |(n  +  | ) 7t t 1 
ü-n ~  - r - T . (5.3)

L {n  +  | ) ^ 7t 2 cosh ] (̂n +  b )7r j

As w ill be shown la te r, k has a m axim um  value o f 2 in  the incompressible l im it  o f 7 oo 

and so the effect o f in troduc ing  com pressibility is to  decrease A p a rt from  th is  rescaling 

o f however,equations (1.15) to  (1.19) are identica l to  those found by Priest Sz Forbes.

The m ain difference is in  the perturbed transverse velocity, V2x, which is enhanced by the 

fac to r (1 +  This facto r tends to  1 as c*. 00, so th a t in  the incompressible l im it

we recover the Priest-Forbes solutions.

Since the density can now vary, the ra tio  o f the m agnetic fie ld strength to  the length

o f a fie ld line need no longer be constant (since. B f l  =  p) and so changes in the magnetic
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fie ld  strength can be absorbed by density changes. Th is  effect is most clearly seen in  

considering the hybrid  regimes. In  the incompressible case, as plasma flows in  towards 

the d iffusion region, the fie ld strength decreases on the axis where the flow  converges, 

bu t increases at the sides where the flow  diverges. In  the incompressible case, however, 

a lthough the variations in  the m agnetic fie ld are the same, they are no longer accompanied 

by the same changes in  the d irection  o f the flow .

The reason fo r th is  is the change in  V2x- W rit in g  on ly the ?i — 0 con tribu tion , (5.1) 

becomes

=  —Me a„  “  cosh | ( 1  -  !/) S in
7T

1 +  ^ 1

Thus, in  the incompressible case ((1 +  1) have the result th a t while , fo r

l)Q <  2 f-K the flow  is purely converging and fo r >  1 i t  is pure ly  diverging,for

2— < 6o < 1,
7T

uTr can change sign as x increases. The flow  converges near the axis and diverges a t the 

sides |æ| =  1. In  the compressible case, however, this, cond ition  becomes

- 1 1 + 4 ^  I < 5 o <
7T V C\ ] \ C?

- 1

Hence, as the ra tio  VAejcs increases, the range o f values o f ho over which th is  hyb rid  

behaviour occurs decreases, u n til,  fo r VAe >  c, (o r j3 <C 1), the flow  is pure ly converging 

fo r the compressions (bo <  0 ) and pure ly diverging fo r the expansions {bo >  0), In  th is  case, 

changes in  the magnetic fie ld  s trength are reflected in  a change in  the density structure 

and the flow  %)attern is more d irec tly  governed by varia tions in  the plasma pressure.

One other consequence o f the inclusion o f com pressib ility is th a t i t  modifies the way in  

which the reconnection rate varies w ith  the type o f solution. Th is  is tra d itio n a lly  measured 

by the external A lfi'én  h lach num ber which is sim ply the dimensionless ra te  at which 

fie ld  lines are carried towards the d iffusion region fo r a given value o f VAe- The pa rticu la r 

choice o f solution (or, equivalently, the choice o f boundary conditions) w ill determ ine how 

the imposed flow  is altered as i t  approaches the d iffusion region, to  give a local Mach 

num ber, As described in  Chapter 1 , Priest Sz Forbes showed th a t fo r each bo there is 

a unique re lationship between Me and M j,  such th a t, fo r example, fo r ho <  1, there is a 

m axim um  possible value o f M^. whereas for bo >  1 there is a m axim um  value o f ilf,-.

Th is re lationship is derived by considering th a t the e lectric fie ld is un ifo rm  and hence

Be
B{
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Figure 5.1: Recounection rates i i i  compressible and incompressible plasmas.

T lie  m agnetic Reynolds num ber, Rme<) is 5x10^.

where J3;, the m agnetic fie ld  strength at the diffusion region is given by E quation (1.22):

B i —  .Re +  Ria;(0, 0)
CO

=  Re +  an(&o -  1) sinh[(?% +  | ) 7t].
n = 0

As shown by (5.3), however, the value o f is reduced in  the compressible case and hence, 

from  ( 1 .22), the am ount by which the fie ld changes as i t  is carried towards the diffusion 

region is also reduced. Thus, fo r regimes w ith  &o >  1 (Ria, >  0), the effect o f in troduc ing  

com pressib ility  is to  increase B i  and hence decrease M ,, while  fo r 6o <  1 the opposite is 

true. As can be seen from  Figure 5.1, however, th is  is ju s t a sm all correction and does not 

affect the overall behaviour o f the reconnection rate.

5.3 T h e  ju m p  re la tio n s

The next step in  find ing  a global solution is to  look at the ju m p  relations across the shock 

which forms the lower boundary o f the upstream region. I t  is these ju m i) re lations which 

w ill be used to  m atch the upstream and downstream solutions. Follow ing Jeffrey and 

T a n iu ti (19G4) . we w rite  the ju m p  relations for a compressible, two-dim ensional steady- 

state plasma as
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[r] =

[n,,] = m[r],

[" 'I =

[S,] =

[R „] =  0 ,

B2m 2( r )  -

P

[P] =  n i [v„]

+ {p ) t _L
4p

[B , ' ] ,

2

2n 

^r] [B t

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
■ P ( 7 -  1)

where, as before, [X ]  — — % ", ( X )  =  \ { X ^  +  X " )  and v characterises the jum p  in

density. The mass flu x  is m  =  pc„ where c„ is the characteristic wave speed and r  — I f p  

. Since the shock is s ta tionary, we m ay w rite  m  =  pu». These ju m p  relations m ay then 

be re w ritte n  as:

B i

B f

pd

(p“  +  p"^)(p" -  P^) +
pUpd p^p"

2 7  —  1 7  —  1 

where the shock strength R  =  { 2 p ) f {2  ~  v).

