SOME CONTRIBUTIONS TO THE THEORY AND APPLICATION OF POLYNOMIAL APPROXIMATION

George McArtney Phillips
A Thesis Submitted for the Degree of PhD at the
University of St Andrews

1969

Full metadata for this item is available in St Andrews Research Repository at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/13883

This item is protected by original copyright

SOME CONRRIBUYTONS 70 THE TGBORY AND APPLICAPION OT POLYKOMIAL APPROXIMARIOW

A thesis presented for the degree of Doctor of philosophy in the Feculty of soience of the Univexsity of st. Andrens

$$
\begin{gathered}
\text { by } \\
\text { G. . Phillips, M.AF, M.Sc. }
\end{gathered}
$$

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10171288
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

$$
\text { Th } 5639
$$

In nemory of

my
father and mothex

I declare that this thesio is of my om composition and thet the work of which it is a record has been carried out by myself, except that paxt of the work was done jointly, as mentioned in the Acknowledgrents. It hes not been cubmitted in any previous application for a Higher Degree.

The thesis describes the results of research begun in the Departinent of mathematios, university of Southampton, where I was admitted as a research student undex the supervision of professor H.B. Griffiths in October 1966, and continued in the Department of Applied Mathematics, University of st. Andrews under the supexvision of Professor SoN. Curle since october 1967, the date of my admisgion as a research student at the Univeraity of St. Andrews.

(i)

1. hereby certify that GN. Philligs has fulfilled the conditions of oxdingmee Ho. 12 and Resolution of the University Court No. 1 (St. Andrews) and 2 s qualified to submit the accompanying thesis in application for the degree of Doctor of Philosophy.

I man most indebted to the Univeraity of Aberdeen where I was undergraduate, N. BC. student and Assistant, to the University of Southampton where as Assistant Lecturer and Lecturex I began my research in numerical analysis, and to the University or st. Andrews where as a Lecturex in tho Depariment of Applied Mathematics, I an fortunate enough to be able to continue this work.

I en therefore most grateful to many persons. These include my fomer M_{H} Sc. supervisor Principal EM. Wright, Southampton colleagues Professor H.B. Griffiths, Dr. P.A. Samet and Mr. PaT. Taylor, and Profeaser S. F . Curle of St. Andrews. I also awe much to Professor P.J. Davis, Professor of Applied Mathematios at Brown University, Rhode Island, for the stimulus from his book TInteroolation and Apgroximation'.

I would also like to take this rare opportunity of
expressing my thanks to my eaxlter teachers, who inciude Miss M. Cassie and Mr. R. Gordon at Walker Road Schoal, Aberdeen and Mx. J.A. Thett and Six J.J. Hobertson at Aberdeen Gzamear Sehool.

Most of the work for chapter 4 was done at southampton in collaboxation with Mr. Pex. Taylox.

Page

Introduction and sumany 1
Chapter 1. Preliminaxy definitions and theorems.
1.1 Minimax approxinations 2
1.2 Oxthogonal polynomials 6
$1.3 \mathrm{~L}_{\mathrm{p}}$ agproxinations 10
2.4 Genemalisation of polynomal agproxinations 13
2.5 Cubic spline approximations 14
Chapter 2. Estimates of the minimax exros.
2.2. Minimax approximations over a aingle intarval 25
2.2. Best appoximations satiafying intexpolatoxy
conăitions 21
2.3 Piecewise agproximations 29
2.4 Algoxithan fox deriving piecenise straight
line approximations 32
2.5 piecerise approximations satisfying interpolatory conditions 46

Chapter 3. Estimate of the exrox in best I_{p} approximations.
3.1. A characterising property 51
3.2 The intergolatoxy property 55
3.3 The case $p=2$ • . . . 60
3.4 The case $p=2$. 61
3.5 General values of ρ. . . . 62
3.6 Further remark e on In_{1} approximations . . 64
3.7 Piecewise approximations 74

Chapter 4. Approximation of convex data.
4.1 Introduction 81
4.2 Choice of the component convex functions . 83
4.3 'Best' convex approximations . . . 83
4.4 Numerical examples 93
4.5 Discussion 95

References 101
Index of theorems 104
the fundamental theorem, as far as this woxk is concemed, is welerstrass theorea (1885) on the approximability of continuous functions by polynomials. since the time of Welexstrass (1815-97) and his equally important contemporaxy Chebyshev (1821-94), the topic of approxiration has grown enomousily tato a subject of considerable interest to both pure and applied mathematicians.

The subject mattex of this thesis, being exclusively concemed with polynomial approximations to a single-valued function of one real variable, is on the eqplied side of approximation theoxy. The finst chapter lists the definitions and theorens required subsequently. Chapter 2 is devoted to estimates for the maximun exxor in mininax polyomial approximations. Extensions of this are used to obtain crude ermor estinates fox cubic spline approximations. The following chapter extends the minimex results to deal also with best I_{p} polynomial approximations, which include best least squaress $\left(I_{2}\right)$ and best modulus of integral (L_{1}) approximations as special cases. Chapter 4 is afferent in character. It is on the practical probler of approximating to convex ox nearly convex data.

Chapter 1
PRELIMINARY DEfINITIONS AND THERMS

This chapter contains definitions and theorems which are required in subsequent chapters. The proofs of most of the theorems are readily available in texts and are not repeated here. Where a proof is omitted, a reference is given to a source of a proof.

2.1 Minimax approximations

Theorem 1. (Weierstrass' theorem). Given a function $f(x)$ continuous on $[a, b]$ and any $\epsilon>0$, there exists a polynomial $q(x)$ such that

$$
\max _{a \leqslant x \leqslant b}|f(x)-q(x)|<\epsilon
$$

(Proof in Davis, 1963).
Definition 2. Given a function $f(x)$ defined on $[0,2]$, the $n^{\text {th }}$ Bernstein polynomial for (x), denoted by $B_{n}(f ; x)$ is defined as

$$
\begin{equation*}
B_{n}(f ; x)=\sum_{j=0}^{n}\binom{n}{j} x^{j}(1-x)^{n-j} f\left(\frac{j}{n}\right) \tag{1.1}
\end{equation*}
$$

Theoren 2. (Bernotein* theoren) . If $f(x)$ is continuous on $[0,1]$ the sequence of polynomials $\left(B_{n}(f ; x)\right)$ converges unitiomily to $f(x)$ on $[0,1]$ as tends to infinity. (Proof in pavis, 1963).

A linear change of variable extends this result to any finite interval $[a, b]$ and provides a constuctive proof of Weierstrass theorem.
pefinition 2. An intergolating polynomial for a function $f(x)$ constructed at the aistinct points $x=x_{0}, x_{1}, \ldots, x_{n}$ is a polynomial $q(x)$ of lowest degree such that $q\left(x_{j}\right)=f\left(x_{j}\right)$, $j=0,1, \ldots, n$.
Theorem 3. The interyolating polynomial for a single-valued function $f(x)$ constxucted at a distinct cet of points $x_{0}, x_{1}, \ldots, x_{n}$ exists and is unique. (Hroof in Davis, 1963). Theoren 4. Let $a \leqslant x_{j} \leqslant b$ fox $j=0,1, \ldots, n$ and let $q(x)$ denote the interpolating polynomial for $f(x)$ constructed at x_{0}, \ldots, x_{n}. If $f^{(n+1)}(x)$ exists for $a \leqslant x \leqslant b$ and is continuous for $a<x<b$, then there exists a point on $[a, b]$, say ξ_{x}, such that for any x on $[a, b]$

$$
\begin{equation*}
f(x)-q(x)=\frac{1}{(n+1)!}\left(x-x_{0}\right) \cdots\left(x-x_{n}\right) f^{(n+1)}\left(\xi_{x}\right) \tag{1.2}
\end{equation*}
$$

(Proof in Davis, 2963) . It should be noted that in (1.2) $\xi_{\%}$
in itself a function of x
F_{n} will be used to denote the set of all polynomials, with real coefficients, of degree not greater than n. Definition Z. Given a function $f(x)$ defined on $[a, b]$, a polynomial $q^{*}(x) \in \mathrm{P}_{\mathrm{n}}$ is said to be a best minimax (ox best Chebyshev) approximation to $f(x)$ on $[a, b]$ of degree not greater than n ix

$$
\begin{equation*}
\inf _{q(x) \in P_{n}} \max _{a \leqslant x \leqslant b}|f(x)-q(x)| \tag{1.3}
\end{equation*}
$$

is attained with $q(x)=q^{*}(x)$.
Theorem 5. If $f(x)$ is continuous on $[a, b]$ the infimum in (1.3) is attained. That is, the best minimed approximation exista and "inf" in (2.3) may be replaced by "min". (Proof in Davis, 1963).

Theorem 6. The best minimax approximation defined by (1.3) is unique. (Proof in Davis, 1963).

Definition 4. A continuous function $e(x)$ is said to equioscillate at in points on $[a, b]$ if $\max _{a \leqslant x \leqslant b}|e(x)|$ is attained at points x_{1}, \ldots, x_{m} belonging to $[a, b]$ and also

$$
\operatorname{sign}\left[e\left(x_{j}+1\right)\right]=-\operatorname{sign}\left[e\left(x_{j}\right)\right]
$$

for $j=0, \ldots, n-1$. The x_{j} axe celled extrane poanta or axirema.
Theorem 7. If $f(x)$ is continuous on $[a, b]$ and $q^{*}(x)$ dexotes the best minimax spproxmation defined by (2.3), when $f(x)-q^{*}(x)$ equioscillates at $n+2$ points on $[a, b]$. (Proof in mavis, 1963). Whis theoren is due to chebyshev, as is also:

Yheorem 8. If $f(x)$ is continuous on $[a, b]$ and for come $q(x) \in n_{n} \quad f(x)-q(x)$ equioscinlates at $n+2$ points on $[a, b]$. then $g(x)$ $1 s$ the best minimex apgroximation dofined by (1.3). (3roof in Davic, 1963) *
Dexinition 2 . The nodulus of continuity of a function $f(x)$ on $[a, b]$, denoted by

$$
\omega(\delta)=\omega(f ; \delta)=\omega(f, a, b ; \delta)
$$

ls dexined by

$$
\begin{equation*}
\omega(\delta)=\sup _{\left|x_{1}-x_{2}\right| \leqslant \delta}\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \tag{1.4}
\end{equation*}
$$

The suoxerna in (1.4) is over all x_{1}, x_{2} belonging to $[a, b]$ and such that $\left|x_{1}-x_{2}\right| \leqslant \delta$. It is clear that, if $f(x)$ is continuous on $[a, b], \omega(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.
1.2 exthogonal polynowials

Wo attempt is made to give a aystematic account of oxthogonal polyomials here. only the resulta required later are quoted. Definition 6. The Chebyshev polynomid of degree n, denoted by $\mathrm{T}_{\mathrm{n}}(\mathrm{x})$, la Cefincd as

$$
\begin{equation*}
y_{n}(x)=\cos n\left(\cos ^{-1} x\right) \tag{1.5}
\end{equation*}
$$

This is also referved to as the chebyshev polynomial of the first kind.

Definition 7. Given a function $f(x)$, the Chebyshev sexies for $f(x)$, when it existe, is defined as

$$
\begin{equation*}
\sum_{j=0}^{\infty} c_{j} T_{j}(x) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{j}=\frac{2}{\pi} \int_{-1}^{1}\left(1-x^{2}\right)^{-\frac{1}{2}} f(x) T_{j}(x) d x \tag{1.7}
\end{equation*}
$$

 halved．

A Ohebyshev series nay be integrated to give another Chebythev series．Suppose $T(x)$ is given by（2．6）and that

$$
F(x)=\int_{-1}^{x} f(t) d t
$$

紋 follows that

$$
F(x)=\sum_{j=0}^{\infty} C_{j} T_{j}(x)
$$

where

$$
\begin{equation*}
C_{j}=\left(c_{j-1}-c_{j+1}\right) / 2 j, \quad j>0 \tag{1.8}
\end{equation*}
$$

and C_{0} is determined by the lover limit of integration．See Goodwin at at 1960.

Theorem ge the infimum

$$
\begin{equation*}
\inf _{\left(c_{j}\right)} \max _{-1 \leqslant x \leqslant 1}\left|x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}\right| \tag{2.9}
\end{equation*}
$$

is attained when $x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}=\frac{1}{2^{n-1}} T_{n}(x)$ ．
(Proof in Davis, 1963).
Definition 8. The chebyshev polynomial of the second kind of degree n, denoted by $U_{n}(x)$, is defined by

$$
\begin{equation*}
U_{n}(x)=\sin \left((n+1) \cos ^{-1} x\right) / \sin \left(\cos ^{-1} x\right) \tag{1.10}
\end{equation*}
$$

From (1.5) and (1.10) it is easily checked that

$$
\begin{equation*}
T_{n}^{\prime}(x)=n U_{n-1}(x) \tag{1.12}
\end{equation*}
$$

Theorem 10. The infirm

$$
\begin{equation*}
\inf _{(c ;)} \int_{-1}^{1} 1 x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0} \mid d x \tag{1.12}
\end{equation*}
$$

is attained when $x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}=\frac{1}{2^{n}} u_{n}(x)$
and has the value $1 / 2^{\mathrm{n}-1}$. (Proof in timon, 1963). This result is ane to A.A. Markov.

Definition 9. A sequence of polynomials $q_{0}(x), q_{1}(x), q_{2}(x), \ldots$, where $g_{j}(x)$ has degree in is said to be orthogonal on $[a, b]$ with respect to a function $w(x)$ if

$$
\begin{equation*}
\int_{a}^{b} w(x) q_{j}(x) q_{k}(x) d x=0 \tag{1.13}
\end{equation*}
$$

for $j \neq k$ and is nonzero for $j=k$.

