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Abstract

Equations are derived to describe the evolution of an electron distribution func-
tion under the action of electromagnetic instabilities in a non-uniform plasma
using an extension of the quasilinear theory of Kennel and Engelmann. Varia-
tions in both the electron density and temperature and the background magnetic
field are taken into account. These equations are simplified in the limit of small
electron beta so that an electrostatic approximation is justified. Methods are
then presented which allow the solution of these equations (or, in principle, the
more complex electromagnetic equations). In particular, a method of solving the
kinetic dispersion relation for an arbitrary background (first-order) distribution
function with the minimum of additional asumptions and approximations is de-
scribed in detail. The electrostatic equations are solved for a number of different
cases in order to study the action of the modified two stream instability on the
electron distribution function. Throughout, realistic values of the ratios of elec-
tron to ion mass and electron plasma to cyclotron frequency ratio are used. The
applications to collisionless plasma shock waves are discussed, and it is found that
the modified two stream instability can produce the (relatively small) amounts
of electron heating observed at quasi-perpendicular terrestrial bow shocks, and
the flat-topped electron distribution functions seen to evolve.

Extensions to the model which would greatly improve its applicability and

accuracy, as well as the amount of computational effort required, are discussed.
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Chapter 1

Introduction

1.1 Shock waves

A shock wave is a transition layer across which the properties of a medium change
from one set of values to another, different, set. Viewed from a frame of reference
which moves with the shock, the medium flows into the shock from one side
(the upstream side), is slowed down, deflected (in general), and heated up: the
medium’s ordered streaming energy on the upstream side is partially converted
into random thermal energy on the downstream side. Shocks arise from the
steepening of a finite amplitude wave due to nonlinear effects; the speed at which
a point on the wave travels increases with the amplitude of the wave at that
point, [29] so that the crest of the wave tends to catch up with the trough:
it must be prevented from overtaking the trough by some physical mechanism,
since otherwise quantities such as density, velocity and pressure would become
multiply-valued functions of position. For a steady state structure to exist, there
must be some mechanism present to counteract the nonlinear wave steepening,
so that, eventually, a transition layer of finite thickness will be formed. In shock
waves occurring in fluids, this mechanism is viscosity, which is due to the collisions

between the molecules that make up the fluid. Dimensional arguments suggest
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that the thickness of the shock should be of the order of the mean free path of
the fluid [45], as is found to be the case.

If we attempt to apply these ideas to collisionless plasmas (that is to say,
most plasmas of interest), then we find that the width of the shock region is
implausibly high: for example, in the solar wind plasma, the mean free path A
is of the order of an Astronomical Unit (1 A.U. =~ 1.5 x 10" m.), whereas the
width of the shock transition layer may only be tens of kilometres thick. In the
laboratory, shocks are observed in devices whose dimensions are smaller than
A. Thus we must identify a mechanism capable of producing dissipation in a
collisionless plasma.

In a neutral fluid, the only means by which energy and momentum can be
transported are by binary collisions between molecules. These are ‘short range’
interactions in the sense that particles can only affect the motion of other particles
when they are in close proximity to one another. In a plasma, on the other hand,
because the individual particles possess non-zero electrical charge, variations in
their density and mean velocity can set up fluctuating electric and magnetic fields
capable of propagating large distances. Other particles may ‘collide’ with these
waves, resulting in energy and momentum transfer. In other words, particles can
interact collectively as well as on an individual basis, and hence ‘dissipation’ is

still possible without any classical collisions.

1.2 Governing equations

To describe the behaviour of a collisionless magnetised plasma, we will use the
Vlasov-Maxwell system of equations. This employs a statistical description with
a continuous six-dimensional phase fluid of density F, for each particle species
s (s = 4 for positive ions, i.e. protons, and s = e for electrons). The quantity
Fy(r,v,t)drdv gives the number of particles with velocity between v and v + dv

and position between r and r + dr at time ¢. F,, the distribution function, obeys
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a continuity-type equation:

aFa 6Fs qs an_
e + v. 8r+ms(E+VAB)'6v_0 (1.1)

This expresses the fact that, in the absence of collisions, the rate of change of Fj
along a particle trajectory is zero.
The electric and magnetic fields E and B are determined from the charge and

current densities p and j by Maxwell’s equations:

a 1 0E

5B = mit+3z5 (1.2)
LIV, i
%-B = 0 (1.4)
%-E = :io (1.5)

and the charge and current densities are obtained from the distribution functions

by
D Eq,stdv (1.6)
j = qu/stdv (1.7

These equations constitute a closed, but hopelessly intractable, set.

We can take the average of equation(1.1) to obtain

ofs Ofs | 4 ofs
5t +v. r +_ms (E°+VAB°)'6v = (1.8)
where
__ 9 9
Co= =755 (6B +v A 6B)&f,) (1.9)

The angle brackets denote that the quantity within is to be averaged in some

way, and f, = (F}) and §f; = Fs — (F;). Eg and By are the averaged electric and
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magnetic fields, and éE and 6B are the fluctuations of the fields around their
average values. Equation (1.8) now looks like the collisional Vlasov equation,
with C; acting like a classical term. However, C, describes not the effect of (short
range) particle-particle interactions (as would, for example, a Krook or Fokker-
Planck term), but the influence on particles of fields set up by the collective
motions of those particles. One important property of C, is that it does not, in
general, lead to the relaxation of an initial, arbitrary, distribution function to a
Maxwellian. For example, with no background fields and no perturbed magnetic
field we can recover the quasilinear equations of Drummond and Pines ([10]): in
the case of an initially Maxwellian background plasma with a weak beam (the
bump-on-tail instability), the resulting distribution has a flat ‘plateau’ in the
region of velocity space in which particles have interacted most strongly with
waves.

It is easy to show that the ‘collision’ term C, satisfies the following identities:

/c, v = 0 (1.10)
011 (L GO g
2. go{SESE) + ~1—-(6B6B)W + Z/m vC, dv
81‘ 0 Lo | - 8 8
= 0 (1.11)
AL epnyy L oemn| o & [L LI
= [250(6E )+ 5B+ g [#0(6E/\ 513)] +¥/2m3v C, dv
= D (1.12)

The first relation simply expresses the fact that particles are neither created
nor destroyed by the collision operator, the other two express the rate at which
momentum and energy respectively are transferred between fields and particles.

Another conservation relation that can be derived involves entropy. A colli-
sional shock (for example a viscous hydrodynamic shock) will produce entropy.

If we take equation (1.1), multiply it by 1 + In F; and integrate over velocity, we




find that

a 9 ‘
EZ/F, o Fodv + = - va,ln Fudv=0 (1.13)

so that the entropy satisfies a conservation-type equation. However, if we define
the entropy not in terms of the ‘full’ distribution function F; but the averaged

function f,, that is 1 + In f,, then

% / foln fodv + % , / vf,ln f,dv = / (1+1n f,)Cdv (1.14)

and it can be seen that there must be change of entropy across the shock layer,

where C, # 0.

1.3 Shock classification

When viewed in sufficient detail to be able to discern their small scale structure,
collisionless plasma shocks can be seen to be different, depending on the values of
a number of parameters. The size of the pseudo-collision term introduced above
enables one to categorise shocks according to the level of turbulence present

within the transition layer:-

1. Laminar shocks:

Here, the pseudo-collision term C; is zero, and so there is neither turbulence
nor dissipation. In this case, the fluid equations do not have shock-like
solutions, but only admit infinite wave-trains or single pulses (solitons) [48].
However, the Vlasov system can be shown to allow shocks [38], [39], since
in the kinetic picture, the inclusion of finite Larmor radius effects means
that particle reflection is allowed: ions can be bounced off the potential
barrier across the shock, thus upsetting the symmetry between the up and

downstream sides of the transition layer.

2. Quasi-laminar shocks:
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The collision term is non-zero, but the amplitude of the turbulent fluctua-
tions is small, i.e. |6fs] < fs. The shock has the appearance of a smooth
transition layer, upon which are superimposed lower amplitude, smaller

length-scale fluctuations.

3. Turbulent shocks:

Here, |6f;| ~ f,, and there is no smooth transition layer.

There are various factors which determine into which class a particle shock should

fall: below we list some of the most important, and their definitions:-

e Up,: The angle between the outward pointing normal to the plane of the

shock front and the direction of the upstream magnetic field.

® Myss: Fast magnetosonic Mach number = V4 //(c%4 + ¢%), where V] is the

upstream fluid velocity, ¢4 is the Alfvén wave speed and ¢, the sound speed.

B: This is the ratio of plasma pressure to magnetic pressure, that is:

_ nokp(T. + T})

? = T Ba/(me) (235)

a: Ratio of electron plasma and cyclotron frequencies: wy,/wce

p: Ratio of ion and electron temperatures: T;/T,

The level of shock turbulence is very closely related to ¥p,. For ¥p, < 10°,
shocks are said to be parallel, and are generally highly turbulent, highly complex
structures; for arccos(\/;n%) < ¥pn < 90°, shocks are said to be perpendicular,
and are more laminar; those shocks with values of ¥p5, Inbetween are classed as
oblique.

Turbulence increases with both the g and and Mach number of the upstream
flow. There is a value of M, the criticel Mach number, above which purely

resistive effects (i.e. those due to anomalous resistivity) are unable to produce

!
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the dissipation necessary to produce a shock, and some phenomenon producing
anomalous viscosity must be invoked. As f tends to infinity, the critical Mach

number tends to 1, and so all high-8 shocks must be supercritical.

1.4 Quasi-Laminar perpendicular shock waves

When the upstream Mach number and plasma beta are both low, and the up-
stream magnetic field is in the plane of the shock, the physical mechanisms re-
sponsible for the shock can be understood, qualitatively speaking at least, fairly
easily [6]. Suppose that there is a region in space in which the magnetic field

increases over a distance L, such that

athe K Ls < asni (1.16)

where a4 1s the thermal Larmor radius of particle species a. The electrons will
perform many gyrations around the magnetic field direction as they drift through

the shock with speed
E,
Ug = B(o) (1.17)

where B(z) is the magnetic field, which points in the z-direction, perpendicular to
the shock normal, E, is the electric field in the plane of the shock, and & measures
distance through the shock. By Maxwell’s equations, F, must be constant, and
so the electrons will be slowed down. The ions, however, will not feel the gradient
in the magnetic field because of their large Larmor radii, and so an electric field
will develop in the x-direction pointing upstream in order to slow them down.
This will cause the electrons to drift across the magnetic field (as will the field
gradient), the current thus formed being of precisely the correct size to give
rise (by Ampere’s law) to the increase in the magnetic field that we postulated
initially. It would thus seem possible for a steady state structure to exist.

In the absence of any dissipational mechanism, the magnetic field would in-

crease smoothly and monotonically to a maximum value, and then decrease again.
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Depending on the boundary conditions imposed upstream of the shock, either the
magnetic field will return to its initial value, in which case we will have a solitary
pulse propagating through the plasma, or for the field to oscillate, giving a large
amplitude wave train. Neither of these situations is a shock. If, however, the
cross-field drift current is sufficiently large, it is possible for waves propagating
in the plane of the ramp to become unstable. They would then be expected to
grow to some level, and then saturate, producing a steady level of anomalous
dissipation. It would then be possible for a collisionless shock to form.

Since the ions will in fact have a thermal spread, the electric field pointing
out of the shock will be able to reflect those ions with sufficiently small kinetic
energy. These are then turned round by the magnetic field and accelerated by the
tangential electric field. Usually they will re-enter the shock with sufficient energy
to be transmitted. At lower Mach numbers, the proportion of ions reflected is
small, but at high Mach numbers the proportion is large enough to enhance the
magnetic field upstream of the main magnetic ramp and so to produce a broad
‘foot’ structure. At high Mach numbers it is this reflected ion population which

is responsible for most shock dissipation.

1.5 The Earth’s bow shock

It has been known since the late 1950’s that the Sun is not in a state of static
equilibrium with its surroundings, but is in fact incapable of retainiﬁg its hot,
tenuous outer atmosphere (the ‘Corona’) by gravitational attraction. Thus, the
whole of the solar system is pervaded by a plasma flowing rapidly away from the

surface of the Sun. At the Earth’s orbit, the parameters of this solar wind are:

gt
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Parameter description typical value
n; proton density 5 ¢ 10%m™*

Vi bulk speed 250 - 800 km/s
1 ion temperature 7x 104K

4 electron temperature | 1.5 x 105K

cA Alfvén speed 50 - 100 km/s
ems = i/ \/Zcfr}-—c%) Magnetosonic speed | 60 - 150 km/s

The electron density and flow velocity are roughly equal to the proton values.

