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A bstract

The main purpose of this work is to study a class of strong 

Stieltjes distributions defined on an interval {a,b) Ç (0, oo),

where 0 < /3 < b < oo and a = (3' /̂b, which satisfy the symmetric 

property

d'ip{t) d'ip{/3^/t)
t G (a, &), 2w G Z.

We investigate the consequences of this symmetric property on the 

orthogonal L-polynomials related to distributions i ’it), and which 

are the denominators of the two-point Fade approximants for the 

power series that arise in the moment problem. We examine relations 

involving the coefiicients of the continued fractions that correspond to 

these power series. We also study the consequences of the symmetry 

on the associated quadrature formulae.
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O verview

This thesis describes an investigation into the strong Stieltjes distributions 

that satisfy certain symmetric properties. We organized this work in 5 chapters 

as follows.

In Chapter 1 we give a historic summary of the topics related to this thesis, 

such as, continued fractions, moment problems. Fade approximants, orthogonal 

polynomials and quadrature formulae.

Chapter 2 contains a study of the orthogonal L-polynomials, which are the de

nominator polynomials of the two-point Padé table for the power series that arise 

in the moment problem. It also includes a study of the continued fractions related 

to strong Stieltjes distributions, and of the orthogonal Laurent polynomials.

In Chapter 3 we present a symmetric property that is satisfied by some strong 

Stieltjes distributions and we give some relations satisfied by the orthogonal 

L-polynomials that are consequences of this symmetry. We construct extensions 

of the continued fractions related to these distributions. Some examples are also 

given.

Further in Chapter 4 we deal with some polynomials derived from the ortho

gonal L-polynomials and the consequences of the symmetric property.

Finally in Chapter 5 we consider the associated polynomials and the quadra

ture formulae related to these symmetric strong Stieltjes distributions.



C hapter 1

Introduction

1.1 H istory

The mathematical topics orthogonal polynomials and moment problems are two 

of many that arose in the analytic theory of continued fractions, but then 

developed as subjects in their own right. These topics, and others, can now be 

profitably studied and developed without any reference to the theory of continued 

fractions. However there is great value, both in terms of progress and mathema

tical beauty, of developing results in the combined areas of these three particular 

topics. Quadrature formulae, a related topic which is a natural consequence of 

studying orthogonal polynomials, is frequently included in this connected deve

lopment. Many authors have taken this approach, and continue to do so. This is 

the method adopted for the work that is described in this thesis.
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C ontinued fractions

A continued fraction is an finite or infinite expansion of the form

qo 4----------------------------------- j (1.1.1)
qi+

Ç4 +  • • •

where and Pn are real or complex numbers, real or complex variables or 

functions of real or complex variables. The continued fraction is usually 

written as

ç q  - i -  ^  ^  P i  P ±
qi +  Ç2 +  Ç3 4~ Ç4 +  • • •

or, alternatively, as

% +  K ^ i(p n /qn) or % +  K(Pn/9n) •

The finite continued fraction

obtained by truncation of (1.1.1), is called the nth convergent or nth approximant

of the continued fraction (1 .1.1). The limit of the sequence I ^  l , n  =  0 , l , 2 ,...,
I Qn )

when it exists, is the value of the continued fraction.

As Brezinski in [9] pointed out, continued fractions were used implicitly for 

many centuries before their real discovery, but since their discovery they have 

played a leading role in the development of many branches of mathematics. These 

branches are mainly, but not exclusively, in number theory and in analysis. In the 

former, the partial quotients of the continued fractions, — , are rational numbers 

or rational functions. Many of the applications are based on the regular conti

nued fraction expansions of real numbers, in which all of the partial numerators 

Pn are unity and qn are real numbers. These regular continued fractions are the
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extensions to irrational numbers of the finite expansions for rationale tha t are

yielded as a by-product of Euclid’s algorithm for finding the greatest common

divisor of two integers. One of the beauties of such expansions is tha t no conver

gence theory is necessary. One of their many properties is their ability to provide 

best rational approximations to irrational numbers. Some examples of regular 

continued fractions are

1. The golden ratio,

l - f \ / 5  _   ̂ 1 1 1 1 1 1 1 1
2 ~  ^  1 +  1 +  1 +  1 -h 1 +  1 +  1 +  1 -{-•.•

2. The number e,

^ 1 1 1 1 1 1 1 1 1 1 1  
Q —  2  -{ —  —  —  —  —  —  —  —  —  —  —

l 4 - 2 - | - l - | - l - | - 4 - { - l - | - l - { - 6 - i - l - } - l 4 - 8 4 - " ' '

3. The number tt,

1 1 1 1 1 1 1 1 1 1 1  1 
^  ~  7 +  15 +  1 +  292 +  1 +  1 +  1 +  2 +  1 +  3 +  1 +  14 +  •••

22We can see tha t the first convergent of the continued fraction for tt is , and 
355

the third convergent is which is the best rational approximation to tt with 

denominator less than 33102. T hat is |1137t — 3551 <  |ç7r — p| for q <  33102. 

Although e  and tt are transcendental numbers, the coefiicients in the continued 

fraction for the number e follow a pattern, but this does not happen in the 

continued fraction for the number tt.

An excellent text on the arithmetical and metrical properties of regular conti

nued fractions is the classic work of Khintchine [28], which is the starting point 

for the more recent book by Rocket and Sziisz [40]. The comprehensive and 

classic text by Perron [39] treats both the arithmetic and analytic properties of 

many kinds of continued fractions.
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It was in the work of Euler that it first became clear that continued fractions 

also have a major role in analysis. The main concern is now the expansions 

and convergence theory, of infinite continued fractions whose partial numerators 

and denominators are polynomials of a real or complex variable. Hence the 

finite continued fractions obtained by truncation are rational functions, which 

can possibly approximate the function being expanded. The importance of conti

nued fractions in nineteenth century analysis is indicated by the long list of 

major analysts who contributed to the development of the subject. These include 

mathematicians such as Laplace, Legendre, Jacobi, Laguerre, Riemann, Stieltjes 

and Gauss. The latter also applied continued fractions to number theory.

In addition to Perron’s book mentioned above the analytic theory of continued 

fractions is very well covered by three excellent texts in particular. These are the 

classic book by Wall [54], the later work by Jones and Thron [25], and the very 

recent text by Lorentzen and Waadeland [31].

The continued fractions that appear in this thesis are all particular cases of 

those that correspond to power series expansions, and the form and properties of 

such continued fractions are described below. First, a few standard results that 

apply to all continued fractions are presented.

In number theory the convergents are generally rational numbers, while in 

this thesis they will be rational functions. The numerators and denominators 

Qn satisfy, respectively, the three-term recurrence relations

Pn+l — Çn+lPn T Pn+l^n-lj ^

Qn+1 ~  Qn+lQn T  Pn+lQn—l'> 

for n — 1, 2 , 3,... with Pq -  Çq, Qq — I and Pi = qoqi 4-pi, Qi = qi.

In addition, the numerators and denominators satisfy the determinant foTumlsi, 

Pn+lQn — PnQn+1 = {~^)^Plp2 ' ' 'Pn+li (1-1.4)
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while the convergents themselves satisfy

Pn+l _  ^  (-l)" P lP 2" 'P n + l
Qn+1 Qn Qn+lQn

and
Pn+l _  Pn-1 ^  (-ir+ ^P lP 2'"P n9n+l
Qn+1 Qn—1 Qn+lQn—1

(1.1.5)

( 1 .1 .6)

The continued fractions that appear in this thesis are those that correspond 

to a series expansion of the form

C_i +  C—2Z 4- C_3%̂ 4~ C—4Ẑ  T ■ ' ‘ j (1.1.7)

or to one of the form

or to a series of each form simultaneously.

The partial numerators of a continued fraction of the form

UlZ «2^ .
+  —  +  T +  T  +  — + . . .

can, under certain conditions, be chosen so that the nth convergent corresponds 

to the series (1.1.7) when expanded as a power series in 2:. The nth convergent

is a ratio of polynomials of degree r and s respectively, where r = and

 ̂— [fl-

For example the continued fraction corresponding to the exponential series 

 ̂ 2;
 ̂ +  n  +  +  4!

is
z zj2  z/6  zj2  z/10 zj2  z/14 zj2

1 +
1 - 1 4 - 1 - 1 +  1 - 1 +  1 -  1 +

Continued fractions of the above form, and with the above correspondence 

properties, are known as regular C-fractions.
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Similarly the partial numerators of a continued fraction of the form

Oi Ç2 ^  ^

can, under certain conditions, be chosen so that the nth convergent corresponds 

to the series (1.1.8) when expanded as a series in inverse powers of z. The nth 

convergent is also a ratio of polynomials of degree r and s respectively, where 

r  =  [ ^ ]  and s =  [ ^ ] .

If c_i is zero in (1.1.7) then clearly a series of the form (1.1.8) can be obtained 

from (1.1.7) by replacing z h y  1/z. The corresponding fraction (1.1.9) becomes, 

under the same substitution and after simple manipulations, of the form (1 .1.10).

The even contraction of (1.1.10), that is the continued fraction whose 

successive convergents are the even order convergents of (1.1 .10), is of the form

CL\ <22^3  ÜqQj1[

Z  p  0 ,2  +  Z  O ^ O 4 +  Z  +  +  Z  +  +  G g  +  • • •

or, in simpler form,

Ai A2 A3 A4
z 'y\ +  z '^2 +  +  “b z +*•■

In certain circumstances this continued fraction is a J-fraction^ and it was in the 

study of these fractions that orthogonal polynomials first arose. For an arbitrary

J-fraction, with all A* 7  ̂ 0, the denominators of the convergents form a sequence

of orthogonal polynomials. For example, the denominators of the convergents of 

the continued fraction

1 1 4 9 16
z — 1 — z ~ 3 — z — 5 — z — 7 — z — 9 — •*'

are the classical Laguerre polynomials, in their monic form.

A third type of corresponding continued fraction, and one that is central to a 

study of the class of moment problems known as strong moment problems, which
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we introduce in the next subsection is of the form

Co U2Z n^z n^z
1 +  +  1 +  dgz +  1 +  d^z +  1 +  +  • • •

This continued fraction can be written in the equivalent form

Co a2Z asz aiZ
Z — f ii  —  Z — ^ 2  ~  ^ ~  —  z  ~  (3/1 — • • •

In certain circumstances the nth convergent of this continued fraction, for 

n  =  1,2,3..., is a ratio of polynomials of degree n — 1 and n respectively and 

the continued fraction corresponds to the two series (1.1.7) and (1.1.8) simul

taneously. That is, when the nth convergent is expanded in powers of z and 

in inverse powers of z, the expansions will agree with n terms of (1.1.7) and 

(1.1.8) respectively. These fractions are called M-fractions. They were stu

died by Murphy in [37], by McCabe in [32, 33] and by McCabe and Murphy in 

[36]. Independently, Jones and Thron [24] and Thron [53] introduced the general 

T-fractions, equivalent to the M-fractions. The general T-fractions are of the 

form
f i z  h z  h z  f / i z

1 +  QiZ +  1 +  Ç2Z +  1 +  g^z +  1 +  g^z +  • • •

For example, the continued fraction

1 2z 4z 6z 8z
z +  1 — z +  3 — z +  5 — z +  7 — z +  9 — 

corresponds to the two series

-, 1 1 2 1 3 1 4
+  +  945^

and
1 1 3 15 105 945

These series where studied by McCabe in [32, 33]. They are related to, respecti

vely, the Maclaurin series and an asymptotic expansion for Dawson’s integral

F{z) = e - ’^
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Further details of all of these corresponding fractions, their properties and 

their related orthogonal polynomials, will be given in the following chapters of this 

thesis. An algorithm for transforming the series expansions into a corresponding 

continued fraction is also described.

M om ent problem s

A recent and excellent account of the history of moment problems is given by 

Kjeldsen [29]. He describes how the concept of a moment problem first arose 

in the work of Stieltjes, which led to the integral that now bears his name, and 

how the moment problems then became a topic in their own right. The texts 

by Shohat and Tamarkin [41] and by Akhiezer [1] are classic sources on moment 

problems.

In its simplest terms a moment problem is related to the existence or non 

existence of a distribution a bounded real valued function that is defined on 

(o, 6) Ç IR and with infinitely many points of increase and for which the moments

[  n =  0,1,2, . . . ,  (1.1.11)
Ja

all exist. Then, given a sequence {iin}^=o of real numbers, is there a unique 

distribution '(pit) such that

IJ,n= f  t^dipit),Ja
for n =  0 , 1 , 2 ,... ?

A moment problem is said to be determinate when such a unique distribution 

exists. There are many variations of moment problems, depending on the interval 

(a, b). In recent years extensions to doubly infinite sequences of real numbers have 

resulted in further moment problems. In all of them, as suggested above, there are 

two questions to be answered, namely existence, or solvability, and uniqueness, or
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determinability. There are different ways to answer these questions. For example 

those based on continued fractions and those based on Hankel determinants.

Three particular cases of the above general moment problem have come to be 

called the classical moment problems, though strictly the term describes a much 

wider class. These are

(i) the Stieltjes moment problem, where the integration is over (0 , oo),

(ii) the Hamburger moment problem, where the integration is over (—00 , 00),

(iii) the Hausdorff moment problem, where the integration is over (0,1).

Stieltjes, in his memoir of 1894-95, introduced the concept of the moment 

problem and solved the moment problem which was named after him. Earlier

Chebyshev, in 1874, also dealt with moments. Kjeldsen in [29] describes how

Chebyshev was interested in the following problem. Given the values of the 

integrals

[  f{x)dx, [  x f{x)dx,  . . . ,  [  x '^f(x)dx,
J a  J a  J a

rb
can upper or lower bounds for the value of / f{x)dx  be found, where f{x)  is an

Ja
unknown function and A < a < b < B1 Chebyshev worked only with a finite 

number of moments.

Stieltjes was able to solve the moment problem on the positive real axis by 

making extensive use of continued fractions. In particular he used the continued 

fractions
1 1 1 1  

0 \ Z  +  (% 2  +  ( Z g Z  +  0 . 4  +  • * •

associated with the integral

dijj{t) fio fJi , M2 M3 ,
Jo z -\-t z

He showed that all of the parameters afs  are positive, and that this is a 

necessary and sufficient condition for the existence of a solution of the Stieltjes
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moment problem

Mo Ml 

Ml M2

Mn. Mn+1

This is equivalent to the positivity of the Hankel determinants

Mn

Mn+1

M2n

and

Ml

M2

M2

Ms

Mn+l

Mn+2

Mn+1 Mn+2 • • • M2n+1

n =  0 , 1 , 2 ,

Hamburger, in 1920, in solving the moment problem on the whole real axis, 

showed that it was not just a trivial extension of Stieltjes work. Later, with 

the work of Hausdorff, Nevanlinna and Riesz, moment problems then became an 

important topic in their own right, independent of continued fractions.

Recent variations of these problems are the strong moment problems. In these 

the sequence is replaced by the doubly infinite sequence {Mn}%l-oo of

real numbers. Given such a sequence {Mn}^_oo of real numbers, find a unique 

distribution '0 (t) such that the elements pn are the moments of this distribution, 

that is,

Mn =  j  t^d'ijj{t), for n =  0, ±1, ±2,... .

These strong problems are also distinguished by the interval of integration, and 

they are

(i) the strong Stieltjes moment problem, where the integration is over (0 , oo),

(ii) the strong Hamburger moment problem, where the integration is over (—00 ,00),

(iii) the strong Hausdorff moment problem, where the integration is over (0,1).

The same questions about existence and uniqueness arise in connection with 

these problems. The necessary and sufficient conditions are given in terms of 

Hankel determinants involving the moments Jones, Thron and

Waadeland [27] proposed and solved the strong Stieltjes moment problem, while 

Jones, Njastad and Thron [20] solved the strong Hamburger moment problem.

Another variation of this problem is the trigonometric moment problem. This
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is, given a sequence of numbers {Mn}^_ooî a distribution function 'ip(Û), 

where — tt < 0 < tt, such that

1 r  .V
Mn =  —  r  for n  =  0 , ± l , ± 2 .......  (1.1 .12)

27T J—1T

This problem was first considered by Akhiezer and Krein in 1934. The existence 

and uniqueness conditions can be found in Akhiezer [1].

O rthogonal p olynom ials

As we stated earlier, the theory of orthogonal polynomials originated from the 

analysis of certain types of continued fractions associated with moment problems. 

One of the possible starting points of the study of orthogonal polynomials was 

when Chebyshev considered the problem of finding the properties of the deno

minator polynomials of a J-fraction. Gauss, Jacobi, Legendre and others had also 

worked with orthogonal polynomials.

To define, in the modern way, a sequence of orthogonal polynomials we con

sider a distribution ^(t), on (a, 6) Ç H , and the moments

Mn =  /  n =  0 ,1 ,2 ,....
J a

If there exists a sequence of polynomials, where Pn{z) is of degree

n, such that

f  Pm{t)Pn{t)d'ip{t) ■ 
J a

or, alternatively, such that

=  0 , if m 7  ̂n,
n ,m  =  0,1, 2 ,..., (1.1.13)

7  ̂0 , if m  = n.

r  / N , I =  0 , if 0 < 5 < n — 1,
/  PPn{t)d'ip[t) I n =  0 , 1 , 2 ,...

I 7  ̂ 0, if S =  72.
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then {P„(z)}^o is called a sequence of orthogonal polynomials related to the 

distribution 'ip{t).

The existence of such a sequence of orthogonal polynomials is guaranteed if 

the Hankel determinants,

satisfy

Mm Mm+1 * ’ * Mm+n—1

Mm+1 Mm+2 ' ' * Mm+n

: : • • • :

Mm+n—1 Mm+n ’ * ' Mm+2n—2 

f  0, n  =  0 ,l,2 ... .

The proof of this result can be found in the classical sources such as Chihara [10], 

Freud [15] and Szego [52], as can all the fundamental properties of the orthogonal 

polynomials.

Recent studies of the strong moment problems and the denominators of the 

general T-fractions and M-fractions gave origin to the study of orthogonal Laurent 

polynomials. A Laurent polynomial is a function of a real or complex variable z
m

of the form ^  n z \  where k ,m  E Z , k < m  and G € .
i=k

In a similar way to that for the classical orthogonal polynomials, we consider 

a strong distribution '0(t), defined on (a, 6) Ç IR, and the moments

- b

H n  =  [  t ' ^ d ' i p i t ) ,  n  =  0, ±1, ± 2 ,....  
Ja

According to Jones, Njastad and Thron [19], the Laurent polynomials

Q 2n { z )  — q 2n ,~ n ^  ^  +  * * * +  q 2n ,n ^  ; Q2n ,—n ~  I j

Q2n+1 W  =  Q2n+l,~n~lZ~'^~^ _|_ . . . q. q2n+l,nZ^, q2n+l,~n~l =  1,
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are orthogonal Laurent polynomials if

[  Qn{t)Qm{t)dllj{t)
J a

=  0,

> 0 , n — m.

Further details of the theory of orthogonal Laurent polynomials are given in 

Chapter 2 of this thesis.

A natural use of the orthogonal polynomials is in the theory of the quadra

ture formulae. Newton and Cotes, independently, developed similar methods to 

approximate integrals with formulae of the form

f  f(t)dt = ̂ Wi f{ti) +  E „ (/) , (1.1.14)

where IE„(/) is the error term, using interpolating polynomials. The weights Wi 

can be expressed as

Wi — f  Li{t)dt^ i — 1, 2 , ...,?2 ,
J a

where, Li{t),i = 1,2, ...,n, are the Lagrange polynomials, defined such that 

Li{t) e  P n - i and Lfitj) = ôij.

A quadrature formula of the form (1.1.14) is called interpolatory and 

IEn(/) =  0 for all f{t)  G P ^ - i. In other words, the quadrature formula has 

order n — 1 .

Gauss, in 1814, based on the methods of Newton and Cotes and on his own 

work in both hypergeometric functions and continued fractions, proposed a new 

quadrature method of the form (1.1.14) but with order 2n — 1.

Later, Jacobi proved Gauss’ results without using continued fractions, but 

based on polynomial orthogonality. As Gautschi [16] pointed out, the term 

“orthogonal” came into use later, probably in the work of Murphy in 1835.
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Christoffel then generalized the Gaussian quadrature for weighted integrals such

as

/  f{t)co{t)dt,
J a

where u{t) is a nonnegative weight function.

Heine, Chebyshev, Stieltjes and other mathematicians then extended the 

Gaussian quadrature formula during the nineteenth century. This powerful tool 

to approximate integrals became very popular with the advances of computers. 

For further details see Gautschi [16], Krylov [30] and Stroud and Secrest [51].

Following Stieltjes, in this thesis we consider quadrature formulae to appro

ximate integrals of the form

f  f{t)d'ip{t) =  +  E n (/) , (1.1.15)
t=i

where is a distribution defined on {a, b) C (0 , oo). In Chapter 5 we will study 

the quadrature formulae related to the strong Stieltjes distributions.

P adé approxim ants

The two-point Fade table is the extension to the two series (1.1.7) and (1.1.8), 

namely

C _ 1  +  C _ 2 Z  +  C _ 3 Z ^  +  C _ 4 Z ^  H-----------

and
Co Cl C2 C3
Z Z'' Z"

of the classical Padé table associated with the single series (1.1.7). Padé appro

ximations are rational functions and they are closely connected with continued 

fractions and orthogonal polynomials. An excellent account of the history of 

Padé approximants, accompanying a history of continued fractions, is given by
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Brezinski [9]. An excellent text about the Fade approximants is given by Baker 

and Graves-Morris [4]. The classical Fade approximants, and the Fade table 

containing these rational functions are, respectively, subsets of the more recent 

two-point Fade approximants and the two-point Fade table. Hence it is these 

approximants, and this table that are now defined.

A two-point Padé approximant is a rational function ; where n € IN

and r G Z .  The two-point Fade table is the doubly infinite array of these 

approximants, seen below. The significance of the “staircase” lines will be 

explained below.

4 % )
s i ”’(z)

4 ^ > ( z )

B f \ z )

(4 ^ P \ z ) 4 ’" (z)
(z) B t '^ z ) B t^ (z)

(z) 4~^\z) 4~ '\z ) 4~ ' (z)
(z) B^f^\z) Bk~'Hz) B p (z)

z) 4 \ z ) 4 % ) A f
z) B f \z ) Bp'

z) A^\z) 4 ' \ z ) Ap' 4
z) B'i\z) bP' 4

A® z) 4 \ z ) AP>(.) Ap)
Bp' z) B?\z) Bp'

Two-point Padé table

Given that certain determinant conditions on the coefficients are satisfied, 

the approximants in the table are all unique and they correspond to the series as 

follows.
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ylW(z)
For |r| < n and n € IN the rational functions —̂ —  are strictly two-point

Bn {z)
Padé approximants. Each is a ratio of polynomials of degree n — 1 and n respecti

vely with 0. When expanded as series in powers of z, it will

agree with (n -  r) terms of (1.1.7) and also, when expanded as series in powers 

of - ,  it will agree with (n -t-r) terms of (1.1.8). These are the approximants 

lying between the staircase lines in the table above. The remaining approximants 

above and below these lines will still agree with (n —r) terms of (1.1.7) and (n-fr) 

terms of (1 .1.8) when expanded accordingly, where negative numbers of terms 

indicates no agreement.