The function $v(x)$ is called the weight function.
Theorem 21. The sequence $T_{0}(x): T_{2}(x), \ldots$ is orthogonal with respect to $\left(1-x^{2}\right)^{-\frac{1}{2}}$ on $[-1,1]$. (Prover in Davis, 2963). Theorem 12. The sequence $U_{0}(x), U_{1}(x), \ldots$ is orthogonal with respect $60\left(1-x^{2}\right)^{\frac{1}{2}}$ on $[-x, 1]$. (proof in Davis, 1963). Dekintton 10. The Legendre polynomials ore a sequence of polynomials $Q_{0}(x), Q_{1}(x), \ldots$ which are orthogonal with respect to the constrict function 2 on $[-2,2]$ and vidich satisfy

$$
Q_{j}(1)=1, \quad j=0,1, \ldots
$$

Theorem 13. The infimum

$$
\begin{equation*}
\inf _{\left(c_{j}\right)}\left[\int_{-1}^{1}\left(x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}\right)^{2} d x\right]^{\frac{1}{2}} \tag{1.14}
\end{equation*}
$$

is attained when

$$
x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}=2^{n} Q_{n}(x) /\binom{2 n}{n}
$$

end has the value $\left(\frac{2}{2 n+1}\right)^{\frac{1}{2}} \cdot 2^{n} /\binom{2 n}{n}$.
(Proof in Davis, 1963).
theorem 14. The minimum of

$$
\int_{-1}^{1} w(x)\left[f(x)-\sum_{j=0}^{n} c_{j} q_{j}(x)\right]^{2} d x
$$

where $w(x)$ and the $g_{j}(x)$ athafy Definition 9 is attained Sos

$$
\begin{equation*}
c_{j}=\int_{-1}^{1} w(x) f(x) q_{j}(x) d x / \int_{-1}^{1} w(x)\left[q_{j}(x)\right]^{2} d x . \tag{1.15}
\end{equation*}
$$

(Proof in Rice, 1964).
Theorem 15. The minima of

$$
\int_{-1}^{1} w(x)\left(x-x_{1}\right)^{2} \cdots\left(x-x_{n}\right)^{2} d x
$$

over all choices of real numbers $x_{1}, \ldots \ldots x_{n}$, is attained when x_{1}, \ldots, z_{n} are the zeros of $q_{n}(x)$, which belongs to the set of polynomials orthogonal with respect to $w(x)$ on $[-1,2]$. (See Definition 9).
2.3 Ib approximations

Definition 11. Given a function $f(x)$ defined on $[0, b]$ and a number $p \geqslant 1$, a polynomial $\mathbb{d}^{*}(x) \in P_{n}$ is said to be a best If polynomial approximation to $f(x)$ on $[a, b]$ of degree not greater than n if

$$
\begin{equation*}
\inf _{q(x) \in P_{n}}\left[\int_{a}^{b}|f(x)-q(x)|^{p} d x\right]^{\frac{1}{p}} \tag{2.16}
\end{equation*}
$$

is attained when $q(x)=q^{*}(x)$. (If $p \geqslant 1$, for any function $g(x)$ defined on $[a, b],\left[\int_{a}^{b}|g(x)|^{p} d x\right]^{\frac{1}{p}}$ defines a norm on the linear space of continuous functions defined on $[a, b]$. If $p<1$, one of the nom axioms is violated and so I_{p} approximations are usually restricted to a choice of $p \geqslant 1$, especially common choices being $p=1,2$ and ∞. The use of normed linear spaces facilitates the discussion of more general modes of approximation than axe required here.)

It may be noted that

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left[\int_{a}^{b}|f(x)-q(x)|^{p} d x\right]^{\frac{1}{p}}=\sup _{a \leqslant x \leqslant b}|f(x)-q(x)| . \tag{2.17}
\end{equation*}
$$

Fox this season the best minima approximation is sometimes celled the best L_{∞} approximation.
 (1.16) is attained for each $p \geqslant 1$. That is, the best L_{p} approximation ($p \geqslant 1$) exists and "inf in (1.16) may be replaced by "min'. (Proof in Davis, 1963).
Theorem 17. If $f(x)$ is continuous on $[a, 0]$ the best L_{p} approximation defined by (1.16) is unique. (Proof in Davis, 1963).

Theorem 13. If (x) ts continuous on $[a, b]$, then for any $y \geqslant 1$ necessary and cuffalent conatition for $q(x) \in I_{n}$ to be the best I_{p} approximation (acted by (1.16)) wa that

$$
\int_{a}^{b} r(x)|f(x)-q(x)|^{p-1} \cdot \operatorname{sign}[f(x)-q(x)] d x=0
$$

for all $x(x) \in \sum_{n}$ (negros will be given in chapter 3).

We shall, also require the following two results concerning inequalities, which are proved in Handy, Litthemood and Dor pya, 1934.

Theorem 39. If $0<g<p^{\prime}$, then when the following integrals exist y

$$
\left[\frac{1}{b-a} \int_{a}^{b}|g(x)|^{p^{\prime}} d x\right]^{\frac{1}{p}}<\left[\frac{1}{b-a} \int_{a}^{b}|g(x)|^{p^{\prime}} d x\right]^{\frac{1}{\beta^{\prime}}}
$$

manes $x(x)$ is a constant function.
Theorem 20. (Holder's inequality fox intagals) - If $p>1$ then, if the following integrals exist.

$$
\int_{a}^{b}|g(x) h(x)| d x \leqslant\left[\int_{a}^{b}|g(x)|^{p} d x\right]^{\frac{1}{\beta}} \cdot\left[\int_{a}^{b}|h(x)|^{\beta^{\prime}} d x\right]^{\frac{1}{\beta^{\prime}}}
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=3$.
I. 4 Generalisation of polynomial approximations

In order to deal subsequently with polynomial apywatuatlons which ale interpolate $f(x)$ at certain points, we chain require a genexalteation of same of the foregoing results on minimax approximation.
Definition 12. A finite se b of functions $\psi_{0}(x), \psi_{1}(x), \cdots, \psi_{n}(x)$ is said to bo a chebyehev set on $[\mathrm{a}, \mathrm{b}]$ if the $\psi_{j}(x)$ axe continuous and Linearity independent on $[a, b]$ and the function $\sum_{j=0}^{n} c_{j} \psi_{j}(x)$ has at most n zeros on $[a, b]$ for any choice of real $c_{j}, j=0,3, \ldots, \ldots$. (such a set of functions is described by some author, beg. Than, as satisfying the Hens property). Theorem zn. If $f(x)$ is continuous on $[B, b]$ and the set of functions $\psi_{0}(x), \psi_{1}(x), \cdots, \psi_{n}(x)$ is a chebyenay set on $[a, b]$, then

$$
\begin{equation*}
\inf _{\substack{ \\\left(c_{j}\right)}} \max _{a \leq x \leq b}\left|f(x)-\sum_{j=0}^{n} c_{j} \psi_{j}(x)\right| \tag{1.18}
\end{equation*}
$$

is attained and the best approximation is unique. (proof in Rice, 1964).
Theorem 22. If $f(x)$ is continuous on $[a, b]$ and $\psi_{0}(x), \psi_{1}(x), \ldots$, $\psi_{n}(x)$ is a chebyehev set on $[a, b]$, them a necessary and sufficient condition for $\sum_{j=0}^{n} c_{j} \psi_{j}(x)$ to be the best
approximation (as in (2.18)) is that

$$
f(x)-\sum_{j=0}^{n} c_{j} \psi_{j}(x)
$$

equioscinlates at $n+2$ points on $[a, b]$. (Prot in Race, 1964).

2.5 Cubic spine approximations

Definition 13. Given a function $f(x)$ defined on $[a, b]$ and a partition $\Delta: a=x_{0}<x_{1}<\cdots<x_{k}=b \quad$ of the interval $[a, b]$ a function $s_{\Delta}(f ; x)$ is said to be a cubic spline approximation to $f(x)$ on Δ is
(i) $S_{\Delta}(f ; x)$ is a cubic polynomial (at most) on on each interval $\left[x_{j}, x_{j+1}\right], j=0, \ldots, k-1$,
(ii) $s_{\Delta}\left(f ; x_{j}\right)=\hat{x}\left(x_{j}\right), \quad j=0, \ldots, k$,
(iii) $s_{\Delta}^{\prime}\left(x_{j}(x)\right.$ and $s_{\Delta}^{\prime \prime}(f ; x)$ are continuous on $[a, b]$.

Two further conditions are required, usually taken to be the values of $s_{\Delta}^{\prime}(f ; x)$ or $s_{\Delta}^{\prime \prime}(f ; x)$ at the endpoints $x=a$ and $x=b$, in order to specify a particular $S_{\Delta}(f ; x)$ satisfying the three properties above. See, for example, Ah3berg, Wilson and Walsh, 1967.

Chagtex 2
WSTMMATE OW THT MTHTMAX EROOR
2. I Hintrax approxinatione aver a single intexval

Let us use

$$
E_{n}(f)=E_{n}(f, a, b)
$$

to denote

$$
\inf _{\left(c_{j}\right)} \max _{a \leqslant x \leqslant b}\left|f(x)-\sum_{j=0}^{n} c_{j} x^{j}\right|
$$

In 2912, D. Jackwon proved:
Theoxem 23. If $f(x)$ is contimous on $[a, b]$, there existg a constant 0 cuch that

$$
E_{n}(f)=E_{n}(f, a, b) \leqslant C \cdot \omega\left(f ; \frac{b-a}{n}\right) .(2,1)
$$

(proos in Thmon, 1963). Since by continuity of $f(x)$,

$$
\omega(f ; \delta) \rightarrow 0 \quad \text { as } \quad \delta \rightarrow 0 \text {, }
$$

Jackson's inequality (2.1) inpuien Weierstrasu theosen.

Jackson fuxther proveds
Thearen 24. $1 f^{f}(x)$ has its $k^{\text {th }}$ derivative continuous on $[a, b]$, then for $n>k$

$$
\begin{equation*}
E_{n}(f) \leqslant M_{k} \cdot\left(\frac{b-a}{n}\right)^{k} \cdot \omega\left(f^{(k)} ; \frac{b-a}{n}\right), \tag{2.2}
\end{equation*}
$$

where H_{k} is a constont degenaing only on k . (proos in giman, 1963).

Burther results of this type, involving the modulus of contimuity, are quoted in jiman, 196\%. A moxe xecent Eenut, given by hetnardus, 1967, iss fheoren 25. If $\mathrm{f}^{(\mathrm{a}+1)_{(x)}}$ in continuous on $[a, b]$, there exists a number $\xi, a<\xi<b$, cuch that

$$
\begin{equation*}
E_{n}(f)=\frac{2}{(n+1)!}\left(\frac{b-a}{4}\right)^{n+1}\left|f^{(n+1)}(\xi)\right| \tag{2.3}
\end{equation*}
$$

Meinardus proor is bascd on a theorem due to Bemastein: Theorem 26. Let $g(x)$ and $f(x)$ have derivebtres of oxdex $n+1$ an $[-1,1]$ and suppose that

$$
\left|f^{(n+1)}(x)\right| \leqslant g^{(n+1)}(x), \quad x \in[-1,1]
$$

Then

$$
E_{n}(f) \leqslant E_{n}(g) .
$$

(3woor in Memmaraz, 3967) -

An eltemative groof of theorca 25 will now be given which depends simgly on the theorem conceming the exror in the intexpolating polyngwal ond ohebyahev's equioscillation thoosen (Theoxems 4 ond 7). A shmiar apprown onsbles one to estimate the arcor in best I polynomial approxinations, to be dealt with in rheyter 3.

Exoof of Theozen 250 If $g^{*}(x)$, of degree ab anost n, benotes the best rinimax approximation for $f(x)$ on $[a, b]$, then by Theorem 7 thero exist $n+2$ points on $[a, b]$ at which $f(x)-q^{*}(x)$ equioncillates. jy continuity there are thererore $n+1$ distinct pointis, sey $x_{0}^{*} x_{1}^{*}, \ldots, x_{n}^{*}$ on [a,b] whexe $f(x)-g^{*}(x)=0$. That is; $q^{*}(x)$ may be reganded as the intexpolating polynomial for $f(x)$ constructed 3t $x_{0}^{*}, x_{1}^{*}, \ldots \ldots x_{1}^{*}$. So by Theorern 4 we may write

$$
\begin{equation*}
\left.f(x)-q^{*}(x)=\frac{1}{(n+1)!}(x-)_{0}^{*}\right) \cdots\left(x-x_{n}^{*}\right) f^{(n+1)}\left(\xi_{x}^{*}\right) \tag{2.4}
\end{equation*}
$$

where ξ_{X}^{*} is some function of x.

Now let $x_{0}, x_{1}, \ldots, x_{n}$ be the zeros of $\Psi_{n+1}((2 x-b-a) /(b-a))$ and let $q(x)$ denote the interpolating polynomial for $f(x)$ constructed at x_{0}, x_{1}, \ldots, x_{n}. Then we also have

$$
\begin{equation*}
f(x)-q(x)=\frac{1}{(n+1)!}\left(x-x_{0}\right) \cdots\left(x-x_{n}\right) f^{(n+1)}(\xi) \tag{2.5}
\end{equation*}
$$

where ξ_{X} is some function of x . Since

$$
E_{n}(f) \leqslant \max _{a \leqslant x \leqslant b}|f(x)-q(x)|
$$

it follow from (2.5) that

$$
\begin{equation*}
E_{n}(f) \leqslant \frac{1}{(n+1)!} \max _{a \leqslant x \leqslant b}\left|\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)\right| \max _{a \leqslant x \leqslant b}\left|f^{(n+1)}(x)\right| \tag{2.6}
\end{equation*}
$$

put $y=(2 x-b-a) /(b-a)$ and for $j=0,1, \ldots, n$ let $y_{j}=\left(2 x_{j}-b-a\right) /(b-a)$. Then

$$
\left|\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)\right|=\left(\frac{b-a}{2}\right)^{n+1} \cdot\left|\left(y-y_{0}\right) \cdots\left(y-y_{n}\right)\right|
$$

and since the y_{j} are the zeros of $T_{n+1}(x)$,

$$
\begin{equation*}
\max _{a \leqslant x \leqslant b}\left|\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)\right|=\left(\frac{b-a}{2}\right)^{n+1} \cdot \frac{1}{2^{x}} . \tag{2.7}
\end{equation*}
$$

Using (2.7) in (2.6) we have the upper bound for $\mathrm{H}_{n}(\mathrm{f})$:

$$
\begin{equation*}
E_{n}(f) \leqslant \frac{2}{(n+1)!}\left(\frac{b-a}{4}\right)^{n+1} \cdot \max _{a \leqslant x \leqslant b}\left|f^{(n+1)}(x)\right| \tag{2.8}
\end{equation*}
$$

For a lover bound, we have from (2.4)

$$
\begin{equation*}
\left.\left.E_{n}(f) \geqslant \frac{1}{(x+1)!} \max _{a \leq x \leq b} \right\rvert\,\left(x-x_{0}^{*}\right) \cdots\left(x-x_{n}^{*}\right)\right) \min _{a \leq x \leq b}\left|f^{(x+1)}(x)\right| \tag{2.9}
\end{equation*}
$$

From theorem 9, concerning the mindmax property of the Chebyshev polynomials, it follows that

$$
\begin{equation*}
E_{n}(f) \geqslant \frac{2}{(x+1)!}\left(\frac{b-a}{4}\right)^{n+1} \min _{a \leqslant x \leqslant 6}\left|f^{(n+1)}(x)\right| \tag{2.10}
\end{equation*}
$$

Theorem 25 follows from the two inequalities (2.8) and (2.10), from the continuity of $f^{(n+1)}(x)$.

A connection with Chebyshev series.

Lot us use c_{j} to denote the coefficient of $T_{j}(x)$ in the Chebyshev series for a function $f(x)$. elliott, 1963, proved, Theorem 27. If $\mathrm{f}^{(n+1)}(x)$ is continuous on $[-1,1]$, then

$$
\begin{equation*}
c_{n+1}=\frac{1}{2^{n}} \cdot \frac{1}{(n+1)!} \cdot f^{(n+1)}(n) \tag{2.11}
\end{equation*}
$$

where $-1 \leqslant \eta \leqslant 1$.