The pressure of the solar wind tends to compress the sunward (daytime) side
of the Earth’s magnetic field and stretch out the nightside field into a long tail
(see Fig 1.1). A magnetic cavity, the magnetosphere, is formed around the Earth,
extending out to a distance of about 10-11 Earth radii, with the solar wind flow
pressure being approximately balanced by the magnetic pressure of the Earth’s
field. The solar wind is forced to flow around the boundary (the magnetopause)
of the cavity. This flow is clearly supersonic with respect to the sound, Alfvén
and magnetosonic wave speeds, and so a stand-off shock wave forms about 2-5
Earth radii upstream of ther magnetopause, just as happens when a blunt body
travels supersonically through a fluid medium. The region between the shock
wave and the magnetopause is known as the magnetosheath, and consists of
shocked, subsonic, heated, turbulent plasma.

It was first hypothesised that shocks could in fact occur in the solar wind
in order to explain the apparently paradoxically rapid onset of magnetic storms
caused by solar flares. It seemed that otherwise the particles produced by the
flare would have to have an implausibly narrow velocity spread (6v/v ~ 1073) in
order to account for the observed rise time of the storm, about a minute. The first
actual experimental observation of the bow shock seems to have been made by the

magnetometer carried on board the IMP-1 spacecraft in 1963 [40]. Because the




solar wind parameters can vary by several orders of magnitude over a period of
several months, the terrestrial bow shock is a valuable ‘laboratory’ for the study
of shock physics. Multiple satellite missions, such as ISEE (International Sun-
Earth Explorer) and AMPTE (Active Magnetospheric Particle Tracer Explorers),
have made it possible to distinguish between time and space variations in plasma
quantities, and the degree of sophistication of the instrumentation carried on
board has made it possible to to make highly accurate measurements on both

plasma and field quantities.

1.6 Numerical Studies of Collisionless Shock
waves

Although the terrestrial bow shock does provide an excellent opportunity to study
collisionless shocks, it does have a number of drawbacks, not least the cost and
complication of transporting measuring equipment up into space. More funda-
mentally, it is impractical to make simultaneous observations on the shock at
more than a few locations. As in other branches of plasma physics, the difficulty
of experiment and the intractability of the governing equations has made the nu-
merical simulation of plasma phenomena an attractive option. The first attempt
to model a shock numerically was due to Colgate and Hartman [7] who used the
charged sheet of Dawson [9] to simulate an electrostatic shock. The majority of

computer codes written to study shock physics fall into three categories [34]:

Fluid codes: The multi-species fluid equations (conservation of
mass, momentum, energy) are augmented by ‘phe-
nomenological’ terms describing microscopic ef-

fects, which are outwith a purely fluid description;

10




Particle codes: The motions of a sufficiently large number of par-
ticles are followed;
Hybrid codes: A particle description is used for the ions, and a

fluid description for the electrons.

Fluid codes have the virtue of requiring the least computational effort of the
methods, but the description is clearly not self-consistent in that microinstablities
cannot be modelled directly, and so anomalous transport terms must be included
(recall that without viscosity or resistivity, classical or otherwise, the fluid equa-
tions do not support shock solutions). Other physical effects, such as particle
reflection and trapping, are also absent.

These disadvantages would seem to be solved by full particle simulations [23].
The principle behind them is in fact very simple: given the positions and velocities
of the particles at time t, charge and current are assigned to a mesh of points in
configuration space. Maxwell’s equations are solved for the electric and magnetic
fields, which are then given on the mesh. The force at each particle is calculated
by interpolation, and Newton’s law of motion is then integrated for each particle
to give its position and velocity at time ¢ + ét, where 6t is a time step. This
process is repeated many times to follow the evolution of the plasma over a time
of perhaps a few tens of ion gyroperiods. For a realistic result, a large number
of particles must be employed, the number becoming successively larger as the
number of dimensions is increased. For the numerical integration scheme to be
stable, the code must be able to follow the motions of the electrons, so that
the size of the electron plasma frequency imposes an upper limit on the time
step. This problem is often alleviated by using an unphysically large value of
the electron-ion mass ratio and/or the electron cyclotron-plasma frequency ratio.
Both of these can limit the applicability of the results when the identification

of a specific plasma instablility is to be made. Again, hybrid codes are much

11




more economical in terms of computer time and storage space, but the detailed

electron dynamics cannot be studied.

1.7 Outline of Contents

In chapter two we outline the principle features of the various instabilities that
have been proposed to account for the anomalous resistive dissipation in collision-
less plasma shock waves, and review their applicability. We then derive a linear
dispersion relation relating the complex frequency of an electromagnetic wave to
its wavenumber. We simplify this dispersion relation to the case of electrostatic
waves.

Chapter three contains a derivation of the quasilinear equations, which ex-
tends the theory of chapter two to allow for the reaction of the unstable elec-
tromagnetic waves on the electron distribution function. It is shown that an
asymptotic steady state must be reached in which all the waves excited evolve
towards a state of marginal stability. Again, the electrostatic limit is recovered.
In the next chapter we discuss in some detail the numerical methods that we
chose to solve the system of quasilinear equations, and the rationale behind their
choice. Although the equations were only solved for electrostatic waves, it is pos-
sible to extend the methods to electromagnetic waves: however, the complexity
of the equations would mean that considerable computational resources would be
required.

In chapter five we present results obtained by the numerical computer code,

and discuss their applicability to the shock problem.
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Figure 1.1: The near Earth environment
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Chapter 2

Linear stability theory

2.1 Current driven instabilities in collisionless

plasma shock waves

There are several different instabilities that could conceivably occur in the ramp
of a low Mach number perpendicular collisionless shock wave, and here we intend
to review the properties of some of them. In order to be a likely contender as a
mechanism for producing the “dissipation” required for a resistive shock wave,

an instability must satisfy a number of criteria [13],[34]:-
1. Any threshhold value above which the instability occurs must be satisfied;

2. The growth rate must be large enough for the instability to grow to a
significant level in the time it takes for the plasma to flow through the

shock;
3. The instability must not saturate at too low a level;
4. The excited waves must be able to heat the plasma.

Clearly, the first stage of any study of resistive heating must be a linear stability

analysis to ascertain whether or not a specific instability mechanism will satisfy
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the first two criteria under realistic physical conditions. Analysis of the other two

criteria is necessarily nonlinear.

Among those instabilities that could occur are [13], [34],[41]:-

1. The Buneman (Two Stream) Instability

This is the simplest of the streaming instabilities, and does not include the
effects of the background magnetic field. Since it requires a relative electron-
ion drift velocity greater than the electron thermal velocity, it seems unlikely

to occur in a collisionless shock.

. The Ion Acoustic Instability

Ion acoustic waves can propagate through an unmagnetised plasma at phase
velocities larger than the ion thermal velocity but smaller than the electron
thermal velocity. If the ions are sufficiently cold, then the wave phase
velocity lies on a virtually flat region of the ion distribution function, and
there is little damping. For wavelengths much larger than the electron
Debye length, the dispersion relation is similar to that for an acoustic wave,
hence the name. Its nonlinear heating effects were studied early on [26],
[27]. For typical bow shock parameters, where usually the ion and electron
temperatures are roughly the same, the cross-field currents generated in the

shock ramp are not large enough to give rise to the ion acoustic instability.

. Bernstein Wave Instabilities

Bernstein waves are electron waves that can propagate at right angles to the
background magnetic field of a plasma at multiples of the electron cyclotron
frequency without damping or growth [5]. If ion dynamics are included and
the electrons are allowed to drift across the field, then at the points where
the dispersion curves of the ion acoustic and Bernstein waves cross insta-
bility can occur [16],[14]. The waves have short wavelengths (kae > 1)

and high frequencies (w > wc). The main attraction of these instabilities is

15




the fact that they can exist for arbitrary values of the electron-ion temper-
ature ratio: however they are stabilised by the effects of either a magnetic
field gradient or of orbit modifications by turbulent fields, both of which
tend to ‘smear out’ the cyclotron resonances on which the instabilities are
critically dependent. Very closely related is the beam cyclotron instability
[30],[31], where the difference seems to be that the analysis is carried out
in the electron, rather than the ion, rest frame. This class of instabilities
is probably unimportant in shocks, because the instability saturates at too

low a level to produce a high enough level of anomalous resistivity.

Lashmore-Davies [32] [33] has pointed out that in the presence of drifts
the Bernstein waves have negative energy, so that the ions can absorb en-
ergy from the electron waves through the Landau resonance, causing the

amplitude of the wave to grow.

. The Lower Hybrid Drift Instability

Low frequency instabilities propagating perpendicularly to an inhomoge-
neous magnetic field have been studied for electrostatic [28] and electro-
magnetic waves [8],[17]. The instability propagates perpendicularly with
wavenumber kay,e & 1) and frequency and growth rate both of the order
of the lower hybrid frequency wry = wp;[1 +wpe/wce]_1/ 2. The ions can
be taken to be unmagnetised, but the electrons are strongly magnetised.
There are gradients in the magnetic field, the density and the tempera-
ture. Despite a relatively low growth rate and long wavelength, it does
seem to be able to heat both ions and electrons [43]. For non-perpendicular
propagation, the instability is termed the generalised lower hybrid drift
instability[24]: for electrons with finite temperature, the behaviour of the

instability is complex.
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5. The Modified Two Stream Instability

The modified two stream [35]is similar in nature to the lower hybrid drift
instability. However, the analysis of the modified two stream instability
generally neglects density gradient effects but includes a component of the
wavenumber vector parallel to the magnetic field. Like the lower hybrid
drift instability, it is a low frequency instability (w < wee). The effect of a
magnetic field gradient is to reduce the growth rate slightly [13]. Its proper-
ties are insensitive the the ion-electron temperature ratio and the electron
plasma to cyclotron frequency ratio. Electromagnetic effects tend to sta-
bilise it for low beta and near perpendicular propagation when the relative
ion-electron drift speed is greater then the Alfvén wave speed. Analysis of
the instability under conditions typical of a laboratory shock experiment
[13], using an estimate of the expected anomalous resistivity [15] suggest
that it is unlikely to produce significant electron heating. The heating
rates of the modified two-stream and ion acoustic instabilities have been
compared under conditions in space shocks [51] using a model based on
second-order Vlasov theory. It was found that the shock widths, amounts
of anomalous heating, and electric field energy predicted by the modified
two stream instability were in good agreement with observations of a num-
ber of subcritical bow shock crossings, whereas the ion acoustic gave rise to
much narrower shocks than observed in order to generate the larger cross-
field drifts it required for the given electron-ion temperature ratios. For
finite electron beta, the instability becomes the kinetic cross-field stream-
ing instability: this is not necessarily stabilised by electromagnetic effects

for large drift velocities.

. Paralle] Drift-driven Instabilities

In non-perpendicular shock waves there will be a component of the back-

ground electric field parallel to the background magnetic field. This can
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accelerate a portion of the electron population parallel along the electric
field, producing an offset peak in the electron distribution function, which
can then become unstable to parallel propagating ion and electron acoustic
waves[46], possibly leading to parallel electron heating. The height of the
offset peak is observed to decrease through the shock, suggesting the action

of wave-particle interactions.

2.2 The linearised Vlasov equation

In order to determine whether a given electron equilibrium distribution is stable
or unstable to small perturbations, we split all particle and field quantities into
time-independent background parts and rapidly varying fluctuating parts. In
all of what follows, we shall use a Cartesian co-ordinate system with the z axis
aligned along the magnetic field, which is assumed to have no curvature or shear,
and the x axis to be in the direction in which the background quantities vary,
with the magnetic field increasing with increasing x. The y axis is chosen so that

the axes form a right-handed set (see figure 2.1). Thus:-

F(r,v,t) = for,v)+8fe(r,v,1) (2.1)
H(r,t) = Ho(z)+ 6H(r,t) ' (2.2)

where H is any of the field quantities. It is a consequence of our assumption
of slab geometry that the background fields vary with x only. The background
magnetic field is taken to be:

By = Bo(a:)é" — Bo(l + eBx)é"
and the background electric field to be:

EO = (E:va 0) 0)
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The value of E, is not independent, but is related to the background gradients
by Ampére’s law:-

V ABo = pojo = pono (Ve + vn) &y (2.3)
where vy = —eNvZ,, [wee is the drift velocity in the y-direction due to the density
gradient. This gives:

B2 2
A ENVihe (2.4)
HoTp€ Wee

The quantity eg is of the order of the reciprocal of the length of the shock. We
shall assume that the quantity egvipe/wee is small, as the electrons will perform
many gyro-orbits as they travel through the shock.