When r  < —n, tha t is the approximants above the upper staircase, the de

nominator is still a polynomial of degree n but the numerator is now a

polynomial of degree \r\ — 1. These are the classical Padé approximants for the 

series (1.1.7). Specifically,

=  Pn,\rpi{z) = c_i 4- c_2Z 4 h 4" higher order terms.
Bii^{z)

That is, (n — r) terms of (1.1.7) are “fitted” by the approximant. In the classical 

Padé table for the series (1.1.7) these elements would appear in the lower half of 

the table or on the first upper diagonal.

The lower part of the two-point table, the approximants when r > n, is the 

triangular array known as the E array described by Wynn [55]. The denominator 

B^l(z) is still a polynomials of degree n but the numerator can now have positive 

and negative powers of z, it is a Laurent polynomial. Specifically,

j=0

and

— 4- ^ 4 - " 4 -----—  ̂ 4- lower order terms,
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tha t is, (n +  r) terms of (1.1 .8) are “fitted” by the approximant.

The approximants in the first column of the two-point Padé table are simply 

the partial sums of one of the series, (1.1.7) when r  < 0 and (1.1.8) when r  > 0 .

4 " '( 4
The first approximant on the central row ^, is identically zero.

Since the classical Padé table is a subset of the two-point Padé table many 

of the results tha t have been established for the classical Padé table extend to 

the two-point Padé table. One such result is Wynn’s identity for example. This 

identity links any approximant, denoted by C  say, with its immediate neighbours 

in each of the four directions W, 5, E  and W  by the relation

1 1 1 1
+  v; ^  +N - C  S - C  E - C  W - C

Finally, the link with continued fractions. In many cases, ordered sequences 

of approximants in the two-point table form the convergents of a continued 

fraction. The particular continued fractions that arise for row sequences, stair

case sequences, sawtooth sequences and some other sequences, and methods for 

obtaining these continued fractions from the series coefficients, will be given in 

the following chapters.

1.2 Sym m etries in distributions

In this work we consider the strong Stieltjes distributions 'ip{t) tha t satisfy the 

following symmetric property

with 0 < (3 < b < oo, a — t  G (a, 6), and 2w G Z. We denote this kind of 

distribution by /?, b] distribution. The moments of an /?, 6] distribution
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satisfy the “symmetric” relations

fin  =  n  =  0, dzl, ± 2 ,  ... .

Similar relations can be found in a study of the trigonometric moment pro

blem. Prom (1 .1.12) we see tha t the moments of a solution of the trigonometric 

moment problem satisfy

jin = ]î-n n =  0 , ± 1 , ± 2,... .

Jones, Njastad and Thron in [23] provide a survey on this moment problem and 

the related orthogonal polynomials, quadrature formulae and continued fractions.

Sri Ranga in [43] studied strong distributions -^(i) defined on IR that satisfy

^  t e  ]R. (1.2.2)
t p^/t

specifically he considered a sequence of monic polynomials {Q»(z)}^Q, where 

Qn{z) is of degree n, that satisfy

=  0, 0 < s < n — 1, for n > 1, (1.2.3)

These polynomials were first studied by Sri Ranga and McCabe in [49]. They 

also satisfy the three-term recurrence relations

Q2n{^) — {z ~  (32n)Q2n—l{^) (^2nQ2n—2{z), 77. ^  1, ^12 4)

Q2n+l{^) — {(1 +  0'2n)z ~  P2n+l}Q2n{^) ~  0^2nZ^Q2n~l{^)^ ^  > 1, 

where Qo(^) = 3, Qi{z) = z — Pi, and > 0 and pn G IR. It was shown that if 

the distribution ^(t) satisfies (1.2 .2), then the polynomials Qn{z) defined by the 

conditions (1.2.3) satisfy the recurrence relations (1.2.4) with Pn — 0, 0!2n =  P"̂  

for 77. > 1. These distributions were called strong c-symmetric distributions.

In [44] Sri Ranga dealt with the case when w = 1/2 and considered a sequence 

of monic polynomials {B,^(z)}^Q, where Bn{z) is of degree n, tha t satisfy

/ .
t Bn(t)d'ip{t) =  0, 0 < s < 71 -  1, for 77 > 1. (1.2.5)

a
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They satisfy the three-term recurrence relation

Bn+l{_Z) — (z 1 ; 77 ^  1 , (1 .2 .6)

where B q{z) — 1 and Bi(z) =  z — p\, with Pn,Oùn+i > 0, for n > 1. The 

polynomials tha t satisfy (1.2.5) are called orthogonal L-polynomials because of 

their relations with the orthogonal Laurent polynomials defined in section 1.1.

In this case, the distribution is a strong Stieltjes distribution tha t satisfies

4 W t
In [44] this distribution was called ScS(a, b) distribution. The polynomials Bn{z) 

defined by (1.2.5), for an ScS{a,b) distribution, satisfy the recurrence relations 

(1.2.6) with Pn = Py for all values of 77.

In [48] Sri Ranga, de Andrade and McCabe have investigated the polynomials 

Bn{z) defined by (1.2.5) which are associated with a distribution tha t satisfy

(1.2 .1) with w =  0 , tha t is

di;{t) = ~d'ip{p^/t), t  e  (a, 6). (1 .2 .8)

These distributions were called ScS{a,b) distributions. The authors in [48] also 

studied the real polynomials Bn{X,z), n > l  defined by

Bn (A, z) — Bn{z) -  XBn-l{z), A G IR,

and some consequences of the symmetric property (1.2 .8) in these polynomials.

Common and McCabe [14] considered distributions that satisfy (1.2 .1) for the 

specific case w =  0 and /? =  1. They studied the polynomials defined by (1.2.3), 

the denominators of the two-point Padé table and the related continued fractions.

If we consider the classical orthogonal polynomials, it is well known that if a 

weight function v{t) defined on {—d,d), 0 < d < oo, satisfies v{t) ~  v{~t) then
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the classical orthogonal polynomials, Pn{z), n = 0,1,2,..., defined by (1.1.13), 

associated with v{t), satisfy the symmetric property

7^(Z )= = (-I)"fk (-Z ), 77 > 0 .

The polynomials Pn{z), n = 0 ,1,2,... that satisfy the above property are called 

symmetric orthogonal polynomials. In monic form they also satisfy the three- 

term recurrence relation

P^+l('^) “  ^Pn(^) (2̂ ), 77 ^  1,

with fo(z) =  1, and Ti(z) =  z. The coeflSicients 0^+1, 77 > 1 are given by

_  A  t^Pn{t)v{t)dt 
S-d {t)v{t)dt

See Chihara [10] and Szego [52].

Sri Ranga in [46] has given some relations that exist between the symmetric 

orthogonal polynomials Pn[z) and the orthogonal L-polynomials Bn{z) related 

to distributions tha t satisfy (1.2.7). In Bracciali, Capela and Sri Ranga [6], these 

results were extended to the complex plane.

The objective of this work is to investigate the symmetric property (1.2.1) that 

occurs in some strong Stieltjes distributions, and the consequent symmetries that 

appear in the orthogonal L-polynomials, the associated polynomials and also in 

the monic polynomials B » ( A ^ i , z), 77 > 0 , defined by

AM; =  s f  (^) +  A ^ B ^ iW  +  • ■ • +  aM bM ,(^),

where r > 1 and A ^ , AM £ H.

We also study the quadrature formulae related to the orthogonal L-polyno

mials, the polynomials B n { X n \ , z )  and some consequences of the symme

try (1 .2 .1) that appear in these quadrature formulae.



C hapter 2 

Strong Stieltjes distributions and  

orthogonal L-polynom ials

In the first four sections of this chapter we restate some existing results that are 

necessary for the development of our work. In section 2.5 we define and study a 

new sequence of monic polynomials.

2.1 Introduction

Let 0 < p < b < oo. Set a =  and let ip{t) be a real, bounded and 

nondecreasing function defined on {a, b) , with infinitely many points of increase 

in (a, b) and such tha t the moments

'6
{im= [  m = 0 , 1, 2 ,...,

J a

all exist. With these conditions 'ip{t) is a distribution function on (a, 5). Since 

{a,b) Ç (0, oo), is called a Stieltjes distribution.

22
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If the moments

jJLrn— [  m =  0, ±1, ±2,..., (2.1.1)
J a

all exist, then the distribution -0(i) is referred to as a strong Stieltjes distribution.

For strong Stieltjes distributions, the Hankel determinants, of order n,

defined by = 0 , =  1, and

flm flm+1 

flm+l flm+2

flm+n—1

flm+n

flTTi-\-2n—2

(2 .1 .2)

flm+n—l flm+n

for n = 1, 2 ,... and m  — Q,±l, ± 2 ,..., are positive. A direct proof of this result 

can be found in de Andrade [2], where the author used similar ideas tha t those 

given by Chihara [10], Szego [52] and Wall [54].

2.2 The orthogonal L-polynom ials

Let 'ip{t) be a strong Stieltjes distribution and, for r G Z ,  let {BM(%)}^Q be 

sequences of monic polynomials, where is of degree n, defined by the

conditions

/:L—n + s+ r B "  ( ()# (()
0 , 0 < s < n — 1,

Æ  > 0, S =  n .
(2 .2 .1)

The numbers /C„4, which we will use later in this work, are given by

(2 .2 .2)

The polynomials B ^ \ z )  have been studied by Sri Ranga in [42]. In this 

section we give some results tha t can be deduced from the results in [42]. These
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polynomials are called orthogonal L-polynomials since they are related to the 

orthogonal Laurent polynomials defined in section 1.1. In section 2.4 we will 

present the relations between these polynomials.

The polynomials n > 0, r =  0, ± 1, ± 2 ,..., can be written

j=0

as

(2.2.3)

where 6^1 =  1 , for all values of n.

Using the definition (2.1.1), we can write the equations (2.2.1) as the linear 

system

Mr-n^n,0 +  Pr-n+l^n\ +  

/7r-n+l^n,0 +  Pr~n+2^n\ +

+

+  f^r+lbn\ +

+  flr+l^n}n ~  0

+  Mr+n-l^n,n “  ^

+ J lr+ n ^ n ji ~  Pn}r

(2.2.4)

We use Cramer’s rule and the definition (2 .1.2), to then obtain

r (r) _
n̂,n rr(-u+r)

n+l

Then, with the normalization =  1, it follows that
Ti-i-n+r)
•^n+1
By( —n + r )  " (2.2.5)

If we now substitute the last row in the system (2.2.4) by the equation (2.2.3), 

we obtain
,, A(r)/7r-nf^n,0 + , (r)

/ l r ~ n + ia f i , l +  • • + ^ 6 % 0
T(r)

Mr-n+l®n,0 
< . . .

+ 7 (r) +  ' • + 0

Mr—l^n,0 + +  • / I r + n - l ^ n j i =  0

+ +  • • + =  BW (z)



2.2 The orthogonal L-polynomials 25

Once again, using Cramer’s rule, we find

P-r—n P r—n+1 Pr

P r—n+1 p r —n+2 Pr+1

4 ' ' ( 4  = (_„+,)
U n

: :

P r~l Pr Pr+n—l

1 Z Z^

Setting z =  0 in the equation above, we see that

TT{-n+l+r) 

tin

Hence, the existence and uniqueness of the polynomials with

B ^ \0 )  ^  0 , depend on and being non zero. But from (2.1.2),

we know that > 0 for n > 0 , m — 0 , ± 1, ± 2 ,... .

Proceeding, we consider

J a

and we see that

=  /  f - ( " + l ) B ^ ) ( ^ ) # ( t )  =  p - n - l + r b n l  +  M - n + r ^ > n , l  +  ' "  +  P - l + r b ^ n l  •

Then, using Cramer’s rule on the linear system containing this equation 

followed by the first n equations in (2.2.4), we find that

^(-(n+l)+r)
4 4  =  ( - 1)" ^44- ) • (2.2 .6)

The polynomials B ^ \ z ) ,  r G Z ,  satisfy the three-term recurrence relation 

B^:Uz) = { z - l 3 k : l ) B < : \ z ) - a P z B P ( z ) ,  n > l ,  (2.2.7)
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with B ^ \ z )  =  1, B i \ z )  = z ~  \  The coefficients and Pn+iy ^  ^  1? are

given by
„  pÿr

/ 4 ’’B 4 - i( t)# ( i)  pi’l l , /

and /^M =
Pr—l

We prove this result as follows. Since n > 0, r = 0 ,± 1 ,± 2 ,...,

are monic polynomials of degree n, the polynomial B ^ h iz )  — zB^'^(z) is also a 

polynomial of degree n. We then write

(2 .2 .8)

n—1
where P„_i (z) is a polynomial of degree n —1 . We can write P^li  (z) =  ^  P n \ j^ ^  >

j=o

Multiplying both sides of the equation (2.2.8) by and integrating over

(a, b), we obtain

r r " + ‘+’'B M i(i)# (« ) -  / '‘' r “+*+^+’’Bi’->(t)#(t) =Ja J a

- 4 4 i  t  (<)#(() -  «M 1 f"  r " + “+^+’-sM i ( ( )# (( )  (2.2.9)y a

+  E Pn-i,,- / ' ’r"+*+^'+’'# ( i ) .
j=0

Setting 5 =  0,1,..., 77 — 1 in (2.2.9) and using the definition (2 .2 .1) we obtain 

the following linear system

(r) 1 ,, Ar) I I ,, _(r)Pr—nPn—lfi T Pr—n+lPn—l,l T
fy*) f?')

Pr-n+lPn-l,Q +  Mr~n+2Pn-l,l +  '

pr-2Pn-l,0 +  Mr-lPn-1,1 +  *

pr-lPn-lfi +  PrPn~l,l +  ’

• +  Mr-lPn-l,n-l “  0

+  PrPn-l,n-l = 0

' T Pr+n-3Pn-i,n-l ~  0

•-f- fir+n—2Pn~l,n--l ^n+lPn—l,r P\i}r
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The determinant of this system, is positive, and if we choose

(r) _  Hn,r
« n + l  -  (,.) .

Pn—l,r

then the solution of the linear system is P n \ j  — 0, for j  =  0,1, ...,n  — 1. This 

means tha t Pn'}i{z) ~  0 and the first part of the result holds.

In order to find Pn+iy we set s =  — 1 in the equation (2.2.9) and we see that

0 =

The proof is now complete.

Now, from the relations (2.2.5) and (2.2.6), we can also write the coefficients 

and Pn+\y 77 > 0 , r  =  0 , ± 1, ± 2 ,..., as

,  s  rr (-u 4 -r )  t t ( - ( î^ - 1 ) + ’’) tT ( -n + r )  r r ( - n + r )
(r) _  M-t-1 M-1_____  /sfi) . n____ -^n+1_____  9
w + l t t ( —n + r) r r (—(n—l)+ r )  ’ r^n+1 (7 i+ l)+ r) tj-(—(n —l)+ r )  ‘ \  * ■ /Un Un -T^n+l l^n

a .

The zeros of the polynomial B ^ ^ z )  are all real and distinct, and they lie 

inside (a, 6).

We prove this result by contradiction. Since 0 < a < 6 < oo, then from

r r ’»+-'BM (t)#(i) =  0 ,Ja

we can see that the polynomial B ^ \ z )  changes sign at least once in (a, 6).

We now assume tha t B ! ^ \z) changes sign exactly m, 1 < m < n, times in 

(a, 6), at the points Z i \  z ^ \  ..., z ^ .  Consider the polynomial

7r(z) =  (z -  z^))(z -  ẑ *")) ' " (z -  zM).

We then obtain

r r"+''7r(t)BM (()# (( )  fO .
J  a
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This contradicts the definition (2.2.1). Hence m = n, and B ^ \ z )  has n real 

distinct zeros inside (a, 6).

We arrange the polynomials B ^ \ z ) ,  n =  0,1,2,..., r =  0 , ± 1 , ± 2 , ..., in the 

following table

B t ^ \ z )  Bi~^\z)

B t ^ \ z )  B\-^>{z) 

Bk^\z) B f ’\ z )  

B k '\z )  B [^ \z) 

b P (z )  B f \ z )

( - 1), B^f'-\z)

B f \ z )

B ^ \ z )

B ? \ z )

b A ( z)

B i^\z)

(4

B t ^ \ z )

b A ( z)

,(1)B\^'{z) Bk^’iz)

B f \ z )  Bl^>{z)

b A \ z)
b A ( z)

(1);

(2).

(2.2 .11)

We recall tha t the polynomials in the row of the table with superscript (r) 

satisfy the conditions

[  B^\t)dip{t)  =  0 , 0 < s < n  — 1 .
J  a

Setting n = r in the orthogonality conditions above, we obtain 

->6
f  PB^\t)d'ijj[t) = 0 , 0 < s < n  — 1 .

J  a
(2.2 .12)

Thus, the polynomials B q̂ \ z), b [^\z), B ^ ^ \z ) , ... are the classical ortho

gonal polynomials with respect to the distribution '0(i). They satisfy the three- 

term recurrence relation

=  ( z - ( z ) ,  « >  i,

with B^\z) = 1, s f ' ( z )  =  X -  bfK The coefficients nnd given by

,(0) _  fq{Bl"Kt)fdi)(t) (̂0) _  Ja t{Bt\t)fdip{t)
lk:{BiJ‘\t))Zdi,{t)«'n+l 5 ^n+1 n > 1,
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and with = (ii/jiQ.

The polynomials, B ^ \ z )  in the diagonal paths of the table, such tha t r = n-\-l 

for Z =  0 , ± 1, ± 2 ,..., satisfy the conditions

=  0, 0 < s < a - l .  (2.2.13)
Ja

They are the classical orthogonal polynomials with respect to the distribution

such that d'ipi{t) =  t^dip{t). They satisfy the three-term recurrence relation

7̂ > 1, (2.2.14)

with B q\ z) = 1, b [^'^''\z) = z — b i \  The coefficients and are given 

by

with bi^ = fii+i/fai, for  ̂=  0 , ± 1 , ± 2 ,... .

2.3 Continued fractions

Since the distribution function has the moments Pmyfti ~  0, ± 1 ,± 2 ,... de

fined in (2.1.1), the Stieltjes function given by

G w  =  r
J a  Z  —  t

has the following two formal power series expansions

Lq =  —p-l — P-2  ̂~ —  •  •  • ,

and
P q , P i  . P2 . Pz . P i
 1----------g  -I r H  j H --------- rZ z2 z^ Ẑ  Z°
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We consider the continued fractions

for r =  0 , ± 1, ± 2 ,..., which are the corresponding M-fractions (see Murphy [37], 

McCabe and Murphy [36] and McCabe [33]). The term (^) is given by

^ [ —/7_1 —/7_2Z — flr^ r  < 0

The coefficients in the partial numerators and the coefficients in the

partial denominators for n > 0 and r  =  0 , d=l, ± 2 ,..., are the coefficients of the

recurrence relations for the polynomials B^)(z).

For strong Stieltjes distributions, the Hankel determinants for n > 0

and m =  0, ±1, ±2,..., are non zero. Hence there exist rational functions —̂ — ,
B n  (z)

for n > 0 and r =  0 , ± 1 , ± 2 ,..., such that

A ^ \ z )  f ~ P - \  ~  P~2^  — . . .  — fj,_n-rZ'^~^~^ +  h.O.t.

b F w " "  1 -  +  4  +  ^  +  --- +  ^ ^ ^  +  l.o.t.
 ̂ z  z^ z^

when expanded at z =  0 and at z =  oo respectively. These rational functions form

the two-point Padé table for the two series. The two-point Padé approximants
(z)were described in section 1.1 . The rational functions —74  for r  E Z, are the

B k : \ z )
n th  convergents of the M-fractions (2.3.1). The M-fractions (2.3.1) correspond 

to To at z =  0 and to Loo at z =  00 .

We then see that the numerators of the nth convergent of the M-fraction

(2 .3 .1), A.M(z), for n > 0 and r  — 0 ,4=1,4:2,... satisfy the same three-term 

recurrence relation that the denominators of the nth convergent, B^)(z), but 

with different starting values. Thus

A%i(z) =  (z -  > 1, (2.3.2)



2.3 Continued fractions  ^

with =  MM(z), = { z -  l3P)M<-’-'>{z) +

As we mentioned in the section 1.1, the numerators AM(z), for n > |r|, are 

polynomials of degree n -  1, while for r  < 0 and n < - r ,  they are polynomials 

of degree |r| — 1. For r  > 0 and n < r  they are Laurent polynomials of the form

a M (^)=
j=0

We also consider the M-fractions,

z -  -  z -  -  z -  -  z -

for r =  0 , ± 1, ± 2 ,..., tha t correspond to the two series

(2.3.3)

—p r —l — Pr—2Z — fJ>r—3Ẑ  — flr—̂Z  ̂ • • • (2.3.4)

and
p r  I P r + l I P t+2 , Pr+Z , Pr+A , /o o kN

The denominator polynomials of the nth convergent of the M-fraction (2.3.3), 

are also the polynomials n > 0, r  =  0 ,± 1 ,± 2 ,... . The numerator

polynomials C!j[\z), n > 0 , r  =  0 , ± 1, ± 2 , ..., satisfy the three-term recurrence 

relation

= { z -  4 4 i)G M (2) -  4 lr z C k [ A z ) ,  n > l ,  (2.3.6)

with C q^ \ z ) =  0, CM (z) =  Pr- The polynomials CM(z), for n > 1, are of degree

n — 1 , and

C^^{z) j  ~ P r - l  ~  P r -2 ^  — . . .  —  ̂ +  h.O.t.

s h i z )  ~  I ^  +  ^  +  ^  +  . . .  +  ^^îi±îl^ +  l.o.t. ’
t  z  z2 z^ z”

when expanded accordingly.
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C om p u tin g  th e  coefficients and

Starting with the moments defined by (2 .1 .1), we may construct the a — P table 

(see McCabe [33]), for the coefficients of the recurrence relations for the polyno

mials (z), and (z) for n > 1 and r = 0 , ± 1, ± 2 , ... . The table is

shown below

r 4 " ' 4 " ' 4") 4") 4 " ' 4 " ' ■ ■ ■

- 2 4 " ) 4 " ) 4 " ' ' 4 " ' ' 4 ' "  •••
- 1 4 - " 4 " '* 4 - ' ' 4 - ^ 4 " ' ' 4 - ‘> 4 " '  -
0 4 “^ 4 ° ' 4 “’ 4 ° ' 4 ° ' 4°^ 4 ° ' 4 ° '
1 4 ‘* 4 " 4 ' ' 4 " 4 ^ ' 4 '* 4 "  •••
2 4"> 4^^ 4 ') 4 ') 4 " ’ 4^* 4 ' ' 4 ^ ’

(2.3.7)

Prom the algorithm given by McCabe in [33], we deduce tha t the elements in 

the a  — P table can be obtained using the following algorithm.