Rp^

R

pp

u

( s r n

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

As described in  Jardine &  Priest (1988a) and in  Chapter 2 , these m ay be expressed in  

terms o f in  x and ^-components and expanded in  powers o f ilfg . The resulting equations 

are m ost easily tackled by looking firs t at the lowest orders o f each expansion. Thus, from  

(5.11):

0(1)

0(f)

(5.18)

(5.19)
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w hile  from  (5.16), w ith  R jy  =  kM q and ta n a i =  where a  is the angle made by the 

tangent to  the shock w ith  the %-ajds,

0 ( 1) tan  CKO =  0 (5 .20 )

Ofc) ( r  C Ÿ  -  +  R o)/^e(^ -  1) +  (Ro -  1){1 +  / r
-  2R o/),(;g  -  1)

and from  (5.15)

0 ( (1 )  (5.22)

In  order to  be able to  compare our results w ith  those from  the incompressible analysis,

however, we m ust choose B q̂  — 0 in  the downstream region. Hence

K - C = l  (5.23)

and so (5.21) becomes

^  _  i ____
P e  '

Po =  (5.24)

Com paring th is  w ith  (5.17):

^  _  /^e[2R0 -  (1 -  Ro)(T “  1)] -  (7 -  1)(1 -  Ro) /r
( ) -  /3.[2 +  ( l - i î o ) ( 7 - l ) ]

gives

We also have from  (5.14)

7 (/), +  l ) _ l ' (5.26)

0 (1 )  Rgy =  0 (5.27)

0 ( f )  =  M , (5.28)

and from  (5.12)

0 (1 ) =  0 (5.29)

0 (e ) v i y  =  +  (5.30)

As we w ill show la te r, however, v jy  =  0 in  the downstream region and so, from  (5.30) 

bu t. from  (5.13)

0 ( 1) 4 : .  =  1
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a n d  so

and

R q

K — 1 4"
R q

(5.31)

(5.32)

Thus, in  the l im it  7  —» oo, we find  Ro 1 and /c 2 and so, as discussed before, k 

has a m axim um  o f 2 in  the incompressible lim it .  W ith  the results o f (5.18) to  (5.31) we 

can now s im p lify  the higher orders in  the expansions, such as, fro m  (5.15)

0(e)
Rq

-  2 %  -  2
B 2y t a U Q '2 R ia ,

1 - R o  r "  \ M e  M e  Ro

Using th is  and (5.24) we find  th a t the first-order con tribu tion  to  (5.16) gives

Pi =  Pi +

and com paring th is  w ith  the firs t-o rder pa rt o f (5.17), i.e.

(5.33)

(5.34)

2 -b ( l  -  Ro)(7 -  1)

+Pi [2R0 — (1 ~  R o )(t “  1)] “

z - j t {  [2pf -  ( ^  -  A)(-y  - 1 ) ]  - Po [zpï +  (p ï -  A ){-y  - p ]

(T - 1)
A

gives, a fte r some algebra,

_ tano;2 __
M e  M e  Ro

w hich, substitu ted in to  (5.33) gives

I 'A

Pe 7 (1 -  Ro)_u
2 (7 -  1) Ro

7
Ro(7 “  1)

Ri

. y - l  ( t ' Ï  +  (1 _  Æo)2(7 -  1) •

F in a lly  we have, from  (5.14)

2 2Ro(l -  Ro)(7 -  1)

R i

(5.35)

(5.36)

R5y =  Me M, Me R q j  R q

from  (5.12) 

and from  (5.18)

=
- u  , / ^ 2y t a n  02 %

2 R lx  — Pi — Ria- +
Me Me Ro

(5.37)

(5.38)

5.39)
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5.4 Tlie downstream region

As in  the npstream region, we expand ( l . l )  to  (1.5) in  powers o f about the same lowest 

order configuration as was used in  the incompressible case. Thus we choose Fox =  1 and 

B qx — 0 ^vith po =  Ro- Once again we rescale the ^/-coordinate as y =  ey' where c is a 

sm all param eter o f order Several results can be seen s tra igh t away from  (1.2) and 

(5.27). F irs tly ,

Roy =  0

w hile  from  (1.3), invok ing  sym m etry,

VQy ~  0

R l y  =  const 

=  Me

from  (5.28). F ina lly , from  (1.5), (5.24) and (5.34)

1 -h Pe

and so from  (1.2) again

Po =

and

This leaves six equations, namely,

+  ^  =  °  (5-40)

'B2y +  V ixMe =  0 (5.41)

+  +  %  = 0  (S-42)

= (5.43)

(5.44)

#  =  (5.45:

which, w ith  (5.44) gives

2 dx ® dy  

Xow , (5.40) and (5.41) give

=  - ^ 4 % :  (5.40)
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which has the general so lution

M .
Bix = f {y  + + 9(y ~

R R,
where /  and g are a rb itra ry  functions. Using the boundary conditions 

B ix  =  0 on y =  0

R ix  =  B fx  on y =  (which, from  (5.31) is the lowest-order wave pos ition)

we obta in  (see A ppend ix C fo r details)

9=0 U 4 ( l  +  R ^ " )  R ^/"

& {R y ' [ ^ , ( c + )  -  ^ x ( c - ) ]  +  [R fx (c+ ) -  R Ïx (c - ) ]

W<C+) - ÿ ^ ( c - ) ]

{ y~
_M ,(1 +  R ;/^ )  R^/^

x )

2 R y '
(5.48)

where

•»+ —

c =

and

Ro(p +

A f« ( i+ R y '^ )  

Ro(y -
______ Eg___
M .(l +

R y ‘  -  1 (5.49)

A lso, from  (5.44) and (5.46) we obta in

1
V \ x  -

2R,

A

K ( = 4 ) + < ( < : “ )] +  [s L ( c4 ) + S Ï^ . ( c‘ )]

(5.50)

Subtracting  (5.48) from  (5.50) and evaluating the resu lting  expression at the shock 

gives

(5.51)

Th is  is a constra in t which m ust be satisfied i f  the firs t-o rder upstream  and downstream 

solutions are to  m atch. I f  we use (5.39), (5.36) and (5.34) to  substitu te  fo r 1^^., and 

P i. we can w rite  (5.51) as

(C3 -  C2)Ri(.r) +  (C3 -f C2)Ri {^ x ) -
OO

X ]  sinh [(71 -f i ) ; r ]  { - ( cq +  c i)  cos [(?% 4- | ) “ .r]
»>=o

4-(cq — c j)  cos [(77 4“ )̂7r<̂ .x‘j — 0460 , .-,9 ’
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where

Co =  2(1 --  R q)^ [(1 +  Ro)(7 — 1) — 1 +  2Ro7/?e.

Cl =  4 (1 --  R o )"R y S /)e

C2 =  (1 - R q)^(7  — 1) — (1 +  R q)

C3 =  2R .y^

C4 =  S Æ ^/^< l-Æ o)

(fo r the m ethod used to  solve th is  equation, see Append ix D ).

Thus, i t  is the firs t-o rder m atch ing o f the tw o solutions w hich  determines R i(æ ), the 

pe rtu rba tio n  to  the shock strength, ju s t as i t  was essentially the choice o f =  0 which 

determ ined R q, As one w ould expect, the shock strength s im ply adjusts to  accommodate 

.the existing downstream solution.