On assuming that the perturbed quantities are much smaller then the back-
ground quantities, and neglecting products of small quantities, the Vlasov equa-

tion becomes:-

afe s
v,,-aj;——[Eo+v/\Bo] af =0 (2.5)
and
6 3 e 0 afe
5{6]"8 -+ V.'a—r(s.f,3 —_ 'm—e [Eo + v A BQ] *—55 [5E +v A EB] (26)

Equation 2.5 can be shown to be satisfied if f. is of the form:

fe = fe(Aa V1, 'UH)

where A = weex — (vy — vg), v3 = v2+ (vy — ve)?, and vg = —E,/By is the

‘E cross B’ drift velocity in the y-direction.
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2.3 The perturbed electron distribution func-
tion

We now solve (2.6): its left-hand side is the derivative of f. along the particle
orbits in the unperturbed fields. Thus, we can integrate both sides with respect
fo t:
e [t 0
6f. = = [BE(X',t") + v' A §B(x', )] .a—v—,fe(v', ) dt (2.7)

e /=00
The lower limit of the integral has been taken to be —oo, that is, we have ignored
the effects of the initial values of the perturbed quantities. This integral will
only converge for growing modes: damped waves may be dealt with by analytic
continuation of the final dispersion relation. The perturbed Vlasov equation
should be solved by a Laplace transform method, yielding the dispersion relation
in the limit of large time, but this method is considerably more complicated
mathematically. The dashed quantities satisfy the unperturbed orbit equations,

viz.:

%(t’) =~ [Bo(r',#) + v/(t) AB(¥', )] (28)
) = vy o

with the initial conditions that v/(#' = t) = v and r/(#' = t) = r. With the back-
ground magnetic fields of the form used here, equation (2.8) can be solved exactly
in terms of elliptic integrals. However, on our assumption of weak inhomogeneity,

we only need the first-order solutions, namely:

vi(t") = vy cos{we(t' —1t)+9)
v, (t") = vy sin(we(t' —1) +9) +vp
'Ulll (t') = ’U"
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() = z(t)+ ::; [sin(wee(t' — ) + 9) — sin()]
V(#) = ()~ o= lcos(wan(t! ~ 1) +9) ~ cos(8)] + vp(t' ~ 1)
2t = 2(t)+ oyt —1)

Here, vp = vg+vp is the total drift velocity in the y-direction due to the ‘E cross
B’ drift vz and the magnetic field gradient drift vg = _%er_zL [wee. All perturbed

quantities are now assumed to vary harmonically, so that:

6B(r,t) = 6By(z)expli(k.r — Qt)] (2.10)
SE(r,t) = 6Ex(z)expli(k.r — Q)] (2.11)
6fo(r,v,t) = &fox(z,v)expli(k.r — Qyt)] (2.12)

We only consider waves in the y-z plane, so that (0, ki, k'"). Waves thus propagate
perpendicularly to both the background magnetic field and the direction in which
the quantities have been taken to vary. Qy = wy +17k, where wy is the frequency,
and vk the growth rate. Faraday’s law can now be used to write the perturbed

magnetic field in terms of the perturbed electric field in (2.7), giving

~ kA 5]:31:
6By =
k N

(2.13)

and the solutions to the orbit equations can be used to write the derivative of f,
with respect to the primed velocity co-ordinates in terms of A, v, and v, all of
which are constants of the motion. After changing the integration variable from

t' to r =1t —t, we find:

6fe = exp[—i(k.r— Qt)]
;7% —o exp{i |—ay cos(weeT + ) + ay cosd — Qg7 Qkfed7(2.14)
% ]

where a; = kv, fwee, e = N — krop — kyv).The operator Q is given by:

A 1 A —i(weeT A i(WeeT A
Qk — ﬁ]; [AO,k Ju g (wee +1,)A—,k+ C( ce +1’)A+,k] (215)

21

L
T I L 1, O T




Aox = 8E, [(wk — kyvy) (“5‘?& + %5?;) + k”’UDaiv”} (2.16)
+ 6, {kw“ ( % + z—ia%) + (wk — ka)aiv"] ;
Apj = :F% [:1:%'5177;: 10k + 8B, G + 6 kI:I] f“
Uy = —kuov ii + (wi — kpvg ~ k|,u|,)5— + kv 6‘2" (2.17)
G = (u— k) 553: + k”vJ_% (2.18)
g = ”“?9%' i 6%" (2.19)

For this integral to converge, we must have ®{Qx} > 0. In order to perform the

integration, we use the Bessel function generating function to obtain the identity

w. sind _ ind 4
and thus to write the right-hand side of (2.14) in terms of known integrals. The ~

recurrence relations for the Bessel functions may then be employed to simplify

the resulting expression to the following form: :

6fok=i— Z Z e mE-/NQ3 Tu(as)Fngefe  (2:20)

where ;
Qo = Ok —kivp — kv — nwee (2.21) g

e = ?21; [i06B. 30 + JnbExVnx + JubBaWox|  (2.22)

Vi =~ ’“""’")2%“ + (e - ’““"")(W“kfvim) a:l

+ %(nwce & iw)ai (2.23)

Wep = —kwu AT U L : LkLUB) 3i T

+ (Qx — krvp — nwce)b%“ (2.24)
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2.4 The perturbed ion distribution function

As they travel through the shock layer, the ions will be virtually unaffected by the
magnetic field, since the ion gyroradius is much larger than the shock thickness.
Their orbits can thus be approximated by straight lines. Also, since the frequency
of the waves in the shock is much larger than the ion cyclotron frequency, they
will behave as if the perturbations are electrostatic. Hence, we can take the
perturbed Vlasov equation for the ions to be:

88 f;x e .= Of;

96 fixe .
Bt + v. or ——EISE](.E‘—;

The perturbed ion equation then gives:

~ . 6E a,'
fiac = ko

ZE—-—'———'(Qk g kv)b‘; (2.25)

2.5 The dispersion relation

From Maxwell’s curl-B equation, we can derive a wave equation for the Fourier

transformed perturbed electric field SEy

-~ 2 ~ ~
kA (k A 5Ek) = ~%5Ek — 18 o E 8jsk (2.26)

where 6:]",,1{ is the Fourier transform of the perturbed current density due to
particle species s. The sum is over all particle species. The current density is

given in terms of the perturbed distribution function by

&oxe = 0 [ vEfoscdv (2:27)

The electron current density can be calculated since we know the perturbed
electron distribution function (2.20). Thus, if €;, €, and € are unit vectors in

the x, y and z directions, then:
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~ 2 ‘
Slek = e Z Z/ [v_l_ cosde, + (vosind + vp)€, + v"é”] e—ilm—n)(9-7/2)

Me m 7n
Q.,_,;;Jm (al)ﬁn.kfe dv
. e? [P i i 1, win i A a
= = 37 Z/ [g(ex — i€, v e” 4+ E(ex +ié)vie™™ + vpé, + v”e”]
e~ Hm-n)@=r/NQ-1 Tn(ar) Frxcfo dv (2.28)

Since we have:

2 . 1l m=n-+
s emeag m,,,+,,={ ’ (2:29)

2m 0 otherwise

the double summation over m and n collapses to a single summation over n when
the theta integration is carried out. Using the Bessel function recurrence relations
once again, we finally obtain the following expression for the perturbed electron

current density:

se?
me‘Qk

¥ / [~ivL T (61)6s + (nwee + kivp)Ju(ar)éy + ByTa(ar)éy]

O Im(ar) Foxcfe dv (2.30)

636,1( = =

The perturbed current density for each species can be related to the perturbed

electric field through a conductivity tensor o, x:

sk = 0 4x - 6By (2.31)

The ion conductivity tensor is simply

e?

v ofi
/ vy oe & (2.32)

and the electron conductivity is given by:

Tik=1
t,k m‘ﬂk

o2 Heo 1 A
oo = — S, kf.dv 2.33
ok meQ ,,:z_:oo/ (Qx — kyvp — Ky — nwe.) el 12:45)
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where

v d?0  —io LIV —ivg JnJ Wik
Suke = | dvLdndiVy Qeeethave) jag - Concthavo) jar (2.34)
vy Ui )2V o JEW, i

To obtain the dispersion relation, we simply insert (2.31) into (2.26), to give
M - §Ey = 0. In order that the electric field has non-zero value, the determinant
of the tensor M must be zero, so that the dispersion relation is:

¢ "
I+h~£(kk—k )+ eax|=0 (2.35)

where
2
sk = ———0g 2.36
6 |k soﬂka 1k ( )

2.6 Simplifications of the dispersion relation

The dispersion relation just derived is intractable in its present form, and must
be solved by numerical methods. Even so, a number of simplifications can be
made, to make numerical solution an easier and more efficient task. If, as we will
do later, we only take into consideration electrostatic waves, then we can make
drastic simplifications. This should be valid provided that the plasma beta is
small: in this case the shock will be laminar or quasilaminar. We can obtain the
electrostatic form from the electromagnetic by taking the limit ¢ — oo, although
it is in fact much simpler to return to the perturbed electron function (2.20) and
write the perturbed electric field in terms of a potential function. For waves in
the y-z plane, we have

5By = —ik6@y
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so that (2.20) becomes:

6fek=,—;;~5sok Y S einemo- gl () u(a) Erfe (2:37)

m=—00 Nn=—00

where the operator Fn,k is given by:

A a (nwee + kLvp) O 0
ki BT w B gy

This new form of the perturbed electron function is used to calculate the current
density, which is then substituted into Poisson’s equation. The dispersion relation

will now have the form:

K=14xi+Xe (2.38)

where y; and y. are the ion and electron susceptibilities respectively.

e? 1 3f1
o= megh ) A=K-v e (2.39)
= Jff(a.:.) -
Xe = mesokz n;oo‘/ Qk == k.LvD s k"v” — NWee Fn,kfe dV (240)

The fact that the frequency wy is much less than the electron cyclotron fre-
quency means that we can ignore all the terms in the summation in (2.40) apart
from that with n = 0. For the case when the electron distribution function is an
isotropic Maxwellian with a density gradient (but no temperature gradient) and

the ion distribution function is simply an isotropic Maxwellian, that is:

no(A) 1 1/, 2 2
fe A7U y U = exP{—_ vy +v /'U ;e]
o) = om. P 172 (o +of) /od
Mo 1 1
filv) = —F—5—exp [——vz/vz .«] 2.41
(27)? Uik 2" G
where vis = kgTs/m, is the thermal velocity, the susceptibilities have the form:
1
X‘l‘ = k2A2 [1 + 5' (é“l)] (2’42)
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Ok

= V2kven;
Xe = k2/1\2 14 Z(Qk —\I;%Z:,'vt—hek_l_vN) Ooo mJg(aJ_)Z(fo) exp (—xz)dm
(2.43)
_ e —kvp
o = V2kyvihe
where Ap, is the Debye length for particles of species s, vy = —env}, /wee is the

drift velocity induced by the density gradient. Z is the plasma dispersion function
[12], defined by

2(6) = o= / md@- (2.44)

Because vp depends upon v, £ will depend upon x, and so the integral in
(2.43) must be evaluated numerically. If we ignore the effects of the magnetic
field gradient (which should be less important than those of the electric field for
low beta plasmas) but retain the electric field, the integral may be evaluated

analytically using the relation:

‘/:o aJ (sz)e™® dx = %e_”m]n(s2/2) (2.45)
to give:
1 (% — kive — kiow) 2 2
e= |1 =X )(A*)Z 2.46
X k2N, [ i ‘\/é-k”'vthe exp (—A%)1o(A") Z (o) (2.46)

where A = k) vpe/wee. When vy = 0,this is the same as the dispersion relation

for the modified two stream instability (for example equation (4) of [35]).
Finally, in cases where the ions are cold, that is to say, Qx > k- v, by

expanding the denominator of (2.42) and retaining only the lowest order term,

we obtain:
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2.7 Numerical solutions of the dispersion rela-
tion

