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1.

GENERAL INTRODUCTION

One of the most puzzling problems in molecular biology, one that 

touches upon many aspects of cell function, is the wide variation in 

nuclear DNA content present in many different groups of eukaryotic 

organisms, and known as the C-value Paradox. The paradox arises because 

variation in C-value, the amount of DNA in the haploid genome, is not 

correlated with complexity of organization or position on an evolutionary

scale.

Surveys of DNA content in different taxonomic groups (Mirsky & Ris, 

1951; Rees & Jones, 1972; Sparrow et al., 1972) show that the lowest nucleic 

contents are present among viruses, and that with increasingly complex

organization the lowest C-values in the major phyla tend to increase.

Among multicellular organisms, C-values increase gradually through the 

sponges and coelenterates, and data from nematodes, echinoderms and molluscs

also fall into this pattern. Pew C-values are known for the annelids, but

the known ones are similar to the values for echinoderms and molluscs 

(Sparrow et al., 1972). Phylogenetic data are most extensive for the 

chordates, although the more primitive mammals have been only poohiy charac­

terized, and the data suggest that for higher vertebrates, evolutionary

development was preceded by a substantial increase in DNA content. Both 

the minimum vaiues and ranges of C-value for the urochordates, cephalo- 

chordates and agnathans, where known, reveal this trend, increasing 

gradually from 0.19 - 0.2 pg, to about 0,6 pg, to a value of 1.2 - 2.9 pg, 

respectively (Sparrow et al.. 1972). However, one qualifying factor is 

that the full range of C-values for these groups is not yet known. It is 

true, however, that minimum C-values within a group show a slight increase 

through the higher vertebrates, although this increase levels off among

birds and mammals. This general increase can be most easily explained by
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postulating that with increasing evolutionary advancement, there is an 

increase in the amount of information encoded in the genome,

However, two types of evidence suggest that there is no rigid correla­

tion between C-value and evolutionary advancement. The first of these 

is the observation that there is a wide spread of C-value in some groups 

of organisms, and even among the species of one genus, which can be expected 

to be closely related and of a similar degree of complexity. C-values 

range over nearly two orders of magnitude among the arthropods, and over 

four orders of magnitude among the algae. Among diploid flowering plants, 

haploid values range from 0.7 pg in Lihium usitatissimum to 56.1 pg in 

Lilium longiflorum (Rees & Jones, 1972). The significance of this vari­

ation within groups is still largely obscure.

The second line of evidence consists of the fact that in a large 

number of cases, though not all, primitive species have a higher DNA 

content than more advanced ones. In the case of the fish, for example, 

the initial increase in DNA content among the agnathans was probably 

followed by DNA loss, such that some of the more advanced teleost fish 

have C-values lower than some agnathans (0.6 - 4.8 pg as opposed to 

1.2 - 2.9 pg for the agnathans) (Goin & Goin, 1968). The Holostei have 

a similar though slightly narrower range of C-values, at 1.2 - 1.8 pg, 

again suggesting, some DNA loss. Other fish have intermediate values,

1.8 - 4.2 pg, but the major exception to this is the relatively primitive 

group, the Dipnoi, whose C-values can be as high as 60 pg.

The high C-values of the Dipnoi are similar to those of the urodele

Amphibia, which may share a common ancestor with these primitive fish.

At first sight this trend appears to be in opposition to the idea that 

primitive forms have high C-values. However, the more advanced amphibians,
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such as the anurans, have relatively low C-values. Low C~valu.es

(1.8 - 3*0 pg) are also characteristic of reptiles, so that it may he 

true to say that although minimum C-value within a group increases 

slightly with complexity of organization, the emergence of the reptiles and. 

possibly also birds and mammals, involved a dramatic drop in C-value.

Birds are characterized by C-values of the order of 1.2 - 1.8 pg, 

appreciably lower than those of more primitive groups such as reptiles and 

amphibians. The range of variation is somewhat greater among the mammals, 

but the highest mammalian C-value is that of a marsupial. Marsupial 

C-values range from 1.8 - 5.4 pg, and together with the monotremes, they 

are the most primitive mammalian group. The C-values of monotremes are 

in the region of 3.6 pg, whereas those of the Eutheria, the most advanced 

group, range from a minimum of 5 pg to a maximum of 5.9 pg for the 

Aardvark (Bachmann et al. . 1972; Sparrow et al.. 1972).

