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WRODUCTIOH MD

fhndemmtal theorem, as far m thla woik la  

concerned, la  W'eierstraaa* theorem (1033) on the appxo-ximability 

of continuous ftmotlona hy polynomials. Since the time of 

Weleratm^B ( 1813- 97) and hie equally important mntempormy 

Chehyehev (182Î-.94), the topic of #pm%lmation has grown 

enoimouely into a eubjeot of considerable interest to both 

pure end applied mathematioiane.

The Gubject matter of th is  theaia, being exclusively 

concerned with polynomial approximation© to a aingle^valued 

function of one real variable, i s  on the * applied* side of 

approximation theory. The fir s t  chapter l i s t s  the definitions 

mû theorems required subsequently, chapter 2 ia  devoted to 

estimates fo r the maximum error in minimax polynomial appmximetIona, 

Extenaiona of th is  are need to  obtain oiude error eatimetee 

for cubic spline approximations* The following chapter extends

the minlmax results to deal also with beet polynomial 

eipproximatione, whiob include beat least aq^area (L j md beet

modulua of integral (L_) appioximatione aa special oaaea.

Chapter 4 ia  different in  character* It i s  on the practical

problem of f^proximatlng to convex or nearly convex data*

(1)



Chester I

pimmiHARY DmTHiTima MD m m m m

This chapter contains definitions end theorems which 

required in ' mbeequmt cheptera. The proofs of m et of 

the theorma are readily availehXo in texte end ere not repeated 

here# Where a proof i s  omitted, a reference I s  given to a 

source of a proof#

1#1 Minimax %pmmmatlcna

Theorem 1# (weierstrass* theorem) # Given a function f(%) 

continuous on [a ,b j and any 6 > 0 , there exista a polynomial

q(:^ eudi that

nwx I fCx) — ^(x )| <  é

(proof in  Davie, 1963) #

Definition 1# Given a function f(x) defined on [p ,l ]  , the 
thn Bernstein, polynomial for f(x ), denoted by B^(f |x) i s  

defined m

=  Z (?) 7:̂̂ )
jss 0

(2)
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2* thoorm ). I f  i s  oontimoue on [ o ,l ]

the sequmce o f polyncmlala (f;a()) converges tm lfoW y to 

f(x) on [o ,x j m  n tmds to infinity* (Proof in Davis, 1963) *

A linear change o f variable extends th is rem it to 

any fin ite  interval [a ,b j and provides a conetrootive proof 

of Weierstrass* theorem.

Definition 2* m  interpolating polynomial for a function f(x)

(xmstmcted at the d istinct points %= i s  a

polynomial q(x) of lowest degree such that q(x^) =  f(Xj) $ 

j  ^  0 ,1,*#*,n*

Th^rw 3m The interpolating polynomial for a single#valueé 

function f(x) oKmatruoted at a d istinct m t  o f points

exiats and i s  unique. (Proof in Davis, 1963) .

Theorem 4* Let fo r j  =  o ,l,.* # ,n  and le t q(x)

denote the interpolating polynomial fo r f(%) co n stru c ts  at 

3̂ ,***,x^* I f  ex ists fo r a ^ ^ h and is

continuous fo r a  < x < h , thm  there exists a  point on Ca,bJ , 

say such th a t fo r any x m  [a ,h j

JÇM —  k - \ ) f  ( f j .  (1.2)

(Proof In Davis, 1965) ,  I t  should be noted that in (1 . 2) Y

(3)



i s  i t s e l f  a Amotion of x.

P w ill be used to denote the set o f a ll polynomial©,

with real coefficien ts, o f degree not greater than m#

Definition 3# Given a Amotion f(x) defined on [a ,h ] , a 
w*polyxwmial q (x) ^  IL i s  W d  to be a bent minlmnx (or bent 

Ohebyahev) ^pmximetlon to  f(x) on [a#b] of degree not 

greater than n i f

i’i \f  mAX (ff' f) — 1

ia  a tta in #  with qĈ )̂ ==̂ % ( #  •

§# i f  f(x) ia  eontinuoua m  [# ,b ] the infimm in

(1*3) i s  attained* That ia ,  the beat minimx #pm m ## ion  

exiata and *inf* in  (1*3) may be replaced by *min*. (Proof in  

Davie, 1963)#

#eo%w, $m The beat mWmcc approximation defined by (1*3) i s  

unique# (Proof in  Davia, 1963).

Definition 4# k coatlmous Amotion e(x) ia  said to  

equioeolllate a t m points on [a,b] I f  ^ i ^ ^ l e ( x ) |  

in  attained a t m points 3^,*##,x^ belonging to  [ a ,b ]  and 

aim

(4)



siga

foi' j 1# The are G cll#  e3ckreme points or

extrema.

Theĉ rem 7* I f  f(x) i s  continuous on [a ,b ] and % (x)

dmotee the beat minimax ^^^roximetion defined by (1*3), then

f(x) ■— q^(x) e# i# ae illa te#  at n 4 2  points on [a ,b] # 

(proof in  DeviB, 1963) .  This theorm is  due to Ghebyshev, as 

is  also;

Theozw #* I f  f(x) ia  continuous on [a ,b ] md for some

q (x )^  f(3c)--q(x) equiosclllatea at n+2 points on

C ^#^3 # tbw  q(]^ i s  the best mlnimsx ^proximation defined 

by (1#3). (Proof In Davis, 1963).

Definition 5. The modulus of continuity of a Amotion f(x) on 

[ # ,b ] , denoted by

0) Cg) =  to T f  ;  =  w  ( f ,  4.  ̂ 6 ;  S ')

i s  defined by

vo(£^  =  1
(DCj— 1 ^  Ç

(1.4)

C5)



The mpreamm in ( 1#4) i s  over @11 belonging to [@,b]

md mch that |%j —̂ & . I t la  olear that, I f  f(x) la

continuous OB Ea,b] , o a ( S ) * ^ o  m  S'-^o*

1.2 Orthogonal jgx>lynami@ls

I0- attempt i© made to give a ayatmatio aocoimt of orthogonal

polynomial© here. Only the remit© required la ter are quoted.

Definition 6 . The Ohtbyahev polynomial of degree n, denoted 

by , 1© defined aa

T (̂x) =  ooa n(oo#"̂  x) ( 1. 5)

This i© aleo referred to a@ the (Aiebyahev polynomial of the 

f ir s t kind.

Definition J .  Glvw a Amotion f(x ), the chebyahev eerie© for 

f(j^ , whm i t  mdeta, ia  defined a©

2 '  C; T; ( x ) ,
i «0

where

- 1

(1.6)

I
^  f  0 ~  f  6i) T  U) ÀX , (1.7)

(6)



for and dmotea a mm wWee first kem le
halved.

A Ohebyî ev eeriee may ha Integrated to give another 

Ohebyehe? eerlee. Suppose f(a) i s  given by ( 1, 6) md th<%t

rGO =  f  ^  If) d t  ,
— I

I t  follow© that

<70

F 6c) =  ^  Cj Ij
j = o

where

(1.8)

wd le  determined !%r the lower lim it of Int^gmklon. See 

Goodwin at a l ,, I960,

^eorem 9» The Inflmum

iK  ̂ m<xx I K 4  X 4  ** • 4~ ( (1.9]
( Cj) ~f6X<f

♦I  ̂ f f Na t ta in #  when x  4  X 4  . . .  4 . ==• «k ^ y.

(7)



(proof in  Davis, 1963) ,

Définition S* The Chebyahev polynomial of the second kind of 

degree n, dmoted by U (x ), i s  defined by

cof'^) /  c.\ (c-s'x), (1 .10)

From (1*5) and (1,10) i t  i s  easily checked that

=  'H- 'U „ „ u ) .
(1,11)

The inflmmi

I

i V f  f  I x  4 H  4  ' -  4 I ( 1, 12)
Cc;)

i s  attained when ’

and has the value 1 / 2  ̂ (proof in  Timan, 1963), Thie

result i s  duo to A,A, Markov,

Defmitim.,B, A eequenee of polynomiale q_(x), q (̂%), q^(% ),„ ,,

where %̂ (x) has degree j ,  le  said to be orthogonal on

C a,b] with mepeot to a function w(x) i f

/  w 6x) 7j (h) <?iĉ >0 -  o (1.13)
a,

for and i s  non-zeio for j=k«

(a)



The Amotion w(x) i© oalled the weight Amctlon* 

g ^ i a m l k  The setuence f^ (x ), i s  orthogonal with

respeot to  (1 —x j  * on . (Proof In Davis, 1963).

12, The aequenee la  orthogonal with

reepeot to on # (proof In Davia, 1963),

Defin ition  10, The Legendre polynomlalB are a aequenoe of 

polynomiale %(%), which ere orthogonal with reapect

to the constant Amotion 1 on and vhld:i e&tiefy

Q.|Cl) ^  If j=%0,l,#** *

Theon^ lÿ . The infimm

i \ f  r  f  ( x ’̂ -t- c ,  x " " v  •-• +  c )
( ( , )

l8  attained when

x" c._. X - '  4- . . .  4- C, =  z"  Q j ^ ) / 0

/- Z
md has the value ( z k -+ i / • /   ̂^ •

(Proof in  Davie, 1963) *

Theorem 14* The minimum of

/  W U ) f  f  Cx) — c - ^ j ( x ) ]  <̂X- y
- I  ’ J ~ o

(9)

(1.14)



where end the eetlofy Definition 9 , i s  attained
U '

f o r

Cy =  /  vv(x) f  Gc) l i (x )  o k y / Y  w-6t) r t i  M  </)(

(Proof in  Rice, 1964) ,

Thoorw 1 #̂ The minimm of

f

f  w-Gc) Q(-x,7"' ,
—. t

over a ll  chclcaa o f real nwhera , ia  a tta in #  whw

are the aeroa o f %( (̂)# which belcnga to the act of

polymmial# ortWgomal with respect to w(%) on [-1, 1 ]  ,

(8ee Definition 9) &

1,3 %  %pro%imatlona

Definition 11* Given a  Amotion f(x) defined on [a ,h ]  and 

a mmber p ^ l ,  a  polynm lal <T(4 ^  ^

L polynomial egpprcaiwation to f(]() on [a#bj o f degree

not greater than m i f

(1 # 1 %

(m)



b
'■*vf [  /  I f f x )  — <lU )\ dx. J

fis. ^

ia  attained whm q(x) =  . ( I f  p ^  1# for any Amotion

g(%) defined on [m,b] , [  130c)( defines a m m

OB the linear space of coBtinuoua Amotione defined on Ta,bJ .

