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IWLRODUCTION AND SUMMARY

‘the fundamental theorem, as far as this work is
concerned, i@ Welerstrass' theorem (1835) on the approximebility
of contiouous functions by polynomlals. Since the time of
Welerstrass (1815-97) eand his egually importent contemporexy
Chebyshev (1821.94) , the topic of approximetion has grown
enoxmously into a subject of considersble interest to both

pure end spplied mathenaticisans,

The zubject matter of this thesis, belng exclusively
concerned with polynomial epproximations to o single-valued
function of one real varieble, is on the *epplied' side of
approximation theoxy. The fivst chapter listz the definitions
and theorems required subsequently. Chapler 2 is devoted to
estimates for the maximun errvoy in minimex polynomial approximations.
Extensions of this are used to obtain crude error estimaten
for eubic spline spproximstions. The following chepter extends

the minimex results to deal alse with best I.;p polynomial

approximations, which include best least squeres (132) and best

modulus of integral (Ll) approximations as special cases.
Chapter 4 is different in cheracter, It ias on the practical

problen of approximating to convex or nesrly couvex data.

(1)




Chapter 1

PRELIMINARY DEFENITIONS AND THHEOREMS

This chepter contains definitions and theorens which

are required in subseguent chapters. The proofs of most of

the theorems ave readily availsble in texts and ave not repeated

here. where a pxoof is omitted, a weference is given to &

source of a proof

1.1 Minimex epproximations

Theoren 1. (Weierstrass® theovem), Civen a function £(x)

continuous on [e,b] and sny €3> Q, there exists a polynomial

q(x) such that
mox | f6) — | < e
As XE
(Proof in Davis, 1963).
Definition 1. Given e functien f(x) defined on [0,1] , the

n'h Bernstein polynomial for f(x), denoted by Bn( £3%) is

defined as
B (i = 2 (P x a—a” £&)
j=o

(1.3)



Theoren 2. (Bemetein's thooren). If f(x) is continugus on [0,1]

the sequence of polynomisls ( :Bn( f;x)) converges uniformly to
(%) on [0,1] as n tends to Infinity, (Proef in Davis, 1963).

A linear change of verisble extends this result io
any finite intexrvael [ a,b] and provides o constructive proof
of Weierstrasa' theorem.

Definition 2, An interpolating polynomial for & function f(x)

constructed at the distinct points x= xo.xl.... X, is a
polynomial g x) of lowest degree such that q(xj) = f(xj) .
J=0slyevese

Theorew 3. The interpolating polynomial for a single-valued
function f{x) constructed at a distinct zet of points
XyeXypeeeyX, exists and is unique. {Proof in Davis, 1563).
Theoren 4, Let asxj £bh for J=0sljeeeyn and let g(x)
denote the interpolating polynomial for f(x) constructed at
Xyreees®, v if f(n+1)(x) exists for a<x<b andis
continuous for a < x <b, then there exists a point on La,b] ,
say 3 o+ Such that for any x on [a,b]

ng1)
'F(x) S ?,(x) = , (""xo)”'(""x'n)f sz)

i) !

(Proof in Davis, 1963). It should be noted thet in (1.2) }y

(3)

(1.2)



i itoelfl a funchion of X

I’n will be used to denote the set of all polynomials,
with real coefficients, of degree not grester than n.
pefinition 3. Given a function f£(x) defined on [a,0], a
polynomial q*(x) & P, is seid to be & best minimex {ow best
Chebyshev) approximstion to f£(x) on [a,b] of degree not

greater than n &f

inf  max [0 — g0

Qb e f?n agnsh
is attained with g(x) = q*( X) o
Theoren 5, If £(x) is continuous en [e,b] the infimum in
{1.3) iz attained. That is, the best minimex approximation
exists and Yinf' in (1.3) may be replaced by *min', (Proof in
Davie, 1963) .
Theoran 6. The best minimax approxination defined by (1.3) is
unique. {(Proof in Davis, 1963).
Defipition 4. A continuous fanction e(x) is said to
equioscillate at @ points on (ay0] af L max, | o(x) |
1% atteined at m points Xypeees®, belonging to [o,0) and
also

(4)

(1.3)



sign [e(x3+1)] = — mign [ e(xj)]

for J =0peeeu~1, The :ecj ave eolled extreve points or
GRLTE0A.

Thegren 7, If f£(x) 4= continucus on [a,b] and q*(x)
denotes the best winlmax spproxination defined by {1.3), then
£f(x) — (%) equioscillates at n+2 points on [a,b] .
(Proof in Dmvis, 1963). This theorem is due o Chebyshev, as
is alsos

Theorem 8, If £(x) is continuous on [a,b] and for some
(D 7, £ —qfx) equioscillates at n-+2 points on

[ ab] , then ¢(x) is the best minimex spproximeticn defined
by {1.3). (Proef in Davis, 1963).

Definition 5. The modulus of continuity of a function #{x) on

[ aeb], denoted by

Il

wd) = Ww(f; ) w(f a b; ¥)

ig defined by

w( ) = sup l aF(X,) — {-(X,_)] . (1e4)

by-21< S

(5)



The supremun in (1.4) ie over all x,,%, belonging to [ a,b]
snd such that |x—x,1< &+ It is clear that, 3f £(x) is

contimious on Lab] , W(E)> 0 as §->0.

1.2 Qrthogenal poldynounials

o sttempt is made to give o systesatic account of orthogonal
polynomials here. Only the results required later sve guoted.
Definition 6. The Chebyshev polynomisl of degree n, denoted

by T.(%), 1o defined as
2(x) = cos a{cos x)

This is aleo referved to su the Chebyshev polynonial of the

first kind,

Definition 7, Given a function £(x), the Chebyshev series for

(%)  when it existe, is defined as

x>

[
2 Cs Ta (ac),

3 =0

where
{
2. 2_""1‘1 T: 0(
6; = 37 fG“X) fod 1500 ox
-1

(6)

(1e9)

(1.6)

(1.7)



!
or J=0slseees and 2 denotes a sunm vhose fivet term is

helved.

& Chebyshey series may be integrsted to give apnother
Chebyshev series. Suppose (%) is glven by (1.6) and that

I
%
.-\-\
K

QL

-+

F&)

It follews that

(7a=]
Fo = > CTo
y=o
whers
C, = (., — C,-+,)/2,', )> o0,

ana C o i® detemmined by tho lower limit of integration. See
Goodwin et al., 1960.

Theorem @, The infimum

A~

inf  mox l X 4 Cofy X 4o + G
(¢;) ~tsxs)
n~f {
is sttained when @ X+ Cay X A v o4 Co = —= T, ).

(N

(1.8)

(1.9)



(PMf in DaViB’ 1965) »
Definition 8, The Chebyshev polyncuial of the second kind of

degree n, denoted by Un( X)y is defined by
p— | . -l
U, 60 = in (("‘4—') cor x) / ein (cor ), (1.10)

From (1,5) and (1.10) it ie easily checked that

T/ ) = = U, o).

(1.11)
Theorem 10, The infimum
!
n n~}
""‘F [ Ist 4+ Cuey Xt 4~ +(‘°l5{x (1.12)
ey ™
" A y e C, = ‘!';',_ uM()l
is attained when 3¢ 4+ Cnoy D 4+ 4. o 2 )

aud has the value 1 / T (Proof in Timan, 1963). Thig

result is due to A.A. Maikov.

Definition 9. A seguence of polynonials qo( %) g q_l( x) qz( X)pveoy
vhere qj( % has degree i, is said to be orthogonal on

[ a,b] with veapect to a function w(x) if

b
[ woo 00 qo0 4 = o (1.13)

a

for Jj#k and is non.zero for J=ke.

(8)




The function w(x) is called the weight function.

Theovem 1l. The segnence TO( X) o 501(3) seee &3 orthogonal with
vespect to (1-—:&9‘)"%' on [—-l,l] ¢ {Proof in Davis, 1963).
Theorem 12, The sequence Ua(x) s 111( X) yeee is orthogonal with
respect io (:0.-—-:3:2)!i on =1,1] . (Proof in Davis, 1963).

Refinition 10. The Legendre polynomials ore o seguence of

polynomials {3,0( %)y Q%) peee which eve orthogonal with respect
to the constant function 1 on [-3,1] and which satisty

QJ(I) = 1’ 3'—"—0,1,«0- ¢

Theorsm 1%, The infisum

. . 1%
inf [f (x4 Gy X G) d"] (1.14)
) -

is atteined wheo

" 2
Xk e X ek G =2 QJ")/(:)

end has the value (Zf_,,,)%- ln/(z‘:)-

{Proof in Davis, 1963).

Theorem 14, The minimun of

L n z
_:( w () [Hx) - ¢ ‘i,-(x)J "(")

J=6

(9)



wvhere w(x) end the qj(x) soblefy Definition 9, io atteined

for

J f n
G = [ woo £) 450 dox / f’ woo) [4;60] .
-1

(Proof in Rice, 1964).

Theowen 15. The minimua ¢f

!
f w-(>¢) (>(~3(,)L--- E3-N,.) a()t,

e
over all cholces of real numbers HypeeosX, ie atteined when
Eypoveyh, are the zeres of g (x), which belongs to the set of
polynouials orthogonal with vespect to w(x) on [-1,1].
(Yee Definition 9).

Lo Iab approxinations

Definition 1l. Civen a function f£(x) defined on [a,b] and

a nurber p2>1, & polynomial q*(x) < P, 1o s8id to be a best
Lp polynomial approximetion to £{x) on [ea.,b] of degres

not grester than n if

(30

(1.15)



u\(— [f lf(x) — q,bt)l dx Jp (1..16)

4060 el

is sttained when g(x) = q (x) (if p> 1, for any function
p

g{x) defined on [a,bJ o C f lg(x)l o(u.]? defines s norm

on the lineax space of continwous functions defined on [ a,b] .