Since the literature on the linear stability analysis of cross field current- driven
instabilities is substantial, we do not propose to devote a large amount of space to
the solutions of the linear dispersion relations derived. However, it is interesting
to consider an anisotropic distribution function, that is with T, # T, where
T,y and T are the electron temperatures perpendicular and parallel to the back-
ground magnetic field, and to study the dependence of the growth rate of the in-
stability on the temperature anisotropy ¥ = T, / T, If we define ugu = kpTe)/me

and u2, = kg7, /m., then an appropriate background distribution function is

fe(vi,vy) 1 o exp L2 + Y| (2.48)
e 1 R oy T G i T .
W (ar)ar u?) ug) 2 \ul U

from which we can derive the following relation for the electron susceptibility:

2 2 219
Wpe Sl (w—kivg) ( “en) kiepu., z ]
X k*ug, { & ]0 ? O(Sm)[ V2 L uly ) 2k
Z(&0)e™™ d:v} (2.49)

Figures 2.2 and 2.3 show plots of the real frequency and growth rate (mea-
sured in units of the electron cyclotron frequency) respectively for the mode
with kyuc) /wee = 1.0 and kyuey /wee = 0.1 as Ty is held fixed and T} increased,

as would happen during a period of parallel electron heating.
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Figure 2.1: Perpendicular shock, showing coordinate sytem used.
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Figure 2.2: Frequency versus temperature ratio
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Figure 2,.3: Growth rate versus temperature ratio
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Chapter 3

Derivation of the Quasilinear

Equations

3.1 Quasilinear theory

In the last chapter, we linearised the Vlasov equation about an unstable equilib-
rium, and subsequently solved for the perturbed electron distribution function.
On using Maxwell’s equations this yielded a linear dispersion relation, so that
given the value of the wave vector k, we could calculate the value of the complex
frequency Q) = wy + 7% We now want to be able to determine the change in
the background electron distribution function caused by the growth of the waves
in the system over a time-scale larger than that for which linear theory is valid.
To achieve this, we employ quasilinear theory. This is the simplest non-linear
theory of plasma instabilities, and was first developed for unmagnetised plasmas
by Drummond and Pines [10] and Vedenov, Velikov and Sagdeev {49], and later
generalised to electromagnetic instabilities in a homogeneous magnetic field by
Kenrel and Engelmann [25], and also to the case of electrostatic waves propagat-
ing through an inhomogeneous plasma [4].

The principles of quasilinear theory are as follows: the Vlasov equation is, as
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before, divided into a background part, which describes the action of the waves
on the slowly varying unperturbed distribution function, and a fluctuating part
to describe the rapidly varying behaviour of the system due to the influence of the
waves. To solve the latter equation we decompose the perturbed quantities into
a set of Fourier modes, and ignore interactions between the different wave modes,
so that the perturbed distribution function satisfies a linear equation, which can
then be solved. The perturbed distribution function is then substituted into the
unperturbed equation, yielding a diffusion-type equation. In general, particles
will diffuse in velocity space in such a way so as to push the system into a
stable (or marginally stable) state. Not surprisingly, diffusion is strongest for
those particles with velocities close to the phase velocities of the waves (‘resonant

diffusion’), and weaker for the remaining particles.

3.2 The electron quasilinear diffusion equation

We now derive an equation to follow the evolution of the electron distribution
function. The derivation substantially follows that of [25]: however, we have
allowed the background magnetic field to vary slowly in the x-direction. We start
by averaging the Vlasov equation in order to remove all rapidly varying terms.
However, we allow the background distribution function to vary (slowly) in time
and retain the second order term involving the wave field and the perturbed
distribution function. This was neglected in the linear theory, but is retained here
as it describes the action of the wave spectrum on the background distribution.

The averaged Vlasov equation is:

Ofe ofe
ot ¥ or

ofe _ e

ov  m,

_mi(Eo+v/\Bo). <(6E+vA6B)-85fe> (3.1)

ov

The angled brackets denote that the quantity they enclose is to be averaged in

some way. The exact form of the averaging process is not critical, as long as it
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removes all terms linear in the perturbed quantities. Since the situation under

consideration is time-dependent with waves in the y-z plane, we could take:

P = g5 [ [ 2, F07) dye (32)

where L, and L, measure the periodicity length of the system in the y and z
directions respectively.
We now need to derive an expression for the perturbed distribution function.

To do this we Fourier analyse the perturbed quantities in time and space:

§B(r,t) = Y 6Bx(z)expli(k.r — Qt)] (3.3)

k
§E(r,t) = zkj 8 Ex(x) expli(k.r — Qyt)] (3.4)
§fle,v.1) = ; 6 fore (2, v) expli(k.r — Qyct)] (3.5)

We have assumed that the system is periodic in the y and z directions, so that
the wave number vector is forced to take on a number of discrete values. This
is purely for algebraic convenience, and later we will let the periodicity lengths
L, and L, become infinite, in which case the wave number spectrum becomes
continuous, and the sums in our expressions become integrals.

The time-independent distribution function used in the linear stability the-
ory of the previous chapter was necessarily independent of the gyroangle theta
(defined by tand = ==£). Since the fundamental idea of quasilinear theory
is that the background distribution changes slowly compared to the perturbed
distribution function, then its variation with the gyroangle should also be weak.

If we then expand the background distribution function in terms of the reciprocal

of the electron cyclotron frequency [25]:

1

2
Wee

1
fe(Byvi, O vp,t) = fO(A 01,9, 0p,1) + Eﬂl](A,vJ_,ﬂ,v”,t)-l- O(—=) (8.6)
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Using 3.1, and remembering that the rate of change of f. due to the waves is
small, we see that:

af

g9 =0

This valid as long as the growth rates of the waves are all much smaller than the

cyclotron frequency. For the instabilities considered in this thesis, we have:
and
R{O} € wee

so that we are clearly justified in making this assumption. The higher order terms
in (3.6) can be removed by integrating (3.1) over the gyroangle (gyroaverging)
and noting that the terms fl" are all periodic in theta. We are left with an
evolution equation for fI%, We will drop the superscript so as not to overburden
the notation.

Since all the perturbed quantities are real, a number of symmetry relations

has to be obeyed:

§B_x = 6B} (3.7)
By = 6if (3.8)
foe = 6f (3.9)
0y = -0 (3.10)

A star (*) denotes that the complex conjugate is to be taken. We can solve
the perturbed Vlasov equation exactly as was done in chapter 2, and deduce a
dispersion relation, only now the background distribution function is changing
slowly with time. If we substitute the Fourier expansions for § By, §Fy and §f.;
into (3.1), then we find that products of different Fourier components are rapidly

varying, and disappear under the average. We are then left with:
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af.  of.
9t  Vor

A B > (6Bx+vASEy)
k

ov  m,

08 fex
ov
(3.11)

i (B 4. A Bo)-
Me

The right-hand side is necessarily real, on account of the symmetry relations (3.7)
to (3.10).

From chapter 2, the perturbed electron distribution function can be written

as:
6fe,k N E E e—(m_anmnk (312)
where
Grnie = i—e™ "2 (0, YO F e (3.13)

We now substitute this into the right-hand side of (3.11), use (2.13) to eliminate
6By, and change velocity co-ordinates to cylindrical polars. The gyro-averaged

background Vlasov equation is then:

afe v e 1 2% A ~
ke m{;:;g / Pkaf.,.kdﬂ} (3.14)
with
B = Aot Codt ey +icy 2| +e (i +ic 2] (1)
k = Ao+ Cogzg + + 59 = ~ 30 :
Ci = i {(Qk —kivp — kivg — k”v”) 5Ez,k Fr (Qk a kll”tl) 5Ey,k
2'0_1_
Fe kl_v"(SE“'k] (3.16)

The operators Ag and Ay were defined in chapter 2. The form of Cj is not impor-
tant; we shall see later that when the 6 integration is carried out it disappears.

To calculate the right-hand side of 3.14, we need to evaluate the term:

1 e
o= fo BE6F dd (3.17)
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If we substitute for & from 3.15 and for § fek from 3.12, then:
1 2 ' - 3 i 2 - a
27rf0 Bofoxdd = o f {Ag + Cozs +e [A+ i zc'+a191
[ G
+ e [A_ + ic_%]} 6 foxcdd
(3.18)

The A operators and Cy are all independent of theta, so that we can integrate

the terms proportional to e*™ by parts, that is:

___]_‘___/ :hlt? 69 S ie:}:zﬂ

2 oY
and
271- . Bﬂdﬂ =0 (3.19)
thus:

%/Ozwpﬁé‘felkdﬂ = %/‘)Zw {Ao+ e (A_}_ +C’+) R (z‘i._ 42 C..)}*
6 fexedd

" ZZ 51;;/02“ {e"('"_")"fio + gilm=nt1)9 (fi+ + C+)
+ eftm=n=D9 (4_ 4 C_)}* Grnk dd

(3.20)

We can now use (2.29) to perform the theta integration. As before, the double

summation reduces to a single summation over n. Thus:

o [ Beofdo = S{PU] 4 [P+ (B e
where
B — AoGipx (3.22)
B = (AGrsnk+ A Guirnk) (3.23)
B = (C4Grornk + C-Grrrnik) : (3.24)
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On substituting in § fe,k from 3.12, it is possible to perform the theta-integration,

reducing the double sum to a single sum.

We now expand the right-hand sides of equations (3.22) to (3.24) in turn:

(23

) i ) 3 R ” " * &
|5 (6Bealic + 6ByacCi + ka8 Byl | [ a0k Pk

L om & cm o A A -1 f
- [5 (—i6 By ulic + 6By xGic + k J.451!3",ka)] [m—JnH ﬂn,ian,kfe]

L { 5Ex,kU (Jn+1 ; Jn-—l) s i&Ey,kék (Jn+1 + Jn—l)

m, 2
*
Yo ‘ik_Lé‘E"’ka (%)} X Q;,LFn,kfe

= z-—~—~ {6E,: kUkJ + 5Ey ka

me k }

XL P xcf. (3.25)

A similar process gives:
[BA] = - (O — ksvp) 6B — i (Qu — kuvy) 8By x — kuvy6Byal”

22)_1_
X [ : Jn—'lQ;]ian,kfejI
Me ’

2

, ik ~ nwce 7
= —m {—Z (Qk - kJ.vB) 6E.1;,kJ:; =il k_l_v_l. (Qk - k-LU”) 6E?hk
Yl s e ;
—TUee —6E",kJﬂ] —Q;LFn,kfe (3'26)
VL Me !

and finally:

pll 1> _ 0 1 0 d
[Pn.k] = { [_ (Qk ¥ k“’ll) (BA UB;IEU—I) + kn'vpa SE
9 1 8 ) *
+ [kwu (ﬁ = vsaa) + (Qx — kLvp) _8—11_”1 5E||,k}
i -1 r
oy Q, xFnxlfe (3.27)
We now substitute (3.25), (3.26) and (3.27) into (3.21), to get:
Aan,n.,k + Aﬁ-Gn-—l.n,k + A:Gn-i-l,n,k + C-T-Gn—l,n,k + OiGn.+1,n,k
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= {u?E X [Uk - -——-————-(Qk s kJ'UB)] A

VL

5 d 1 8
+ 6B, [— (Qk = kw”) (5]{ o UBZ%I) 4 k”vgﬂ

e (G X (Qk —-:u‘vll))] I

k_q_ VL vl

~ a 1 K
-+ 5E" k [ klvllm -+ nwee (H + )

é) 0 =
+k1_v||—5— -+ (Qk - kJ_'UD) 3‘0”] I }

€ A
xiZ O P, (3.28)

We now use the operator identities:

P | 1 4 Qe —k
Gk v '—Gk—( k 2J_’UD)
vy Vi vy

A S o
B e Lkaﬂ
vy vl ’U_ZL

n (3.28) to write (3.21) a

1 2T L i (Qk o k.L'vB) '
o) i = ¢1— e
o /0 Pl-:5feykdt I"Tne ; {%(SE‘.,,. k [Uk + vl Jn

+ 6Ey‘kV;,,lkJn -+ SE“,](kaJn}*
XL E S, (3.29)

The evolution equation for the electron distribution function is thus:

afs e? (Qk oy k.L'UB) 1 ¥ 55
B R{i 2 Z E + Fox| Qo Fuxfe
t m; o % '

QkU.L
(3.30)

This equation can be written in the form of a quasilinear diffusion equation:-

of _ 0 [y 0%

5 0.2 ot
2

De = %{zHZZaﬁ'anLan,k} (3.32)
e n k




a,k = Qupak€At+ Ay 1k€1 +an k8

1L . ~
Apak = —ﬁ; [zk_;_vlJ,,'lGSEx,k—l-
(Qk — k“v”) J.,,ﬁEylk + kJ_U"Jn5E”'k]

1

(Qk s kL’UD Lo nwce) JnﬁE",k]

Qp 1k = ﬁ; [2 (Qk —kivg — k”'v“) J,'L5E,,,k+
(nwee + k1LvB)
klvl
(nwee + kLvB)
5
L
R 1 ~
k) = f [zkuvLJﬁEz,kwL
b N
(nwee + k1vp) -,;%JnaEy,w
po= Aép+vi & 4y

(Qk — k"v”) JnSE'y,k+

(3.33)

(3.34)

(3.35)
(3.36)

If there are no spatial gradients in the background quantities then the above

equations are equivalent to equations (2.26) and (2.27) of [25]. It can be shown

(see Appendix ) that equation (3.31) conserves energy.