A lgorithm  2.1

for r  =  ..., —2 , - 1 , 0 , 1 , 2 ,...

,(r) _ (r)   Pra r  =  o, /3 r  =

for n =  2 ,3,...

for r = ..., —2 , “ 1 , 0 , 1 , 2 ,...

P r—l

4 ' =  4 4 " + 4 4 " - 4 4 ,

o(r) _  4 ’-' 4 -4 ’
Pn ('r-l'l

(2.3.8)

(2.3.9)
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These two relations link, respectively, the coefficients in the two rhombii

y  /  and \  \  •

4 4 "  ^  4 4 "  4 '  4 "

Bracciali and McCabe in [7] have given some examples to show the advantages 

of using this algorithm in symbolic computation.

The equations (2.3.8) and (2.3.9) allow the construction of the a — P table 

column by column. However if one row in this table is known, we can construct 

the table row by row, as we show below.

We set Then from the relations (2.3.8) and (2.3.9), we

obtain

4 ' =  4 "  +  4 i i  =  4 '+ " + 4 +", (2.3.10)

and
(r+l) o{r)

^(r+1) _  . (2 .3 .11)
CKn

Substituting (2.3.11) in (2.3.10) we obtain

4 " + 4 4  = + 4 + " ^ ,
a h '  a h

+  <^n+l =  { P n ~ l  +  Ck» )̂—
a n

4  =  4 4 ^ .
a h

From (2.3.11), we can see that
ryF) Q,(r+1) A r )  0 { r + l )

If we know the row with superscript (r), namely

4" 4 ’ 4" 4 ’ 4 "  4  4 "  • • • -
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then, from (2.3.8) with n =  2 and =  0, we obtain

We can calculate and for n > 2, from the elements Pn\y

and CK̂ +i, from (2.3.12). We obtain

a{r+l) _  ^(’’) _  a(r)  ̂ Q̂ i+1
(r) -  .(r) (r) '

Tn—1 Pn—1 4” an
(2.3.13)

Similarly, we can calculate Pn-Pp for n > 2 , from the elements

<^n-i5 Pn-iy P̂ n̂  &ud Pj{\ Again, from (2.3.12), we obtain

«(--1) _ « (r)4 4  _ g(r) 4-1 + 4-1
+ - 1  -  +  ^ ( .-1) -  Pn ^  ,

(2.3.14)

Q (̂r-l) _  Q̂ (r) t I - I   ̂ _  (r) 4 4  +  4 4
" v i '- "  " 4 4 4 '  '

These relations can also be derived from the algorithms given by Jones and 

Magnus in [17].

We now return to the table (2.2.11) of the polynomials B ^ \ z ) ,  n > 0, 

r  =  0 , i l ,  i 2 , ... .

Most of the results established for the classical Padé approximants can be 

extended to the two-point Padé approximants. For example, there are several 

links involving the polynomials in the table (2 .2 .11) and they follow from the 

theory of the Padé approximants, (see McCabe [35]). In particular we consider 

the five polynomials B^~^^\z), B^2 i(z), B ^ \ z ) ,  B ^ i(z )  and (z) displayed
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as follows

b A { ^ )  g M (4  B i4 ( 4  •

Firstly, the link involving the polynomials

-4  Bk;){z)

4.

is given by

=  b M(^) -  4 i i B ‘’2i(^). (2.3.15)

While that involving the polynomials

(z) B ^h(z )

is given by

B # i(z )  = { z -  P % )B ^ : \z )  -  a'jX izB kkAz). (2.3.16)

Similarly the polynomials

Bi'-'(z) 4- b Mi (z)

4-
b !^^^\z)

are related by

b 4 « ( ^ )  =  h s ï ï i  W  +  4 +i BM (z)). (2.3.17)
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Continuing, the link between the polynomials

t  

t

is given by

=  M ( ( 4 4  +  4 B M W - z g ( '+ ') ( 4 )  (2.3,18)
P^n+1 + Pn+1 

= -(Ai) { i P n h  +  z )B k :^  (z) -  (Z)) ,
7n+l

while the polynomials
B(’- " ( z )

t
BM(z) f -  g # i(z )

are related by

(zBW(z) -  gM .(z)) (2.3.19)
4+ 1  +  Æ+1

7n+l

Finally, the three polynomials

=  -(A i) (^b M(z) - B M i (z))

satisfy

B(>-i)(z)

t
S<’'4 (z) -+ B(’-)(z)

=  ,r ) \ ( . )  (4 4 B M (% ) +  « 5 iz B i '2 i( z ) )  (2.3.20)
^n+1 i  Mn+1

4+1
A) (Æ iB M (z) +
+ 1

A ) ( 4 - " B M (z )  +  4 4 >̂ b Mi (z)) .
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The first of these results, (2.3.15), can be proved by considering the monic 

polynomial of degree n given by

From (2.2.1) we can see that

£  (z) -  Tn,r-iB^:A ( A  d m  =  0, 0 < s < n -  2 .

(r-1 )

However, if we choose Tn,r-i =  =  A-ï)^ > then the integral vanishes
Pn—l,r—1

when s = n — 1. Hence

A" (Bi’--̂ ) (z) ~ «iT/’B 'iy’ ( z ) ) d m  = 0, 0 < s < n - l .

The monic polynomial of degree n tha t satisfies the above condition is unique 

and equal to B ^ \ z ) .  Hence

bM (z) =  B t ^ H z )  -  a P ^ p B t i \ z ) .

The relation (2.3.16) is the three-term recurrence relation (2.2.7). Then, 

writing (2.3.16) as

B # 2 (4  +  -  4 4 b M(z)),

and using (2.3.15) gives

b ' 4 ( ^ ) + 4 4 b ‘Î i (2) =

Hence (2.3.17) follows.

From (2.3.15) and (2.3.17), we obtain, respectively

b A \ ^ )  = - ( A )  -  BM(z))
^n+1
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and

Substituting the last two relations in (2.3.15), we obtain

=  SM(Z) -
n+l

or

zB(’-+"(z) =  zBM(z) -  A l B t ^ K z : )  ~  “  BM(z))
^n+1

and from (2.3.9) the result (2.3.18) follows.

From (2.3.17)

zBkkA i^)  =  BkkUz) + P Ü iB ^ U z ) ,

while from (2.3.18)

= ( 4 4 + ^)b '4 ( z) -  ( 4 4 + 44)B l4"(4 -

It then follows that

B ^ n + l \ z )  =  ■ (,.)  ̂ (,,) (zB^+i(4 -  B%2(z)) ,
< + 2  +  /)A+2

which is (2.3.19).

Finally, from (2.3.16),

zBM(z) -  B<4 (z) =  4 4 ^ 4 ( 4  +  4 1 zB ^:1 ,(z )) ,

and from (2.3.19) we see that (2.3.20) holds. □

As a consequence of (2.2.13) we know that the classical orthogonal polyno

mials with respect to the distribution d'ipi{t) =  dipit) for I =  0 , ± 1 , ± 2 ,... satisfy 

the recurrence relations (2.2.14), namely

b ' 4 4 4 ^ )  =  (^ -  -  4 'I i b 4 7 ^ 4 ^ ) ,  » > i ,
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with =  1, =  z -

Prom the links (2.3.15) and (2.3.19) between the orthogonal L-polynomials 

we can see tha t the “staircase sequence” of polynomials

B i ^ K z )  B%"(z)
4-

b 4Y+'>(z)

are related by the relations

B("-W )(z) =  B("+')(z) +  (2.3.21)

B % "(z ) =  zB<”+')(z) -  ( 4 4 '  +  P A M - ^ + ‘\ z), (2.3.22)

and

B4y+''(z) =  B < 4 '(z ) -  44's("+‘)(z). (2.3.23)

Substituting (2.3.21) and (2.3.22) in (2.3.23), we obtain

b A P ‘\ z )  =  (z -  (4 4 '+ 4 4 '+ 4 4 ') )  B("+')(z)

- ( 4 4 ’+ 4+Y’) 4 4 ‘''’B(r4''(z).

Hence, the coefficients of the recurrence relation (2.2.14) can be given in terms 

of the coefficients of the recurrence relation (2.2.7) as follows

4+1 = 4 4 ’+ 4 4 ’ + 4 4 ’ and 4 4  = (44' + 4 4 ’)44'"'’-
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2.4 The orthogonal Laurent polynom ials

Jones, Thron et al in [19, 25, 26, 27] studied strong moment problems and the 

orthogonal Laurent polynomials tha t are associated with them.

As it was mentioned in section 1.1, a Laurent polynomial is a function of the 

form
m

R( z ) — n  G € , —o o < k < m < o o .  (2.4.1)
i=k

The set of all Laurent polynomials forms a linear space over IR. The authors

denote by the set of all polynomials of the form (2.4.1). For m > 0, they

define

72'2m ~  {B(z) G

and

B'2771+1 ~  {•B(z) G

The moments of the distribution -^(t) are given by

Ck — [  A: =  0, ± 1, ±2,... . (2.4.2)
Ja

Let the function G[z) be defined by the Stieltjes integral

G{z) — ^ J     (2.4.3)

Then the two series

L q — —C_iZ — C—2 ^  — C—gẐ  — C_4Ẑ  — • • • (2.4.4)

and

Too — CqH— - 4— | h— 1 +  (2.4.5)
2 z  ̂ z^
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are asymptotic expansions of G{z) at z =  0 and z =  oo respectively. The (n, n) 

two-point Fade approximant of (Lo,Loo) is the nth approximant of the positive 

T-fraction

Fiz F2 Z Fsz F4 Z
1 G\Z +  1 G2 Z -f- 1 4- G^z -f- 1 +  G4Z T

The continued fraction (2.4.6) corresponds simultaneously to the series Lq 

and Loo- That is, the nth approximant, 477^ ?  which is a ratio of polynomials 

of degree n, agrees with n terms of each series when expanded accordingly.

We recall the moments defined by (2 .1.1), namely

fj-k =  /e =  0, ±1 , ± 2 ,...,
J  a

and the two series

Lq — —fj'-l — ~ ~  .

and
T ^0 , Ml , / 2̂ , /̂ 3 ,

From section 2.3, we know that the M-fraction (2.3.1) with r  =  0, namely

(&4^3
z -   ̂ -  z ~  -  z ~   ̂ -  z -  ------

corresponds to To and to Loo- We recall that the numerator and denominator 

of the nth convergent of the M-fraction (2.4.7) are the polynomials A ^ \ z )  and 

(z) respectively.

We can see from the T-fraction (2.4.6) and the M-fraction (2.4.7) that
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where
10)

Fi =  -c_ i; G„ =  and F„+i =  , n > l .
P n  P n  P n + 1

The coefficients and G„+i, n > 1, can also be computed from 

f S -1 =  -  G « , r  =  ..., -1 ,0 ,1 ,...

and

with

and

(r)
„  ^n+1 Q{r-1) —1 0  1Ĉ n+1 (r—1) *1 ) ' ±,".  ,

-̂ n+1

f 4  =  0 , g 4  =  - ^ = ^ ,  r  =  ... , - 1, 0 , 1, . . . ,
C—r

Fi =  -c_ i; F„4.x =  F® i and G„ =  Gi"), n > l

Jones, Njastad and Thron in [19] defined a sequence of Laurent polynomials 

where Q2n{z) G %2n and Q2n+l(^) G %2n+l,

C-l (—z)""'

( - 1)” 
Q2n{z) =  ^ (_ 2n+l)

2n

and

Q2n+lW  =  ,T(_2m)
2 n + l

C_2n

C _ i

Co 

C—2n —1

C -2

C - 1

, m > L

C- 1  ( - z ) -n —1

C 2 n ~ l ( — z ) "  ^

C2n (—z)"

n >  0,

with Qo(z) =  1. Here

C m  C ,7j ^ i  • •  ’ C y % _ | _ n , _ i

Cm+1 Coi+2 ■ ■ * Ĉ ,+#

Cm+n—1 • • * C,7i+2n—2

, n >  1, m =  0, ±1 ,  ±2 , . . . ,
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and =  1.

The even and odd order polynomials can, respectively, be written as 

Q2n(z) =  q2n,~nZ~^ H F gZn.mZ", q2n-n =  1,

Q 2 n + l ( z )  =  ( ? 2 n + l H  h Ç 2n +l,n Z ” , % 7 i4 - l , - n - l  =  1-

The authors proved that the polynomials Qn(z), n > 0 satisfy the orthogo

nality conditions

0, if n ^  m,

IIQnWIP > 0 , if n =  m.

Hence they are called orthogonal Laurent polynomials.

The even and odd order orthogonal Laurent polynomials satisfy, respectively, 

the three-term recurrence relations

Q2n(z) — (1 f^2nZ)Q2n—1 (z) L'2nQ2n—2{^)} ^  ^  I 3

Q2n+l(z) — (z“  ̂ — (72n+l)Q2n(z) — T2n+lQ2n-l(z), n  >  1,

with Qo{z) = 1 and Qi =  z~^ 4  c _ i / c q .

They also defined the associated polynomials Pn{z) by

Qn(z) — Q n { t )
Pr

The polynomials Pn{z) satisfy the same recurrence relations as the polynomials 

Qn(z), but with initials conditions Po(z) =  0 and Pi(z) =  —Fi.

The polynomials Qn[z) and f^(z), and the denominator 14(z) and numerator 

C4(z) of the nth convergent of the T-fraction (2.4.6), satisfy the relations

Q2n(z) -  and Q2n+i(z) =  — ' ^ > 0 ,z

= and , „ > o .
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Hence, using (2.4.8), we obtain the relations between the orthogonal Laurent 

polynomials Qn(z) and the L-polynomials B^)(z). Specifically, for n > 0,

«'"I ^ " "

and

"  F ^ O ) ’

In the literature, the orthogonal Laurent polynomials are sometimes called 

orthogonal L-polynomials.

2.5 The polynom ials A^; z)

We define B^^{z) =  0, for n < 0. Then, for a fixed integer r  > 1, we define the 

real monic polynomials B„(aJ[J, ..., z), n > 0, by

AM; z) =  +  • • • +  4 ,lB i% (z ) ,  (2.5.1)

where ,..., AM e H.

From (2.2.1) and (2.5.1) it is easy to see that the conditions 

f   ̂ A ^; t)d'ip{t) = 0 , r  < s < n -  1, fo rn  > r  +  1, (2.5.2)

are satisfied.

The polynomial B^(A^{,..., A^); z), n > r ,  has at least n ~ r  zeros inside the 

interval {a,b) with odd multiplicity, otherwise equation (2.5.2) is contradicted. 

The remaning zeros, which may be inside or outside (n, 6), can have even or odd 

multiplicity.
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Using (2.2.2) and (2.5.1) we obtain 

/  r"+ "B n (A ^ { ,A % ; f)# (^ )  =  _^+g +  -  ' 4- A^p^^.-n+g,
Ja
for all values of n.

For n > r  +  1, we set

P^Ln+a +  H-------- f ^ n }r P n - r ~ n + s  =  0, U  <  S  < n 4 r  ~ 1 .

We obtain the r  x r  linear system

Mn—1,0 P n —2,0 * ’ * P n —r,0

(0) (0) _ ( 0) 
P n —1,1 P n —2,1 ' ' ' P n —r ,l

4 - 1 , r - l  p i - 2 , r - 1  • • • P n - T , T - \  , /  V  ^ 5  )

A il

-P %  ^

-P Ü

(0)
\  -Pn,r-1 /

(2.5.3)

For 1 < n < r, we set 

pS-n+s + ^n,lPn-l,-n+s J •“ ^n^nPn-r.-n+s = 0> r < S < n 4 - r  — 1,

and we obtain the n x n linear system 

/  . . .  \  /  UU \
P n —1,7'—n  r n —2,7'—n  rO ,r—n  '^n,l
(0) (0) _  (0)

P n —1,7'-|-1—n  P n —2,7'+1—n  ' ' ' Po,r+ l—n

(0) (0) (0)
\  Pn—l,r—l Pn—2,7'—1 ‘ ‘ * Po,r—1 J

A(r)
n,2

V AM /

I  _„M \Pn,r—n 

Pn,r+l—n

\  /

. (2.5.4)

Suppose tha t A^{,..., Â }., for n > r 4- 1, is a solution of the system (2.5.3) 

and for 1 < n < r, is a solution of the system (2.5.4). Then

f  Â^); t)dip{t) =  0, r < s < n 4 r -  1, fo rn  > 1. (2.5.5)
J  a  ’

From (2.2.1) we know that these conditions define a unique monic polynomial. 

The system thus has a unique solution and

B ^ \ z )  =  ..., ÂM; z), for n > 0. (2.5.6)
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We have included n =  0 because Bq(A^, ..., Aq’ ;̂ z) =  (z) =  1.

From (2.3.15) we know that

b M(^) =  .

and using again the relation (2.3.15) we obtain

-  [ a i - «  +  B t i \ z )

and

=  B i[-^ \z)  -  [ai*--/' +  4 ^ ?  + aiV4>lB t i \ z )  

+ [ 4 ; S ï - ^ ' > + B t i \ z )

Continuing in this way we see that

B I ^ \z) — B !^ \z) — 4-------f < î+i] -Bl^i(z)

+ -----1- Bi%(z)

+ ■ ■■(-!)' ■ ■ ■ «n+2-r Bii’lA z )  ■

Since BM(z) =  B„(ÂM ,..., ÂM; z) we obtain

Â5 =  ( - l ) ' É n « 5 2 L  for i =  l ,2 ,.. .,r ,  (2.5.7)
1 k=l

where p = and the summation is over the ways of choosing the i integers

77ii,m2, satisfying 0 <  m, < rrii-i < ... < mi < r — 1.
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Thus, for example, we also have a way of expressing the classical ortho

gonal polynomials n > 0, see (2.2.12), in terms of the orthogonal

L-polynomials, (z). Specifically,

BW(z) =  B „ ( 4 1  ÂW; z) = S f  (^) +  4 i B i ° \ ( z )  +  • • • +

where

Â% =  ( - 1 ) ‘ I ]  n  4+2-Ü. for « =  1.2, n,
1 A:=l

with p — and the summation is over the ways of choosing the i integers 

mi, m2, satisfying 0 < < m*_i < ... < mi < n — 1.



C hapter 3

Sym m etric strong Stieltjes 

distributions

3.1 Sym m etric strong Stieltjes distributions

In this chapter we consider strong Stieltjes distributions, ^(t), defined on the 

interval (a, 6), where 0  < P < b < oo and a = P'^/b, tha t satisfy the 

following inversive symmetric property

(« ■ «

We denote these symmetric strong Stieltjes distributions by S^[u>^P,b] distribu

tions.

When d'ip{t) can be given in the form v{t)dt the property (3.1.1) becomes 

— {p‘̂ /tY~^yip'llt), t e  (a,b), 2 o j e Z .

48
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Substituting t for in (2.1.1) we obtain

A4» =  -  r  m =  0, ±1, T 2 ,... .
J a

Hence, using the property (3.1.1) we can conclude that the moments of an 

S^[u^ P, b] distribution satisfy the relation

Mm =  m =  0, ±1, ±2,... . (3.1.2)

It follows from property (3.1.1), since

r # ( t ) , t G (n, 6), 2w G Zy
■yo+m

tha t for m G X, t'^d'ip{t) is an 4 m,P,b] distribution. Furthermore, multi

plying both sides of (3.1.1) by (t +  P)/Vt,  we obtain

(it +  P)diP{t) ^  {0 ^/t  +  P)di){pPlt) , ,. g .
(u+i/2 (,9 /̂t)"+«/2 ’ « € (a, bj, 2w e  Z.

Hence, {t +  p)d'ifj{t) is an S'̂ [w -f 1/2, P, b] distribution.

From (3.1.2) it is easily verified that for an B [̂w, /3, b] distribution the Hankel 

determinants, defined by (2.1.2), satisfy the relations

_  ^2»(m+w+n-l) j;^Um-2w-2»+2)^ ^  ^ 2 , ... . (3 .1 .3)

3.2 T he S^[oj,(3,b] d istributions and th e  polyno

m ials B ^ \ z )

The polynomials B^)(z), n > 0, r  =  0, d=l,d=2,..., defined by (2.2.1), satisfy cer

tain symmetric inversive relations when the distribution 'ip{t) satisfies the property 

(3.1.1). We present these relations in the following theorem and its corollary.
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T heorem  3.2.1 Let ijj{t) be an S^[u,P,b] distribution with 0 < p < b < 0 0 ,

a =  p'^/b and 2u G Z . Then for n > 0 and j  = 1 ~  2w, the related polynomials

B^)(z) satisfy

^ for i =  0 ,± l ,± 2 , . . .  . (3.2.1)
Bn (0)

P roof: Prom the definition (2.2.1) we know that

r ( < ) # ( t )  =  0, 0 < 8 < M -  1, Z =  0, ±1, ±2,... .
Ja

Setting t = P'^/t, dividing by B^)(0) and using (3.1.1) we obtain

/ '4 5 ^ |W Ê U î)i(t)  =  0, 0 < s < n - l ,  ; =  0,±1,±2,... .
j<̂ \  B y(0) )

Since f  — 1 —2w, the substitution of the exponent —s —2w —Z by —n + s + j  — I 

then yields

# ( t )  =  0, 0 < s < n - l ,  i =  0 ,± l ,±2, . . .  .

Using (2.2.1) for B^~^\z)  and the fact that both polynomials are monic, we see 

tha t (3.2.1) holds. □

The following corollary brings out the particular details of the symmetric

inversive property (3.2.1) when (z) 2w is odd and (ii) 2co is even.

C orolla ry  3.2.1.1 Let '^(t) be an S^[uj,P,b] distribution with 0 < p < b < oo, 

a — p ’̂ /b and 2w G Z. Then for n > Q ,  the associated polynomials ( z )  satisfy

(i) for 2 uj odd and j  = ^

= B(J-‘\ z), for Z = 0 ,± 1 ,± 2 , . . . ,  (3.2.2)
Bn (0)

(ii) for 2 uj even and j  — —to,

^ gO+i-0(z) for I =  0, ±1, ± 2 ....... (3.2.3)
^0+0(0) "
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We denote the zeros of the polynomial (z) by in increa

sing order. Prom (3.2.1) we can see that for j  = l  — 2u the zeros of the polynomial 

B ^(z) and the zeros of the polynomial B^"^)(z), satisfy

= — , z==l,2, ..,n, Z =  0 ,± 1 ,± 2 ,... . (3.2.4)
^ n ,n + l —i

When the distribution ip{t) satisfies (3.1.1), the coefficients and a^li^ 

n > 1 , r — 0, ± 1 ,± 2 ,... also satisfy particular symmetric relations. We present 

these relations in the following theorem and its corollary.

