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To Lisa, my wife



A b stra ct

Equations are derived to describe the evolution of an electron distribution func­

tion under the action of electromagnetic instabilities in a non-uniform plasma 

using an extension of the quasilinear theory of Kennel and Engelmann. Varia­

tions in both the electron density and tem perature and the background magnetic 

field are taken into account. These equations are simplified in the limit of small 

electron beta so that an electrostatic approximation is justified. Methods are 

then presented which allow the solution of these equations (or, in principle, the 

more complex electromagnetic equations). In particular, a method of solving the 

kinetic dispersion relation for an arbitrary background (first-order) distribution 

function with the minimum of additional asumptions and approximations is de­

scribed in detail. The electrostatic equations are solved for a number of different 

cases in order to study the action of the modified two stream instability on the 

electron distribution function. Throughout, realistic values of the ratios of elec­

tron to ion mass and electron plasma to cyclotron frequency ratio are used. The 

applications to collisionless plasma shock waves are discussed, and it is found tha t 

the modified two stream instability can produce the (relatively small) amounts 

of electron heating observed at quasi-perpendicular terrestrial bow shocks, and 

the fiat-topped electron distribution functions seen to evolve.

Extensions to the model which would greatly improve its applicability and 

accuracy, as well as the amount of computational effort required, are discussed.
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Chapter 1

Introduction

1.1 Shock w aves

A shock wave is a transition layer across which the properties of a medium change 

from one set of values to another, different, set. Viewed from a frame of reference 

which moves with the shock, the medium flows into the shock from one side 

(the upstream side), is slowed down, deflected (in general), and heated up: the 

medium’s ordered streaming energy on the upstream side is partially converted 

into random thermal energy on the downstream side. Shocks arise from the 

steepening of a finite amplitude wave due to nonlinear effects; the speed at which 

a point on the wave travels increases with the amplitude of the wave at that 

point, [29] so that the crest of the wave tends to catch up with the trough: 

it must be prevented from overtaking the trough by some physical mechanism, 

since otherwise quantities such as density, velocity and pressure would become 

multiply-valued functions of position. For a steady state structure to exist, there 

must be some mechanism present to counteract the nonlinear wave steepening, 

so tha t, eventually, a transition layer of finite thickness will be formed. In shock 

waves occurring in fluids, this mechanism is viscosity, which is due to the collisions 

between the molecules tha t make up the fluid. Dimensional arguments suggest



tha t the thickness of the shock should be of the order of the mean free path  of 

the fluid [45], as is found to be the case.

If we attem pt to apply these ideas to collisionless plasmas (that is to say, f

most plasmas of interest), then we find tha t the width of the shock region is 

implausibly high: for example, in the solar wind plasma, the mean free path  A 

is of the order of an Astronomical Unit (1 A.U. % 1.5 x 10^  ̂ m.), whereas the 

width of the shock transition layer may only be tens of kilometres thick. In the 

laboratory, shocks are observed in devices whose dimensions are smaller than 

A. Thus we must identify a mechanism capable of producing dissipation in a 

collisionless plasma.

In a neutral fluid, the only means by which energy and momentum can be 

transported are by binary collisions between molecules. These are ‘short range’ 

interactions in the sense tha t particles can only affect the motion of other particles 

when they are in close proximity to one another. In a plasma, on the other hand, 

because the individual particles possess non-zero electrical charge, variations in 

their density and mean velocity can set up fluctuating electric and magnetic fields 

capable of propagating large distances. Other particles may ‘collide’ with these 

waves, resulting in energy and momentum transfer. In other words, particles can 

interact collectively as well as on an individual basis, and hence ‘dissipation’ is 

still possible without any classical collisions.

1.2 G overning equations

To describe the behaviour of a collisionless magnetised plasma, we will use the 

Vlasov-Maxwell system of equations. This employs a statistical description with 

a continuous six-dimensional phase fluid of density Fs for each particle species 

s (s =  z for positive ions, i.e. protons, and s = e for electrons). The quantity 

Fs{r, V, t)drdv  gives the number of particles with velocity between v and v + dv  

and position between r  and r  -f- dr at time t. Fg, the distribution function, obeys



a continuity-type equation:

This expresses the fact tha t, in the absence of collisions, the rate of change of Fg 

along a particle trajectory is zero.

The electric and magnetic fields E  and B  are determined from the charge and 

current densities p and j  by Maxwell’s equations:

=  ,oj +  i f  (1.2)

=  -W
| ; . B  =  0 (1.4)

and the charge and current densities are obtained from the distribution functions |

by

P = f  Fgdv (1.6)
s

j  =  I ]  9. y  vEgdv (1.7)

These equations constitute a closed, but hopelessly intractable, set. 

We can take the average of equation(1.1) to obtain

where

C. =  - i i - ^ - ( ( « E  +  v A 5 B )« / ,)  (1.9)
irig o v

The angle brackets denote tha t the quantity within is to be averaged in some 

way, and fg ~  {Fg) and 6fg — Fg — {Fg). Eo and Bo are the averaged electric and
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magnetic fields, and 6E and dB are the fluctuations of the fields around their 

average values. Equation (1.8) now looks like the collisional Vlasov equation, 

with Cs acting like a classical term. However, Cg describes not the effect of (short 

range) particle-particle interactions (as would, for example, a Krook or Fokker- 

Planck term ), but the influence on particles of fields set up by the collective 

motions of those particles. One im portant property of Cg is th a t it does not, in 

general, lead to the relaxation of an initial, arbitrary, distribution function to a 

Maxwellian. For example, with no background fields and no perturbed magnetic 

field we can recover the quasilinear equations of Drummond and Pines ([10]): in 

the case of an initially Maxwellian background plasma with a weak beam (the 

bump-on-tail instability), the resulting distribution has a flat ‘plateau’ in the 

region of velocity space in which particles have interacted most strongly with 

waves.

It is easy to show that the ‘collision’ term  Cg satisfies the following identities:

/ Cg dv

2
dt

{6E A 6B)

dv
1

eo{SE6E) 4- ~ { 6 B 6 B )

dt

0 (1 .10)

+

?/
0

0

mgvCg dv

(1.11)

— (5E A SB)] I m y C ,  dv
JIq j s ^

(1.12)

The first relation simply expresses the fact that particles are neither created 

nor destroyed by the collision operator, the other two express the rate at which 

momentum and energy respectively are transferred between fields and particles.

Another conservation relation tha t can be derived involves entropy. A colli­

sional shock (for example a viscous hydrodynamic shock) will produce entropy. 

If we take equation (1.1), multiply it by 1 -j- InFg and integrate over velocity, we

i
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find tha t

— J  FghiFsdv  +  ^  • J  vFalnFsdv = 0 (1.13)

so tha t the entropy satisfies a conservation-type equation. However, if we define 

the entropy not in terms of the ‘full’ distribution function Fg but the averaged 

function fg, that is 1 4- In/®, then

^ J f g l n  fgdv 4- ~  • y  v /a  In fgdv  =  fs)Cgdv (1.14)

and it can be seen that there must be change of entropy across the shock layer, 

where Cg ^  0. |

1.3 Shock classiflcation

When viewed in sufficient detail to be able to discern their small scale structure, 

collisionless plasma shocks can be seen to be different, dependinq on the values of 

a number of parameters. The size of the pseudo-collision term  introduced above 

enables one to categorise shocks according to the level of turbulence present 

within the transition layer:-

1. Laminar shocks:

Here, the pseudo-collision term  Cg is zero, and so there is neither turbulence 

nor dissipation. In this case, the fluid equations do not have shock-like 

solutions, but only adm it infinite wave-trains or single pulses (solitons) [48].

However, the Vlasov system can be shown to allow shocks [38], [39], since 

in the kinetic picture, the inclusion of finite Larmor radius effects means 

tha t particle reflection is allowed: ions can be bounced off the potential 

barrier across the shock, thus upsetting the symmetry between the up and 

downstream sides of the transition layer.

2. Quasi-laminar shocks:



The collision term  is non-zero, but the amplitude of the turbulent fluctua­

tions is small, i.e. | ^ / s |  <C f s -  The shock has the appearance of a smooth 

transition layer, upon which are superimposed lower amplitude, smaller 

length-scale fluctuations.

3. Turbulent shocks:

Here, |^/s| % and there is no smooth transition layer.

There are various factors which determine into which class a particle shock should 

fall: below we list some of the most im portant, and their definitions:-

• ^Bn- The angle between the outward pointing normal to the plane of the 

shock front and the direction of the upstream magnetic field.

• M m s- Fast magnetosonic Mach number =  c |) ,  where V\ is the 

upstream fluid velocity, ca is the Alfven wave speed and Cg the sound speed.

• /3: This is the ratio of plasma pressure to magnetic pressure, tha t is:

^  Bg/(2f,o) (  ̂ ^

• a: Ratio of electron plasma and cyclotron frequencies: Wpc/wce

• p: Ratio of ion and electron temperatures: Ti/Te

The level of shock turbulence is very closely related to dsn- For <  10°, 

shocks are said to be parallel, and are generally highly turbulent, highly complex 

structures; for arccos{ym e jm i)  <  <  90°, shocks are said to be perpendicular,

and are more laminar; those shocks with values of 'dsn inbet ween are classed as 

oblique.

Turbulence increases with both the /? and and Mach number of the upstream 

flow. There is a value of M , the critical Mach number, above which purely 

resistive effects (i.e. those due to anomalous resistivity) are unable to produce
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the dissipation necessary to produce a shock, and some phenomenon producing 

anomalous viscosity must be invoked. As /? tends to infinity, the critical Mach 

number tends to 1, and so all high-^ shocks must be supercritical.

1.4 Q uasi-Lam inar perpendicu lar shock  w aves

When the upstream Mach number and plasma beta are both low, and the up­

stream magnetic field is in the plane of the shock, the physical mechanisms re­

sponsible for the shock can be understood, qualitatively speaking at least, fairly 

easily [6]. Suppose tha t there is a region in space in which the magnetic field 

increases over a distance Lg such tha t

^the F  g Uf/ii (1.16)

where aiha is the therm al Larmor radius of particle species a. The electrons will 

perform many gyrations around the magnetic field direction as they drift through 

the shock with speed

UB =  ^  (1.17)

where B{x)  is the magnetic field, which points in the z-direction, perpendicular to 

the shock normal, Ey is the electric field in the plane of the shock, and x measures 

distance through the shock. By Maxwell’s equations, Ey must be constant, and 

so the electrons will be slowed down. The ions, however, will not feel the gradient 

in the magnetic field because of their large Larmor radii, and so an electric field 

will develop in the x-direction pointing upstream in order to slow them  down. 

This will cause the electrons to drift across the magnetic field (as will the field 

gradient), the current thus formed being of precisely the correct size to give 

rise (by Ampere’s law) to the increase in the magnetic field tha t we postulated 

initially. It would thus seem possible for a steady state structure to exist.

In the absence of any dissipational mechanism, the magnetic field would in­

crease smoothly and monotonically to  a maximum value, and then decrease again.



Depending on the boundary conditions imposed upstream of the shock, either the 

magnetic field will return to its initial value, in which case we will have a solitary 

pulse propagating through the plasma, or for the field to oscillate, giving a large 

amplitude wave train. Neither of these situations is a shock. If, however, the 

cross-held drift current is sufficiently large, it is possible for waves propagating 

in the plane of the ramp to become unstable. They would then be expected to 

grow to some level, and then saturate, producing a steady level of anomalous 

dissipation. It would then be possible for a collisionless shock to form.

Since the ions will in fact have a therm al spread, the electric field pointing 

out of the shock will be able to reflect those ions with sufficiently small kinetic 

energy. These are then turned round by the magnetic field and accelerated by the 

tangential electric field. Usually they will re-enter the shock with sufficient energy 

to be transm itted. At lower Mach numbers, the proportion of ions reflected is 

small, but at high Mach numbers the proportion is large enough to enhance the 

magnetic field upstream of the main magnetic ramp and so to produce a broad 

‘foot’ structure. At high Mach numbers it is this reflected ion population which 

is responsible for most shock dissipation.