3.3 The Quasi-H Theorem

We can apply the arguments of Kennel and Engelmann [25] to (3.31) to show

that the system must tend to some marginally stable state as t tends to infinity.

We accomplish this by defining the functional

H, = %/ffdﬂ
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Differentiating this with respect to time, using (3.31) and integrating by parts

gives us:
dH, ¢* / of. T
= Z Z Apk * 7 2 dﬂ
ot me % 2 (wk —kivp — ko — nwcc) +9g
<0 (3.38)
dHe

Since H. is clearly positive definite, and “3¢ is negative semi-definite, H must
decrease monotonically in time until it reaches a steady state with %’;ﬁ = (.- This

must occur either when v = 0 or, since H, is a sum of positive definite terms,

an,k . aﬂ' - 0 (339)

In the latter case we arrive at a contradiction, as the perturbed distribution would
have to be identically zero, in which case no waves would be excited. Thus, in the
limit of infinite time the electron distribution function must tend to form such

that all the waves excited are stable.

3.4 Evolution of field amplitudes

On the long timescale, the electric fields will change in time according to:

Bok() 5 lt) = BageO)E3(0)oxp [ [ 2nc(¢)a | (3.40)

This expression can be written as a differential equation, giving:

aEa,k(ta)tEE,k(t) - 27k(t)Ea,k(t)E§,k(t) (3.41)
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3.5 Quasilinear diffusion equation for electro-

static waves

In the same way that we simplified the dispersion equation by assuming that the

electric field was derivable from a potential, we can write the diffusion tensor as:

Jz(aJ_)Ik’Yk
Paie m2 ZE "k (e — kop — kv — nwee)? + 72 ik (8u42)

where

(nwee + kLvB)
vy
I(t) = [6¢x(t)]? (3.44)

bn,k = —k;8, -+ e, + k”e“ (3.43)

Iy is the intensity of the wave with wavelength k. This quantity will evolve in
time according to:
O (3.45)
Bt Ytk .

It is possible to simplify both (3.32) and (3.42) by ignoring the n # 0 terms,

as was done in the dispersion relation.

3.6 Quasilinear diffusion of the ions

If we make the assumption of negligible ion temperature again, we can derive
equations to describe the evolution of the bulk ion parameters under the action
of the turbulence. Because of the large mass of the ions, we can neglect the effect
of the magnetic field on them. The quasilinear diffusion equation for the ions

under the last assumption is:

a d 0
%fi a [Di : B;fi] (3.46)
where:
o 65|
D,-?R{ sz(nk—k v)k (3.47)
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To derive an equation for the rate of change of the ion thermal velocity, we
multiply (3.46) my Im;v? and integrate over velocity:

%/%m,—zﬁf;dv = —/m,-v- D;: aifidv

= {—z—TZ/k %k-aﬁvﬁd\r} (3.48)

If the ions are cold enough, i.e. kv < Q, then we can expand the denominator

in the above:

fl

I SR P G
(Qk—-k'v) [ Qk Qk
2
Q

and so

d 11, . e? . 2 fkev k-v [(k-v)®
a-t«/-im,v fdv = %{—z-n;:zk:l&pﬂ / o [l-f- O +(Qk) + ...

/ 149 -v+3 k-v 2+
Qx Qx
1 d 2 ;B ~ 12 k? k2vth1
= SROMi— Vg = %{zﬁ-;lmkl Q—kng 143——=% ) +
2 2 155 |2 2.2
= noe_zw(1+3ﬁ)ﬂ+m) (3.49)

mi & (wi +2) 0%

Thus, the rate of change of the ion thermal velocity is given entirely in terms

of bulk ion parameters and field quantities. The term linear in the velocity
integrates out to zero, as if the ions have no drift velocity initially, then by (3.46)
they must have no drift velocity for all time. Neglect of the term in 3k%v},;/Qf,
and of higher order thermal corrections, is consistent with the use of the cold ion

approximation in the dispersion relation.
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Chapter 4

Solution of the Quasilinear

Equations

4.1 The quasilinear equations

The system of equations for the evolution of the electron distribution function

under the action of electrostatic turbulence is:

wz' 271'62 oo o J2(a ) 8f
= 1702 el = ey dvydoy =
K 1 Qi X2 MeEok? /—oo/o O — ki — ko bp. B vidvdyj =0

(4.1)

dfe 0 Ofe
= = ¢ Dy 5= ; ;

T [ au] (42)
. J3(a )k

De = { = / bo o oy Do K (4.3)

. , kive, 3
bo = —kiép+ : e_{_ + k“e"
O
o = 2wl (4.4)
po= Aéy+vié) + g (4.5)

Only the electron distribution function has been allowed to evolve in time:

the ions are taken to have a constant temperature T; < To.
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In order to follow the evolution of the system, the folowing scheme is used to

advance the ysytem through a small time interval:

1. Given the distribution function f,, the dispersion relation is solved for a

range of values of k; and k) to give the complex frequency £;
2. The diffusion tensor D is calculated;
3. The electron distribution function is advanced to the next time level;
4, Finally, the wave intensity function is advanced.

This process is repeated until either a prespecified time value is reached or all

waves in the system have stabilised.

4.2 Solution of the dispersion relation

The numerical solution of the dispersion equation poses not inconsiderable prob-
lems. Normally, one is able to represent the distribution function by a known,
analytical function: usually one chooses a Maxwellian distribution with appro-
priately chosen temperature and density, as was done above. This has the great
advantage that the singular v) integral can be written in terms of a tabulated
function, the plasma dispersion function.

In the situation under consideration here, however, the electron distribution
will evolve in time, and even if it were initially Maxwellian, it would soon cease
to be so. This change in form is crucial to the theory, since the growth rate is de-
pendent on the shape of the distribution, and we are hoping that the distribution
function will change so that the instability will cease.

In non-dimensional form, the v integral in (4.1) will be of the form

FO = 7= [ L (46)

45




where L is the Landau contour, that is, from minus infinity to infinity under-
neath any singularities of the integrand. To evaluate such an integral numeri-
cally (as does the Ferguson subroutine for the evaluation of the plasma dispersion
function), one would have to be able to evaluate g(u) off the real axis. For a
Maxwellian plasma, g(u) = exp(—u?), and this process poses no problems, but
we intend to solve the diffusion equation using a finite difference method, which
means that fe(z,v.,v),1) may only be calculated for real v .

In order to obtain an approximation to wy and <y, we considered the use of
two different strategies, a small growth rate approximation method (method 1)

and an orthogonal polynomial expansion method (method 2).

4.2.1 Method 1

Split K into its real and imaginary parts K = K, + ¢ K;, then, assuming that

K, « K,
T’ € wg (4.7)

we can Taylor-expand K about wy, and get, on dropping small terms:

Kiwe) = 0 (4.8)

oK, ]!
== “Ki[awk]

(4.9)

In gther words, we find the solution of the real part of the dispersion relation
for real Qk, and then calculate the growth rate from the imaginary part of the
dispersion relation and the gradient of the real part, both of which are to be
evaluated at wy. The problem of evaluating f. off the real axis is now solved,
since K, now involves the Cauchy principal part of the v integral, which can be
evaluated by putting f. to be a Maxwellian with density and temperature equal

to those of the true distribution function. In K; the smallness of 4, means that
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we can replace the resonant denominator by the Dirac delta function:

K, = 14x+x!

Wy 2
v al ~(—-”4'~)
Wk

JE(ay) of.
) / - b dod
Xe eEokz ./oo Wk — kJ_'UD sda k“v” o 3/1 AL ’v"

2 e " 2
Tpe {1+2(‘"k kive = kLON) [ g0y 7 (60 dm}(4.10)

vthekz \/ik"‘vghe 0
2n?e? ofe
.K,- = = 6ok2 / / J (O‘,L) J(Mk == klvD k”v") bo -8— 'U_Ld'UJ_d'U"
(4.11)
where s = v/2k1 Vehe [/ Wee, VN = —eNVE [Wee, €N = (1/n0)dno/dz
to = (wk — k1vp)
V2kjvihe
(4.12)
and
r =5 P
Z:(¢) jwzm
€
s —¢2 zzd
e fo e” dz
(4.13)

The function here denoted Z,(¢) is related to Dawson’s integral [1]

Equation (4.8) is solved using the Van WijnGaarden-Dekker-Brent method
[42]. This is an iterative method, so that the derivative term in (4.9) can be
calculated from the last two iterated wy values and the known values of K, at
those points. Calculation of %l: directly (by differentiating 4.10 analytically) did
not seem to be any more accurate, and involved the computational expense of

another numerical integration.

47




4,2.2 Method 2

We shall go back to the dispersion relation (2.38),(2.40) and (2.40), but we have
not specified any particular distribution function. We now expand the distribu-

tion function in terms of a set of known functions, namely the Hermite polyno-

mials [1].

fﬂ(A’ V1, Y| t) = - Z fM(A V1, t)H (vll/vﬂle) exp (__'U" /vthe)

(27)% 5
(4.14)

It turns out that a similar expansion in the perpendicular velocity component
is not necessary. Such polynomial expansions have been used in analytical and
numerical studies of the non-linear Vlasov equation [22],[2],[3]. However, to our
knowledge, they have not been used to solve the linear dispersion relation for an
arbitrary distribution function, as here. The Hermite polynomials are defined by

the generating function:

m=co

exp(—s®+2sv) = D Hp( v)—-v

M===00

(4.15)

We now substitute the expansion 4.14 into the dispersion relation. The elec-

tron susceptibility x. is then:

1 o J2 lZJ_
Xe = \/2—7rmeeok2 Z/ / wn—k”v”

0 | (nwee+kyvp) 0
\‘ kL8A+ VL 6

0
+ k”a ] fe(vl,v”,t) vidv) dy)

— ”EIJ;GZZ/W o Jiay)

G- Jo Wy — Ky
6fm (nwce + kLvB) 8.fm H’ v
[_kLﬁ m + B Hpy + by fn | = — 2” H,

VL Vthe Vihe
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v1dvydy)

1
€xXp (_ivﬁ / vt2he) 3

Vihe

A
- FErn M

-0 JO Wy — kyy)

[ ame +(ch+k.L‘vB)6me + 2m __ﬂ_f ik

6‘A VL Ovy Vthe
(on — By —en) gy
vthe
1 vydody)
exp (—gvﬁ/ Ufhe) T
(4.16)
where w, = wx — k, vp — nw., and we have employed the relation:
dH,,
v

If we now define a set of functions %,, by

1 2
Do ( \/.2.;/00 7 exp (_52 )dz (4.18)

where z = v)|/vise and z, = (wx — kLvp — n)/ky, then we can write the electron

susceptibility as

=i 1 Z
Xe = kZA%E{ k”vth, oy n/ J ai)

a m e m
V1L 0vL
d
ka"vthefm'(f)m_1(zn) Frnwn¥m (zn)] VLGU Y }
the

(4.19)

The function defined by (4.18) can be evaluated directly by numerical integra-

tion. However, this is extremely slow, and many psi-functions must be evaluated
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for the same value of their argument, but successive values of m, each time we
need to evaluate (4.19). A considerably more efficient method to achieve this is
to use the two term recurrence relation satisfied by the Hermite polynomials to

derive a recurrence relation for the psi-functions. We have:

Hpy1(v) = 20H, (v) = 2mHp -1 (v) (4.20)
giving: S
1 o Hm-!-l(v) ~ 12 — 2 e (U _E+ 6) —%1}2
= o v__gez dv—"r—%/_oo s H,(v)e dv
2m foo Hm_l(v) wi B
s g (4.21)
and hence:
Pm41(8) = 2pm(§) — 2mPm-1(§) + 20 (4.22)
where
i = [ Hal)e 3 o (4.23)
m2 J—oo

Using the properties of the Hermite polynomials, it can be shown very easily that

the A’s also satisfy a recurrence relation, namely:

A,—,-H.]_ = 277‘I,Am._1 (424)

Clearly, the ), are all zero for m odd.