T heorem  3.2.2 Let ip{t) be an S^[u),p,b] distribution with 0 < P < b < oo,

a =  p'^/b and 2w G Z . Then for j  =  1 — 2u, the coefficients P^^ and satisfy

^  &nd 3 ^ , >1,  I — 0, ±1, d=2,... . (3.2.5)
%+i

P roof: Prom the recurrence relation (2.2.7) for Z =  0, ±1, ±2,..., we obtain

= { z -  i(z), n > l ,

with =  1, and B f { z )  = z -  4 -

Replacing z by p"̂ / z and multiplying by z"+^ we obtain

( ^ 2  _  zj4i-^)z“ B ^  {0  ̂/  z) -  0 '0 ^ fzz" -'^ B ^ 4 (0 /z ) , Tl > I. 

Since B^')(0) =  -Æ*B^‘li(0), then dividing by B^+i(0) yields 

z''-‘̂ ^B̂ 4 {0 Iz) _  /  z ^ B l \ 0 j z )  z - ^ B ' i 0 (lJ^lz)
Bi'ii(O) V  4 ' i J  B«(0) 0 X 0 0  B® i(0) ’ -

Finally, using (3.2.1), we obtain 

b X I \ z) = ( ^ - i r ]  n > l ,  (3,2,6)
V P n + 1  /  P n + lP r i
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with =  1, and B^~^\z) — z ~  pAjPx^-

The result follows from substituting r  by j  — Z in (2.2.7) and comparing the 

result with (3.2.6). □

Once again the following corollary is a restatement of the symmetric relations 

in (3.2.5), where we can see the behaviour of the coefficients and n > 1,

r =  0, ±1, ±2,..., when (i) 2w is odd and (ii) 2w is even.

C oro llary  3.2.2.1 Let ip{t) be an S^[cj,p,b] distribution with 0 < P < b < oo, 

a = p'^jb and 2w G Z . Then the coefficients and for n > l ,  satisfy

(i) for 2 u) odd and j  —

^(i+0
=  and = 1 =  0, ±1, ± 2 , ,  (3.2.7)

^ n + 1  Pn+X

consequently, when I = 0, P '̂̂  — P, n >  1.

(ii) for 2 u  even and j  =  —u

= 0  and 4 4 4 ) = ^ ^ ,  / =  0 ,± 1 ,± 2 ,.. ..  (3.2.8)
^ n + 1  P n + 1

As a consequence of the above corollary the algorithm 2.1 to construct the 

a —P table can be modified. We now use the moments p,., r  = j  — 4 l , to

construct the elements p[^\ for r = j , j 4 l , ... . Then we use the equations (3.2.7) 

and (3.2.8) to generate the remaining elements of the table. The new algorithm 

can be given as follows.

U+ i)
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Algorithm  3.1

Setting j
J — w, if 2 u) odd

-w, if 2w even, 
Given Mr, for r = j  -  1, j, j  +  1,...,

for r  =  j , j  +  1,...

a «  =  0,
Mr—1

for n =  2,3,...

for r =  j , j  +  1,...

«ir> =  4 - 4 ’ + 4 - 4 ’ - Æ ,
for r =  j  +  1, j  +  2,...

^(r) _  Q̂n  ̂ P n - P
Pn — (r-1) ’

an

/?, if 2w odd
=  -Î #2 if 2 co even,

for n =  1, 2,... 

for Z =  1,2,...

Æ '-‘> =
if 2w odd

•^+1+0- if 2ü; even,

if 2w odd

i m — ' if2a««ven.
Ah + 1

The last two relations link the coefficients in the rhomboid

\  \
\  \

-» 0 X 0
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for 2 u) odd, j  ^ — w and I =  1,2,... , and in the rhomboid

\  \  
\  \

for 2 cj even, j  = —w and Z =  1,2,... .

See Bracciali, McCabe and Sri Ranga [8] for a published version of the main 

results in these last two sections.

3.3 T he P , b] d istributions w hen 2oj odd and  

w hen 2u! even

We now use the notation and when 2u is odd and w® and when

2 cj is even.

We recall tha t if xp{t) is an S^[u,p,  b] distribution, then, for m  E Z,

is an +  m, /), b] distribution (3.3.1)

and

{t +  P)^dxp{t) is an S^[u +  m/2, /?, b] distribution. (3.3.2)

Using the properties (3.3.1) and (3.3.2) we see that the following result holds.

T heorem  3.3.1 Let i)°{t) be an /5,6] distribution where 2w° is odd and

ij)^{t) be an S^[u}^,P,b] distribution where 2w® is even. They satisfy the relation

dil)°{t) =  {t 4  p)dip^{t), t G (o, 6), (3.3.3)
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or the relation

^ dijj°{t), t G (a, 6), (3.3.4)

where P = \/ab, if and only if

=  w" +  (3.3.5)

From Corollary 3.2.1.1, for the case 2w° odd, j  =  |  — w°, while for 2w®

even, j  = j® — —w®. From the above theorem w® =  w® 4- % hence j® =  j®. To

simplify the notation we set j  =  j° = j®.

If we set

d'ljjjft) = Pd'ijj^{t) and dxj) ĵ{t)— Pdip^{t)

then, from the properties (3.3.1) and (3.3.2), we obtain 

(z) dip^{t) is an B̂ [w® 4- j, P, b] = B^[l/2, P, b] distribution,

(zz) dipj{t) is an 5̂ [oj® 4  j,P,b] =  S'^[O,y0,6] distribution.

Then, from (3.3.3) and (3.3.4),

dxpjft) = {t 4  P)dxpj{t) or dz/)|(t) =  ^  - d^®(t).

Since d'ipj{t) is an S^[l / 2 ,p,b] distribution and d'ipj{t) is an S^[0 ,p,b] distri

bution, we may extend some results given by Sri Ranga and McCabe [50] and 

by Sri Ranga [45], If we consider the distributions dxp^ft) and d'ip^ft), which are 

related by

#® (t) =  { t 4 p)d'ip^{t),

then the coefficients and n > 1, with respect to dip^ft), and the

coefficients P^^L and n > 1, with respect to dip^{t), are related by

/3“M =  /3, =  ^ ( f ^ i  +  1)((M - 1 ) ,  n > l ,  (3.3.6)
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where &  = \
e(j)

jr and j X  = P X  + 4 + 1  > n > l .

They are also related for n > 1, by

4 0 i = P X { iX - - ^ ) ,  (3-3.7)

where I0h =  — — 1, n > 1 and =  1. We need to calculate then + 1  J j )
bn -L

coefficient from

Further, using Corollary 3.2.1.1, we may prove that, for n > 1,

i X
= B  (3-3.8)

On the other hand, if we consider the relation

then the coefficients I30>\ a X \ ,  P X  4 +i< » > 1, are related by

ISX  = P, 4 + \  = P { l X  + m 0 - T - ) ,  n > l ,  (3.3.9)

where &  = \
e{j)

and rt > 1.
Pi

They are also related by

iU)
"n-
/(J In

4+1 = ' (3-3-10)

for n > 1, where il l =   h 1, n  > 1 and 4 — \

The results in this section, and in the first example in the next section, have 

been submitted for publication. See Bracciali [5].
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3.4 Som e exam ples of 5 [̂ü;,/3,6] d istributions

In this section we present some examples of S^[uj,P,b] distributions.

Exam ple 3.1 The distributions defined by

on (a, b), where 0  < fi < b < oo and fi — y/ab, are /3, b] distributions.

These distributions are deduced from an example of an strong distribution 

given by Sri Ranga and McCabe in [49]. They also were considered by Sri Ranga 

et al. in [44, 47, 48, 50] as examples of S^[l/2,fi,b] and 5^[0,/?, 6] distributions.

First we consider the distribution defined in example 3.1.(z), namely 

where 0 < fi < b < oo, a = 0^/b and 2w G Z.

T heorem  3.4.1 For the S^[u),p,b] distribution defined in example 3.1.{i), and 

for any u  > 1 / 2 , the coefficients and from the recurrence relation 

(2.2.7), satisfy

~  p, =  a, for r  > j, n > r +  2w +  1,

P0 '̂ = P, «5-1 =  <̂7 for r < j ,  n > - r  +  2,

where
/3 =  V ^ ,

and
-u) 4  for 2w odd

-w, for 2 u) even.

(3.4.1)
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This means that some of the coefficients are equal to a  and some of the 

coefficients are equal to /?. They appear in a region enclosed by “staircase” 

lines in the a ~ P table. It is easy to visualize this behaviour from examples of 

the a ~  P table.

For example, for w =  1/2 and j  = 0, the coefficients and related to 

the distribution

satisfy

dxpft) —
y / b  — t y / t  —

:dt.

P n ^  =  P :  =  O', for r  > 0, n  > r  +  2,

P^^ = P, 0 n h  =  O', for r  < 0, n >  - r 4  2.

The a — P table is

r 4 4 4 " 4 00 a 0 a t

- 3 0 .4 0 4 00 ^̂ 0 4 P a
- 2 0 4 0 .4 0 4 P a P a
- 1 0 4 » 4 0 4 0 O' P a P a
0 p 2a 0 a 0 0; P a P a
1 0? a P 00^ a 0 a P a P a
2 0f^ 4 0 0 4 0 0 a P a P a
3 4 " 00 4 00 a P a

For CO — 1 and j T, the distribution

(1 +  y/ab/t)~'^
dip[t) —

y / b  — t y / t  — a
d t .
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yields the a — j3 table

| ( -3 )  /q (-3 ) ^ ( - 3 )  /q( - 3) ^ ( - 3 )  o { -3 )  ( - 3 )
— 3

- 2
,(“ i) /3(-i) ^(-1)- 1

That is
=  /3, = oi, for r > —I, n > r +  3,

/5W =  (3, CK î =  a, for r  < -1 , n > - r  +  2.

Further, for w =  3/2 and j  = —1, the distribution

yields the a — (3 table

^(-3),(-3 )-3
^(~2) a(-2) ^(-2) /q(-2) ^(~2)

, ( - 1) ,(-1)- 1
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That is
=  P, =  a, for r  > -1 , n > r  +  4,

=  (3, aid’l l  =  a, for r < - 1 ,  n > ~ r  +  2.

Similarly, the a — (3 table

r 4 " ' 4 " ' 4 ') 4 " ' 4 " ' 4 " ' 4 " ' 4^>

- 3 4 - ') 4 - ’> 4 '" ' 4 - ' ' 0 a

-2 4 - " 4 " " 4 - " 4" '* 4 " ) 0 a 0 a

-1 /?<-'> 4 " ' ' 4 ' " 4 - ' ’ 4 ' " a 0 a 0 a

0 /3l“> 4 ° ’ 4 ° ' 4 “̂ 4°) 4 “> 4 ”’ a 0 a

1 /Sf’ 4 ^ ’ 4 “’ 4 " 4 ' ' 4 '“' 4 ' ' 4^ ' 4 '* a

2 /3p> 4 " 4 " 4 " 4 " ' 4 ') 4^> 4 ' ' 4 ' '
3 /3f) 4 " 4 " 4 ') 4 ') 4^* 4®’ 4^* 4 ' ' 4 "

is related to the distribution

where w =  2 . That is

=  (3, — a,  for r > -2 , n > r  +  5

= fi, a i’i i  =  a, for r  <  -2 , «  > - r  +  2.

We now prove Theorem 3.4.1.

In Sri Ranga [44] we can find that, for a; =  1/2

= (3, n > 1, « 2°̂  =  2a, and — a, n > 2.

From the equations (2.3.13), we see tha t for r  > 0 and n > r  +  2,

=  /), and =  a.
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In addition, from the equations (2.3.14), we see that for r < 0 and n > —r +  2,

 ̂ =  /), and =  a.

Hence, the result (3.4.1) holds for w =  1/2.

To show the result for w =  1, we use the relation

dip°(t) =  ( i t  +  /3)d'ip^{t).

We set

and

d'4>°{t) = —====——= d t, =  1/2
\ / 6 -

Since we know that

M > 1, =  2a, and a^+l =  a, n > l ,

then, by using the relations (3.3.7), we obtain

4 " ” =  /3(2i- 1 )  ( ( - ) ) ,

and

= /?, &M+1 =  n > 3.

where I = y T + a /^ .

This last result can be found in Sri Ranga and McCabe [50]. 

We also know that for w =  1,

d'ip{t) — => d'ljj ît) — t~^d'ij;(t).
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We thus conclude that for w =  1 and j  = —1,

4 ' "  =  4 - ')  =  0(21 - 1) -  i )  ,

and

PL~̂  ̂ = <̂ i+V =  <3!, n > 3 .

From the equations (2.3.13), (2.3.14), and the above coefficients p^^'^ and 

we can see that

=  P, =  a, for r  > —1, n > r  +  3,

=  p, a ^ i  =  a, for r  < -1 , n > - r  +  2.

Hence the result (3.4.1) holds for w =  1.

To show the result for w =  3/2, we use the relation

We now set
(1 +  /3/t)-i

and

Since we know the coefiicients P̂  ̂ and a ^ + /\ n >  1, we can use the relations 

(3.3.9) to obtain

4 “ '> =  a  at^'> = m - i ) ,

4"'>  =  0 , 4 " ' ’ =  m ( i  - 1),

and

« 5  =  a, T& > 3,
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where / =  y l  +  a//?.

Again by using (2.3.13) and (2.3.14) we can see that

Pn'  ̂ ~  a^) =  a, for r  > —1, n > r +  4,

Pl{̂  =  P, a ^ i  =  a, for r  < -1 , n > - r  +

and then conclude tha t the result (3.4.1) holds for w =  3/2.

Similarly we prove the result for w =  2,5/2,3, 7/2,... . This completes the 

proof.

When we set a; =  0 in the distribution of example 3.1. (i), we obtain

d-ijjÇt) =  1 (3.4.2)

In the following theorem we give the behaviour of the coefficients ô n+i and 

Pn \  ^  > 1)  ̂=  Oj d:l, ±2,..., related to the above distribution.

T heorem  3.4.2 For the S^[co,P,b] distribution defined by (3.4-2), the coeffi

cients a^) and P ^ \  from the recurrence relations (2.2.7), satisfy

Pn^ — P n \ ~  a ^ \  for f > 0, n > r  +  1

4 ’'’ = 4 °* . 4 + 1  =  4 + 1  > f o r r < 0 ,  n > - r  + 2
(3.4.3)

for r even, and

aM =  a ^ \  for r  > 1, n > r  +  l 

« 5 .i =  a ^ i ,  f o r r < l ,  n > - r  +  2
(3.4.4)

for r odd.
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To emphasize these common elements in the a — fi table we write them in 

“bold” characters. Then the table for the distribution (3.4.2) is

r 4 " 4 ’ 4") 4 " ' 4"̂ * 4 " ' 4 ') 4 " ' 4 ^ ’

-3 4 - " 4 ' " 4 '" ' . r 4 " ’ 4 ^ '
-2 4 " ' ' 4 “'* 4 " ' ' 4 - " 4 " ' 4 - ' ' 4 " ' 4 " ' 4"> 4°*
-1 4'^> 4 " ) 4 " ' ' 4 " ) 4 ' ' 4 ' ' 4 " 4 ' ' 4 ' ' 4 ^ '
0 4") 4 ”> 4 ° ' 4 “' 4") 4 ° ' 4°) 4"> 4 " «6*̂
1 4^> 4 ' ' 4 ') 4 ') 4 ^ ’ 4 ' ' 4 ' ' 4"^ 4 ’
2 4 " ’ 4 ' ' 4") 4 ° ' 4 ”^ 4 ° ' 4 " ' 4 ° ' 4 “>
3 4 ' ’ 4 " 4 “’ 4^> 4 ' ' 4 ‘) 4 " 4 ^ ' 4 " 4 '
4 4 ' ' 4 ') 4 " # 4 " 4^> 4 " ' 4 “> 4")

Using (3.3.10), we see that

where

(o =  l, h = P ~  + l, and ;„ =  ! + n > 2.
Zq +  1 ’ 1 +  In-l

In Sri Ranga and Bracciali [47] it was proved that in this special case

' '

From the relations (3.2.8) with j  = 0 and Z — 0, we obtain 

^(1) =  =  Pn+li^l -  1): ^  > 1-

We now prove the following property.

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)
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P ro p e r ty  3,4.1 The coefficients In, n > 0 ,  defined by (3.4-6) or (3.4-7), satisfy

Z^(3Z^-2), n =  0,
Zn+l +  Zn+2Zn {ln+1 ~ 1) =  (3.4.9)

1̂ n > 0 ,

where I = y^T+aTd. For n <0, we define Zj+i 4- Ẑ +gZ» (Ẑ +i -  1) =  1.

P roof: For n =  0, the result follows directly from (3.4.7). For n > 0, from the 

relation (3.4.6), we obtain

a//3

or

or

Zn+2 — 1 "b

Zn+2 — 1 4-

1 4- ln+1

Ô IP
2 +  ï Æ

 ̂ _  (2 4-a//3)(l 4-Zn) 4-a /^
t'n+2 2(1 4- In) +  a //)

Thus,

ln+1 +  ln+2ln (Zj+i ~  1) —

(1 4- Z« 4- a//?)^ (2 4- a /^ )(1  4- Z,̂ ) T a //)  (1 +  Z„ +  OijffiŸ — (1 4- Ẑ )'
H------- ZT:---- 7-7—---- TT.-----  h

(1 4- In)"̂  2(1 4- In) Ol/P  (14- Z„)̂
and after some simple manipulations we obtain the result. □

We now can prove Theorem 3.4.2.

From the relations (2.3.13) we construct the row with superscript (2) in the

a — P table using the row with superscript (1) given by (3.4.8). We then obtain

/9(2) -  ^(0) % +  I n + l l n - l  (Zn ~  1) .  ^
Pn — Hn i2 I / / (12 i \ ’Ln-1 4- inf‘n-2 i^n-l ~ t j

=  n > 2 ,
l n - 1  4- in‘n-2  (L-1 ~  1/
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with

Hence, using the Property 3.4.1, we obtain

/?p) = / j f  ) (3;2 -  2), 3 P - 2 ’ 3 P - 2 ’

and

=  =  » >  3.

Similarly, using (2.3.13), we obtain the result for the rows with superscript 

(3); (4)5 (5),... .

Prom the relations (2.3.14) we construct the row with superscript (-1 ) in the 

a — l3 table using the row with superscript (0), given by (3.4.5). We then obtain

A(-l) _  /o(l)^n-l +  l J n - 2  (% -l ~  1) ^ >  O

„ (- l)  ^  „(1) ^ n - 1  +  U n ~ 2  { l l - l  -  1) .  2
a„+i a„+i m - l )  ’ -  ■

Hence, using the Property 3.4.1, we obtain

4 “ ' ’ =  ap )  ------P { 3 P - 2 ) ’ ^  P ( Z P - 2 )

and

0(^+1= «1+1, > 3 .

Similarly, using (2.3.14) we obtain the result for the rows with superscript 

(—2), (—3), (—4),... . This completes the proof.
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In addition, for the distribution defined by (3.4.2), the coefficients and 

satisfy the property

«2.1 +  « 2 i  =  2«, n > 2. (3.4.10)

We can prove this result by substituting (3.4.5) and (3.4.8) in (3.4.10), that 

is, for n > 1

«1+1 +  «1+1 =  Pn\^n  “  1) +  ~  1)

or

+ « 2 . = , 3  - 1 ) = / ?  (' :  - 1 ) .

Then, using the relation (3.4.6), we see that the right hand side can be written

as

P

(  (2 +  a/P)  (1 +  I n - i )  T «//^
_________ 2(1 +  ln~l) OifP

1 +  I n - l  +  O i /13

\  1 +  I n - I  )

_  1 I =  2«.

When w < 0, we do not find similar behaviour for the coefficients and 

but it seems tha t

-+ OL and r =  0, ±1, ±2,... ,

when n -+ oo.
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We now consider the example 3.1.(w), namely

d m  =

Comparing the examples 3.1.(i) and 3.1.(n), we see that for w =  0 the distri

butions are the same, while for w =  1/2 the distributions are, respectively,

1   2
y / b  —  t y / t  —  CL

Hence, they have the same a — p  table

d t  and d i j ; { t )  =
y / b  —  t y / t

: d t .

The distribution in the case w =  1 in the example 3.1.(m), namely

d m  = - ^ ^ M l ^ d t ,

can be written as

y / b  —  t y / t

It thus corresponds to the example 3.1.(m), case w =  0, with a shifted a — P 

table. This behaviour is illustrated in the tables 3.1.1 and 3.1.2 below.

a «

14936 1222552 32233806032 437089852944 1865861721448 42082719512 207766566208
13183 24612661 17020891969 1393206047033 859799579759 143936635163 102754656743
2208 11944 22299448 79847856 80688432 166267072 27834304
1867 128823 10544511 228168767 38195419 615450231 13880889

88 136 37536 25760 836080 861461 19041
69 759 16423 76143 408969 3367980 9520
16 32 352 121 561 289 38080
11 99 153 408 280 1155 19041
16 17 17 35 1120 577 19041
9 36 8 136 561 2310 9520
9 1 32 33 561 289 38080
4 2 17 136 280 1155 19041

11 17 153 35 1120 577 19041
4 44 88 136 561 2310 9520

69 1493 16423 29403 408969 289 38080
22 6072 9384 101524 209020 1155 19041

1867 152819 10544511 142983387 38195419 861461 13880889
552 1030584 5574862 456317534 20172108 3376956 6958576

-4
-3
- 2

- 1

0

1

2

3
4

Table 3.1.1: ex. — P  table for the example 3.1. (w) when w =  0, a =  1 and 6 =  4.
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2208 11944 22299448 79847856 80688432 166267072 27834304
1867 128823 10544511 228158767 38195419 615450231 13880889

88 136 37536 25760 836080 861461 19041
69 759 16423 76143 408969 3367980 9520
16 32 352 121 561 289 38080
11 99 153 408 280 1155 19041
16 17 17 35 1120 577 19041
9 36 8 136 561 2310 9520

9 1 32 33 561 289 38080
4 2 17 136 280 1155 19041
11 17 153 35 1120 577 19041
4 44 88 136 561 2310 9520

69 1493 16423 29403 408969 289 38080
22 6072 9384 101524 209020 1155 19041

1867 152819 10544511 142983387 38195419 861461 13880889
552 1030584 5574862 456317534 20172108 3376956 6958576

13183 9116707 17020891969 850842572247 859799579759 613800722699 102754656743
3734 98450644 8058451508 2786412094066 466465430362 2302986162608 51941641552

-4
-3
- 2

- 1

0

1

2

3
4

Table 3.1.2: a — P table for the example 3.1. (n) when a; = 1, a = 1 and 6 = 4.