Now th a t v ix  and have been found, the other unknowns o f the downstream solution 

fo llow  easily. From  (5.42) and (5.43)

_  __ dviT  _  dp(
~dy~ ~Wx 7 (/?e +  l)"HâT

which, using (5.44) and the fact th a t V2y =  0 on y =  0, gives

(5.53)

(5.54)

T h is  now allows us to  fin d  the  second-order shock position , since evaluating (5.54) at 

the shock and e lim ina ting  v^y from  (5.54) and (5.38) gives

(5.55)

Since Og =  dy2fd x ,  in te g ra tin g  (5.55) gives

2/2
Me 1 -  3(1 -  Æo)(7  -  1)

2(1 -  Ro)

(3 — 2 7 ) i lo 5o ï — (3 — 2i?o)(7 — 1)% cos |(n  4- l)?r%j 

sin |(n  +  |)? rx l

-X ^  j.
/ R i { x )  dx +  X 2  sinh |(n  - f \ ) 'k

n = 0

+ (3 7  -  4)
{n  - f i-)7r

(5.5G)

In  add ition , the firs t-o rder density can be found from  (5.43), assuming th a t p i ( l )  =  0:

P i =  (R o  -  ^ ) P e j 4
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a n d  th u s , f ro m  (5 .1 9 )

n  =  (s.ES)
R q

and from  (5.2) the ujjstream  density becomes

R q 7

Equations (5.40) and (5.41) also give

B2y =  V ty  +  -  v i^ )  (5.60)

and fro m  (5.45)

F ina lly , the current density can be found from  the so lution fo r R i^ , since, from

. V  X J5

we have

which, using (5.48), (5.39), (5.36) and (5.34) to  give

+ (c i -  Co) X ]  sinh [(?% 4- |)7 rj ^cos [(n  +  |)7Tc+]
n=0

-  cos [ ( n 4 - | ) 7 T C “ ] ) |  (5.62)

( u s in g  t h e  n o t a t i o n  o f  (5.53)), is  j u s t

CO
+ (c i -  Co) X2 4- | ) 7 T s in h  [(?% 4- | ) ~ ]  ^ s in  [ ( i i  4- |)7 tc+]

n=0

— sin [( îi F  |-)7rc~j^ j- (5.63)

We note here th a t since we have assumed a  particu la r fo rm  fo r the downstream density 

va ria tion  (see equation (5.57)), we have already chosen the "free param eter’ mentioned 

in  Chapter 2. There, the unknown param eter was determ ined by choosing ujj. such tha t 

there was a ve locity match at the outflow  o f the d iffusion region. Here, the choice o f 

P i ( l )  =  0 is made in  order to s im p lify  the equations, bu t i t  w il l not ensure th a t such a



ve locity  m atch exists. Th is  couldhe  done by re ta in ing the a rb itra ry  func tion  o f y in  (5.57) 

which was removed by the above assumption. Equation (5.50) fo r v\x  would then include 

th is  func tion  o f y th rough the expression fo r (5.50). I f  the va ria tion  o f v ix  w ith  y 

at the ou tflow  boundary o f the diffusion region were known, then th is  function  could be 

evaluated and a ve loc ity  m atch would be ensured.

The fac t th a t the free param eter has been specified in  d ifferent ways in  th is  and the 

previous chapter means th a t a lthough the incompressible l im it  o f the compressible solution 

should resemble the results o f Chapter 2 in  character,, i t  w il l no t be exactly the same.

5.5 T h e  effects o f c o m p re s s ib ility

As was the case in  the upstream  region, the inclusion o f com pressib ility  does no t affect the 

essential character o f the downstream  region. In  fact, to  firs t order, bo th  the pressure and 

the y-components o f the  ve loc ity  and the magnetic fie ld  are unaltered (see also Semenov 

et al, 1983a fo r a comparison w ith  the results fo r Petschek’s m odel). The m ain reason 

fo r th is  is s im p ly th a t the w id th  o f the downstream region is o f the same order as the 

pe rtu rba tio n  and so, a t the lower orders, there is l i t t le  va ria tion  across it .

The z-components o f ve loc ity  and magnetic fie ld strength do show some difference 

and o f course there is now a density gradient in  the  æ-d irection , b u t the  va ria tio n  o f the 

solutions w ith  changes in  the reconnection regime (or equally ho) is not affected. The 

pertu rbed .^-component o f ve loc ity  V ix s t il l increases line a rly  w ith  bo w hile  b o th  B ix  and 

V2y show no exp lic it bo dependence. I t  is perhaps w orth  no ting  here, however, th a t there 

is some s ligh t dependence o f a ll parameters on bo due to  the fact th a t the length  o f the 

diffusion region, L , w hich enters in to  the expression fo r each param eter, does vary w ith  

bo- Th is  is a very sm all effect, however, p a rticu la rly  where, as chosen here, T  < <  1. We 

also find  th a t the lowest-order current density, jo , is independent o f bo, w hile  the second 

-order shock position , yg varies linea rly  w ith  bo- This is exactly w hat was found in  the 

incom%)ressible case.

The m a in  effect, then o f inc lud ing  com pressibility is not to  change the way th a t the 

solutions vary w ith  the different reconnection regimes, bu t, w ith in  each regime, to  a fleet 

how the m agnetic fie ld and the plasma in teract. In  the upstream  region, in troduc ing  

compres-sibility and therefore a llow ing changes in  the m agnetic fie ld strength to  change 

the density o f the plasma, alters the way in  which the magnetic fie ld is able to  influence 

the transverse velocity. In  the downstream region, there is a s im ila r s itua tion . Here, the
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Figure 5.2: The perturbed .'c-component o f the downstream  ve loc ity  vs. x .

Curves fo r different values o f are shown fo r the compressible and incompressible cases.

newly-reconnected fie ld lines are h igh ly  curved and the tension in  these fie ld lines, which 

acts to  reduce the ir curvature, accelerates plasma away from  the d iffusion region. As 

the  fie ld  lines stra ighten ou t, they transfer some o f th e ir energy to  the plasma, which is 

accelerated and heated.