I f  p < lf one of the nom axiome ia  violated and m  h.r

approximations are ueually restrioted to a oholoe o f p ^ l, 

especially common choice© being p=:l,2  and ao, The use of 

noimed linear epacea facilitate©  the diacuaaion of more general 

modea of qppioximation than are required here*)

I t may be noted that

[>  ̂ *7  ̂ .

[ r  ( fG c)~  <(,fx)( =  r 4  I fcx) — <{^601.
|> 4>00 ^  ̂  3l ̂  j>

For th is rcaaon the beet minimax approaimetion ia  oometlmee called  

the beat approximation.

Theorem 16,  i f  f(x) ia  contimxoue on [n ,b ] the infimm in  

(1. 16) i s  attained for each p^l# That ie , the best 

approximation (p )'!) exigto and *inf* in (1, 16) may be replaced 

by *mln». (Proof in  Davi©, 1963) .

Theorm 17* I f  f(x) i© continuous on [a ,b j the beet L 

approximation defined by ( 1*16) ia  unique* (proof in  Davia, 1963) ,

(11)

(1.16)

(1.17)



Theorem 18* I f  f(x) la  continuous on [a^b] , thm for my 

aneoeasaiy and m fflolent condition for ^  p to 

be the beat Ir ji^roxlmatlon (defined by (1,16) ) ie  that

*> l»-i
f  r W  I f W  — <^wf . fÿi~ r^Cx) — f{x)J dx =  O

fo r a l l  r(]() ^  (The proof w ill be given In chapter 3 ),

We shell also require the following two result© 

conceming inequalities, wltLc  ̂ are proved in  Hardy, Llttlewood 

md P^lya, 1934,

Theory I f  0< p < p^ ,  then, when the following integral© 

ex ist,

K

mileea g(:^ ie  a  constant ftiaotion,

(Beider’ s ine tuality  for i i i ts g i^ s ) .  I f  p > l  

then, i f  the following intégrale exlot,

k t  ̂ -j'h 6 *i“̂ i
T ig W  L w l dx  ^  [  f  <<x-J . [ f  fL W l  efctj

wkere -^  +  "p = X.

(1 2 )



1*4 Généralisation of polynomial oppwximallcmB

In order to deal wbaoqumt]y with polynomial g^proadmationa 

which aim  interpolate f(a^ at oertain pointa, we shall req^re 

a gm erelieatlon o f some of the foregoing rew lta  on mlnimax 

approximation,

Definition 12,  A fin ite  met of funotione it " f

l 8 said to be a Ghebyehev set on [a ,b ] i f  the )^ j(:)  ̂ are 

continuous wd linearly independent on [a ,b j and the function 

2  T(6() ha© at most n aeroa on [  a,b] for any choice o f}=?o
real c ., j=:0$ l , . , , ,n .  (Such a net o f Amotion© ie  deaorj^ed 

by some mthore, e ,g , Timm, a© eatiafying the Haar property) ,

Theozw 21,  I f  f(a) la  contimou© on [a#b] md the net of

functiona ^ 6t) ̂  6c)  ̂ - y ^ 6c) la  a Chdoyahev met on

[  a ,b] , then

I
! 4  I f W  — ^  Cj ^ o o f  (i.ia)
(Cj) (ké.X Î>

l 8 attained end the beet approximation le  unique, (Proof in

Bice, 1964),

Theorem 22,  I f  f(x) le  continuous on £a,b] md ^  (x̂  * - -

im m c&mbyehev eet on L €^,b] , then a  and

muffiolmt condition for S '  (y to be the beat

y

j=ro

(1%



epproxlmokion (as In (%,18) ) le  that

f fK >  Z  Cj ^ j U )
j = o

aguioeolllata© at n+ 2  points on [a#b] . (proof In Rice, 

1964),

1,5 CMblo ©pliïia %proxlmatl0n#

definition 1^, Given a Amotion f(x) defined on [a ,b ] end 

a partition % of the interval

C a,b] , a Amotlon 8^ (f;x ) le  ©aid to be a cubic inline 

GgG>pro]diaation to f(]() cm ^  I f

(Î) la  a cubic polynomial (a t moat) on

on each interval. £] $ 1»

( H )  8 ^ ( f $ X j )  = ;  f (% j)m  j = 0 , „ , , k ,

( l i i )  8^ (f;:^  and 8^(f;%) are continuous onCa,b] .

Two further oondttlona arc requli'ed, uaudly taken to 

be the values o f or at the mZUpolnta

%=za and %=b, In order to qpecliy a particular 

satleiying the three properties above, 8ee, for exm^le, 

Ahlbeig, Hllam md walah, 1967,

(14)



C h a p te r 2

0 ?  THE m W R

2*1 Minimax ^proximation© over a ©ingle Interval 

Let ue use

to denote

^  ‘ I
\v\̂  I ^ C x )  Cy X j ,

In 1911* D, Jadkmn proved:

Theory 23,  I f  f(x) la  œntinuoua on Ca#b3 * there exiata 

a  oonatant Q mxM that

^  ^  ^ ) .  ( 2. 1) 

(proof in Timan, 1963) ,  Sinoe by continuity o f f(j^ ,

00 (.Ç-y S )  O A f €  - ^  Oy

Jaeteoa's inequality (2.1) implies Weierstrass* theorem.

(15)



Jackeon further proved;

Theorem 24» I f  f(x) hm ita  k derivative continuous on 

i  ]  , then fox* n> k

M , .  w f r ; W .  ( - )

where i s  a constant deyendinig only on k. (Proof in  Tlman,

196% .

mrthex' resu lts  of th is  type, involving the modulus of 

continuity, are quoted in  Timm, 1963• A more recent re su lt, 

given by Meinardus, 1967, is ;

ĝ heorem 25# I f  i s  continuous on Lo,bJ , there

exists a  number J ,  a < ]p < b ,  such tliat

E .  ( f )  =  ^  ( 2.S

ï̂ oinaxdu©* proof i s  based on a theorem due to Bernstein;

Theorem 26* Let g(%) and f(x) have derivatives of order

n4*l on 5 r i , l ]  and auppoae that

I I ^  60^ X < s  r ~ o  d .

(16)



E „  i f . )  6  ( j ) .

(pioof In Mejmardus, 19^) #

Sm a lte inativc proof of Theorem 29 w ill now be given 

which depends simply on the theorem qonceming the error in the 

interpolating polynwiW. md Ohebyatiev̂  s lla tlon

thcorm (Theorems 4 ©ml 7)# A eWOer cŷ proach enehloe one to 

estimate the error in  beet polynoiaiai 4%pro%imationa, to 

be dealt with :ln chapter 3*

■JfFioof of TheorWÂ  2ÿ* I f  q, (%), of degree at moot n , denotes 

the best rainimax approximation for f(x) on £a ,b j  , then by 

Theorem 7 there exist n-f 2 points on £a ,b ] at which
y,

f(x) — q (x) equioacillates» By continuity there are

therefore n-H  d lstihc t pointa# say x , on

£ a ,b ] where f(x) —- cf*(x) =* 0 . That i s ,  g^(x) may bo 

regarded as the interpolating polynosiial for f(x) const m et cd

at x^, ^  * So by Theorem 4 we may write

(17)



,ffx) -  f ( x )  = {2m4)

where i s  some function of %#

Bow le t  3^ be the mxoB of

■^n-tl ^ a) / ( b  — a)^ and le t  q(x) denote the

interpolating polynomial fo r f(x) constructed a t 3̂ ,

Then wo also liave

^ ( h )  ~  l ( x )  =  ( x - j Q  ... ( k - X O  (2.5)

where ia some function of x. Since

£.v(f) ^  I (pw -  !

i t  follows fmsa (2*9) that

s  frir,! . - ^ ï j n . 0 1 .  y . , ,

Put y — (2x -  b -  a) / ( b  — a) and fo r j -0 ,l ,* * * ,n  le t  

y . =  (2x. -* fo a ) / ( b  — a) * Then

(m )



V *n-H

end nince the y . are the mma  o f *

(2.7)jo t—X ,)'-• t x - x ^ ) | _  C ^ ir )  ■
<vay  ̂l>

D'Mng (2,7) in (2,6) we have the upper bound for EL(f) ;

I '>vf-/ I

$  ^ 1  ( - ? )  • 6 )C 6 b

# r  a lower bound, we here from (2,4)

e^C() >  r ^ - ,  " ^ .  U)l _ ^2.9)

Fro# Theorem 9 $ oonoeming the minimax property of the chebyehev 

polynomials, It follow# that

9 /-I . ♦V+'/ I I
E . C f )  ^  ( ^ )  • ‘- -  I f  ^ >̂1. (2.10)

Theorem 29 follows from the two inequalities (2,8) end (2 ,10),

from the continuity of

(19)



A eomection with Chebyahev series»

Let UB uae c. to denote the coefficient of f i x )  in  the 

Chebyehev eerie# fo r a  function f(x) • E ll io tt , 1963# proved? 

Theorem 2?# I f  io  continuoua on L - l , l ]  , then

where

I t  i s  well known that the truncated chebyshev series 

i s  o ftm  a very close epproximation to  the best mWmax poly^ 

nomi^al of the seme d^iee#  ib r  i f  the coefficients c. tend 

to sero rabidly and the Chebyehev series
oo

/
^  C; X b l )
j do

converges uniformly to f(x) on [ - 1,1]  ,

f «  -  # ' c , T W
J —o

w ill be approsdmated closely by ; which egiwi-

osc illa tee  at the n-f-2 extrema of ^n4- l ( ^  * hence the 

sim ilarity  of ( 2. 11) and ( 2.3) with a =  - 1, b —1 ia  not

(a))



surprising, in  view of Thwmm 8,

2.2 Beat approximations emtiefying interpolator^ conditions

In th is  section we investigate

'--f If'Cx) -  t U )  ) (2.J2)
*éxs4

where is  used to denote the set of a ll real polynomials

%(x) of degree at moat n-f 2 # 1 #  also satisfy the end-point 

conditions

<^Ca) =  ^ ^  f t )  — f  f ^ ) .

Thus in ( 2.12) we ere oonoemed with finding a best polynomi^ 

approxiïûatioB which interpolates f(x) at the end points of

Ca#b J .