1.5 T he E arth ’s bow  shock

It has been known since the late 1950’s tha t the Sun is not in a state of static 

equilibrium with its surroundings, but is in fact incapable of retaining its hot, 

tenuous outer atmosphere (the ‘Corona’) by gravitational attraction. Thus, the 

whole of the solar system is pervaded by a plasma flowing rapidly away from the 

surface of the Sun. At the E arth ’s orbit, the parameters of this solar wind are:



Parameter description typical value

Tli proton density 5 X 10®m"^

Vi bulk speed 250 - 800 k m /8

Ti ion tem perature 7 X l O ^ K

Te electron tem perature 1.5 X l O ^ K

Ca Alfven speed 50 - 100 km /s

C M S  = Vi/y /{c \  -f- c |) Magnetosonic speed 60 - 150 km /s

The electron density and flow velocity are roughly equal to the proton values.

The pressure of the solar wind tends to compress the sunward (daytime) side 

of the E arth ’s magnetic field and stretch out the nightside field into a long tail 

(see Fig 1.1). A magnetic cavity, the magnetosphere, is formed around the Earth, 

extending out to a distance of about 10-11 Earth radii, with the solar wind flow 

pressure being approximately balanced by the magnetic pressure of the E arth ’s 

field. The solar wind is forced to flow around the boundary (the magnetopause) 

of the cavity. This flow is clearly supersonic with respect to the sound, Alfven 

and magnetosonic wave speeds, and so a stand-off shock wave forms about 2-5 

Earth radii upstream of ther magnetopause, just as happens when a blunt body 

travels supersonically through a fluid medium. The region between the shock 

wave and the magnetopause is known as the magnetosheath, and consists of 

shocked, subsonic, heated, turbulent plasma.

It was first hypothesised tha t shocks could in fact occur in the solar wind 

in order to explain the apparently paradoxically rapid onset of magnetic storms 

caused by solar flares. It seemed tha t otherwise the particles produced by the 

flare would have to have an implausibly narrow velocity spread {8vIv 10“^) in 

order to account for the observed rise time of the storm, about a minute. The first 

actual experimental observation of the bow shock seems to have been made by the 

magnetometer carried on board the IMP-1 spacecraft in 1963 [40]. Because the
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solar wind parameters can vary by several orders of magnitude over a period of 

several months, the terrestrial bow shock is a valuable ‘laboratory’ for the study 

of shock physics. Multiple satellite missions, such as ISEE (International Sun- 

Earth Explorer) and AMPTE (Active Magnetospheric Particle Tracer Explorers), 

have made it possible to distinguish between time and space variations in plasma 

quantities, and the degree of sophistication of the instrum entation carried on 

board has made it possible to to make highly accurate measurements on both 

plasma and field quantities.

1.6 N um erica l S tudies o f C ollision less Shock  

w aves

Although the terrestrial bow shock does provide an excellent opportunity to study 

collisionless shocks, it does have a number of drawbacks, not least the cost and 

complication of transporting measuring equipment up into space. More funda­

mentally, it is impractical to make simultaneous observations on the shock at 

more than a few locations. As in other branches of plasma physics, the difficulty 

of experiment and the intractability of the governing equations has made the nu­

merical simulation of plasma phenomena an attractive option. The first attem pt 

to model a shock numerically was due to Colgate and Hartm an [7] who used the 

charged sheet of Dawson [9] to simulate an electrostatic shock. The m ajority of 

computer codes w ritten to study shock physics fall into three categories [34]:

Fluid codes: The multi-species fluid equations (conservation of

mass, momentum, energy) are augmented by ‘phe­

nomenological’ terms describing microscopic ef­

fects, which are outwith a purely fluid description;

10



Particle codes: The motions of a sufficiently large number of par­

ticles are followed;

Hybrid codes: A particle description is used for the ions, and a

fluid description for the electrons.

Fluid codes have the virtue of requiring the least computational effort of the 

methods, but the description is clearly not self-consistent in tha t microinstablities 

cannot be modelled directly, and so anomalous transport terms must be included 

(recall that without viscosity or resistivity, classical or otherwise, the fluid equa­

tions do not support shock solutions). Other physical effects, such as particle 

reflection and trapping, are also absent.

These disadvantages would seem to be solved by full particle simulations [23]. 

The principle behind them  is in fact very simple: given the positions and velocities 

of the particles at time t, charge and current are assigned to a mesh of points in 

configuration space. Maxwell’s equations are solved for the electric and magnetic 

fields, which are then given on the mesh. The force at each particle is calculated 

by interpolation, and Newton’s law of motion is then integrated for each particle 

to give its position and velocity at tim e t  St, where St is a tim e step. This 

process is repeated many times to follow the evolution of the plasma over a time 

of perhaps a few tens of ion gyroperiods. For a realistic result, a large number 

of particles must be employed, the number becoming successively larger as the 

number of dimensions is increased. For the numerical integration scheme to be 

stable, the code must be able to follow the motions of the electrons, so tha t 

the size of the electron plasma frequency imposes an upper limit on the tim e 

step. This problem is often alleviated by using an unphysically large value of 

the electron-ion mass ratio and/or the electron cyclotron-plasma frequency ratio. 

Both of these can limit the applicability of the results when the identification 

of a specific plasma instablility is to be made. Again, hybrid codes are much

11



more economical in terms of computer tim e and storage space, but the detailed 

electron dynamics cannot be studied.

1.7 O utline o f C ontents

In chapter two we outline the principle features of the various instabilities tha t 

have been proposed to account for the anomalous resistive dissipation in collision­

less plasma shock waves, and review their applicability. We then derive a linear 

dispersion relation relating the complex frequency of an electromagnetic wave to 

its wavenumber. We simplify this dispersion relation to the case of electrostatic 

waves.

Chapter three contains a derivation of the quasilinear equations, which ex­

tends the theory of chapter two to allow for the reaction of the unstable elec­

tromagnetic waves on the electron distribution function. It is shown tha t an 

asymptotic steady state must be reached in which all the waves excited evolve 

towards a state of marginal stability. Again, the electrostatic lim it is recovered. 

In the next chapter we discuss in some detail the numerical methods tha t we 

chose to solve the system of quasilinear equations, and the rationale behind their 

choice. Although the equations were only solved for electrostatic waves, it is pos­

sible to extend the methods to electromagnetic waves: however, the complexity 

of the equations would mean th a t considerable computational resources would be 

required.

In chapter five we present results obtained by the numerical computer code, 

and discuss their applicability to the shock problem.

12
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in te rp la i^ a ry  M agnetic Field

Figure 1.1: The near Earth environment
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Chapter 2

Linear stability theory

2.1 Current driven  in stab ilities in  collision less  

plasm a shock w aves

There are several different instabilities tha t could conceivably occur in the ramp 

of a low Mach number perpendicular collisionless shock wave, and here we intend 

to review the properties of some of them. In order to be a likely contender as a 

mechanism for producing the “dissipation” required for a resistive shock wave, 

an instability must satisfy a number of criteria [13],[34]:-

1. Any threshhold value above which the instability occurs must be satisfied;

2. The growth rate must be large enough for the instability to grow to a 

significant level in the time it takes for the plasma to flow through the 

shock;

3. The instability must not saturate at too low a level;

4. The excited waves must be able to heat the plasma.

Clearly, the first stage of any study of resistive heating must be a linear stability 

analysis to ascertain whether or not a specific instability mechanism will satisfy

14
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the first two criteria under realistic physical conditions. Analysis of the other two 

criteria is necessarily nonlinear.

Among those instabilities tha t could occur are [13], [34],[41]:-

1. The Buneman (Two Stream) Instability

This is the simplest of the streaming instabilities, and does not include the 

effects of the background magnetic field. Since it requires a relative electron- 

ion drift velocity greater than the electron thermal velocity, it seems unlikely 

to occur in a collisionless shock.

2. The Ion Acoustic Instability

Ion acoustic waves can propagate through an unmagnetised plasma at phase 

velocities larger than the ion therm al velocity but smaller than the electron 

therm al velocity. If the ions are sufficiently cold, then the wave phase 

velocity lies on a virtually flat region of the ion distribution function, and 

there is little damping. For wavelengths much larger than the electron 

Debye length, the dispersion relation is similar to tha t for an acoustic wave, 

hence the name. Its nonlinear heating effects were studied early on [26], 

[27]. For typical bow shock parameters, where usually the ion and electron 

temperatures are roughly the same, the cross-held currents generated in the 

shock ramp are not large enough to give rise to the ion acoustic instability.

3. Bernstein Wave Instabilities

Bernstein waves are electron waves tha t can propagate at right angles to the 

background magnetic field of a plasma at multiples of the electron cyclotron 

frequency without damping or growth [5]. If ion dynamics are included and 

the electrons are allowed to drift across the field, then at the points where 

the dispersion curves of the ion acoustic and Bernstein waves cross insta­

bility can occur [16],[14]. The waves have short wavelengths {kathe 1) 

and high frequencies (w >  cuce)* The main attraction of these instabilities is

15



the fact tha t they can exist for arbitrary values of the electron-ion tem per­

ature ratio: however they are stabilised by the effects of either a magnetic 

field gradient or of orbit modifications by turbulent fields, both of which 

tend to ‘smear out’ the cyclotron resonances on which the instabilities are 

critically dependent. Very closely related is the beam cyclotron instability 

[30],[31], where the difference seems to be tha t the analysis is carried out 

in the electron, rather than the ion, rest frame. This class of instabilities 

is probably unim portant in shocks, because the instability saturates at too 

low a level to produce a high enough level of anomalous resistivity.

Lashmore-Davies [32] [33] has pointed out tha t in the presence of drifts 

the Bernstein waves have negative energy, so tha t the ions can absorb en­

ergy from the electron waves through the Landau resonance, causing the 

amplitude of the wave to grow.

4. The Lower Hybrid Drift Instability

Low frequency instabilities propagating perpendicularly to an inhomoge- 

neous magnetic field have been studied for electrostatic [28] and electro­

magnetic waves [8],[17]. The instability propagates perpendicularly with 

wavenumber kathe «  1) and frequency and growth rate both of the order 

of the lower hybrid frequency ulh  =  Wpi [1 4- Wpe/wce]"^^ .̂ The ions can 

be taken to be unmagnetised, but the electrons are strongly magnetised. 

There are gradients in the magnetic field, the density and the tem pera­

ture. Despite a relatively low growth rate and long wavelength, it does 

seem to be able to heat both ions and electrons [43]. For non-perpendicular 

propagation, the instability is termed the generalised lower hybrid drift 

instability[24]: for electrons with finite tem perature, the behaviour of the 

instability is complex.
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5. The Modified Two Stream Instability

The modified two stream [35]is similar in nature to the lower hybrid drift 

instability. However, the analysis of the modified two stream  instability 

generally neglects density gradient effects but includes a component of the 

wavenumber vector parallel to the magnetic field. Like the lower hybrid 

drift instability, it is a low frequency instability (cu <C w#). The effect of a 

magnetic field gradient is to reduce the growth rate slightly [13]. Its proper­

ties are insensitive the the ion-electron tem perature ratio and the electron 

plasma to cyclotron frequency ratio. Electromagnetic effects tend to sta­

bilise it for low beta and near perpendicular propagation when the relative 

ion-electron drift speed is greater then the Alfven wave speed. Analysis of 

the instability under conditions typical of a laboratory shock experiment 

[13], using an estimate of the expected anomalous resistivity [15] suggest 

tha t it is unlikely to produce significant electron heating. The heating 

rates of the modified two-stream and ion acoustic instabilities have been 

compared under conditions in space shocks [51] using a model based on 

second-order Vlasov theory. It was found tha t the shock widths, amounts 

of anomalous heating, and electric field energy predicted by the modified 

two stream instability were in good agreement with observations of a num­

ber of subcritical bow shock crossings, whereas the ion acoustic gave rise to 

much narrower shocks than observed in order to generate the larger cross­

field drifts it required for the given electron-ion tem perature ratios. For 

finite electron beta, the instability becomes the kinetic cross-field stream­

ing instability: this is not necessarily stabilised by electromagnetic effects 

for large drift velocities.

6. Parallel Drift-driven Instabilities

In non-perpendicular shock waves there will be a component of the back­

ground electric field parallel to  the background magnetic field. This can
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accelerate a portion of the electron population parallel along the electric 

field, producing an offset peak in the electron distribution function, which 

can then become unstable to parallel propagating ion and electron acoustic 

waves[46], possibly leading to parallel electron heating. The height of the 

offset peak is observed to decrease through the shock, suggesting the action 

of wave-particle interactions.