I f  the  plasma is incompressible, then the tension force cannot change the density o f 

the plasma, on ly propel i t .  In  th is  case the curvature o f the  fie ld  lines decreases more 

slow ly than  in  the compressible case, where the fieldlines stra ighten out closer to  the 

d iffusion region and accelerate the plasma more effectively. Th is  behaviour can be seen in  

Figures 5.2 and 5.3 which show how the perturbed æ-components o f ve loc ity  and magnetic 

fie ld  strength vary w ith  distance from  the diffusion region. T w o  different values o f 7  are 

chosen : 7 =  5 /3 , representing a fu lly  compressible plasma and 7  =  10, representing an 

alm ost incompressible plasma. F igure 5.3 shows the va ria tion  o f B \x  or, equally the fie ld 

curvature, since B iy  is a constant. For bo th  values o f 7 , the curvature decreases to  almost 

zero away from  the diffusion region (x  =  0 ), bu t in  the incompressible case th is  decrease is 

slower. The effect o f changes in  the fie ld curvature can be seen in  F igure 5.2 which shows 

a greater acceleration o f the plasma near the diffusion region in  the compressible ca.se.

The absolute value o f the x-components o f ve loc ity  and m agnetic field (as opposed to
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Curves fo r d ifferent values o f (3̂  are shown fo r the compressible and incompressible cases.

th e ir va ria tion  w ith  a;) also d iffe r in  the compressible and incompressible cases. The reason 

fo r th is  is th a t from  (5.26) the lowest-order shock strength R q  is a function  o f 7  such th a t 

in  the l im it  7  —> 00, Æq —> 1. Thus in  an incompressible plasma, the shock strength (and 

hence the ju m p  in  the transverse components o f ve loc ity  and magnetic fie ld  strength) is 

reduced. Hence setting 7  —» 00 gives a larger value o f B \x  downstream and a smaller value 

o f Vix>

The lowest-order current density is also s ligh tly  different in  the tw o cases. In  bo th , 

there are current m axim a at the shocks and at the d iffusion region, w ith  a m in im um  on 

the x-ajds. In  the compressible case, however, where the fie ld  line  curvature decreases 

ra the r more ra p id ly  away from  the d iffusion region, the current density also reaches its  

m in im um  closer to  æ =  0. The plasma density, on the other hand, is very different in  the  

tw o cases, since in  the incompressible l im it  there is no density pe rtu rba tion  at a ll. For a 

compressible plasma, the to ta l density varies as 1 — 2[{R q — 1 ) /R q] cos(?r/2 )z  (ta k in g  on ly  

the firs t te rm  in  the sum m ation in  (5.57)). Thus, i t  increases from  a m in im um  at a: =  0 

to  a m axim um  at æ =  1 as the tension force compresses the plasma.

The va ria tion  o f the fie ld curvature is also reflected in  the va ria tion  o f V2y as in  equation

(5.54) and Figure 5.4, being largest where the fie ld strength is largest. The same is also
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true  o f the second-order shock position, yg, which from  (5.38) is largest where V2y is largest.

One aspect o f these solutions which has not been discussed a t a ll so fa r is th e ir va ria tion  

w ith  the plasm a beta. Roughly speaking, in  a low -beta plasma i t  is the m agnetic fie ld 

w h ich w il l  prov ide the dom inant force acting on the plasma, whereas in  a h igh-bet a plasma, 

i t  is the  plasm a pressure w hich is dom inant. As explained in  the in tro d u c tio n , a h ig li-be ta  

plasm a w il l  behave incompressibly. Thus, as shown in  Figures 5.2, 5.3 and 5.4, increasing 

(3e has the  same effect as increasing 7 . Because we have used a p e rtu rba tio n  expansion and 

have assumed th a t /5 is order one, we cannot show results fo r large /). We w ould  expect, 

however, th a t as (3 is increased fo r bo th  the compressible and incompressible cases, the 

values o f velocity, m agnetic fie ld strength, etc would become the same fo r bo th .

We find  also th a t the reconnection rate varies w ith  /?e, th rough the dependence o f a „  

in  (5 .3) on R q . The effect is again s im ila r to  increasing 7 , i.e. increasing /3g decreases 

the m axim um  reconnection ra te  fo r regimes w ith  an upstream  compression (60 <  1) and 

decreases the m axim um  value o f M i fo r regimes w ith  an upstream  expansion (bo >  1)

5.6 S u m m a ry

We have investigated the effects o f includ ing com pressibility in  models o f m agnetic recon

nection. Com paring these results w ith  the incompressible models o f Chapters 1 and 2 (see
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also Priest &: Forbes, 19S6 and Jardine Sz P riest, 1988a ) shows th a t com pressib ility m od

ifies the reconnection process quantita tive ly, w ith o u t changing its  character. The overall 

behaviour o f the solutions is in  fact very s im ila r to  th a t found in  the incompressible l im it  

and shows the same variations on going from  one reconnection regime to  the next.

The m ain m odifications are to  the way th a t the reconnection rate varies w ith  the 

imposed boundary conditions (which determ ine the reconnection regime) and to  the way 

th a t the m agnetic fie ld influences the flow. For a fu lly  compressible plasma we find  th a t, 

in  cases where there is a compression in  the in flow  region, the m axim um  reconnection 

ra te  is increased, whereas in  cases where there is an expansion in  the in flow  region, the 

m axim um  value o f M { is increased.

The actual fo rm  o f the solu tion which is obtained fo r any given in flow  boundary con

d itions is also changed. In  the in flow  region the flow  is made more strongly converging 

or d iverging by the inclusion o f com pressibility. In  the outflow  region, the fie ld  lines are 

curved, as in  the incompressible case, b u t here, since the tension force can compress as 

w ell as propel the plasma, the fie ld lines straighten out ra the r more qu ickly and there 

is a correspondingly greater acceleration o f the plasma close to  the diffusion region. As 

m ig h t be expected, the density, which is un ifo rm  in  the incompressible case, increases w ith  

distance from  the diffusion region.

These models have also allowed us to  investigate more fu lly  how varying the plasma 

beta  can affect magnetic reconnection. In  the compressible case, increasing /5 tends, in  

the upstream  region, to  reduce the convergence or divergence o f the flow  and, in  the 

downstream  region, to  decrease Uia,, increase B ix  and increase the m agnitude o f t>2y. The 

reconnection rate is also affected, such th a t increasing /? tends to  decrease Me fo r regimes 

w ith  6o <  1 and to  decrease ilf,- fo r regimes w ith  >  1. As j3 is increased these changes 

become less, u n til,  once j3 is suffic iently large, there are no fu rth e r variations. Thus, in  

the incompressible case, none o f the above parameters varies w ith  (3 and on ly Be and pg, 

the lowest-order upstream m agnetic fie ld and pressure are affected.