Let us write L(x) for the interpolating polynmdml 

jRyr f(3) iOBnatawKAimd at 3C;= & emwl :% =itu iMb&t iaq

L5 O =: [(>c—<Jl) — (x— ^ra)J y"ft'-d.^.
(2.13)

(21)



Givm any q(%) ^  g# since q(x) — L(x) must vanish

at %=a and %=%b, we have

^6c) =  LCx) -H (x-^)Cx-J>) (2,14)

say# where ’r(x) We have timt

'K.
Qc~a.')C>i~0 T W  =  ^  c; X. 6c-<a)6t~

J =- o

and the set o f funotione

; V

form a OhebyxAiev set on any interval ü- f -é» b—e ] ,  for 

0< 6 < b -& , J^arding ( x - a)(x-b)r(x) m m ê^^mxîmtion 

for f(x) L(x) , the equloaisillation theorem (Theorem 22) 

applies on my of the above intervale [a-f^ , h—6 ]  . in  

particular, there exiet n4-l point# ^ on Ca+*€# b —e j

euch that

L Ü ) )  =  ( I j  .

(2 2 )

(2.15)



That la , the choice o f  r ( x )  coiMsponding t o  the beat 

%pmxiiaatlom above I s  m  interpolating p o l y n o m i a l  fo r

^6c) — L (x)J  ^  —k)

o o n e t m c t e d  a t  c e r t  a i m  p o i n t a  L e t  u ®

w r i t e

P 6 0  = :  —  L(x)J / ( 2 . 1 6 )

which ia  d e f i n e d  m  the o p e n  i n t e r v a l  (a ,b ) . T h e n  i f  f(x)

i s  ( n - H )  t i m e s  d i f f e r e n t i e b l e  w e  h a v e  f r o m  T h e o r e m  4  t h a t

F W  -  r ( x)  = ^ ,  F ^ \ ) .  (2.17)

tkdhyK(2,14) «Gwi (2,16) aW; jBollo*#; jRwaa th is Idwxt

ùi-^)Cx-0 (X'-^)'"(n—J^) f~
i^Ol

Ç(yCi — Y h -X ) F  ( % \  (2 ,

In ( 2,1# ,  depend on t h e  choice o f  6  ,  a n  do

the fbnotiono q(x) and AG ^ - ^ 0 , each w ill

jh a v e  a  l i m i t ,  @ a y  ,  a n d  w e  w i l l  h a v e

1#

(23)



, V Cn+j)

y_
where q (x), denotes the polymmlal fo r which the Infhrnm in 
(2*12) i s  attained* Let m  put

jX ^  — i'k  ̂ (2*13)

%  considering ( 2*#) as the problem of %pm%imting to 

by A lin ear combination of the toiotiona 

x ^ ( i-x ^ )i j=rO#l,*,*,n, we can see tha t there ex ists  a

unique set o f points ^ . a t which the infimm i s  attained.w
hat q(x) denote the polynm ial whose associated r(x) 

in terpolates F(.x) a t the points m  Ca,to] corresponding 

to (by a  lin ear transformation) the minimising m  £ -1, 1̂ ^

Then In a  sim ilar wey to  the la s t  seotion we have

' " f  I f  fx) -  ^ fx )  I
AÛA<{>

A. ̂  )C6 (>

(24)

(2.21)



and also

I Ç  Gc) — I
XVo. (2.22)

^  Ü 1 .  ( h z : ) " " '  ^  i F n . ) l .
ÇH4-;)| ^  (A.6 )(^ 4

Thua, comMnii^ these inequalities, we have the following 

result t

Theorem 2S, Given a Amotion f(x) whose (n-f-1)^^ derivative 

i s  oontizmou# on Ca,h] , there existe a mmher f  ̂  [##^0

m<M that

lo te  tha t the awxiliaiy Amotion F(x), which appears 

on the right eMe of ( 2.23) # depmd# on f(x) and on jja,h] , 

ae given by (2,16) end ( 2,1% .

(25)



Bowto foy

Fxoni (2.20) w e have

^  - i r  lO -x -) T ,^ < -> l

\
<1 —

2 "

Ibr m lower bound# we have

C Xj)

IM -)0 6 i-x . ) * *

I

OoxAbimiDg these inequalities# we obtain

I
Z<H+'2. <  y U ^  ^ zOv

(2 6 )

(2.24)

(2.25)

(2,26)



Précisé valuee -for

Xt follows from the mlqumees and equioseillaticm property 

associated with the mWm#.#ing jp̂  for (2 ,20) that the jp ̂  

must be ayrimetrloaliy placed about the origin, For# on 

replacing x by — x# the polynomial

O - x ^ K x + J i )  -•' ( x  - h Z 3

w ill aim  equioaciliato and must therefore be identical (by 

uniqumena) with the polynomial

0 — • ' • ()C— 

Thais# in  particular# we have

A fT’
/to  =  I x (  I—X^)| =  —  ■ (2.27)

Aim,

rr  Iq — »

Hence we find that

/ t ,  =  U -X ’-) ( > F -  -^)l

( #

(2.28)



These values fo r  J jLq and are coriaiatcnt with the

Inequalities (2*26),
— 1Example* Oonaider the Amotion f(x) =  Ço(+ #  on

£ - l# l ]  with o(> 1, In th is  cam (2,13) givw

u j t )  =  2  [  ^  -  ^ f r  J.

From (2.16),

[(o©-- lV»l + x)] \
fhue# we have

Therefore, fo r some f  C ~l,l] ,

(hf. m a/x 6c) I

V-*» 1  ̂ (ot+z)
~  y<4v *) ^oi4- f  )

(28)



2.3 Piecewise

Let us now a^pmximete to f(x) by partitioning CA,b] into 

k aub-AittrvAle and ueimg a polynomial appmmmation of 

degree at most n m  &̂oh sutwinterval. Let us cbooee the 

paints o f eabmdivieion and the k appmximating polynomials 

so as to îïânimiae the maxtoara error. I t ia  clear that the 

maximum error, which w ill he denoted by ^ (f), w ill be 

attained at least once on each mb-.intenral.

Let im write

^•n,k S  0

to «ipJMistse the dependence o f J f )  on the interval 

t  a,b ]  , we already know that a beat approximation of thin 

type exiata for k = 1. We can aee by induction on k 

that the beat approximation described above exista for 

k = 1,2,3#### # Ihr, aaaming that a beat approximation exists 

when we have k—1 sub#intervala (k ^ 2 ), we can find the 

beat approximation on k aub^intervala by choosing a number 

 ̂ 0<  S< b —a, such that

( a )



Hots that the Xeffc sade of (2.29) 1® # deeramaing Amction of 

S and the ilghb side la  an inoreasing Amotion.

Let l^# I ^ , . . . ,  be the auWlntenraX® of [a#b] 

oorreetpondlng to a beat pleoewiae approximation end let,

the pointe of mAWivlaion, Then from 

(2.3) f asaiaaing oontlw lty o f may write# for

^ x ,k ^ f) =  • • /  (2.30)

where <E I j  and ^= A # 3̂ ^ b #  Thus

[■^(‘n + o l — t :  I (^ )l (2.31)

and, on summing (2.31) for j - l ,2 , . . , ,m ,  we obtain

k[-k(-n+i)!  I f  . (2.32)
j=l

Mmmmg that f(x) cannot be repreaented exactly by a

( #



polyDomiel of degree n on any wb-interval # f [a ,b ] , we

have that ae in  (2.32) the length of the largest aib»*

interval w ill tend to zero. Therefore, m

k->oo , we may replace the right aide of (2.32) by the 

Blmam integral, giving

^  k  Cf'l

AVf I

generalises the Inequality (2.8) for ]^ Q . ^adLlarly, 

in  order to obtain a lower bound for * we can argue

that a t least one eubkwlnterval X. must have length notw

(31)

(2.33)

The epeolal case of (2 .33), with m =l, ia  given by Ream, 1961.

This w ill be o f in te re s t la ter in th is chapter.

Returning to (2.30) # at least one W x.lnterval I j 

must have length not greater then (b— / k ,  so that

('f'  ̂ ^  (2.34)
£i< >£>6 t



m a ile r than (b—a ) / k .  Hence we obtain

From these two inequa lities we now have;

Th^rem 29# I f  la  continuous on La,b] # there

esdeta a number ^  Ca#b] mot) that the error in the best 

piecewise polynomial approximation of degree at most n on 

each of k aulx-intarvals ia

2.4 Algorithms for deriving pieoeifiae straight lin e approximations

Stone, 1961, gives an algorithm for finding best least 

squares approximations to a  function f(x) on a fin ite  interval 

[a#b] by k  straight lin e  segments. He ju stifie s  the 

usefulness of h is algorithm by showing how i t  may be applied 

in the solution o f certain non-linear piogramming problms.

Rem, 1961, refers to the relevance of th is approximation , 

problem in designing diode fUnotion-generators for analogue

(32)



computers. In the examplee given by Ream and Stone, f  (%) 

i s  of constant sign. KooiCiy a ll Amctiona of practical 

Interest eatiafy th is condition at least pleoewlae.

In thlB section, algorithms w ill be described for 

solving the erne problem, but finding minlmax rather than 

least .squares approximations.

Suppose f  (%} >0 on and that o%4-d

is  the beat minimax straight lin e approximation for l’(x) 

on • We have from the equioaoilletion theorm

(Theorem 7) that

/>rv<v>c ( ^ Gc) — o c  ^  I

ia  attained on at leaet three pointe. At an interior extreme 

point, we w ill have

(  Ç( x )  — CJt — — (3

That le,

Ç ' u )  —  c  — o

(33)

(2.57)



alnoe (2.37) can have at moist one solution on

Cot) g whence i t  follows that two of the extreme pointa 

muet occur at the end pointa o< and ^  . The third 

extrade point w ill he an Interior point, say JF . i f

£- zz 'ytxOJ>c I Ç 6i) — c x  — I  ̂
o<6 ^ 6  /?

we w ill have the following equations

^ U )  -  ( c u  4 - ^ )  =  ë  (2.39)

— ( c j ^ +  <̂ ) -

(2.38)

(2.40)

f ( | S )  -  C c ^ - h  d )  =  é  (2.41)

— c  =  O (2.42)

Given md ^ , theee four eguatione may he solved to

deteimine o, d, ]F end 6  # R>r we may eliminate d and 

é ’ txm  (2,39) mû (2,41) to obtain

(34)



c =  L — f

the slope of the chord joining' the end points, Hwoe, 

using some root-finding procedure, most suitably one which 

•brackets* the m ot, auoh as the rule of fa lse  position 

(régula f a ls i ) ,  ^  may be determined from (2 ,42), Lastly, 

d and é  are found by solving the two linear equations 

(2,39) and (2 ,40 ),

However, we w ill be more interested here in  using 

the four equations (2,39) -  (2.42) in a different way, as

in the following theorm ,

Theorem 30, Given o( and €  the equations (2,39) -  (2.42) 

where f \ x ^ y o $  have a t inost one solution for o, d, Y

and p ,

Proof, Prom equations (2,39), (2,40) and (2,42) we have, 

on eliminating c and d,

_,7.) +  - f q )  — 2. 6 =  O (2.45)

Let us write th is la st equation, in which the only unknown 

i s  ^  , as

(35)



G) =  o .