If p<£1, one of the noxm axions is viclated and =0 LQ

spproximations ave uemually restricied to o cholce of p21,
especially common cholces being p=1,2 and 0., The use of
normed lineny spaces facilitates the diecusgion of more general

nodes of approximation them are required here.)

It may be noted that

B
bk [f (£60 — 4,00l "xJ = gup |£00 —-1(>t)|, (1.17)

b%w Q.S“-é

Foxr this veason the Lest minimex gpproximetlion is cometimes called
the best L, approximation.

Theorem 16. If f{x) is continuous on [a,b] the infiman in

(1.16) is atiained for esch p2l. That is, the best LQ
approximation (p2l) exists and *inf® in (1.16) may bs replaced

by *min'e (Picof in Davie, 1963).

Theorem 17. If £(x) is continuous on [a,b] the best I“p

approximation defined by (1.16) is unique., (Proof in Davis, 1863).

(11)



Theorem 18, If #(x) is contimous on [a,0]) , then for any

p21 a2 necessary end sufficlent condition for ofx) € Fn to

be the best I o approximation {defined by (1.16) ) is that

b
bl

f 60 [((x) e ct(x)f . Sigh [((x) — Q(x)] dx = o0

G

for a1l (x) € P . (The proof will be given in Chapter 3).
We shall alse vequive the fellowing two resulls

concerning inegualities, which axe proved iu Hordy, Litilewcod
and Pélya, 1954

Theoven 19, I¥ 0<p< g', then, when the following integralse

axkot,
b 1R 5 Y "'F'
[ (igeotfa]’ < [ L 19l 4

wiless g(x) is e constant function.

Pheoren 20, (Holder's inegquality for integrels). If p>l

then, If the following integrals exist,

b b b 1!-; b p! -é;,
{Ig(x) Leo! ds < [£ [ 4601 a(x] . [’[ | Lol o(x]

{ I
where ——+Ti=1
I N %

(13)




Led Genoralisation of polynamial agproineabions

IR

In oxder to desd subgequently with polynomial appeozimatlons
which gles interpolate f£(x) at certain points, we shall reguire
a genovalisstion of some of the foregoing results on minimax
approxinetion.

Definition 12. A finkte seb of functions Yo 00, Y00, -~ ¢, 00)

iz seid to be o Chebyshev sel on [a,b] if the VI’ j(.x) are
i:\ontinuoufs end tinesrly independent on [a,'i:;] and the function
g,; < k(x\ hos ab most n mexos on [ e,b] for eny choice of
real Gy J=0edpeeeynte {(Such a set of functions ie described
by some authors, oeg. Tiumon, os setisfying the Heor property).
Theorem 21, If £{x) &8 continuous en [a,b] and the set of
functions Y/o(") ’ \[’.60, L 4’,\6() is a Chebyehev set on

[ ap] , then

n

inf /X l FO)  — Z G \l/;(x),
()  asxsh y=p

ig attalned and the best approximation is unigue. (Proof in

Rice, 1964).

Theorem 22, If %) is continuous on [a,b] and Sk,(x)) Sl/‘(x} -

\K(x) is & Chebyshev set on L a,b) , then a necessary and

"
sufficient condition for = ¢ ‘If(") o be the best

=0

(13)

(1.18)



approximation (s in (1.18) ) is thst

"

foo  — 2> g §w

J=o

equioscillates at 042 points on [&,] . (Proof in Rice,
1964) »

1.5 cubic spline approximations

Definibion 15, Civen a function #(x) defined on [ab] and

a partition A a=X.< r:l<...<x,£= b of the intervel
Cebl, a function § A(f3%)  ie said to be a cubic spline
epproximetion to £{(x) on A if
(i) 3a(£3%) is a cudblec polynowial {at wost) on
on each interval [xj,xj+ ﬂ s 3=0y0eesk—1,
(ii) SA(f;x;j) =R f(xj) v J=0peceyk,

(1i1) s'A( £3%) amd S)(£3%) ave contimuous on[ asb] .

Two fuxther conditions ave vegulred, wsuelly teken to
be the values of SL(f;x) or SZ(f;x) at the endwpoints
x=a end x=b, in ovder to specify a perticuler 5, (f;x)
satisfying the three properties chove. BSee, for example,

Ahlberg, Nilson and Walsh, 1967.

(14)



Chapter 2

EETIMATES OF THE MININAX FREOR

£l Mindwex epproxitwsticne over a single interval

Let us use

En (‘F) Eh. ('F-) ) b)

il

to denote

nf- maxc l o) — 2 ¢; .)(,j ’.

() agxngb i=e
J

In 3911, D. Jackoon proved;
Theorem 23, If f(x) is continuous on [a,b] ¢ there exists

a constent { euch that
= E ( D o< C.ow(f é’—'-i‘)
EN ('p) =2 M ’F) a, e 3 J T [, (2e1)
(Proof in Témen, 1963). Since by continuity of £{x),
w(f §) > o0 ar d>0

Jadkson' s inequality (2.1) implies Weierstrass' theowsm,

(25)



Jackson further proved;

Theozen 24. If #{x) hes its k' derivative contimous on

[a,b] » then for nox

b—a)\K k)
E (£ < M, - (7) w(f 6%), (2.2)

1963)

Parther results of this type, inwolving the wodulus of
continvity, are quoted in Timen, 1963, A wmore recent result,
given by Meinardus, 1967, isg
‘Theoven 25, 1If f(n+l)(3:) ie continuous on f_as,,b] » there
exiets a nawber } y &< }’< b, such {that

2. L—i nA-|

E. () = o (& I{CM(}’)I_ (203)

Feinardus' proof is based on a theorem due to Bernstelns

Theorem 26, Lot g(x) and #(x) have derivatives of order

n+tl on [-1,1] and suppose that

| {an(u)l = 3@*’) (x)) x € [~1,1].

Sy

(16)




Than
E () < E. (9).
{Proof in bHelnevdus, 1967).

o elternative prool of Theorem 25 will now be given
which depends simply on the theorem concerming the error in the
interpolating polynondal snd Chebyshev' s equioscillation
theoves (Theorens 4 and 7)o A sindlar gppmach ensbles one to
estimate the exror in best 1 0 yolynomial approximations, to

be dealt with in Chapter 3.

Prool of Theoxes 25, If q*(x) s Of degree at wost n, denotes
the best minimax epproximetion for £(x) on [a,b], then by
Theoran 7 there exist n+2 posuts on [a,b] at which

fxy — q:x- (x) equicacillates. By continuity there are
thergfore n+1 distinct points, say }c::; xf,..., :.g;: on
La,b] vhere %) — cf {(x) = 0. That is, q*(x) way be
regarded az the interpolating polynomial for f£{x) construcied

at :g, x’{..... x;:' e &0 by Theorven 4 we may write

(1)



)
”F(’Q _ 1*6‘) e (x~>C%) - - ()L"‘)(:-) fﬂ(i;*)) (2.4)

(0!

%
where ?x is sowe function of X

Now let Xy Xypeves X be the zervs of
EY ((21: -b - ag) /(b - a)) and let ¢(x) denote the
interpolating polynomial for f£(x) constmucted at Rye Kypeees

xn. Then we also have

1)

where t?x is some function of x. Hince

E.lg) = ™= | F) — 7/()()|

asxsh
it follows from (2.5) that
o max Ja=a) =) | mene ) O
Efg) = p+1)! acsxsh (=) " ' aénsb'c ()(),' (2.6)

Put y = (2x~b - &) /(’D — &) and for j=0,lyeve,n let

¥y = (2::3- b——a)/(b-—a). Then

(18)




et
o+ =26y = (322 -y, - (3~

and since the y 4 are the zews of T 1( %)y
5 l . (b——a.)
maxc |G - =G| = (B
agexeb

Using (2.7) in (2.6) we have the upper bound for Exx( £) s

2. b—a

-] Gtr)
E () < Y (-—;——-) . manx I,F (x.)"

acxyth

Tor a lower bound, we have from (2.4)

Gt

Eq) > Lty mx foead) 6D i 1T o]

Q\H)‘ %X(—L a&"-.ﬁb

¥rom Theorew 9, concerning the minkmax property of the Chebyshev
polynomials, it follows that

e, T & ot w M)(
E.® 2 o BFD -~ 1w

—

Theorem 25 follows from the two inegualities (2.8) and (2.10),
fron the contimuity of 20T (g,

(19)

(2.7)

{ 2.8)

{2,9)

(Z10)



A connection with Chebyshev seriese

J
Chebyshev series for a function f{(x). Flliott, 1963, proveds

Theorem 27, 1If f(n+1)(x) is continuous en (1,17, then

Let us use ¢, to denote the coefficient of T 3{x) in the

N e g el .Ff“’“’(,))) (2.11)

Nt zm. ty\_‘,()!

It is well known that the truncoted Chebyshev series
is oiten a very close approximation to the best minimex poly-

nonial of the seme degree. For if the cpefficients ¢, tend

d
to zero rapidly aend the Chebyshev series

<

/
2 ¢ T O>e)
J=o ;
converges unifornly to #(x) on (1,17,
M/
foo — 6 o)
j=e

will be approximeted closely by ¢ T, _'_l(x) » which equie
oscillates at the n+2 extremmof 1 +1( x)« Hence the
similarity of (2.11) aend (2.3) with a= -1, b =1 is not

(20)



surprising, in view of Theorem &,

2+2 Best approximations satisfying interpolatory conditions

In this sectiocn we inveatigete

e S, aexch

where sm is used to denole the set of all real golynomiale

q(x) of degree at most n+2 which also satisfy the end-point
conditions

qla = 16(“)) ? (b = £,

Thus in (2,12) we ave concemed with finding a best polynoudal

approximation wbich interpplates f£(x) at the end points of
C&.b] .