It is well known that the truncated chebyshev series is often a very close approximation to the beat minimal poly m nominal of the same degree. For if the coefficients c_{j} tend to zero rapidly and the Chebyshev series

$$
\sum_{j=0}^{\infty} c_{j} T_{j}(x)
$$

converges uniformly to $f(x)$ on $[-1,1]$,

$$
f(x)-\sum_{j=0}^{n} c_{j} T_{j}(x)
$$

will be approximated closely by ${ }_{n+1} 1_{n+1}(x)$, which equiv oscillates at the $n+2$ extrema of $x_{n+1}(x)$. Hence the similarity of (2.11) and (2.3) with $a=-1, b=1$ is not
surprising, in view of Theorem 8.
2.2 Best approximations satisfying interpolator conditions

Tu this section we investigate

$$
\begin{equation*}
\inf _{q(x) \in S_{n+2}}^{\max _{a \leqslant x \leqslant b}|f(x)-q(x)|, ~} \tag{2.12}
\end{equation*}
$$

where 3_{n+2} is used to denote the set of all real polynomials $q(x)$ of degree at most $n+2$ which also satisfy the end-point conditions

$$
q(a)=f(a), \quad q(b)=f(b) .
$$

Thus in (2.12) we are concemed with finding a best polynomial approximation which interpolates $f(x)$ at the end points of $[a, b]$.

Let us write $I(x)$ for the interpolating polynomial for $f(x)$ constructed at $x=a$ and $\pi=b$. That $k s^{2}$

$$
\begin{equation*}
L(x)=[(x-a) f(b)-(x-b) f(a)] /(b-a) . \tag{2.13}
\end{equation*}
$$

Given any $q(x) \in S_{n+2}$ since $q(x)-L(x)$ must vanish at $x=a$ and $x=b$, we have

$$
\begin{equation*}
q(x)=L(x)+(x-a)(x-b) r(x) \tag{2.14}
\end{equation*}
$$

say, where $\cdot x(x) \in I_{n}$. We have that

$$
(x-a)(x-b) r(x)=\sum_{j=0}^{n} c_{j} x^{j}(x-a)(x-b)
$$

and the set of functions

$$
x^{j}(x-a)(x-b), \quad j=0, \cdots, n
$$

form a Chebyahev set on any interval $[a+\epsilon, b-\epsilon]$, for $0<\epsilon<b-a$. Regarding $(x-a)(x-b) x(x)$ as an approximation for $f(x)-L(x)$, the equioscillation theorem (Theorem 22) applies on any of the above intervals $[a+\epsilon, b-\epsilon]$. In particular, there exist $n+1$ points ζ_{j} on $[a+\epsilon, b-\epsilon]$ such that

$$
\begin{equation*}
f\left(f_{j}\right)-L\left(\xi_{j}\right)=\left(\xi_{j}-a\right)\left(\xi_{j}-b\right) r\left(\xi_{j}\right) . \tag{2.15}
\end{equation*}
$$

That ${ }^{3}$, the choice of $x(x)$ corresponding to the best approximation above is an interpolating polynomial for

$$
[f(x)-L(x)] /(x-a)(x-b)
$$

constructed at certain points $\zeta_{0}, \xi_{1}, \ldots, \xi_{n}$. Let us write

$$
\begin{equation*}
F(x)=[f(x)-L(x)] /(x-a)(x-b) \tag{2.16}
\end{equation*}
$$

which is defined on the open interval (a, b). then is $f(x)$ is $(n+1)$ times differentiable we have from mheorem 4 that

$$
\begin{equation*}
F(x)-r(x)=\frac{1}{(x+1)!}\left(x-\xi_{0}\right) \ldots\left(x-\xi_{n}\right) F^{(x+1)}\left(\eta_{x}\right) \tag{2.17}
\end{equation*}
$$

Using (2.14) and (2.16) it follows from this that

$$
\begin{equation*}
f(x)-q(x)=\frac{1}{(x+1)!}(x-a)(x-b)\left(x-\xi_{0}\right) \cdots\left(x-\xi_{n}\right) F^{(x+1)}\left(\eta_{x}\right) \tag{2.16}
\end{equation*}
$$

In (2.18), $\zeta_{0, \ldots,} \xi_{n}$ depend on the choice of \in, as do the functions $g(x)$ and ηx as $\in \rightarrow 0$, each ξ_{j} will have a hunt, say ζ_{j}^{*}, and we will have

$$
\begin{equation*}
f(x)-q^{*}(x)=\frac{1}{(x+0!}(x-a)(x-b)\left(x-\xi_{0}^{*}\right) \cdots\left(x-\xi_{n}^{*}\right) F^{(n+1)}\left(\eta_{x}^{*}\right), \tag{2.19}
\end{equation*}
$$

where $q^{*}(x)$ denotes the palynomel for which the infiman in (2.12) is attained. Let us put

$$
\begin{equation*}
\mu_{n}=\inf _{\left(\xi_{j}\right)}^{\max }\left|\left(1-x^{2}\right)\left(x-\xi_{0}\right) \cdots\left(x-\xi_{n}\right)\right| \tag{2.20}
\end{equation*}
$$

By considering (2.20) as the problem of approximating to $x^{n+1}\left(1-x^{2}\right)$ by a linear combination of the functions $x^{j}\left(1-x^{2}\right), \quad j=0,1, \ldots, n$, we can see that there exists a unique set of points ξ_{j} at which the infimam is attained. Let $q(x)$ denote the polynomial whose associated $x(x)$ interpolates $F(x)$ at the points on [$A, b]$ corresponding to (by a linear transformation) the minimising ξ_{j} on $[-1,1]$. Then in sa similar way to the last section we have

$$
\begin{equation*}
\inf _{q(x) \in S_{x+2}} \max _{a \leq x \leq b}|f(x)-q(x)| \tag{2.22}
\end{equation*}
$$

$$
\geqslant \frac{\mu_{n}}{(n+1)!}\left(\frac{b-a}{2}\right)^{n+3} \min _{a \leq x \leq 6}\left|F^{(n+1)}(x)\right|
$$

and also

$$
\inf _{q(x) \in S_{m+2}} \max _{a \leqslant x \leqslant b}|f(x)-q(x)|
$$

$$
\leqslant \frac{\mu_{n}}{(n+1)!}\left(\frac{b-a}{2}\right)^{n+3} \max _{a \leqslant x \leqslant b}\left|F^{(n+1)}(x)\right|
$$

Thus, combining these inequalities, we have the following result :
Theorem 23. Given a function $f(x)$ whose $(n+1)^{\text {th }}$ derivative is continuous on $[a, b]$, there exists a number $\xi \in[a, b]$ such that

$$
\begin{aligned}
& \inf \\
& \max _{q(x) \in S_{n+2}} \mid f(x)-b|f(x)-q(x)| \\
&=\frac{\mu_{n}}{(n+1)!}\left(\frac{b-a}{2}\right)^{n+3} \cdot\left|F^{(n+1)}(\xi)\right|
\end{aligned}
$$

Note that the auxiliary function $I(x)$, which appears on the right side of (2.23), depends on $f(x)$ and on $[a, b]$. as given by $(2,16)$ and $(2,13)$.

Bound e for $\mu=$

Thou (2.20) we have

$$
\begin{align*}
\mu_{n} & \leqslant \frac{1}{2^{n}} \max _{-1 \leqslant x \leqslant 1}\left|\left(1-x^{2}\right) T_{n+1}(x)\right| \tag{2.24}\\
& \leqslant \frac{1}{2^{n}} .
\end{align*}
$$

Bor a lower bound, we have

$$
\begin{align*}
\mu_{n} & >\inf _{\left(x_{j}\right)} \max _{-1 \leqslant x \leqslant 1}\left|\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n+2}\right)\right| \tag{2.25}\\
& =\frac{1}{2^{n+2}} .
\end{align*}
$$

Combining these inequalities, we obtain

$$
\begin{equation*}
\frac{1}{2^{n+2}}<\mu_{n} \leqslant \frac{1}{2^{n}} \tag{2.26}
\end{equation*}
$$

Precise values for μ_{0} and μ_{2}.
It follows from the uniqueness and equioscillation property associated with the minimising ζ_{j} for (2.20) that the ζ_{j} must be symmetrically placed about the origin. for, on replacing x by $-x$, the polynomial

$$
\left(1-x^{2}\right)\left(x+\xi_{0}\right) \cdots\left(x+\xi_{n}\right)
$$

will also equioscillate and must therefore be identical (by miqueners) with the polynomial

$$
\left(1-x^{2}\right)\left(x-\xi_{0}\right) \cdots\left(x-\xi_{n}\right)
$$

Thus, in particular, we have

$$
\begin{equation*}
\mu_{0}=\max _{-1 \leqslant x \leqslant 1}\left|x\left(1-x^{2}\right)\right|=\frac{2 \sqrt{3}}{9} \tag{2.27}
\end{equation*}
$$

Also,

$$
\mu_{1}=\inf _{(\xi) \quad-1 \leqslant x \leqslant 1}\left|\left(1-x^{2}\right)\left(x^{2}-\xi^{2}\right)\right|
$$

Hence we find that

$$
\begin{equation*}
\mu_{1}=\max _{-1 \leq x \leq 1}\left|\left(1-x^{2}\right)\left(x^{2}-\frac{1}{5}\right)\right|=\frac{1}{5} \tag{2.28}
\end{equation*}
$$

These values for μ_{0} and μ_{1} are conevistont with the inequalities (2.26).
Example. Consider the function $f(x)=(\alpha+x)^{-1}$ on $[-1,1]$ with $\alpha>1$. In thins case (2.13) gives

$$
L(x)=\frac{1}{2}\left[\frac{x+1}{\alpha+1}-\frac{x-1}{\alpha-1}\right]
$$

From (2.16).

$$
\begin{aligned}
F(x) & =[f(x)-L(x)] /\left(x^{2}-1\right) \\
& =\left[\left(\alpha^{2}-1\right)(\alpha+x)\right]^{-1}
\end{aligned}
$$

Trust: we have

$$
\left|F^{(n+1)}(x)\right|=(n+1)!\left(\alpha^{2}-1\right)^{-1}(\alpha+x)^{-(n+2)}
$$

Therefore, for sone $\xi \in[-1,1]$,

$$
\begin{aligned}
\inf _{q(x) \in S_{n+2}} \max _{-1 \leq x \leq 1} & \left|(\alpha+x)^{-1}-q(x)\right| \\
& =\mu_{n}\left(\alpha^{2}-1\right)^{-1}(\alpha+\xi)^{-(n+2)}
\end{aligned}
$$

Let us now approximate to $f(x)$ by partitioning $[a, b]$ into ks sub-intervals and using a golynombal approximation of degree at most n on each sub-interval. Let us choose the points of cub-aivision and the k approximating polynomials so as to minimise the naxinaxa error. It is clear that the maximum exxon, which will be denoted by $\mathrm{F}_{\mathrm{h}, \mathrm{k}}\left(\mathrm{f}^{\prime}\right)$, will be attained at least once on each sub-interval.

Let us write

$$
E_{n, k}(f)=E_{n, k}(f, a, b)
$$

to emphasise the dependence of $F_{n, k}(f)$ on the interval [apb]. We already know that a best approximation of this type exists for $k=1$. We can see by induction on k that the best approximation described above exists for $k=1,2,3, \ldots$. For, assuming that a best approximation exists when we have $k-1$ sub-intervals ($k \geqslant 2$), we can find the best approximation on k sub-intervale by choosing a number $\delta, \quad 0<\delta<b-a$, such that

$$
\begin{equation*}
E_{n, k-1}(f, a, b-\delta)=E_{n, 1}(f, b-\delta, b) \tag{2.29}
\end{equation*}
$$

Note that the left side of (2.29) is a decreasing function of δ and the right side is an increasing function.

Let $I_{1}, I_{2}, \ldots, I_{k}$ be the sub-intervals of $[a, b]$ corresponding to a beat piecewise approximation and le; $x_{1}, x_{2}, \ldots, x_{k-1}$ be the points of subdivision. Then from (2.3), assuming continuity of $f^{(n+1)}(x)$, we may wite, for $j=1,2, \ldots, k$,

$$
\begin{equation*}
E_{n, k}(f)=\frac{2}{(n+1)!}\left(\frac{x_{j}-x_{j-1}}{4}\right)^{n+1} \cdot\left|f^{(n+1)}\left(\xi_{j}\right)\right| \tag{2.30}
\end{equation*}
$$

where $\xi_{j} \in I_{j}$ and $x_{0}=a, x_{k}=b$. What

$$
\begin{equation*}
\left[\frac{1}{2}(n+1)!E_{n, k}(f)\right]^{\frac{1}{n+1}}=\frac{1}{4}\left(x_{j}-x_{j-1}\right) \cdot\left|f^{(n+1)}\left(\xi_{j}\right)\right|^{\frac{1}{n+1}} \tag{2.31}
\end{equation*}
$$

and, on summing (2.31) for $j=1,2, \ldots, k$, we obtain

$$
\begin{equation*}
k\left[\frac{1}{2}(n+1)!E_{n, k}(f)\right]^{\frac{1}{n+1}}=\frac{1}{4} \sum_{j=1}^{k}\left(x_{j}-x_{j-1}\right) \cdot\left|f^{(n+1)}\left(\xi_{j}\right)\right|^{\frac{1}{n+1}} \tag{2.32}
\end{equation*}
$$

Assuming that $f(x)$ cannot be represented exactly by a
polynomial of degree n on any sub-interval of $[a, b]$, we have that ass $k \rightarrow \infty$ in (2.32) the length of the largest sub. interval $x_{j}-x_{j-1}$ will tend to zero. Therefore, as $\mathrm{k} \rightarrow \infty$, we rag y replace the right side or (2.32) by the Riemann integral, giving
$\lim _{k \rightarrow \infty} k^{m+1} E_{n, k}(f)$
$=\frac{2}{(n+1)!}\left[\frac{1}{4} \int_{a}^{b} \left\lvert\, f^{(n+1)}(x)^{\frac{1}{n+1}} d x\right.\right]^{n+1}$.

The special case of (2.33), with $n=1$, is given by Ream, 1961. This will be of interest later in this chapter.

Returning to (2.30), at least one subminterval If must have length not greater than $(b-a) / k$, so that

$$
\begin{equation*}
E_{n, k}(f) \leqslant \frac{2}{(n+1)!}\left(\frac{b-a}{4 k}\right)^{n+1} \max _{a \leqslant x \leqslant b}\left|f^{(n+1)}(x)\right| . \tag{2.34}
\end{equation*}
$$

This generalises the inequality (2.8) for $F_{n}(f)$. Similaxiy, in order to obtain a lower bound for $\mathrm{m}_{\mathrm{h}}(\mathrm{k}(\mathrm{f})$, we can argue that at least one sub-intervai i_{j} must have length not
smaller than $(b-a) / k$. Hence we obtain

$$
\begin{equation*}
E_{n, k}(f) \geqslant \frac{2}{(n+1)!}\left(\frac{b-a}{4 k}\right)^{n+1} \min _{a \leq x \leq b}\left|f^{(n+1)}(x)\right| . \tag{2.35}
\end{equation*}
$$

From these two inequalities we now have: Theorem 29. If $\hat{x}^{(n+1)}(x)$ is continuous on $[a, b]$, there exists a number $\xi \in[a, b]$ such that the error in the best piecewise polynomial approximation of degree at most in on each of k sub-intervals is

$$
\begin{equation*}
E_{n, k}(f)=\frac{2}{(n+1)!}\left(\frac{b-a}{4 k}\right)^{n+1}\left|f^{(n+1)}(\xi)\right| . \tag{2.36}
\end{equation*}
$$

2.A Algorithms for deriving piecewise straight line approximations

Stone, 1961, gives an algorithm for finding best least square a approximations to a function $f(x)$ on a finite interval $[a, b]$ by k straight line segments. He justifies the usefulnees of his algorithm by showing how it may be applied in the solution of certain nonlinear programming problems. Reams 1961, refers to the relevance of this approximation problem in designing diode function-generators for analogue
computers. In the examples given by kean and stone, $f^{\prime \prime}(x)$ is of constant align. Nearly all functions of practical interest aatialy this condition at least piecewise.