Thm we om see that

(2.44)

Ffom th is , i t  i s  seen that

^  V f )  >  O  ̂ ? >  o( -

Thus the equation (2*43) has at meat one solution jf >  ®( .

Since from (2,43) G (d )< 0 , a  solution of (2,43) w ill

©3do t on Cĉ  ,h ] I f  and only i f  G (b)^0, I f  a solution 

does exiat, we may find e from (2,42) end d (2 .39).

Equation ( 2,41) ia  then available to determine ̂  ,

I f  we w rite th is equation m

H f ^ )  =

then for jS> j  * we have

(36)



h V / s^ — >  o .

So there ia  at moat one solution fo r end, einoe 

H(J^)< 0, a  solution w ill ex is t on C? i f  mid only

H(b)^ 0# Tbie oonoludes the proof of Theorem 30#

The piooees of beginning with a  pr®massigned 

minlmeoc error 5  and a given value fo r the le f t  hand end 

point and then finding the minimax atim ght lin e  mû 

the right hand end point iS w ill be used repeatedly in  

the following algorithm,

Algorithm 1 , Given any ^ >  0 , we can construct k sub- 

Intervals

£ A , , ^

and k straigh t lines

Ci>. +  d j   ̂ ) =l y  z,  " \ , k

axdi that on each m b-lnterval the largest error in

m



sy^pioxtmating to f(x) by the associated straigh t line  i s  

^  # I t  ia  assumed that f  (x) >0 on the given interval 

[a ,b ]  •

With the notation used in  the proof of Theorem 30, 

i f  Q(b)’̂ o  end HCb)^o, then given the end point a

(corresponding to o( in the four equations (2,39) -  

( 2,42) ) md €r we can find the best mlnimex straight 

lin e , say o^x-hd^, and also and Xj (these last

two numbers corresponding respectively to jr and ^  

above), The solution o f the equations G(x)'=*o end 

H(x) = 0 may be found by the régula fa ls i  method.

Beginning'with (corresponding to ) and 

^  a second minimax straight lin e may be constructed up 

to  acme point and so on. At some stage, say with 

as the new le f t  hand end point (^4), we w ill find 

tha t e ither G(b)<0 or H(b)<o, The geometrical 

in terpretation of th is i s  that the straight lin e

with maximum error ^  overshoots the right hand end 

point b.

When th is stage i s  reached, we choose as c^x^d.

(98)



the a t r a i ^ t  line  which passes through the points

(  , -f ( \ „ )  -  «.vet (  g  fCk) ~  e )

,, given any 6 > 0 , the algorithm obtains a 

piecewise straigh t line  approximation to f(x) on £a#b] 

with maximum error 6  * i t  may be noted that the approx­

imating Amotion i s  oontinimns over the whole interval 

C s ,h ]  * The la s t straight lin e , was ohosan

so aa to preserve the continuity of the piecewise poly- 

nsmdal i^proximation. We also note that the approximation 

ia  acMeved with the smallest possible number of straight 

lin e se # m ts .

Best auoroximatlons by k segmmta#

In the above algorithm, given a pre-assigned maximum error

, we obtained a  pieoewise stra igh t lin e approximation 

for f(x) on £ a ,b ] ,  Now, suppose that we wish to 

approximate to f(x) piecewise by means of precisely k 

straight lin e segments, That i s ,  th is time we are given 

the value of k at the outset. Let us examine an

(99)



algorithm which finds the appropriate partition of [a ,b  ]  

and the oorreqpoHding minimax error €  ,

Algpritlm 2,

In Algorithm 1 i t  ia  evidmt that the positive integer k 

i s  a non-increasing function of the mi ni max e iro r 6  , say

k =  K C ^ ) .

¥e can find lower and upper bounds for €  m  follows* 

F irst, choose 6 .>  o arbitrarily and use Algorithm 1 to  

calculate

I f  lïQ^k, 6 q w ill be a lewer bornid for <5 , ws aiay 

then set 6 ^ = 2 6  and calculate

k .  =  K  ( é , ) .

I f  we repeat th is ealoilatfc»» for kĵ , with G, replaced

(40)



each time by 2 at some atage we w ill obtain a value of

km Tbia w ill give m  upper bound for 6  , say ^  ̂  *

ISDTfervsKC, JLf juodLtjLeLl]̂ / WM& <)tyt<xLn T*<* aaaor

isgyt jgyg 2%n ugpgHBSz taouowl jScor dr f%na iktdLg; t̂ Lme

]pegp(!8&e(il3r iMdLvB cwalcK&ackjkDas

L =  K  (^ o )

each time. Finally, we w ill obtain a value of k > k ,u
edhoHMings tdbeck klie oi%33c%wnt inalue <%f :L@ <& Jkomrear t)oimd

for

Once we have obtained lower and upper bounds for 

6# we m@y refine them by repeated biaeotion of the interval 

0 , f using Algorithm 1 at each otage to calculate

k  ( 31C(:c> -4-

The process la  teimlnated wh#% suffic iently

Gmall# The operation of Algorithm 1 corresponding to the

final value of gives the values of the sub-dividing

(41)



points %, and the minimex straight lines o.x4-d..

Again I the approximating function i s  continuous on [a ,h ] , 

being simply a convex polygonal lin e .

It may be noted that at any stage, the opération 

of Algorithm 1 corresponding to lower and upper bounds 6  

and 6^ produces respectively lower and upper bounds for 

the sub-dividing points x*. This i s  easily seen 

geometrically# Bounding error iias given no trouble in a 

very wide range o f numerical examples on which Algorithms 

1 and 2 have been tried .

Finally, i t  may be observed that, by considering

é  S3 a function o f the aub-dividing point % - i t  we 

could use r^ H a fa ls i in  Algorithm 2 Instead of bisection  

of the interval.

numerical example#

gpo i]LluGü:%y%te tdbese oieldbodg;, leyt tia (xxmBixlear Ikhue jfUKkcdbion 

cwi ikhwB Cl(),l] . gphwa ibe&lkB <&n tdae fSolLlGHNdkBg;

(lijSgdLagrai tdbe besdk laiaiimeKK <sp%>3%%%dUmwatjw)ii to  on

(42)



£ 0 , l ]  by four stra ight line  segmenta, obtained by 

using Algorithm 2 with k =4 .  The ooireepondlng value of 

<: jlG C)*(%0() !?7S), <&l]l iHiudbars beiaogc g&ttMsn t<) *sijc 

(iQHSiniGl %&eM3€H3#

3P%x%oi (12*j56) ife hw*tM@ ithe <& jppjuDidL Tasmaiwie;

0 ‘ 0 0 3 1  <  6  C  0 ‘ 0 l o “7.

3 Ü d

1 0.300 570 1.166 545 0.993 421

2 0.561 833 1.543 4S7 0.880 124

3 0.792 888 1.973 057 0.638 777

4 1.000 OCX) 2.455 255 0.256 448

£jggMMa,   m ..[o .i3

(43)



The re la tion  {2*33) » interpreted m m  asymptotic 

j%)3%Budlak, Twcnaldl jpaxscLLcdb

é  -  o - o o é  s^-tC,

which XB in error only in the sixth decimal, place.

M application tO' quadrature.

3upp©se that f^(x)> 0  on fa ,h j  and we wish to

appreximte to

L
f  f  fx) dK

with a maximum error of é^ . Then, setting

6  -  /  (y

we may use Algorithm 1 to obtain a piecewise straigh t lin e  

appioxiïaation for f(x) with maximm error 6# we w ill 

then be able to  ^proximate to the above integral by the 

area under the convex polygonal lin e , which gives

(44)



k
S  f  (  9  ^ )  d x
! = •  p tj.,

We have the inequality

\> k I

1 /  ( 'M  ~  ^  vT CC; X + d j)  d)i.\ ^  ^

Thug the re tired  integral may be replaced by the 

approximation

<2 £ 1 Cj ^
}=i

with an en or not greater than é^# This approaeh 

retulrea a mther laxge number of evaluations of f(x) 

and f^(x)# On the other hand, i t  provides a sure bound 

for the error incurred* The error estimates for the most 

commonly used quadrature methods involve high order 

derivatives o f the integrand* These estimates are often 

of l i t t l e  practical use.

It would be worth-while using the quadmture 

method put forward here only in a situation where thp 

estjbmwate <*f the (xpjRpr laewl isüüfIjLcdLtaitjly tuLgÿh jpaslsMCipkar 1;o

(45)



ju s tify  the “to g a  number of Amotion evaluations#

12*!) jPiecMBwdLsa 4&pjp3%K*dkmu*t:loaa3; (BBtjleKCÿjkoyg jLBdk<K?gK&3k%t(%%gr (zonditjloKia

In th is  aaotion, we mmhlne mma of the ideas used In Sections 

Z2,;2 4WBd ,

le t  ^  denote a partition of [a,b ] %

a. =  3(o <  ^1 <  • * • <  ^ k -, <  - \  =  ^ •

i&n&teeKl cxf it%i* ifiWMytia&n 3H(]c) <led%l%w@dl lj& iSeMztdLon l<yt iie 

lasw) 5%gi(:K), Tübw&%%&* fkxr a&g _ ]̂ g::K:<3L|,

f^C x) =  £ — L j  W j  y / ( x —

vdLtJb iij(;x) «iefïnekl l)y

/ . (x )  =  ^  6 (;)  —
j

gMbgdk j&eSf 3*v\(3) iiB (leoflnexl ]pdu5oekKLeM& <%& * ]%<%* ILerk

(46)



(& (ïGaagrtG ai wialcki 3j&tea%pGLl(%U(&B (Wi

fNMwi jLs; (% pdLGWzewjlEHS jpctlar&cxmdLëdL «adT ckay&iTse act incwat gn%

A , hot

f A  ) =  •‘̂  i f ^ >  —

idbiere tJüe jknjTiamwB la (>vaar aaSl lawidi jpcdlanncKodladLGi @*%dl

a l l  partition® A  of Ea,tol into k sub-intervala* ni 
(SZ.ZIS), %MS IbëKvg

(2.45)

(2,47)

icLIKh <ç <:3;4 « jkrggwdkag; iiotf aas %n& (tixï jLii 4d>t@ijaij)g&

( 2*3w&) 8%%a (:2,]5S)$ WHB <)bdk0db& tü%2 jjâK&uiGJL&tsr

C ' ^ >  ^  ( % r "4  i < ‘ “ i
A, X.

where the aupra'suim la over a ll  paxtitlome A  of £a,b l  

into k güWntervmle, m û  a l l  x ^  # we a im  have

thue ]Loi9<Kr 1bc&aEu& :fkyr %g(3f) ;

C % )  • I ^ 2  6c) 1. (2.48)
(1H-I>! A j >L ^

(47)



IdBt (laacdLe si egalJLcw* 4%pjp%%KKjb%%%tjuBxi jRoar jpGc) awa

a p artition  A :

(L =  X* cC :%! <c " ' ' C  k̂.^% ^  ^k. ^  ^

0f  the Interval [#,b J  # (See Section l .g ) .