This correlation of evolutionary advance with decrease in C-value 

is also seen among plants, where angiosperms in general have lsss DNA

than either gymnosperms or ferns; however Trillium and Lilium. both higher 

plants, have the highest recorded plant C-values. It has been suggested

therefore, that low C-values mark the ends of evolutionary lines, which 

become extinct because less DNA is available for mutation to act upon, 

thus allowing for the creation of fewer ’’new” genes (Einegardner, 1968).

The more advanced birds show the lowest C-values among advanced verte­

brates and their development seems to have been confined to a type of 

speciation perhaps best described as "variation on a theme" inasmuch as 

no two bird species are as divergent as the bat and the whale among

mammals, a group characterized by C-values slightly higher than those of 

birds (Goin & Goin, 1968).

valu.es
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In a few cases, there does appear to "be a link between high C-value 

and evolutionary advancement within a group. Among the molluscs, C-values 

follow the general trend of C-value, inasmuch as the highly evolved squid 

has a higher C-value than more primitive molluscs.

Although C-values have been determined for many members of many 

groups, and their patterns exhaustively studied, few conclusions have 

been drawn about the origin and significance of this variation. Though 

higher organisms in many cases have more DNA per cell than lower organisms, 

the variations observed cannot be explained by postulating that all species 

with high C-values have more genes. Evidence from genetic analysis and 

reassociation experiments in a variety of species supports the idea that 

most eukaryotes have only between 4,000 and 20,000 genes, and that the 

greater part of the DNA does not code for proteins (Lodish et al.. 1973;

Calau et al.. 1974'$ Lewin, 1975; Davidson, 1976; Hereford & Rosbash, 1977; 

Garcia-Bellido & Ripoll, 1978). Range in C-value occurs over a greater 

number of orders of magnitude than does the current estimate of range in

gene number.

Related to the data on gene number are observations on such morphological

characteristics of chromosomes as lampbrush chromosome loop length, and 

recombination rate. The lateral loops of amphibian lampbrush chromosomes, 

the extended transcriptionally active chromosomes found in oocytes, are 

much longer In high C-value species, i.e. the lateral loops of Axolotl 

chromosomes are longer than those of Triturus, which in turn exceed in

length those of either Rana or Xenopus. If, as has been suggested,

lampbrush chromosome loops comprise functional units, then high C-value

organisms must have the same number of such units as low C-value organisms.

C-value does not appear to correlate with recombination rate as 

measured by recombination indices. The recombination index, obtained by
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adding together the haploid number of chromosomes and the mean number of 

chiasmata, represents the mean number of blocks of genes segregating at 

meiosis. A ten-fold increase in C-value is not accompanied by a ten-fold 

increase in recombination rate (White, 1973), which again suggests that 

high C-values cannot be attributable solely to increase in gene number.

Much variation in C-value, especially among plants, can be explained 

by invoking polyploidy (Rees & Jones, 1972; Nagl, 1978) and, in some cases, 

polyter^ (Brady & Clutter, 1974). However, polyteny has never been observed 

in the germ line chromosomes of any species, although for many years it

was assumed in order to explain gross variation in chromosome size

(Rothfels et al.. 1966).

The C-value paradox itself only emerged when it became clear that

the chromatids of all organisms are ’’unineme”, that is, they contain only

one DMA duplex. Evidence from a variety of sources has led to this idea

(see Callan; 1972 for review). The experiments of Taylor, Woods and Hughes

(l957) provided the first evidence for the semiconservative replication of

eukaryote DNA. Root tip cells of Vicia faba were allowed to incorporate 
3
H-thymidine during an S-phase and the distribution of label in fixed meta­

phase chromosomes, after various times, was examined by autoradiography.