The starting values for 1’s and A’s are:

oy = 0
1 oo =3

Yo = —T dv = Z(£/V/?2)

W% —00 'U'—-f
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)\_120
do = V2

Hence (4.19) can be computed with only one evaluation of the plasma dispersion
dispersion function, and repeated applications of (4.22) and (4.24).

Given the coefficients f,, it is possible to evaluate the dispersion relation for
arbitrary f.. In order evaluate the former given the latter, we use the fact that

the Hermite polynomials are othogonal, that is to say:

/ °; B IR el © PYE TSR (4.25)

0 otherwise

the coefficients f,, can be evaluated by use of the relation:

T (A 01, 4y = Je(A,vp,v),t)Hn(v) exp(—%’uz)dv

1 oo
2rpl/m /;oo
(4.26)

In practice, the summation in (4.14) will be truncated to a finite number (perhaps
a few tens) of terms.

Given that the f,, are known, it is necessary to solve the complex dispersion
relation (4.19): this was achieved by employing Muller’s method [44],[50],[42].
Like Brent’s method, this is iterative and so requires an initial estimate for the
root of the dispersion relation to start off the root-finding process. Initially, the
lower hybrid frequency wrg &2 /el 1s a good enough value: at each subsequent
time that the dispersion relation is to be solved, the last root is used as an initial

estimate.

4.2.3 Validation and comparison of the methods

In order to validate the arithmetic in the polynomial expansion method, we used

it to solve the dispersion relation for a set of test distributions, and then compared
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the results with those obtained when the distributions were substituted into the
dispersion relation directly. In both cases Muller’s method was used to solve the

dispersion relation. The test distributions used were of the form

o 1 o )% 1 (v} +of)
Felvs, o) = v (27)3/21.3...(2p — 1) (vme PRl P G ol

where p is a positive integer. After some algebra, it is possible to derive the

following expression for the electron susceptibility:

e 1 1+ rt+l /°°J2( )[ VA (6) 7 (5 )] —z? d
= k2%, 1.3...(2p—1) Jo o\8%) [€Lap o) — PLap-1{C0)l e ~ zax
(4.28)
where
& Qg — kivg — kion
V2 e
20 = 5 [Trigd
£ 7{‘% —00 (t-—-*é)

The Z functions are simply generalisations of the plasma dispersion function,
and were evaluated using a recurrence relation method [18]. The case p=0 just
gives the Maxwellian dispersion relation. This dispersion relation is not meant to
model any physically realistic situation, but it does provide a good check that the
mechanics of the polynomial expansion method function correctly. The results

are diplayed in the table.
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Polynomial expansion method

Exact

2.44535 x 1072 4 12.95537 x 102

2.44559 x 10% 4-42.96172 x 1073

2.33234 x 102 — i2.69325 x 10~

2.33231 x 1072 — §2.69189 x 1073

2.52640 x 10~? — ¢8.53585 x 1023

2.52579 x 10~% — 48.53058 x 10~3

3.50951 x 10~% — ¢1.26392 x 102

3.50968 x 1072 — ¢1.26882 x 10~?

3.81804 x 102 — £3.88605 x 10~3

3.82107 x 102 — 3.89820 x 10~

Sl ||| Nol= g

3.62416 x 10~% — ¢1.03653 x 10~

3.62662 x 102 + 41.03969 x 10~2

10 | 3.33103 x 10~% —71.31651 x 10~°

3.33275 x 1072 — ¢1.46416 x 10~°

The relative performance of the small growth rate and polynomial expansion
methods was evaluated by comparing the values of wy and 4 obtained from (4.8)

and (4.9) and the value of Qi obtained by inserting a Maxwellian directly into

(4.1). For B, = 0.1, eg = 0.01 and ex = 0 we obtained:

(kL,ky) | Brent Muller
(1.0,0.01) | 3.25 x 1072 +47.37 x 1071° | 3.23 x 1072 + 45.84 x 10~
(1.0,0.05) | 3.54 x 1072 +46.83 x 10~® | 3.49 x 10™2 +48.05 x 103
(1.0,0.1) | 3.55 x 1072 4+¢1.04 x 1072 | 3.18 x 10~% 4 :8.06 x 10~
(1.0,0.2) | 2.79 x 1072 +46.37 x 10~ | 2.59 x 10~2 +¢5.80 x 1073
(2.0,0.1) |5.39 x 1072 +42.55 x 10~% | 5.38 x 1072 +¢1.30 x 1072

The results in the Muller column are for both the ‘exact’ solution and for the
results obtained by the polynomial expansion method, since these were vitually
identical to the accuracy quoted. As can be seen, the agreement between the
small growth rate method and the exact result is fairly good in most cases, but
certainly not exceptional, even though the condition (4.7) is not always satisfied.

As a final test, the two methods were used to solve the dispersion relation

for a non-Maxwellian plasma. The distribution function used was that for a

‘resonance’ distribution:
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Je(vi,v)) =

from which we can derive:

Xe = kw{ - / :cJZ(s:z:)[

The results were as follows:

e"l“’L/ the

272 v, (1 + v} [vfhe)

1 €o(éo + 2¢)

knvthe (50 + Z)

(€o +14)?

(4.29)

] g dm} (4.30)

S v -5/..\._“

(kv k) | Small growth rate | Polynomial expansion Exact
(1.0,0.1) 3.55 x 1072+ 8.16 x 10+ 3.33 x 10724
i2.35 x 1078 i3.75 x 10~3 33.93 x 10~
(1.0,0.05) 3.48 x 1072+ 3.19 x 102+ 3.32 x 1024
i2.12 x 10~ i7.99 x 10~* i8.02 x 104
(2.0,0.1) 5.39 x 1024 5.24 x 10724 5.31 x 10~34+
$1.19 x 1073 i2.74 x 1073 i3.36 x 103
(0.5,0.1) 1.56 x 10~2+ 1.41 x 10~2+ 1.47 x 10~24
$5.52 x 1073 i6.32 x 1073 i7.45 x 1072
(1.0,0.2) 2.79 x 10~2+ 2.81 x 10724 2.91 x 102+
i4.67 x 1072 i5.64 x 10~3 $6.20 x 103

In this case, the Hermite polynomial expansion method gives a closer result
than the small growth rate approximation, which consistently underestimates the
growth rate.

In conclusion, The two two methods both perform reasonably well on a num-
ber of test problems. Although it is more complicated and computationally in-
volved, the Hermite polynomial expansion does give better results. On the basis
of experience with the two methods as part of the code to solve the complete

set of quasilinear equations, it was found that the polynomial expansion method
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produced more plausible results. Thus, the latter was used to produce all the
results shown in the next chapter.

To evaluate the diffusion tensor, the dispersion relation is solved for a number
of values of k defined on a regular grid, to give wy and 4x. The integral in (4.3)

is then evaluated numerically using standard techniques.

4.3 Solution of the wave and particle evolution
equations

It is straightforward to advance the wave intensity function from one time level
to the next. However, the diffusion equation currently has three ‘space-like’ inde-
pendent variables on its right-hand side: to enable the computations to be carried
out in a reasonable length of time on the computing resources available, some
additional simplifications are required, which will be described below. In this
section, we shall assume that we only need to solve a two-dimensional diffusion

equation of the form:

%(r,t) = % . {D(r,t) . %’E(r,t)] = Df(r,t) (4.31)

where r = (z,y), f = f(z,y,t) and t is time. We will also have an initial
condition on f, namely f(z,y,0) = fo(z,y), and an appropriate set of boundary
conditions. It is not necessarily the case that x and y are Cartesian co-ordinates.
The diffusion coeflicient D is a 2 by 2 matrix, all of whose elements will, in general,
be non-zero, which means that there will be cross-derivative terms (proportional
to ;%) on the right-hand side of (4.31). The spatial derivatives were differenced
on a regular mesh of points (z;,y;) = (¢Az, JAy) using standard techniques ([37]).
The diffusion tensor was held constant between time steps. In order to advance
the solution of (4.31) from one time step to the next, we have chosen to employ the

line hopscotch method, [19], [20], [21], as it is capable of handling cross-derivative

55

;o



terms very easily. It is also claimed to be fast and is easy to programme, as it
only involves the solution of tridiagonal systems of linear equations. Since it is
probably not a very widely used numerical method, we will outline its principles
here.

The finite difference replacement of D is denoted L, i.e.

Df(zi,y5t") = Lf2

where f; is an approximation to the solution value at the point (z;,y;,t"). Since
the diffusion tensor is space-dependent, the operator I will depend on i and j.
Since the differential operator D only involves second derivatives at the highest,
the difference operator L will only involve f at the point (i, y;, ") and its imme-
diate neighbours (in the notation of [19], D is said to be an ‘E-operator’). This
property is vital for the application of the hopscotch algorithm.

The two simplest ways to integrate (4.31) are the simple explicit and the

implicit algorithms:

G o= fa+ AL (4.32)

ij

= g NGl e (4.33)

7

where At is the timestep. The first method has the advantage of simplicity:
the only unknown in the equation is f,-’;-“, and so we can calculate f at time
level n + 1 without having to solve any systems of equations. However, it has
poor stability properties, with the result that A¢ must be small in order that
the numerical solution does not deviate wildly from the true one. The second
n+1

method is unconditionally stable, but f;

;; appears on both sides of the equation,

and is thus only given implicitly by 4.33. It is thus necessary to solve a matrix
equation at each time step (mercifully, the coefficient matrix is sparse: that is

to say, although it may have a large number of elements, the vast bulk of them
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will be zero), and although a variety of methods exists to accomplish this, such
as successive over-relaxation, it is a potentially time-consuming process.

The class of hopscotch methods works by combing 4.32 and 4.33 in such a
way that we only ever need to solve (at worst) tridiagonal systems of equations,
a process which can be performed quickly and easily using Gaussian elimination

(without pivoting). The recipe for line hopscotch is as follows:
o for all grid points such that j + n is odd, apply 4.32
o for all grid points such that j 4+ n is even, apply 4.33

In the first step, we solve the diffusion equation (explicitly) along alternate lines
parallel to one axis. The new (partial) solution can overwrite the old, so no new
storage is required. After this process, the situation is as shown in figure 4.1.

The new solution (f(;,y;,t")) is known at all the points with filled-in circles.
The implicit scheme is now applied at all the remaining points: at point (z,7) at
most nine points (those ringed) are required to evaluate (f(=;, y;,t"*)), but six
are already known. The three remaining unknown points give us our tridiagonal
system.

On an n x n grid, line hopscotch will require the solution of n/2 sets of equa-
tions, whereas an alternating direction implicit (ADI) method, which requires
a complicated splitting of L so that only tridiagonal equations must be solved,
will require the solution of n equations per timestep. In order to achieve un-
conditional stability, the ‘explicit’ and ‘implicit’ lines swap over at successive
time levels. Other varieties of the hopscotch algorithm exist, such as ‘block’ and

‘ordered odd-even’ hopscotch [37].

4.4 Conclusion

It is by no means claimed that the methods presented above represent the most

economical or efficient way to solve the quasilinear equations. For example, al-

57




Ys

Y4

Ya

Y2

(51

Yo

Yi

® ® ® L ®
D VY i Vi /)
N4 3 1/ NS N

® ® @ ® ®
D N oD D f)
\J/ L/ L/ \}/ \

i A PARY VALY
-/ -/ Ny -/ -/
Lo Ha Y T T3 T4 s

Figure 4.1: Line hopscotch after the explicit stage.
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though the hopscotch method works well for two-dimensional diffusion equations,
it is not readily generalisable to three dimensions, so that we cannot easily study
the evolution of distribution functions with spatial and full velocity dependence
with all possibly apposite physical processes included. This could be a problem
if we wanted to study the evolution of an inhomgeneous plasma under the action
of electromagnetic instabilities such as the kinetic cross field streaming instabil-
ity or the generalised lower hybrid drift instability. Moreover, there is no way
presented in the numerical analytical literature known to us of varying the time
step so as to maintain within a pre-specified accuracy limit. This would allow
integration of the diffusion equation to proceed in a much more efficient manner.
Use of the ‘method of lines’, perhaps coupled with the expansion (4.14), to con-
vert the partial differential equation into a large system of ordinary differential
equations (which can then be solved numerically using an appropriate library
routine), would perhaps be preferential. However, whichever numerical method
one chooses for a particular problem, there is probably always a slighly better
one around the corner.