We have that

9*bat :L@;,

,  I P M  -  T  Cx) 1

A ,x

W« have not made use of the eoatinulty of the f i i s t  wd 

second derivatives o f s . (at), In obtaining the inequality

(2.49)

(48)



(2*/K9) # ]Cf, jPwurtdiGrr ire cL&dl rwot ti8&&e jLorGo ewc&zuuat tdbe 

:kBdbGGSgK>l<%t()%3r %wat%A3)8 <)f , IdnwKt :1e; tJae cxBodbinujLtar g%f

S^{x) i t s e lf ,  we could mo the iaequelity (2#55) mû 

obtain

#x<3ux I ^  Ot) — Cx) i 
0.0 x ^ y

^  ~h ( I f  I

JMowp taaawfyflo, ileyt taaa cdhCK>EMB

on Isba jjalH&ival |[r-l,]/] , tdLt*t ,»('>» JL. j%>%' a:, <i acacjt.
J 1 j

we thm have

(x )  =  2  C<̂  4 -  .

Thus fmm. (2 *4 9 ) #

1 (d-t-x)  ' ~  >  n ?  ' '
léX£,i

(2,m)

(49)



1 w +  x )  ' —  ('=<+iV

Aj% TMOMia Ibe (33qp6H2t;ea, t&x&o Ileus# jb&eg&ie&i/tar jl8 iBeaÜcdKr Ikkuaa tdkHS 

pmvlouB one*



Chester 3

jSSSnjMUlTjS 03P TPtüS 30BÜRCIR 333 J&GISB! 1,. jWâ R̂CKKJOMUKI'J&GMWjS

3*1 Â dTiaractoyiaiBg pmpeity

The beat mlnimax polync#tal eppm-xlmatlona ere ebaraoterise^ 

by the egp ioscillatlm  property of the error fimction* The 

beet least aguares polynomial appmmmatlome are thoee whose 

coefficients are the solutions o f certain sets of linear 

eguetioas, called the normal equations*

The chaxmcteriaing property of beat L polynomial 

appxoadoiations, for any value of p^rl# i s  not # i t e  m  

widely known# M t th is reamn, a proof of Theorem 18 w ill 

be given here# It i s  baaed on a proof in Timan,1963# %%r 

convenience, le t us restate $

Theorem 18. i f  f(x) i s  continuous on [a,b^ , thm for any 

value o f f  >1 a necessary and suffi cim t condition for 

çütsOieS: to l)4& IdhwB Ibead: 1,̂  <»pgp33oociD3adbij9ik jPowr <)&

C a ,b l i s  that

t I»- )
f  \((^^) —  r ^ 6 i )  —  ^ M ] d x  =  O ( 3 . 1 )

ISl)



for a l l  r(%)

29u$%po8iB Iktwadk, j%)3z gaowae 4&(:x) <=: 3̂ *̂ %K)Ju&f5 jRcwr

a l l  r(x) ^  P * Then we my write

k j.
f  |̂ r>i) — I dx.

u
/ P“̂f
^ — ^6t)X 1̂ 61^—^6l)I , n j o v . ^  fxjJ e?()(.

ISance, ft)!» cwâr 30(3%) 4g: 2̂ ,̂ sne :ba%v%) jTrow (3.1) td#kt

v>

^  1̂ 61) —  ^ I ^

 ̂ jy— )
=: J [ f ^ x j  — T fx)] - ) - -  ^f)() I . f i j ^  L ^ x)~-^MJû(k

A.

t I j»”**
^  >r If^X.) — otjL (3 *2)

r ’■ b r r iV
^  |^6c) ~  V'fx')! 0<xj ■ L f  IfA c) «*)lj

ÛL. ^



for p > l ,  by Holder*» Inegiuality for Integrals (theorem Z )).

Thus for p>l

[  4  <: [ /  IfCA) -  ŷ 6c)l dx.] _ 0^

(5.2) we see that (3*5) holds for p = l also* since 

(3*3) holds for a ll r(x) ^  , we have proved the

sufficiency of the condition (3*1) * That i s ,  q(a  ̂ le  the 

beat #pmximatloti*

Conversely, mppos# that %(%) la  the best 

approximatiOB and that there ex ists a nojvnc^ative integer 

k<n such that

/  I jÇ-Cx) — 1*̂ , f^ n x ,  L ^ ( x )  — ^^)0] d )C  — & =#= O. (3*4)

le t

k
V \ (x-^ =  "4- €  X  , (3*3)

Then, for some 6  =#0 ( 6: not naccsaorily p ositive),

(33)



é  /  X 1̂ 61) — . rrg'M. [  ' r  6t)J cl)i %>

This follows from (3*4) by taking l é l  m ffic im tly  email 

mâ keeping

sr%̂ nx .

(3.6)

Hmca

/  l^ 6 i)  — fx )l (pLx

(3.7)

«C.

Uelng (3*6) we have from (3*7) that

<%/

<C f  . < ^ W  J  . (^ (> 0  — ^  ( x )  I .  r I  y 'K, E ̂ X )  — 1/^  C>l)Jcix

(54)



<  f  |f6 t^  — ^(x) I . I f  — Y) (x) I «6i.

Erom (3*8), using Holder*» Ineqcuality exactly as In the

earlier part of the pxoof, we have

t >  h
r  \(-u) —  ^ f x > (  Jk < i f f x ) — I

Since r (x) this laat inequality provides a

cent radiât ion to the asmmptlon that q(x) is  the beat 

approximation. This oompletea the proof.

3.2 The inteipolatory property 

In Chapter 2, the derivation of the result

r ̂ r'I f''"Vf))
depended on the interesting property that, in  the minimax 

approximation of a continuous function f(x ), the beat 

polynomial interpolate» f(%) at n-f-l pointa on [a ,b ] . 

Tbia also holds for beat Lg (I .e . least aquarea) polynomial

(55)

(3.9)



appmxlimtlone, gee, fo r example, Dmvle,

More generally, thia i s  tm e for beat polynomial 

approximations, for any value of p^X. Thia result ie  im plicit 

in  Tim#), 1963# Here i t  i&  stated explicltlys 

Theorem 3X# $br any p ^ l ,  i f  q(x) i s  the beat L 

polynomial approximation of degree not greater than n to  

a continuous function f( x) on £ a,b] , then there exist 

n+1 points on [# ,b ] at which q(x) interpolates f(%) # 

iproof# This follows sioqply from Tbeorm 18. consider the 

number of changea in sign of f(x) —q(x) on [a,b J ,

ginoe from Theorem IB

G
£  If fx) — lù i)  I  ̂ f  ~  ~  °

i t  follows that there must be at least one sign change# Let 

us suppose that sign changes occur only at ac, 3L,#..,  

within [a ,b ] , where 0 <k<cn# Then the function

Cx-Xo"^*-- (>(■- x^) . f'gM . i- f(>0 —

has constant sl@i on Ea»bJ and therefore

(56)



'  f - ,
/  Cx-Xo'i • f x -  Xj.). ) I , r,j*i C-Ç-fn) oix

i»  noiwem# Since the polynomial

X^Cx-~V j) ( X— ^

(3.10)

heloîige to p , ttola oontredlcte Theorem XB and completes the 

proof.

Mofi le t vm write, for p ^ l,

£.^ Cf) =  ' A  L i "  If-M— 9  ( ) t )  I «(>uj

d»)
so that ^  ooinoidee with %(f) ifi Chapter 2. JBy 

Theorem 31, we mey write

_  <l*Gd =  f  (3.11)

*
where @ (%) i s  the poljmoiaial for which the infimum (5 .10) 
i s  attsAned. we asaume ocatinuity of f^®'^^^(x). Thua from 

(3.11)

m



E l ' V f )

f f, ^

C f  ^^^"9.,) ■ ' < ^ g ].
(% ) ■'

The Infimum Is  attained (eee HikolëdLi, 1964) fo r a  act of

pointa contained m  [ - l , l ]  . How le t  ue

trensfom  a ^ x s b  into -* l^y :S l by putting

X (. fe> ■—«ïl) ^  -4“ C4 /  a .

( 3 . 12)

(3.13)

Let be the pointe on [a ,b j coireeponding to

the mixilmising y . for (3*13), wd le t q(%) denote tWV
inteipolating polynomial for f(%) conatruoted at 

X , Ve can therefore ifyrite

(•tX't-l)
f U )  -  ^  C x - x j . .  6 < - x J . f

(S5)



Now

^  [  f  I f  GO -  C3-14)

w d , replacing the right aide o f (3*14) by the right aide of

(3.12) witWut the atara (4 f) , we have

(H4-0! 4.6)C&k
C x)|. [ f  IO(-i(^)- -CK~Xj>l oIk] [

t>

That i s ,

m  s ®  /b -x x -'-^ '+ 'F  I x « ' i  I
E .  ( f  ) ^

From (3 .12 ), we also have

evf), ^ irv.)i.
(^4-0:

It follow» fmm theee laat two inequalitiee, by continuity of 

that

(59)

(3.16)



b̂)
CH f  b

m  ;  i r ' W L

for acme ^  (E Ca,bJ # L#ttlng p-boo i#  (3 .17 ), we 

obtain (3.9) .

(60)

(3.17)

3.3 The came p=2

Let UB mw mnmlder further the apeoW. oaee where p—2,

#  in  Definition 10 o f oh%ter 1, le t  Q.(%) denote the 

Legendre polynomial o f degree j .  Then, by Theorem 13, the 

inflmm (3.13) with p=2 ie  etWmed by the polynomial

2 ~ '  /[%:
end hm  the value

C'i) /  2 'H-t-f //" 2 \" (zrJ •  ̂ / ( x - x j .