It was found that metaphase chromosomes which had incorporated label during 

the immediately-preceding S-phase were labelled in both chromatids. After

two rounds of replication, in the presence and then in the absence of label, 

the chromosomes were labelled in one chromatid only. These observations 

have been repeated in other systems (Callan, 1972) and also provide circum­

stantial evidence for uninemy, inasmuch as it is difficult to visualise the 

orderly segregation of labelled from unlabelled DNA duplexes in a polymeme 

chromosome labelled in this way.
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Further evidence for the uninemy of the chromatid comes from the 

digestion experiments of Gall (1963)• The kinetics of digestion, by 

pancreatic NDase, of lampbrush chromosome loop axes and interchromomeric 

axes are consistent with the chromatid consisting of only one double 

helix, and the chromosome comprising two duplexes. If newt lampbrush 

chromosomes are digested with trypsin and examined by electron microscopy, 

it is seen that the DNAse-sensitive trypsin-resistant lateral loop axis 

is some 2 - 3 nm wide, whereas the main axis between chromomeres is some 

3 - 5 urn wide (Miller, 1965). These dimensions also allow for there being 

only one DNA duplex per chromatid.

More recent work on the viscoelastic properties of DNA (Kavenoff 

et al.. 1975) also supports the contention that the eukaryote chromatid 

is uni. Viscoelastic measurements indicate the presence of 'dhromosome- 

sized” DNA molecules in many species.

The only serious evidence against the idea of uninemy concerns the 

phenomenon of ’’isolabelling”, where, in instances where only one chromatid

of a chromosome should be labelled, both chromatids appear to be labelled.

However, isolabelling is now known to be a consequence of multiple

sister-chromatid-exchanges, plus poor autoradiographic resolution, as 

shown by the fact that BUdR incorporation followed by ''flus’rescence Giemsa '’ 

staining, which is independent of labelling dbes not show this phenomenon 

(Perry & Wolff, 1974).
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Evidence exists in Lathyrus spp. (Narayan & Rees, 1977) and. amphibians 

(Macgregor et al.. 1976; Baldari & Analdi, 1976, 1977) that variation in 

nuclear DNA amount may he attributable to differences in the amount of 

repetitive DNA. However, as the function of repetitive sequences is 

still largely obscure, the significance of the observed variation in

C-value is still no clearer.

Many explanations have been proposed to account for the observed wide 

differences in DNA content. Xt has been suggested that non-coding DNA is 

largely without function, the result of genetic drift and the random 

accumulation of sequences in the genome (Ohno, 1972).

It can be demonstrated that there is a positive correlation between 

C-value and nuclear size, cell volume and cell-cycle length in a large 

number of different cell types (Defend! & Manson, 1963; Zalik & Yamada,

1967; Baserga & Wiebel, 1969; Nagl, 1974; Szarski, 1976; Olmo & Morescalchi, 

1978)* In both plant and animal species, life-cycle time correlates posi­

tively with C-value. These* observations suggest that C-value may be 

subject to strong selection pressure, although it is difficult to prove 

a causal relationship. For these reasons, it has been proposed that DNA 

has two major functions unrelated to its coding capacity. The first of 

these is the control of nuclear volume by the number of replicon origins, 

in a manner similar to that which is postulated to occur in bacteria.

The general correlation that exists between the size of actively dividing 

cells and their DNA content, in both pro- and eukaryotes may imply that all 

cells have a common mechanism of size determination. Among prokaryotes, 

cell division can take place only after the cell has completed a cycle of 

replication and has an appropriate content of DNA for its mass. New

cycles of replication can be initiated only when the cell achieves an 

appropriate and constant ratio of cstl mass to the number of origins.
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This suggests that the cell can in some way titrate its mass to judge when 

it is ready for initiation, because the greater the number of origins, the 

greater the cell mass required before replication can begin.

Cells could titrate their mass if a critical amount of some protein

controls initiation of replication. This protein could be an initiator 

synthesized by the cell and whose accumulation triggers initiation, or an 

inhibitor whose dilution by cell growth is necessary for replication to 

begin (Lewin, 1974).

The second major function of DNA is the determination of nuclear 

volume by its overall bulk. Cell and organismic growth rates are deter­

mined by cell volume and by the area of nuclear envelope available for

transport, and these parameters in turn are dependent upon nuclear volume 

and therefore DNA content, ^he great diversity of cell volumes and growth 

rates, and therefore of DNA contents, among eukaryotes, is postulated to 

arise from a varying balance between selection for small cells, rapid 

growth rates, and therefore low C-values, and selection for large cells, 

slow growth rates and therefore high C-values (Cavalier-Smith, 1978).