Let us write L{x) for the interpolating polynoinial

for f£(x) constructed st x=a and x =Db. That isg,

Lod = [6-a) £ — &~ £@] /(h~a).
(2.13)

(21)




Given any o(x) < 8, 1.2 gince o{x) — I{x) nmust vanish

& x=a and x=Db, we have

7’ O = L Ge) + @—-a)x ~b) () h (2.14)

say, where ‘X x) & Pp. Ve have that

I

= 3
= ¢ X —a)bi—b)

j—":-c

o—a )t ~b) V6u)

and the met of functions
.)(,9 (x-—a.)(x-b) ) )= SO TR "

form a Chebyashev set on any interval [u+e g B e] y for

0L €<b-—a. Resuding (x-a){(x-b)x(x) as an approximation
for f(x) — 1{x), the equioscillation theorem {Theorem 22)
applies on eny of {he above intervals [a+€ ' b—e] « In
particular, there exist nt-1 points fj on f[ate, b—€]
such that

L) — LQ’)) = (f;—-a)(ﬁ-*o ”‘(Fj) . (2.19)

(22)



Thet is, the choipe of x{x) corxresponding to the best

approximation above is an interpolating polynowmial fox

[(,(x) — L()L)] / (s3~a)(>t~b)

constructed at certain points fg, X‘l‘"” fn' Let us

write
Eoy = L£6) — Loo] /o-ayou-b),

which ip defined on the open intexrval (e,b). Then 3f Hx)
ie (n-+l) tiwes differentisble we have frou Theorem 4 that

bt
F(I—) = 1\()(-) T éi—:)\ ()(—}0)‘“ ()[_}:v> F )(‘7.\:).

Using (2.14) end (2,16) it follows fyom this thet

Gk
e by OI=O-D B=E)[-E) F .H/n).

F()l) — CL(L) = i)

In (2.,16), }“’0...., :fn depend on the choice of € , as do
the functions (%) amd ) . 48 €50, each }’3 yill
have o limit, say ¥ § , ond we will have

(23)
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FC ¥ = ~—!——. C)(-“‘R-)C>("'L)(X—}5-~- (,(._.r* r':(w"l} *) (2019)
0 — L0 = i L )

where q¥'( x) denotes the polynomiel for which the infimum in
(2.12) is atteined. Let us put

M. = "”"F mavx |0~>L‘)C)L~£)--. Cx“j:))_ (2.20)
Cf;) ~1&ng ) .

By considering (2.20) #s the problem of approximating to
FTH1-x) by & linear combination of the functions
x-:'(l—-xz). J=0plyeeeynty we cen see that thers exisis a
unigua zet of pofnte P, at which the infimum is attsined,
Let q{x) denote the polynomial whose associated (%)
interpolates M x) at the points on [a,b] coxresponding

to (by a linear transforsation) the minimising }:j on 1}1.11

Then in 5 similar way to the last section we have

fn.(: MRS ]F(x) =] 7/(,,_),

=5 asnsb
‘t()(.) »ia (2'23.)

M A3 A1)
=z — (b««) . rwh ’Fc* (>c)l

@V’"‘)! * asxeb

(24)



and also

\'WF X |F(,¢)_.. ‘l(")'
‘l‘*’éfm aeAsh

- {2022)
)
—a
< Mo (L)  max lF: (n))‘
Q&-H)! z asreh

Thus, combining these inequalities, we have the following
result 3
Theorem 23, Given a function #(x) whose (n-+1) W serivative
is continuous on [a,b] s there exists a number Fé Ea,b]
such that

inf max | L6 — 00|

e § acneh

y s (2.2

1

Mn b=\ _ewn)
== (339 [,

Note that the saxiliary function §{(x), which appears
on the right side of (2.27), depends on (%) eand on [a.b] ’
as given by (2.16) and (2,13,




Bounda for /‘é*rc"

From (2.30) we have

" +
2 ~lgne
{ 2e24)
{
S 7
For a lower bound, we have
; _ ) Oe=x¢ )‘
> In mon l(’l )(D()( i né2
ﬂd\ ( )(;)F ~1E$NE )
(2.25)
— I
- gnt2
Combining these inequalitims, we obtain

—~—

2:)\+2. < /A " S 2"\

(26)



Precise values for M. and A

It follows fxem the uniqueness snd equioscillation property

aseociated with the minimising F, for (2.20) thet the F,
wast be symmetrically placed about the origine. oy, on

replacing x by —x, the polynomial
QY x+F) o0 (x +F)

will also equioscillate and must therefore be identical (by
unigqueness) with the polynowial

(xS =%y v (e~ B ),

TM, in FMi’ml&r’ we have

Mo = MOUX 'BL( l*xt)l = 2;%’:"; ¢ (2.27)
—l&X&|

Als0,

M = imf mex [t =¥ 21,

(f) ~—] £ )
Hence we find that
| v L — A
f’(l = X l@*—x )(3(, s y)l P (2.2’8)

—lEnEl

{7




Thase valuee for /uO and M p 8ve concistent with the
inegualities (2.26).

xample, Consider the function £{(x) = (A + x)“l on
[-1,1] with ol> 1, In this case (2.13) gives

X+ _ x-—l]

pi=

LOY) =

From (2016) ¥

Foy = L[E& — LG / (x*—1)
_ <
= TNl +x)]
Thus, we have
D) | gt X tate)
IE™ 0]l = o)l @) ()
Therefore, for some f K [*1,1] ’
i s Y — g&
o=, —exe Jex 2 )I
— {n+2)

= M, W= (ot F)

(28)




2.5 Piecowize spproximations

Let us now approximate to f£(x) by partiticning (a,b] inmto
k sub-intervals and using a polynonial spproximstion of
degres at most n on each ab.intervel. Let us choose the
pointe of sub.division and the k eapproximating polynonials
s a8 to minimise the maximwn errvor., It is clear that the
maxinum ervor, which will be denoted by En,k( £), will be
attained at least once on each sub.intervai,

1Let us write
E'n)k (’F) s E'n,k (’6 a, L’)

to euphasise the dependence of En,k(ﬂ on the interval
Lab]. ve alvesdy kuow that a best approximation of this
type exists for k =1. We caun see by inductionon k

that the best aepproximation described above exists for

k= 1y2y3peee » Tor, assuming that a best approximation exists
when we have k—1 sub.intervals (k>2), we can find the

best approximation on k sub-intervals by choosing a number

§y 0<8<b-a, such that

(29)



Evps (F, %, 8-8) = E, (6 w5, b), @9

n, k"“
Note that the left side of (2.49) is a decrzasing funciion of
® and the right side i en incressing function.

Let Iyy Ippeey I, De the sub-intervals of [a,b]
coxresponding to a best piecewise approximation and les
Xy Xpreesy Xy Dbe the points of sub.division, Then from
(2.3) , sssuming continuity of f(n+1)(x) s We mey write, for
J=1,25veeky

5 X: ~X; n{ 6“*")
B (0) = sy (—’—Z—’-—) s (F)-)}) (2.30)

where f’jélj and Ey =y x=be Thue

R ke
N 1) -
[ L (ne! E, « )™ = ¢ 1 £ (k ' L (2o
and, on sumning (2.31) for Jj=1,2,...,k, we obtain
' k s
o sg Q\vH) nh
cLsom e, (0] = £ SN ®) 2
3=

Asmuning that f£(x) caonot be represented exactly by a

(Z0)



polynomial of degree n on any sub-interval of [a,b] s WE
have that as k->0 in (2.32) the length of the largest sub.
interval s — %51 vill tend to zero., Therefore, as
k-»>o0 , we may replace the right side of {2.32) by the

Riemenn integral, glving
- Baas |
o k Em.,k (’(: \

k~> oo
1) o+
cn-w)' [ f(qﬁ cx)l“ a()(.]

nt)

i

The special case of (2.53), with n=1l, is given by Ream, 1961.
This will be of interest later in this chapter.

Retuming to {2.30), at least one sub.interval I

3
must have length not greater then (b—a) / k, s0 that
Eoi () < 2 ()T | £ 60l
g oD ek mox £ O],

asxsh

This generalises the inequelity (2.8) for F(f). Similarly,
in order to obtain & lower bound fox Eiu,k( £}, we can argue

that at least one sub.interval I.j must have length not

(32)
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emolier than (b—s)/k. Hence ve ebtein

(1) I

(¢ mine LT ]

o Lie b

E, e ) (2.35)

(n—H)‘

Fyom these two inequalities we now haves

Theovem 29, 1T f(n+1)(x) is convinuous on La,b] » thers

exiote o number § < [a,b] ouch that the crror in the best
plecewige polynouinl approximstion of degree ot mogt n on

gach ¢f k subeintervals is

b— @d-l) :
E.,t),‘ £) = 6533 (7,_"2") .F)’ 38

2e4 Algorithms for dexiving plecewise sireilght line epproximations

Stone, 1961, gives an algovithm for finding best least

equares epproximations to o function f£(x) on a finite interval
[a,b] by k straight line scgmentsa., He justifies the
usefulnees of his algorithm by showing how it may be epplied

in the solution of certain non-linear programping problems.
Rear, 1961, referes to the relevence of this approximation

problen in designing diode function-generators for analogus

(32)



tt
computers. In the exemples given by Resm and Stone, ¥ (%)
is of constent sign. Nesyly all functions of preciical

interest satisly this condition et least piecewise.

In this section, slgorithms will De described fox

solving the same probliem, but finding winimax rether then

least squaves agproximations.

it
Supgese £ (%) >0 on f_o(, (3] and that ox+d
is the best minimax straight line approximation for #(x)
on Ld ) (3] « YWe have from the eguioscillation theorem

(Theoren 7) that

v ‘(F()() — e — 0‘!
c(s_)t.ép

is attained on ab lsest three pointa. At an interior extrene

point, we will have

j‘(..t((,(x) -——cx-—-ﬂ() = 0,
)
Thet 1s,

'G'(,Q e B = o .