Timm, 1963, notee that for a ll value» of n

I I ^  ,
<  o <  ÏT • (3.19)



3*4 The case

When the tw  polynomial» end of section

3*2 coincide# Thie ie  shown in Tlman, 1963* That i s ,  the 

beat L #pproxim*tli% polynomial of degree at moat n to  

f(x) on [a ,b ] i s  aimply the interpolating polynomial for 

f(x) conatiucted at the ebeciaeae # ic h  minimiee

'‘♦vf f  o b c .

(Xy)

We w ill return to th is result in  Section 3*6#

Meanwhile, we note that fmm Theorem lo  we have

S  =  I /  2  . 0.X1)^  *

3*5 aeneral valum of p

oCp)Hot BQ much ^peara to be known about o % for values

(61)



of p other tliaa p = l, 2, oo. Bee for exemple Nikolekii, 

1964# However, we m@y write

C  ^  [ / I f -  i ' ^ ,

where Ohebyshev polyDomlal (D efinition 6)

TWa

Bquality hold» in  (3,22) only for p era?.

fmm Theorem 19)

[ /  t (x-Xo") • " I*" *>!«■ 1

J '  I (>t— • '•

•for Sberefojre

4 . - ,

(3.21)

i  . (3.22)

( Xy) - /

(62)



This give» the inequality

»    ’vr / / 'n-f-i
^  / /  Z _ (3.23)

In th ia case, equality hoMa only for p -1 .

OWbining (3*22) end (3*23) givea

. ^(h) . /  _ ''-p
6  C  S  / / 2

'H,

Then (5*17) may be rewritten ea

where

( e )

(5*24)

which generalise» Tim#n*a inequalities (5*19) * 3Urth@r, le t  

m  write

_ (h ) '»'+•'H
C7. — Z . (3.25)

(3.27)



)mm the previous sections, we eee that

- ft) . A
^  =  4  a.f\ci P  = 2'h 'K

Ibr other values of p, l^:p#::oo , both inequalities (5.Z7) 

hold s t r ic t ly .  I t  may he noted that depends only on

n and p , and not on the function f(x) m t  on the Interval 

Ca,b] .

3*6 BUrther remarks on L. appmximationB

mmpletenem, and for the sake of an i%>plication to be 

described la ter in  th is  section, we now consider two theorems 

OR approximation. The fir s t  of these i s  stated exp licitly  

and the sewnd i s  im plicit in  the account of Tlman, 1963.

Theorem 32, Btor k=:0, 1 ,,,* , n,

f ^

y  X . n'j-H. L ( ‘n4^2.') d x  =  o .  (5*^ )
—  ;

Proof , Let us put

X =% Cof .

(64)



Thm the in tegral in  (3,28) 1»

J  <9" , ’̂ '5^ C C'H+z) d ^
o

— 2  (—i) J  f  i\\ (9 (/<9
3—* (3 *“0 /̂̂ 'H-f2)

xn+r .  ̂ in/(■y^+z)= « 3 3   ̂E'V r
"M-tZ

( <cr "  ̂ j  k+<S "  f . y  w:r , (5.29)
j~o (̂ +iO

where ^  denotes a sum whose fir s t and last terms are 

halved, N6w oo»(k+1) may be expreaaed m  a polynomial

o f degree k+1 in com &, thatis as l^ ^ ^ (cos^ ). 

Conversely, we cm  find o( . such that
w

k'hf
dor 6 cr .2 *  o( j Cor 3 ^ .

J -o

Hence we can show that (3,29) vanishes for k = 0, 1 ,,,* , n

i f  we can show that

(65)



fox k = 0 ; 1, ,# . ,  n# Thi@ ie  easily Tarif led by ex^xeesing 

œ aa m  the real part o f a and amaing the gwmatric

series then obtained from {3*3Q)m This completes the proof 

of Theorem 32»

This now enablas us to prove the most Interesting

result %

Theorem 33» The best L, approximation to a  continuous 

function f(x) on [ - 1,1]  by a polynomial of degree not 

greater than n i s  simply the interpolating polynomial for 

f (^  <%Matruet4&l8& thei&MKœof sia(]&+%%oo& in

the interior o f [ —1,1 jj #

Proof, Let %( x) ^  P be the interpolating polynomial 

fo r f(x) constructed a t the seios of sln(n+2)oo8"^x

in the in te rio r of [-1 ,1 ]  , It follows that f(x) — q(x) 

changes sign on [ - 1 ,1]  at the same points m  

sin(n-f-2)coa changes sign. Thus from Theorem 32

I «
/  X . C f  W  — cLx (^.31)

(66)



fbr k = 0 , It ibaiowB

ia  the best approximation*^

It HM*y be %%3t;e& (tlax) Ibtust tCtwaoMrega 3Ü3 jRo&lewe; iRpcma 

btLke; aMsaaili;, lOoor

'*4 f  I X̂ -K C*_, )i V - -/- Ĉ l (3.32)
( c;) - /

Is attained when

c*_, )C~ ' 4- • • • 4- C, X +  C,

ïiles tdbe iaat<%x%po]L@ü:Liys iBocr % {QGW&edkit&odbeKl fût ikbwa

2KaX%3 4>f 6i«(lU+;gHD08 jjk 1W&@ l&t8i*aür(üf [-4 1 ,1 ] ,

which are

X- = y j = U 2, - ' ,

These are the zema of U^(x), the Chebyehev polynomial of

the seoond kind, as in  Definition B# The integrand in (3*32) 

megr l)G aRsgdLewBewi Ibgr tibe EooctudLuws ()f tlie <%%%%)*' j%>%aww&8 iSoar tdbg

interpolating polynomial,

(67)



'  •  ■ <>‘ - 0 dX

where

jrr
X* =  CoCJ ‘K-h)

%%%%& dLat, IktkB jUndbeggiyaKwl iLct (i3,45Z!) :kei at WBi3jbljp]U8 cxf 

:La* <w&G%L%ar <;hec&&Gci aTiom tise dkafjknj/tjUan Idbeit "Ltwa ]Le;adjirys 

CK)(dPfyLcdüKkt odT U;_(]ct 3kB 2̂  ̂ , coiag&qdksHa iikuB j>%o@dr (xf

U9aQK)I%2Bk 3().

An wp lioation to quadrature,

A oomon d w s  of quadrature fomulae i s  obtained by making 

the approximation

*> /  
f  Çm  <l̂  j  l< )̂ ,
CL <K

w&ieope q&a) iJ3 an i%yt<%%ÿK>]kKt;Liys iW)3jFiMDodLaüL jüDa? :C(:x) <%&

certain pointa xL , , o n  [a ,b ] ,  These are

odllea i%%teiiK3]Uat033F gpiGKlisttinx) üTeUL Icnowii (sxewagCleHs

(68)



fire t&ie ((&€>8(x%) IfewrbcHi ()&4;eg* j%)i%aul0w5 iai tdkdLc&i <&(:x) 

interpolates f(x) at equally %aq# points including the 

end points, the open Newton cotea fomulae where the inter­

polating points are equally spaced but exclude the end pointa, 

eM the GW68 *» Legendre fomulae where the IntezpelMlng 

points are the zeioe of the Legendre polynomiala* (#ee 

IMvXb and Kahinowits, 1967) #

Having studied L. polynomial %pm%mation above, 

i t  i s  natural to suggest trsnsfoiming the range of integration

CKOdbo» iBKwi tgüGjknyg eis <%(:%) Ibhwe jpodkyioqaBijal.

which interpolates f(x) at the zeros o f sin(n-f2)oos % 

in  the interior of { r l , l ]  # That I s , interpolating f(x)

Gd; t;h(& awMOOK» oiT . iRowr, logr TMbeoimm tüü&e w&iJL

give the polynomial for which

I

j ;  4 M  -  t ' 4 i

i s  attained.

ifOr the fir s t few values of n we obtain 

following fomulae as approximations to

'»V
(3.54)

(69)



(à linear tiwafom atW n w ill glm  the appropriate formulae 

whaa the range of integration la  ) #

+ U + € ) [ - f  +  f

(3.35)

iP )  i-T n ^ C o )  +1? f - ^ i ]

(70)



These formulae are not new# Tiiejt have already bem 

studied by F iilpp l, I964, who was led to  th e ir  discovery by 

a different route to tha t described above# Fillppl* 0 

s ta rting  point 1» the Integration formula of clenehaw and 

Ourtis, i 960* This evaluates

—I

by expressing the integrand as a Ohehyahev aeriea and 

integrating th is ,  using ( 1*8) ,  to give the integral also as 

a chebyshev series# F ilipp i modifies th is idea sligh tly  to 

out out the integration step# He writes

X

F tx )  =  P ( - i)  4 - f  tLir (3.36)
•#•# I

and expresses

CO ^

F (x )  =  ^  A i T -  Cx)
O

Thus

I
A j =  - I * r h )  T ] w « ( x

(3.57)

(3.3S)

(71)



,j:=:0, il, 5%»,#. . IlG&Byg ibtws jLcl&ortjUkSF

iL  (  7% 6c)^  =: ^ T ^ 6c)
d'>L

BBwl jLcdbe%a3%%t:&x%g (3»*:%8) *>y pwaartg;, ]he (dbtedunus

I

Aj ^  TtT^  ̂ (%) (j fxl> di)(.

SüDif jTaKNKi ,8%k& T%ieo3%@m 3U2 ice xwadte t&iad; l&bwa jpoCtanacKoduaJLe

(KKi) (xctdbeygsNoai <>n I;-<l,l] %K&t:)b %%%sgHB(db ibott#
Now le t

'VL

j=:o

Twi&sdb (:$*j5(Q **nwl (3*2F7) 3uB iBewea t%) t)<& ai tacuoacaktiedl EH&adleüs; 

for f(x)# Fmm (3*39) m a Theorem 14 we see th a t 1#

the least squares approximation fo r f(x) with reepeot to 

{1 ~"3ĉ ) * .  That 1$,

i s  attoitteâ Sov the choice

(3.39)

^  T f+ - (5.40)

(72)



.

tdowBG <3QHiEcldb53%& # 1k%ws iirk<&z%K)]U%t:lrys jjQLLy%%o;niiSl

3%)!' jT(3t) <2o#ed:3%&cd:<%l <&t tdba ssoixM: (%f tdbedb zLe; act

Idha sseoDoe* <%f %%&,#. TW%» twams

ffx )  -  c  w  =  ^ ) !  <f ( r j^

m  that

/ ( I — Ç(n)  — yx^(>o] oi>c

(3.41)

~  [ 7 ^ !  ^ y ) ]

it *

ItooM g%kKao#dm 3.|), twa j&ee tdowat 'tt&8 c&iodLCG sxf :K%̂

minimises the intégral on the r i# it side of (3*41) # F ilippi 

aaqgwwag; fycgwa tdhdle ttwwt wdLSJl t&eaaa&lar gclTnB ;& lolawBe

4%pap%x%x3wn#Ktij9*& tw) apgt:*) # 3%]%%; lie EaAgRseetG iwadbogr tdhe 

eppmxlmetion

/  f ( x )  dyL 3 :  /  r ^ U )  » (x  .