The a — P table for the distribution of example 3.1.(w), for a particular value 

1 — w, is the a  — p  table for the value w, raised by 1 — 2w lines. This is because 

for 1 — w we obtain the distribution

d m  =

and

y / b  —  t y / t  — a

y / b  —  t y / t  — a 

The numerical results suggest that

fr)  _______ ”  \/0)2

y / b  —  t y / t  — a

and p j / ^ p  —  y / a b y  r =  0 , d=l, ± 2 ,... ,

when n  —> oo.
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E xam ple 3.2 The generalized log-normal distribution is defined by

d m  =  dt,
ZXy/'K

in (0 , oo), with 0 < q < 1, q = e~^^\ This is an S^[u,P,b] distribution with
,w—p—1P = q

The log-normal distribution was given by Pastro in [38] as the first explicit 

example where orthogonal Laurent polynomials appeared. The orthogonal Lau

rent polynomials related to the log-normal distribution have been also studied by 

Jones, Thron et al. in [11, 12, 18]. In the symmetric case with p =  —1 it has been 

considered as an 5^[0,1, oo] distribution by Sri Ranga, de Andrade and McCabe 

in [48], and by Common and McCabe in [13, 14]. It has also been treated as an 

5^ [1/ 2 , oo] distribution with p =  0 by Sri Ranga in [44].

It is an interesting example since we can obtain explicit expressions for the 

orthogonal L-polynomials, the associated polynomials and the coefficients in the 

recurrence relation.

The classical log-normal distribution is when p =  0. Then and

# o ( t)  =  - A ^ g - ( - ^ )  dt.
AK,-\y 7T

This is an oo] distribution for any w such tha t 2u> G Z . This

means, it is also, for example, an 5^[0,ç~^,oo] distribution, an S'^[l/2 , oo] 

distribution, an 5^[l,l,oo] distribution, etc. Hence the coefficients n > 0,

are constants for a fixed value of r.

The moments are given by

Mm =  /2)̂  77i =  0, ±1, ±2, ... .
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Using the algorithm 2.1 we obtain the following table

P\ PX
(r)

- 3

- 2

- 1

0

1

2

g 5 / 2  g 5 / 2  g 5 / 2 ( ^ _ 2 _ i )  ^6 / 2 ^ 5 / 2 ( ^ - 3 _ i )

g 3 /2  g S / 2 ( g - l  _  1 )  g S /2  g 3 /2 ( g _ 2  _  1 )  ^ 3 /2  g 3 /2 ( ^ _ 3  _

g l / 2  g l / 2 ( g - l  _  1 )  g l / 2  g l / 2 ( g - 2  _  ]_) g l / 2  g l / 2 ( ^ - 3  _  i )

Ç-1/2 g“V2^ç-l _  “  1) — 1)
Ç -3 /2  g - 3 / 2 ( g - l  _  1 )  Ç -3 /2  ^ - 3 / 2  ^ ^ -2  _  ^ - 3 /2  ^ - 3 /2 ^ ^ - 3  _

g - 5 / 2  g - 5 / 2 ( g - l _ i )  g - 6 / 2  g _ 5 / 2 ( g - 2 _ i )  g - 5 / 2  g - 5 / 2 ( g - 3 _ i )

In general

/3M =  ç-(5+’-) and « i^ i =  “  1)> » > 1- (3.4.11)

By using the recurrence relation (2.2.7) and the relations (3.4.11) we can 

prove, by mathematical induction, that

gM (z) =
j —0

where

z"-:', 7 t> 0 ,

are the g-binomial coefficients given, for n > 0 , by

k = l

n ( i - 9 ^ ) n ( i - 9 ^ )
A:=i A=1

, 1 < j  < n — 1, and
n n
0 n

=  1.

By mathematical induction we can prove also that, for the classical log-normal 

distribution the associated polynomials C ^ \z ) ,  defined in section 2.3, are given 

by

n ~ l ~ s

/c=0

n
n — 1 — s — A:
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Since dipoit) is an oo] distribution, then from (3.2.1) we see that,

for s =  0 , ± 1, ± 2 ,...,

=  B( — ; =  o ,± l ,± 2, . . . .
Jjn (U)

In the table 3.2.1 we present the polynomials (z) for n =  1,2,3 and 

r  =  —3, —2,..., 3.

r B t \ z )

—3 Z — Q2 z^ -  q^{q +  l ) z  +  q^ z^ -  g5(g^ +  g +  l)z^ +  g^(g^ +  g +  l ) z  — q^i

- 2 z  — z^ -  q^{q +  l ) z  +  q^ z3 _  g -è (g 2  +  g +  1)%2 +  g -1- 1 ) 2; -  g§

-1 z  — q^ z2 _  q~h(^q +  l ) z  +  g Ẑ  -  g“ 2 (g2 + g  +  l)z^ +  Q~^{q^ +  q +  1)z -  q i

0 z - q - 2 z^ -  g“ 2 (g +  \ ) z  + g“ i z^ — g“ 2 (g2 +  g +  l)z  ̂+  + g + l ) z  -  g~2

1 z  -  g“ 2 z2 _ g~|(g _j_ 1)̂  + g-3 z^ — g“ 5 (g  ̂ + g +  l)z^ +  Q~ {̂q'  ̂ +  q +  l ) z  — g“ 2

2 z  -  g“ 2 z^ -  g“ 2 (g +  l ) z  +  q~^ z3 _  g-#(g^ +  g +  l)z^ +  +  g +  l ) z  — g“ ^

3 z -  g“ 2 z^ -  g“ 2 (g +  \ ) z  +  q~'^ 3̂ _  ^  Ç 1 )2;2 +  g“ ®(g  ̂ +  g +  l ) z  — g“ ^

Table 3.2.1: Polynomials Bn\z)y  for the example 3.2 whenp — 0.

The generalized log-normal distribution can be given, in terms of the classical 

one, by

dipp{t) = t^dipo{t).

For the distribution dipp{t) we denote the moments by the orthogonal

L-polynomials by B^'^)(z), and the coefficients in the recurrence relation for 

the orthogonal L-polynomials by and Hence the moments for the

generalized distribution are

=  Æ p  =  m =  0, ±1, ±2,... .

Consequently the coefficients in the recurrence relations satisfy

and apiV =  a & y ”’, n > l ,

while the polynomials satisfy

n >  0.
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Exam ple 3.3 The distribution defined by

dij){t) =  f

on (ft, b), where 0 < /? < 6 < oo and p — y/ab is an S^[u), /3, b] distribution.

First we consider the case when is odd and set

diljp{t) = t̂ d7p{t) = p £ Z.

In a similar way to the log-normal distribution, for the distribution dij)p{t) we 

denote the moments by the orthogonal L-polynomials by and the

coefficients in the recurrence relation for the orthogonal L-polynomials by 

and We then obtain

“  Mm+p, m =  0 , i l ,  i 2 , ... ,

=  and n > l ,

and the orthogonal L-polynomials satisfy

=  n > 0 .

Hence, the a — fi table for any w where 2cj is odd will be a shifted a ~  p  table 

for another value of cu where 2cu is odd. Similarly, when we consider the case 

when 2w is even, the a — p table for any such value of w will be a shifted a — p 

table for another such value of w.

We now give examples to illustrate the behaviour of the coefficients and 

P̂ '̂̂  for n > 1 and r  =  0 , i l ,  i 2 , ....

For ÙJ = 1/2, we obtain the distribution 'ip(t) defined by

dip(t) =  t~^^^dt.
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We already know from (3.2.7) tha t for u> — 1/2,

/3W =  A n > l .

Sri Ranga in [44] showed that

(0)a:
_  1

where P =  y/cib and a  — [\/b — \/ü)^/4.

a ,  n  >  1 ,

It is easy to see tha t -4- a  when n  - 4  o o .  Prom (2.3.13) and (2.3.14) we 

can also see that, when n -> oo,

-4 a and P̂ '̂  -4 /), r =  0, ±1, ±2,... .

In the tables 3.3.1 and 3.3.2 we present the coefficients pj{'̂  and for

n =  10, 20,..., 50, and r = —3, —2,..., 3, when w =  1/2, a =  4 and b = 9.

3̂0 4̂0

-3 6,0004277327683 6.0000487609309 6.0000140492222 6.0000058474392 6.0000029701348
f.

-2 6.0002838261955 6.0000324726666 6.0000093618187 6.0000038972901 6.0000019797659

-1 6.0001415161093 6.0000162259518 6.0000046796105 6.0000019483442 6.0000009897857

0 6.0000000000000 6.0000000000000 6.0000000000000 6.0000000000000 6.0000000000000

1 5.9998584872285 5.9999837740921 5.9999953203932 5.9999980516564 5.9999990102144

2 5.9997161872301 5.9999675275092 5.9999906381960 5.9999961027124 5.9999980202348

3 5.9995722977221 5.9999512394654 5.9999859508107 5.9999941525665 5.9999970298667 4

Table 3.3.1: Coefficients pn \  example 3.3, when uj =  1/2, o = 4 and b = 9.
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a(r)
20 a(r)

30

-3 .25080619446260 .25017598046900 .25007505171163 .25004138081603 .25002617293383

- 2 .25079297934951 .25017495233517 .25007479243191 .25004128004614 .25002612384579

-1 .25078227427672 .25017404270093 .25007455470721 .25004118583224 .25002607738152

0 .25077399380805 .25017325017325 .25007433838834 .25004109814236 .25002603353119

1 .25076807918757 .25017257362523 .25007414334675 .25004101694804 .25002599228583

2 .25076449720541 .25017201219204 .25007396947425 .25004094222420 .25002595363734

3 .25076323969871 .25017156526813 .25007381668294 .25004087394921 .25002591757850

Table 3.3.2; Coefficients Un \  example 3.3, when w = 1/2, a = 4 and 6 = 9.

In the tables 3.3.3 and 3.3.4 we present the values of and «W, for

n — 1 0 ,2 0 ,5 0 .  and r =  —3 ,—2,..., 3, when w =  1/2, a = 1/4 and 

6 =  4. The numerical results suggest that, when -+ oo, a ~  0.5625 and

—)•/?= 1, for r  =  0 , i l ,  i 2 , ... .

'10 2̂0 oir)ho 'AO 5̂0

-3 1.0006804352024 1.0000741300543 1.0000211969925 1.0000087996439 1.0000044643992

-2 1.0004348924003 1.0000489481922 1.0000140726399 1.0000058528617 1.0000029718863

-1 1.0002121040724 1.0000243340579 1.0000070187916 1.0000029223702 1.0000014846311

0 1.0000000000000 1.0000000000000 1.0000000000000 1.0000000000000 1.0000000000000

1 .99978794090620 .99997566653418 .99999298125762 .99999707763838 .99999851537111

2 .99956529664886 .99995105420360 .99998592755809 .99999414717260 .99999702812250

3 .99932002747484 .99992587544059 .99997880345682 .99999120043355 .99999553562069

Table 3.3.3: Coefficients Pn \  example 3.3, when w = 1/2, a — l/A  and 6 =  4.
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r «10 «20 «30 4 7

-3 .56493675655964 .56294586764330 .56268179169528 .56259821370979 .56256140421217

-2 .56463504070771 .56292445640747 .56267647570192 .56259615879197 .56256040570711

-1 .56440899962162 .56290585801726 .56267164141395 .56259424644685 .56255946338478

0 .56424148606811 .56288981288981 .56266726137377 .56259247082032 .56255857544517

1 .56412183352989 .56287611582979 .56266331215722 .56259082672168 .56255774025446

2 .56404401310588 .56286460936173 .56265977405824 .56258930958562 .56255695633741

3 .56400582254732 .56285517913667 .56265663084153 .56258791544044 .56255622237092

Table 3.3.4: Coefficients an \  example 3.3, when lj = 1/2, a = 1/4 and 6 =  4.

We now consider w =  0, then we obtain the distribution ip{t) defined by

=  t~^dt.

In the table 3.3.5 and table 3.3.6 we give the coefficients and a ^ \  for 

n =  10, 20,..., 50, and r =  —3, —2,..., 3, when a; =  0, a =  4 and 6 =  9.

Since p  =  Vo6 =  6 and a  =  it seems that in this example

a M -I 1 and ,3^ 6, r = 0, ±1, ±2,... .

when n oo.
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r 47 47 47 47 47

-3 6.0005005417463 6.0000569271749 6.0000163956860 6.0000068231532 6.0000034655258

-2 6.0003555289721 6.0000406103014 6.0000117047084 6.0000048721767 6.0000024748896

-1 6.0002125221664 6.0000243454170 6.0000070202276 6.0000029227044 6.0000014847394

0 6.0000707083616 6.0000081116763 6.0000023396427 6.0000009741344 6.0000004948807

1 5.9999292924717 5.9999918883347 5.9999976603582 5.9999990258657 5.9999995051193

2 5.9997874853609 5.9999756546818 5.9999929797806 5.9999970772971 5.9999985152610

3 5.9996444920934 5.9999593899735 5.9999882953144 5.9999951278273 5.9999975251114

Table 3.3.5: Coefficients Pn \  example 3.3, when a; = 0, a = 4 and 6 = 9.

a(r)
10 47 47 a(r)

40 a(r)
50

-3 .25081377771014 .25017653948266 .25007518948693 .25004143367039 .25002619846508

-2 .25079926672437 .25017545149204 .25007491936726 .25004132960946 .25002614806119

-1 .25078731904095 .25017448279896 .25007467088499 .25004123212177 .25002610028632

0 .25077783524796 .25017363187539 .25007444388056 .25004114117366 .25002605513019

1 .25077074343226 .25017289746194 .25007423821512 .25004105673490 .25002601258341

2 .25076599771230 .25017227856318 .25007405377033 .25004097877874 .25002597263745

3 .25076357742537 .25017177444420 .25007389044815 .25004090728182 .25002593528463

Table 3.3.6: Coefficients an \  example 3.3, when w = 0, a = 4 and 6 = 9.

In the table 3.3.7 and table 3.3.8 we give the coefficients and for 

n — 10,20,..., 50. and r = —3, —2,..., 3, when w =  0, a =  1/4 and 6 =  4. Once 

again the numerical results suggest that

-+ a  =  ^  =  0.5625 and P = I, r  =  0, ±1, ±2,... ,

when n oo.
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'10 5̂0

-3 1.0008163320560 1.0000870281054 1.0000247969158 1.0000102817265 1.0000052134564

-2 1.0005539649702 1.0000614496302 1.0000176237583 1.0000073237021 1.0000037173202

-1 1.0003214596830 1.0000365884261 1.0000105391337 1.0000043860921 1.0000022277665

0 1.0001053978130 1.0000121495821 1.0000035072068 1.0000014606776 1.0000007421515

1 .99989461329457 .99998785056547 .99999649280545 .99999853932451 .99999925784901

2 .99967864362016 .99996341291257 .99998946097732 .99999561392709 .99999777223845

3 .99944634173711 .99993855414563 .99998237655225 .99999267635156 .99999628269361

Table 3.3.7; Coefficients pn \  example 3.3, when w = 0, a = 1/4 and 6 = 4.

a (r)
10 a(r)

20 a (r)
30 a (r)

40 a (r)
50

-3 .56512394489101 .56295772626259 .56268464010943 .56259929665521 .56256192514325

-2 .56477503203195 .56293479184027 .56267907160164 .56259716803631 .56256089781758

-1 .56451381640192 .56291482319919 .56267400015959 .56259518517974 .56255992763959

0 .56431871687925 .56289753030602 .56266939616739 ,56259334188325 .56255901272305

1 .56417614984291 .56288268174884 .56266523422810 .56259163262960 .56255815135204

2 .56407791688054 .56287009688839 .56266149281162 .56259005254514 .56255734197292

3 .56401995898576 .56285964026859 .56265815397421 .56258859736497 .56255658318726

Table 3.3.8: Coefficients an \  example 3.3, when w = 0, a = 1/4 and 6 = 4.

The numerical results presented in this section were obtained by using the 

symbolic computation program Maple V.
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3.5 E xtensions of M -fractions related toS'^[o;, /3, b] 

distributions

We now consider extensions of the M-fractions that are related to S ^ [ u j , p ,  b ]  dis

tributions. An even (odd) extension of a continued fraction is a continued fraction 

whose even (odd) order convergents are the successive convergents of the original 

continued fraction. A continued fraction is called an even (odd) contraction of 

another continued fraction if its convergents are the even (odd) order convergents 

of this other continued fraction. Clearly contractions are unique, but extensions 

are not. The even (odd) contractions are also called even (odd) parts of the con

tinued fraction. See Lorentzen and Waadeland [31] and Jones and Thron [25] for 

more details.

E ven  and odd exten sion s o f th e  M -fractions

Firstly we consider even and odd extensions of the M-fraction (2.3.1), extending 

the results given by McCabe in [34]. We also show some properties regarding the 

coefficients in the even and odd extensions when the distribution is an S ^ [ u j , /?, b ]  

distribution.

We begin by recalling the M-fraction (2.3.1), namely

where is

MW(z) =  2 -’’ [° =
J a  Z  —  t

I ^  +  ^  +  ^  +  +  r > 0= I z Ẑ  Ẑ  z^
- M - 1  — M -2^  — ---------------------------------- r  <  0
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The continued fraction

Ç  ü ih  Ç  !2|h , (3 ,5 .2)
1  — 1  — I  — 1  — 1 — 1  — . . .

where

=  =

with rré[̂  = is an even extension of the M-fraction (3.5.1). It is also an odd
Pi

extension of the M-fraction

Hence the even order convergents —S — , and the odd order convergents

, of the continued fraction (3.5.2) are the successive convergents of the 

continued fractions (3.5.1) and (3.5.4), respectively. That is

-  A M  and „ > o
S « ( . ) “ b F ( . )  -

The numerators and denominators of the convergents of the continued fraction

(3.5.2) satisfy, respectively, the recurrence relations

w = w  -

where R ^ \z )  — and R ^ \z )  = for r  =  0 ,4=1, ± 2 ,..., and

*̂ 2» M  =  'S'^nLi(z) -

where Sq^\z) = 1 and 5i^^(z) =  1 for r =  0, ± 1 ,± 2 ,... . The denominators 

^ 2n (^) S2J+1 (z) are polynomials of degree n.
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By using the relations (2.3.12), namely

and the relations (3.5.3), we can prove tha t the coefficients and satisfy

ml i(r)tn

1 _  ,(r) ^  A - 1  (1 -  I n - P )
n  Cr-l'l ’n

for n =  2 ,3 ,... and r  =  0 , ± 1 , ± 2 ,... , with

(?’)   Mr—1
Mr

, r  =  0 , ± 1 ,  i 2 , . . .  .

These relations link, respectively, the coefficients in the two rhombii

‘'n-l
and \

^ n - l

in the I — m  table

m.(r)
\

2 i ^  i - e >

t(-3)
n

/(-3) /(-3)h m[~^^
/(-2)n

/(~2)
h ;(-2)h 777.4”^̂
/(-I) 4 - ) zl"')

4“’ 4“’ z f m f^

4" 4 ‘> 4 '' z r 7»4̂ ^

/f) ;(2) 4" z?) 777̂ ^
/(3) zP z?)

The continued fraction

MW(^) +
z — 1 -

4 ’’’
- 1 — z -  1 — z (3.5.5)
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where

with — P i \  is an even extension of the M-fraction (3.5.1). It is also an odd 

extension of the M-fraction

U^^\z) i(z)The even order convergents —  and the odd order convergents -----
v£>.iW

of the continued fraction (3.5.5) are the successive convergents of the continued 

fractions (3.5.1) and (3.5.7), respectively. That is

The numerators and denominators of the convergents of the continued fraction 

(3.5.5) satisfy, respectively, the three-term recurrence relations

where U q \ z ) =  (z) and u[^\z)  =  zM^^^(z) +  PrZ~^ , for r =  0, ± 1 ,± 2 , ...,

and

w  -

W  =  W ,

where lo'^^(z) =  1 and V i^\z)  =  z for r  =  0, ±1, d=2,.... The denominators 

V^niz) and l^ + i(z )  are polynomials of degree n and M -)-1, respectively.
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From the relations (2.3.12) and (3.5.6) we can prove that the coefficients 

and satisfy the equations

(r+l) _  tiF i 
" ■ ’

(r+l)
' n - l

for n = 2,3;... and r =  0 , ± 1, ± 2 ,... , and

7̂ 1  ̂ =  0 , r  =  0 , ± 1, ± 2 ,... .
Mr—1

The rhombii

-y «I’'* ,(0-1 ^  1 -

\
u.(r+l)

n

\
->  V.

and
(r+l)n

in the u — v table

u p " vi u p " u p " u p " u p "

u p " u p " u p " u p " u p " u p "

u p " u p " u p " u p " u p " u p "

u T up' up' up' up ' up' up' up'

up' u |" u " ' up’ up' up' ui"

up' up ' up' up ' up' up ' up'

up' up' up ' up' up ' up' up ' up'

show the elements connected by the above relations.

We now present some relations involving the coefficients in the even and odd 

extensions. Since

ry(r)
in a.(r)n+1 + M’-) =  «1’-+') +

we can see that 

Z(f) = a (r)
n a (r)

n a.(r-l)n a (r-l)
n

A - ')  + Æ17
u.(r-l)n
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Hence, for n > 1 and r =  0, ±1, ±2,..., it follows that

=  u p -"  , (3.5,8)

In the remainder of this subsection the distribution ip{t) is assumed be an 

S^[u),p,b] distribution.

P ro p o sitio n  3.5.1 Let 'ip{t) be an S^[u,p,b] distribution with 0 < p < b < oo, 

a — p'^/b and 2w G Z . Then for j  = 1 — 2u, the coefficients of the even and the 

odd extensions (3.5.2) and (S. 5.5) are related as following

u F "  =  zP, 

up-" =

for n > 1 and 1 = 0, dbl, ± 2 , . . . .

P roof: Prom (3.2.5), we know that, for I = 0, ±1, ±2,...
nU-l) o{i)

/3P/3p-" =  n >  1 , and n > 2 .
an ah'

Hence, for n =  1, =  0 and

For n > 2  and I = 0, ±1, ±2,...

(3.5.9)

u
+  +  l +  A  a i" + /3 P

and

, 0 - 0  _  _  ^ p - 0  _  I 3 U - 1 )  _  p u - l ) p m  _

~  TTZn 777Zn ~  f,--n  “  ^ fn  ~  rn  ~  P  ''''n '

If we consider the separate cases when (i) 2w is odd and (ii) 2w is even, we 

obtain the following corollary.
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C orollary  3.5.1.1 Let i/jft) be an S^[u,P,b] distribution with 0 < P < b < oo, 

a =  p"^/b and 2w G Z.  The coefficients of the even and odd extensions (3.5.2) 

and (3.5.5) are related as following

(i) for 2u) odd and j  = ^ — u, n > 1, and I = 0 , ± 1, ± 2 ,... ,

and ,

(ii) for 2u) even and j  = —u, n >  1, and I =  0 , ± 1, ± 2 ,... ,

=  Ẑ ’+i-O .