In this section, algorithm will be described for solving the same problem, but finding mimes rather than least squares approximations.
suppose $f^{\prime \prime}(x)>0$ on $[\alpha, \beta]$ and that $c x+d$ is the best minima straight line approximation for fox) on $[\alpha, \beta]$. We have from the equioscillation theorem (Theorem 7) that

$$
\max _{\alpha \leq x \leq \beta}|f(x)-c x-d|
$$

Le attained on at least three points. At an interior extreme point, we with have

$$
\frac{d}{d x}(f(x)-c x-d)=0 .
$$

That is,

$$
\begin{equation*}
f^{\prime}(x)-c=0 \tag{2.37}
\end{equation*}
$$

Since $f^{\prime \prime}(x)>0,(2.37)$ can have at most one solution on $[\alpha, \beta]$, whence at follows that two of the extreme points must occur at the end points α and β. The third extreme paint will be an interior point, say ξ. ix

$$
\epsilon=\max _{\alpha \leq x \leq \beta}|f(x)-c x-d|
$$

we will have the following equations

$$
\begin{align*}
f(\alpha)-(c \alpha+d) & =\epsilon \\
f(\xi)-(c \xi+\alpha) & =-\epsilon \\
f(\beta)-(c \beta+d) & =\epsilon \\
f^{\prime}(\xi)-c & =0 \tag{2.41}
\end{align*}
$$

Given α and β, these Lour equations may be solved to determine c, d, ξ and ϵ. For we may eliminate d and \in from (2.39) and (2.41) to obtain

$$
c=[f(\beta)-f(\alpha)] /(\beta-\alpha)
$$

the slope of the chord joining the end points. Hence, using some root-finding procedure, most anitebly one which 'brackets' the root, such as the rule of false position (regula falsi), ξ may be determined from (2.42). Lastly, d and ϵ are found by solving the two linear equations (2.39) and (2.40).

However, we will be more interested here in using the four equations (2.39)-(2.42) in a different way, as in the following theorem.

Theorem 30. Given α and ϵ the equations (2.39)-(2.42) where $f^{\prime \prime}(x)>0$, have at most one solution for c, d, ξ and β.
proof. From equations (2.39), (2.40) and (2.42) we have, on eliminating c and d,

$$
\begin{equation*}
f^{\prime}(\xi)(\xi-\alpha)+f(\alpha)-f(\xi)-2 \epsilon=0 \tag{2.43}
\end{equation*}
$$

Let us write this last equation, in which the only unknown is ξ, as

$$
G(\xi)=0
$$

Then we can see that

$$
\begin{equation*}
G^{\prime}(\xi)=f^{\prime \prime}(\xi)(\xi-\alpha) \tag{2.44}
\end{equation*}
$$

From this, it is seen that

$$
G^{\prime}(\xi)>0, \text { for } \xi>\alpha \text {. }
$$

Thus the equation (2.43) hes at most one solution $\xi>\alpha$. Since from (2.43) $\quad G(\alpha)<0$, a solution ξ of (2.43) will exist on $[\alpha, b]$ if and only if $G(b) \geqslant 0$. If a solution does exist, we ray find e from (2.42) and d nom (2.39).

Equation (2.41) is then available to determine β. If we write this equation as

$$
H(\beta)=0,
$$

then for $\beta>\}$, we have

$$
H^{\prime}(\beta)=f^{\prime}(\beta)-f^{\prime}(\xi)>0 .
$$

So there is at most one solution for β and, since $M(\xi)<0$, a solution will exist on $[\xi, b]$ if ard only $H(b) \geqslant 0$. This concludes the proof of Theorem 30 .

The process of beginning with a preassigned mindmax error ϵ and a given value for the left hand end point α and then finding the minimax straight line and the right hand end point β will be used repeatedly in the following algorithm.

Algorithm 1. Given any $\epsilon>0$, we can construct is sub. intervals

$$
\left[a, x_{1}\right],\left[x_{1}, x_{2}\right], \cdots,\left[x_{k-1}, b\right]
$$

and is straight lines

$$
c ; x+d ; \quad j=1,2, \cdots, k
$$

such that on each subminterval the largest error in
ayproximating to $f(x)$ by the associated straight line is 6. It is assumed that $f^{\prime \prime}(x)>0$ on the given intervel [a,b].

With the notation used in the groof of Theorem 30, if $G(b) \geqslant 0$ and $F(b) \geqslant 0$, then given the end point a (corresponding to α in the four equations (2.39) (2.42)) and \in wo cen find the best minimex straight line, say $c_{1} x+d_{2}$, and also ξ_{1} and x_{1} (these last two numbers corresponding respectively to ξ and β above). The solution of the equations $G(x)=0$ and $H(x)=0$ may be found by the regula falsi nethod.

Beginning with x_{1} (correaponding to α) and ϵ a second minimax straight line may be constructed up to some point x_{2}, and so on. At some strge, say with $x_{\mathrm{k}}-1$ as the new lefit hand end point (α), we will find that either $G(b)<0$ or $E(b)<0$. The geometrical interpretation of this is that the $k^{\text {th }}$ straight line with maximum exror ϵ overshoots the right hand end point b.

When this stege $i s$ reached, we choose as $c_{k}{ }^{x}+d_{k}$
the straight line which passes through the points

$$
\left(x_{k-1}, f\left(x_{k-1}\right)-\epsilon\right) \text { and }(b, f(b)-\epsilon) \text {. }
$$

Thus, given any $\epsilon>0$, the algorithm obtains a piecewise straight line approximation to $f(x)$ on $[a, b]$ with maximum error ϵ. It may be noted that the approxmating function is continuous over the whole interval $[a, b]$. The last straight line, $c_{k} x+a_{k}$ was chosen so as to preserve the continuity of the piecewise polynomial approximation. We also note that the approximation is achieved with the smallest possible number of straight line segments.

Best approximations by k segments.

In the above algorithm, given a preassigned maximum error ϵ, we obtained a piecewise straight line approximation for $f(x)$ on $[a, b]$. Now, suppose that we wish to approximate to $f(x)$ piecewise by means of precisely k straight line segments, that is, this tire we are given the value of k at the outset. Let us examine an
algorithm which finds the appropriate partition of $[a, b]$ and the corresponding minimax error ϵ.

Algorithm 2.

In Algorithm 1 it is evident that the positive integer k is a nonmincreasing function of the minimax error \in, say

$$
k=K(\epsilon)
$$

He can find lower and upper bounds for \in ea follows. First, choose $\epsilon_{0}>0$ arbitrarily and use Algorithm il to calculate

$$
k_{0}=K\left(\epsilon_{0}\right)
$$

If $k_{0}>k, \epsilon_{0}$ will be a lower bound for ϵ. We may then set $\epsilon_{1}=2 \epsilon_{0}$ and calculate

$$
k_{1}=K\left(\epsilon_{1}\right)
$$

If we repeat this calculation for k_{1}, with ϵ_{1} replaced
each time by $2 \epsilon_{1}$, at some stage we will obtain a value os $k_{1} \leqslant k$. This will give an upper bound for \in, easy ϵ_{1}.

However, if initially we obtain $k_{0} \leqslant k$ we may set $\epsilon_{1}=\epsilon_{0}$ as an upper bound for ϵ end this time repeatedly halve ϵ_{0}, calculating

$$
k_{0}=K\left(\epsilon_{0}\right)
$$

each time. Finally, we will obtain a value of $k_{0}>k$, shoving that the current value of ϵ_{0} is a lower bound for ϵ.

Once we have obtained lower and upper bounds for ϵ, we may refine them by repeated bisection of the interval. $\left[\epsilon_{0}, \epsilon_{1}\right]$: using Algorithm I at each stage to calculate

$$
K\left(\frac{1}{2}\left(\epsilon_{0}+\epsilon_{1}\right)\right)
$$

The process is terminated when $\epsilon_{1}-\epsilon_{0}$ is sufficiently small. The operation of Algorithm 1. corresponding to the final value of ϵ_{0} gives the values of the subdividing
points x_{j} and the minimax straight lines $c_{j} x+d_{j}$. Again, the approximatiag function is continuous on $[a, b]$. being simply a convex polygonal line.

It may be noted that at any stage, the operation of Algomithm 1 corresponding to lower and upper bounds ϵ_{0} and E_{1} produces respectively lower and uper bounds for the sub-dividing points x_{j}. This is easily aeen geometrically. Rounding ermox has given no trouble in a very wide range of numerical examples on which $A l$ gorithns 1 and 2 have been tried.

Hinally, it may be observad that by considering ϵ as a function of the suamividing point $x_{c}-1$. we could use regula falsi in algoxithn 2 instead of bigection of the interval.

numencal example.

To 2llustrate these methods, let us considex the function e^{x} on the interval $[0,2]$. The table on the following page displays the best ninimak agproximation to e^{X} on
[0,1$]$ by four straight line seaments, obtained by using Algoxithm 2 with $\mathrm{k}=4$. The corresponding value of ϵ is 0.006579 , all numbers being given to six decimel places.

From (2.36) we have the a prioni bounds

$$
0.0039<\epsilon<0.0107
$$

j	x_{j}	e_{j}	d_{j}
1	0.300570	1.166545	0.993421
2	0.561633	1.543487	0.330124
3	0.792883	2.973057	0.638777
4	1.000000	2.455255	0.256448

Piecerise approximation to e^{x} on $[0,2]$

The relation (2.33), interpreted as an asymptotic formula, would predict

$$
\epsilon \simeq \frac{1}{64}\left(e^{\frac{1}{2}}-1\right)^{2} \simeq 0.006576
$$

which is in exrox only in the sixth decimal place.

An application to quadrature.

Suppose that $s^{\prime \prime}(x)>0$ on $[a, b]$ and we wish to approximate to

$$
\int_{a}^{b} f(x) d x
$$

with a maximum error of ϵ_{0}. Then, setting

$$
\epsilon=\epsilon_{0} /(b-a)
$$

we may use Algorithm 1 to obtain a piecewise straight line approximation for $f(x)$ with maximum exrox ϵ. We will then be able to approximate to the above integral by the area under the convex polygonal line, which gives

$$
\sum_{j=1}^{k} \int_{x_{j-1}}^{x_{j}}\left(c_{j} x+d_{j}\right) d x .
$$

We have the inequality

$$
\left|\int_{a}^{b} f(x) d x-\sum_{j=1}^{k} \int_{x_{j-1}}^{x_{j}}\left(c_{j} x+d_{j}\right) d x\right| \leqslant \epsilon_{0} .
$$

Thus the required integral may be replaced by the approximation

$$
\sum_{j=1}^{k}\left[\frac{1}{2} c_{j}\left(x_{j}^{2}-x_{j-1}^{2}\right)+d_{j}\left(x_{j}-x_{j-1}\right)\right]
$$

with an exrox not greater then ϵ_{0}. phis approach requires a rather large number of evaluations of $f(x)$ and $f^{\prime}(x)$. On the other hand, it provides a sure bound for the ermox incurred. The errox estimates for the mast comonly used quadrature methods involve high order derivatives of the integrand. These estimates are often of little practical use.

It would be worth-while uetng the quadrature methad put forwand hexe only in a situation where the estimate of the exrox had eufficiently high prigxity to
justify the large number of function evaluations.
2. 5 Piecewise approximations satisfying intexpolatoxy conditions

In this section, we combine some of the ideas used in sections 2.2 and 2.3.

Let Δ denote partition of $[a, b]$:

$$
a=x_{0}<x_{1}<\cdots<x_{k-1}<x_{k}=b
$$

Instead of the function $\operatorname{If}(x)$ defined in section 2.2 . let us use $F_{\Delta}(x)$, where, for $x_{j-1} \leqslant x \leqslant x_{j}$ *

$$
F_{\Delta}(x)=\left[f(x)-L_{j}(x)\right] /\left(x-x_{j-1}\right)\left(x-x_{j}\right)
$$

with $\mathrm{Ing}_{\mathrm{g}}(\mathrm{x})$ defined by

$$
L_{j}(x)=\left[\left(x-x_{j-1}\right) f\left(x_{j}\right)-\left(x-x_{j}\right) f\left(x_{j-1}\right)\right] /\left(x_{j}-x_{j-1}\right) .
$$

What is. $F_{\Delta}(x)$ ic defined piecentse on $\left[a_{g} b\right]$. Now let
$q^{(x)}$ denote a function which interpolates $f(x)$ on Δ and is a piecewise polynomial of degree at most $n \geqslant 2$ on 4. Let

$$
\begin{equation*}
E_{x, k}^{*}(f)=\inf \max _{a \leq x \leq b}\left|f(x)-q_{\Delta}(x)\right|, \tag{2.45}
\end{equation*}
$$

where the infimun is over ail mach polynomials $q_{\Delta}(x)$ and all partitions Δ of $[a, b]$ into k submintervols. As in (2.23), we have

$$
\begin{equation*}
E_{n, k}^{*}(f)=\frac{\mu_{n-2}}{(n-1)!}\left(\frac{x_{j}-x_{j-1}}{2}\right)^{n+1} \cdot\left|F_{\Delta}^{(n-1)}(\xi ;)\right| \tag{2.46}
\end{equation*}
$$

with $x_{j-1} \leqslant \xi_{j} \leqslant x_{j}$. Arguing now as we did in obtaining (2.34) and (2.35), we obtain the inequality

$$
\begin{equation*}
E_{n, k}^{*}(f) \leqslant \frac{\mu_{n-2}}{(n-1)!}\left(\frac{b-a}{2 k}\right)^{n+1} \sup _{\Delta, x}\left(F_{\Delta}^{(n-1)}(x)\right) \tag{2.47}
\end{equation*}
$$

where the aupremu is over sin partitions Δ or $[a, p]$ into k sub-intervalw, end all $x \in[e, b]$. We alms have the lower bound for $\mathrm{F}_{\mathrm{D}, \mathrm{L}}(\mathrm{f})$:

$$
\begin{equation*}
E_{n, k}^{*}(f) \geqslant \frac{\mu_{n-2}}{(n-1)!}\left(\frac{b-a}{2 k}\right)^{n+1} \inf _{\Delta, x}\left|F_{\Delta}^{(n-1)}(x)\right| \tag{2.48}
\end{equation*}
$$

An application to cubic gu lines.

Let $S_{\Delta}(x)$ denote a cubic spline approximation for $f(x)$ n a partition Δ :

$$
a=x_{0}<x_{1}<\cdots<x_{k-1}<x_{k}=b
$$

of the interval $[a, b]$. (See Section 3.5).