2.2 T he linearised  V lasov equation

In order to determine whether a given electron equilibrium distribution is stable 

or unstable to small perturbations, we split all particle and field quantities into 

time-independent background parts and rapidly varying fluctuating parts. In 

all of what follows, we shall use a Cartesian co-ordinate system with the z axis 

aligned along the magnetic field, which is assumed to have no curvature or shear, 

and the x axis to be in the direction in which the background quantities vary, 

with the magnetic field increasing with increasing x. The y axis is chosen so that 

the axes form a right-handed set (see figure 2.1). Thus:-

F e(r ,v ,< )  =  / e ( r ,v )  +  « / e ( r ,v , i )  (2.1)

H (r ,<) =  H o(x) +  5 H (r , i )  (2.2)

where H is any of the field quantities. It is a consequence of our assumption 

of slab geometry tha t the background fields vary with x only. The background 

magnetic field is taken to be:

Bo =  Bo(a;)ê|| =  jBq(1 -f- egæ)ê|| 

and the background electric field to be:

E q =  (£?a;,0,0)

i
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•4

The value of Ex is not independent, but is related to the background gradients 

by Ampere’s law:-

f) f) p ci p ci f
— 5/e -f v . ^ 5 / e  [Eo -j- V A Bo] . - ^ 6 f e  =  —  [5E +  V A 5 B ] (2. 6)
at dr rrie dv  me dv   ̂ ^

Equation 2.5 can be shown to be satisfied if fe is of the form;

f e  — / e ( ' ^ ) '̂ ±̂5 ^ | | )

where A =  — {vy — ve), +  (u^ — ug)^, and ve — ~ E x/ B q is the

‘E cross B’ drift velocity in the y-direction.
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V  A Bo =  f ioio =  fiouo {v e  +  Ujv) è y  (2.3) |
4

where vn =  — is the drift velocity in the y-direction due to the density

gradient. This gives;

  — iB  -  (2.4)Î OTloe LOce

The quantity eg is of the order of the reciprocal of the length of the shock. We 

shall assume that the quantity tBVthe/<^ce is small, as the electrons will perform 

many gyro-orbits as they travel through the shock.

On assuming tha t the perturbed quantities are much smaller then the back­

ground quantities, and neglecting products of small quantities, the Vlasov equa­

tion becomes:-

Vx •  [Eo -f V  A Bo] - — 0 (2.5)dx me dv   ̂ ^
and fi:

I
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2.3 T he pertu rb ed  electron  d istr ib u tion  func­

tion

We now solve (2.6): its left-hand side is the derivative of fe along the particle 

orbits in the unperturbed fields. Thus, we can integrate both sides with respect 

to t:

S f.  =  —  f  [5E(r', t') +  v' A 5B(r',i')] r', t') dt' (2.7)
TTlg —00 OV

The lower limit of the integral has been taken to be —oo, tha t is, we have ignored 

the effects of the initial values of the perturbed quantities. This integral will 

only converge for growing modes: damped waves may be dealt with by analytic 

continuation of the final dispersion relation. The perturbed Vlasov equation 

should be solved by a Laplace transform method, yielding the dispersion relation 

in the limit of large time, but this method is considerably more complicated 

mathematically. The dashed quantities satisfy the unperturbed orbit equations, 

viz.:

$ ( ( ' )  =  - ^ [ E „ ( r ' , 0 + v '( i ' ) A B ( r ' , < ') ]  (2 .8 )

J ( i ' )  =  v '(i ')  (2.9)

with the initial conditions tha t — t) = v  and =  ^) =  r. W ith the back­

ground magnetic fields of the form used here, equation (2.8) can be solved exactly

in terms of elliptic integrals. However, on our assumption of weak inhomogeneity, 

we only need the first-order solutions, namely:

u ^ ( t ' )  -  V ji  c o s ( w c e ( ^ '  -  ^) 4 - 19)

V y { t ' )  =  UJL sin(wce(t' -  t) 4- Î?) 4- U£)

U||(t') =  U||
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x \ t ' )  — æ (t)-f —  [sin(ü;ce(i^ — )̂ +  — sin(î9)]
Wce

y'{t') =  î/(t) -  —  [cos(a;ce(t'-  t ) -}-î?) -  c o s ( i ? ) ] - i - -  t)
^ce

z'{t') = z{t) H- U||(P -  t)

Here, — v e -\-vb is the total drift velocity in the y-direction due to the ‘E cross 

B’ drift VE and the magnetic field gradient drift vb =  ~\eBv\/Uce,  All perturbed

quantities are now assumed to vary harmonically, so that:

5 B (r ,t)  =  5Bk(a;) exp[z(k.r — Dfci)] (2.10)

5 E (r ,t)  =  5Êk(æ)exp[z(k.r — fltk^)] (2.11)

5 fe (r ,v ,t)  =  5fek:(aî>v)exp[z(k.r — Okt)] (2.12)

We only consider waves in the y-z plane, so that ^0, fcj_, k\\J. Waves thus propagate

perpendicularly to both the background magnetic field and the direction in which 

the quantities have been taken to vary, flk =  +  where ojk is the frequency,

and 7k the growth rate. Faraday’s law can now be used to write the perturbed 

magnetic field in terms of the perturbed electric field in (2.7), giving

(2-13)

and the solutions to the orbit equations can be used to write the derivative of /g 

with respect to the primed velocity co-ordinates in terms of A, uj. and U||, all of 

which are constants of the motion. After changing the integration variable from 

f  to T — f  — t, we find:

6fe = exp[~z(k.r — üy^t)]

X /  exp jz \—a± cos(ujceT -f z9) +  u_L cosi? — Ü k r ll  Qk/ed'?(2.14)
TTlg J~oo ^

where a± =  A:jLUj_/wce, Dk =  Dk — k±VE — A;j|U||.The operator Q is given by:

Qk =  +  +  (2.15)
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Â ,k 8 E , (cük -  ( - 4 r  +  ^

+  5.é||

Ô A  ux d v ±

^ _ r ^ D d \  d

^±,k

4

6 k

È

=  [±i«Ê.,kC/k +  « 4 .k ê k  +  «S|i,k^]

-  fcx«x  ̂+ (wk -  kj.vE -  h n ) - £ -  +dA

("k -  *ll“ll) i  +
a

"ii&T Ux'
d

(2.16)

(2.17)

(2.18) 

(2.19)
;± dvi\

For this integral to converge, we must have 5R{0k} >  0. In order to perform the 

integration, we use the Bessel function generating function to obtain the identity

irvâ

n ~ —oo

and thus to write the right-hand side of (2.14) in terms of known integrals. The 

recurrence relations for the Bessel functions may then be employed to simplify 

the resulting expression to the following form:

where

OO OO

G m ——oo n = —oo
(2 .20)

^n,k

A ,k

K.k

,k

H k  -  k ± V D ~  ^ ||U || — n U c e

—  [ z J ^ 5 4 k 4  +  J n 8 É y ^ l : V n X  4 -  J n S É \ l l : W n , - k \

+ (% -

4- - ^ { n u ic e  4- k±VD)-K—«X QU||
d  (nwgg 4- k i_ V B )  d

+  (Bk — k ^ V E  — riLOce)-X—OUll

dv

(2 .21)

(2 .22)

(2.23)

(2.24)
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2.4 T he p ertu rb ed  ion  d istr ib u tion  function

As they travel through the shock layer, the ions will be virtually unaffected by the 

magnetic field, since the ion gyroradius is much larger than the shock thickness. 

Their orbits can thus be approximated by straight lines. Also, since the frequency 

of the waves in the shock is much larger than the ion cyclotron frequency, they 

will behave as if the perturbations are electrostatic. Hence, we can take the 

perturbed Vlasov equation for the ions to be:

The perturbed ion equation then gives:

2.5 T he d ispersion  relation

From Maxwell’s curl-B equation, we can derive a wave equation for the Fourier 

transformed perturbed electric field

k  A (k  A 5Ék) =  - % B k  -  iîîk/«o E & . k  (2.26)
^ a

where 5jg k is the Fourier transform of the perturbed current density due to 

particle species s. The sum is over all particle species. The current density is 

given in terms of the perturbed distribution function by

5js.k =  v5/g,k dv  (2.27)

The electron current density can be calculated since we know the perturbed 

electron distribution function (2.20). Thus, if e^, and ey are unit vectors in 

the X, y and z directions, then:
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/A .
J

5je,k =  /  [̂ -L COS dex +  (Vi sini? +  VD)éy +  U||e||] e
m  n

^n.k‘̂ rn(ax)Ên,k/e dv 
/• rl . 1

■(c'a; -  ié y )v x e " ’ +  - { é «  +  ie^jtixe"*’’ +  v o ê y  +  U||e||

e -‘'<” - ’‘” ”- '/^ )n ;'k J„ (ax )F „ ,k X  dv  (2.28)

Since we have:

1 P ” .  I 1 m  =  n +  p

*'«e m V./ I.

o , -- .......T-j. 1  ̂ (2.29)
^  0 otherwise

the double summation over m and n collapses to a single summation over n when 

the theta  integration is carried out. Using the Bessel function recurrence relations 

once again, we finally obtain the following expression for the perturbed electron 

current density: 4

5je,k = ----------------------------------------+  (nWgg +  k±VD)Jn{a±)éy +  A;jj Jn(a±)ej|]
^e^tk n

fi;,kX .(ai)Ê „,k /e  dv  (2.30)

The perturbed current density for each species can be related to the perturbed

electric field through a conductivity tensor <Js,k-

5js,k — <̂ 5,k ■ 5Ék (2.31)

The ion conductivity tensor is simply

e  ̂ f  V d fi 
^  *m,nk /  (%  -  k.v) ~d^

and the electron conductivity is given by:

g2 +00 f  I ^

^mefik n £ o  J  ( %  -  ^1%  -  A:||U|| -  nujce) ^ (2.33)
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where

Sn,k = i v s . J n J 'X y  -'^ t4 ''°7 „̂ W„,k
™||.^nJiC^k V\\JlVn,V. «'ll'/n^K.k

(2.34)

To obtain the dispersion relation, we simply insert (2.31) into (2.26), to give 

M • 5Ek =  0. In order that the electric field has non-zero value, the determinant 

of the tensor M must be zero, so tha t the dispersion relation is:

* ( k k -  +X^£s,k 0

where

^ s ,k  — <̂ s,k

(2.36)

(2.36)

2.6 Sim plifications o f th e  d ispersion  relation

The dispersion relation just derived is intractable in its present form, and must 

be solved by numerical methods. Even so, a number of simplifications can be 

made, to make numerical solution an easier and more efficient task. If, as we will 

do later, we only take into consideration electrostatic waves, then we can make 

drastic simplifications. This should be valid provided th a t the plasma beta is 

small: in this case the shock will be laminar or quasilaminar. We can obtain the 

electrostatic form from the electromagnetic by taking the limit c —> oo, although 

it is in fact much simpler to return to the perturbed electron function (2.20) and 

write the perturbed electric field in terms of a potential function. For waves in 

the y-z plane, we have

5Êk =  —zk5(^k
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so tha t (2.20) becomes:

p °°
% ,k  =  — %  E  E  (2.37)

OO o o

m = — o o  n = — o o

where the operator J^  k is given by:

This new form of the perturbed electron function is used to  calculate the current 

density, which is then substituted into Poisson’s equation. The dispersion relation 

will now have the form:

(2.38)

where Xi and Xe are the ion and electron susceptibilities respectively

Xi =

X e  —

meSok / f f r i r

Ê/
V d v

dv (2.39)

A ,k /e  dv  (2.40)
„^r'oo J ü k -  kxVD -  fc||ü|| -  nUc 

The fact tha t the frequency Wk is much less than the electron cyclotron fre­

quency means tha t we can ignore all the terms in the summation in (2.40) apart 

from that with n =  0. For the case when the electron distribution function is an 

isotropic Maxwellian with a density gradient (but no tem perature gradient) and 

the ion distribution function is simply an isotropic Maxwellian, tha t is:

\ ^o(A) 1/e(A,ux,U||) =  -— - r  —  exp - 9
(27r)2 2;^=

(2.41)

where Vfhs = ksTsliris is the therm al velocity, the susceptibilities have the form:

1
Xz =  [1 +  (&)] (2.42)
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X e —

(o =

4  +  2— — xJo(«x)Z(^o)exp( -x^) r f ;
k^^hc

Ok k±_VE

X

(2.43)

\/2^||2^f Ae

where \ ds is the Debye length for particles of species s, vn =  — cjyu^g/wgg is the 

drift velocity induced by the density gradient. Z is the plasma dispersion function 

[12], defined by

exp {—x'^) 
x - i

dx (2.44)

Because vb depends upon ux, will depend upon x, and so the integral in 

(2.43) must be evaluated numerically. If we ignore the effects of the magnetic 

field gradient (which should be less im portant than those of the electric field for 

low beta plasmas) but retain the electric field, the integral may be evaluated 

analytically using the relation:

to give:

X e =
De

1 + (Ok — kj_VE — k_LVN)
y/^k^^Vfhe

exp (—A^)/o(A^)Z(fo)

(2.45)

(2.46)

where A =  k_iVthel<̂ ce- When vn =  0,this is the same as the dispersion relation 

for the modified two stream instability (for example equation (4) of [35]).