The method we have used to solve the dispersion relation, by expanding the
background distribution in terms of a set of orthogonal polynomials, is, on the
hand, capable of being extended to a variety of other cases (for example, electro-
magnetic instabilities), and could be used in any application where the detailed

shape of the distribution function must be taken into account.
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Chapter 5

Numerical results

5.1 Solution of the quasilinear equations

In this set of results, we shall ignore all spatial gradients in (4.2) and (4.1), so that

diffusion is only allowed to occur in v) and v, and we have a two-dimensional

diffusion equation to solve. The distribution evolves in time only, not in space,

with the magnetic gradient inverse length scale held constant. Stabilisation is

expected to occur solely due to the alteration of the shape of the distribution

function on account of the reaction of the unstable waves.

The diffusion equation now reads:

Ofe i B ofe

af. 15[

ot vy vy vy Ovy

o
IA
<
l_
A
8

where the elements D, g of the diffusion tensor are:
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For (5.1) to have a regular solution, it is necessary that D, j — 0 as vy — 0:
this is clearly the case.

The boundary conditions are that:

fe('U_L,’U”,t) b 0 vy — 0
fe ’UJ.a’U,t) =3 0 v — koo
[ Il
afe
ggj(vl,v“,t) = 0 vy =0

The infinite range of v, and v was truncated: in all numerical integrations we
took 0 < vy < 10v4eo and —10v;p0 < v < 100spc0, Where vypeo is the thermal
velocity of the initial electron distribution function.

The initial electron distribution function is taken to be an isotropic

Maxwellian:-

1 A [ 1 2 2 ]
= NfE s P |~ 5 \PL Y ) Vs
@) Vg 2( 1+ 9]) /obheo

fe(vi,v),0)

(5.5)

The initial form of the wave intensity spectrum is not particularly important,

since initially the waves will grow exponentially. The range of wavenumber values
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was chosen to span the region in k-space where growth is largest. Individual
waves were given evenly distributed values of k) and k. The actual number of
waves used was not found to be critical, and since the dispersion relation must
be solved for each wave this number was held fairly low in order to minimise the

computational time required.

5.2 Time evolution of the modified two stream
instability

We present the results of the solution of the quasilinear equations for two different
values of €g, namely asp.€g = 0.01 (Run 1) and aypeep = 0.02 (Run 2). The pages
following 74 and 77 give a succession of plots of the electron distribution function
at various stages in its evolution in time. The abscissae are measured in units
of the initial electron thermal velocity, and the initial plot is normalised so that
the volume under the surface is unity. The computer code conserves particles
extremely well, so that each subsequent plot is, effectively, normalised in the same
way. The main features of the evolution of the electron distribution functions are
the same in each case: after a few hundred electron gyroperiods wings begin to
form in the parallel direction as particles with parallel velocities of the order of
one or two thermal velocities are accelerated to higher energies. The wings later
develop into broader, more shoulder-like structures, at the expense of the central
peak (as total particle number must be conserved). Eventually, the distribution
function becomes a broad, low, roughly flat-topped structure. Figures 5.4 and

5.4 show the change of the parallel electron thermal velocity, as defined by

2 fodv)?
Vihe|| = I:%T‘:"jl (56)

with time for the two runs.

There is, in comparison, virtually no perpendicular heating observed. Because
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they are highly magnetised, the electrons will be able to move much less freely
across the magnetic field than along it. This is due to the essentially Landau
nature of the resonance. It would be possible to produce more perpendicular
heating by including cyclotron (n # 0) terms as well as the Landau (n = 0) term
in the dispersion relation and diffusion coefficients: in other words, we would
have to consider the Bernstein wave type instabilities as well.

Also shown after the plots of the distribution function are plots of the growth
rates of the waves. It can be seen from figure 5.3 that in the first run the maximum
growth rate does decreases monotonically in time, whereas in the run (figure 5.5)
with the larger magnetic field gradient (and hence stronger instability) this is
not so. The mode which is growing at the fastest rate at one point in time
will not necessarily be doing so later on. What seems to happen in the latter
case (Run 2) is that initially the most unstable mode will have the greatest
effect on the electron distribution function (for a wave in resonance, D = 1/7).
This mode will then change the shape of the distribution function so that it
will become more stable, presumably (in the nature of quasilinear theory) by
flattening some portion of the distribution function. Schematically, one might
expect the distribution function shown in figure 5.2 (upper panel) to become as

shown in figure 5.2 (lower panel), that is, for a plateau to be formed, with

kivp Of. of.
v avJ_ + k”(?v”

0 (5.7)

However, the distribution function has now been steepened at other points,
and so it is possible that another mode might be made more unstable, and may
become the new dominant mode. It will then modify the distribution function in
such a way as to reduce its own growth rate, and the process could then continue
until all the modes are effectively stabilised. It should be borne in mind that the
dispersion relation can only be solved at a finite set of points in k space, when in

reality there will be a true continuum of waves excited. Thus, a real system might
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move towards stability in a somewhat smoother fashion. However, the average

growth rate, defined by

3(t) = [ 2(,1) dic (5.8)
is in fact a monotonically decreasing function of time in both cases.

The dependence in the rate of heating of the plasma on the electron beta is
shown in figures 5.7 to 5.10. The larger beta is, the smaller is the amount of
electron heating after the same length of time. This is because the larger beta is,
the greater is the stabilising efect of the magnetic gradient drift.

At the end of both runs 1 and 2, it can be seen that all of the growth rates
have been reduced substantially from their initial values. However, following the
system to longer times becomes increasingly problematic numerically. As time
progresses, the form of the diffusion tensor becomes more and more complex,
so that numerical solution of the diffusion equation becomes increasingly more
difficult. Even so, in a shock, the particles must traverse the ramp in a finite
time, the gradients necessary to drive the instability will only be present for a
finite period of time.

Moreover, in these runs we have fixed the value of the cross-field ion-electron
drift velocity to be the same throughout the time span of the run. However, it
would be more realistic to specify this quantity initially, and then allow it to vary
in time under the action of the unstable wave spectrum. This would introduce
another stabilisation mechanism on top of the quasilinear modification of the
electron distribution function. It is the cross-field drift that provides the free
energy source for the instability, and so we have been feeding energy into the
system, resulting in wave growth and particle heating.

If we work now in the electron rest frame, the cross- field macroscopic drift
due to the ‘E cross B’ force will be contained in the ion terms. Thus, the ion

susceptibility is modified to
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1
Xik = 5y (L +&Z (&) (5.9)
where ¢; = (0 — k1 vo)/v/2kv, or, assuming that the ions are cold,

w32,

SIS IR S
(\Q —k J_’Do)z
Here, vp is the cross-field drift. The magnetic field gradient length scale can

Xe = (5.10)

be related to the drift velocity (assuming a linear field profile) by Ampere’s law,

as was done above, to give:

Vo

EBUthe = 0.5[3., (5.11)

Vthe

The magnetic drift velocity term in both the dispersion relation and the diffusion
coeflicients can thus be evaluated.

In order to follow the evolution of the drift velocity, we can take the first
moment of the ion diffusion equation, to obtain:

d‘vo Eop

mo—? = —i— 3 ki K |60kl { xixc} (5.12)
k

m;

The neglect of spatial dependency (that is, variation with A) in the above
has the effect of excluding effects due to the lower hybrid drift instability, which
relies on gradients in density and temperature. Unfortunately, including spatial
variation has the effect of increasing the number of independent variables on the
left hand side of the electron diffusion equation from two to three, putting it be-
yond the scope of the code that we have written to solve the diffusion equation,
as well as increasing the scale of the computational problem substantially. How-
ever, there are two ways in which we can include spatial effects without having to
write a code to solve three-dimensional diffusion equations: due to lack of time,
these computations have not been undertaken, but we feel that it is worthwhile

to outline how the calculations could, in principle, proceed. First, we could study
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only flute modes (that is, set k) = 0. This would leave us with a problem similar
to that studied qualitatively by Krall and Book [26],[27]. We feel, though, that
electron heating due to this would not be significant, and that it is necessary to
retain a finite component of the wavenumber parallel to the magnetic field. We
can do this by noting that in the low frequency (w < we.), low beta (and hence
electrostatic) limit, we can remove the vy variation by neglecting the magnetic
field gradient (from (5.11) it can be seen that for low electron beta the effect
of the magnetic is going to be of secondary importance in comparison to the

macroscopic drifts). It can be seen immediately from (4.3) that

Dy, = DJ_'” = D"'_L =0 (5.13)

since vg = 0, and also the other diffusion coeflicients become independent of v, .

We can then write

Ne _1,7/
Je(A,ve,y),t) = 21rv?h e~3v1/ ?hefe,”(A,v”,t) (5.14)
where
1 oo
fe,“(A’ ’U",t) = -2';:-/(; fe(Aa vl)”")t)vldvi (515)

On integrating the electron quasilinear diffusion equation over v, we obtain:

M o i afer” _9__ afe:“ ___6___ afe,”
ot —  0OA Daa dA 7 oA DA’” av" ¥ Bv" D“'A dA
5] Ofe\
+ 5oy |2 av"] (3:16)

The dispersion relation is now A-dependent, but it can be simplified, because the
resonant denominator is now no longer dpendent on v,, and so the integral in

(4.19) can be evaluated analytically, using (2.45), to give:
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m

where

Ul

1 e 1 v 2\ dv
(A, t) = ey f_w Jei(Ay v t) Hpe (*) exp (——__L ) o

Vthe 2Vthe / Vthe
This dispersion relation now includes all drifts due to gradients in density and
temperature.

The initial conditions would now have to be A-dependent, with the initial
distribution function specified throughout a ‘box’ of finite length with appropri-
ate boundary conditions at either end: specification that the spatial gradient of
the electron distribution function be zero at both ends would have the effect of
eliminating inflow or outflow of plasma through the ends of the box.

The analysis could be extended to include waves with finite wave number in

the x-direction by a WKBJ-type method [4].

5.3 Applications to collisionless shock waves

In the results presented above we have effectively fixed attention to a point in
space in an inhomogeneous plasma, and followed the evolution of the electron
distribution function and waves in time. However, in a collisionless plasma shock
wave, particles will be convected from a region of uniform properties through a
region of non-zero field (and density) gradients to another uniform region. To
model electron heating across a shock layer, we move to a frame of reference
moving through the shock with a speed equal to the ‘E cross B’ drift velocity
in the direction through the shock. Thus, the diffusion equation (neglecting A

variation on the right hand side) becomes:
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where ug = E, /By is the drift speed of the electrons through the shock. We would
end up with an initial value problem with the upstream conditions specified
in advance. We should also, in this case, model the generation of waves by

thermal excitation processes, by adding a term Sy to the wave intensity evolution

equation:

2 fuolid = 2 + Si (5.19)
since otherwise the upstream wave spectrum would damp out in the uniform
region of the plasma. However, we have simply ignored thermal excitation pro-
cesses (S = 0), and set the right hand side of (5.19) to be zero for all waves with
negative growth rates.

There are now several extra parameters to be specified in advance. The first is
the upstream Alfvénic Mach number My4,. Obviously, this must exceed unity, and
it must also be less than the first critical Mach number to ensure that the shock
is subcritical, and hence laminar. This fixes the upstream bulk flow velocity:

U

Va1
= M Al
Vthel Vthel

We must also specify the magnetic field profile Bo(z). We assumed that the field

(5.20)

increases smoothly and monotonically from its upstream value to its downstream
value, which was usually taken to be twice the upstream value. We are principally
interested in laminar shocks, but a quasilaminar shock could perhaps be modelled
by superimposing oscillations on the monotonic field profile. The upstream con-
ditions that we have imposed have the implication that the proportion of reflected
ions will be low, so that there will not be a magnetic ‘foot’ structure upstream
of of the shock ramp, nor will there be a magnetic overshoot downstream. The

magnetic field gradient length scale can then be evaluated using:
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Finally, we must specify the width of the shock. We used values consistent
with a number of quasi-perpendicular shocks observed by the ISEE spacecraft

[47]. These all had a width Lg such that:

Ls = a,'-—.- (5.22)
where « is a dimensionless quantity of the order of unity. These shocks, being non-
perpendicular, are in fact probably dispersive, rather than resistive, in character,
and hence the amount of anomalous resistivity required is much smaller than that
needed in much thinner perpendicular shocks, which tend to have thicknesses such
that:

c

Ls=b

(5.23)

Wpe

where b is another dimensionless quantity, but of order ten to twenty. For this
class of shock, which is more often found in the laboratory than in the solar wind,
it is more likely that the ion acoustic instability is dominant, since the cross-field
currents will be larger.