We have that

$$
\max _{a \leq x \leq b}\left|f(x)-S_{\Delta}(x)\right| \geqslant E_{3, k}^{*}(f)
$$

That is,

$$
\begin{aligned}
\max _{a \leq x \leq b} \mid f(x) & -S_{\Delta}(x) \mid \\
& \geqslant \frac{1}{10}\left(\frac{b-a}{2 k}\right)^{4} \cdot \inf _{\Delta, x}\left|F_{\Delta}^{\prime \prime}(x)\right|
\end{aligned}
$$

We have not made use of the continuity of the first and second derivatives of $\Delta(x)$, in obtaining the inequality
(2.49). IT, further we did not twa se into account the intargelatory nature of $S_{\Delta}(x)$, that is the continuity of $S_{\Delta}(x)$ itself, we could use the inequality (2.35) and obtain

$$
\max _{a \leqslant x \leqslant b}\left|f(x)-S_{\Delta}(x)\right|
$$

$$
\begin{equation*}
\geqslant \frac{1}{12}\left(\frac{b-a}{4 k}\right)^{4} \cdot \min _{a \leq x \leq b}\left|f^{(4)}(x)\right| \tag{2.50}
\end{equation*}
$$

Max example, tet us choose

$$
f(x)=(\alpha+x)^{-1}
$$

on the interval $[-1,3]$, with $\alpha>1$. For $x_{j-1} \leq x \leq x_{j}$ we then have

$$
F_{\Delta}^{\prime \prime}(x)=2\left(\alpha+x_{j-1}\right)^{-1}\left(\alpha+x_{j}\right)^{-1}(\alpha+x)^{-3}
$$

Thus from (2.49),

$$
\max _{-1 \leq x \leq 1}\left|(\alpha+x)^{-1}-S_{\Delta}(x)\right| \geqslant \frac{1}{5 k^{4}} \cdot \frac{1}{(\alpha+1)^{5}} \cdot
$$

$\operatorname{Trom}(2.50)$ wo obtain

$$
\max _{-1 \leqslant x \leqslant 1}\left|(\alpha+x)^{-1}-S_{\Delta}(x)\right| \geqslant \frac{1}{8 k^{4}} \cdot \frac{1}{(\alpha+1)^{5}} .
$$

A would be expected, this last inequality 5 s weaker than the previous one.

Chapter 3
HELPMATE OB TEE E ERROR IN BERTH L_{D} APPROXIMATIONS
3.1 A characterising property

The best minimax polynomial approximations are characterised by the equioscillation property of the axror function. the best least squares polynomial approximations are those whose coefficients are the solutions of certain sets of linear equations, called the normal equations.

The characterising property of best I_{p} polynomial approximations, fox any value of $p \geqslant 1$, is not quite so widely known. Tor thin reason, a proof of Theorem 18 will be given here. It is based on a proof in timan,1963. Hor convenience, let us restate:

Theorem 18. If $f(x)$ is continuous on $[a, b]$, then $f o r$ any value of $p \geqslant 1$ a necessary and sufficient condition for $\mathrm{q}(x) \in \mathrm{P}_{\mathrm{n}}$ to be the best I_{p} approximation for $f(x)$ on $[a, b]$ is that

$$
\begin{equation*}
\int_{a}^{b} r(x)|f(x)-q(x)|^{p-1} \operatorname{sign}[f(x)-q(x)] d x=0 \tag{3.1}
\end{equation*}
$$

for all $x(x) \in P_{n}$.
proof. Suppose that, for some $q(x) \in P_{n}$ (3.2) holds for all $x(x) \in P_{n}$. Then we may write

$$
\begin{aligned}
& \int_{a}^{b}|f(x)-q(x)|^{p} d x \\
& \quad=\int_{a}^{b}[f(x)-q(x)] .|f(x)-q(x)|^{p-1} \cdot \operatorname{sign}[f(x)-q(x)] d x .
\end{aligned}
$$

Hence, for any $\quad x(x) \in P_{n}$, we have from (3.1) that

$$
\begin{align*}
& \int_{a}^{b}|f(x)-q(x)|^{p} d x \\
&=\int_{a}^{b}[f(x)-r(x)] \cdot|f(x)-q(x)|^{p-1} \cdot \operatorname{sign}[f(x)-q(x)] d x \\
& \leqslant \int_{a}^{b}|f(x)-r(x)| \cdot|f(x)-q(x)|^{p-1} d x \tag{3.2}\\
& \leqslant\left[\int_{a}^{b}|f(x)-r(x)|^{p} d x\right]^{\frac{1}{p}} \cdot\left[\int_{a}^{b}|f(x)-q(x)|^{p} d x\right]^{\frac{p-1}{p}}
\end{align*}
$$

for $\rho>1$, by Hölder* inequality for integrals (theorem 20). Thus for $D>1$.

$$
\begin{equation*}
\left[\int_{a}^{b}|f(x)-q(x)|^{p} d x\right]^{\frac{1}{p}} \leqslant\left[\int_{a}^{b}|f(x)-r(x)|^{p} d x\right]^{\frac{1}{p}} . \tag{3.3}
\end{equation*}
$$

From (3.2) we see that (3.3) holds for $p=1$ also. Since (3.3) holds for all $x(x) \in P_{n}$, we have proved the sufficiency of the condition (3.1). That is, $q(x)$ is the best approximation.

Conversely, suppose that $q(x)$ is the best approximation and that there exists a nonnegative integer $k \leq n$ such that

$$
\int_{a}^{b} x^{k} \cdot|f(x)-q(x)|^{p-1} \cdot \operatorname{sign}[f(x)-q(x)] d x=\delta \neq 0
$$

Now let

$$
r_{\epsilon}(x)=q(x)+\in x^{k}
$$

Then, for some $\epsilon \neq 0$ (ϵ not necessarily positive),

$$
\begin{equation*}
\epsilon \int_{a}^{b} x^{k}\left|f(x)-r_{\epsilon}(x)\right|^{p-1} \cdot \operatorname{sig} x\left[f(x)-r_{\epsilon}(x)\right] d x>0 . \tag{3.6}
\end{equation*}
$$

This follows from (3.4) by taking $\mid \in \mathbb{\|}$ sufficiently small and keeping

$$
\operatorname{sig} n(\epsilon) \quad=\quad \operatorname{sign}(\delta)
$$

Hence

$$
\begin{align*}
& \int_{a}^{b}\left|f(x)-r_{\epsilon}(x)\right|^{p} d x \\
& \quad=\int_{a}^{b}\left[f(x)-r_{\epsilon}(x)\right] \cdot\left|f(x)-r_{\epsilon}(x)\right|^{p-1} \cdot \operatorname{sign}\left[f(x)-r_{\epsilon}(x)\right] d x . \tag{3.7}
\end{align*}
$$

Using (3.6) we have from (3.7) that

$$
\begin{aligned}
& \int_{a}^{b}\left|f(x)-r_{\epsilon}(x)\right|^{p} d x \\
& \quad<\int_{a}^{b}[f(x)-q(x)] .\left|f(x)-r_{\epsilon}(x)\right|^{p-1} \cdot \operatorname{sig} x\left[f(x)-r_{\epsilon}(x)\right] d x
\end{aligned}
$$

$$
\begin{equation*}
\leqslant \int_{a}^{b}|f(x)-q(x)| \cdot\left|f(x)-r_{\epsilon}(x)\right|^{p-1} d x . \tag{3.8}
\end{equation*}
$$

From (3.8), using Hölder's inequality exactly as in the earlier part of the proof, we have

$$
\int_{a}^{b}\left|f(x)-r_{\epsilon}(x)\right|^{p} d x<\int_{a}^{b}|f(x)-q(x)|^{p} d x
$$

Since $\quad r_{\epsilon}(x) \in P_{n}$ this last inequality provides a contradiction to the assumption that $\mathrm{q}(\mathrm{x})$ is the best approximation. This completes the proof.
3.2 The interpolatory property

In Chapter 2, the derivation of the result

$$
\begin{equation*}
E_{n}(f)=\frac{2}{(n+1)!}\left(\frac{b-a}{4}\right)^{n+1}\left|f^{(n+1)}(\xi)\right| \tag{3.9}
\end{equation*}
$$

depended on the interesting property that, in the minimax approximation of a continuous function $f(x)$, the best polynomial interpolates $f(x)$ at $n+1$ points on $[a, b]$. This also holds for best L_{2} (ie. least squares) polynomial
approximations. See, for exaragle, Davis, 1965.

More generally, this in true for best Lp polynomial approximations, for any value of $p \geqslant 1$. This result is implicit in piman, 1965. Here it is stated explicitly: Theorem 31. For an $p \geqslant 1$, if $g(x)$ is the beet i_{p} polynomial approximation of degree not greater than n to a continua function $f(x)$ on $[a, b]$, then there exist $n+1$ points on $[a, b]$ at which $q(x)$ interpolates $f(x)$. Proof. That follow a simply from Theorem 18. Consider the number of changes in et gen of $f(x)-g(x)$ on $[a, b]$. Since from Theorem 18

$$
\int_{a}^{b}|f(x)-q(x)|^{p-1} \cdot \operatorname{sign}[f(x)-q(x)] d x=0
$$

it follows that there must be et least one sign change. let us suppose that sign changes occur only ai $x_{0}, x_{1}, \ldots, x_{k}$ within $[a, b]$, where $0 \leq l \leq n$. Then the function

$$
\left(x-x_{0}\right) \cdots\left(x-x_{k}\right) \cdot \operatorname{sign}[f(x)-q(x)]
$$

has constant sigh on $[a, b]$ and therefore

$$
\int_{a}^{b}\left(x-x_{0}\right) \cdots\left(x-x_{k}\right) \cdot|f(x)-q(x)|^{p-1} \cdot \operatorname{rign}[f(x)-q(x)] d x
$$

is non-zero. Since the polynomial

$$
\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k}\right)
$$

belongs to P_{n} this contradicts theoren 18 and completes the proos.

Now let us write, for $p \geqslant 1$,

$$
\begin{equation*}
E_{n}^{(p)}(f)=\inf _{q(x) \in P_{n}}\left[\int_{a}^{b}|f(x)-q(x)|^{p} d x\right]^{\frac{1}{p}} \tag{3.10}
\end{equation*}
$$

so that $\sum_{n}^{(\infty)}(f) \quad$ coincides with $F_{n}(f)$ in chapter 2. By Theoren 31, we may write

$$
f(x)-q^{*}(x)=\frac{1}{(x+1)!}\left(x-x_{0}^{*}\right) \cdots\left(x-x_{x}^{*}\right) \cdot f^{(x+1)}\left(\zeta_{x}^{*}\right),(3.11)
$$

where $q^{*}(x)$ is the polynomal for which the infimum (3.10) is attained. We assume continuity of $f^{(n+1)}(x)$. Thus from (3.11)

$$
\begin{align*}
& E_{n}^{(p)}(f)= \\
& \frac{1}{(n+1)!}\left[\int_{a}^{b}\left|\left(x-x_{0}^{*}\right) \cdots\left(x-x_{n}^{*}\right)\right|^{p} .\left|f^{(n+1)}\left(\xi_{x}^{*}\right)\right|_{d x}^{p}\right]^{\frac{1}{p}} . \tag{3.12}
\end{align*}
$$

Let

$$
\begin{equation*}
\delta_{n}^{(p)}=\inf _{\left(y_{j}\right)}\left[\int_{-1}^{1}\left|\left(y-y_{0}\right) \cdots\left(y-y_{n}\right)\right|^{p} d y\right]^{\frac{1}{p}} \tag{3.13}
\end{equation*}
$$

The inftmua is attained (see Nikolekii, 1964) fox a set of points $\left\{y_{0}, \ldots, y_{n}\right\}$ contained in $[-1,1]$. Now let us transform $a \leq x \leq b$ into $-1 \leq y \leq 1$ by putting

$$
x=[(b-a) y+(b+a)] / 2
$$

Let x_{0}, \ldots, x_{n} be the pointer on $[a, b]$ corresponding to the minimising y_{j} for (3.13), and let $a(x)$ denote the interpolating polynomial for $f(x)$ constructed at $x=x_{0}, \ldots \ldots x_{n}$, We can therefore wite

$$
f(x)-q(x)=\frac{1}{(n+1)!}\left(x-x_{0}\right) \cdots\left(x-x_{n}\right) \cdot f^{(n+1)}\left(f_{x}\right) .
$$

Now

$$
\begin{equation*}
E_{n}^{(k)} \leqslant\left[\int_{a}^{b}|f(x)-q(x)|^{\beta} d x\right]^{\frac{1}{p}} \tag{3.14}
\end{equation*}
$$

sand, replacing the right side of (3.14) by the wight side of (3.12) without the scans $(*)$, we have
$E_{n}^{(h)}(f) \leqslant$

$$
\frac{1}{(n+1)!} \max _{a \leq x \leq b}\left|f^{(n+1)}(x)\right| \cdot\left[\int_{a}^{b}\left|\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)\right|^{p} d x\right]^{\frac{1}{p}} .
$$

That $\mathbf{1 s}$.

$$
\begin{equation*}
E_{n}^{(p)}(f) \leqslant \frac{\delta_{n}^{(p)}}{(n+1)!}\left(\frac{b-a}{2}\right)^{n+1+\frac{1}{p}} \cdot \max _{a \leqslant x \leqslant b}\left|f^{(n+1)}(x)\right| . \tag{3.15}
\end{equation*}
$$

From (3.12), we also have

It follows from these last two inequalities; by continuity of $f^{(n+1)}(x)$, that

$$
\begin{equation*}
E_{n}^{(n)}(f)=\frac{\delta_{n}^{(n)}}{(n+1)!}\left(\frac{b-a}{2}\right)^{n+1+\frac{1}{p}} \cdot\left|f^{(n+1)}(\rho)\right|, \tag{3.77}
\end{equation*}
$$

for some $\xi \in[a, b]$. Letting $\rightarrow \infty$ in (3.17), ye obtain (3.9).
3.3 the case $p=2$

Let, us now cons tox further the special case where $y=2$. As in Definition 10 of chapter 1 , let $Q_{j}(x)$ denote the Legendre polynomial of degree joe Then, by theorem 13, the infimun (3.13) with $p=2$ is attained by the polynomial

$$
2^{n+1} Q_{n+1}(y) /\binom{2 n+2}{n+1}
$$

and has the value

$$
\delta_{n}^{(2)}=\left(\frac{2}{2 n+3}\right)^{\frac{1}{2}} \cdot 2^{n+1} /\left(\begin{array}{c}
\binom{n+2}{n+1} . \tag{3.18}
\end{array} .\right.
$$

Th men, 1963, notes that for all values of n

$$
\begin{equation*}
\frac{1}{\sqrt{2}} \cdot \frac{1}{2^{n}}<\delta_{n}^{(2)}<\frac{\sqrt{2}}{2^{n}} \tag{3.19}
\end{equation*}
$$

3.4 the case $p=1$

When $p=3$, the two polynomials $q(x)$ and $q^{*}(x)$ of section 3.2 coincide. This is shown in piman, 1963. That is, the best L_{y} approximating polynomial of degree at most n to $f(x)$ on $[a, b]$ is simply the interpolating polynomial for $f(x)$ constructed at the abscissas which minimise

$$
\inf _{\left(x_{j}\right)} \int_{a}^{b}\left|\left(x-x_{0}\right) \cdots\left(x-x_{n}\right)\right| d x .
$$

We will return to this result in Section 3.6.
ineanwile, we note that from theorem lo we have

$$
\begin{equation*}
\delta_{n}^{(1)}=1 / 2^{n} \tag{3.20}
\end{equation*}
$$

3.5 General values of

Not so much appears to be known about $\delta_{n}^{(p)}$ for values
of p other than $p=1,2, \infty$. See fox example Nikolskii, 1964. However, we may write

$$
\begin{equation*}
\delta_{n}^{(p)} \leqslant\left[\int_{-1}^{1}\left|\frac{1}{2^{n}} T_{n+1}(x)\right|^{p} d x\right]^{\frac{1}{p}} \tag{3.21}
\end{equation*}
$$

where $T_{n+1}(x)$ is the Chebyshev polynomial (Definition 6). Thus

$$
\begin{equation*}
\delta_{n}^{(p)} \leqslant 1 / 2^{n-\frac{1}{p}} \tag{3.22}
\end{equation*}
$$

Equality holds in (3.22) only fox $p=\infty$.