Evidence also exists showing that cell generation times and other cell 

cycle parameters can vary with cell type within an organism, however 

(Brown & Oliver, 1968; Callan,1972; Balls & Godsell, 1973). It is proposed 

(Cavalier-Smith,.1978) that polyteny, endopolyploidy and the synthesis of 

nucleoskeletal RNA (as opposed to heterogeneous nuclear RN& or messenger 

RNA, which contain protein coding regions) constitute a more finely tdned 

mechanism of modulating nuclear and hence cell size, and of allowing

variation in cellular parameters over and above that permitted by varying

the C-value.
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The C-value Paradox lies at the very heart of all speculation about 

genome Structure. Its elucidation will affect ideas on gene organization 

and regulation, the evolution of genomes and species, chromosome structure,

and therefore on cellular events further removed from these levels of

organization.

My thesis describes experiments designed to elucidate some aspects 

of the C-value Paradox. The systems used were established cell lines from 

two amphibian species Triturus cristatus carnifex (Rudak, 1976) and 

Xenopus laevis (Rafferty, 1969), closely related on the evolutionary scale 

and showing a difference in C-value of about tenfold. Both genera come 

from a group of animals showing the largest variation in C-value, and 

they are two members of a series of increasing C-value running from 3.2 pg 

per haploid nucleus in Limnodvnastes tas to 52 pg in Necturus (Rees &

Jones, 1972). As such, they were considered ideal for this study.

Both Triturus and Xenopus have been the subject of a large body of

experimental work having a direct or indirect bearing on the work described

below. The lampbrush chromosomes of both species, the extended and

transcriptionally active chromosomes found in the oocytes, have been 

studied in great detail, using a variety of techniques (Gall,.1963;

Snow & Callan, 1969; Sommerville, 1973; Malcolm & Sommerville, 1974;

Muller, 1974; Mott & Callan, 1975; Macgregor & Andrews, 1977; Old et al., 

1977; Hill, 1979, in press). In addition to morphological studies, 

biochemical data on sequence arrangement (Rosbash et al, 1974; Chamberlin, 

1975; Baldari & Amaldi, 1976, 1977) DNA replication (Callan, 1972, 1975, 

1976) and transcription (Malcolm & Sommerville, 1974; Sommerville, 1977) 

also exist, so that these species offer an unique opportunity to correlate 

morphological and biochemical data with studies of possibly C-value

dependent events,
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The C-value Parados can he investigated in a number of ways. One 

approach is biochemical, involving the use of techniques such as nucleic 

acid hybridisation, direct study of DNA and RNA, and nucleic acid restric­

tion and sequencing, all of which yield information on the fine structure 

of the hereditary material. On the other hand, direct morphological 

studies of the chromatin, relying upon such techniques as chromosome 

analysis, microdensitometry and autoradiography, and giving a more general 

overall view of genome organization, can be done.

The approach used here is mainly morphological and involves the use 

of the Miller spreading technique for visualising actively transcribing 

regions of chromatin (Miller, 1966; Miller & Beatty, 1968; Miller & Beatty, 

1969a, b'; Miller et al., 1970; Miller & Bakken, 1972; Miller & Hamkalo, 

1972). The C-value Parados has therefore been investigated at the most 

fundamental level of organization next to that revealed by DNA sequencing 

studies, namely transcription, the process whereby the information encoded

in the chromatin is made available to the cell.

In this investigation, the results of morphological experiments could 

be compared to biochemical analyses because both tissue cultures and live

animals of each species were available, allowing more refined study using 

sensitive biochemical techniques. Moreover, tissue-culture cells permit

easy quantification of results, facilitating both morphological and 

biochemical approaches. To date only oocytes, somatic cells, primary

cell lines of limited lifetime, and HeLa cells have been exploited, whereas

chromatin is more easily manipulable in tissue culture cells, and it is

possible to optimize spreading conditions in a way not possible in many

cell types.
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One advantage that arose, of having both tissue cultures and live 

animal a available, was that both species-specific and tissue-specific 

patterns of transcription could be compared. Extensive data exist concern­

ing both ribosomal and non-ribosomal transcription in a large number of 

plant and animal species. Ribosomal RNA synthesis has been described in 

newt and frog oocytes (Miller & Beatty, 1969a, b; Jordan & Loening, 1977; 