C H A P T E R  6 

G L O B A L  E N E R G E T IC S  O F  C O M P R E S S IB L E  R E C O N N E C T IO N  

6.1 In tro d u c tio n

111 Chapter 5 we examined the effects o f com pressibility on our coupled reconnection m od

els. These effects w ill,  however, also be manifest in  the energetics, since in  a compressible 

plasma, the in te rna l energy o f the plasma can change. In  th is  chapter, then, we explore 

the energetics o f the compressible solutions and compare our results w ith  those fo r the 

incompressible case.

6 .2  G lo b a l energetics

In  a compressible, steady-state plasma, conservation o f energy m ay be expressed by Equa

tio n  (1 .6), i.e.

V . =  0,

In teg ra ting  th is  over a volum e and using Gauss’ theorem gives, in  the two-dim ensional 

case.

E B y
dy — 0, (6.1)

M J

As in  the incompressible case, th is s im ply states th a t the am ount o f energy flow ing in to  

a region is equal to  th a t flow ing out. W ith in  each set o f square brackets the firs t term  

represents the therm al energy, the second the k ine tic  energy and the th ird  the magnetic 

energy. B o th  the nondim ensionalisation and the expansion o f (6.1) are carried out in  the 

same way as in  the incompressible case.

To lowest order in  th is expansion, (6.1) has a very simple form . In  the upstream  region 

i t  reduces to

+  (2 W ]  -  +  ( 2 W ]  }  =  0, (0.2)



where the firs t set o f terms in  square brackets represents the energy flow ing in  th rough 

the top boundary {B C  in  F igure 4.1) and the second set represents the energy flow ing  out 

th rough the shock. In  the downstream region, th is becomes

where the firs t set o f terms in  square brackets represents the energy flow ing in to  the region 

th rough  the shock and the second set represents the energy flow ing out o f the side. To 

th is  order, then, there is no energy conversion at a ll w ith in  e ither the upstream  or the 

downstream  regions; i t  is on ly at the shock tha t energy is converted. Here, ( 6 .1) becomes

a. +  +  +  M k i J }  =  0 (6.4)

such th a t, at the shock a ll the m agnetic energy is destroyed and divided equally in to  the 

therm a l and k ine tic  con tribu tions. Thus to  th is order the energy conversion depends only 

on Me (th rough  the VeB^f2iJ, te rm ) such th a t increasing Mg, or the ra te  at w hich plasma 

flows in to  the upstream  region, increases the amount o f energy th a t is converted. W ith in  

bo th  the upstream  and downstream regions the tota l energy depends on M g, j  and /?g, bu t 

the ratios  o f therm a l to  m agnetic (or k ine tic ) energy depend on ly on 7  and yflg. Increasing 

7  decreases the therm a l con tribu tion , while increasing (3̂  increases i t .  In  the l im it  7  —» 00 

we recover the incompressible results o f Chapter 4 and o f Jardine &  Priest (1988b) .

A t  the next order the s itua tion  is ra ther more complex. W ith in  the upstream  region 

we find  th a t there is no energy flow  through the top boundary (B C )  b u t energy flows 

through the side and shock boundaries as

ë  «n sinh(m +  |)7t
th  \  2-' /  mag_

=  0 (6.5)
^ \  ‘ 2' /  th \  ' 2 '" /  mag

where the same convention applies to  the square brackets. Th is shows th a t w ith in  the up

stream region there is a transfer o f energy between the magnetic and therm al components 

such th a t the therm al energy increases i f  60 <  0 , whereas the m agnetic energy increases i f  

ho >  0. Th is  corresponds to  the fact th a t in  regimes w ith  <  0 there is a compression in  

the upstream  region w ith  a converging flow which carries therm al energy in  through the 

side boundary. The cq^posite is true where ho >  0: here there is an expansion upstream 

w ith  a diverging flow  which carries therm al energy out o f the region. Because the system 

is in  a steady state, an increase in  the therm al energy m ust correspond to  a decrease in
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Figure 6 .1: The change o f therm al energy w ith  6q ici the  upstream region.

the m agnetic energy and vice versa. Thus, to  th is  order, the energy conversion depends 

on ly  on 7  or (3̂  through the n  te rm  in  (5.3). Increasing e ither o f these sim ply increases 

K, rescaling the am ount o f energy converted w ith o u t changing the nature o f its  varia tion  

w ith  the reconnection regime (see F igure 6 .1). We note th a t a negative energy change 

denotes a net outflow  o f energy and hence an increase o f energy w ith in  the region.

The effects o f com pressib ility become much more pronounced when looking at the 

energy conversion at the shock. A t  second order, the energy flow  in to  and out o f the shock 

is described by

sinh(n +  \ ) ’k
n=0

sin(n+^)7r
(n+“ )7T

_  ( (  7(/9e+l) I 1 \ h . \  I \
7-1 ^  7 - 1 ; ^  % (7-l) (n+1), ^  Ro(l-Ro)(7-l) j

f x i l  -  4An U _  ( ± y § e  _  2-y , o \  s in ( n + ^ ) ^  _  j l + R p )  R i j x )  d x \
^  1 \ 7 - l  (7-l)(l->io)J ^0 1 7-1 /lo(7-l)(l-i?o)2 I

J_ (  4i?.n u , 47/3e sm (n+i);r 2 R r { x ) d x
+  l {7-1){1-A o)^0 +  ^_i

m ag

/  kin 

(6 .6)

where again the firs t set o f terms in  square brackets refers to  the energy flow  in to  the 

shock, the second set to  the energy flow  out o f the shock.
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A t th is order the energy conversion depends cruc ia lly  no t on ly on bo b u t also on 7  and 

/9g. This is hard ly  surprising, since the very nature o f the shock depends on its  strength, 

i î ,  which is itse lf a func tion  o f these variables. F igure ( 6 .2) shows how, to  th is  order, 

the va ria tion  w ith  60 o f the am ount o f energy converted changes as 7  o r (3̂  is altered. 

In  a ll cases, as 60 is increased from  the upstream  compression regimes ( 6q <  0) to  the 

expansions (bo >  0), the k ine tic  and therm al energies produced at the shock decrease, 

w hile  the m agnetic energy produced increases. As (3 is increased, these variations become 

more pronounced. W hen (3 is sm all, these variations are greater in  the compressible case, 

bu t as p  is increased and the plasma begins to  behave incompressibly, the results fo r both  

the compressible and incompressible cases become the same.