The coefficients of the even extension (3.5.2) and the coefficients of 

the odd extension (3.5.5) satisfy some symmetric properties as we can see in the 

following proposition and its corollary.

P ro p o sitio n  3.5.2 Let 'ip{t) be an S' \̂LO,p,b] distribution with 0 < P < b < oo,

a = p “̂/b and 2co G Z.  Then for j  = 1 — 2uj, n > 1 and I = 0, ±1, ±2,..., the

coefficients of the even and the odd extensions (3.5.2) and (3.5.5) satisfy

u p -"  =  u P -" , (3.5.10)

Zp+'-" =  ZP'. (3.5.11)

Proof: For n =  1, u" " =  up =  0.

From (3.2.5), for n > 2 and I = 0, ±1, ±2,...

A '- "  1 _  1 _  4 "  _  4 ‘- "
a p - " + & "  1 +  4 ^  1 + 4 ^  aP>+/?P" aP-"+/3<‘li"

The relation (3.5.11) follows by using (3.5.8). □
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C oro lla ry  3.5.2.1 Let ip{t) be an S^[u),P,b] distribution with 0 < p < b < oo, 

a =  p^/b and 2w G Z . Then the coefficients of the even and the odd extensions

(3.5.2) and (3.5.5) satisfy

(i) for 2w odd and j  = \  ~  w, n > 1, and I =  0 , ± 1, ± 2 ,... ,

^ 0 - 1+0 ^  ^ü -0  and =  zb+i-6  ^

(ii) for 2w even and j  = —u), n > 1, and I =  0 , ± 1, ± 2 ,... ,

and .

In the following proposition and its corollary we give symmetric relations 

involving the coefficients P̂ f'̂  from (3.5.1), the coefficients from (3.5.2), and 

the coefficients from (3.5.5).

P ro p o sitio n  3.5.3 Let ip{t) be an S^[tv,p,b] distribution with 0 < p < b < oo, 

a = p^/b and 2w G Z . Then for j  = 1 — 2u, n > 2 and I = 0, ± 1 ,± 2 , ..., the 

coefficients of the even and the odd extensions (3.5.2) and (3.5.5) satisfy

(3.5,12)
Pn

u p -"  =  (3.6.13)
Pn

Proof: From (3.2.5), for n > 2 and Z =  0, ±1, ±2,...

1 1
m,(0 -

a<" H-/lP>- 4 ^  +  1 4 4  +  1 a P -"  +  e / '
Pn P n - l

Æ"i"/Æ> _  Æ 'M  0+1-0

The result (3.5.13) follows by using (3.5.9). □
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C oro lla ry  3.5.3.1 Let ip{t) be an S^[oj,P,b] distribution with 0 < p < b < oo, 

a =  p^/b and 2w G Z . Then the coefficients of the even and the odd extensions

(3.5.2) and (3.5.5) satisfy

(i) for 2co odd, j  = ^ — w, n > 2, and 1 =  0 , ± 1, ± 2 ,... ,

=  S i ’" - » '” '’ =Pn Pn

(ii) for 2uj even, j  = —u), n > 2 ,  and I = 0 , ± 1, ± 2 ,... ,

?O‘+0 , .. M+O

Pn Pn

We now consider the example 3.2 from section 3.4, namely.

E xam ple 3.2 The classical log-normal distribution is given by

2/îv'TT

This is an 5'^[w,/?, oo] distribution with p =

We recall from section 3.4 tha t the coefficients P ÿ  and Qn+i are given by 

=  g“ ‘5+’-) and M l

for n > 1 and r =  0, ±1, d=2 , ... . Hence, from (3.5.3) we see that the coefficients 

and l̂ f̂  are given by

and =

for 71 > 2 and r = 0, ± 1 ,± 2 ,..., with Further, from (3.5.6) we see

tha t the coefficients and are given by

=  g 2+”“  ̂ and =  1 — g^+ ,̂

for 77 > 2 and r =  0 , ± 1, ± 2 ,..., with
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P erron -C arathéodory continued fractions

Secondly we consider odd extensions of M-fractions of the form

^  1 +  k z +  A  +  0 4 Z +  f t  +  f tz  +  - . . '  ̂ '

where 0L\ ^  0 , CKgm+l — 1 /̂ 2n/ 2̂n+l 7  ̂6) ^  “  Ij 2 , 3j Oi2n+lt Pn G (D.

These continued fractions are called Perron- Carathéo dory continued fractions, 

or PC-fractions.

The continued fraction (3.5.14) is the usual notation for PC-fractions in the 

literature and, since the coefficients a „ ’s and /?„’s have no superscript, they are 

not to be confused with the coefficients and encountered earlier.

A subclass of PC-fractions, where the conditions

«1 ~  2/?o ^  0, Où2n-\-l — 1 P 2n P 2n + l ^  0, /?2n ~  /^2n+l j 77 =  1, 2, 3, ...,

are satisfied are called positive PC-fractions, or PPC-fractions. These have been 

studied by Jones, Njastad and Thron in connection with the trigonometric mo

ment problem and the Szego polynomials that are orthogonal on the unit circle, 

see [21, 23].

Here we consider another subclass of PC-fractions, namely those for which 

Pq =  0, a i  >  0, CK2n+l =  1 — P2nP2n-\-l < 0, Pn+1 > 0 ?  77 =  1, 2 , 3, ... .

These are called strong Stieltjes PC-fractions, or SSPC-fractions and they have 

been studied in connection with strong Stieltjes moment problems. They can be 

regarded as even extensions of T-fractions and as odd extensions of M-fractions, 

see Jones, Thron et al. [18, 22] and Common and McCabe [13, 14].
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T heorem  3.5.1 Given r E Z , let

0̂ r,l 1 1 O!,. gZ 1
1  +  Pr,2Z +  /? r ,3  +  Pr,4̂  +  Pr,5 +  A ' , 6 ^  +

be an SSPC-fraction, where

(3.5.15)

jtj(-n+l+r) j j { - n - l + r )

«r,l — Mr-1 >  0> P r,2 n  ~  ; Pr,2n-{-l ~  ~~~UZh3hr)~’ ^  1 , (3.5.16)
Jnln L in

and a r ,2 n + i  =  1 -  P r ,2 n P r ,2 n + i <  0 f o m  > 1 and r =  0 , d=l, ± 2 , . . . .

The even part of the SSPC-fraction (3.5.15) is the T-fraction

A ' 2; fP z

1 4- Gi^z +  1 H- Gg ẑ +  1 -f G^^z +  1 H- G^^z H ’

where for n = 2,3 ,...

■ L fi-n + l+ r) rr(-)%+2+?) jnr(-n+l+r) rr(-n+l+r)
p { r )  _  f f n _______  "-2 _  (r) ^(r) _  f f n ______  _  M r)

« ^(-n+l+r) rr(-n+2+r) ) '^n (_n+r) ^(-n+2+r) P n  ,
^ n -1  -^n-1 ^ n -1

and

=  g I" = =  M .
Mr—1

The odd part of the SSPC-fraction (3.5.15) is the M-fraction

U(r-l) U t^^Z

^ ^ Z ^ +  4 ' - "  +  • • • ’

where for n = 2,3,...

jj+„_l+ ,.)^G n+2+r) g h - l)
jgr(—n+r) rr(—n+l+r) ^(r—1) a(] 1) ’
-^n-1 -^n-l Pn-l Pn

and

f f { ~ n ~ l + r )  f f { - n + l + r )  y(r-l)  ̂ -^n-1 _  ^

G p -"  =  A " "  =  —
Mr—1



3.5 Extensions of M-fractions related toS'^[o;, p, 6] distributions 90

Proof: From (3.5.16), we obtain

(^(-n+r))2  _  j j { ~ n + l + r ) p j { - n - l + r )

■

By using the Jacobi’s identity, 

we obtain
TT{~n-l+r) rr(-Ti+l+r)

«r.2„+l =  -  < 0 ' « =  1 .2 .3 ,,,..
Un -tin

We know from the theory of continued fraction tha t a continued fraction of 

the form
CK,. 2 1 ^r,3^ 1 1

1 +  P r ,2 Z  +  P r,3  +  P r,4 Z  4- P r,5  4" P r f iZ  +  ' " ' '
has an even part of the form

Ul d2 Ug U4
h\ 4-62  4" 5g -f- 64 4" • • •

where

a„ =  =  1 +  „ > 2 ,
Pr,2n—2 Pr,2n—2

with ai =  Oir,iPr,2 Z and 64 =  1 4- Pr,2Z.

From (3.5.16), we obtain, for n > 2,

0 r .2 n - 2

and
/Q „ rr(-n+l+r) rr(-n+l+r)

with

ai = ar,lPr,2Z — Mr-1 „(,^-i) ̂  =  Mr̂  = ^
Bi
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— 1 +  Pr,2^  — 1 +  —  1 +  G [  Z .

This proves that the T-fraction (3.5.17) is the even part of the SSPC-fraction

(3.5.15).

The SSPC-fraction (3,5.15) has an odd part of the form

ai Ü2 as &4

where

On =  b„ = z + ^ ^ z ,  n > 2 ,
P r,2 n —1 Pr,2n—1

with 6o =  CKr.l, CLl =  -a r ,l /^ r ,3 j  a n d  h i =  Z-[-  /?r,3-

Once again using (3.5.16) we obtain, for n > 2,

_  «r,2n-lÆ,2n+l .. _  ^ + ’-) _  . . ( r - l )
/5 rr(-n+l+r) ^(-n+ l+r) rrC-n+r) rr(-M+r) ^
Hv,2n 1 -^n—1 h —1 M' n —1

and

with

bo — 1,

_  _  r A r - l )
a \  — /^r-1 — P r - 2  ~~ U i

and

jfii P r - l

This proves that the M-fraction (3.5.18) is the even part of the SSPC-fraction

(3.5.15). □

This theorem is a generalization of a result given by Jones, Njastad and Thron 

in [21].
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If we consider an 5^[a;, b] distribution where uj e Z  and /? =  1, from (3.1.3) 

we obtain

= HGrn-2u>-2n+2)  ̂ m =  0 , ± 1 , ± 2 , ..., n > 1 ,

hence

n > l .

If r = 1 — CÜ then

r r ( - n + l + r )  „  r r ( - n + l - r - 2 ( l - r ) )  _  u{~-n-l+r) n n )

and in the equations (3.5.16)

/dr,2n — /^ r ,2 n + lj  77- =  1 ,  2 ,  . . .  .

This proves the following result.

T heorem  3.5.2 Let be an S^[uj,p,b] distribution where u  G Z  and P = 1. 

Consider the SSPC-fraction (3.5.15) which is an even extension of the T-fraction 

(3.5.17) and an odd extension of the M-fraction (3.5.18). I f  r = 1 — u  then

jj{-n+l+r)
Pr,2n — Pr,2n+1 ~  (_n+r) ’ 77 =  1, 2, 3, ... .

tin

The particular PC-fractions, in which

Pq — 0, 0̂1 > 0, Où2n-\-l — 1 P2nP2n+l ^  0; P2n ~  p2n-Vl ^  0, 77. =  1, 2, ...,

are called symmetric strong Stieltjes PC-fr actions, or SSS PC-fr actions. These 

continued fractions were studied by Common and McCabe in [13] in connection 

with symmetric strong Stieltjes moment problems.

We now show examples of SSSPC-fractions. First we return to the example 

3.1.(?) from section 3.4, namely.
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E xam ple 3.1 The 6] distribution, ^{t), defined by

on (a, b), where 0 < p < b < oo and p  =  y/âb.

In this example, we set w E % and r = 1 —to. We also set a =  1/6 then p = 1. 

We recall from (3.4.1) that, for any w > 1/2,

Pn'̂  =  P, =  O', for r > — w , n  > r  - f  2a; -h 1,

e i i

where

P n '^  ~  / ) ,  « 1 + 1  — O', fo r  r < —w , n >  - r  + 2,

P = V ^ = l  and =
4 46

Since r  =  1 — cu, it f o l lo w s  that

= P = 1, =  Q! =  , fo r  77 > w  4- 2. (3.5.19)

From the proof of Theorem 3.5.1 we know tha t the coefficients of an 

SSPC-fraction satisfy

=  and =
Pr,2n~2 Pr,2n—2

Hence, using (3.5.19), for 77 > w +  2,

- p ^  = P and =
Pr,2n—2 Pr,2n—2

Since pr̂ 2n = Pr,2n+1 , for 77 =  1 , 2 ,... , and P = 1, then

Pr,n =  for 77 >  2 W  +  2 ,

« r , 2 n —1 “  — « ,  f o r  77 ^  W +  2,

where 7  is constant.



3.5 Extensions of M-fractions related to5^[w, P, h] distributions 94

From ar,2n-~i =  1 — Pr,2n-2prfin-u we then find 7  =  y/l 4- CK, hence

Pr̂ n =  \ / l  4- a, for n > 2cu 4- 2,

«r,2n-l =  forn > eu 4- 2.

For example, for eu =  1, then r  =  0,

A,n =  Vf +  «, n =  4,5,6,...,

«0,2n—1 ~  «î 77 =  3, 4, 5, ....

The SSSPC-fraction is

CKo,l 1 « 0 ,3  ^  1 — «  -Z 1 — «  Z

1 4- /̂ Q,2 -2 4- /do,3 4" \ / l  4" Ck z 4“ \ / l  4- ca 4- y/l 4- ex. z 4- y /l 4- « 4- * • • 

where

o  o  A ”  (/7o)^«0,1 =  /7-1, Po,2 =  Po,3 = ---- , and 0:0,3 = ----- 7------- •
/ i _ i

We now consider the example 3.2 from section 3.4, namely,

E xam ple 3.2 The classical log-normal distribution

d'ipo{t) ~  dt,
2Ky/TT

which is an 5^[eu,/?, cxi] distribution with P =

We recall from section 3.4, that the corresponding moments are given by 

T m  — 777 =  0, ± 1 ,  ± 2 , . . .  .

The coefficients and pj{\ r  =  0, ±1, ±2,..., are given by

«n-f-i =  -  1) and =  q-^2+^\ n > l .
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We consider t o  =  1 ,  then ^  =  1, tha t is an 5^[l,l,oo] distribution and the 

moments satisfy

Prn = P-m-2, 777 =  0, ±1, ±2, ... .

The corresponding Hankel determinants are given by

JfW  =  n ( l  -  g:')"-', n > l ,  m =  0 , d z l , ± 2 , . . .  .
i=i

Since w =  1, we find the SSSPC-fraction with r  =  0, and the coefficients /?o,2n, 

^o,2n+i and O!o,2n+1 are given by

Po,2n — Po,2n+l ~  rji-n) ~  ^  ̂ ^
■tin

with

00,1 =  M-1 =  and Ao,2»+i =  1 -  g"".

Hence, the SSSPC-fraction becomes

Ç2 1 {l — q~^)z 1 {l — q~^)z 1 {l — q~^)z
1 4- q~2z 4- q~2 4- q~^z 4- q~^ 4- q~2z 4- q~2

The same SSSPC-fraction has been given by Common and McCabe in [13], 

where a log-normal distribution with p =  —1, w =  0 and p ~  1 was considered.



C hapter 4

T he S^[u j , p , b ]  d istributions and
•  /  ( t i  ( v )th e polynom ials Bn[XnA^ ^n,r] z

4.1 Introduction

In this chapter we study the polynomials 2), for an integer r  > 1

and n > 0, as defined in section 2.5, when is an S^[uj,p,b] distribution. We 

recall that

AW ; z) =  +  A % ( z )  +  -  - +  A%

where A ^ ,..., AW E 1R and

f  B n { X n l ^ AW; t)d'ip{t) =  0 , r  < s < n -  1, fo rn  > r  +  1 .
Ja ’ ’

First we prove the following result.

96
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L em m a 4.1.1 Given an integer r > I, let Qn{t) be a monic polynomial of degree 

n > r  +  1, such that

f = 0 , r < s < n -  1.
J a

Then, there exist real parameters 77W ,..., 77W such that

Qn{z) = ...,

P roof: We can write the polynomial Qn(z) as a linear combination of the

polynomials B q̂ \ z) , , ..., BW(z). Thus

j = 0

Hence,

Qn{^) = =  1 .
j=Q

f  t '̂^̂ Qn{t)d'i/j{f) ~ ^ C j  f  t Bf\t)dip{t)  =  0, r < 8 < n ~ 1.
J a  j_Q J a

Setting 5 =  r, r +  1,..., 77 — 1, and using the definition (2.2.1), we obtain a ho

mogeneous triangular system of 77 — r linear equations in the n — r unknowns 

Co, Cl, ...,Cn_r_i, in which the diagonal elements are non zero. This system is

« 0 , r + l —n  ^ 0 « l , r + 2 —n  ’ « n —r —2 ,—1 n̂—r—2 « n —r —1,0 r —1 0

« 0 ,r ’+ 2 —n  ^0 « l , r + 3 —n  ^1 ’ ' ’ « n —r —2 ,0  n̂—r—2 9

(0) (0) n
«0,-1 Co «1,0 Cl = 0

« 8  C o  =  0

where

Hence the only solution is Cq =  ci =  • • • =  Cn-r--i = 0. Then setting

c 77W. for j =  1, 2,..., r, we obtain the result. □■n~j

Using the above lemma we can prove the following result.
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T heorem  4.1.1 Given an integer r > let ip{t) be an S^[u),p,b] distribution 

with cu =  (1 — r)/2,  0 < P < b < oo, and a — P^/b. I f  n > r then, for any

An,i) •••} AW G 1R, there exist corresponding 7 7 ...,77̂ ) g IR such that

"*5 Uj

P roof: If n =  r, the result is obvious. For n > r +  1, we know that

[  ..., AW; t)d'ip{t) =  0 , r < s < n - l ,

then setting t — P‘̂ /t, and using (3.1.1) it follows that

f  Bn{Xnh AW; / ‘̂̂ /t)dip{t) = 0, r < s < n ~ l .

Hence, diving by B,^(A%,..., AW;Q),

since r  =  1 — 2cu then for r  < s < n — 1 implies the same tha t for

r < 5 < n — 1 . Thus for n > r  +  1

using Lemma 4.1.1, the result follows. □

These results can be found in Sri Ranga, de Andrade and McCabe [48], for 

the special case when r =  1 and w =  0 .

We denote the zeros of the polynomial B„(aW ^..., AW; 2;) by for

i =  1, 2 , ...,n. Assume tha t 1 < m < n, are the

positive distinct zeros of Bn(A^^,..., AW; z) and < < zf(^, are the
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positive distinct zeros of --, 5 ^)- Then from (4.1.1) these zeros satisfy

the relation

^n,i ~  ’ 7 =  1,2, ..,m. (4.1.2)

The negative distinct zeros and the conjugate complex zeros will satisfy similar 

relations. From (4.1.2) it is easy to see that ïî z = P oi z  = —p  is a zero of 

^n(An, i , AW;  z) then it is also a zero of ...,77W;z).

In the remainder of this chapter we will seek the real parameters aW ^..., AW  ̂

such that

We also will study the behaviour of the zeros of these polynomials. We call the 

polynomials that satisfy (4.1.3) symmetric inversive polynomials. From Theorem 

4.1.1, we can find symmetric inversive polynomials when r > 1 and w =  (1 — r)/2 .

If the relation (4.1.3) holds then the positive distinct zeros of the polynomial 

^u(A5 ,...,AW;z) satisfy

’ 7 =  1, 2, .., 777. (4.1.4)

The negative distinct zeros of B„(aJ[^{, ..., AW; z) satisfy the same relations.

Due to the symmetry, it is easy to see that if the number of positive zeros or 

the number of negative zeros is odd then z ~  P ov z = ~P, respectively, is a zero 

of odd multiplicity of Bh(aW^..., AW; z).

If a symmetric inversive polynomial B„(aW ,..., AW; z) has m  complex zeros, 

these complex zeros also satisfy

?• -  1 2 777;̂ (r) 5 * 1, z., ...,//4.

The zero is the conjugate complex of the zero ,̂ and its modulus is

equal to P, for ? =  1, 2 ,..., m.
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In de Andrade, Bracciali and Sri Ranga [3] we find that if Qn(z) is a monic 

polynomial of degree n that satisfies

= Qn{z], ze{a , b) .  (4.1.5)

Then there exist a unique set of real numbers 70, ...,7a, 9 < s < [n /2 | such that

Q .W  =  E 7 U " g l& ( z ) ,  (4.1.6)
k-0

where B ^ \ z )  are the polynomials related to an 5^[l/2,/3,6] distribution.

4.2 The 5"3[0,4,6] distributions and the polyno

mials

Here we consider the special case of Theorem 4.1.1 with r  =  1 , and hence cu =  0. 

That is, we are considering the polynomials

B.(AW;z) =  B f  (2) +  a1’;>B<“4 (2). n > 0,

where the polynomials (z) are related to 5^[0,/?, 6] distributions. According 

to Theorem 4.1.1 there exist 77W G IR such that

^n(A;/i;9)

From (2.5.7) we know that if we choose

An,i =  A% =  - « n i l

then

B .(Â % :2) =  B n { - a % ; z )  =  B<«(2).
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Prom Theorem 3.2.1 it then follows that

z"B ^^ \p y z)
Bi^\0)

Using the above results, Sri Ranga, de Andrade and McCabe in [48] showed 

tha t if
(1) _  («n+l + An,l)

""4 -  _  A«

then

=  f o r « > l .

Setting =  77̂  then it gives

\(1) _  +  ^nl)  u  2 Ij
-  (0 ) , (1)

Pn — /An,l

and

= B„(A« ; 2), for n > 1.

The equation (4.2,1) has the two solutions

An,i =  ( y 0  ±  ,

where 7 °̂) =  «2-1 +  ^1°).

When A ^ =  Pn^ (^y/Pn^ +  , then the polynomial Bn(Xnh one

negative zero, and it is equal to —/?. Also

B u { aS ;2) =  (2 +  ^)b''>4 (2),

where (z) are the polynomials associated with the distribution

d'ip{t) =  ( t  +  p)d'ij){t).
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In the second case, with Pn^ (^\/Pn^ ~  , all the zeros of the

polynomial Bn{Xnh^) lie inside the interval (a, 6). Also, in this case

Bn(A W ;z)=BW (z),

where (z) are the polynomials related to the distribution

dî’it) =

This result agrees with (4.1.6), because d'ip{t) is an S^[l/2,p,b] distribution and 

Bn(A5 ; 0) =  (-jd)".

O ther choices for th e  param eters

In general the polynomial By^(A^ ; z), n > 1, has at least n — 1 real and distinct 

zeros inside (a, 6). Assume tha t z^^^ < z^^2  < < &re the zeros of the

polynomial Bm(AW; .g), then Sri Ranga, de Andrade and McCabe in [48] proved 

tha t

> 4 °) < 0 ,

4?i < 4 °' =» > 0 ,

=  0.