(2¢37)



Sinee f"(:x) >0y (2.37) can have at most one solution on
Cot, B] . whence it follows that two of the extreme points
mist oceur at the end points oA and B , The thixd

extreane podnt will be an interlor point, say _}2 v IT

& = manc lp(x)—-tx ——0(-1,
A x< f

we will have the following equations

I
m

£ — (e + )

e — (cf+ ) = -—¢

I
m

FB  — (cB+ d)

il

O

F&) — ¢

Given o and ﬁ s these four eguetions may be solved to

detenuine ¢, dy f md € . Tor we nay eliminate 4 and
€ from (2.39) and (2.41) to obtain

(34)
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(2.39)

(2.40)

(2.43)

(2.42)



¢ = [£0p) — £] /(g-a),

the slopé of the chord joiming the end poinis. Hence,
using some root-finding procedure, most suitably one which
*brackets' the root, such as the rule of false position
(regula falsi), }' wey be detemnined from (2.42) . Lastly,
d and € are found by solving the twe linear eguations
(2.39) and (2.40).

liowever, we will be more interested here in using
the four equations (2.39) - (2.42) in a different way, as
in the following theorem,
Theorem 30, Given o and € the equations (2.39) - (2.42)
where f”( ¥ >0, have at most one solution for ¢, &, ¥
and £ .
Proof, From equations (2.39), (2.40) and (2.42) we have,

on eliminating ¢ and d,
£DE-2) + f& —f) —2€6 = 0. (@24

Let us write this lest equation, in which the only unknown

is }',a,s

(35)



G = oO.
hen we can see that

G'()y = F'PHiF-a).
¥rom this, it is seen that

G'(r) > o, foe Frd.

Thus the equation (2.43) hes at most one solution }' >o,
Since from (2.43) G(A)<0, a solution }‘ of (2.43) will

exist on [k ,b] if and only 4f G(B)2 0. If a solution .

does exist, we may find ¢ from (2.42) end d from (2.39).

iiquation (2.41) is then available to determine ﬁ °

If we write this equation as

O

|

H(g)

then for ﬁ)f y we have

(36)
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Wi = £% —£ =o0.

So there is at wost one solution for B  and, since
H( }' 1< 0, & solution will exist on [F ,b] if end only

H(b)> O, This concludes the proef of Thensrem 30.

The process of beglnning with a pre-assigned
minimex error € and a given value for the left hand end
point A  and then finding the minimex straight line end

the right hend end point B wild be used repeatedly in
the follewing alsoxithm.

Algorithm 1. Given any € 7 0, we can constyuct X  Sube
intervals

[_a_,;t,]) Cx,,067, --., Exk_',L]

and lz ptreight lines

C;x -+ dj 3 )=1, z,u-)k
sach that on each subeinterval the largest erzor in

(31)




approximating to £(x) by the associated straight line is
/

€. It is assumed that f’(x) >0 eon the given intervel

Lap]).

with the notation used in the proof of Theorem 30,
if 6(b)Zz0 end H(b)2 0, then given the end point &
(corresponding to K in the four equations (2039) -
(2.42) ) cn@ € we cen find the best minimex streight
lne, say  ¢;xtd,, and aleo yl and x, (these lest
two numbers corvesponding respectively to § end <1
above), The solution of the equations G(x)=0 and

H(x)=0 may be found by the regula falsi method.

Beginning with x; (corvesponding to A} and
é, a second minimex straight line may be constructed up
to some point Xoy &0d S0 One At some stage, sey with
%, _y 68 the new lefi hand end point (), we will find
that either G(b)<0Q or #(b)<0. The geonetrical

th

interpretation of this is that the k straight line

with naximum error & overshoots the right band end
point b.

when this stege isg reached, we choose s ckx_;-dk

(38)



the straight line which passes thyough the points
(x,, 5. )=  ana (b, £0 —6).

Thus, given any &>0, the algorithm obtains a
piecewise straight line spproximation to £(x) on La,b]
with waximum error € . It may be noted that the approx-
imating function is coniinuous gver the whole interval
[a,5] . The last straight line, o x4 was chosen
80 as to preserve the continuity of the piecewise poly-
nomial approxiwmation. \e also note that the approximation
ls achieved with the smallest possible nuber of straight

line segments.,

Best approximations by k segments,

In the ghove elgorithm, given a pre-assigned meaximum errov
€, we cbtaloned a plecewise straight line spproximation
for f(x) on §{a,b). Now, suppose that we wish to

approximate to f(x) piecewise by means of precisely k
straight line sesments., That is, this time we are given

the value of k ab the outset. Lot us exanine an

(39)




algorithm which finds the appropriete partition of [a,b7]

snd the corresponding minimex error €.

In Algorithm 1 it is evideni that the positive integer k
is a non-increasing function of the minimax exrvror € , say

L = K.
We cen find lower and upper bounds for € a3 follows.

Wiret, choose € 0) 0 arbitravily and use Algorithm 1 te
calculate

l<o — ,’((6‘,).

If k >k, & o will be a lower bound for &€ . We may

then set 61-—:260 and calculate
kK, = K(g).
1f we repest this calculatéon for k,, with €, replaced

(40)



each time by 2 (:'1, at some stage we will obtein a value of

k:lé ke This will give an upper bound for €, eay 61.

However, if initially we obtain Lcaé k  we may
set £, = éo 85 an upper bound for € end this time

repeatedly halve éo' ealenlating

L, = K@)

each time, Finally, we will obtain & value of ko~>1€,

shouing that the current value of éo 18 a lower bound
for &,

Once we bave obtained lower and upper bounds for
€, we may vefine them by repested bisection of the interval
€ o 63,] s Using Algorithm 1 at each stage to calculate

K (L(e+€)).

The process is terminated when €, — GO is eufficiently
small. The operation of Algorithm 1 corresponding to the

finel value of € gives the values of the sub-dividing

(41)




points 3{:’:j end the minimax straight lines ¢ jx-l-d 'S
Again, the approximating function is contimuous en Ca,bl],

being simply a convex polygonal line.

it may be noted that at any stage, the operation
of Algorithm 1 coxrresponding to lower and upper bounds € 0
and €, produces respeciively lower sud upper bounds for
the sub-dividing points xa. This is easily seen
geometrically. Rounding errsr has given no trouble in a
very wide range of numerical exsmples on which Algorithus
1 and 2 have been tried.

Mnally, it may be observed that, by considering
€ eas a function of the sub.dividing point x,—1, we
could use regula falsi in Algorxitha 2 instesd of bisection
of the interval.

Huserical example.

To illustrate these methods, let us considey the function
¢ on the interval (£0,11. The table on the following

poge displays the best minimox approximation to ¢* on

(42)




[ 0,17 "y four straight line segments, obtained by
using Algoxithm 2 with k=4. The corvesponding value of
€ is 0.006 %79, «€l1 numberse being given to six

decimel places,
From (2.36) we have the a pricri bounds

00039 < € < o©Ooloil

J :{j ¢ 3 d i

1 0500 570 | 1.166 545 06893 421

2 | 0.51 833 1.5435 487 0.830 124

2 | 0792 828 | 1.973 097 | 0.638 777

4 1.000 000 26455 255 04256 448

iecewise spproximetion to ¢ on [0,

(43)




The relation (2.33), interpreted as an asymplotic

formila, would predict
L 2
e &~ = (¢z~1) = 0-006 576,

which is in error only in the sixth decimal place.

An spplication to guadrature,

I3
Suppose that £ (x)>0 on [#,b] snd we wish to

approximate to

b
f £0) dx

with a meximuw ervor of éo. Then, setting

(3

i

éo /(b-»a),

we may uge Algorithm 1 to obtain a piecewise stxaipght line
approximation for H(x) with meximun error €. We will
then be gble to approximate to the above inbtegrsl by the

arves under the convex polygonal line, which gives

(44)




k )

Z [ (x +4)dx.

3 x,'..,

n

We have the inequality

b k, 6
‘.(,P(n)dx s Ef(c;x-l—a(j)d)tlsé;.
0 =1 Ao
Thue the required integral mey be replaced by the
approxination
K

.2 (L9 (")z s ";i.) + 4 O -X;-.)]
)=t

with an error not grester thean 60' ‘this approech
requires o rather large number of evaluations of 1(x)
and f'( X)+ On the other hend, it provides a sure bound
for the erxor incurred. The error estimates for the most
comnonly used guadrature metheds invelve high order
derivatives of the integrand. These estimates are often
of little practical use.

It would be worth-while using the quadrature

methad put forward hexe only in o situation where the

estimgte of the erxox had sufficiently high prioxity to

(45)




Justify the large number of function evalustions.

2.5 Piecewlse opproximations sotisfying intervpolatory conditions

In thie section, we combine some of the idems uged in Hections

2.2 and .
tet A denote a parbition of [a,b] s
&=xo<)(|< £, W <J(l;~|<xk=L.

Ingtead of the fNunction M{x) defined in Sechion 2.2, let us
use ¥A(x), wheve, for g S XEBy
fao = [0 — Ly 60T /cmslnmx)

with Ixj(. ®) defined by

L- (x) = [6(-- )(,;,3 .F (Xj) — (X*xj)'F(’(i*l)] /()(J‘-){,‘.,)_
)
That is, T A( x) ie defined piscewise on [a.b] « HNow let

(46)



a (%) denote a function which interpoletes #(x) en A
and is e plecowlse polynomial of degree af most n22 on

A. et

¥ .
= 1 moax Gy — bl-)'
E”‘)k (F) ot agcxeh l G iA 4
where the iofimus is over all such polynowials ¢ A( ¥) and
all pertitions A of [a,b] inte k sub-intervals, As in

{2.23) 4 we have

G\ ey
E:k@) = Lo (M2 ) IFA (}:'),)

(n-t )! 2

with =, ¢ _’fj <%y « Avgaing now as wo did in ebtaining

(2e34) and (2.35) 4 we obtain the ineguelity

61
D

E,,:; () = &= b__a)m-.’ fwp |7 (’d})
A’ >

Q\"‘)! 2k
where the supremum is over all partitions A of [a,h]
inte k subeintervels, end sll x < fo,b] « We aley have

the lover bound for Fh,k;( )

¥ M g, \ ™! . ‘ @-1)
> ~r (—Z) . N F 6ol
E‘)\,k (‘F) - (9‘_')! 2| A, 5 A

(47)
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An application te cubic splines.