Scheer et al.. 1975, 1977) bacteria, filler et al., 1970; Hamkalo & Miller, 

1975)f the house cricket (Trendelenburg et al., 1975), the algae Acetabularia 

and Chlamvdomonas (Berger & Schweiger, 1975a, b, c; Soring et al.. 1976), 

rat and Chinese hamster cells (Puvion-Dutilleul et al., 1977a, b),

Qncopeltus fasciatus, a hemipteran (Poe, 1977), the slime mold Physarum 

polvcephalum (Grainger & Ogle, 1978) and Chironomus (Derksen et al., 1975)* 

Nonribosomal transcription has been characterized in Drosophila, for both 

nonpolytene (Hamkalo et al. 1975, Glatzer, 1975) and polytene (Derksen,

1975) nuclei, as well as in Chironomus polytene chromosomes (lamb & Daneholt, 

1979), Trichosia pubescens. a sciarid fly (Amabis & Nair, 1976), 0. fasciatus 

(Poe et al.. 1976), the silk-worm Bombyx morj (McKnight et al.. 1976) rat 

liver (Puvion-Dutilleul et al.. 1978) and newts (Angelier & Lacroix, 1975; 

Pranke et al.. 1976a). In addition a few quantitative studies have been 

performed (Mcknight et al.. 1976; Poe, 1977) but to my knowledge no direct 

results of a comparison between species, using the Miller spreading tech­

nique, have so'far been published, although some biochemical data are 

available (Rosbash et al.. 1974; Lengyel & Penman, 1975)• The Miller 

technique is admirably suited to direct analysis of transcription patterns 

and is thus an unique tool with which to study the C-value Paradox, because 

it reveals a level of organization immediately above that of the chromatin

itself.
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CHAPTER I.

TRANSCRIPTION PATTERNS IN CULTURED CELLS OF Xenopus laevis AND

Triturus cristatus carnifex

INTRODUCTION

A fundamental requirement for an understanding of the control of 

gene expression is a knowledge of the function of the ’’noncoding” sequences 

in the eukaryote genome. This problem is intimately connected with that 

of the C-value Paradox, the lack of obvious correlation between complexity 

of organization and genomic DNA content.

Evidence from genetic analyses, reassociation and recombination experi­

ments indicates that most organisms possess only some 4,000 - 20,000 

different genes (Davidson & Hough, 1971; Lodish et al.. 1973; Oalau et al., 

1974; Lewin, 1975; Davidson, 1976; Hereford & Rosbash, 1977; Garcia-Bellido 

& Ripoll, 1978)- Although gene numbers as measured by single-copy DNA 

saturation with mRNA are routinely overestimates (Riper, 1979), the corrected 

figure of 10 - 15,000 different genes still varies over less than one order 

of magnitude, whereas C-values vary over several orders of magnitude.

Analysis of amino-acid and nucleotide sequences indicates that strict 

constraints apply to both genes and their products, if by ’’gene1’ is meant 

the coding sequence on the genome. The histones and cytochromes of species

evolutionarily far apart are almost identical in both amino-acid sequence 

and overall length, but the composition of proteins whose function can 

tolerate more change can vary more between species. Although the redundancy

of the genetic code allows some substitution of nucleotides in the sequences 

coding for those proteins whose amino-acid sequences are highly conserved, 

protein size and coding sequence length tend to remain similar between 

species, in marked contrast to C-value.
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The variation in C-value among related, species of similar complexity, 

must therefore he largely due to the presence of noncoding sequences in 

the DNA. Observations indicate that non-coding DNA is interspersed with 

the coding sequences, and the interspersion patterns fall into three main 

classes. The noncoding sequences themselves are either repeated throughout 

the genome, or unique, and the patterns of their interspersion have suggested 

that they may he involved in gene regulation. The so-called "Drosophila” 

or long-period interspersion pattern is characterized hy alternating 

repetitive and nonrepetitive sequences both over 5 kilohases long. The 

"Xenopus" or short-period interspersion pattern characteristic of most 

moderately large genomes, consists of repetitive sequences only a few 

hundred base-pairs long, while the interspersed unique DNA is from one to 

several kilohases in length (Angerer et al.. 1975; Davidson et al.. 1975b; 

Angerer et al.. 1976; Efstratiadis et al., 1976; Davidson et al.. 1977).