W ith in  the downstream region, the  energy conversion is ra the r simpler. Expressing the 

energy flow  in  th rough the shock and out th rough the side, respectively, as

> G.„ s in l i { n  +  ^ )7 r  < I I  — ■'w s  I bn +  ^

^ 7 -3  , 47(j8«+l)\ L f47/3e 2 7  , s in(n4-?)- {1+Ro) R i {x)  d x \
+  (7-1) V +  3 j — x j -  -  J+

( 7(/3;+1) , I. , 7(/3e-l) Rijx)dx
I  7-1 ^  7- 1;  iîo (7 -l) fn + iw  ^  R o { l-R o )h -l)

th

+  -
n P e t i iu _L sin(n+^)7r 2 Ri(x)dx
(7-1) ^0 +  7-1 (7-1)(1-Ro)2

4y(0e+l)

magj

/  kkin

+
, s in ( n + ^ ) -  , f^^Rx(x)dx

"^ 7 (n+ i);r Ho(l-i?o)(7-l

(n+5)î th

= 0, (6.7)
2 ' /  Icin-

i t  can be seen th a t the therm al energy w ill increase i f  7  >  1 (w hich is always satisfied) 

while  a ll o f the magnetic energy is s im ply absorbed in to  the k ine tic  energy.

Once again, includ ing com pressib ility  has a noticeable effect on the energy conver

sion. This essentially comes about because the downstream solution is determ ined by the 

boundary conditions at the shock, which are themselves determ ined by the values o f 7 

and /?£• Thus as shown in  F igure 6.3, increasing pç tends to  increase variations w ith  6o* 

W hen pe is small, these variations are greater in  the compressible case. The change w ith  

ho o f the magnetic energy converted is ju s t a m irro r image o f F igure 6.3, since there is no 

change in  the therm al energy converted w ith  ho>

Figure 6.4 shows the ra tio  o f the to ta l flux  o f therm al to  k ine tic  energy flow ing out o f 

the downstream side boundary. As m igh t be expected, increasing p^ increases th is ra tio  

(since more o f the energy goes in to  the therm al component). 'When P^ is sm all, th is  ra tio  

is greater in  the compressible case.As noted above, however, once p^ is large enough, there
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F igure  6.3: The change o f k ine tic  energy w ith  bo in  the  downstream  region.

are no longer any density variations and hence no varia tions in  the in te rn a l energy. A t  th is 

stage, the results fo r the compressible and the incompressible cases should be the same 

(th is  l im it  is no t shown because, w it l i in  the lim ita tio n s  o f our expansion, /3e m ust be of 

order one). From  (6.7) i t  can also be seen th a t the gradients o f these lines w ill also depend 

on w hether 7  <  3 or 7  >  3. Thus, i f  7  >  3, the ra tio  o f th e rm a l to  k in e tic  energy flow ing 

ou t o f the  downstream  region decreases w ith  60, w hile  i f  7  <  3, th is  ra tio  increases w ith  

60 •

6.3 S u m m a ry

Using as a basis the incompressible results o f Chapters 1, 2 and 4 (see also Jardine & 

P riest (1988c) ) we have examined the efiects o f inc lud ing  com pressib ility  on the global 

energetics o f the reconnection process. To lowest order, where a ll the energy conversion 

occurs at the slow shocks we find  th a t there is no change in  the am ount o f energy converted, 

a lthough the to ta l energy content o f the regions upstream  and downstream  o f the shocks 

is increased.

A t  the next order, there is a s light increase in  the energy conversion in  the upstream 

region, b u t the effect is much more apparent in  the downstream  region and at the shocks. 

Here, a llow ing com pressib ility increases the variations in  the energy conversion w ith  the 

reconnection regime. Thus, fo r a slow compression regime, the m agnetic energy increases
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â t the shocks, while the therm a l and k ine tic  energies decrease. For the flu x  p ile-up regime 

the opposite is true. W ith in  the downstream  region, a ll o f the m agnetic energy is absorbed 

in to  the k ine tic  energy, w hile  the the rm a l energy increases at the expense o f the k ine tic  

energy. Aga in , the am ount o f energy converted is increased by a llow ing com pressibility.

The ra tio  o f the to ta l the rm a l and k ine tic  energies flow ing  ou t o f the downstream region 

is also affected: in  a compressible plasma th is  ra tio  is higher and increases on going from  a 

slow compression regime to  a flu x  p ile-up regime, w hile  in  an incompressible plasma, th is  

ra tio  is lower and decreases w ith  th is  change in  regime.

F ina lly , a llow ing fo r com pressib ility  has enabled us to  examine fu lly  the effects o f 

vary ing the plasma beta. As can be seen most clearly at lowest order, one result o f 

increasing /?e is to  increase the the rm a l con tribu tion  to  the to ta l energy. A t  h igher orders, 

we find  also th a t th is  increases the variations in  the energy conversion w ith  bo. W hen j3 

is sm all, these variations are greater fo r the compressible case, bu t as ^  is increased and 

the plasma becomes incompressible, the results fo r the compressible and incompressible 

plasmas w ill become the same.
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APPENDIX A

THE DOWNSTREAM SOLUTION

From  (2.12) i t  can be seen th a t the characteristics o f the so lu tion fo r B ix  lie  along the lines 

y ~  ±i\fg.T +  c. Hence these w il l  d iv ide the downstream region in to  three parts, depending 

on whether the characteristics emanate from  the diffusion region or the wa.ve (see F igure 

A . l ) .  Region 1 is crossed on ly by characteristics from  the d iffusion region; region 2 by 

characteristics from  the d iffusion region and the waves and region 3 by characteristics from  

the waves only. Since these characteristics define the directions along which in fo rm a tion  

fro m  the boundaries propagates in to  the solution, the lines y =  ± { M qX — 2 M ^L )  define 

the separate regions o f influence o f the boundary conditions.

C learly, i f  we wish to  select solutions for which the d iffusion region has least effect on 

the downstream  region, we need T  <C 1, such th a t regions 1 and 2 are sm all enough to  be 

neglected. In  th is  case, however, i t  is not clear what is the correct boundary cond ition  to 

use fo r region 3, which does not extend to  the wave. To c la rify  th is  po in t, we consider all 

three regions:

Region 1

The boundary conditions are

1. B \x  =  0 on ?/ =  0,

2. B ix  =  h (y ) on x — L  (where h is an odd function  o f y),

3. —̂ 3 : . — 0 on x — L.

We therefore ob ta in  from  (2.12)

y) — — d/e.l' +  M eL) +  \h ( y  +  J\IeX — M ^L ) . ( A . l)
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Figure A . l :  Characteristics fo r the solution fo r B \x  in  the downstream region.