Let 5,(x) dencte a cubic spline approximetion for fF(x) on
a partition A ;

a = My <), < - < xk._'C')(k = b
of the interval C&,b] « {(S8ee Section 1.5).
We have that
mae | po0 — G 00| = EX (£)
£ A = Ea £
asxeb

That is,

mer | fey — S ool

aecrnehb

& "
> L (22) . e .

A, x

e have not made use of the continuity of the first and

second derivatives of § A(x’) » in gbtaining the inequality

(48)
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{2.49). If, fParther we did not tale inte account the
interpolatory neture of 3§ b(x) s that is the continuity of
8 5(x) itself, we could use the inequality (2.35) and

obtain

asxech
. (2509
> £ (58 o[£
Hor exanple, let us choese
) = (da5)”

on the intexvel [—1,1] , with o> 1. sor xj 1 xéxj

we then have

11

F; () = 20+ 3(’._')-'(&+)g )“ (cL—M(Yf

Thas from {(2.49) 4
! |

moX l CO(-I—)L)“‘ - SA ()L)‘ ? ;:-";“f @(4—')“- .

bt P 854 |

(4%)



Frow {2.50) we obtain

! |
manc | (g 50) -*“S;(X)’ Z g (N

~lExe |

Az would be arpected, thio last inequelity is weaker then the

previous one.



Chapter 3

ESTIMATE OF THE ERROR IN BEST Lp APPROXIMATIONS

31 A cheracterising property

The best minimax polynomial spproximetions sre charactexised
by the equioscillation property of the exvor function. The

best least squares polynomial approximations are those whose
cwefficients ere the solutions of certain sels of lineax

equations, celled the nomal equationse

The characterising property of best Lp polynomial
approximations, for any value of p 21, is not guite so
widely known. Tor this reascn, a proof of Theorem 18 will
be given here. It le based on a proof in Piman,i8963. Ior
convenience, let us restate s
Theorem 18, 1If f£(#) is continuous on [a,b] , then for eny
value of pZ1l a necessaxy and sufficient condition for
Wx)e P, to be the best Lp approximation for f£(x) on
{ a,b] is that

b )
L ™) lé(") i ?,(X)‘P—- Cign [((x) — Q(x)]o(x = 0 (3.1)

(51)




for all (x) €P,.
Proof. Suppose that, for some ¢(x) e L {3.1) bolds for

all xxe P,e Then we may write

’ b
£ l¢6y — ‘L"‘)l dx

b
bt
= { LEoey — il)(,)], ,f()t)—i(n)' - g [ fo) ~1(x}] A

Hence, for any X E £,0 we have from (3.1) that

6
~£ [Fo) — 101 IPAX

S ]
- £ [ £ — 60y . ]F(x)—i()()),r, r@n[ﬂu}»i(:&]o{)c

b - p—i
< .[; M(:L) — o). L6 — ‘[("-)l Ao (3.2)

| ]
b

b L b b
< [f L f60 — \f‘(s()lpolu] P- [ £|€(x) ~T(x)’ abn.]
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for p>1, by Holder's ineguality for integrals (Theoxem 20).
Thus for p>1
' {
P P
< OL) — N =
< [4{(” 60| dx (3.3)

b L
[L I,F(x) -—1()0[?0(*]?

From (3.2) we see that (3.3) holds for p=1 also. Since
(3e3) holds for el x(x) e P, » we have proved the
sufficiency of the condition (3.1). That is, g(x} is the
best approximation.

Conversely, suppose that ¢(x) ie the best

approximation and that there existe e non.nesative integer
k<n such that

b -~
ka. | £60) —-cl(x)lr ' s‘gw[f(x)»«(‘/(u)] dx = & == 0. (3.4
How let

k
\(‘e () z(x) -+ € N, (345)

I

Then, for some €+0 ( &€ not necessarily positive),
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b
1
€ [ 1g60 — el . sign L6 — £ Gg] o > 0. 59
o

This follows from (3.4) by teking V€l enfficiently sweil

a0d keeping

i

ogn (€) £igm (§).

Hence

b b
( Lg60) — \/;Cx_), Ax
(37)
b p-!
= (Leoy— 7 Cx)].l¥‘>t)~";""| . e [fo0— el

Uv?jtng (306) Wa have fmﬂl (3.7) that
b
"
{., Loy — 2 () '

b
p-1
< _(L [4:00 — at(x):f . ’.Fb()--f‘é (x)l . ffgw[aébt)—{; bc)]a(x



b poe
e £ [(60 — g0 |. 60 — Vool . (3.8)

From (%.8), using Holder's inequality exactly as in the

eavlier part of the proof, we have
b
b P
p d
g0y — ool b < g lgoo)— qo0 | x.
Since ¥ e (%) €F, this lest ineguality provides a

contradiction to the assumption that ¢(x) is the best
opproxination. This completes the proof.

342 The interpolatory property

In Chapter 2, the derivation of the result

e = & (5 e oo

depended on the interesting property thet, in the minimax
approximation of a contimuous function £(x), the best

polynomial interpolates f(x) at n+l points en [a.b] .

This aleo holds for best Ln (3.e. least squares) pelynomial

(55)




approximations. Ses, for exsmple, Davia, 1963.

flore generally, this im tmue for best Lp polynomial
approximations, for any value of p>l. This yesult is lmplicit
in Timen, 1963, Here it is stated explicitly:
Theorem %l For any pzl, if q(x) is the best Lp
polynomial approximation of degree not greater than n to
a conbimious function f£(x) on [ab] , then there exist
a4l points on [a,b] st which ¢(x) interpoletes £(x).
Progf. This follove slupky from Theorem 13. Consider the
muber of changes in sign of f(X)—q(x) on [ab].

Since from Theores 18

B —
£ leo) — q00 | ¢ . Sign [Gfx) — ‘U"”] A = o0

it follows that there must be af least one sign chonge., Let
us suppose that sign chenges ocour only st Kor Egyeesy X,

withia (a,b] , where O<ken. Then the function
(J(."")QD"' (>~ xk) . Sign [-F()L) e 1[)():)

has constent =ign on [a,b] and therefore

(56)



b
p-1
[ o=xy - =), 1600~ 96017, eigm [£60 ~q60] o

is non~gere., Sinee the polynowial

Ge—x Y= + (>~ >f,<)

belongs to P n? this contradicts Theorem 13 and completes the

pxoote
Now let ug write, for p2l,
b ¥
(P> g p
Em (_() = Inf [ f LE6) — 7{()()’ d)L} (310
sl * ?

(00)
zo thet E (f) coincides with F.’h( £} in Chapter 2. By

Theomen 31, we may write
X Lo Cspaid®) ¥y
£ — g0 = g VD% O3 £ (r )) (3.11)
M
¥
where q’(x) is the polynomial for which the infimun (3.10)

is attained. We essume continulty of f(n"'l)(x) o Thus from
(3.11)
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M
g
—~
-~
v’
I

I b _‘l)_
(b) ; f
S = nf [y=y,y - (3~9,)] oly . (3.13)
™ (y;) 7
The infimum is atteined (ves Nikolekii, 1964) for a set of
points iyo,.... yn} contained in [--1,1] « Now let us

trenaform a<x<b inte ~1<€y=<l by putting
B e [(b«-a\y + 64,4—4)]/2_.

Lat Eypeees X be the polate on La,b] correspending o
the minimising yj for (3.13), and let g(x) denote the
interpolating polynomiel for £(x) constructed at

P ey » 1 . i’»
Kyseren L e can therefore write

(1)

‘F(x) - 4 6% = : (=) «~- O ). F (};).

6\-4-1).'

(52)



b 5 -
£ < L[ lgowy — q00] J.,c} (3.14)

and, replacing the right side of (3.14) by vhe xight side of
(3.12) without the stars (¥), we have

Eff)(é) 2.

, ,, .
L e (£ Ba] . [ Ty ool ]

(';""')! acxeb

That is,
(p) PRI R
» S‘M b_a.) P (nt1)
< Rl | o< ‘F % _qF
Em. (‘F) = ! < a <xeh ‘ Gl . (3-13)
From (3.12) , we also have
L
(p) (b) et . eckitd
E_((&) = §_‘:.~._.. (b—;_-"a) o l€ (x))’ (3.16)

Q\""')! asx b

It follows from these last twe inequalities, by continuity of

At s et
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(r)

EX ey = = E":f‘)mm_? l,ﬁ“"“’(}‘)l)

(’)\-H)!

for sone § € Cab]. Letting p->00 in (3.17), we
obtain (3.9).

Je3 The chme =2

Let us now conskder further the spscial case where »p=2,
As in Definition 10 of Chapter 1, let Q Jf,x) denote the
Legendre polynomial of degree Jje. Then, by Theovem 13, the
infioun (3.13) with p=2 is attained by the polynomial

™ e /()

and hag the value

i
(2) _ 2 z M+!/ 2m+2
o= (=) /D).

2on+3

Timen, 1963, notes that for all velues of n

| ’ (2') 'J 2 .
7Y o~ < > - < o

(317}

(31}

(518)



3+4 The case p=1

vhen p=1, the twe poiynomials q(x) and q_x'(:x:) oi Seection
3.2 colncide, This is shown in fimen, 1963, That is, the
best L, approxiwating polynomiel of degree ot mest n to

() on [a,b] is simply the interpolating polynomial for

1(x) constructed at the abscissas which minimise

b

fa,F f =) <+ ()(matu)‘ e,

(x) =

We will return to this result in Section 5.6.
ilesnwhile, we note thet from Theorem 10 we have

S(l) | / z—fn.

«n

|

35 Ceneral values of p

Net =o much appears to be known sbout 5(§) for values

(61)
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of p other than p=li, 2, 00. £Hee for exsmple Nikolskil,

1964, Hewever, we may write
( 2 PoF
k) , ]
S,n < [ _f' l o T Gt)‘ dnf | (3e23)
vhere T, +l§ ¥} is the chebyshov polynombal (Definition 6).