The third interspersion pattern is characteristic of large genomes, such 

as that of wheat, where it was first described (Plavell & Smith, 1976).

In wheat, about 50 - 65% of the genome is cmmposed of repeated sequence 

DNA with short repetitive sequences of 550 - 650 base pairs in length 

interspersed with long repetitive sequences of 6 - 10 kilohases.

In all higher eukaryotes, a high molecular weight RNA fraction has 

been observed (Attardi et al.. 1966; Penman et al.. 1968; Soeiro et al..

1968; Getz et al.. 1975; Lewin, 1975). This RNA shows a very high rate of 

turnover, as much as 90% in HeLa (Soeiro et al.. 1968), and is mostly 

confined to the nucleus. Of short half-life (50 min - Uh) and a hetero­

disperse size distribution, it is generally known as heterogeneous nuclear 

RNA (hnRNA). The sequence complexity of hnRNA is generally greater than 

that of messenger RNA (Getz et al., 1975; Lewin, 1975) and its base- 

composition is DNA-like. Recent work (Davidson et al.. 1977) has shown
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that the hnRNAs of many species consist largely of interspersed, repetitive 

and nonrepetitive sequence transcripts. In the sea-urchin gastrula, 50% 

of the total unique sequence DNA is represented in hnRNA, whereas only 

2.7$ is represented in polysomal structural gene transcripts, so that many 

more individual sequence elements are present in hnRNA than are contiguous 

with structural genes. Current estimates of gene number, and the fact that 

the rate of divergence of unique sequences in hnRNA is greater than for 

structural gene sequences, suggest that only a small proportion of the 

unique sequences in hnRNA actually code for protein,

The structure and characteristics of messenger RNA are very different.

Most eukaryote messengers code for only one protein and are from

400 - 16,000 base-pairs in length, protein and messenger sizes being closely 

parallel (Lewin, 1975), and much smaller than hnRNA. The presence of 5‘ 

poly A tracts and a small proportion of noncoding sequences included within 

messenger RNA have recently been demonstrated, but in general, messenger 

RNA is derived from unique sequences (Jelinek et al.. 1975; Puruichi et al.. 

1976). HnRNA and polysomal messenger hybridise strongly, indicating that 

hnRNA must include coding sequences, but it is only very recently that a 

precursor-product relationship has been established between the two (Giorno 

& Sauerbier, 1976; Bastos & Aviv, 1977; Egyhazi, 1978).

Prom these various data, it would seem reasonable to suppose that

increase in C-value is accompanied by a corresponding increase in the length 

of heterogeneous nuclear RNA, i.e. that more adjacent noncoding DNA is

transcribed along with the coding sequences in organisms with higher C-values

A number of lines of evidence are consistent with this idea, but the

great bulk comes from RNA extraction experiments, where hnRNA is extracted 

from nuclei, denatured, and its size determined by sedimentation on gradients 

or movement on gels. In the case of Aedes and Drosophila (Lengyel & Penman,
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1975}, where the difference in C-value is between 5 and 6, Aedes, the higher

C-value organism,makes hnRWA from 2-2.5 times longer than Drosophila.

A result leading to a similar conclusion was obtained for yeast, by

Hereford & Rosbash (1977), who showed that the primary transcript is the

sama size, or only slightly longer, than the messenger. Given the small 
ygenome size (4.8 x 10 b.p. haploid value) of yeast, this result is in 

accord with the idea that hnRNA length increases with C-value (Lodish 

et al., 1973)

A number of other results also demonstrate that the mean molecular

weight of hnRHA shows a positive correlation with C-value. There is a

progressive increase in C-value from the slime mould Dictyostelium

discoideum, through the echinoderm Lytechinus pictus, chicken and rat

ascites cells, which is accompanied by an increase in the molecular weight 

of hnRNA from 0.5 x 10 D, through 2.0 s 10 D, 1.6 x 10°D to a value for 
rat of 5 - 10 x 10% (Chung, 1974; Williamson & Tobin, 1977).