(75)



3R)3T ' 2», 41, idlduB jgi/WGHB IbÜlG iPCKCKBAl&B (Zf.ZfS) #

Fillppl* a integration fomulae are compared 

numerically with both the qimehaw #. Curtis and the QmB& «. 

Legendre formulae by Wright, 1966# in th is compariaun, none 

of these integm tlon formulae cm be dim iseed, since each 

emergea m  superior to the others for certain Intégrale#

TÜhe gdbeHBHMadbion iaau&e kwsixs Ibbwat k&%s 3P&3Llj)pjL jSossQG&GwB 

eatlEdSr the odatbBum 31̂  psGgwapty, eus :wn (2,^54), a$%HB&r8 to I# 

new#

3*7 Piecewiee approximations

3a& i&ectldWi 2*3, %%; (GaaeldkBMBi ml nimax piecewise polyiwBKial

epproxlmatlone# Here we #m ll consider h piecewise
P

polynomial approximations# Let m  write

k

,\C  T  l -f<^x)-  %i Gôl fifyc] ^
j - I  X;_,  ̂ J >

(3.42)

(74)



whore the inflmum is over ell partitions of (a,b] into k 

sub-lnteivalG, with sub«.dlvicling points

mà over all polynomial appioximations q ^  P. on theI  n
j  sub-interval, j = l ,  2*#*#, k# m  argument sim ilar to  

the one used in Section 2.3 shows that there exist points
W* <W“X. and polynomial.s fo r  which the infirma (3#42)J ' V

i s  etteined# Also, i t  i s  olesr that Ibr the best pieoewiee

for f(x) on the interval j  .  Therefore

approximation, qT(%) must be the beat L qpproximatlonV y

^•H,k ( f ;

[à
J=f

That ifîi

(• j= i (%+b!

(75)

(3.43)

[ 2  r



Now (MA the idLg&it elde o f (2#43) each of the k eummnde must 

*)(& <%gwwa]L, <)tühK)3%rlf3e W4s (ocwaSal (obr&aKlB «& t>e1;te$' gy&gwPOOKliQ8d:l<3Bi %gr 

lüaküLByg iSBOtheor josactikjbea <>f [j&fb ]|* 11: jRodllcMfa 1db(*b,

J —1, 2*#*#* k,

/  A-SX.̂  b

and m

^iv,k ^

Ô-.•n. . k . *’^  I f  6 i )  1 .

A lower boma for E^^^(f,a,b) i s  obtained by argning

E&m&3U&%f&y tlMMb, jRoir ,j:=]L, 5 % , , 3c,

Therefore wa have the Inequality
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ff>)

'
(71+ 1).'  ̂ .  '^ • - ,  i f - w i .

By continuity of , we may combine the two

inequalities (3*44) and (3*45) to give

( f ,  « .  0

(3.46)

'>V

^ + 1)

for some f  ^  [a ,b  ] .  This generalises ( 2.36) ,
_(po)

remembering that 0  ^ =r 2.

We can also generalise the asymptotic resu lt ( 2,33) 

os follows. Since a l l  k summand© on the right side of (3#43) 

arc equal, we have

( f ,  v k )  =
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tor 1 6  j ^ k « That i s ,

. k \  i r % , ) \

Tfe iSBKi INCH* ]p%%)oe@Ml aa; jWoL aa&cftawDB SZ.j), iNTcHkiagf

m-

---- —-—— <-"—' ac , 6*+f) 1 -H+.i-fi
-L 2 ^  ( ) ( ï I f  (r;)\
^  j = l

Let m  assume that f(x) camot be represented exactly by 

a polynomial o f degree n qu my sub-interval of fa ,b l . 

Then we have that, as k-^ <» in  (3*4S ), the length of the 

largest mh-imterval [  xT_ .» » J w ill tend to  zero#
J 1 tl

As k^oo  ̂ ^0 may therefore replace the ommtiom on the 

hand side o f (3.48) by the Biaaann integra l. This 

gives us the asymptotic result,

(3.47)

(3.48)
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r n -1 Cf-)

r  ,  r  , « + , )  1^  1  F
i  i_ <* /[. f x ) l  <̂ xj(%+0 :

special oaae of (3*49) with a = l ,  p =2 i s  given by 

Bern, 1961, in  addition to  the other special case 

n=%, p =r oo eia^ady noted in  -Section 2#3*

TO fa c ilita te  comparWm with Ream* e rem it for 

n = l, p= 2 le t  ua recall that

(b) (l>)

»  =  i  s'K 7

end frt® (2.18) tlwt

n = l ,  p=2 we then obtain from (3.49)
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^  k "  f ( f ,  » ,  t )

I
12. J r [ /<£v
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(Chapter 4

()%' C)0If\nE2l DAOfji

4.1 Intioduction

The la s t two chsy^tera were devoted mainly to the pm blm  of 

e#lm atln^ the error in  best polynomial appxo:dmatlons. 

This chapter la  of a  d ifferent nature. I t  i s  concerned with 

a much more p ractical problem.

One i s  sometimes presented with a discrete set of 

data which i s  convex, or where physical reasons suggest that 

the data would be convex but fo r experimental e rro r, in  

these circumstances, i t  seems unsatisfactory to  use the 

stm dard least squares method, whidi resu lt in 

epproximationa with undesired inflexione. I t  would appear 

preferable to make use of the knowledge of the convexity of 

the data, in  order to  produce b e tte r eppioxlmations to the 

hidden convex function, say g(x), and i t s  fir s t few 

derivatives, i f  these ere required.

(81)



le t  U8 suppose that on a fin ite  interval

[a ,h ] . I f  we cm find a sequence of functions

with

3  O

on fa ,b ]  , wo can consider using functions of the foim

TL

J j x )  -  ^  Cj ' f j f ï t ;  c j ^ o ,
^  j~o

for approximating to g(x ). in  (4.3.), by ueing a aum of 

non^negatiive multiples o f the component flmotione X) »

we also have that

(4.1)

i " Ck) 3  o  ̂ a. ^ >c S  l> .

It s t i l l  remains to deteimine two things; what Bice, 1964, 

ca lls the *mm mâ form* of the oppioxiioation. The fir s t of 

these, the choice o f norm, w ill decide on the * best* values



fo r the coefficients cy in  ( 4,1) ,  The second ta # : i s  to 

make a suitable ehoice o f the component functions 

which i s  more d if f ic u lt .

At th is  stage, i t  mey he helpful to recall why 

polynomiala have been so extensively and sucoesafully used, 

particularly in approxWating to discrete data. This i s  

partly  because polynomials are easily evaluated, but mainly 

because o f v/eierstraaa* theorem, which shows that linear' 

combinations o f the monomials are good enough for 

approximating a rb itra rily  closely to any continuous function,

What we require here i s  a  choice of the function® 

for which we can sta te  a aimilar theorem, That i s ,  any 

function g(x) such that g''(x)ÿO haa to  be ^proximablç 

with arbitrary accuracy, on a f in i te  interval, by a aim of 

noiwnegatlve multiples o f the functions ) .

4*2 c&KüUœof the {xw%p#&eat c*%M%%K:fw&Gtions

It should be mentioned immediately that the Bernstein 

polynomials themselves (Definition 1) provide m  apparent
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solution to  our problem# i f  g(x) i s  convex, bo also i s  

S^^(g|x)# This i s  proved in  Davia, 1963# However, i t  i s  aim  

well known that the rate of convergence of B (%;%) to
*n,

g(x) i s  given by ;

Theorem 34# Let g(x) be bounded on £ o ,x l and le t  XL 

be a jp&int o f (j) ,l]  at which g^t^n) exfots. Then

ir« >  ^ -  a ( X j ]  =

(Proof in .Davis, 1963) #

That i s ,  asymptotically, to lîalve the error we 

have to double the degree of the approximating Bernstein 

polynomial, wMch i s  clearly a poor practical piopomtion# 

Besides, m  Ims already been remarked, the data may not 

actually be convex, due to experimental error# Therefore 

the Bernstein polynomial» may alaa not be convex# we 

therefore discard the p ossib ility  of using the Bernstein 

polynomials djrectly# Instead, we prove s 

Theorem 35# There ex ists a sequence of componmt functions

;  f ,  W  ) W , ,

(4.2)



with (x )^ 0  such that any function g(x ), with

g '(x) 5^0 md continuousi may be appraxlxmted with arbitrary

accuracy on a fin ite  interval by a mm of m vnegativa 

multiples of the cmpmmt Amctiona,

Pmof, Let uo auppoee that we wish to appzoximata to g(x) 

over the interval [ 0 , l ]  # we cm make # linear change of 

variable, i f  neceemiy, to tim efom  any fin ite  interval 

£a ,b l onto fo ,lJ  # we n m  the Bermtein polynomiale

indirectly and write

'K
^  (4.3)
J=o

Let m  observe that 3 ( 4 ( 1 ^ 0  on [ o , l ]  and that 

in  (4*3) i s  being approadmated by a mm o f non#,

negative multiples o f the polyiwmiale ^4(3.—x)^

3&%r n2»2, ckd%Kw& %&(%)

t Z  (X) =  f  g" ; *

^»v (•'*) — 3   ̂ (4.4)

(o ) = J  (̂ ®) •
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w  = X r f - x )  ^

To complete the defin ition of the polynomials 3  , (x),

we define

^o,-K W  — •ri'̂ 'H. f  3 ( 0 ) ]  j

/9,,^ Oc) = X .  9 'f e ) ]  .

W# then have thcvt

4L

1 = 0

where c^:^Q and Co,!] • How, given

any G >  0 , i t  follovis fmm Bernstein* s theorem (Theorem 2)

that there ex ists m  integer n fo r which

(06)

(4.7)



I ( g ” ;  x )  —  I <  6

m  [O fl] * That i s  ^

on COjll ond therefore, for 0^3t£l,

X

iJsfsjg (4.4), the ±nei|ualttieB (4«3) give

(4.6)

for 0 ^ SWl wûy ,  mother integration isbctwa; the*

I l^lx) — y ( x ) l  ^  e  ^ ( 4 , 2 0 )

for G ^x£l, RecelliHg the defiaitioB of to (4.7),
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th is  la s t inequality (4.10) completes the pmaf#

hote that the polynomiale 8  . (x) may he mumemted,

say in  the order

^0,1 —> ^0% A ,z  

; X  ^  i
^0,3 f i j3

/   ̂rO;4

md re-lehellea (^ (%),#.* #

4.3 * Best' œnvex sppzoximationa

In practice, we may obtain convex appioxioiations to  g(x) 

in  the following* way. F irs t, choose a value of n ^ 2. This 

may be inoreaeed subsequently, i f  nocseseaxy* Then se t,

'^jL>l) = 2- ^  j  ^  "M.. (4.11)



Also, Xefc us put

vp^Cit) =  r>'5 '»v r  3 ( 0 ) ! ,

vp.cx) =  x: . .