Also, from theater 19,

$$
\begin{aligned}
& {\left[\int_{-1}^{1}\left|\left(x \rightarrow x_{0}\right) \cdots\left(x-x_{n}\right)\right|^{p} d x\right]^{\frac{1}{p}} \geq} \\
& 2^{\frac{1}{p}-1} \int_{-1}^{1}\left|\left(x \rightarrow x_{0}\right) \cdots\left(x-x_{n}\right)\right| d x
\end{aligned}
$$

for $p \geqslant 1$. Therefore

$$
\left.\left.\delta_{n}^{(b)} \geqslant 2^{\frac{1}{p}-1} \min _{(x ;)} \int_{-1}^{1} \right\rvert\,\left(x-x_{0}\right) \cdots(x-)_{n}\right) \mid d x
$$

This gives the inequality

$$
\begin{equation*}
\delta_{n}^{(p)} \geqslant 1 / 2^{n+1-\frac{1}{\beta}} \tag{3.23}
\end{equation*}
$$

In this case, equality holds only for $p=1$.

Combining (3.22) and (3.23) gives

$$
\begin{equation*}
1 / 2^{n+1-\frac{1}{p}} \leq \delta_{n}^{(p)} \leq 1 / 2^{n-\frac{1}{p}} \tag{3.24}
\end{equation*}
$$

which generalises Timon's inequalities (3.19). Further, let us write

$$
\begin{equation*}
\theta_{n}^{(p)}=2^{n+1+\frac{1}{p}} \delta_{n}^{(p)} \tag{3.25}
\end{equation*}
$$

Then (3.17) may be rewritten as

$$
\begin{equation*}
E_{n}^{(p)}(f)=\frac{\theta_{n}^{(p)}}{(n+1)!}\left(\frac{b-a}{4}\right)^{n+1+\frac{1}{p}} \cdot\left|f^{(n+1)}(\xi)\right| \tag{3.26}
\end{equation*}
$$

where

$$
\begin{equation*}
2^{\frac{2}{p}} \leqslant \theta_{n}^{(b)} \leqslant 2^{1+\frac{2}{p}} \tag{3.27}
\end{equation*}
$$

From the previous sections, we see that

$$
\theta_{n}^{(1)}=4 \quad \text { and } \quad \theta_{n}^{(\infty)}=2
$$

Hor other values of $\mathrm{g}, \quad 1<\mathrm{p}<\infty$, both inequalities (3.27) wald strictly. It may be noted that $\theta_{n}^{(p)}$ depends only on n and p, and not on the function $f(x)$ not on the interval $[a, b]$.
3.6 Further remarks on L_{2} approximations

For completeness, and for the sake of an application to be described later in this section, we now consider two theorems on I I_{1} approximation. The first of these is stated explicitly and the second is implicit in the account of $24 m a n, 1963$.

Theorem 32. $\quad \mathrm{Hbr} k=0,1, \ldots, n$,

$$
\begin{equation*}
\int_{-1}^{1} x^{k} \cdot \operatorname{sig} n\left[\sin (n+2) \cos ^{-1} x\right] d x=0 \tag{3.28}
\end{equation*}
$$

Proofs Let us gut

$$
x=\cos \theta .
$$

Then the integral in (3.28) is

$$
\begin{align*}
& \int_{0}^{n} \sin \theta \cos ^{k} \theta \cdot \operatorname{sign}[\sin (n+2) \theta] d \theta \\
& =\sum_{j=1}^{n+2}(-1)^{j-1} \int_{(j-1) \pi /(n+2)}^{j \pi /(n+2)} \sin \theta \cos ^{k} \theta d \theta \\
& =\frac{1}{(k+1)} \sum_{j=1}^{n+2}(-1)^{j}\left[\cos ^{k+1} \theta\right]_{1 j-1) \pi /(n+2)}^{j \pi /(n+2)} \\
& \left.=\frac{1}{2(k+1)} \sum_{j=0}^{n+2} \prime \prime(-1)^{j} \cos { }^{k+1} \frac{j \pi}{(n+2)}\right) \tag{3.29}
\end{align*}
$$

where $\sum^{\prime \prime \prime}$ denotes a sum whose first and last terms are halved. Now $\cos (k+1) \theta$ may be expressed as a polynomial of degree $k+1$ in $\cos \theta$, thetis as $I_{k+1}(\cos \theta)$. conversely, we can find α_{j} such that

$$
\cos ^{k+1} \theta=\sum_{j=0}^{k+1} \alpha_{j} \cos j \theta
$$

Hence we can show that (3.29) vanishes for $k=0,1, \ldots, n$ if we can show that

$$
\begin{equation*}
\sum_{j=0}^{n+2} \prime(-1)^{j} \quad \cos \frac{j(k+1) \pi}{(n+2)}=0 \tag{3.30}
\end{equation*}
$$

for $k=0,1, \ldots, n$. This is easily verified by expressing $\cos \theta$ as the real part of $e^{i \theta}$ and summing the geometric series then obtained from (3.30). This completes the proof of theorem 32.

This now enables us to prove the most interesting result :

Theorem 33. The best I_{1} approximation to a continuous function $f(x)$ on $[-1,1]$ by a polynomial of degree not greater than a is simply the interpolating polynomial for $f(x)$ constructed at the zeros of $\sin (n+2) \cos ^{-1} x^{n} \quad$ in the interior of $[-1,1]$.

Proof. Let $q(x) \in P_{n}$ be the interpolating polynomial for $f(x)$ constructed at the zeros of $\sin (n+2) \cos ^{-1} x$ in the interior of $[-1,2]$. It follows that $f(x)-q(x)$ changes sign on $[-1,1]$ at the same points as $\sin (n+2) \cos ^{-1} x$ changes sign. Thus from theorem 32

$$
\begin{equation*}
\int_{-1}^{1} x^{i} \cdot \operatorname{sign}[f(x)-q(x)] d x=0 \tag{3.31}
\end{equation*}
$$

for $k=0,1, \ldots, n$. de follows from Theorem 18 that $~ Q(x)$ is the bast approximation.

It may be noted ale o that Theorem 10 follows fum this result. $16 x$

$$
\begin{equation*}
\inf _{\left(c_{j}\right)} \int_{-1}^{1}\left|x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}\right| d x \tag{3.32}
\end{equation*}
$$

is attained when

$$
c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}
$$

is the intorgolatime polynomial for x^{n} constructed at the zeros of $\sin (a+1) \cos ^{-1} x$ in the interior ai $[-1,2]$. what are

$$
x_{j}=\cos \frac{j \pi}{(n+1)}, \quad j=1,2, \ldots, n
$$

These are the zeros of $U_{n}(x)$, the cheoyshev polynomial of the second kind, as in Definition 6. The integrand in (3.32) may be replaced by the modulus of the error formula for the interpolating polynomial.

$$
\begin{equation*}
\frac{1}{n!}\left(x-x_{1}\right) \cdot \cdots\left(x-x_{n}\right) \frac{d^{n}}{d x^{n}}\left(x^{n}\right)_{x=y_{x}}, \tag{3.33}
\end{equation*}
$$

where

$$
x_{j}=\cos \frac{j \pi}{n+1}
$$

That is y the integrand in (3.32) is a multiple of $U_{n}(x)$. It is easily checked from the definition that the leading coefficient of $u_{n}(x)$ as 2^{n}, which completer the proof of Theorem 10.
application to quadrature.

A common class of quadrature formulae is obtained by making the approximation

$$
\int_{a}^{b} f(x) d x \simeq \int_{a}^{b} q(x) d x
$$

where $\mathrm{a}(\mathrm{x})$ is an interpolating polynomial for $\mathrm{f}(\mathrm{x})$ at certain points $x_{0}, x_{1}, \ldots, x_{n}$ on $[a, b]$. These are called interpolatory quadrature formulae. well know examples
are the (closed) Wewton -.. Cotes Somulae in which $q(x)$ interpolates $\hat{f}(x)$ at equally spaced points including the end points, the open Newton - Cotes fommulae where the interpolating points are equally spaced but exclude the end points, and the Gauss - Legendre formulae whore the interpolating points are the zeros of the Legenare polynomials. (see Javis and Rabinowitz, 1967).

Having studied L_{1} polynomial approximation above, it is natural to suggest transfoming the range of integration $[a, b]$ onto $[-1, I]$ and taking ass $g(x)$ the polynomial which interpolates $f(x)$ at the zexos of $\sin (n+2) \cos ^{-1} x$ in the intexior of $[-2,3]$. That is, interpolating $f(x)$ at the eexas of $U_{n+1}(x)$. now, by Theorem 33. this will give the polynomial for which

$$
\begin{equation*}
\inf _{q(x) \in P_{n}} \int_{-1}^{1}|f(x)-q(x)| d x \tag{3.34}
\end{equation*}
$$

is attainea.

Bor the first few values of in we abtain the following formulae as approximations to

$$
\int_{-1}^{1} f(x) d x
$$

(A linear transformation will give the appropriate formulae when the range of integration is $[a, b]$).
(A) $f\left(\frac{1}{2}\right)+f\left(-\frac{1}{2}\right)$
(B) $\frac{2}{3}\left[f\left(-\frac{1}{\sqrt{2}}\right)+f(0)+f\left(\frac{1}{\sqrt{2}}\right)\right]$
(c)

$$
\begin{array}{r}
\left(\frac{1}{2}-\frac{\sqrt{5}}{30}\right)\left[f\left(\frac{\sqrt{5}+1}{4}\right)+f\left(-\frac{\sqrt{5}-1}{4}\right)\right] \\
+\left(\frac{1}{2}+\frac{\sqrt{5}}{30}\right)\left[f\left(\frac{\sqrt{5}-1}{4}\right)+f\left(-\frac{\sqrt{5}+1}{4}\right)\right]
\end{array}
$$

(D) $\frac{1}{45}\left[26 f(0)+18\left(f\left(\frac{1}{2}\right)+f\left(-\frac{1}{2}\right)\right)+14\left(f\left(\frac{\sqrt{3}}{2}\right)+f\left(-\frac{\sqrt{3}}{2}\right)\right)\right]$

These formulas are not new. They have already been studied by Hilippi, 1964, who was led to their discovery by a different route to that described above. Filippi's starting point is the integration formula of Clenshaw and. curtis, 1960. This evaluates

$$
\int_{-1}^{x} f(t) d t
$$

by expressing the integrand as a chebyshev series and integrating this, using (2.B), to give the integral also as a Chebyghev sexier. Philippi modifies this idea nighty to cut out the integration step. He writes

$$
\begin{equation*}
F(x)=F(-1)+\int_{-1}^{x} f(t) d t \tag{3.36}
\end{equation*}
$$

and expresses

$$
\begin{equation*}
F(x)=\sum_{j=0}^{\infty}, A_{j} T_{j}(x) . \tag{3.37}
\end{equation*}
$$

Thus

$$
\begin{equation*}
A_{j}=\frac{2}{\pi} \int_{-1}^{1}\left(1-x^{2}\right)^{-\frac{1}{2}} F(x) T_{j}(x) d x \tag{3.30}
\end{equation*}
$$

fox $j=0,2,2, \ldots$. Using the identity

$$
\frac{d}{d x}\left(\left(1-x^{2}\right)^{\frac{1}{2}} T_{n}^{\prime}(x)\right)=-x^{2}\left(1-x^{2}\right)^{-\frac{1}{2}} T_{x}(x)
$$

and integrating (3.38) by parts, he obtains

$$
\begin{equation*}
A_{j}=\frac{2}{\pi j^{2}} \int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}} f(x) T_{j}^{\prime}(x) d x \tag{3.39}
\end{equation*}
$$

Now from (2.21) and theorem 12 no note that the polynomials ${ }_{j}{ }_{j}^{\prime}(x)$ are orthogonal on $[-1,1]$ with respect to $\left(1-x^{2}\right)^{\frac{1}{2}}$. Now 2 lo k

$$
\begin{equation*}
r_{n}(x)=\sum_{j=0}^{n} A_{j+1} T_{j+1}^{\prime}(x) \tag{3.40}
\end{equation*}
$$

which Taxa (3.36) and (3.37) ia seen to be a truncated series for $f(x)$. From (3.39) and Theorem 14 we see that $y_{n}(x)$ is the least squares approximation for $f(x)$ with respect to $\left(1-x^{2}\right)^{\frac{1}{2}}$. What in,

$$
\min _{q(x) \in P_{n}} \int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}}[f(x)-q(x)]^{2} d x
$$

is attained row the choice

$$
q(x)=r_{n}(x)
$$

Milipp then considers $\bar{x}_{n}(x)$, the interpolating polynomial for $f(x)$ constructed at the zeros of $T_{n+2}^{\prime}(x)$, that is at the zeros of $U_{n+1}(x)$. We have

$$
f(x)-\bar{r}_{n}(x)=\frac{1}{(n+1)!}\left(x-x_{1}\right) \cdots\left(x-x_{n+1}\right) f^{(n+1)}\left(\xi_{x}\right)
$$

so that

$$
\begin{align*}
& \int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}}\left[f(x)-\bar{r}_{n}(x)\right]^{2} d x \\
& \quad=\left[\frac{1}{(n+1)} f^{(n+1)}(\bar{\xi})\right]^{2} \int_{-1}^{1}\left(1-x^{2}\right)^{\frac{1}{2}}\left(x-x_{1}\right)^{2} \cdots\left(x-x_{n+1}\right)^{2} d x \tag{3.4I}
\end{align*}
$$

From theorem 15 , we see that this choice of x_{1}, \ldots, x_{n+1} minimises the integral on the right side of (3.41). Wilippi argues from this that $\overline{\mathrm{T}}_{\mathrm{n}}(\mathrm{x})$ will unmanly give a close approximation to $x_{n}(x)$. Thus he suegente using the approximation

$$
\int_{-1}^{1} f(x) d x \simeq \int_{-1}^{1} \bar{r}_{n}(x) d x
$$

For $n=1,2,3.4$, thus gives the formulae (3.35).