In addition, if —a ^ h  < < 0 then all of the zeros of the polynomial B„(aJÎ'i; z)

lie inside the interval (a, b).
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4.3 The 53[—1/2,/?, 6] distributions and the poly

nom ials x / p  z )

We now consider the particular case of Theorem 4.1.1 with r =  2, and hence 

CO — —1/2. That is, we are considering the polynomials

% (A% , z) =  B f ( 2) +  AP>Bi"ii(2) +  A g s '”i 2(2), ™ > 0. (4.3.1)

The polynomials B ^ \ z )  are associated with 5^[—1/2 ,/5,6] distributions. From 

Theorem 4.1.1 we know that there exist 77̂ 1, 17^2 G H  such that

^ ^  4 %  4 ,  for "  >  2 . (4.3.2)

The polynomial B„(aW , 5 7 %  > 2, has at least n — 2 zeros inside the

interval (a, 6), and they have odd multiplicity.

From (2.5.7) we know that if we choose

A %  =  Âjf.i =  - ( « i + i  +  « n i l ) ,

=  « n ^ « i + l ,

we obtain

^ u (-(« 2 + l +  « 5 1̂) , «n =  ^n ^(4- (4.3.3)

From Theorem 3.2.1 and Theorem 3.2.2, we know that, for an S^[—l/2,P,b] 

distribution the related polynomials satisfy

z"B(»)(/3V4 _  p ,  z - B ^ i p y z )  __
B<»)(0) "  " ( B «(0 ) "  "

and

77 =  1 ,2 ,....
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In addition, from the relations (2.3.15) and (2.3.17), namely

=  B^^\z) -  a j^ lB i% (z)

and

zB i% (z) = B i» (z) +

we obtain

zB i% (z)  =  Bi<»(z) +  (Æ> -  -  P iM °^B i% (z) . (4.3.4)

Prom the relation (2.3.17) we can obtain

^Bi% (z)  =  B « i(z )  +  p B ,s i% ( z )

or

zBi'l^(z) =  B(«)(z) +  /3i‘»B(“ii(z )

or

z B « 2(^) =  B i^U z) +  pi% B i% (z).

Prom the last three relations we see that

zB i% (z) =  1 (B (°)(4 +  / î f  b (°4 (z)) +  / 3 « i i  (B i% (z) + p i% B i% (z))  ,

or

W  +  (/5 f  +  /?i‘A )B '“ii(^ )  +  /3i'ii.0‘"4B<°i2(2). (4.3.5)

Replacing z by pP j z  in the equation (4.3.1) and multiplying both sides of the 

equation by z", we can write

^"B„(A i7A 5;/3V z) =  z“S('»(^7^) +  4!h^"-'B<°ii(/3V z)

Since

t -B f \p '^ l z )  = B(°)(0)BM(z),
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then

Using the relations (4.3.3), (4.3.4) and (4.3.5) we then obtain

, A%;/9V^) = B '“) (0) [sf») (z) -  ( a « , + a i7 )Bi“i i  {z) + c » S rf )B ® 2(z)]

+A5 Bi% (0)[B(»)(z) +  (;3m +/3«i)Bi“ii(^)+/?«i/3<‘>4B<°i2(z)] 

Rearranging the above equation we have

^'•B„(Ai4  A®;p y z )  = [S(»)(0) +  A®iB®i(0) +  A®B<”l 2(0 )] B ^ M

+  [ - ( “ i + i  +  “ i + i ) B n ° K O )  +  -  4 + i ) B ® i ( 0 )

+ (0) -  A i^foj^S^lB^ao)

Since

B„(A^i, Aî ;̂ 0) =  B(“)(0) +  a5 b <°4(0) +  A^B^^CO)

or

B „ (a S ,a 5 ; 0) =  /3(“)/3^iiBi%(0) -  a1> ® iB < % (0) +  A^Bi^CO).

We then write

^”B„(A gl,A g>;/îV z) _

B „(A gï,A g |;0)

-(® g+l +  ~  4 + l)^ n - l  +  .^gk/5® +  ^n-l) n(0) /  \

/ ) l % - A g | Æ  +  Ag)

, 4 ’ii4">/îg>/5gA +  A il/3«a< “> Æ i +  A g)/jg4^ gii (0)

^ ° W i - W i  +  A%
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By comparing the last equation with the equation (4.3.2), we see that 

(2) _  —P n ' ^ P n - l i ^ n l l  +  «2-1 ) ~ ^ n } . P n \ { P n ^  ~ «i+l) +  +  P n \ )

’'”4 ”  -  A g lÆ i +  Agi

and
(2) +  Ag|/3g4/3(»ag) +  Ag|/3g4/3g2,

/ ) % i - A g W %  +  Ag|

Setting

we obtain

Agi =  4 ! i  and Ag| =  i/gl

^"B „(A gl,A g|;^V ^) _  p) (2), 
B„(AgLAg>;0) -^ " (A " ,i 'A .,2 ,4 .

The coefficients and A^ then satisfy

(2) _  —/)W ^ l-l(« 5 l +  «nil) ~  X n \P n \{ P Ü ^ ^  ~  «i+l) +  X nl,{P ^^  +  P n - l )
a:n,l —

and

\(2) _  /^i^^/^i-l«i+l«n  ̂+  XnlPn\Pn^^n^  +  ^n^iPn^Pn-}

(4.3.6)

(4.3.7)

To find the values of A^ and A^ that satisfy (4.3.6) and (4.3.7) simulta

neously we multiply (4.3.6) by —Pn~i and add the result to (4.3.7). We then 

obtain

+  A%))  ̂=  (4.3.8)

Now, from (2.3.12), we obtain 7 ^^
p (1)

, and

P'̂ (1) ~  ^n-1
J n ^ P n \p P  +  aggi)
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(1)
Since =  P, a i h  =  , and 7 W =  p^) +  then

Pn+l

\J Pn'  ̂P n~ lln \ln^  =

Prom (4.3.8) we obtain

(/3 f +  Agi) =  ±7g> Æ i-

Hence, the parameters Ag| and Ag| tha t satisfy the equations (4.3.6) and (4.3.7) 

simultaneously also satisfy

Agl =  ^  +  ^g>±7g>.
P n - l

Substituting A^ =  —̂  +  p^'̂  +  7^) in (4,3.6), we obtain
aW

Substituting A^ =  —̂  +  p "̂̂  — 7^) in (4.3.6), we obtain
P n - l

\ ( 2)
\ (2) ^  _  _(0)

n , l  (0) «n+i,
P n - l

Agi e  R .

Hence, we have proved the following result.
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T heorem  4.3.1 The polynomials Bn{Xn\^Xnh^) related to an S^[—1/2, P,b] 

distribution satisfy
.(2) \(2).,02

if either

or

=  B„(Ag), Ag) ; 4 ,  for n > 2 ,
^n,2j Uj

Agi =  /?<“>+/?, (4.3.9)

Agi =  -/3 a g ’>

\ ( 2). (2) _  (0)
A„,i ^(0)^ (4.3.10)

Agi e  R .

For the solution (4.3.9) we use the relations (2.3.15) and (2.3.17) and we 

obtain

Bn[P^^ +  P, -Pc^^n '̂, z) = {z-i- P)B^li{z), for n > 2 .

Hence one zero of the polynomial B„(/?W _|_ p  ̂— z) is at z =  ~P  and the 

other n — 1 zeros, all distinct lie inside the interval (a, b).

The solution (4.3.10), depending on the parameter , gives other possible 

locations of the zeros of the polynomial B»(AW, A ^; z), such as, n real and

distinct zeros inside the interval (a, b), or n — 2 real and distinct zeros in (a, 6),

one zero in (0 , a) and one zero in (6, oo), or two negative zeros, or two complex 

zeros.

P ro p o sitio n  4.3.1 I f  we consider the solution (4-3.10), namely
\ ( 2)

\(2) ^  T S l  _  ^(0)
'^ n , l  (0) «n+l5

P n - l

Agi 6 R ,

then

B„(Agl, Agi; z) = B g)(z) +  - ^ z B ^ ^ l^ i z ) ,  for n > 2 .
P n ~ l
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Proof: From the recurrence relation (2.2.7), with r  =  1, we obtain

2:BWi(z) -  B(i)(z) =  +  4');2:BW2(z). (4.3.11)

From the relation (2.3.20), we can write

7n

Adding and subtracting the term a^liB/Z^z)  to the right hand side of the above 

equation we obtain

^(4 =  -Toy  ̂  ̂W  +  W  -  ^M )) 'Jn

Using the equation (4.3.11) we can write

(0 )

B f ( 4  = Bg)(4  + - 2 ^  ( t f  > B «i(4  + ag>^B«2(4) . (4.3.12)
'Yn

While from the relations (2.3.20) and (2.3.19), we obtain

BgA(4 = fs )  (/3g’B « i ( 4  + «W^BW,(4) , (4.3.13)

and

- 2W  — (0) (^^1-2 W  ^1-1 (-̂ )) ) (4.3.14)
7n-l

respectively. Since

Bn(Agi, Agi; 4  = Bg)(4 + AglB<“ii(4  + Ag|Bgi2(4

using (4.3.12), (4.3.13) and (4.3.14), we obtain

(0)

B „ ( A g |,  A g | ; 4  =  B<‘) ( 4  +  ( 4 ' ' B g l i ( 4 + « g ) ^ B g l , ( 4 )

\ ( 2)
+-%y (^g > sg ii( 4  + ag )zB g i2 (4 )

>
+ - ^  (zB^JUz) -  B ig i(4 )

7n-l
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or

Bn(Ai%AW;z) =  BW(z) +  

T

(«1+1 +  ^n\)Pn^ Â 2
(2)

(«1+1 +  A%i)«n^ I Â 2 

7 ^’ 7® .

vl^i

2:BW2(z).

(2)

From (4.3.10), +  Aĵ { =  - ^ ,  hencea(0)Pn-l

B „ (A g U g |;4  =  S W (4  +

+

From (2.3.12) the result holds.

Agi 4 ')  Agi 
/3gA7g’ 7gii

zBi%(z).Agi «g) , Agi

L/3gA 7^> 7 g lJ

Since

B .(A g |, Agi; 0) =  Bg>(0) =  ( - f i r ,

□

we can see that the Property 4,3.1 agrees with the result (4.1.6) because for 

n > 0, the polynomials (z) are the orthogonal L-polynomials related to the 

distribution tdip{t), which is an 5'^[l/2, )d, 6] distribution.

From (2.3.16) we can write

A(2)

Bg)(z) +  = { z -  /?g))Bg2 i ( 4  -  “g*
Pn-l V

A(')n ,2

Here, if Ag| < /Jag) then

^  =  rrg' -  “ g ’ =  0 -
P n —1 Pn—1

Hence, for the solution (4.3.10), if A^ ^  jd«n^ then all zeros of the polynomial

are real and positive.
^n-l

(2)
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For example, if we choose

Xnl =

then
A%̂ ; z) =  z)

=  BW W +o:W .,BW 2W  

=

Hence the polynomial Bn{a^'^ -  , n > 2 , has one zero at z = P

and the other n — 1 zeros are the same as the zeros of the polynomial B ^liiz ).  

This means all of the zeros lie inside the interval (a, b). When n is even, the zero 

at z = P has multiplicity 2 .

For the location of the zeros of the polynomials

\  (2)

S .(A g l, Agi; z) = B g )(4  +  - ^ zB I^U z ), n > 2 ,
P n - l

we have the following conjecture.

C on jectu re  4.1 I f  we choose A^ (4-3.10) such that

< A|̂  ̂ <

then the polynomial B„(aW, A ^j^ ) has all zeros distinct and they all lie inside 

the interval (a, 6). For

A% <

all zeros are distinct and positive with one zero in (0 , a), n — 2 zeros in (a, b) and 

one zero in (6, oo). For

Agi > /Jag)

two of the zeros can be complex or negative.
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Other choices for the parameters and Â2

We recall that for the case r  =  1, if - ckI+ i < A ^ < 0, then all of the zeros of 

the polynomial

Bn(A%; z) =  BW(z) +  ^ > h

lie inside the interval (a, 6).

For the case r  =  2, if we choose

Agl =  A - a g | i .

Agi =  -A ag),
for A G IR, we then obtain

Bn(AW, A % L W  +  (A -  «(% i)B W d4 -  A cW B ^ gW

=  B W (z) — «l+iBW i(z) +  X [B ^\{z)  — B^}.2{^)]

=  BW(z) +  ABWiW.

Thus the polynomial Bn(A^^i, Â ^̂ ; z), n > 2 has at least n — 2 zeros inside of 

the interval (a, 6). Further if —«l+i <  A < 0 then all of the zeros lie inside the 

interval (a, 6).

Since

—«n+l < A < 0
0 < A% <

we conclude that all of the zeros of the polynomial B„(aW ,aW ;^), n > 1, lie 

inside the interval (a, b) for

- « n i l  — «1+1 ^  < “ « 1+1,

A%2 =  -(A %  +  «l+l)«n \
or equivalently for

0 <  Agi <  a g j,a g )
\ ( 2)

\(2) _  _  _(o)
'^ n ,!  (0 ) « n + 1 -

(Xn
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R em arks

In the previous section, we saw that, for r  =  1 and w =  0, the symmetric relation

< 1 .  VS« ( # »  + t f f i )

or

holds when either

In the first case, —yd is a zero of B„(aW ; z). In the second case, all of the zeros 

of the polynomial B„(aW ; z) lie inside the interval (a, 6).

In this section, we saw that, for r  =  2 and w =  —1/ 2 , we obtained the 

symmetric relation

Z^Bn(xj}, P h )  _  ^  ^ ( 2) ^(2) \ > 2

when either
A^i — Pli'  ̂ +  P,

A%2 =
or

\ ( 2)
\(2) _  ^n,2 _  

n , l  ^(0) ^n+l5
Pn-l

V  _  4»)

Agi 6  R .

In the first case, —P is a zero of S„(Agi, Ag|; z), and the remaining n  — 1

distinct zeros lie inside the interval {a, b). In the second case the other possibilities 

in the location of the two zeros that can be outside of the interval (a, b) depends 

on the value of A ^ •
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The polynomials ..., AW;z) for r  =  3,4,5,..., tha t are related to the

S^[(jj,P,b] distributions with cu =  (1 — r ) / 2 , present similar behaviour to those 

studied above.

We obtain parameters aW, ? =  1, 2 ,.., r, such that

=  ^ . ( 4 4 - ,  Ag) ; 4 ,  for n  >  r.

These parameters aW, i — 1,2, ..,r, will determine all of the possibilities for 

the location of the r zeros that can lie outside of the interval (a, 6), and satisfy 

the relations (4.1.4), namely

 __^ ____ z -  1 2 m'^n,t ;^(r) ,  ̂ l , Z r ,  . . , / / i .

^ n , m + l —i



Chapter 5

Quadrature formulae

5.1 Introduction

In this chapter we consider quadrature formulae that are related to strong Stieltjes 

distributions and to the polynomials and AW; z).

First we consider a quadrature rule of the form

/  / W # W  =  +  E n (/) , (5.1.1)

where the points z^J^ i = l , . . . ,n  are the zeros of the polynomial B^)(z) and 

where f{t)  is a real function defined on (a, 6). The coefficients i = l , . . . ,n  

are called the weights and the points z^J, i = 1, n are called the nodes of the 

quadrature formula.

We can approximate the function F(z) = z^~^f{z) by the interpolating poly

nomial on the n zeros of the polynomials B ^ \ z ) .  We then obtain

F(z) =  z " -V ( 4  =  fk(;^) +  B»(z),

115
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where Pn{z) is the interpolating polynomial for F{z),  of degree less than or equal 

to n ~  1, and is the remainder.

Using the Lagrange form for Pn[z) and the divided difference form for Rn{z) 

we obtain

f (z )  =  Ê  :------ r t l% 7 -(7ü  - ,  4 1 ,  ]̂.i=i (z -  ' (4 j)

Multiplying by and integrating over (a, b), we obtain

f  ±  -— ■ ( 4 1 ) " - 7 ( 4 1 ) # ( t )
‘=1 (i -  4 j )S n  ( 4 j )

t  4 1 ,  t m t ) ,

+ r  (i)F[41,..., 41,

Hence,

2 = 1

where the weights w^j are given by

i =  l,2 ...,n . (5,1.2)
Bti' Ki) * -  4,i

The remainder IE„(/) is given by

E „ ( /)  =  £ r " + ’-B<’-)(2)F[41, . . . ,z ( l , t ] # ( t ) .  (5.1.3)

T heorem  5.1.1 For the quadrature formula (5.1.1), with the weights 

i =  l , 2 ...,n, given by (5.1.2),

^ n i f )  = 0 whenever z'^~‘̂ f{z) E F 2n-i-

+

or
/r)
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Proof: Since

F{z) =  z"-'-f(z)  e  P 2„ -1, 

then F [ z ^ \ , z j [ l ,  z] is a polynomial of degree less than or equal to n — 1. Hence

fb  n - 1  ^b

En(/) =  / E = E «W
S=0 5=0

From the definition (2.2.1), the above integral vanishes for 0 < s < n — 1. Thus 

the result follows. □

We can prove that the weights w^}, i = 1,2,..., n, are positive by considering 

the special cases where

L ̂  ^ n , i  j
n

Using f ( t )  — 1 in (5.1.1) we can see that — juq.
2 = 1

We observe that if r  =  n we obtain the Gassian quadrature formula, which is 

expected since the polynomials (z) are then the classical orthogonal polyno

mials on (a,b) with respect to the distribution '0 (t).

5.2 The associated polynom ials

We recall tha t the polynomials A ^ \z ) ,  n > 0, are the successive numerators of

the convergents of the M-fractions (2.3.1), namely

where

cb _  f?"
M^'^\z) = z '^  ------ —d'4>[t) =

Ja Z  —  t

m  +  q  +  q  +  +  r > 0

—/t_l -  /i_2Z  -------)UrZ"(^+ \̂ r  < 0
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These polynomials satisfy the recurrence relation (2.3.2), namely

4r+ i W  =  (2 -  4 +1) ^ ’’’ (2̂ ) -  {z), n > 1,

with A^7\z) = MM(z), 4 ’’H 4 =  (2 -  +  IXrZ-\

Further, the polynomials C^^{z), n > 0, are the successive numerators of the 

convergents of the M-fractions (2.3.3), namely

aPz 4 4  ,  = o,±l,±2,....
Z  —  ( 3 ^ ^  —  Z  —  ^ 2 ^  —  Z  —  (3^"^ —  Z  —  ^

These polynomials satisfy the recurrence relation (2.3.6), namely

C'l+iW =  (^ -  M > 1 ,

with Cq̂ \ z) =  0 , C[^\z) — Hr.

From the three-term recurrence relations (2.3.2) and (2.3.6), we can see that 

(z) =  C^)(z), for n > 0 .

In this section we present particular properties involving the associated poly

nomials AM(z) and C^)(z), the weights i = l ,. .. ,n , and the nodes z^J, 

i — 1, ...,n, of the quadrature formula (5.1.1). These properties can be deduced 

from the theory of classical orthogonal polynomials and Fade approximants. 

Sri Ranga in [42] has also studied these associated polynomials.

P ro p e rty  5.2.1 The associated polynomials A ^ \ z )  and C^^{z), for n > 0 and 

r = 0, ± 1, ± 2 ,..., can be defined from the polynomials B ^ \ z )  as

J a  Z  ~  t

and as

C W (4  =  f  (5.2.2)
J a  Z  —  t



5.2 The associated polynomials 119

Proof: We prove (5.2.1) by mathematical induction. It is easy to see tha t for

n =  0 the equation (5.2.1) satisfies the initial condition of the recurrence relation.

For n =  1,

Ja Z — t  Ja Z — t

By adding and subtracting the term t'^z to the numerator of the integrand we 

obtain

\ z )  - f Bi  =  ( z -  4 ’'>)2-’- +  2-"
Ja Z — t  Ja Z — 6 Ja

or

r\-r^7ÉlMLiIÉAâdi>{t) = { z -  0^{^)M^'\z) +  Ai.z-’- =  A ^ \z ) .
Ja Z — t

We assume (5.2.1) valid for n and n — 1, and we know that

r  2-’- ~ di>{t) =
Ja Z — t

[ ( ^ - ( ^ )  " 1W]
Ja Z — t

We add and subtract the term F z +  o^5i-^l-iW ) to the numerator of

the integrand, and we obtain

Ja Z — t  Ja Z ~  t

Ja Z — t

From the induction hypothesis and (2.3.15)

= { z -  4 4 ) 4 ^ )  (4  -  4 4 ^ 4 ^ 4 ( 4
Ja Z — I

+«-’■ f fBî -̂ \̂t)di>(t)
J a
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or

>F) oh)
== 4 +iW  +  f  fB^;[+^\t)diP(t).Ja Z — t Ja

Prom (2.2.1) we can see that the integral on the right is equal to zero, hence 

the requited results. Similarly the result (5.2.2) is proved by mathematical 

induction. □

Prom (5.2.1), (5.2.2) and the definition of M ( z )  we can easily see that 

4 ' ( 4  =  + %-''CW(z), n > 0 ,  r  =  0, ±1, ±2,... . (5.2.3)

Property 5.2.2 The associated polynomials C"4(^), /cr n > 0 and

r  =  0 , ± 1, ± 2 ,..., can be written as

f a  o < p < „ .  (5.2.4)

and as

CM(2 ) =  for 0 < p < n. (5.2.5)

Proof: First, from (5.2.1)

By adding and subtracting the term t^~^B^\t)  to the numerator of the integral 

we obtain

4 4 4  =

or
J a  Z  —  0

4 4 4  =
_Vr+p f  f L l z £ l B ^ : \ t ) d m -

J a  Z  —  Z
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The second integral is equal to

I ( ( )#( ( ) .
Ja  y  /  j = 0

Prom (2.2.1) we see that

[  f ( t ) d " ^ ( f )  = 0 , for 0 < j  < n — 1,
J a

and hence

z^P  f  ^ r - ( j + i ) g p ) =  0, for 1 < p < n.
j = 0

The case p =  0 is covered by the relation (5.2.1) and so the result holds.

Now from (5.2.2),

Ja  Z — t

Again adding and subtracting the term zP B ^\t)  to the numerator of the inte

grand we obtain

Ja  Z  — t  Ja  Z  — t

The second integral is equal to

J = 0  j = 0  ®

Once again from (2.2.1) we obtain

f  (()cgî (]̂ ) =  0, for 0 < j  < n — 1,
Ja

and then

z^ (  r “^̂ ‘‘*^^B^^^(t)d'0(t) =  0, for 1 < p < u.
j=o

The case p =  0 is covered by the relation (5.2.2) and the second result also 

holds. □
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From the three-term recurrence relations for the polynomials 

and for n > 1 and r  =  0, ±1, ±2,..., it is easy to see that

4>(444(4 -  44 (454(4  = «44’'4 • • ■ , (5.2.6)

and

c4(454i(4 -  c4i(454(4 = «444 • ■ ■ 44^"-' • (5.2.7)

From section 2.2 we know that z =  0 is not a zero of the polynomials B^)(z). 