Finally, in cases where the ions are cold, that is to say, (2^ k  • v , by 

expanding the denominator of (2.42) and retaining only the lowest order term, 

we obtain:

Xi =
%

(2.47)
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2.7 N um erical so lu tions o f th e d ispersion  rela­

tion

Since the literature on the linear stability analysis of cross field current- driven 

instabilities is substantial, we do not propose to devote a large amount of space to 

the solutions of the linear dispersion relations derived. However, it is interesting 

to consider an anisotropic distribution function, tha t is with Tgi ^  Te|j, where 

Tel. and Te|| are the electron temperatures perpendicular and parallel to the back­

ground magnetic field, and to study the dependence of the growth rate of the in­

stability on the tem perature anisotropy =  Tex/Te|[. If we define Ug|I =  ksTew/rne 

and UgjL =  keTe^/me,  then an appropriate background distribution function is

=  (2x)3/^ u î X l
(2.48)

from which we can derive the following relation for the electron susceptibility:

w ,

X e —
pe

X i :
x J q { s x )

(w — k_LVE)
V2k\ + 1 u eJ.

e|| \  k ± 6 B U e ± ‘̂ X ^

y/2k\\u dl

(2.49)

Figures 2.2 and 2.3 show plots of the real frequency and growth rate (mea­

sured in units of the electron cyclotron frequency) respectively for the mode 

with k±Ue±fcOce =  1.0 and k̂ ^Uei./u>ce =  0.1 as Tgx is held fixed and Tj| increased, 

as would happen during a period of parallel electron heating.
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Figure 2.1: Perpendicular shock, showing coordinate sytem used.
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Figure 2.2: Frequency versus tem perature ratio
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Figure 2.3: Growth rate versus tem perature ratio
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Chapter 3 

Derivation of the Quasilinear 

Equations

3.1 Q uasilinear th eory

In the last chapter, we linearised the Vlasov equation about an unstable equilib­

rium, and subsequently solved for the perturbed electron distribution function. 

On using Maxwell’s equations this yielded a linear dispersion relation, so tha t 

given the value of the wave vector k, we could calculate the value of the complex 

frequency H- i')k- We now want to be able to determine the change in

the background electron distribution function caused by the growth of the waves 

in the system over a time-scale larger than tha t for which linear theory is valid. 

To achieve this, we employ quasilinear theory. This is the simplest non-linear 

theory of plasma instabilities, and was first developed for unmagnetised plasmas 

by Drummond and Pines [10] and Vedenov, Velikov and Sagdeev [49], and later 

generalised to electromagnetic instabilities in a homogeneous magnetic field by 

Kennel and Engelmann [25], and also to the case of electrostatic waves propagat­

ing through an inhomogeneous plasma [4].

The principles of quasilinear theory are as follows: the Vlasov equation is, as
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before, divided into a background part, which describes the action of the waves

on the slowly varying unperturbed distribution function, and a fluctuating part |
■1

to describe the rapidly varying behaviour of the system due to the influence of the 

waves. To solve the latter equation we decompose the perturbed quantities into 

a set of Fourier modes, and ignore interactions between the different wave modes, 

so tha t the perturbed distribution function satisfies a linear equation, which can 

then be solved. The perturbed distribution function is then substituted into the 

unperturbed equation, yielding a diffusion-type equation. In general, particles 

will diffuse in velocity space in such a way so as to push the system into a 

stable (or marginally stable) state. Not surprisingly, diffusion is strongest for 

those particles with velocities close to the phase velocities of the waves (‘resonant |

diffusion’), and weaker for the remaining particles.

3.2 T he electron  quasilinear diffusion equation

We now derive an equation to follow the evolution of the electron distribution 

function. The derivation substantially follows that of [25]: however, we have 

allowed the background magnetic field to vary slowly in the x-direction. We start 

by averaging the Vlasov equation in order to remove all rapidly varying terms.

However, we allow the background distribution function to vary (slowly) in time 

and retain the second order term  involving the wave field and the perturbed 

distribution function. This was neglected in the linear theory, but is retained here 

as it describes the action of the wave spectrum on the background distribution.

The averaged Vlasov equation is:

The angled brackets denote tha t the quantity they enclose is to be averaged in 

some way. The exact form of the averaging process is not critical, as long as it
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removes all terms linear in the perturbed quantities. Since the situation under 

consideration is time-dependent with waves in the y-z plane, we could take:

where Ly and measure the periodicity length of the system in the y and z 

directions respectively.

We now need to derive an expression for the perturbed distribution function. 

To do this we Fourier analyse the perturbed quantities in time and space:

8B{r^t) = ^  5Bk(a;) exp[z(k.r — Ok^)] (3.3)
k

6E{r^t) =  8Éy^(x) exp[z'(k.r — Hk^)] (3.4)
k

^ /e (r ,v ,t)  =  5Z<Ç/ek(æ,v)exp[z(k.r ~  HkO] (3.5)
k

We have assumed that the system is periodic in the y and z directions, so that 

the wave number vector is forced to take on a number of discrete values. This 

is purely for algebraic convenience, and later we will let the periodicity lengths 

Ly and become infinite, in which case the wave number spectrum becomes

continuous, and the sums in our expressions become integrals.

The time-independent distribution function used in the linear stability the­

ory of the previous chapter was necessarily independent of the gyroangle theta  

(defined by tant? =  ■). Since the fundamental idea of quasilinear theory

is tha t the background distribution changes slowly compared to the perturbed 

distribution function, then its variation with the gyroangle should also be weak. 

If we then expand the background distribution function in terms of the reciprocal 

of the electron cyclotron frequency [25] :

/e(A, VI, Ï?, V||, t) = /M(A, Vj., Î?, V||, t) 4- -i-/W (A , Vj., V||, t) -f 0 ( - ^ )  (3.6)
UJr.
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Using 3.1, and remembering that the rate of change of fe due to the waves is 

small, we see that:

g/i°» n

This valid as long as the growth rates of the waves are all much smaller than the 

cyclotron frequency. For the instabilities considered in this thesis, we have:

and

<  Wee

so tha t we are clearly justified in making this assumption. The higher order terms 

in (3.6) can be removed by integrating (3.1) over the gyroangle (gyroaverging) 

and noting tha t the terms /]”! are all periodic in theta. We are left with an 

evolution equation for . We will drop the superscript so as not to overburden 

the notation.

Since all the perturbed quantities are real, a number of symmetry relations 

has to be obeyed:

= (3.7)

«É_k = (3.8)

s h - k = (3.9)

n_k ~  “ ^k (3.10)

A star (*) denotes that the complex conjugate is to be taken. We can solve 

the perturbed Vlasov equation exactly as was done in chapter 2, and deduce a 

dispersion relation, only now the background distribution function is changing 

slowly with time. If we substitute the Fourier expansions for and 5/ek

into (3.1), then we find tha t products of different Fourier components are rapidly 

varying, and disappear under the average. We are then left with:
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^  +  v . ^ - ^ ( E o  +  v A B „ ) . § ^  
at  <9r (9v d v

(3.11)

The right-hand side is necessarily real, on account of the symmetry relations (3.7) 

to (3.10).

From chapter 2, the perturbed electron distribution function can be written

as:

«/e,k =  E E «“ ''"“"’’’Gm.k (3.12)
m  n

where

Gm.k =  i — e-(™-’‘)’'/V „ ( a x ) f i ; ‘k#„,k /, (3.13)Tn>e

We now substitute this into the right-hand side of (3.11), use (2.13) to eliminate 

6Bk, and change velocity co-ordinates to cylindrical polars. The gyro-averaged 

background Vlasov equation is then:

1 /•27T .

m.
(3.14)

with

Ac — ^0 + Â4. -f- %Cĵ A_ -I- iC -
dê (3.15)

—  [ ( %  -  kj_V D  -  kjLVB  -  A)||V||) % , k  T  i (Uk -  A:||V||) 6B^,k

A:j_V||4$A|,kj (3.16)

The operators Aq and A±  were defined in chapter 2. The form of Cq is not impor­

tant; we shall see later tha t when the 0 integration is carried out it disappears. 

To calculate the right-hand side of 3.14, we need to evaluate the term:

/•2ît ^1 /'27T
2 Ï

(3.17)
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If we substitute for Ac from 3.15 and for 5/e,k from 3.12, then:

d id

+  e' A_ +  %C_ ^fe,kd'à

(3.18)

The À  operators and C± are all independent of theta, so th a t we can integrate 

the terms proportional to by parts, tha t is:

and

thus:

1 /■2’r

Jo27 t J o d 'à
(3.19)

'^lo {Â o  +  e"’ ( i +  +  C + ) +  e •’’ ( 1 _  +  C '_ )}

= E E ̂  {«’■'’"-’•'"io + (Â+ + C+)m V 2 ît7o I  ̂ ^

+  ( i _  +  C_)}* G„„kdiJ

(3,20)

We can now use (2.29) to perform the theta  integration. As before, the double 

summation reduces to a single summation over n. Thus:

r  p m ^ d , = E { [ a r + f ô ] * + ( 3 - 2 1 )
1 fZvr

2?r

where
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A i l  = (3.22)
1

f i l  = ( ^ + ^ n - l , n , k  +  ^ - ^ n + l , n , k ) (3.23)
4
f

A i l  = l ,n ,k  T  ^ n + l ) ï i ,k ) (3.24) :
3
’s



On substituting in ^/e,k from 3.12, it is possible to perform the theta-integration, 

reducing the double sum to a single sum.

We now expand the right-hand sides of equations (3.22) to (3.24) in turn:

K k ] *  =  [ - ^  { i S É ^ . A  +  S É y , A  +

— [2 +  SÉyf^Gk + [~ -ln+ lll3 ,kA .,k /e

=  ^  { - % , k %  (  2  -  ' ^ % , k ê k  (

-  ii:x«£||,k^k ( ^1 1 1 + ^1 = 1 .) y  X n;]^F„,k/e

Ai+1 H" d n ~ l

SÈ,,kÛkJ'n +  « 4 . k G k | ^ ^  +  

x % l f . , k A  (3.25)

A similar process gives;

[A5c] =  ^  [ (%  -  kx_v^ % ,k  -  i (^k -  <5-èy,k -  A:xV||(ÇB||.k]

X [ ~ ‘̂ ^-l^n,îcAi,k/e

nwr

2vj_ [ - i  (fik -  kj,VB) 6 & ,k /;  -  ^  ( %  -  fcxoli) SÉy,k

~ ^ 3 ,k A .,k /e  (3.26)

and finally:

[^Ük]* =  I -  (Bk -  ^i«ii)

4- k±v^\
d

dk  vx. dvx. 4- (%  -  kx_VD)

av||_ 
d

j/,k

dv\ ll,k

(3.27)

We now substitute (3.25), (3.26) and (3.27) into (3.21), to get:

+  ^ + ^ n - l , n , k  +  ^ t < J n + l , n , k  +  C *+ (^ 7i - l , 7i ,k  +  C t G n X - l ^ n ^ k
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+

(Ok — k^vs)
v±

JL

kL \ %;±

(%  -  * i« ||)  -  VB

^ 1  I (» k -fc x O ||) '

1 ^  \  , r  d
V ± d v ± )

Jn

d  /  A 1  v u

Jn

(3.28)

We now use the operator identities;

G k -  =  - G k  -v± v i

H k J -  =  ^ A k - %
Vx V±

in (3.28) to write (3.21) as:

è /o
(Ok — &xug)

Vx
■k

JLE j ' ^ & k  %  +
n L

+  ^By,k%i,k^ +  <^Al.k^n,k*^}

The evolution equation for the electron distribution function is thus:

(3.29)

%
d t

(Ok — k±vsj
Okvx

+ B ;,k

(3.30)

This equation can be written in the form of a quasilinear diffusion equation

d f
d t

Dp  =

d y .
D ..

dfi

^  E  E  ®AkB„,ka„,k
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(3.32)



an,k =  «n,A,kêA +  «n.lkêx +  ^^n,||,kê||

^ n ,A ,k  — \ fk ± ,V x .J ^ S È x ^ \ i - \ -

(Ok -  A)j|V||) Jn8Èy;^ H- fcxV|| Jn^B||.k] (3.33)

^n,±,k ~  (^k “  kx.VE ~  l̂l'̂ ll) Jn^^x,kA

( " k  -  *||"||)

( n . ^  + k , v s ) j^^É ,,kIl t)x (3.34)

«n,||,kê|t -  ^  [zA:(|VxJi^Ba,,k+

(nwce 4- k±V]x)

(Ok ^X^Z) V>üJce) ^n^B|| kj (3.35)

Il =  AêA 4- vxêx 4- t;||é|| (3.36)

If there are no spatial gradients in the background quantities then the above

equations are equivalent to equations (2.26) and (2.27) of [25]. It can be shown

(see Appendix ) that equation (3.31) conserves energy.