Thus

*) o~
) < /27" (3+22)

n
Hquality bolds io (3.2¢) only for p =oo,.

Alesy frowm Theorea 19,

! s 3
[ f [ () -~ (>(~a(,n)|’° ol ] F =
==t

I
_2.}’—' f '()(-—)(o) = ()(-Xm.), 0()(
~)

for pzl. Therefore

f
-1
B ,P win | oragyo-Guat, )y

" (3()') med

\
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This gives the ineguality

N1 "~$
g, > 1/ 2 _ (3.23)
Iin this case, sguality holds only for p=1l.

Combining (5.22) and (3.25) glves

{ 4
m-1 "-r; (l") n=p
< P
2 < § = | /2 ) (3.24)
which generalises Timan's inequalities (3.19). Hurther, let

us write

) | oH—H--;; (k)

o

A z o (3.25)

f

Then (3.17) way be rewritien as

) b ~4YH' "(6\4—:) '
. (3.26)
Em, (‘\C) @H_,)I (
where
) 2z
¥ <« 6, < 27
(3e27)
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From the previcus sections, we see thet

(1) (00)
6 - 4: and 9 = 2.

n =

Tor other values of p, l&p< oo, both inequalities (3.27)
hold strictly. It may be noted that Qﬁg) depends only on

n and p, and not on the function f£(x) nex on the interval

L 9‘er .

3+6 Further remarks on By approximations

For completeness, end for the seke of an gpplication to be
described later in this section, we mow counsider two theoreus
on Ll approxination., The first of these is otated explicitly
and the second is implicit in the sccount of Timan, 1963.

Theoren 220 fox k.:(). l,coo, iy
!
k - . —m any
f X . ﬂg”\-[r“\. ("\"'2) Con x_] dx = O. (3.28)

-1

Proof., Let us put

sC cos 8.
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Then the integrel in (3.28) is

n
J su0 m"& . Sigm [ sin (n+e2) (9] d&
i i/ (nes)
5-! . k
e 2 (—1) [ Sinl cos O O
)=t (i-u)n/(n-u)

- STI‘/('M-G-?.)

i = 6 [eso]
J=l|

il

a=nn /(n-pz)

n+2 .
" k4t »
= ' 6|)) oS ﬂ_ ) (3029)
?.(k*f‘l) )=o (n+2) .
[ /4
whers denotes o sum whose first and last termus are

halved. Héw cos{k+1)@ mey be expressed as a polynomial
of degres k+1 in cos®, thetis as Bep 3l ws0).
Conversely, we can find o 3 sach that

ket
K+ .
s My = = «; cor ).
i=o

Hence we cen show thet (3.29) venishes for k=0, lyveey 0

if we can show that
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n+2

" J J Ckt) T 2w
Z &) cos T (320}

I
0

1=0

for k=0, lyveey, no This is eassily verified by expressing
cosd as the real parf of 019 and suming the geometric
sertes then cobtained from (3.30). This cempletes the preof

of Theoren 32,

This now enables us to preve the most interesting

result 4

Theorem 33, The bost L, approximetion te & continuous
function f£(x) en [-1,1] by a polynomiel of degree not

greater then n is siwply the interpolating polynomiel for

f(x) constructed at the zeros of sin(n+ 2) cos e in

the intexior of [~1,1].

Proof. Let g(x)e B, De the interpolating polynomial

for f(x) constructed st the zeros of sin(n+2)cos “x

in the interior of [~1,1]. It follows that £(x) —q(x)
changes sign on [~1,1] st the same points as

. ~1 = 4 nr
sin(n+2)cos “x changes sign. Yhus from Theorem 32

[ xk . S';g”\- [‘F{X) S 1“)] dx = O (3.31)

o
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for k=0, lyeee, ne It Lfollows fxom Theorsm 18 that g(x)

ig the best approximation.

It way be noted also that Theovem 10 follows frum
this mﬁultv o

|
inf (T G e ol d

( c;) -1
is attained when

S |

C‘h-l p. & 4 %= + C, X v co

is the interpolalting pelypouial fox constructed at the
gexos of  sin(n+l)cos “1:& in the interdor of [—1,3],
which sre

Jiw .
SC - = c.og(ﬂ'—-‘_‘;) 3 o l) b 4 iy ",

These are the zeros of Un( x) y the Chebyshev polynouwial of
the second kind, as in Definition 8. The integrand in (3.32)
may be replaced by the medulus of the exxor formula for the

interpolating p&l&mmial,

(67)
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"

nt X e ™ =5,
where
JIT
X i S

That is, the integrand in (35.32) is a mltiple of Unﬁ e 1t

is easily checked from the definition thet the lsaling

coefficient of Un( X} is &, which completes the proof of

Pheorven 0.

Ao _spplication to guadrature.

A common cless of guadveture formulae is obtalned by making
the appreximation

b

b
_r F(:c\ d > = f 1&.) dx ?

Aa

where ¢{x) is an interpoleting polynomial for f£(x) et

certain points X, Xjpeees X, OB [8,8]) « These are

celled interpolatory guadrsture foxmules. well known exanples

(68)
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are the (closed) Newlon - Cotes formulae in which ¢(%)
interpolates #(x) at egually spaced points including the
end points, the open Newton - Cotes formulae where the inter—
polating points are equally speced but exclude the end points,
and the Gauss -~ Legendre formulae whers the inkerpolating
points are the zeros of tho Legendre polynomials. (8ee

Davis and Rebinpwitz, 1967).

Having studied I‘l yolynomial approximation gbove,

it is natural te suggest transfoming the range of integration
L ay0] onto [—1,1] end taldng es g(x) the polynowial
which interpolates £(x) at the zexes of sin(n+2)cos Ty
in the imbexior of (~1,1] . That is, intexpoiating £(x)
et the zexos of U, (%)« Tox, by Theorem 37, this will

give the polynomiel for which

)
q(;i;ip lf; 'F(X‘) - ‘tb()’ A (Se34)

is attained.

Hor the firet Tew velues of 1 we ebiain the

following foumulas as epprozimations to
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|
T foo o

(A linear transformation will give the appropriate foxrmulae

when the range of integration is [a,07]).

Gy £S5 + {:("z)

® 3[46H + £0 + £G]

(3.35)

© (J—_Js)[’((,{rw) i {(J )]
+HE+ )£ (5 + £ 0]

() {2640 +18 () +EL) (e () 4£ 42

(70)




These formulas are not new. They have already been
studied by Filippi, 19064, who wes led to their discovexry by
s different route to that described asbove. Filippi's
starting point is the integration formila of Clensghaw and

Curtis, 1960. Thisz sveluates

L
_f‘ £06) dt

by expressing the integrsnd as a Chebyshev series and
integrating this, using (1.8), to give the integial also as
£ Chebyshev series. Filippt modifies this idea slightly to

cut out the integration sicp. He wriles
X
Foy = FG) + [ g de

and expresses

i

R
y
F6O S A; T, 60
J"—"-'o

Phus

|
A= W [ =ty Foo T;00 dx

-1

(73)

(336)

(337)
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for 3=0; 1; 2peve « Using the ldentily

( 0--3(,")%' Tq: ()L)) = —n" (1~ )“!i' Tm{"—)

B

end integrating (5.38) by perts, he obltadne

1
A = —f;‘?:j—" 16 ‘—)‘-z)sif(x) 7;’6() .

p)

Now fyom (1.11) and Theorem 12 we nete that the polyncemials

L
‘J;‘j' (x) are orthegonal on f:-l,l] with respect to (1-::2) ™
Now lot

?

n
{
Y, () = E Arey Tip GO

which from (5.36) and (3.37) ie seen to be a tzunchted sevies
for f(x}s Prom (5.39) and Theorem 14 we see that x (x) ise
the lesst squares approximation for f(x) with respect to
(z-xz)'l"' . That s,

!
2
man ) — 46 ob
o< P J:‘(' ot [F(x) ?’ L)] ‘

im abtained for the cholce

(72)
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q (x) = Y, 60)

l

Filippt then considers Fn( %) s the interpolating polynomial
for £(x) constivcted et the meres of : _‘I_ 2( X}, that is at

the zexos of U, 4(x). We have

- 1)
foo — TL00 = oy OG0 B ) £ ®)
8o that
]
(=L £60 — 7.060] o
=
' (3e41)
o) oo i 2 2. 2
s [.6-“!—"'_91 'F (r )] ...f,(l-x )li ()(-)l') --- (""‘m.)olx.

From theoran 15, ve see that this choice of Kpooney By g
minimiges the integral on the right side of (3.41). Filippi
argues from this that Fn(x) will usuelly give a close
approximation to T n( ®) o ‘Thus he suggests using the

approximation

!
f F60 dx 4 v, (x) dx

— 1




Yor - n=1, 2, 3, 4, this gives the formlae (3.39) .

b4
Filippits integration formilae are compared
nunerically with both the Clenshaw « Curtie and the Gauss -
Legendre formulse by Wright, 1966. In this compericon, noune
of these integration formulae cen be dismissed, since each

snerges as superipr to the others for certain integrais.
The cbservation made here that the Pilippl fomwmlae

satisfy the minimam L, property, as in (3e34) y appears to be

NewWe

37 Piecewise approximations

In Dectlon 2.7, wo considered mininax piecewise polynomial
epproximations, Here we chall consider Lp plecewise
polynomial approximetions. lLet us write

(2
E‘D\,k ('F) a‘) b)

{l

b ¢

K : i
g L= S o= g GO,bo(x.]P :

=1 X

(74)
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wvhere the Inflmuw is over oll partitions of [a,,b] into k

b-intervals, with sub.dividing points

a = X <x < ‘o< X <X = b,

and over all polynomiel approximstions qjg MNer, onihe
jth sub-interval, J=1, 2,eeey kv 0 ovgument siniler to
the one uged in Section 2.7 shows that there exist points

x;" and polynomials qg"( %) fox which the infimun (3.42)

is etteined. Also, it ip clesy that for the best piecevise
apprexination, l"'( %) must be the best Lp approximation
for f(x) on the intervel [}:j -3 A.J] « Therefore

()
E'u,k ('6) Qa, L)

i

(3+43)

k
[Z [ELP) (.F) >(jt))cf)]PJP .