Recent results (Scheer et al., 1979) demonstrate that primary RNA 

transcript molecules can be processed even when still attached to the DNP 

(Derman et al., 1976; Giorno & Sauerbier, 1976). The relationship of the 

primary transcript to hnRNA is still obscure so that it is not possible to 

conclude that the two are homologous. However, the molecular weight dis­

tribution of some hnRNAs does reflect that of the primary transcripts 

(Scheer et al., 1979) so that it may be that in some cases at least, primary 

transcript and hnRNA are directly related.

Bearing these considerations in mind I decided that it would be

interesting to look at primary transcript size in Xenopus laevis and 

Triturus cristatus carnifex. The C-values of these species are 5«1 pg and 

26.4 pg respectively, a difference larger than any so far employed in



investigations of C-value dependent differences in RNP size. If the above 

data are correct, one might expect to find a large difference in primary

transcript size between these two species. Furthermore, the Amphibia 

iilave been the subject of a large body of biochemical investigation, so

that it would be quite easy to relate my findings to previous work.

However, evidence of various types suggests that the RNA extraction

results mentioned above are to a large degree unreliable. Most of the 

routine extraction and sizing procedures (Federoff et al., 1977) result in 

the production of large persistent aggregates of RNA that cannot be 

dissociated unless by the most extreme denaturation conditions (Spohr 

et al., 1976). The phenol-extraction procedure used in many investigations 

(Holmes & Bonner, 1973; Lengyel & Penman, 1975; Hereford & Rosbash', 1977) 

accelerates reannealing and aggregation of transcripts.

In addition, indirect evidence of another sort casts doubt upon the 

hypothesis that hnRNA size and C-value are positively correlated. In the 

last two or three years it has become clear that many of the genes of 

eukaryotes, such as the p, Y, and S globins, chicken ovalbumin genes, 

mitochondrial genes, ribosomal genes, and transfer RNA genes, contain 

noncoding sequences inserted within the coding region of the gene (Breathnach 

et al.. 1977; Jeffreys & Flavell, 1977; Bos et al.. 1978; O’Farrell et al.. 

1978; Valenzuela et al.. 1978; Hahn et al.. 1979; Lai et al., 1979; Royal 

et al., 1979). These "introns" are transcribed into hnRNA, but later 

excised, giving rise to a messenger RNA molecule which is much smaller than 

the primary transcript (Roop et al., 1978). The position and length of 

these introns has been exhaustively studied for the p globin gene in man, 

rabbit, and mouse (Jeffreys & Flavell, 1977; Mears et al., 1978; Miller 

et al., 1978; Tilghaain et al.. 1978; Little et al.. 1979). The results

16.
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show that between amino-acid, positions 101 and. 120, for rabbit 3 globin,

104 and. 105 for mouse 3 globin, and for a similar position in human 3 globin, 

an intron of from 600 - 1,000 base-pairs in length exists. The longest 

intron is found in the human 3-globin gene, and of these three species, 

the human genome is the largest, at 5*65 pg haploid value (Bachmann, 1972b). 

Both rabbit and mouse have a C-value of about 2.5 pg. Thus, although there 

is a slight increase in intron length with C-value, it is probably not great 

enough to affect hnRNA size appreciably. However, it could be argued that 

a larger difference in C-value than the one that exists betweenthese three 

species, is necessary to demonstrate a significant difference in ’’intron”

length.

It seemed to me, therefore, that to study primary transcript size by 

means of the Miller spreading technique would be a good way of checking the 

work done to date. This spreading technique, devised by Oscar Miller and 

his co-workers (Miller, 1966; Miller & Beatty, 1969a, b), consists essen­

tially of the manual opening, or lysis, of cells or nuclei in ”pH 9*0 water” 

or a weak alkaline solution of the commercial dishwashing liquid "Joy”.

The released chromatin is allowed to spread in these hypotonic solutions

before being centrijfuged through sucrose-formalin fixative on to an electron

microscope grid.