The signs of g(0) and g\o) mey be inferred from the 

data. The polynomials axe easily computed,

since fo r 3^ 2,

ls= o

Therefore, from (4#3),

(x ) =  % 4^5*  ̂  ̂ ( 4. 13)
f  ZrO

It may be noted that the polynomials are linearly

independent.
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Theorem 35 depended on the œnvergaice of x̂)

to ĝ (̂x) on [ 0 ,1]  . Although tliie  convex'genGO i s  slow, m  

can © till hope to obtain a good (convex) approximation to 

g(x) of the fom

'n.

■>v j = 0

because we a t i l l  lime the choice of the non#*negative 

coefficients 0 . at our disposai*

We use the least squares nom# Having made a linear 

change of variable so that [a ,b ] i s  transfomed onto [0 ,1 ] , 

we sed£ to minimise

M ^

Z  [  f  K )  -  ^  ' P s C ^ c ) ]  ,
a=r|  ̂ ^

subject to the constraints c . *^0, 35=0 , I###*, n . The 

data we are concerned with here Is the set of points with 

co-ordinates ( x , , f(Xĵ ) ) ,  for 1= 1 , 2,*#., H# The set 

of values f(x^) are regarded m  perturbed values of some 

*Mdden* convex function g(x) at the points x

m  [ 0 ,1]  # We take n<h# The expression (4,14) may be
Li

(4.14)
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writtea as a function of the (column) vector

C =  f  c , ,  . ..^  c ^ î  ,

Then (4.14) beoemee

^ C c )  =  K  —  V ^ c  4- C ^ M c ^  (4.15)

W
where K =r 2  v ip  a  vector wWae ( j + 1)

element is
N

Vĵ i =% Z
1=1

is  a matrix whose ( j + 1 ,  k4-l) element i s

M

Thua the problem ia  that of finding:

' 4  f  ( O ,
c  o

the infimum being over a l l  vectors c with noxwiegative

(91)
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e l0iientp# tom  (4.15) > ttola ia  a quadratio progrmming

X>robl«u wiioae only constraints are the imwnegativlty

constraints on the c . .  R»r methods of solving auch a
J

problem  ̂ sea for example Hadley# 1964.

I f  A  denotes the matrix whose (1* i - f l )  element 

ia  # we have

M  =  A ^ A

60 that in (4.15)

M C =  (/4c ) ^ C A c )  >  o (4.17)

unless c= 0 . # r  I f  o+zQ# Ac=H) by the linear 

independence of the functions * Therefore the matrix

U in (4.15) i s  positive d efin ite. This entail© that ’̂ (c )  

i s  a convex function of O; because with o < X < 1  and 

8%̂ two vector© the expression

) \  f  ( (5-') ^  f  (>
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>,((->■) Ce"’— ĉ*'’ )"'' M (c"'~ c^) >  o .  (4.m)

Thua my method which find© a local miDlmum of $C®) 

have found a global minimum# Thie rem it ie  shown in Hadley#

1964# where i t  ie  also shown that m  expropriate method for

aolving tM s problem ia  wolfe* e quadratic piogrammlng

algorithm#

4#4 Humerloal examples

In order to  allow m  objective aseeewent o f tb ie  method for

deriving convex epproximationa# a number of numerical 

expérimenta were performed. The## begin hy calculating #et# 

of specimen * nearly convex* data of the form

=  .g (xv) +  ^

where g(s) denotea ssine convex function, the B. are 

nua&ers in  the range [ —1,1]  produced by a. random n u # er

(93)
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geiemtor# and S is a soaUaig faotor# various choices were 

mode of i(x) # S' > the R. # the degree of the appmxhmting 

poXyaomlal. n# and the number of data points,

A oompaxison was made between the * best* convex 

^proximation# say 9 and the conventional least

squares oppxoxii'aation of the same degree# eay Q(x) # The 

numbers

were calculated as a measure of the error in  approximating to

the G derivative of g(x) by the a derivative of

the convex polynomial ^ (x ) . These were compared with the

corresponding numbers obtained by estimating

aimilarly the error in  ax)proximating by
ththe a derivative of the conventional least squares 

polynomial approximation of the same degree.

The accompanying tables show mme typical resu lts. 

Table 1 (page 98 ) was obtained for the function

- 1  — ©inrrx on the eleven points x 0(0,1) 1 , with

( 4. 20)
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n=rî5 aid S =. 0 ,2 , The tab le shows the results obtained 

for six  sets of calculations performed using different sets 

of random numbers. The mean values o f E( and

fQj. the s ix  sets # f value© are shown in the last 

row of the tab le, 0?able 2 (page 99 ) shows the la st set of 

results from Table 1 in more d eta il. Table 3 (page lOO) 

gives results# as in  Table 1# foa? the function 

g(x) — l /  (1-fx) and the same cWice of the n end

S'.

4.5 Discussion

These experiments suggest that the convex approximations, 

J ( x ) i  are advantageous in  moothing crude convex data# and 

are particularly useful in  epproxinmting to derivatives,

Tldis i s  borne out most strongly in the comparison of second 

derivatives in  Table 2,

The use o f the ig  nom leads to a problm whid’i 

i s  comparatively simple to solve. The amount of computation 

depends chiefly on the degree, n# of the approximation
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required# which specifies the aijse of the matrix K in  

(4.15) f md not on the number o f point## i# in the data,

one xuigint consider using the now instead of 

least squares, (The I, ^  ar mlnimx now i s  not usually 

recoaasended for the approximation of discrete data# since i t  

takes undue regard of * wild* points), The approximation 

problem leads to a linear programming problem# but in th is  

case the aiaje of the problem depends on the number of 

points, M, Algorithms for calculating ^proximationa 

are givm by Barrowdele and Young, 1966, However, the 

la tter  are concerned merely with polynomial (not convex 

polynomial) approximations. We could consider relaxing the 

convexity conditions on the cxxuponent functions kj/j(x) 

and also relax the norwnegativity constraints on the 

coefficients c . ,  we could then solve the L* problem,V X
with additional constraints# such as

^  Cj ^  ,  l\f
j=o

to try to impose ajnvexLty on the approxiimtlon. Even so, 

i t  doe© not seem that th is w ill guarantee that we w ill
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always obtain a convex appioximatlOR# This approach does not 

seem worth pursuing,

lastly# i t  may be noted that the method described 

here fo r least squares convex ^piommetions applies equally 

to  approx3.m tions on the in terval [ o , l ]  as well as on a 

f in i te  point s e t ,  T)or again we have a quadratic programming 

pmblmi, This time# we imve to  minimise# fo r c^O,

2  (c)  =  K —  4- M

This time,

I

K  =  _ f  C f  ^ x ) ]
o

the vector v has ( j  4-1) element

v/j., =  i f  ff>i) d aj+i

and the raatrix M has ( j + l #  k-Kl) element

I
^ } + , ^  fc+i =  f  '
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Table 1

0Cq ) E ( f )  

( funotlon)

% ')  K $')

(1®* dex'ivatiye)

:(Q') E(§") 

(2®*̂  deilvatiTe)

Qjxn 0.006 0.090 0.09% 1.48 0.34

0.010 0,010 0.081 0.073 1.23 0.51

0.008 0.007 0.109 0.042 1.56 0.26

0.010 0.009 0.146 0.030 2.78 0,57

0.010 0.010 0.099 0.100 1.02 0.98

0.012 0.010 0.214 04)60 3.82 0.40

Hem 0.010 0.0)9 0.123 0.069 1.99 0.48

Â comparison of oomex appioxiiaations# , with 

the conventional least squares approximations, Q(x), 

The data was obtained by perturbing the function 

1 — sin  rpc# (See page 94) •
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Table 2

X sCx) 4%) f(x ) g'(x) g'\x) %"(%) J (x )

04) 1.000 0.396 0.992 -3.54 -3.16 0,00 7.22 0,52

0.1 0.691 0.675 0.684 -2,99 -2.91 -2.96 2.05 5.55 2.51

0 ,2 0.412 0.411 0.410 -2,54 -2.57 -2.48 5.80 5.57 5.94

0.3 0.191 0.203 0.195 -1.85 -1.76 -1.79 7.98 6,72 7.80

0.4 0.049 04)63 0.058 X),97 -1.01 —0,94 9.29 8.25 9.01

0 .5 0.000 0.007 0.010 0,00 -0.10 —0 #0l 9.87 9.77 9.52

0.6 0.049 0.04? ' 04)57 0,97 0.92 0,94 9.29 10.24 9.21

0.7 0.191 0.189 0.196 1,85 1.92 1,85 7.98 9.28 8.29

0.8 0.412 0.424 0,417 2.54 2.72 2.57 5.80 6.25 6.44

0.9 0.691 0.718 0.702 2,99 34)7 5.08 2.05 0,22 3.69

1.0 1.000 1.012 1,023 5,14 2.65 5.23 0,00 -9.21 04)0

This table l i s t s  in  more d etail the approximations referred to in the 

la st entry of Table 1, In the approximation of the second derivative, 

the last three columns of the table show that the convex approximation 

J (x ) i s  very mucli superior to the conventional least squares 

approximation Q(x) •
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Table 3

( function)

a ( f )

(1*^ derivative)

TiQ) 

(2®  ̂ fle

OÆCf? 0.005 0.080 0.036 1.31 0,17

0.030 0.010 0.076 0.047 1.00 0.39

0.0C© 0.007 0.093 0.058 1.30 0.69

0.010 0.007 0.147 0.073 2.79 0.49

0.010 0.008 0.110 0.076 1.26 0.62

0.012 0.009 D .a3 0.040 3.79 0.19

Moan 0.010 0.008 0.121 0.055 1.91 0.43

A cmmpmc’kmn (xmvex , witli the

conventional least acparea ^gfpmximatlone, Q(x)* The 

data warn obtained by pertuibing the function l / (  f & >t). 

(Similar to Table 1) ,
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