Substituting z =  z^j in (5.2.6) and (5.2.7) we obtain

4'(41)54i(4]) = 4>44 ■ "44r(4b"-'-' ̂  0.
and

4'(4I)4444) = 4 '44  • ■ • 44(4^)"-' ^ 0,
respectively. This proves that, for n > 1 and r = 0, ± 1 ,± 2 ,..., the zeros of 

the polynomials B ^ \z )  are different from the zeros of any of the polynomials

54i(4. 4'(4 and C 4(z).

T heorem  5.2.1 The weights 4j, * =  1,2..., n, for n > 1 and r  =  0, ±1, ±2,...,

can he given by either

< ’ - ^ i 0 r y  (“ ■«>£>n )
or

4 1  =  (5.2.9)
Bn v'̂ n.î /

Proof: From (5.2.4) with p = n and z =  z^j, « =  1 ,2...,n,

4 ' ( 4 b  _  1 f ^ J r ) . n - r  ( 4 b ^ - " 5 4  (41) ~ *^-"54 (l)

4 A 4 1 ) " 4 A 4 i ) ^ ' ' ^  4 j - t

..;P



5.2 The associated polynomials 123

as =  0, we obtain

b U V S ) ^  ‘ - Ï Ï
This proves the result (5.2.8). Similarly from (5.2.5) we prove the result (5.2.9).

□

Substituting (5.2.4) with 0 < p < n, in the relation (5.2.8) we obtain

“  b 4 '( 4 1 )  4 1 - i
or

4 1  =  f  —— for 0 < p < n, (5.2.10)ar' (41) < - 4j
where n > 1 and r — 0,4=1,4=2,... . We can also obtain (5.2.10) by substituting 

(5.2.5) with 0 < p < n, in the relation (5.2.9).

T heorem  5.2.2 The polynomials B ^ \ z )  and C ^ \z )  for r  =  0, ±1, ±2,... and 

n > 1, satisfy
g4(4 f (41)̂ 41
54(4 & z-41 '  ̂ ^

Equivalently, when A ^f\z) is a polynomial of degreen—1, the polynomials B^^ (z) 

and A ^(z) satisfy

Proof: The polynomial C jf^z)  has degree n — 1, and hence coincides with its 

own interpolating polynomial on the n roots of PW (z). Hence,

and so
c4(4 A g4(41) A (41r41
54(4 6(z-41)54'(41) s  - 41 '
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When the polynomial has degree n — 1, then it coincides with its own

interpolating polynomial on the n roots of B^J{z). Hence,

and so
A ïK z)  " 4">(41) A  4 1

(4  h ( z -  4 b 5 4 '( 4 1 )  5  ^ -  4 1  '
The proof is complete. □

Prom the recurrence relations of the polynomials B ^ \z )  and C ^ \z )  we easily 

prove tha t

C 4(0 ) =  - P p- iB 4(0), (5.2.13)

for 77, > 0 and r =  0, ±1, ±2,... .

Further, from the recurrence relations (2.3.2) we see tha t A^)(0) are defined 

when r  < 0 and u > 0 and when r  > 0 and n >  r.

For r  < 0 and 77 > 0, since —r > 0 from (5.2.1) with z =  0, we obtain

= -p _ iB (’-)(0),

While 7* > 0 and 77 > r, since —r +  u > 0 from (5.2.4) with p — n and z =  0, we 

also obtain

4 " ( . ) .  / ;

Hence,

a 4 (0 )  =  - m_i B<^>(0), (5.2.14)

for r  < 0 and 77 > 0 or for r  > 0 and n >  r.

In the next section we use the results (5.2.13) and (5.2.14) to prove some

symmetric properties satisfied by the associated polynomials related to h]

distributions.
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5.3 T he S ^ [ u , P , b ]  d istributions and th e  quadra

ture formulae

In this section we consider some properties involving the associated polynomials, 

the weights and the nodes of the quadrature rules when is an S^[uj,/3,b] 

distribution. The first theorem gives some symmetric relations satisfied by the 

weights and the nodes z^J, for i — 1,2, ...n, n > 1, and r  =  0, ±1, ±2,... .

T heorem  5.3.1 Let ip{t) be an S^[uj,P,b] distribution with 0 < P < b < oo,

a =  and 2co G Z . Then for n > 1 and j  =  1 — 2uj, the weights and

nodes z^^, for i =  1,..., n and I = 0, ±1, ±2,..., are related by

_  ^ n ,n + l - i  /c n i \

Proof: From (3.2.1) we find that for I = 0, dhl, ±2,... ,

5 4 '( /^ V 4  =  (5.3,2)

Then, using the relations (5.2.5) and (3.2.1), we can deduce that

C(')(/)^/z) =  -/)^('-^+"')z-*"+^B^')(0)C^-')(z). (5.3.3)

From the relations (3.2.4) and (5.2.9) we obtain

for i = 1, ...,77 and I — 0 ,± 1 ,± 2 ,.... Substituting z by z^~2i~i (5.3.2) and

(5.3.3) we then obtain

K^n^n+l—i)
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Since =  ^n'!i^n,n+i-i  ̂ for 7 =  1 , n and I =  0, ±1, ± 2 , it follows that

□

or

(44i-4-5r')'(zi4o_.) •

With j  =  1 — 2w and using again (5.2.9), we see that

a) _  _  (41)" H-i)
(4:„A-4-5r'>'(4:„A_.) (44i-.)"

for 7 =  1,..., n and I =  0, ±1, ± 2 ,.. ..  This completes the proof.

The following corollary gives some relations satisfied by the weights and the 

nodes of the quadrature rules when (%) 2w is odd and (ii) 2w is even.

C oro llary  5.3.1.1 Let ip{t) be an 5^[o;,/3,6] distribution with 0 < < 6 < oo,

a =  /)^/6 and 2w E Z. Then for n > 1 the weights and nodes for 

i = and I =  0 ,± 1 ,± 2 ,..., are related by

(i) for 2w odd and j  = \ ~  u),

(44>)“ ■ (4A-.)"’  ̂ ’
(ii) for 2(jj even and j  — —w,

As with the polynomials B^l(z), the associated polynomials possess some 

symmetric properties when ip{t) is an S^[uj,P,b] distribution. In the following 

theorem and its corollary we show this behaviour of the associated polynomials 

A P iz) .
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T heorem  5.3.2 Let ip{t) be an S^[w,P,b] distribution with 0 < p < b < oo, 

a =  p'^/b and 2w G Z . Then for n > 1, j  = 1 — 2w, the associated polynomials

z'^~^A!A{P^/z) z^

for 1 = 0, ±1, ±2,... .

P roof: From (5.2.4) with p = n

Substituting z by /5^/z, t by p'^/t and using the property (3.1.1) we obtain 

4 '( /5 V ^ ) =  Z» ‘B f { 0 ^ / z ) - t ^

Since j  =  1 — 2w and (3.2.1) we obtain

z“-M « (/3 V 4  =  - s 4 ( o)/3-^'-i ' 4  'H 4 -  * '5Ü " ( 4 ^^^^)
Va Z — t

Adding and subtracting the term z^B^~^\z) to the numerator of the integrand, 

we obtain

1 r y.6 (()

s 4 ( 0 ) r/?J+i y  a z — (
pb <v3  -f-j

- B H - ‘\ z ) - ^ ^ # ( t )
Ja Z ~ t

or

z^~'^Al2{P^/z)
s 4 ( 0 ) /Jj+I J a z — t

pb 2̂ 3 _  f3
')(z)z _  -  # ( ( )

Finally using the definition (5.2.1) and the definition of M ( z )  the result holds.

□
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C oro llary  5.3.2.1 Let ip{t) be an S^[uj,pyb] distribution with 0 < p < b < oo, 

a — p'^/b and 2u G Z . Then for n > 1, j  = I — 2u, and for I < 0 and n > 0 or 

for I > 0 and n >  I, the associated polynomials A^^{z) satisfy

=  4  [4 '- ') ( z )  -  MU)( z ) B t ' \ z ) ]  . (5.3.7)

Proof: From (5.3.6), then

'  m U )(4b U -4 4 ]  .

Since (5.2.14) holds for Z < 0 and n > 0 or for / > 0 and n > I, using the relations 

(3.1.2) the result follows. □

We now see the symmetric behaviour of the associated polynomials (z).

T heorem  5.3.3 Let ip{t) be an S^[u),p,b] distribution with 0 < p < b < oo, 

a = p'^/b and2uj G Z . Thenforn  > 1 and j  — 1 —2w, the associated polynomials

z” _  Çn_ !,K^) for i =  0 ,± l,± 2 ,.. .  . (5.3.8)
C 4(0) fij-i

Proof: From (5.3.3), with j  =  1 — 2a;, we can write

=  .......

The result holds since the relations (5.2.13) and the relations (3.1.2) with m =  1—1 

imply that fij-i = hi- i /P ‘̂’'~^~^• O

The following corollary gives some relations satisfied by the associated poly

nomials C(^)(z) when (%) 2w is odd and (ii) 2u is even.
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C orolla ry  5.3.3.1 Let 7/»(() he an S^[uj,P,b] distribution with 0 < P < b < oo, 

a = p'^/b and 2w € Z . Then for n > 1, the associated polynomials C^)(z) satisfy

(i) for 2w odd and j  = \ — lj,

(ii) for 2w even and j  =  —tv,

-, for i =  0 ,± 1 ,± 2 ,... , (5.3.9)

^  for Z =  0, ±1, ±2,... . (5.3.10)
c ^ + '\o )  m i - i

5.4 Quadrature formulae using the polynom ials

B » ( A g , . . . , A W ; z )

In this section we consider the polynomials ..., z), n > 0, for an

integer r  > 1, that are defined in section 2.5. We recall tha t the zeros of these 

polynomials are denoted by z^J[^7 =  1,2, ...,n. Let the coefficients A^^,..., A ĵ. 

be such that the polynomial B„(a5[J, ..., A{[j.; z) has zeros tha t are all real and 

distinct. Then we can construct the quadrature formula

/  (5.4.1)
i - l

By a similar method to that used in section 5.1 we find that the weights 

are given by

for i = 1 ,2...,n,. The remainder is given by

® n(/) =  f  r ’*+’-S„(Ai’'] ,..., ; z)F\z^^,..., , z )# (( ) . (5.4.3)
J a
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T heorem  5.4.1 For the quadrature rule (5.4-1),

® n(/) =  0 whenever G F 2n~i-r-

Proof: Since F{z) = z'^~^f{z) G F 2n-i-r, then ..., z] G F„_i_r

and hence (5.4.3) becomes

-b , . p , n - l - r
E „ ( / ) =  /  I ]

5=0

or

E „ (/)  r r ’*+'’+’'B „(A i1 ,...,A « ;4 )#W -
5=0

From (2.5.2) we know that the above integral is zero for 0 <  a <  M — 1 — r .

This completes the proof. □

n  ̂ ^
Setting /(() =  1 in (5.4.1), we can see that =  Ho-

These quadrature formulae for the case when r =  1 were studied by Sri Ranga,

de Andrade and McCabe in [48].

For r  > 1, we define the associated polynomials An(A^{,..., A{[j,; z), n >  1, of 

degree n — 1 by

^n(Ai1, AW; Z) =  r \n -r ^~’'^ ''B n(\'n l,-,
' '  J a Z  — t

(5.4.4)

We now give some properties involving these polynomials.

T heo rem  5.4.2 For n > r ,  the polynomials A„(aJ[i, ..., Aj[j.; z) satisfy

•••5 ^n,rî W  4------ ^ W- (5.4.5)
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Proof: From the definitions (2.5.1) and (5.4.4) we obtain

- ,  AÏ!, • ) .  r
’ ’ Va Z — t

where A% =  1, hence,

a 4 „ ( A < : , A « ; 4  =  E a I I  f
i= 0  “ Z I

Setting r  =  0 in (5.2.4), we obtain

4 ° ) .( 4  =  for 0 < p < n - i .

Since 7 =  0,1 , . . . ,r and n ~ r  < n  — i, the result holds w ithp = n — r m  (5.2.4).0

P ro p e rty  5.4.1 The polynomials A i ( A ^ i , z )  for n > r can be given by, 

for p =  0,1, ...,77 — r,

>ln(A'r,l,....AW;4 =

f V - - , . — »B.(aS ..... A a ; .) - , - A - , .B .( < l  p , , ,
Ja Z — t

Proof: From the definition (5.4.4), we can write

A / \F) \(r). \ _-g*-nV'̂ n,l) ••*5 ^n,ri

4  ,.... Afr); 4  -  z n -’*+'-B„(AW,..., AW ; t) ^
Ja ~ t  •

Adding and then subtracting the term  ̂  ̂  ̂A^ ; t) to the numerator

of the integrand we obtain

a4„(aWj , - . aH ; 4  =

7" -■ AW ; 4  -  (-"+'+"54^5, AW ; t)

z” - F
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The second integral above is equal to

E
j=o

or

_ 7" ^n-r-p^-n+ r  ^  - ,  A ^;
Jo, „-_n

-  g  r” t-n+r+iB„{\^:\,..., A ^;
i=0

According to the conditions (2.5.2) the integral above vanishes for 0 < j  < 

n — 1 ~  r. Hence,

p-i rb
E  f  r " + ’-+UB„(AWi,AW; = 0 , for 1 <  p < n -  r .
J=0

The result also holds when p =  0. □

We can also write (5.4.6) in the equivalent form

- ,  Ail; 4  =  f  - ,  AH; z) -  ..., AW ; t)

for p =  0,1,..., n — r. Setting p =  0, for example, we obtain

A , ( A W , a W ;  4  =  I )  ^"(A ili,- ,  4 $ ;  4  -  B»(Ai’, l  - ,  A ^; 4 ^^^^ (5 ,4 ,7 )

P ro p e r ty  5.4.2 The associated polynomials An(A^{,..., Aĵ }.; z), u > 1, defined 

by (5 .4 .4 ) satisfy

A .(A 5,...,A W ;z) =  A(r)(z), (5.4.8)

where A^{,..., are defined in (2.5.7).

Proof: The result follows from substituting B»(A^^,..., ÂJfj,; z) =  (2:), u > 1,

in the definition (5.4.4) and using the relation (5.2.4) with p — n. □

We now can give some results concerning the weights and nodes of the quadra

ture formula of the form (5.4.1).
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T heorem  5.4.3 The weights i =  l,2 ...,n , n > l ,  can be given by

A r \ ( r ) .
(5.4.9)

P roof: Prom the definition (5.4.4) with z =  7 =  1 ,2...,n

A n M  \(r).

B;(A<1,...,AW ;zi:r) “

f \  Xiry (4 r)-" -" -% (A W ,..., AW;4 : ' )  -  t-"+>'B„(AW,..., AW;t) ,
B ;(A W ,...,A W ;z^;r> )(4>-t)

Since Bn(Ai1,...,AW ;z^i’) =  0, it follows that

a4„(aW ,...,AW ;ẑ ;1) (^i;;*)’- ’- f " r"+ '-B .(A W ,-,A W ;t)
B;(AW,..., AW; z„4) B ;(aW,..., aW; A i -

hence, from (5.4.2), the result follows. □

T heorem  5.4.4 For n >  1, we can write

A„(aWi , ..., AW ; z) _  « w ii ' n n t
B IaW xW .^a zAM- (5.4.10)

P roof: The polynomial An{X^n\ , ..., Â }.; z) has degree n — 1. Hence it coincides

with its own interpolating polynomial on the n roots of Bn{Xn\ , ..., A^); z). Thus,

4 rÂ*") xM. ^n(A„j, ..., AM; z) /\(r) xW A^x
z—1 t" "n,z /•̂ nV 7 1 , 1 ? /

and then

A \(r). yX n X (\{r) \(r). «Â X n ,,,A(̂ )-^nx-^n,l>‘*‘i •̂ n,r) ■̂n,z /____  _ v~̂  ^n,i
B„(a11 ,...,aW ;4  “  é ï  (z -  <'[>)Bi(AW,..., aST»; < ï> ) “  S  °

We now consider S^[uj,p,b] distributions and we show some symmetric rela

tions satisfied by the weights and the nodes of the quadrature rule (5.4.1).
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T heorem  5.4.5 Given an integer r > 1, let 'ip{t) be an S^[u),P,b] distribution 

with (jj = {1 — r)!2, 0 < P < b < oo and a =  /3^/6. Let the real parameters 

- ,  - ,

(A g ,.,,A g M V ^ ) _  pM;z), n > r .  (5.4.11)

Let , where 1 < m  < n, be the positive distinct zeros of

the polynomials ..., z) and z%|/ < z^J  < < zg|^ be the positive

distinct zeros of the polynomials Bn{pn\, z). Then the weights and

and the vositive zeros z^^ and z«Y are related bvand the positive zeros z ĵj  ̂ and z^J  are related by

 "

P roof: From (5.4.11) we obtain

=  ^ B 4 A W ,... ,A W ;f /z )
~—n+‘2

,G)Since =  /3^/z^J , for 7 =  1,2,..., m, then

s : ( A « , . . . ,A < r ,4 v 4 - ’) =  - ,  4 1 ;  4 ' ) -
(5.4.12)

From (5.4.7) replacing z by /3^/z and t  by /3^/t, we obtain

Tin (Ai-,I A W ;  PVz) =  t ,,-. ^ 0 ;  ••’ ^"1' d i,{p y t).

Using the property (3.1.1) and the relation (5.4.11), we obtain 

:4»(A%,...,AM;/)^/z) =

73 /\(r) xfH nx
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Substituting 2 =  for 7 =  1,2,..., m, and since r =  1 -  2w, we obtain

A f Â^̂  \(r). /q2 / _  ^n(^n,l> ", f°j.-n+r ̂ n{Vn,l^ ••? ^n,r, j  /” , '^n,r, / ^n,i )  ̂ Ctyjyt).

(5.4.13)

For 7 =  1,2, ...m,

A(o ^  A4„(AW,.,,AW;/?Vz;;n
B ' M i . . . , x n - , 0 y z ÿ y

then from (5.4.12) and (5.4.13)

am f'-  n + y B u i n n l ,  ■■■''dnhO

From the definition (5.4.2),

4 , m + l - i  =  « =  1> - ,  m

^AM i =  l  „
« ? ) " ’

Since =  pi^/z^J, for 7 =  1,2,..., m, the result holds. □

As a consequence the following corollary holds.

C oro llary  5.4.5.1 Given an integer r > 1, let ij){t) be an 5^[o;, p, b] distribution 

with w =  (1 — r)/2, Q < P < b < 00 and a =  P'^/b. Let the real parameters 

A ^i,..., A^  ̂ he such that

^  AW;4 ,  n > r .

Let z(J(2 < ^nî? < < 2^1 ,̂ m  < n, be the positive distinct zeros of the

polynomials B»(A^i,..., A^); z). Then the weights and the zeros z)fj^ are 

related by

-, for 7 =  1, ...,m.
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We now make the following conjecture about the complex zeros or negative 

zeros of the polynomials Bm(A^L A%;2).

C on jectu re  5.1 For r = 2, let be an S^[-l/2 ,P ,b] distribution. I f  the re

lated polynomial Bn(An,i, A^^; z) has two negative zeros or two complex conjugate 

zeros, z^2i (he weights and and the zeros and

where z is the conjugate complex of z E € .

We can make remarks about the sign of the weights 7 =  1, ...,n. 

For the case r  =  1, if we choose

=  j =  1,2,
• (  ^n,i I

in the quadrature formula (5.4.1), then

f  f{t)dijj{t) > 0 .

Ja

Since f̂ ~̂ f{t) E F 2n-25 then

j )  / ( ( ) # ( ( )  =  4 ^ 4 1 ' ) " ' + '  {sK A ib; 4 " ) } ' .  '  =  4 2 ,. . . ,  n.

We can conclude that, since z(f^  ̂ > 0, for i =  2,3, ...,n  then > 0, for

i =  2,3, ...,n. If n is odd then also > 0- If ^ is even then has the same 

sign that z^[j .̂

We now consider r  =  2. Hence for S ^[-l/2 ,P ,b] distributions there exist real 

parameters and A^g such that

»>2-
^n,2, 7̂
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Let n — 2 < m  < n and < z)f^  ̂ < < z^^l I*® the distinct zeros of the

polynomial Bn(A^i, A^2i located inside the interval (a, 6).

We set

f (t )  = r"+ ^  I  „  l ' A s b i  . * =  l,2 ,...,m .

Since ^/(() G F 2n-3i from (5.4.1) we obtain

A ( ^ 7 4 - 4 ' ) '  ’

for 7 =  1,2,..., m.

Since

B' Â )̂' .(2) . (2). A(2)\
■ ^ n  V n , l ,  7 1 ) 2 ,  P  {  n , i  )  ^ 2  - ^ n \  n , l ,  T ^ n ,2 ,  • ^ n ,z  / ,

and (Bn(A^{, Â ^̂ ; 0))^ =  we then obtain 

V-^nV^n,!, ■■', 77)2, ■̂n,i ))  \  7%,z J

Since the left hand side is positive and

732/

we obtain
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C oncluding rem arks

This study of the distributions S^[cj,p,b] has led us to find interesting results 

involving the orthogonal L-polynomials and the associated polynomials. For 

example, some of the results in Chapter 3, namely Theorem 3.2.1 and Theorem 

3.2.2, and in Chapter 5, namely Theorem 5.3.2 and Theorem 5.3.3. In addition 

we have found interesting symmetric properties involving the weights and nodes 

of the related quadrature formulae. Theorem 5.3.1 for example.

From the study of the polynomials ..., Â }.; z) related to the distribu

tions S^[uj,p,b] with w =  (1 — r)/2 , we could find parameters A^{,..., A^ ^ 

such that the polynomials B n ( A ^ i , A ^ } ;  z) satisfy the inversive symmetric 

property

=  ^ . ( 4 - ' 4 ; 4 ,  » > r  (5.4.14)
■Bn[An,l, •••? A.n,r, Uj

In section 4.2 and section 4.3 we gave the values of A^{,..., A^ for r  =  1 and 

r = 2 respectively.

A future objective could be to find the values of the parameters A^{,..., A ^ , 

for r  =  3,4,... , such that (5.4.14) holds. Another objective is to find the exact 

location of the zeros of the polynomials B^(A^i,..., A ^; z) and the behaviour 

of the weights of the quadrature formulae related with these polynomials for 

r = 2,3 ,... . In particular, to find the values of the parameters A^{,..., Aĵ j., for 

r = 2,3 ,... , such tha t the zeros of the polynomials Bn(A^{,..., A^ ; z) are all real, 

distinct, and inside the interval {a,b).
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