3.3 T he Q uasi-H  T heorem

We can apply the arguments of Kennel and Engelmann [25] to (3.31) to show 

th a t the system must tend to some marginally stable state as t tends to infinity. 

We accomplish this by defining the functional

He =  ^  /  fedfi (3.37)
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Differentiating this with respect to time, using (3.31) and integrating by parts 

gives us:

dHe
dt -

%
dfjL

7k

( w k  -  kj^VD  -  Aj||U|| -  no^ ce) +  7 k

< 0

dll

( 3 .3 8 )

Since He is clearly positive definite, and is negative semi-definite, H must 

decrease monotonically in time until it reaches a steady state with =  0. This 

must occur either when 'Yk =  0 or, since He is a sum of positive definite terms,

df.
( 3 . 3 9 )

In the la tter case we arrive at a contradiction, as the perturbed distribution would 

have to be identically zero, in which case no waves would be excited. Thus, in the 

limit of infinite tim e the electron distribution function must tend to form such 

tha t all the waves excited are stable.

3.4 E volu tion  o f field  am plitudes

On the long times cale, the electric fields will change in tim e according to:

^« ,k (4% k(^) =  -^a,k(0)-E^,k(0) exp 2'jy,{t')dt' (3.40)

This expression can be w ritten as a differential equation, giving:

dt — 27k(O^Q!,k(^)-^j0,k(^) ( 3 .4 1 )

41



3.5 Q uasilinear diffusion equation  for e lectro ­

sta tic  w aves

In the same way tha t we simplified the dispersion equation by assuming tha t the 

electric field was derivable from a potential, we can write the diffusion tensor as:

where

bn,k =  -k i.eA  +  (3.43)

h { t )  = |% (^ ) |^  (3.44)

7k is the intensity of the wave with wavelength k. This quantity will evolve in 

tim e according to:

^  =  2% /k (3.45)

(3.;

as was done in the dispersion relation.

It is possible to simplify both (3.32) and (3.42) by ignoring the n ^  0 terms, i|

3.6 Q uasilinear diffusion o f th e  ions

If we make the assumption of negligible ion tem perature again, we can derive 

equations to describe the evolution of the bulk ion parameters under the action 

of the turbulence. Because of the large mass of the ions, we can neglect the effect 

of the magnetic field on them. The quasilinear diffusion equation for the ions 

under the last assumption is:

(3.46)

where;
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To derive an equation for the rate of change of the ion therm al velocity, we 

multiply (3.46) my ~miV^ and integrate over velocity;

^ =  - y m . v . D i . A f i d v

=  (3.48)

If the ions are cold enough, i.e. kvthi < then we can expand the denominator 

in the above:

(Ok -  k • v)
1

1
Hk

+
k • V 
Ok +  • •

and so

j d  f l  

d t
J  -m iv ^ f id v  = % . cI —

m.
k • V
Ok fik fik

k  •

I Ok Ok
T ••• fidv

1
% 4" ...

(3.49)
k (‘.'k +  7k)

Thus, the rate of change of the ion therm al velocity is given entirely in terms 

of bulk ion parameters and field quantities. The term  linear in the velocity 

integrates out to zero, as if the ions have no drift velocity initially, then by (3.46) 

they must have no drift velocity for all time. Neglect of the term  in 3A:^uf/„/0|, 

and of higher order therm al corrections, is consistent with the use of the cold ion 

approximation in the dispersion relation.
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Chapter 4 

Solution of the Quasilinear 

Equations

4.1 T he quasilinear equations

The system of equations for the evolution of the electron distribution function 

under the action of electrostatic turbulence is:

(4.1)
d f ,  d  '

d t  d f i
(4.2)

hr.d\c\
k^VD -  «||U||

D e =  (4.3)

bo — — H êx +  ^||ê||
ux

27k/k (4.4)
d t

fl =  Aca +  uxêx +  u||ê(i (4.5)

Only the electron distribution function has been allowed to evolve in time: 

the ions are taken to have a constant tem perature T{ <C Tg.
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In order to follow the evolution of the system, the folowing scheme is used to

advance the ysytem through a small time interval:

1. Given the distribution function /g, the dispersion relation is solved for a

range of values of k± and A:|| to give the complex frequency

2. The diffusion tensor De is calculated;

3. The electron distribution function is advanced to the next tim e level;

4. Finally, the wave intensity function is advanced.

This process is repeated until either a prespecified tim e value is reached or all 

waves in the system have stabilised.

4.2 Solution  o f th e  d ispersion  relation

The numerical solution of the dispersion equation poses not inconsiderable prob­

lems. Normally, one is able to represent the distribution function by a known, 

analytical function: usually one chooses a Maxwellian distribution with appro­

priately chosen tem perature and density, as was done above. This has the great 

advantage tha t the singular uy integral can be written in term s of a tabulated 

function, the plasma dispersion function.

In the situation under consideration here, however, the electron distribution 

will evolve in time, and even if it were initially Maxwellian, it would soon cease 

to be so. This change in form is crucial to the theory, since the growth rate is de­

pendent on the shape of the distribution, and we are hoping th a t the distribution 

function will change so tha t the instability will cease.

In non-dimensional form, the uy integral in (4.1) will be of the form
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where L is the Landau contour, tha t is, from minus infinity to infinity under­

neath any singularities of the integrand. To evaluate such an integral numeri­

cally (as does the Ferguson subroutine for the evaluation of the plasma dispersion 

function), one would have to be able to evaluate g { u )  off the real axis. For a 

Maxwellian plasma, g { u )  =  exp(—u^), and this process poses no problems, but 

we intend to solve the diffusion equation using a finite difference method, which 

means that /g(æ, ux, U||,t) may only be calculated for real uy .

In order to obtain an approximation to and 7k, we considered the use of 

two different strategies, a small growth rate approximation method (method 1) 

and an orthogonal polynomial expansion method (method 2).

4.2 .1  M eth o d  1

Split K into its real and imaginary parts K  =  +  iK{, then, assuming tha t

Ki <C Kr

7k <  Wk (4.7)

we can Taylor-expand K about Wk, and get, on dropping small terms:

7fr(wk) =  0 (4.8)

7k =  - K i
dKr

(4.9)

In other words, we find the solution of the real part of the dispersion relation 

for real Hk, and then calculate the growth rate from the imaginary part of the 

dispersion relation and the gradient of the real part, both of which are to be 

evaluated at Wk. The problem of evaluating fe off the real axis is now solved, 

since Kr now involves the Cauchy principal part of the uy integral, which can be 

evaluated by putting fe to be a Maxwellian with density and tem perature equal 

to those of the true distribution function. In K{ the smallness of 7k means that
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we can replace the resonant denominator by the Dirac delta function: 

Kr =  1 + x M + X ^ '

fd __ I
Wk

K i  = /  /  J o { a i )  <̂ {wk -  kj^VD -  fc(|U|j) bo • ^  uxduidx;j|
JO J ~oo O il

(4.11)

where s = \/2ks,Vthel^ce^ m  =  —tNV^f^Jujce, m  = {l/no)dno/dx

(wk -  k±VD)
y/2k\] "̂ the

(4.12)

and
oo

=  - 2e -( ' f \ ‘"dz 
Jo

(4.13)

The function here denoted Zr{^) is related to Dawson’s integral [1]

Equation (4.8) is solved using the Van WijnGaarden-Dekker-Brent method 

[42]. This is an iterative method, so tha t the derivative term  in (4.9) can be 

calculated from the last two iterated Wk values and the known values of Kr at 

those points. Calculation of directly (by differentiating 4.10 analytically) did 

not seem to be any more accurate, and involved the computational expense of 

another numerical integration.
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4 .2 ,2  M eth o d  2

We shall go back to the dispersion relation (2.38),(2.40) and (2.40), but we have 

not specified any particular distribution function. We now expand the distribu­

tion function in terms of a set of known functions, namely the Hermite polyno­

mials [1].

/e(A,UX,U||,t)
(27t)2 the

(4.14)

It turns out that a similar expansion in the perpendicular velocity component 

is not necessary. Such polynomial expansions have been used in analytical and 

numerical studies of the non-linear Vlasov equation [22],[2],[3]. However, to our 

knowledge, they have not been used to solve the linear dispersion relation for an 

arbitrary distribution function, as here. The Hermite polynomials are defined by 

the generating function:

exp(— -f-2su) =  ^  Hm(v)
m\

(4.15)

We now substitute the expansion 4.14 into the dispersion relation. The elec­

tron susceptibility %e is then:

1 noe^ ^  r  /■“  J 2(ax)
Xe

poo pc

rrieCok'̂  V-oo Jo u>n -  k̂ \v\\
d {ncüce +  kjiVB) d d-k i .—  -i--------------------------  f- «II

1 w,pe

dK

W  /

dv\ dv\\ /e(^ 'l,^ ||,^) uxduxdujj

noo roo 

—oo Jo ÎFII

- k dfm
aA

(nWce +  ks,VB) d f
V±

+  A:,,/, %  1̂1m I 2
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Æ r  Jo "n -  *||V||

oA Ui âv± Vihe

(u>n — fc|[U|| — üJn) r Tj
_ 2 JmĴ Ti

the

where iĵ Jn — <̂ k ~  k±vjD — nujce-, and we have employed the relation;

dHrr
dv —  2îïlHra—l

If we now define a set of functions by

(4.16)

(4.17)

1 / 1 2\ ^ (4.18)

where z =  U||/ut/ie and Zn =  (w^ — k\_VD — n)/A:||, then we can write the electron 

susceptibility as

1
Xe 1

De

+  (P'^ce +  +

2?nA;j|U^/ie/m 0m—1 (.^n) fm ^n '4 ^m (^^n }

Ux ov± 
v±dvji \

J
(4.19)

The function defined by (4.18) can be evaluated directly by numerical integra­

tion. However, this is extremely slow, and many psi-functions must be evaluated
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for the same value of their argument, but successive values of m, each time we 

need to evaluate (4.19). A considerably more efficient method to achieve this is 

to use the two term  recurrence relation satisfied by the Hermite polynomials to 

derive a recurrence relation for the psi-functions. We have:

=  2vHm{v) -  2mHm~i{v) (4.20)

giving:

7T2 J —oo V — Ç 71-2 J —oo V — Ç

J l j n  r -  dv (4 .21)
7T2 J - o o  V — t

and hence:

where

1 foo . „
A„ =  -X  /  gm («)e-^" dv (4.23)

7T2 J —oo

Using the properties of the Hermite polynomials, it can be shown very easily that 

the A’s also satisfy a recurrence relation, namely:

— 2m.Anx—1 (4.24)

Clearly, the A^ are all zero for m  odd.

The starting values for ■0’s and A’s are:

=  0
1 foo _

ipo -  —   7  dv =  Z{i /y /2)
7T2 J - o o  V — Ç
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A_i =  0 

Aq =  \ /2

Hence (4.19) can be computed with only one evaluation of the plasma dispersion 

dispersion function, and repeated applications of (4.22) and (4.24).

Given the coefficients /m, it is possible to evaluate the dispersion relation for 

arbitrary fe. In order evaluate the former given the latter, we use the fact that 

the Hermite polynomials are othogonal, tha t is to say:

2”t2!a/F m  = n 

0 otherwise

the coefficients fm can be evaluated by use of the relation:

/ oo
e x p { - v ^ ) d v (4.25)

1 fOO 1
/m ( A ,u x J )  =  2 " n \^  y _ ^ /e (A ,u x ,u ||,< ).H 'm (t')ex p (--t)Y c* u

(4.26)

In practice, the summation in (4.14) will be truncated to a finite number (perhaps 

a few tens) of terms.