Results for a run with parameters appropriate to a quasiperpendicular bow
shock are presented in run 3. We have taken ¢ = 1 and . = 0.1. The total
amount of heating is fairly modest, about 40% of the upstream value, but this is in
rough accordance with the amount of anomalous (that is, greater than adiabatic)
heating observed. It should be recalled that our model does not include the
heating caused by the direct compression of the plasma by the background fields,
only the anomalous heating by the modified two stream instability.

The sequence of distribution functions shows that the downstream electron
distribution function has a flat top. This is typical of magnetosheath electron

distributions, though these particles will have passed through any of a large
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variety of shocks. However, observations of electron distributions in the bow shock
[11], [47] do actually show the progressive flattening of the electron distribution
function as one moves progressively through the shock. This process is often
accompanied by formation and subsequent erosion of an offset peak in the parallel
direction. This is probably due to the action of the component of the background
electric field along the background magnetic field, which will be present as the
observed shocks were not exactly perpendicular. However, this has been neglected
in our calculations.

Most of the activity can be seen to occur in the middle of the shock, as this is
where the magnetic field gradient is largest. The parallel temperature lags behind
the growth since it takes a while for the waves to build up to a large enough ampli-
tude to be able to affect the bulk of the ditribution appreciably. The temperature
levels off after the system has stabilised because we have only included growing
waves in the calculation of the evolution of the electron distribution function.

This is also why the intensity, defined by

250k2 '&Pkl
Tyop= Z Ay (5.24)

does not damp away in the dowustrea,m portion of the shock. The maximum
value of the wave intensity, about 10~%, seems to be compare favourably with
that obtained by Winske et al. [51], despite substantial differences in our model

and theirs.

5.4 Extensions to the model

There are clearly many additional physical phenomena that could be included in
the model. However, the philosophy behind the current work has been to attempt
to generate and solve the simplest possible model capable of giving something

approaching a reasonable description of the physical problem. Possible future
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work could include modelling:

e warm ions
e electromagnetic waves

e inclusion of spatial gradients

Our results are valid provided T; <« T,. However, it is more characteristic of
the bow shock to have T; ~ T.. The consequence of having thermal ions is to
include the effect of ion Landau damping. This alters the nature of the modified
two stream instability by stabilising modes with wave numbers kay. =~ 1, so
that the modes with maximum growth rates are now such that kay,e < 1. Thus,
the characteristic wavelength of the instability will be longer, and wave particle
interactions more gentle. Hence, one might expect particle heating to be weaker.
Particle simulation studies suggest that the ions retain their Maxwellian form
throughout the lifetime of the instability, and hence an approach based on taking
moments of the ion evolution equation would suffice. Ion heating by lower hybrid
type instabilities can be quite considerable [43].

The inclusion of electromagnetic terms could also improve the model. As the
electron beta increases the modified two stream instability becomes the kinetic
cross field streaming instability: the oscillation frequency is still in the lower
hybrid frequency range, but now the mode is essentially a whistler, with a mixed
electrostatic/electromagnetic nature depending on the angle of propagation to the
magnetic field, which is generally smaller than that for the modified two stream
instability. Under certain conditions it is necessary to include n # 0 terms in the
dispersion relation. The actual computation would be more difficult in this case
since now the dispersion relation is the determinant of a three by three matrix,
all the elements of which will, in general, have to be evaluated. The more oblique

propagation of the unstable modes may mean that there will be a greater degree
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of electron heating due to the larger values of the wave number vector along the
magnetic field.

Taking into account the effects of the spatial variation of the distribution
function in the quasilinear diffusion equation poses problems when the time de-
pendent, inhomogeneous problem is considered, since now the spatial variable,
A, occurs on both sides of the equation. This difficulty is purely numerical.

A criticism that could be levelled at the model is that it does not take into ac-
count the Rankine-Hugoniot relations that link the upstream state of the plasma
to the downstream state. This could be achieved by using the method of Winske
et al. [51] in their comparison of heating due to the ion acoustic and modified two
stream instabilities. Essentially, a shock width is assumed, from which the cross
field drift is estimated. The anomalous heating due to current-driven instabilities
is then calculated (in their case by using second-order transport theory, in our
case by solving the quasilinear equations). The amount of adiabatic heating is
then evaluated, and then the shock width is adjusted so that the amount of to-
tal (adiabatic plus anomalous) heating is in closer agreement with that required
by the Rankine-Hugoniot equations. The process is then repeated until a self-
consistent result can be obtained. One difficulty is that the Rankine-Hugoniot
equations require both the up and downstream distributions to be Maxwellian,
whereas we have seen that the downstream electron distribution function will
not be Maxwellian, even if the upstream distribution is. However, construction
of such a model would in principle be straightforward.

In conclusion, this work should not be taken as the ‘last word’ on the subject,
but rather a first step towards constructing a reasonably accurate, self-consistent
model of electron heating in subcritical shockwaves which takes into account the

non-Maxwellian nature of the electrons as they pass through a shock.
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Figure 5.1: Velocity distribution function (f) before (top panel) and after (bottom

panel) modification by wave particle interactions. Axes in arbitrary units.
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Run 1

Parameter

description

value

EBAthe

Inverse magnetic field scale

0.01

(0%

Wpe / Wee

68

Be

Electron beta

0.1

)

Electron/ion mass ration

1/1836

Ti

Ion temperature

0
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Figure 5.2: Parallel thermal velocity versus time
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Figure 5.3: Maximum growth rate versus time
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Run 2

Parameter | description value
€BAthe Inverse magnetic field scale | 0.02
o Wpe [Wee 68
Be Electron beta 0.1
) Electron/ion mass ration 1/1836
Ti Ion femperature 0
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Figure 5.4: Parallel thermal velocity versus time
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Figure 5.5: Maximum growth rate versus time
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Figure 5.6: Parallel thermal velocity versus time
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Figure 5.7: Parallel thermal velocity versus time
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Figure 5.8: Parallel thermal velocity versus time
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Figure 5.9: Parallel thermal velocity versus time
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Parameter | description value
« Wpe [Wee 68
Be Electron beta 0.1
6 Electron/ion mass ration | 1/1836
T; Jon temperature 0
M 44 Upstream Mach Number 2
%’f Dimensionless shock width 1
da- Shock width 192
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Figure 5.10: Parallel temperature (in units of upstream temperature) versus dis-

tance through shock (in units of upstream thermal electron gyroradius).
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Figure 5.11: Total field energy versus distance through shock (in units of up-

stream thermal electron gyroradius).
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Figure 5.12: Maximum growth rate (in units of upstream gyrofrequency) versus

distance through shock (in units of upstream thermal electron gyroradius).
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Appendix A

Comnservation properties of the

quasilinear equations

A.1 Conservation of energy

It is a property of quasilinear equations in general that they conserve matter and
energy. In this section we will show that the equations derived in this thesis do
possess these properties. The quasilinear diffusion equation is

of. o d
= = B—I‘-.[De (,_mfe] (A.1)

e X
P %{zmezn:%:a;kﬂnian,k} (A.2)

The quantities a,x and Q7 are defined in equations and (3.35) (2.22) respec-

tively. The electric and magnetic field amplitudes evolve according to

2

. 66‘?‘ = oy |65 (A.3)
~ 12
2 52 L= oo (A.4)

In this section, we will not take the ions into account at all. Equation (A.1)

must conserve the total number of electrons since the right-hand side will dis-
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appear when integrated over y by Gauss’s theorem, as long as the boundary

conditions are right.

To prove that energy is conserved, we multiply (A.1) by $m.v? — epo, where

wo(z) is the potential of the background electric field, and integrate over v and

A to give:

[ o= oo 5

5}

avih = [ [%mevz—ego(]]a—#- [De--(%fe] e

d 0
= —/[meV—ea_ﬂ“Po] 'De"é“l; edp

2
= R {__z‘ i DD [V — vBwe&s] - a0
n ok

me
0
nk * = fe A5
L (A5)
Where we have used the fact that -a%cpo = —F; = vgBy. This term represents

the rate of change of energy due to the evolution of the background distribution

function. Now,

[V o ’UEéA} *apk =

—VUEAn Ak + VLbp 1 k + V)85 |k

VE [. i =
o koo T8 B, x + (= Fyvy) Jnb By

+ k_Lv"J.,.tSE“.k]

.Uy =
+Zﬁ_1: (Qk — kyvg — k"v“) J,;SEm,k

N — kv =
(nwee +kJ.UB)( k — R il) 5854
ky O !

+ ok (nwee + k1vB) Jnd B
k
Ry s (et kivp) Ky =
+ivy o J 0 E, x + O E, Jnb6Ey x
Y|

+ (Qk —kyvp — k”v”) ﬁi-JHCSE“,k

+

ivJ_J:ﬁE'x_k + Jné‘Ey’k + ‘vﬂJn(SE",k

(A.6)

(nwce + kJ.'UB)
ki
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on collecting together terms in 5177$,k, «51:7%1c and «5173",1(, and performing the nec-
essary cancellations.

The current density of the k** mode is:

8k = —-Z—E/ (—w I jﬁi—;@.fmvnh) Q;’i{an,kdv (A.T)

so that (A.5) with (A.6) and (A.7) gives:

% / [%m = 6900] fedp =R {2}; Ef -J’k} = / (6E - &j) dA (A-8)

The rate of change of the energy of the particle distribution is thus balanced by
the averaged power in the waves excited in the system.

We now use the Fourier transformed versions of Maxwell’s equations to write
the right-hand side of A.8 in terms of the amplitudes of the rapidly varying wave
fields:

ik ASBy = pobjx — ipocobEx (A.9)
kAbSky = OBy (A.10)

Multiplying (A.9) by 6]31; and (A.10) by Sf}i and eliminating the term propor-
tional to §Ey A 6By gives

SEL - 63i — 160 |6Ek|2 e |51"3k|2 =0 (A.11)
Mo

If we sum (A.11) over k and use the symmetry properties (3.7) to (3.9), we can
deduce that:

bl [5f‘3fc' 5k + €0k ‘6Eki2 + ~1-fyk !61~3k‘2] = P
K

= z[aE* i+ 5 560 t]a |+ — |6Bk[] 0 (A12)
k

28t

Using (A.8) we obtain:
o rrt ) b et B el
= / [_-émgv _ egao] fodi+ 5 / ij [55(, l6Ew|” + %|5Bk] ] dA=0 (A.13)
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Therefore, on integrating:
1 2 1 o 2 1 et 2
[ [5me* = ewo fdu+ T [ |5eo 6Bl + 5— B[ da =T (A19)
k #o

where T is the total (wave plus particle) energy of the system. The first term is
the particle energy. The other term represents the total (electric plus magnetic)
energy of the waves. These equations have all been derived for a discrete wave
spectrum: however, similar expressions will hold for the continuous spectrum

case, with the summations becoming integrations.

A.2 Conservation of momentum

In the case of electrostatic waves, it is also easy to show that the parallel com-

ponent of the electron momentum is conserved. The diffusion equation is:-

ofe _ 0 0
where
_ e? Ji(ay)lx
P, = { m3 ;Z e Eumn — By ey ey 81
ce + K
b,x = —kiéy+ ”(PE—%I—J:BE‘)‘EJ_ + k&) (A.17)
L) = el (A18)

and the frequency x = wi + ¢k is related to the wavelength by the dispersion
relation:

Ja(aL)
N =
me50k2 ZZ/ (Qk —kyvp — k“v“ - nwce)

(nwce + k_LvB) 0 o
* [ k-L 6A * Vy 6’01_ i k” 6’0” fch

(A.19)
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We multiply (A.15) by m.v; and integrate over y. Thus:
afe d 9
/mevn-aTd,u = /mev”a . {De . gpfew du
e " - )
= R {—-—zme ; % / e" . an,ka?Qn,]icIkan,k 3 Epfcdﬂ}
= Y ek’ L S{K}
k

=0 (A.20)

by virtue of the dispersion relation (A.19). Thus we see that
fmev"fedv = p|| = constant (A.21)

as required.
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