‘That is,

(®
Em,k ('F) Ay b )

[Z L mw(x :(’*0 T (W)(H” J

I=]

(79)



Kow on the right side of (3.43) each of the k summends mst
he eguel, otherwise we could obiain & better approximatien by
taking emother pertition of [a,b]. It follows that, for

i 213 2'000, 1{'.'

¥ ¥ (N ""F A "‘Jﬁ ()

Xo - X, (1) b—~4q I
( ; #) ) 1z (f))‘ < “7;,-(-) -;;::b ’16 (x)
and s

(p)

E.« (£ a, b) <

0«») . L L fot (Fe44)
= ‘"z'k“) . kT omex [ ool
(n+D. agxsh

A lower bound for Eéf%(f,a,b) is ¢biained by srsulng
&hﬁi},&ﬂy tmt; for ,j:l’ 2,000’ k'

t
¥ )WH it - (k)
(22 - &) =
b"‘ﬁ "H-l-l--lf; \ ('h+l)
) SRR P

Therefore we have the ineguality
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h, k ( ‘F) L’) Z
(» ——— ! (3.45)
04\, b ~a L (m+
5 nd k k 3 I F )(>L)l
(’h-l- l)' & * aex s L o
By continuity of f(n+ 1)(x) y We nay coubine the two
inequalities (3.44) and (3.45) to give
(P)
E:r\, k ('F) LT ,0) =
~ AL (3-46)
&3’) ( L—a 414 J'; s
K. £ ]
6\4—:).' 4k : ” )

for some _F = [a,b]. This generalices (2.36),

(o0)
vencobering thet 0 0=

We can also generalise the asymptotic result (2.33)
as follows. Since all k sumuands on tho right aide of (3.43)

are equal, we have

®
£ (£ a;b) = U’E (4 L)

'“')))

(77



for l1=<)<k. That is,

(p)
Em)k {F‘} a ) L‘) =
Sedi
a(l°) % e MF c+-"; ( )
& ( X; ——xj_,) 4 (7et1) ,
ok L -k IF ('F)) .
Ve can now proceed as in fectien 2.3, writing
0! (p ;l:l;"_r_
k [ 6" E.k (£, a L)J ’ —
(3.48)

!

k
SAE ) o) P, e
_,2; knl’ﬂﬂ-l E (xf~)(;i)_lf (}-’)] et
=i =

Let us assume that f(x) ceonot be represented exactly by
& polynomial of degree n on any suib-intervei of [a,b] .
Then we have that, as k-> in (3.48), the length of the
largest sub-intervel [x;_ 1’ x:;] %ill tend to zexo.

As k>0 , wa may therefore replace the sumsation on the
right hand side of (3.48) by the Riemann integrale. This
gives us the agymptotic result,
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: 7 (P
Lo k B o (€, CL)L) =

k> o 4

I
[ f’ ‘Mo()olﬂ” ol)(] ’

(’)H-D ! “

The special case of (5.49) with =n=1, p=2 is given by
Ream, 1561, in addition to the other special case

n=l, p =°0 already noted in Section 2.3.

7o facilitate comparison with Ream's result for
n=1, p=2 let us recall that

(p) Nt +‘:; (P

o = 2 O

?

end fyom (35.18) that

(z) 2 2m +z_
e G (Nl b
2nm+3 2 ¢

Tor n=1, p=2 we then obtain from (3.49)
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5 (2)
b k" E, . (£, a,b)

[e—>00

1}

b 4% 10 1 (3.50)
n B
g L ol e

Thie sgrees with Reon's result,
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Chapter 4

APPROZIMAVION OF CONVEX DATA

4,1 Introductieon

The last two chapters were devoted mainly to the problem of
estimating the erior in best 1"9 polynemial approximations.
This chapter is of a diffevent nature. It is concemed with

a much more practics) problem,

One is somebimes presented with a discrete set of
data which is convex, or where physical reasons suggest that
the data would be convex but for expeximental error. in
these circunstances, it scems unsatisfectery te use the
standaxrd least squares method, which ey result in
approximations with undesized inflexions., It would appear
preferable to make use of the knowledge of the convexity of
the data, in order to produce betier approximations te the
hidden convex function, say g(x), end its first few

derivatives, if these are reguired.

(81)




Let us suppose that g”(x)?o on a finite interval

(ayb] » If we cen find & seguence of functions
\.}/o(x) , Y00, V.00, .o,
with

% ;
\}’j (x) 2 o, )=0, 1,2, «--

on fe.,b] » VG con conslder weing functions of the fomm

ol
? (x) = z c; ¥; (x)) ¢;zo0, =
" j=o

for epproximating to g(x). In (4.3), by using a sum of
non~negative multiples of the component functions \{’3( X}y

we¢ a&leo have that

"
§,\ (x) = o a<sxsh.

It still remains to detemmine two thingss what Rice, 1864,
calls the *noma and forn' of the approximation. The first of

these, the cholce of nomm, will decide on the *best® valuss

(82)



for the coefficlents ¢, iun(4.1). The second task is to

d
nake o suitable choice of the component functions \/1 J(x) »

which is more difficult.

At this stage, it may be helpful to vecall why
polynoumials have been po extensively and successfully used,
particularly in approximating fo discrete data, This is
pavtly becouse polynomdals are eapily evaluated, but meinly
because of yeierstrass® theorem, which shows that linesx
combinations of the monomials 3.3 are good enough for
approximating exbitrarily closely to any centinucus function.
What we requive here is & choice of the functions 503( %)
for which we can state & similar theorem. That is, any
function g(x) such that g"( x)z 0 has to be approximable
with axbitrary acouracy, on a finite interval, by a sum of
non-negative multiples of the functions YJa{x e

4.2 Cholce of the comgonent convex functions

It should be mentioned immediately that the Bernstein

polynomials themselves {Definition 1) provide an apparent

(83)




solution to our pyoblem. Toxr if g(x) is convex, so alzo io
En(g;x). Thi.s is proved in pavis, 1963. However, it is also
well known that the rate of convergence of Sﬂ(g;x) to

&%) is given by

Theorem 34, Let @{(x) be bounded on [0,1] end let x

be a point of [0,1] at which gg"(xo) exiote, Then

-

b [ B (g50) = 962] = 53,0 50,

n>

(Proof in Davis, 1963).

That is, ssymptotically, to halve the error we
have to double the degree of the approximating Bemmstein
polynomial, which is clearly a poor practical proposition.
Besides, as has already been remarked, the data may net
actually be convex, due to experimental erroxr. Therefore
the Bernstein polynomials may alsé not be convex. We
therefore discard the possibility of using the Bernstein
polymomiale directly. Instead, we prove g
Theorem 55, There exists a sequence of component functions

\I/O(x.) 5 ‘P: 6%)) 5 %L ()L)) -

(84)
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with \P; (NZ 0 such that any function g(x), with

&'(X) 20 ond continuous, mey be approximated with arbitrary
sccuracy ont & finite interval by & aum of nonenegative
muitiples of the component functions.

Proof. Let us suppose that we wish to approximate to g{x)
over the intervel [0,1] . We can make a linesy change of
variable, if necessary, 1o transfoms any finite intervsl
[ab] onte [0,1] « we use the Bexrnstein polynomiale
indirectly and write

‘," .
B, Cg"; ) = E (':‘) )L,(l-—x)“—, ‘9”(_4;_‘)' (4.3)
j=o

Let us obaerve that x(1-%""d>0 on [0,1] and that
in (4.3) g (%) is being approximeted by & sum of nou-

negetive mzltiples of the polynomials 3‘5}( .‘!L---x)n —d,

For nze, define q(x) by

1: (x) = B, ., (3";x),
q,f, (o) = 31(0) 5 (4.4)
qm (0) = g .
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Also define ﬂ j,n(x) , for 2<j<n, by

" 3__2' "l-).
/g.;,w 0e) = M (=) 4
(4e5)
/
B, (8} = ﬁ;,% (o) = o.
7o complete the definition of the polymonials /SJ e
L§
we define
go,m ()"‘) = fl:ﬁ’l‘l, [ 5 (O)J >
{4.6)
. /
ﬁ’)"\. ()C) - X . :'9% [ 9 (O)J -
We then have thet
n
9w 00 = 2 G Bim O, (4+7)
J=o

"
where cjzo and ﬂj'n(x)ZC) (8311 ['0.1] « Dow, gliven
any € > Q, it follows froum Bemmstein's theorem (Theorem 2)

that there exists an integer n for which
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l gm_l (5" k x) — 3”(") , < &

/
on [0,1]. thet is ,
" .
( Qo0 — 9 oyl < €

on (0,17 ond therefore, for 0<x<l,

| {(z:a—) - j"(t))dél < {l G (6) — 47| d¢

(4.8)
< €. X = €.
Using (44), the inequalities {4.8) give
I &) ‘tx) | & 449
‘L,‘. (X) o j (X) S ) ( . )
for O<x<l. Similarly, enother integrotion shows thab
| 4, — 9060 ‘ s €, (4.10)

for 0gx<l, Recalling the definition of qn( 2 in (47,

(&)



this last imequality (4.10) completes the proos,

Note that the polynomials ‘B ;},n( X) ey be enumerated,

8y in the order

ﬁo,z s ﬁ),z ﬁz,z

A
Bo,s 1,2

J
b

and relabelled WV (x), \}/1(:1(.), %(x).... ;

4¢3 ' Bemt’ convex gpproximations

in practice, we may obltain convex approximations to g(x)
in the following wey. First, clwese a value of nz2. Thie

ngy be increesed subgegquently, il necessony. Then set,

Jio) = ‘Q)'),,‘_ 060 2 < m. (41

I\

(s2)




Also, let us put

\[/o (>¢) = Sign [ 9 (o)] ,

(4012)
\P, () s 3 . Sign [3'(0)} .
The signs of g(0) and g’(o) may be inferred from the
data., The polynomials ﬁ j’n(x) are essily computed,
since for Jj> 2,
74 j-'z. "l—)'
2 ik 1 ”\-"")‘ Y
= x)—iz ol (i J)L-
i=o
Therefore, from (4.5),
n—) y v
$ Ses (V)i
s ~} . . x . o1
Fim® = 2 = )Gy T ()

1t nay be noted that the polynomials 5[/ j( x) ere linearly

independent.
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Theorem 35 depended on the convergence of Bn(g %)
to g”( x) on [0,1] o Although this convergence is slow, we
can still hope to obtain a good (convex) approximation to

&(x) of the fom.