1iliopi's integration formulas axe compared muncrically with both the cRenshaw - Curtis and the Gauss . Legendre Commlae by $W x i g h t, 1966$. In this comparison, none of these integration formulae can be dismissed, since each emerges as superior to the others for certain integrand.

The observation made here that the Hixtpgi fommalae satisfy the minimum is papery, an in (3.34), appears to be new

3.7 piecewise approximations

Th Section 2.3, wo considered mininax piecewise polynomial approximations. Here we shall consider ${ }_{\mathrm{L}}^{\mathrm{p}}$ piecewise polynomial approximations. Let us write
$E_{n, k}^{(p)}(f, a, b)=$

$$
\begin{equation*}
\inf \left[\sum_{j=1}^{k} \int_{x_{j-1}}^{x_{j}}\left|f(x)-q_{j}(x)\right|^{p} d x\right]^{\frac{1}{p}} \tag{3.42}
\end{equation*}
$$

where the intima is over all partitions of $[a, b]$ into \mathbb{E} aubintexvals, with sub.edividing point is

$$
a=x_{0}<x_{1}<\cdots<x_{k-1}<x_{k}=b
$$

and over all polynowien approximations $a_{j}(x) \in p_{n}$ on the $j^{\text {th }}$ eubinterval, $j=3,25 \ldots, k$, an argument similes to the one used in section 2.3 shows that there exist points x_{j}^{*} and polynomials $q_{j}^{*}(x)$ Pos which the Lurimun (3.42) is attained. Also, it ta clear that for the best piecevime approximation, $q_{j}^{*}(x)$ must be the best L_{p} approximation for $f(x)$ on the interval $\left[x_{j-1}^{*}, x_{j}^{*}\right]$. Therefore

$$
\begin{align*}
& E_{n, k}^{(p)}(f, a, b)= \\
& {\left[\sum_{j=1}^{k}\left[\epsilon_{n}^{(p)}\left(f, x_{j-1}^{*}, x_{j}^{*}\right)\right]^{p}\right]^{\frac{1}{p}} } \tag{3.43}
\end{align*}
$$

That is

$$
\begin{align*}
& E_{n, k}^{(p)}(f, a, b)= \\
& {\left[\sum_{j=1}^{k}\left[\frac{\theta_{n}^{(p)}}{(n+1!}\left(\frac{x_{j}^{*}-x_{j-1}^{*}}{4}\right)^{n+1+\frac{1}{p}} \cdot\left|f^{(n+1)}\left(\xi_{j}\right)\right|\right]^{p}\right]^{\frac{1}{p}} . } \tag{75}
\end{align*}
$$

 be equal, otherwise we could obtain a better approximation by taking another partition of $[a, b]$. It follow that, for

$$
\begin{aligned}
& j=2,2, \ldots, k, \\
& \left(\frac{x_{;}^{*}-x_{;-1}^{*}}{4}\right)^{n+1+\frac{1}{p}} \cdot\left|f^{(n+1)}(\xi ;)\right| \leqslant\left(\frac{b-a}{4 k}\right)^{n+1+\frac{1}{p}} \max _{a \leq x \leq b}\left|f^{(n+1)}(x)\right| \\
& \text { and } a c
\end{aligned}
$$

$E_{n, k}^{(f)}(f, a, b) \leqslant$

$$
\frac{\theta_{n}^{(p)}}{(n+1)!}\left(\frac{b-a}{4 k}\right)^{n+1+\frac{1}{p}} \cdot k^{\frac{1}{\beta}} \cdot \max _{a \leqslant x \leqslant b}\left|f^{(n+1)}(x)\right|
$$

(3.44)

A lower bound for ${ }_{m_{n}}^{(p)}(f, a, b)$ is obtained by arguing similarly that, fox $j=1,2, \ldots, k$,

$$
\begin{aligned}
& \left.\left(\frac{x_{j}^{*}-x_{j-1}^{*}}{4}\right)^{n+1+\frac{1}{p}}| | f^{(n+1)}(\xi ;) \right\rvert\, \geqslant \\
& \left(\frac{b-a}{4 k}\right)^{n+1+\frac{1}{p}} \cdot \min _{a \leq x \leq b}\left|f^{(n+1)}(x)\right|
\end{aligned}
$$

Therefore we have the inequality

$$
\begin{aligned}
& E_{n, k}^{(p)}(f, a, b) \geqslant \\
& \quad \frac{\theta_{n}^{(p)}}{(n+1)!}\left(\frac{b-a}{4 k}\right)^{n+1+\frac{1}{p}} \cdot k^{\frac{1}{p}} \min _{a \leq x \leq b}\left|f^{(n+1)}(x)\right| .
\end{aligned}
$$

By continuity of $f^{(n+1)}(x)$, we may combine the two inequalities (3.44) and (3.45) to give

$$
E_{n, k}^{(p)}(f, a, b)=
$$

$$
\begin{equation*}
\frac{\theta_{n}^{(p)}}{(n+1)!}\left(\frac{b-a}{4 k}\right)^{n+1+\frac{1}{p}} \cdot k^{\frac{1}{p}} \cdot\left|f^{(n+1)}(\xi)\right| \tag{3.46}
\end{equation*}
$$

for some $\xi \in[a, b]$. This generalises (2.36), remembering that $\theta_{n}^{(\infty)}=2$.

We can also generalise the asymptotic result (2.35) as follows. Since all k strands on the right side of (3.43) are equal, we have

$$
E_{n, k}^{(p)}(f, a, b)=k^{\frac{1}{\beta}} E_{n}^{(p)}\left(f, x_{j-1}^{*}, x_{j}^{*}\right)
$$

for $\quad l \leqslant j \leqslant k$. That is,
(p)
$E_{n, k}(f, a, b)=$

$$
\frac{\theta_{n}^{(p)}}{(n+1)!}\left(\frac{x_{j}^{*}-x_{j-1}^{*}}{4}\right)^{n+1+\frac{1}{p}} \cdot k^{\frac{1}{\beta}} \cdot\left|f^{(n+1)}\left(\xi_{j}\right)\right|
$$

We can now proceed as in section 2.3. writing

Let us assume that $f(x)$ cannot be represented exactly by a polynomial of degree a on any arbmintexval of [apb]. Then we have that, as $k \rightarrow \infty$ in (3.48), the length of the largest submintervai $\left[x_{j-1}^{*} x_{j}^{*}\right]$ will tend to zero. As $k \rightarrow \infty$, we may therefore replace the stumation on the wight hand aide of (3.43) by the Riemann integral. This gives us the asymptotic result.

$$
\lim _{k \rightarrow \infty} k^{n+1} E_{n, k}^{(p)}(f, a, b)
$$

$$
\begin{equation*}
\frac{\theta_{n}^{(p)}}{(n+1)!}\left[\frac{1}{4} \int_{a}^{b}\left|f^{(n+1)}(x)\right|^{\frac{1}{n+1+\frac{1}{p}}} d x\right]^{n+1+\frac{1}{p}} \tag{3.49}
\end{equation*}
$$

The special case of (3.49) with $n=1, p=2$ is given by Real, 1961, in addition to the other special case $n=1, p=\infty \quad$ already noted in Section 2.3.

To facilitate comparison with Rears result for $n=1, p=2$ let us recall that

$$
\theta_{n}^{(p)}=2^{n+1+\frac{1}{p}} \delta_{n}^{(p)}
$$

end from (3.18) that

$$
\delta_{n}^{(2)}=\left(\frac{2}{2 n+3}\right)^{\frac{1}{2}} \cdot 2^{n+1} /\binom{2 n+2}{n+1}
$$

Hor $n=1, p=2$ we then obtain from (3.49)

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} k^{2} E_{1, k}^{(2)}(f, a, b)= \\
& \\
& \frac{1}{12 \sqrt{5}}\left[\int_{a}^{b}\left|f^{\prime \prime}(x)\right|^{0.4} d x\right]^{2.5}
\end{aligned}
$$

This agrees with Rear s result.

Chapter 4

APPROXIMAPTON OR CORVEX DATA
4.1 Introduction

The last two chapters were devoted rainly to the problen ox estimating the error in best In polynomial approzimations. This chapter is of a diffexent pature. It is concemed with a much more practical problem.

One is sometimes presented with a discrete set of data which is convex, or where physical reasonss suggest thet the data would be convex but for experimental error. In these cixcumstances, it seems unsatisfactory to use the standard least squares method, which may result in approximations with uncesised inflexions. It would appear preferable to make use of the knowledge of the convexity of the data, in order to produce better approximations to the hidden convex function, say $g(x)$, and its fixst few derivatives, if these are required.

Let us suppose that $g^{\prime \prime}(x) \geqslant 0$ on a finite interval
$[a, b]$. If we can find a sequence of functions

$$
\psi_{0}(x), \psi_{1}(x), \psi_{2}(x), \cdots,
$$

with

$$
\psi_{j}^{\prime \prime}(x) \geqslant 0, \quad j=0,1,2, \cdots,
$$

on $[a, b]$, wa can consider using functions of the for

$$
\begin{equation*}
\Phi_{n}(x)=\sum_{j=0}^{n} c_{j} \psi_{j}(x), \quad c_{j} \geqslant 0, \tag{4.1}
\end{equation*}
$$

for approximating to $g(x)$. In (4.3), by using a sum of nonnegative multiples of the component functions $\psi_{j}(x)$, we also have that

$$
\Phi_{n}^{\prime \prime}(x) \geqslant 0, \quad a \leqslant x \leqslant b
$$

It still remains to determine two things; what Rice, 1964, calls the 'nom and form' of the approximation. the first of these, the choice of norm, will decide on the 'best' values
for the coefficients c_{j} in (4.1). The second task is to make a suitable choice of the component functions $\psi_{j}(x)$, which is more difficult.

At this stage, it may be helpful to recall why polynomials have been so extensively and successfully used, particularly in approxinating to discrete äta. Thins is partly because polynomials are easily evaluated, but mainly because of Weierstrags" theorem, which shows that linear combinations of the monomials x^{j} axe good enough for approzimatine arbitramily closely to any continuous function. What we requixe here is a choice of the functions $\psi_{j}(x)$ for which we can state a similar theoren. That is, any function $g(x)$ such that $g^{\prime \prime}(x) \geqslant 0$ has to be approximable with axioitrary accuracy, on a finite interval, by a sum of non-negative multiples of the functions $\psi_{j}(x)$.
4.2 chaice of the congoment convex functions

It should be mentioned inmediately that the Bernstein polynomials thenselves (pefinition 1) provide an apparent
solution to our problem. For if $g(x)$ is convex, so also is $\xi_{n}(g ; x)$. This is proved in pavis, 1963. However, it is aleo well known that the rate of convergence of $B_{n}(\xi ; x)$ to $g(x)$ is given by :

Theoren 34. Let $g(x)$ be bounded on $[0,1]$ and let x_{0} be a point of $[0,1]$ at which $E^{\prime \prime}\left(x_{0}\right)$ exivts. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left[B_{n}\left(g ; x_{0}\right)-g\left(x_{0}\right)\right]=\frac{1}{2} x_{0}\left(1-x_{0}\right) g^{\prime \prime}\left(x_{0}\right) . \tag{4.2}
\end{equation*}
$$

That is, ssymptotically, to halve the error we have to double the degree of the approximating Bexnstein polynomial, which is cleaxly a jpor practical proposition. Besidaa, as has already been remariced, the data may not actually be convex, due to experimental exror. Therefore the Bernstein polynomials miy also not be convex. We therefore discard the poosibility of using the Dexnstein polynomiale directiy. Instead, we prove:

Theorem 35. There exists a sequence of component functions

$$
\psi_{0}(x), \quad \psi_{1}(x), \quad \psi_{2}(x), \cdots,
$$

with $\psi_{j}^{\prime \prime}(x) \geqslant 0$ such that any function $s(x)$, with $\mathcal{e f}^{\prime \prime}(x) \geqslant 0$ and continuous, may be approximated with arbitrary accuracy on a finite interval by a sum of nonnegative multiples of the component functions. Proof. Let us suppose that we wish to approximate to $\mathrm{e}(\mathrm{x})$ over the interval $[0,1]$. We can make a linear change of variable, if necessary, to transform any finite interval $[A, b]$ onto $[0,1]$. We use the Bemstein polynomials indirectly and write

$$
\begin{equation*}
B_{n}\left(g^{\prime \prime} ; x\right)=\sum_{j=0}^{n}\binom{n}{j} x^{j}(1-x)^{n-j} g^{\prime \prime}\left(\frac{j}{n}\right) . \tag{4.3}
\end{equation*}
$$

Let us observe that $x^{j}(1-x)^{n-j} \geqslant 0$ on $[0,1]$ and that in (4.3) $G^{\prime \prime}(x)$ is being approximated by a sum of non negative multiples of the polynomials $x^{j}(3-x)^{n-j}$.

Fox $n \geqslant 2$, define $a_{n}(x)$ by

$$
\begin{align*}
& q_{n}^{\prime \prime}(x)=B_{n-2}\left(g^{\prime \prime} ; x\right) \\
& q_{n}^{\prime}(0) \tag{4.4}\\
& q_{n}(0)=g^{\prime}(0) \\
& =g(0) .
\end{align*}
$$

Also define $\beta_{j, n}(x)$, for $2 \leqslant j \leqslant n$, by

$$
\begin{align*}
& \beta_{j, n}^{\prime \prime}(x)=x^{j-2}(1-x)^{n-j}, \tag{4.5}\\
& \beta_{j, n}^{\prime}(0)=\beta_{j, n}(0)=0 .
\end{align*}
$$

To complete the definition of the polynomials $\beta_{j, n}{ }^{(x)}$, we define

$$
\begin{align*}
& \beta_{0, n}(x)=\operatorname{sign}[g(0)] \\
& \beta_{1, n}(x)
\end{align*}
$$

We then have that

$$
\begin{equation*}
q_{n}(x)=\sum_{j=0}^{n} c_{j} \beta_{j, n}(x) \tag{4.7}
\end{equation*}
$$

where $c_{j} \geqslant 0$ and $\beta_{j, n}^{\prime \prime}(x) \geqslant 0$ on $[0,1]$. How, given any $\epsilon>0$, it follows from Bemstein' e theorem (Theorem 2) that there exists an integer n for which

$$
\left|B_{n-2}\left(g^{\prime \prime} ; x\right)-g^{\prime \prime}(x)\right|<\epsilon
$$

on $[0,1]$. That is,

$$
\left|q_{n}^{\prime \prime}(x)-g^{\prime \prime}(x)\right|<\epsilon
$$

on $[0,2]$ and therefore, $\operatorname{for} 0 \leq x \leq 1$,

$$
\left.\left.\begin{array}{rl}
\mid \int_{0}^{x}\left(q_{n}^{\prime \prime}(t)\right. & \left.-g^{\prime \prime}(t)\right) d t \mid
\end{array}\right) \leqslant \int_{0}^{x}\left|q_{n}^{\prime \prime}(t)-g^{\prime \prime}(t)\right| d t\right] \text {. } \leqslant \text {. }
$$

Using (4.4), the inequalities (4.8) give

$$
\left|q_{n}^{\prime}(x)-g^{\prime}(x)\right| \leqslant \in
$$

for $0 \leq x \leq 1$. Similarly, pother integration chows that

$$
\begin{equation*}
\left|q_{n}(x)-g(x)\right| \leqslant \epsilon \tag{4.10}
\end{equation*}
$$

for $0 \leq x \leq 1$. Recalling the definition of $q_{n}(x)$ in (4.7),
this last inequality (4.10) completes the proof.