Region 2

Here the boundary conditions are

1. B i x  =  h { y )  o n  X  — L ,

2. B i x  — B f ^ { x )  o n  y  ~  M ^ x  (where B ^ ^  is given by the ju m p  re lations).

Since the y  — M e X  +  c characteristics are common to  regions 1 and 2, (2.12) gives

B \x {x , y) ~  \h { y  — M ^x  - f  M ^L )  +  B^^
r 1
2M ,

■ {y  +  M e x ) (A .2 )

Region 3

Here the boundary conditions are

1. B ix  =  0 on y =  0,

2. B ix  -  o n y -  M ^x

and no ting  th a t the y =  —M ^x  +  c characteristics w ill be common to  regions 2 and 3, we 

ob ta in , from  (2.12),

B ix { x ,y )  =
2A&

■{y  +  M e x ) B I x ( y  -  M e x ) (J l.3 )
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Now, the corresponding velocities can be found by su bs titu ting  (A .1 )-(A .3 ) in to  (2.6) 

and the derivative o f (2.7), i.e.

dx (A .4 )

(A .5 )

In teg ra ting  these and using fo r regions 1 and 2 the cond ition  th a t Vix =  i f z  on y MeX 

gives

2(w )1/2'
h {M e L )  — h (—2Mc3> 4- Me^L)] in  region 1; (A .6 )

riz(æ ,2/) =  + { b L 2I\L
■[y +  M ex)

( j l .7 )+  ̂ B f^ {L )  -  |h [y  -  MeX +  in  region 2.

For region 3 we use the cond ition  th a t at the boundary between regions 2 and 3 the 

velocities obtained in  the tw o regions m ust be the same, i.e. the  velocity obtained from  

(2.6) and (2.7)

P i + ))l/2 2 M
■{y +  M ex) la: 2M ,

■{y -  M ex) }  (A -8)

solving gives

m ust be equal to  th a t from  (A .7). E va luating  (A .7) and (A.S) a t ^ =  M qX — 2M eL  and 

and hence

(p p )i/2 (w ith  c a constant), (A .9 )

2M ,
■{y +  M ex) +  B ix 2 M

— {y  -  M ex)

or, using the jum p  re la tion  fo r B^^ (2.29), we have

B ix {x ,y )  =  B'^x - ~ { y  +  M ex)
2 M

B L 2 M
1

— (y -  MeX)
2 M ,

■{y +  M ex) +  B i^  - ^ ^ ^ ^ {y -M e x )  -  ^ L (a :)  j  fo r region 3.

(A J.2)

Hence in  the downstream region i f  L  <C 1 then (A .11) and (A .12) w ill be valid over most 

o f the downstream region. B o th  r i#  and B ix  are specified com pletely by the upstream 

solution, and the choice o f on ly influences the narrow  region close to  the wave. In  fact, 

i f  the diffusion region is very small then at x =  L . B'^ ,̂ % 0 (since by sym m etry i t  m ust be

(A . 10)

( A . l l )



zero on the .T-axis). In  th is  case, from  (2.29), In  general we expect

je ts  o f plasma in  the regions close to  the wave (Sowaa'd &  Priest 1986), bu t th e ir effect

w ill be neglig ib le when L  is sm all enough.
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APPENDIX B

THE JUMP RELATIONS

We m ay express the ve loc ity  and m agnetic fie ld vectors in  components norm al to  and 

transverse to  the wave as follows:

n "  =  [—n" cos[|7T — ($  — a )], sin[|7T — (€> — a)]],

6 "  =  [J3“  c o s [|7 T  — ( n  — a ) ] ,  — s i n [ j 7 r  — ( f l  -  o . ) ] ) ,

— [—n^cos[|7T — ( i \ f  +  a )], —■y^sin[|7r — ( M  +  a )]],

=  [B^  cosf^Tr -  (L  -  a )], - B ^  s in[|7r — {L  ~  a )]],

where H, etc. are defined in  F igure 2.1.

W rit in g  the ju m p  relations (2.21) in  terms o f these angles, we have

n "  c o s [|7 T  -  ( $  -  a ) ]  =  Va  c o s [ |7 t  -  ( f l  -  a ) ] ,  

C O s[|7T -  ( $  — Q ')] ~  COs[J7T — ( M  +  û ) j .

(13.1)

(B.2)

w h e r e

u "  s in [ |7 r  -  ( $  — a ) ]  +  c o s [J 7 t — ( M  +  a ) ]

-  ( f i  -  a)]

s in [ |7 r  -  ( R  -  a ) ] }  ,

R "  c o s [ | â  — ( n  — a ) ]  =  B ^  c o s [|7 T  -  ( L  — a ) ]

/  =  P" +
— M

n" sin = sin M  = -•cfn

u" cos <I> = - I 'x , cos i l /  = ■4 .

# R " sin n  = R'^ cos L  — B i ,

R " COS Ü — B^  sin L  = B i-

(B .3)

(B.4)

(B.5)

(B .6 )



Equations ( B . l)  - (B .6) m ay now be w ritte n  in  terms o f the æ— and y — components 

given in  (B .6 ) and the resu lting  equations expanded in  powers o f Me, assuming the fo l

low ing ordering: 

upstream

downstream

Ux — e ^^2 x 4"

Vy = f% iy 4- +

R z  = R qx + f R i x + e2J92x +

B y = ^ R ly 4* f : R 2 y +

P  = Po ^ P l + ^ P 2 4"

Vx ~ % x + fU lx 4- f^% 2x +

Vy = UOy 4- €% ly 4- f^% 2y +

R x  = R o x 4- eR ia ; + ( f R z r +

By — R o y 4" e R iy 4- 6 :R 2 y +

P = Po 4- e p i 4- ^ !p 2 4 .