¢ o)

because we still have the chelce of the nonenegative

n

§ ¢; W50

J =0

coefficients 2 at our disposal.

We use the least sguares nomm. Having made a linear

change of veriable so that (a,b] is transfomed onto [0,1] ,

we seek to minimise

i=o

N
m 2

Z [(—st) o E ¢; %(Xi)] , (4e14)

1=}

subject to the constraints cj; Oy J=0p lyeeey Ne Tha
data we are concerned with here is the set of points with
co-ordinates (xi, f(xi) Ys for A=, 2...;, Ne 'he set
of values £ xi) are regerded as perturbed valuves of some
*hidden' convex function g(x) at the points X=FHypeeay X,

on [0,1]+ e teke u<He The expression (4.34) may be
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written as a function of the (column) vector

-
¢ = {c,, By Wity c”},

Then (4e14) becoues

?(c) = K —~ VTC -+ CTMC

N
where K= > [#(x)] 2, v i@ a vector whose (J+1)

[ 24}

2

element is
N
V“J-h = 2 Z -F("i) \Pj ("i)
sod M is a matrix whose (J+1, k+1) clenent is

N
Mo kbt S VCHRANC DR

.
1=

Thus the problem is that of finding

e ey,

czo

the infimu being eover olli vectors ¢ with nonenegative

(21)



elementa. From (4.35), this is o quadratio programming
problen whose only constraints are the non-negativity
constraints on the cj. ¥or methods of selving such &

problem, see¢ for example Hadley, 1964,

1f A denctes the metrix whose (i, J+1) elenent

is \k’( X;)y we have

M = ATA
o that in (4.15)

c"Me = (Ac)T(Ac.) “ 0

unless o=Q. Jor if c40, AcEl Dby the linear
independence of the functions \}/j( x) . Therefore the metrix
H in (415) is positive definite, This enteils that ‘J(o)
iz a convex function of ¢, because with (Q<X<1l and

any twe vectors ce( l)':l= c( 2) y the expression

NFE®) £ (=) () — O+ 0= c&’)

{417)



ochmplifies to give the lnequelity
T «) @)
Sfesm Ll g¥) B te™~ ) > o. (4+18)

Thus eny method which finds a local minimm of \(c) will
have found a global minimum, This result is sbhown in Hadley,
1964, where it is alse shown that an appropriate method for
solving this preblen is Wolfe's quadratic programming
algorithm,.

4¢4 HNumerical examples

In oxder to allow au objective assesmseent of this method for
deriving convex approximations, & number of numerical
experimenta were pexrfonned. These begin by celoulating sels

of specimin 'nearly convex' data of the form
Fixy = g0 + 5. K, (4.19)

where g(x) denotes some convex funetion, the Ry axe

nambers in the vonge (—1,1] produced by a randon nuber
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penexator, and & is o scaling factor. Various cholces were
made of g(x), § , the R,y the degree of the epproximating

polynomial n, and the number of data points.

A comparison was made between the *best' convex
approximation, say § (%), and the conventional least
squares approximation of the sene degree, say (%) Yhe

nuanbers

e(39) = [ % [9%00 — 376l

were calculated as a measure of the eryer in approximating to
the sth derivative of g(x) by the ar derivative of
ihe convex polynowial é‘(x) « These wero compared with the
corresponding nunbers E.(Q.( “)) obtained by estimating
olwilarly the exror in approximating g( ) (%) by Q( a)(:«:) "
the gth derivative of the conventional lesst squares

polynomiel approxiuation of the same degree,
The accompanying tsbles ghow some typical resnlts.

Table 1 (page 98 )} was obtained for the function

g(x) =1 — svinrex  on the eleven points x 0(0.1)1, with

(94)
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n=5% and § = 0.2. 7The teble shows the results obtained
for six sets of celculations performed using different sets
of random nuubers. The mean values of X ¢ ( a)) end

}IQ( 8)) for the six sets of values arve shown in the last
row of the tuble., Table 2 (page 99 ) shows the last set of
results from Table 1 in more detail. Table 3 (page 100)
gives results, as in Teble 1, for the function

g=1 / (14x)  snd the sawe clwice of the x,, n end
5.

4.5 Discussion

These experiments suggest that the convex approximetions,
%(x) y 8ve advantegeous in smoothing crude convex data, and
are particulerly useful in approximeting to derivatives.
Thiie is borne oul most strongly in the cowperison of second

decivatives in Teble 2.
The use of the L, noxm leads to o problen which

ie comparatively simple to splve. The anount of computation

depends chiefly on the degree, n, of the approximation
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required, which specifies the size of the matrix ¥ ian

(4.15), and not on the number of points, N, in the data.

One might consider using the Ll noxm instead of
least squares. (The I ., or minimax norm is not usually
recomnended for the approximation of discrete data, since it
takes undue regard of 'wild' points). 'The L; approximation
problem leads to a linear programming problem, but in this
case the size of the problem depends on the number of
points, N. Algorithws for calculating I"l approxinations
are given by Barrvwdele and Young, 1966. Ilowever, the
latter are concerned merely with polynomial (not convex
polynonial) spproximations. We could consider relaxing the
convexity conditions on the component functions '.I/ ,j( x)
and also relex the non-negativity constraints on the

coefficients cj. Ve could then solve the 1.1 problen,
with additional constraints, such as

j ¢; \}/j(')(l‘) /O) Py =y
=o

to try to impose convexity on the spproximation. BHven so,
it does not seem that this will guarantee that we will
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always obtain a convex agpprozimetion. This approach does not
seen worth pursuing,

lastly, it mey be noted that the method described
here for lesst squares convex appioximaiions applies egually
to approximetions on the interval [0,1] as well as on o
finite point =sel, Ior again we have a quadratic programuing

problen. This time, we have to minimise, for ¢20,

Vi = K — vie + Me,

This time,
[
2
K - ( [ 4(‘ ()(,) ] d)(, )
o
the vector v has (j-+1) elenent

|
Vi = 2 f F()() \//s(x,) d

S+t

and the matrix KM has (j+1, k+1) elenent

|
ke = L 0 g0 A

(97)




Table 1

[ 1
Ke) HJ) He') 3) Q) HF)
( funation) (1% gerivative) | (279 derivative)
0007 0.006 | 0.0 0.058 1.8 0.34
0.010 0,010 0.081 04073 1.25  0.51
0,008  0.007 0.09 0,042 1,56 0,26
0010 0.008 | 0.146 0.080 2,78 0.57
0.010 0.010 0,092  0.100 1.02  0.98
0012 0,010 | 0.214 0,060 5,82 0.40
lMean 0.010 0.009 0.123 0.068 1.99 0.48

A comparison of convex approximations, $(x), with
the conventionel least squares approximations, Q(x).
The data was gbtained by perturbing the function

1 —gin nxe (3ee page 94).
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Teble 2

x | an o9 H® | & ® B | 3»

0.0 1.000 0,996 0,992 | ~3.14 -35.54 -35.16 Q.00 7e33 0,55
0 | 0.691 0.075 0,084 | «2.99 -2.91 2,96 5400 5655 551
0e2 | 04412 00411 0.410 ~2e94  «2.37 «2.48 9.80 5.57 5.94
0e3 | 0191 0,203 0195 | «le85 <176 ~1l.79 | 7.9 06.72 7.80
Oed | 04042 04067 0,093 | ~0.97 -1.01 ~0,94 | 9.32 8.35 9.01
0.5 | 0.000 04007 0.010 0,00 -0,10 001 | 987 977 9.55
0.6 | 0,043 0.047 " 0,057 Q.97 0,92 0.94 | 9.39 10.34 9.31
0.7 | 0,191 0,183 0,196 1.85 1.2 1.85 | 7.98 9.38 8.2
0.8 | 0u412 0,424 0,417 2.54 2792  2.57 5680 6027 0644
0.2 | 0.691 0.718 0.702 2,99 3.07 3.08 | 3.0% 0.22 35.69
1.0 1.000 1.012 1.023 3014 2.65  35.28 | 0.00 «9.31 0.0

This table lists in sore detail the spproximations referred to in the

last entry of Table 1. In the approximation of the second derivative,
the last three columns of the table show that the convex approximation
®(x) is very much superior to the conventionsl least squares

approximation Q(x).
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Teble

I " "
HQ) HE) | He) HF) | He) KT)
{ function) ( 1*% qertvat ive) | e devivative)

0007 0005 0,080 0.056 1,310 0.7
0010 0010 0076 0,047 1.0 0.5
O .OO& 0 0007 0 0098 O .O% 3"30 0 '69
0310 0007 0.447 0073 2719  0.49

0.010 0008 0,110 0Q.076 1.26 0,62
0,012  0.009 0,213  0.040 3419 Q.19
Mesn 0,010 0 0008 0.121 4] 0055 191 Q.43

A comparison of convex approximations, ﬁ( x) y with the
conventionel least squares approximetions, @(x). The
data was obteined by perturbing the function 1/(14>).
(similar to Table 1),
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