Note that the polynomials $\beta_{j, n}(x)$ ray be enumerated, say in the order

and re-labelied $\psi_{0}(x), \psi_{1}(x), \psi_{2}(x), \ldots$.
4.3 'Best' convex approximations

In practice, we may obtain convex approximations to $\in(x)$ in the following way. That, choose a value of $n \geqslant 2$. This may be increased subsequently, if necessary. Then set,

$$
\psi_{j}(x)=\beta_{j, n}(x), \quad 2 \leq j \leq n . \quad \text { (4.11) }
$$

Also, let us put

$$
\begin{align*}
& \psi_{0}(x)=\operatorname{sign}[g(0)] \tag{4.12}\\
& \psi_{1}(x)=x \cdot \operatorname{sign}\left[g^{\prime}(0)\right]
\end{align*}
$$

The signs of $g(0)$ and $g^{\prime}(0)$ may be interred frow the data. The polynomials $\beta_{j, n}(x)$ are easily computed, since for $j \geqslant 2$,

$$
\begin{aligned}
\beta_{j, n}^{\prime \prime}(x) & =x^{j-2}(1-x)^{n-j} \\
& =x^{i-2} \sum_{i=0}^{n-j}(-1)^{i}\binom{n-j}{i} x^{i}
\end{aligned}
$$

Therefore, from (4.5),

$$
\beta_{j, n}(x)=x^{j} \sum_{i=0}^{n-j}(-1)^{i}\binom{n-j}{i} \frac{x^{i}}{(i+1)(i+2)} \text { (4.13) }
$$

It may be noted that the polynomials $\psi_{j}(x)$ are linearly independent.

Theorem 35 depended on the convergence of $A_{n}(E ; x)$ to $g^{\prime \prime}(x)$ on $[0,1]$. Although this convergence is slow, we can still hope to obtain a good (convex) approximation to $g(x)$ of the form.

$$
\Phi_{n}(x)=\sum_{j=0}^{n} c_{j} \psi_{j}(x)
$$

because we still have the choice of the nonnegative coefficients c_{j} at our disposal.

We use the least squares nom. faring made a linear change of variable so that $[a, b]$ is transformed onto $[0,1]$, we seek to minimise

$$
\begin{equation*}
\sum_{i=1}^{N}\left[f\left(x_{i}\right)-\sum_{j=0}^{n} c_{j} \psi_{j}\left(x_{i}\right)\right]^{2} \tag{4.14}
\end{equation*}
$$

subject to the constraints $c_{j} \geqslant 0, j=0, x_{n} \ldots, n$. The data we are concerned with here is the set of points with comardinates $\left(x_{i}, f\left(x_{i}\right)\right)$, for $i=1,2, \ldots$, N. The set of values $f\left(x_{i}\right)$ are regarded as perturbed values of some 'hidden' convex function $g(x)$ at the points $x=x_{1}, \ldots, x_{\mathbb{N}}$ on $[0,1]$. We take $\mathrm{n}<\mathrm{N}$. the expression (4.34) may be
written as a function of the (column) vector

$$
c=\left\{c_{0}, c_{1}, \ldots, c_{n}\right\}^{\top}
$$

Then (4.14) becomes

$$
\Psi(c)=K-v^{\top} c+c^{\top} M c
$$

where $K=\sum_{i=1}^{N}\left[f\left(x_{i}\right)\right]^{2}, \quad v$ ia a vector whose $(j+1)$ element is

$$
v_{j+1}=2 \sum_{i=1}^{N} f\left(x_{i}\right) \psi_{j}\left(x_{i}\right)
$$

and 14 is a matrix whose $(j+1, k+1)$ element is

$$
m_{j+1, k+1}=\sum_{i=1}^{N} \psi_{j}\left(x_{i}\right) \psi_{k}\left(x_{i}\right)
$$

thus the problem in that of finding

$$
\inf _{c \geqslant 0} \quad \Psi(c)
$$

the infimum being over ali vectors a with nonnegative
elements. From (4.15), this is a quadratic programing problem whose only constraints are the non-negativity constraints on the c_{j}. For methods of solving such a problem, see for example Medley, 1964.

If. A denotes the matrix whose (i. $j+1$) element is $\psi_{j}\left(x_{i}\right)$, we have

$$
M=A^{\top} A
$$

so that in (4.25)

$$
\begin{equation*}
c^{T} M c=(A c)^{T}(A c)>0 \tag{4.17}
\end{equation*}
$$

unless $c=0$. Hor if $c \neq 0$, $d c \neq 0$ by the Linear independence of the functions $\psi_{j}(x)$. Therefore the matrix M in (4.15) is positive definite. This entails that $\Psi(\mathrm{c})$ is a convex function of c_{p} because with $0<\lambda<1$ and any two vectors $e^{(1)} \neq c^{(2)}$, the expression

$$
\lambda \Psi\left(c^{(1)}\right)+(1-\lambda) \Psi\left(c^{(2)}\right)-\Psi\left(\lambda c^{(1)}+(1-\lambda) c^{(2)}\right)
$$

simplifies to gre the inequality

$$
\begin{equation*}
\lambda(1-\lambda)\left(c^{(1)}-c^{(2)}\right)^{\top} M\left(c^{(1)}-c^{(2)}\right)>0 \tag{4.18}
\end{equation*}
$$

Thus any method which finds a local minimum of $\Psi(c)$ will. have found a global minimum. This result is shown in Harley, 1964, where it is also shown that an appropriate method fox solving this problem is wolfe quadratic programming algorithm

4.4 Numerical examples

In order to allow an objective assessment of this method for deriving convex approximations, a number of numerical experiments were performed. These begin by calculating gets of specimen 'nearly convex' data of the form

$$
\begin{equation*}
f\left(x_{i}\right)=g\left(x_{i}\right)+\delta \cdot R_{i} \tag{4.19}
\end{equation*}
$$

where $g(x)$ denotes some convex function, the R_{i} ara numbers in the range $[-1,1]$ produced by a random number
generator, and δ da a scaling factor* Various choices were mode of $E(x), \delta$, the R_{1}, the degree of the approximating polynomial n, and the number of data points.

A comparison was made between the 'best' convex approximation, say $\Phi(x)$, and the conventional least squares approximation of the same degree, say $G(x)$. The numbers

$$
\begin{equation*}
E\left(\Phi^{(s)}\right)=\left[\sum_{i=1}^{N}\left[g^{(s)}\left(x_{i}\right)-\Phi^{(s)}\left(x_{i}\right)\right]^{2}\right]^{\frac{1}{2}} \tag{4.20}
\end{equation*}
$$

Were calculated as measure of the exrox in approximating to the $s^{\text {th }}$ derivative of $g(x)$ by the $s^{\text {th }}$ derivitive of the convex polynomial $\Phi(x)$. These were coxaparcd with the corresponding numbers $\mathrm{E}\left(\mathrm{Q}^{(\mathrm{s})}\right.$) obtained by estimating similarly the exmor in approximating $e^{(s)}(x)$ by $Q^{(s)}(x)$, the $s^{\text {th }}$ derivative of the conventional least squares polynomial rapzoxiation of the same degree.

The accompanying tables show some typical results. Table I (gage 98) was obtained for the function $\varepsilon(x)=1-\sin x$ on the eleven points $x \quad 0(0.1) 1$, with
$n=5$ and $\delta=0.2$. The table shows the results obtained for six sets of celculations performed using different sets of randorn numbers. The mean values of $\mathrm{E}\left(\Phi^{(s)}\right.$) and $X^{(8)}$ (or the six sets of values are shom in the last xow of the tuble. Table 2 (page 99) shows the last set of results from table 1 in more detail. Table 3 (page 100) sives results, as in trable 1, for the function $g(x)=1 /(1+x)$ and the same choice of the x_{i}, in und δ 。
4.5 Discussion

These expeciments suggest that the convex approximations, $\Phi(x)$, are advantageous in suoothing crude convex data, and are particulorly useful in eqproximatine to aerivatives. This is borne out most strongly in the comperisom of second decivatives in Table 2.

The use of the I_{2} nom leads to a problega which io comparatively simple to solve. The anount of computation depends chiefly on the degree, n, of the approximation
required, which apecifies the size of the matrix $\begin{aligned} \text { th }\end{aligned}$ (4.15), and not on the number of pointe, 7, in the data. One might consider using the H_{1} noxim instead of least squares. (The L_{1} or minimax noxm is not usually recomended for the approximation of discrete data, since it takes undue regard of 'wild' points). The I_{1} approximation problen leads to a linear programaing problem, but in this case the size of the problem depends on the number of points, N. Aleorithms for calculating X_{1} approximations are given by Barrowdale and Young, 1966. However, the latter are concerned merely with polynomial (not convex polynomial) approximations. We could consider relaxing the convexity conditions on the component functions $\psi_{j}(x)$ and also relax the non-xegativity constraints on the coefficients c_{j}. We could then solve the I_{1} problen, with additional constraints, such as

$$
\sum_{j=0}^{n} c_{j} \psi_{j}^{\prime \prime}\left(x_{i}\right) \geqslant 0, \quad i=1, \cdots, N
$$

to try to impose convexity on the approximation. iven so, it does not seen that this will guarantee that we will
always obtain a convex approximation. This approach does not seen worth pursuing.

Tastily, it may be noted that the method described here for least squares convex approximations applies equally to approximations on the interval $[0,1]$ as well as on a finite point set. For again we have a quadratic programing problem. This time, we have to minimise, for $c \geqslant 0$,

$$
\Psi(c)=K-v^{\top} c+c^{\top} M c
$$

This time,

$$
K=\int_{0}^{1}[f(x)]^{2} d x
$$

the vector v has $(j+i)$ element

$$
v_{j+1}=2 \int_{0}^{1} f(x) \psi_{j}(x) d x
$$

and the matrix l has $(j+1, k+1)$ element

$$
m_{j+1, k+1}=\int_{0}^{1} \psi_{j}(x) \psi_{k}(x) d x
$$

Table 1

A coraparison of convex approximations, $\Phi(x)$, with the conventional least squares approximations, $Q(x)$. The data was obtained by perturbing the function $1-\sin \pi x$. (See page 94).

Table 2

x	$1(x)$	$0(x)$	$\Phi(x)$	$g^{\prime}(x)$	$Q^{\prime}(x)$	$\Phi^{\prime}(x)$	$g^{\prime \prime}(x)$	$Q^{\prime \prime}(x)$	$\Phi^{\prime \prime}(x)$
0.0	1.000	0.096	0.992	-3.14	-3.54	-3.16	0.00	7.33	0.53
0.1	0.691	0.675	0.684	-2.99	-2.91	-2.96	3.05	5.55	3.51
0.2	0.412	0.411	0.410	-2.54	-2.37	-2.43	5.80	5.57	5.94
0.3	0.191	0.203	0.195	-1.85	-1.76	-1.79	7.98	6.72	7.80
0.4	0.049	0.063	0.059	-0.97	-1.01	-0.94	9.39	8.35	9.01
0.5	0.000	0.007	0.010	0.00	-0.10	-0.01	9.87	9.77	9.53
0.6	0.049	0.047	0.057	0.97	0.92	0.94	9.39	10.34	9.31
0.7	0.191	0.189	0.196	1.85	1.92	1.83	7.98	9.38	8.29
0.8	0.412	0.424	0.417	2.54	2.72	2.57	5.80	6.23	6.44
0.9	0.691	0.718	0.702	2.99	3.07	3.09	3.05	0.22	3.69
1.0	1.000	1.012	1.023	3.14	2.65	3.28	0.00	-9.31	0.00

This table lists in mare detail the approximations referred to in the lest entxy of rable 1. In the approximation of the second dexivative, the last three columns of the table show that the convex approximation $\Phi(x)$ is very much superior to the conventional least squares approximation $Q(x)$.

gable 3

A comparison of convex approximations, $\Phi(x)$, with the conventional least squares approximations, $Q(x)$. The data was obtained by perturbing the function $1 /(1+x)$. (Similar to Trale I).

Ahlberg, J.H., Nileon, E.N. and Walsh, J.J. (1967) - The Theory of Solines and Their Applications', Acadenic Preas, New Yoxic.

Bamowdale, I. and Young, Ao (1966). 'M1goxithme fox Best I_{1} and L_{∞} IInear Approximations on a Disocrete set', Numerische dathematik, Vo3. 8, D. 295.

Clenshaw, Colv and Curtis, A.R. (1960). "A method for munerical Integration on an automatic coraputer. Mumerische Mathematik, Vol. 2, p. 197.

Davis, PaT. (1963) - "Internalation and Apgroximation', Blaisdell, Mew York. Davis, P.J. and Rabinowitz, P. (1967). ITumexical Integration, Blatedell, Nor Yori.
miliott, D.F. (1963). *A Chebyehev method for the nunerscal solution of fredholm integral equations , Comoutex Journal, Vol. 6, D. 102.

Thilippi, S. (1964) *Agenäherte Ischebyscheff-Approximation einer Stammfunktion - eine Lodifikation dex verfahrens von Clenshos und Curtis, Numerische Mathematik. Vol. 6, g. 320.

Goodwin, R.s. et al. (1960) . . Hodern Corgouting hethodst, H.M.S.O., London.

Jiadley, G. (1964) * Monlinear and Mynaic programinge, Addison-Hesley, reading, Wapsachueettis.

Hardy, G.E, Tittlewood, J. F. and Eólya, G. (193A). - Inequalitien', Cambridge.
 mad Numertcal Hethodis, Spxingermvexlag, Berilu. (rranslatied from German).

Mikolskit, S.H. (1964). Guairature Fomulae., Hindusten Publiching Coxgeration (India), Dehli. (Tranglated frow huestion).

Rean, N. (2961). "Rote on "Approximation of curves by Line gegnexts' ", Mathematies of Computation, Vol. 15, p. 418.

Rice, J.R. (1964). "mhe Aponoximetion of Junctions" Volume
I. Kincas gheamy Addison-Wesley, Reading, Mossachusetts.

Stone H. (1961). 'Approxination of Curves by Line Segents', Mathematics of Computation, Vol. 15. .1. 40. Timan, A.F. (1963) . Theoxy of Approximation of functions of

A Real Vaxiable*, Bergamn, Oxford. (Iranslated from Russima).

Wright, K. (1966). 'Series methods for integration', Computer Joumal, Vot. 9. .1. 191.
Theoren 1 2
Theorems 2,3.4 3
Theorems 5,6 4
Theorems 7, 8 5
Theorea 9 7
Theorem 10 8
Theorens 11, 22, 15, 14 9
Thearen 15 10
Thearens 16,17 11.
Theaxems 18, 19,20 12
Theorms 22, 22 13
Theoren 23 15
theorems 24, 25, 26 16
Theorem 27 20
Theoren 28 25
Theorem 29 32
Thearem 30 35
Theorera 31 56
Theoren 32 64
Thearea 35 66
Thearems 34, 35 84