Given that the fm are known, it is necessary to solve the complex dispersion 

relation (4.19): this was achieved by employing Muller’s m ethod [44],[50],[42].

Like B rent’s method, this is iterative and so requires an initial estimate for the 

root of the dispersion relation to start off the root-finding process. Initially, the 

lower hybrid frequency lülh ~  is a good enough value: at each subsequent

tim e tha t the dispersion relation is to be solved, the last root is used as an initial |

estimate.

4 .2 .3  V a lid ation  and com p arison  o f  th e  m eth o d s

In order to validate the arithm etic in the polynomial expansion method, we used 

it to solve the dispersion relation for a set of test distributions, and then compared
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the results with those obtained when the distributions were substituted into the 

dispersion relation directly. In both cases Muller’s method was used to solve the 

dispersion relation. The test distributions used were of the form

2p

2 « à .
(4.27)

where p is a positive integer. After some algebra, it is possible to derive the 

following expression for the electron susceptibility:

2 P + 1  roo  j

1 (2p _  1) Jq [c-^2p(Co) — P%2p-l(& )] C '  x d x \

(4.28)

X e =

where

Uk — k±VE — k±_VN

i  /-oo (i -  0

- r
dt

The Z functions are simply generalisations of the plasma dispersion function, 

and were evaluated using a recurrence relation method [18]. The case p=0 just 

gives the Maxwellian dispersion relation. This dispersion relation is not meant to 

model any physically realistic situation, but it does provide a good check th a t the 

mechanics of the polynomial expansion method function correctly. The results 

are diplayed in the table.
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p P o ly n o m ia l ex p an s io n  m e th o d E x ac t

1 2.44535 X lQ-2 +  *2.95537 x 10"^ 2.44559 X 10-2 ^2.96172 x  lO '^

2 2.33234 X 10-^ -  *2.69325 x 10"^ 2.33231 X 10-2 -  *2.69189 x  10-^

3 2.52640 X 10-2 -  *8.53585 x 10'^ 2.52579 X 10-2 -  *8.53058 x lO '^

4 3.50951 X 10-2 -  *1.26392 x  10~2 3.50968 X 10-2 -  *1.26882 x  10-2

5 3.81804 X 10-2 -  *3.88605 x 10-^ 3.82107 X 10-2 -  *3.89820 x  10-^

6 3.62416 X 10-2 -  *1.03653 x  10-^ 3.62662 X 10-2 4- H.03969 x IO-2

10 3.33103 X 10-2 -  *1.31651 x 10“® 3.33275 X 10-2 _  *1.46416 x  10"®

The relative performance of the small growth rate and polynomial expansion 

methods was evaluated by comparing the values of and 7k obtained from (4.8) 

and (4.9) and the value of flk obtained by inserting a Maxwellian directly into 

(4.1). For (3e — 0.1, €b — 0.01 and =  0 we obtained:

B re n t M u lle r

(1.0 , 0 .01) 3.25 X 10-2 ^  -7 37 X 10-1° 3.23 X 10-2 +  *5.84 x  10“ i°

(1.0,0.05) 3.54 X 10-2 +  *6.83 x  10-^ 3.49 X 10-2 ^  *8 05  X 10“^

(1.0 , 0 .1) 3.55 X 10-2 +  a . 04 X 10-2 3.18 X 10-2 +*8.06 X 10-3

(1.0,0.2) 2.79 X 10-2 +  *6.37 x  10"^ 2.59 X 10-2 *6.80 X 10-^

(2 .0 , 0 .1) 5.39 X 10-2 *2 66 x 10-^ 5.38 X 10-2 +  a .3 0  X 10-2

The results in the Muller column are for both the ‘exact’ solution and for the 

results obtained by the polynomial expansion method, since these were vitually 

identical to the accuracy quoted. As can be seen, the agreement between the 

small growth rate method and the exact result is fairly good in most cases, but 

certainly not exceptional, even though the condition (4.7) is not always satisfied.

As a final test, the two methods were used to solve the dispersion relation 

for a non-Maxwellian plasma. The distribution function used was tha t for a 

‘resonance’ distribution:
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e 2̂ X1 “the

from which we can derive:

(4.29)

X e —
poo

2 J  x J q { s x )

The results were as follows:

ks.VB 1 + &(& +  2*)
((o +  0  ((o +  %)

(4.30)

S m all g ro w th  r a te P o ly n o m ia l ex p an sio n E x a c t

(1.0 , 0 ,1) 3.55 X 10“ H  

«2.35 X 10-^

3.16 X 10-®+ 

«3.75 X 10-®

3.33 X 10-®+ 

«3.93 X 10-®

(1.0,0,05) 3.48 X 1 0 "H  

«2.12 X 10-^

3.19 X 10-®+ 

«7.99 X 10-*

3.32 X 10-®+ 

«8.02 X 10-*

(2 ,0, 0 ,1) 5.39 X 1 0 "H  

«1.19 X 10-^

5.24 X 10-®+ 

«2.74 X 10-®

5.31 X 10-®+ 

i3.36 X 10-®

(0.5,0.1) 1.56 X 10-^+ 

«5.52 X 10-®

1.41 X 10-®+ 

«6.32 X 10-®

1.47 X 10-®+ 

«7.45 X 10-®

(1.0 , 0 .2) 2.79 X 10-®+ 

«4.67 X 10-®

2.81 X 10-®+ 

«5.64 X 10-®

2.91 X 10-®+ 

«6.20 X 10-®

In this case, the Hermite polynomial expansion method gives a closer result 

than the small growth rate approximation, which consistently underestimates the 

growth rate.

In conclusion. The two two methods both perform reasonably well on a num­

ber of test problems. Although it is more complicated and computationally in­

volved, the Hermite polynomial expansion does give better results. On the basis 

of experience with the two methods as part of the code to solve the complete 

set of quasilinear equations, it was found that the polynomial expansion method
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produced more plausible results. Thus, the latter was used to produce all the 

results shown in the next chapter.

To evaluate the diffusion tensor, the dispersion relation is solved for a number 

of values of k  defined on a regular grid, to give and 7^- The integral in (4.3) 

is then evaluated numerically using standard techniques.

4.3 Solution  o f th e  w ave and p artic le  evo lu tion  

equations

= Df {v , t )  (4.31)

■:ï
It is straightforward to advance the wave intensity function from one tim e level 3

to the next. However, the diffusion equation currently has three ‘space-like’ inde­

pendent variables on its right-hand side: to enable the computations to be carried 

out in a reasonable length of time on the computing resources available, some 

additional simplifications are required, which will be described below. In this 

section, we shall assume that we only need to solve a two-dimensional diffusion 

equation of the form:

where r  =  (æ,^), /  =  f { x , y^ t )  and t is time. We will also have an initial 

condition on f, namely /(a : ,2/ , 0) =  /o(a^,*/), and an appropriate set of boundary 

conditions. It is not necessarily the case that x and y are Cartesian co-ordinates.

The diffusion coefficient D is a 2 by 2 matrix, all of whose elements will, in general, 

be non-zero, which means tha t there will be cross-derivative terms (proportional 

to ^ ^ )  on the right-hand side of (4.31). The spatial derivatives were differenced 

on a regular mesh of points (x^, yj) = { i Ax , j A y )  using standard techniques ([37]).

The diffusion tensor was held constant between tim e steps. In order to advance yi

the solution of (4.31) from one tim e step to the next, we have chosen to employ the 

line hopscotch method, [19], [20], [21], as it is capable of handling cross-derivative
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terms very easily. It is also claimed to be fast and is easy to programme, as it 

only involves the solution of tridiagonal systems of linear equations. Since it is 

probably not a very widely used numerical method, we will outline its principles 

here.

The finite difference replacement of D  is denoted L,  i.e.

î > f { x i , y j X )  = I f t j

where / -  is an approximation to the solution value at the point (x^, i”). Since

the diffusion tensor is space-dependent, the operator L  will depend on i and j. 

Since the differential operator D  only involves second derivatives at the highest, 

the difference operator L  will only involve f at the point (x*, yj^f^)  and its imme­

diate neighbours (in the notation of [19], D  is said to be an ‘E-operator’). This

property is vital for the application of the hopscotch algorithm.

The two simplest ways to integrate (4.31) are the simple explicit and the 

implicit algorithms:

/3+* =  /3  +  A 4 Î/5  (4.32)

=  /5  +  A<î/5+* (4.33)

where A t  is the timestep. The first method has the advantage of simplicity: 

the only unknown in the equation is and so we can calculate f at time

level 72 +  1 without having to solve any systems of equations. However, it has 

poor stability properties, with the result tha t A t  must be small in order tha t 

the numerical solution does not deviate wildly from the true one. The second 

method is unconditionally stable, but appears on both sides of the equation, 

and is thus only given implicitly by 4.33. It is thus necessary to solve a m atrix 

equation at each tim e step (mercifully, the coefficient m atrix is sparse: tha t is 

to say, although it may have a large number of elements, the vast bulk of them
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will be zero), and although a variety of methods exists to accomplish this, such 

as successive over-relaxation, it is a potentially time-consuming process.

The class of hopscotch methods works by combing 4.32 and 4.33 in such a 

way tha t we only ever need to solve (at worst) tridiagonal systems of equations, 

a process which can be performed quickly and easily using Gaussian elimination 

(without pivoting). The recipe for line hopscotch is as follows:

# for all grid points such tha t j +  n is odd, apply 4.32

• for all grid points such tha t j +  n is even, apply 4.33

In the first step, we solve the diffusion equation (explicitly) along alternate lines 

parallel to one axis. The new (partial) solution can overwrite the old, so no new 

storage is required. After this process, the situation is as shown in figure 4.1.

The new solution ( /(x ,, yj , f^))  is known at all the points with filled-in circles. 

The implicit scheme is now applied at all the remaining points: at point ( i , j )  at 

most nine points (those ringed) are required to evaluate (/ (xi ,  7/j, t ’̂ '^^)), but six 

are already known. The three remaining unknown points give us our tridiagonal 

system.

On an n X n grid, line hopscotch will require the solution of n /2  sets of equa­

tions, whereas an alternating direction implicit (ADI) method, which requires 

a complicated splitting of L  so th a t only tri diagonal equations must be solved, 

will require the solution of n equations per timestep. In order to achieve un­

conditional stability, the ‘explicit’ and ‘implicit’ lines swap over at successive 

tim e levels. Other varieties of the hopscotch algorithm exist, such as ‘block’ and 

‘ordered odd-even’ hopscotch [37].

4.4 C onclusion

It is by no means claimed tha t the methods presented above represent the most 

economical or efficient way to solve the quasilinear equations. For example, al-
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Figure 4.1: Line hopscotch after the explicit stage.
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though the hopscotch method works well for two-dimensional diffusion equations, 

it is not readily generalisable to three dimensions, so tha t we cannot easily study 

the evolution of distribution functions with spatial and full velocity dependence 

with all possibly apposite physical processes included. This could be a problem 

if we wanted to study the evolution of an inhomgeneous plasma under the action 

of electromagnetic instabilities such as the kinetic cross field streaming instabil­

ity or the generalised lower hybrid drift instability. Moreover, there is no way 

presented in the numerical analytical literature known to us of varying the time 

step so as to maintain within a pre-specified accuracy limit. This would allow 

integration of the diffusion equation to proceed in a much more efficient manner. 

Use of the ‘method of lines’, perhaps coupled with the expansion (4.14), to con­

vert the partial differential equation into a large system of ordinary differential 

equations (which can then be solved numerically using an appropriate library 

routine), would perhaps be preferential. However, whichever numerical method 

one chooses for a particular problem, there is probably always a slighly better 

one around the corner.

The method we have used to solve the dispersion relation, by expanding the 

background distribution in terms of a set of orthogonal polynomials, is, on the 

hand, capable of being extended to a variety of other cases (for example, electro­

magnetic instabilities), and could be used in any application where the detailed 

shape of the distribution function must be taken into account.