The resu lting  equations are

0 (1 )  tan  Co

0 (e ) tan  aq

O(e^) tan  0.1

0 ,

Bf.. B I_
VaG Be. ’

0(1 ) VOy

0 (e ) ± v iy

O(e^) ± v 2y

=  0 ,

-  rg ^ ta n o i,

-^o x  ta il 0'2 -  r ^ g ta n a i -

(B.7)

(B.8)

0(1)
0 ( e )

0(e2)

0,

B iy  -  Rox tan 0.1 4- Rqx tan aq,

B%  -  RcL tan a'2 -  Rj% tan oq +  R^^ tan 02 +  Pu- tan aq ;

> (B.9)

0(1)

0 ( e )

0(e2)

Po — 

P i =

Pg +  & [ ( % ) ^  -  ( R i ) ' ] ,

P2 =
i_
2^

PÏ +

P ' i +  * [ 2 % %  -  2 B t B i ,  + + ( B l j f  -  { B t f  -  { B % f \ .  ^

(B.IO)

where the ±  signs correspond to  the signs o f Uy and R -̂ (see Fig. 2.1). In troduc ing  the 

assumption th a t r&r =  n.4c (and the corresponding result th a t r fy  =  0) now gives (2.22) 

to  (2.36).
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A P P E N D IX  C

T H E  D O W N S T R E A M  M A G N E T IC  F IE L D

The equation which governs the perturbed æ-component o f the downstream m agnetic field 

B ix { x ,y )  is

(CT)
Rc

where /  and g are a rb itrary  functions. The boundary conditions

1. B ix  =  0 on y =  0

2. B ix  — B ix  on y — I R q

(C.2)

(C.3)

g iv e

B Ix
R qU

where

f  _  B l ' "Ç — —T

=  / ( - N  +

< 1.

Using (C .4) th is  is ju s t

R qU

R qU

y(%) = oi^u) + Bix

■  k,
Now, as Q -» oo, —y 0 since ^ <  1. Hence, as Q -> oo,

Roll
g { u)  =  g{0 )  +  Y I B i x

< j=0
c M,(i +

and hence, using (C.4)

f { u )  =  - y ( 0 )  -  Y ]  R i x
7 = 0

Roy

. 44(1 +

(C.4)

(C.5)

GO



(since B^x is an even func tion ). Thus (C . l)  becomes

OO

where

and

y) =  Y ,  (C .6)
7=0

<y  +
4 4 (1

4 4 ( 1 + i zy'
Now, from  (5.46) and (5.44), using (C.6)

M oo _
W i.(x ,ÿ ) =  h { x )  +  - ^  E ̂ L ( ( 'c + )  +  (C .7)

Rq 7=0

and

=  t ( y )  -  +  B i , { Ç > c ~ )  (C.S)
"  0 itg  y_Q

where h (x ) and t(y )  are a rb itra ry  functions. E lim in a tin g  v ix  from  (C .7) and (C .8) gives

h(æ) +  7̂ - p ^  =  t{y )  =  a i, a constant. (C .9)
2 ito

Using th is  and evaluating (C.S) at the shock (y  =  M exfR o )  gives

oo
■i/9 1

v f^  =  a i -  ~ p f ( æ )  +  Ë  R iz((^a ;) +  R i^(^^+^æ)
0̂ 9=0

oo

and hence

=  .1 -  4 ^ ( - )  + g &  +  ^ E
JLq JLq 7=0

— d  \  ( -Xjd B l x { x )
^  =  - i -  ^ x ( z )  +  ^ P f ( : ^ )  -  . (C .IO )
7=0 -  V -̂ ^0 Rq /

This can be substitu ted in to  (C .6) to  give (5.48) or in to  (C.S) to  give (5.50).



A P P E N D IX  D  

T H E  P E R T U R B E D  S H O C K  S T R E N G T H

The equation which determines R i { x )  is (5.52):

2KMe ^  tanh [{n  +  |)7 t] sin [(n  +  ^ ttL ]
(C 3 -  C2)Ri {x ) +  (cs-h C2)R i (^ x ) =  ^

n = 0

X { - ( c o  +  Cl) COS |(n  +  |)7r.r]

+(co -  Cl) COS [(?r +  |)7T^æ] -  C460}  , (D . l)

where the constants cq to  C4 are as defined in  (5.52). W rit in g  the righ t-hand side, which 

is a know n function , as / ( x ) ,  we have

f i x )  -  (C3 -  C2)Ri {x ) +  (c3 4- C2)R i(^æ ) (D .2)

where we m ay expand R i{x )  and R i{^ x )  as a Taylor series about .r =  0 to  give

f i x )  =  2c3R i(0) 4- |ra;2ie"(0){(c3 -  C2) P  ^^(c3 4 -C2) }

p  | j- . 'C '*R l" (0 ){ (C 3  — C2 ) p  C ^(c3 p  C2) }  p  ♦ * •

where a ll the odd derivatives are zero from  (D . l) .  I t  can be shown th a t (03 — C2) >  

^^(c3 P  C2) and therefore, since ,$ <  1, (03 — C2) >  ^®(c3 P  C2) etc. Hence we m ay neglect 

the ( " ( c 3 P  C2) te rm  fo r n >  4. Th is gives

f i x )  (C3 P C2) R i( 0 ) P ^Z ^ R Ï(0)^^(C3 P Cg) P  (C3 -  C2) R i ix )

and so

~  | / ( x )  -  (C3 +  C2) ( | i î i ( 0 )  +  I  (D .3)

where f { x )  is given by (D . l) .



R'{{0) m ay be found by d iffe ren tia ting  f { x )  to  give

, 2k 4 4  ^  *anh [(«  +  1 ) 4  sin [(n  +  p T r i
/ W  = — i : ---------------- ---------------------------

n—O

X  { ( c o  +  C l )  s i l l  [(72. +  | ) 7 r æ ]  -  ^ (c o  -  C i )  s in  [(? i +  |)7 r ^ a : ]  }  , 

n M e   ̂ [ c o s [ ( 7 2 + | ) 7 t ( X  -  .x )] c o s [ ( n +  ^ ) 7 r ( R p  x ) ] )

"  £  +  np I

t r .  _ , p 7 T ( £ - ( x ) )  c o s ( ( n + | ) j r ( £  +  { x ) ] ' |  "
_ |(e e  -  cr) | ------------------- --------------------------------------- ---------------1

where we have neglected the ta n h (n  +  |)7T term  since th is  tends to  one very ra.pidly. Th is 

series m ay be summed (G radshteyn &  Ryzhik 1980, p. 38) to  give

f \ x )  -  \  (co +  Cl) log
tan  %(T P x )
tan  f  (T  -  x)

-  6 (c o  -  C l ) log
tan  f ( T  P  ^x )
t a n f ( L  -  ( x )

and so

/"(O) ^  p o  + cx) -  «qco -  Cl)} .

Now, from  ( D . l)

f " { 0 )  — R i(0 )  | ( C 3  — Cg) P ^ ^ (C 3  p  Cg) j  ,

and so
k M r

Since, also from  ( D . l) ,  

R i( x )  is now known.

(Cq P Cl) -  ^^(CQ -  Cl) 
L  sin ^  \  (c3 -  C2) P  P (c 3 P  cg)

itx (0 ) =  g ,

(D .4)

(D .5)

(D .6)
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