59



Chapter 5

Numerical results

5.1 Solution  o f th e  quasilinear equations

In this set of results, we shall ignore all spatial gradients in (4.2) and (4.1), so that 

diffusion is only allowed to occur in uj. and U||, and we have a two-dimensional 

diffusion equation to solve. The distribution evolves in tim e only, not in space, 

with the magnetic gradient inverse length scale held constant. Stabilisation is 

expected to occur solely due to the alteration of the shape of the distribution 

function on account of the reaction of the unstable waves.

The diffusion equation now reads:

%
dt

1 d
uj. dv±

dv\

%
dvi

%
dv\\

+ ÜJ. dv_i dv\ .J-
dfe
dv

0 <  <  oo

-o o  <  U|| <  oo

where the elements Da,p of the diffusion tensor are:
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K /j„"(ax)(  ̂ îîk -  -  Vil‘̂*'1

£>±,|| =  % ±  =  K ''*'} (5-3)

%II = ^ { '$ /'^ ^ W # n , _ , l _ V i i 4
(5.4)

For (5.1) to have a regular solution, it is necessary tha t jUj.,|| — > 0 as v± ——> 0: 

this is clearly the case.

The boundary conditions are that:

fe{vj_,v\\,t) --- > 0 UJL-----J-oo

f e { v ± , V \ ^ , t )  ------>• 0  V\\-------> ± 0 0

^ ^ { v ± ,v \ \ , t )  =  0 Uj. =  0

The infinite range of Uj_ and uy was truncated: in all numerical integrations we 

took 0 <  uj. <  lOuî ieo and -lOut^ieo <  ^|| <  lOvtheo  ̂ where Vtheo is the therm al 

velocity of the initial electron distribution function.

The initial electron distribution function is taken to be an isotropic 

Maxwellian:-

/ .(« X ,« 1 |,0 )  =  h / 2  „3 °  f - |  -i- i )  / 4 e O
(Z7T ' t̂heO L ^

(5.5)

The initial form of the wave intensity spectrum is not particularly im portant, 

since initially the waves will grow exponentially. The range of wavenumber values
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VtheW -

with time for the two runs.

f v j f ^

f f j y
(5.6)

There is, in comparison, virtually no perpendicular heating observed. Because
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was chosen to span the region in k-space where growth is largest. Individual 

waves were given evenly distributed values of k± and k\\. The actual number of A

waves used was not found to be critical, and since the dispersion relation must I
J

be solved for each wave this number was held fairly low in order to minimise the 

computational tim e required.

5.2 T im e evo lu tion  o f th e  m odified  tw o stream  

in stab ility

We present the results of the solution of the quasilinear equations for two different 

values of eg, namely athe^B = 0.01 (Run 1) and athe^B — 0.02 (Run 2 ). The pages 

following 74 and 77 give a succession of plots of the electron distribution function 

at various stages in its evolution in time. The abscissae are measured in units 

of the initial electron therm al velocity, and the initial plot is normalised so tha t 

the volume under the surface is unity. The computer code conserves particles 

extremely well, so tha t each subsequent plot is, effectively, normalised in the same 

way. The main features of the evolution of the electron distribution functions are 

the same in each case: after a few hundred electron gyroperiods wings begin to 

form in the parallel direction as particles with parallel velocities of the order of 

one or two therm al velocities are accelerated to higher energies. The wings later 

develop into broader, more shoulder-like structures, at the expense of the central 

peak (as total particle number must be conserved). Eventually, the distribution 

function becomes a broad, low, roughly flat-topped structure. Figures 5.4 and 

5.4 show the change of the parallel electron thermal velocity, as defined by



they are highly magnetised, the electrons will be able to move much less freely 

across the magnetic field than along it. This is due to the essentially Landau 

nature of the resonance. It would be possible to produce more perpendicular 

heating by including cyclotron (n ^  0) terms as well as the Landau (n =  0) term  

in the dispersion relation and diffusion coefficients: in other words, we would 

have to consider the Bernstein wave type instabilities as well.

Also shown after the plots of the distribution function are plots of the growth 

rates of the waves. It can be seen from figure 5.3 tha t in the first run the maximum 

growth rate does decreases monotonically in time, whereas in the run (figure 5 .5) 

with the larger magnetic field gradient (and hence stronger instability) this is 

not so. The mode which is growing at the fastest rate at one point in time 

will not necessarily be doing so later on. W hat seems to happen in the latter 

case (Run 2) is tha t initially the most unstable mode will have the greatest 

effect on the electron distribution function (for a wave in resonance, D % 1/7)- 

This mode will then change the shape of the distribution function so tha t it 

will become more stable, presumably (in the nature of quasilinear theory) by 

flattening some portion of the distribution function. Schematically, one might 

expect the distribution function shown in figure 5.2 (upper panel) to become as 

shown in figure 5.2 (lower panel), tha t is, for a plateau to be formed, with

However, the distribution function has now been steepened at other points, 

and so it is possible that another mode might be made more unstable, and may 

become the new dominant mode. It will then modify the distribution function in 

such a way as to reduce its own growth rate, and the process could then continue 

until all the modes are effectively stabilised. It should be borne in mind tha t the 

dispersion relation can only be solved at a finite set of points in k  space, when in 

reality there will be a true continuum of waves excited. Thus, a real system might
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move towards stability in a somewhat smoother fashion. However, the average 

growth rate, defined by

7 (0  =  /  7 ( k , 0 ^ k  (5.8)

is in fact a monotonically decreasing function of time in both cases.

The dependence in the rate of heating of the plasma on the electron beta is 

shown in figures 5.7 to 5.10. The larger beta is, the smaller is the amount of 

electron heating after the same length of time. This is because the larger beta is, 

the greater is the stabilising efect of the magnetic gradient drift.

At the end of both runs 1 and 2, it can be seen th a t all of the growth rates 

have been reduced substantially from their initial values. However, following the 

system to longer times becomes increasingly problematic numerically. As time 

progresses, the form of the diffusion tensor becomes more and more complex, 

so tha t numerical solution of the diffusion equation becomes increasingly more 

difficult. Even so, in a shock, the particles must traverse the ramp in a finite 

time, the gradients necessary to drive the instability will only be present for a 

finite period of time.

Moreover, in these runs we have fixed the value of the cross-field ion-electron 

drift velocity to be the same throughout the time span of the run. However, it 

would be more realistic to specify this quantity initially, and then allow it to vary 

in time under the action of the unstable wave spectrum. This would introduce 

another stabilisation mechanism on top of the quasilinear modification of the 

electron distribution function. It is the cross-field drift tha t provides the free 

energy source for the instability, and so we have been feeding energy into the 

system, resulting in wave growth and particle heating.

If we work now in the electron rest frame, the cross- field macroscopic drift 

due to the ‘E cross B ’ force will be contained in the ion terms. Thus, the ion 

susceptibility is modified to
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X i,k  — i ^ i ) )  (^*9)

where =  (H — kj_Vo)/y/2kvthi^ or, assuming that the ions are cold,

Here, Uq is the cross-field drift. The magnetic field gradient length scale can 

be related to the drift velocity (assuming a linear field profile) by Ampere’s law, 

as was done above, to give:

^B^the — 0 . 6 / 3 e - ^  (5.11)
"̂ the

The magnetic drift velocity term  in both the dispersion relation and the diffusion 

coefficients can thus be evaluated.

In order to follow the evolution of the drift velocity, we can take the first 

moment of the ion diffusion equation, to obtain:

n o ^  =  ^  {x*,k} (5.12)QZ Till

The neglect of spatial dependency (that is, variation with A) in the above 

has the effect of excluding effects due to the lower hybrid drift instability, which 

relies on gradients in density and tem perature. Unfortunately, including spatial 

variation has the effect of increasing the number of independent variables on the 

left hand side of the electron diffusion equation from two to three, putting it be­

yond the scope of the code tha t we have written to solve the diffusion equation, 

as well as increasing the scale of the computational problem substantially. How­

ever, there are two ways in which we can include spatial effects without having to 

write a code to solve three-dimensional diffusion equations: due to lack of time, 

these computations have not been undertaken, but we feel tha t it is worthwhile 

to outline how the calculations could, in principle, proceed. First, we could study
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only flute modes (that is, set fc|| =  0. This would leave us with a problem similar 

to tha t studied qualitatively by Krall and Book [26],[27]. We feel, though, that 

electron heating due to this would not be significant, and tha t it is necessary to 

retain a finite component of the wavenumber parallel to the magnetic field. We 

can do this by noting tha t in the low frequency (w <C Wce), low beta (and hence 

electrostatic) limit, we can remove the uj. variation by neglecting the magnetic 

field gradient (from (5.11) it can be seen tha t for low electron beta the effect 

of the magnetic is going to be of secondary importance in comparison to  the 

macroscopic drifts). It can be seen immediately from (4.3) tha t

-D±,± =  -Dx.ii =  D||,x =  0 (5.13)

since ug =  0 , and also the other diffusion coefficients become independent of uj.. 

We can then write

(5.14)

where
’the

1
A ||(A ,U ||,t) =  —  ^  A(A,uj.,U||,()uj.du± (5.15)

On integrating the electron quasilinear diffusion equation over uj_ we obtain:

^/e.H _  ^
6%

D

d
dv\

.% i i

+ ^A
DA,II

% ,ll
dv\\ T dv\

D II,A% ,ll
^A

D
dv\ (5.16)

The dispersion relation is now A-dependent, but it can be simplified, because the 

resonant denominator is now no longer dpendent on Uj_, and so the integral in

(4.19) can be evaluated analytically, using (2.45), to give:
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Xc

where

E %

s™(A,<) =  ( 2 )  ( - s i

(5.17)

dv[
^'^the' \  "  '^the /  ^ i / i e

This dispersion relation now includes all drifts due to gradients in density and 

temperature.

The initial conditions would now have to be A-dependent, with the initial 

distribution function specified throughout a ‘box’ of finite length with appropri­

ate boundary conditions at either end: specification tha t the spatial gradient of 

the electron distribution function be zero at both ends would have the effect of 

eliminating inflow or outflow of plasma through the ends of the box.

The analysis could be extended to include waves with finite wave number in 

the X-direction by a W KBJ-type method [4].

5.3 A pplications to  collision less shock w aves

In the results presented above we have effectively fixed attention to a point in 

space in an inhomogeneous plasma, and followed the evolution of the electron 

distribution function and waves in time. However, in a collisionless plasma shock 

wave, particles will be convected from a region of uniform properties through a 

region of non-zero field (and density) gradients to another uniform region. To 

model electron heating across a shock layer, we move to a frame of reference 

moving through the shock with a speed equal to the ‘E cross B ’ drift velocity 

in the direction through the shock. Thus, the diffusion equation (neglecting A 

variation on the right hand side) becomes:
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“ ““ “  aA “  dv “ ■ f

'^thel '^thel

We must also specify the magnetic field profile B q { x ) ,  We assumed tha t the field 

increases smoothly and monotonically from its upstream value to its downstream 

value, which was usually taken to be twice the upstream value. We are principally 

interested in laminar shocks, but a quasilaminar shock could perhaps be modelled 

by superimposing oscillations on the monotonie field profile. The upstream con­

ditions tha t we have imposed have the implication that the proportion of reflected 

ions will be low, so tha t there will not be a magnetic ‘foot’ structure upstream 

of of the shock ramp, nor will there be a magnetic overshoot downstream. The 

magnetic field gradient length scale can then be evaluated using:
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(5.18) I

4
where uq — EyjBo  is the drift speed of the electrons through the shock. We would |

end up with an initial value problem with the upstream conditions specified y

in advance. We should also, in this case, model the generation of waves by - I
i

therm al excitation processes, by adding a term  6'k to the wave intensity evolution |

equation: j

!
—  [uoTk] =  27k +  5k (5.19) I

!since otherwise the upstream wave spectrum would damp out in the uniform i

region of the plasma. However, we have simply ignored therm al excitation pro- |

cesses (*9k =  0), and set the right hand side of (5.19) to be zero for all waves with |
■Inegative growth rates. |

There are now several extra parameters to be specified in advance. The first is 

the upstream Alfvenic Mach number M a i. Obviously, this must exceed unity, and 

it must also be less than the first critical Mach number to ensure tha t the shock 

is subcritical, and hence laminar. This fixes the upstream bulk flow velocity:

= M a i—  (5.20)



Finally, we must specify the width of the shock. We used values consistent 

with a number of quasi-perpendicular shocks observed by the ISEE spacecraft 

[47]. These all had a width L s  such that:

L s = a—  (5.22)

where a is a dimensionless quantity of the order of unity. These shocks, being non­

perpendicular, are in fact probably dispersive, rather than resistive, in character, 

and hence the amount of anomalous resistivity required is much smaller than tha t 

needed in much thinner perpendicular shocks, which tend to have thicknesses such 

that:

L s = h—  (5.23)
^pe

where b is another dimensionless quantity, but of order ten to twenty. For this 

class of shock, which is more often found in the laboratory than in the solar wind, 

it is more likely that the ion acoustic instability is dominant, since the cross-field 

currents will be larger.

Results for a run with parameters appropriate to a quasiperpendicular bow 

shock are presented in run 3. We have taken a =  1 and /3e =  0.1. The total

amount of heating is fairly modest, about 40% of the upstream value, but this is in

rough accordance with the amount of anomalous (that is, greater than adiabatic) 

heating observed. It should be recalled tha t our model does not include the 

heating caused by the direct compression of the plasma by the background fields, 

only the anomalous heating by the modified two stream instability.

The sequence of distribution functions shows tha t the downstream electron 

distribution function has a flat top. This is typical of magnetosheath electron 

distributions, though these particles will have passed through any of a large
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variety of shocks. However, observations of electron distributions in the bow shock 

[11], [47] do actually show the progressive flattening of the electron distribution 

function as one moves progressively through the shock. This process is often 

accompanied by formation and subsequent erosion of an offset peak in the parallel 

direction. This is probably due to the action of the component of the background 

electric field along the background magnetic field, which will be present as the 

observed shocks were not exactly perpendicular. However, this has been neglected 

in our calculations.

Most of the activity can be seen to occur in the middle of the shock, as this is 

where the magnetic field gradient is largest. The parallel tem perature lags behind 

the growth since it takes a while for the waves to build up to a large enough ampli­

tude to be able to affect the bulk of the ditribution appreciably. The tem perature 

levels off after the system has stabilised because we have only included growing 

waves in the calculation of the evolution of the electron distribution function. 

This is also why the intensity, defined by

does not damp away in the downstream portion of the shock. The maximum 

value of the wave intensity, about 10“ ,̂ seems to be compare favourably with 

tha t obtained by Winske et al. [51], despite substantial differences in our model 

and theirs.

5.4 E xten sion s to  th e  m odel

There are clearly many additional physical phenomena tha t could be included in 

the model. However, the philosophy behind the current work has been to attem pt 

to generate and solve the simplest possible model capable of giving something 

approaching a reasonable description of the physical problem. Possible future
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work could include modelling:

• warm ions

• electromagnetic waves

• inclusion of spatial gradients

Our results are valid provided T{ <C Tg. However, it is more characteristic of 

the bow shock to have T{ % Tg. The consequence of having therm al ions is to 

include the effect of ion Landau damping. This alters the nature of the modified 

two stream instability by stabilising modes with wave numbers kathe 1, so 

tha t the modes with maximum growth rates are now such tha t kathe < 1* Thus, 

the characteristic wavelength of the instability will be longer, and wave particle 

interactions more gentle. Hence, one might expect particle heating to be weaker. 

Particle simulation studies suggest tha t the ions retain their Maxwellian form 

throughout the lifetime of the instability, and hence an approach based on taking 

moments of the ion evolution equation would suffice. Ion heating by lower hybrid 

type instabilities can be quite considerable [43].

The inclusion of electromagnetic terms could also improve the model. As the 

electron beta increases the modified two stream instability becomes the kinetic 

cross field streaming instability: the oscillation frequency is still in the lower 

hybrid frequency range, but now the mode is essentially a whistler, with a mixed 

electrostatic/electromagnetic nature depending on the angle of propagation to the 

magnetic field, which is generally smaller than that for the modified two stream 

instability. Under certain conditions it is necessary to include ^  0 terms in the 

dispersion relation. The actual computation would be more difficult in this case 

since now the dispersion relation is the determinant of a three by three matrix, 

all the elements of which will, in general, have to be evaluated. The more oblique 

propagation of the unstable modes may mean tha t there will be a greater degree
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of electron heating due to the larger values of the wave number vector along the 

magnetic field.

Taking into account the effects of the spatial variation of the distribution 

function in the quasilinear diffusion equation poses problems when the tim e de­

pendent, inhomogeneous problem is considered, since now the spatial variable, 

A, occurs on both sides of the equation. This difficulty is purely numerical.

A criticism that could be levelled at the model is tha t it does not take into ac­

count the Rankine-Hugoniot relations tha t link the upstream  state of the plasma 

to the downstream state. This could be achieved by using the method of Winske 

et al. [51] in their comparison of heating due to the ion acoustic and modified two 

stream instabilities. Essentially, a shock width is assumed, from which the cross 

field drift is estimated. The anomalous heating due to current-driven instabilities 

is then calculated (in their case by using second-order transport theory, in our 

case by solving the quasilinear equations). The amount of adiabatic heating is 

then evaluated, and then the shock width is adjusted so tha t the amount of to­

ta l (adiabatic plus anomalous) heating is in closer agreement with tha t required 

by the Rankine-Hugoniot equations. The process is then repeated until a self- 

consistent result can be obtained. One difficulty is tha t the Rankine-Hugoniot 

equations require both the up and downstream distributions to be Maxwellian, 

whereas we have seen tha t the downstream electron distribution function will 

not be Maxwellian, even if the upstream distribution is. However, construction 

of such a model would in principle be straightforward.

In conclusion, this work should not be taken as the ‘last word’ on the subject, 

but rather a first step towards constructing a reasonably accurate, self-consistent 

model of electron heating in subcritical shockwaves which takes into account the 

non-Maxwellian nature of the electrons as they pass through a shock.
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Figure 5.1: Velocity distribution function (f) before (top panel) and after (bottom 

panel) modification by wave particle interactions. Axes in arbitrary units.
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R u n  1

Parameter description value

^B^the Inverse magnetic field scale 0.01

a ^pe/ ̂ ce 68

(3e Electron beta 0.1

6 Electron/ion mass ration 1/1836

Ti Ion tem perature 0
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Figure 5.2: Parallel therm al velocity versus tim e
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Figure 5.3: M aximum growth rate versus tim e
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R u n  2

Parameter description value

^B^the Inverse magnetic field scale 0.02

a ^pe l^ce 68

Electron beta 0.1

8 Electron/ion mass ration 1/1836

Ti Ion tem perature 0
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Figure 5.4: Parallel thermal velocity versus tim e
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Figure 5.5: M aximum growth rate versus tim e
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Figure 5.6: Parallel therm al velocity versus tim e
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Figure 5.7: Parallel therm al velocity versus tim e
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Figure 5.8: Parallel thermal velocity versus tim e
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Figure 5.9; Parallel therm al velocity versus tim e
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R u n  3

Parameter description value

a ^ p e  /  ̂ c e 68

/? e Electron beta 0.1

8 Electron/ion mass ration 1/1836

Ti Ion tem perature 0

M ai Upstream Mach Number 2
L .c
Wpt Dimensionless shock width 1

L s
a the

Shock width 192
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Figure 5.10: Parallel tem perature (in units of upstream tem perature) versus dis­

tance through shock (in units of upstream thermal electron gyroradius).
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Figure 5.11: Total field energy versus distance through shock (in units of up­

stream  thermal electron gyroradius).
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Figure 5.12: Maximum growth rate (in units of upstream gyrofrequency) versus 

distance through shock (in units of upstream thermal electron gyroradius).
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Appendix A

Conservation properties of the 

quasilinear equations

A .l  C onservation  o f energy

It is a property of quasilinear equations in general that they conserve m atter and 

energy. In this section we will show that the equations derived in this thesis do 

possess these properties. The quasilinear diffusion equation is

d%
d t dfj, “• ' I ' - (A .l)

(A.2)De — %  ̂  ̂ ^n,k^n,k^ri,k
( n k }

The quantities and 17“ ,̂ are defined in equations and (3.35) (2.22) respec 

tively. The electric and magnetic field amplitudes evolve according to

a t

d \s ê ^ \  

a t

27k 6E]^

=  27k SBi:

(A.3) 

(A.4)

In this section, we will not take the ions into account at all. Equation (A .l) 

must conserve the total number of electrons since the right-hand side will dis-



appear when integrated over // by Gauss’s theorem, as long as the boundary 

conditions are right.

To prove tha t energy is conserved, we multiply (A .l) by |m ef^  — e^o, where 

y?o(a;) is the potential of the background electric field, and integrate over v  and 

A to give:

ecpo %
d t dvdA I eipo

d
y | „ ^ v - e - v > o

® 1 E  E  I'" -  »>EWcaêJ •
I n k

d
an,k- (A.5)

Where we have used the fact tha t =  ~E x  =  veB q. This term  represents

the rate of change of energy due to the evolution of the background distribution 

function. Now,

[v -  %aèA] • a„,k +  ^pTi,(|,k

^  [ikxVxJnSÉ^^y, + (flk -  A;|pn) JnSÉy^i

(% -  k^,VE -  k\\v\^ 4 % , k  

( n c jc e  +  k ± V B )  ( %  ~~ ^ ll^ ll)

fcjL O k

+  {nUce +  k±VB)  Jn^-ê||^k

(A .6)
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on collecting together terms in and and performing the nec­

essary cancellations.

The current density of the mode is:

m^~zr j  \ ■■

so tha t (A.5) with (A.6) and (A.7) gives:

d

.  (nWce +  &1%D) y  j , . (A.7)

e<po /adM = æ|ÇÊ^jk| = J  {SE-S}) dA (A.8)

The rate of change of the energy of the particle distribution is thus balanced by 

the averaged power in the waves excited in the system.

We now use the Fourier transformed versions of Maxwell’s equations to write 

the right-hand side of A.8 in terms of the amplitudes of the rapidly varying wave 

fields:

1

îk  A — /̂ O Ĵk ^/^o^oOk^Ek 

k  A 6kk =  Ok^Bk

(A.9)

(A.IO)

Multiplying (A.9) by 6B]^ and (A.IO) by 5Ék and eliminating the term  propor­

tional to ^Êk A ^Bk gives

5ËJ • 5jk -  ieoilk 6Ék ' + ^  |«Bk|' =  0flQ I I (A .ll)

If we sum (A .ll)  over k  and use the symmetry properties (3.7) to (3.9), we can 

deduce that:

E
k

«É£ • %  +  eoTk SÈk '  +  -^Tk k B k  “
fĵ o '

E
k

1 d
^Ek • ^jk +  2 ^ 0 ^  ^Ek + 1 d 

2^0 d t
k B k

=  0

=  0 (A.12)

Using (A.8) we obtain:

d t I -

eipo fedfi -b S /Ç Go <̂ Ek + 2fio 6Bk dA =  0 (A.13)

.J



Therefore, on integrating: 

1J  - eyo] /edp + E /  |-5Êkf + ̂  |<5Bk| d A ^ T (A.14)

where T is the total (wave plus particle) energy of the system. The first term  is 

the particle energy. The other term  represents the total (electric plus magnetic) 

energy of the waves. These equations have all been derived for a discrete wave 

spectrum: however, similar expressions will hold for the continuous spectrum 

case, with the summations becoming integrations.

A .2 C onservation  o f m om entum

In the case of electrostatic waves, it is also easy to show that the parallel com­

ponent of the electron momentum is conserved. The diffusion equation is:-

d t  d / i
(A.15)

where

D
e  n  k

(Hk -  k_iVD -  A;||Uj| -  ntüce)

i,k
,  .  , { n u c e  +  k ± V B )  .  , ,  .■k±eA 4 --------- -----------e i  -f A:||e||

v±

K ,k j  (A.16)

(A.17)

(A.18)

and the frequency Hk =  Wk +  %7k is related to the wavelength by the dispersion 

relation:

«2
A  =  14-

X

E E /
^ o k ^  n  k  ( ^ k  -  k ± V D  ~  A j p j i  -  nUJce)

d  [nojcs 4- k j _ V B )  d  d

- ' ^ ^ d K + — ^ + fedv

=  0

(A.19)
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We multiply (A,15) by meV|| and integrate over ii. Thus:

dfi

d

92

”  ^  i  “ ' ^ E  E  y  ®ll ■ an ,k>7^B „k/ka„,k  • j  S

=  Y ,e o h ‘̂ Ik ^ { K ]
k

=  0 (A.20)

by virtue of the dispersion relation (A.19). Thus we see that

J  meV\\fedv — p|| =  constant (A.21)

as required.
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