This technique is more reliable than extraction, as a means of deter­

mining hnRNA length, because it is direct and rapid, and although the degree 

of stretching of the primary transcripts can vary, by using ribosomal genes

as an internal control, one can assess this. Contamination with cytoplasmic

RNA is eliminated because only those molecules still attached to the chromatin 

are considered. Finally, the problems due hnRNA aggregation are removed, 

because aggregates are easy to spot in these spread preparations, and only

clear single RNP molecules need be measured.
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The Miller technique has not been used to invessigate transcriptional 

patterns in related species with widely different C-values, where the lack 

of correlation between C-value and organizational complexity is particularly 

clear. To date, the organisms studied include Trichosia pubescens, a 

sciarid fly (Amabis & )Nair, 1976), Strongylocentrotus purpuratus (Busby & 

Bakken, 1979)# various species of Drosophila (Derksen, 1975; G-latzer, 1975; 

Laird & Chooi, 1976; McKnight & Miller, 1976), the hemipteran Qncopeltus 

fasciatus (Poe et al. , 1976), yeast, HeLa cells (Hamkalo & Miller, 1975)» 

the silkworm Bombyx mori (McKnight et al.. 1976) and various tissues of the 

rat (Puvion-Dutilleul & Bernadac, 1976; Puvion-Dutilleul et al.. 1977a).

The C-values of these organisms are in the main quite small, ranging from 

haploid values of about 0.03 pg for yeast to about 3-0 pg in the case of 

HeLa cells (Sparrow et al. . 1972)* Although a positive correlation has 

been demonstrated to exist between C-value and transcription unit size in 

Drosophila, Qncopeltus and S. purpuratus (Busby & Bakken, 1979)> in most 

cases the rarity and low ribonucleoprotein fibril density of transcription 

figures precludes all but descriptive studies of RNA synthesis.

For this reason, therefore, I decided to use two amphibian species 

which differ greatly in C-value, and I extended the scope of my investigation 

by including Necturus maculosus, with a C-value of 52 pg, as well as 

Xenopus laevis and Triturus cristatus carnifex. I felt that this together

with the close relatedness of these three genera, and their similarity in

organizational complexity, would increase the likelihood of the detection

of. substantial differences in transcription pattern. Both cell cultures 

(Rafferty, 1969; Rudak, 1976) and live animals of the species X. laevis and 

T.c. carnifex were available, as were specimens of N. maculosus, so that

both morphological and biochemical experiments, on a variety of cell types, 

could be performed. I felt that this advantage outweighed the fact that
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established cell lines such as HeLa, and the cells used hy me (Hamkalo 

et al.. 1973)» unlike primary cultures or somatic cells (Puvion-Dutilleul 

et al., 1978), tend to show only low levels of transcriptional activity.

The Miller technique yields information about the type and length of 

gene being expressed. RNA polymerase density (Puvion-Dutilleul et al., 

1978), the relationship of transcription to DNA replication, if any 

(McKnight & Miller, 1977), the degree of activity of the chromatin (McKhight 

& Miller, 197'S), have been investigated, and electron microscopic autoradio­

graphy (Bouteille et al.. 1974a, b, 1976; Bouteille, 1976; Angelier et al.. 

1976, 1979; Villard & Fakan, 1978) has considerably extended the range of 

this technique. However, the sample of cells that can be examined is neces­

sarily very small, its size being limited by the amount of chromatin on an

electron microscope grid, which, if too great, obscures the transcripts. 

Biochemical techniques, with their much higher sensitivity and sample size, 

form a valuable means of checking evidence from spread preparations.

■ It was therefore necessary to examine the rate of incorporation of
3H-uridine by these cells, which would yield information about rate of RNA 

synthesis with time and with percent cell cycle time, which in its turn 

could be used to derivee mean transcription unit size, and so supplement 

the data from Miller spreads. Although the results of RNA extraction 

experiments alone are inadequate as an index of hnRNA size, I felt that 

Vy combining these with Miller spreads, the resulting data would be more

reliable that what has hitherto been provided.
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MATERIALS AND METHODS

Part 1.

(i) Tissue culture techniques

The techniques described, here are modifications of those used by 

Rudak (1976).

(a) Cell cultures

The cell cultures used in these investigations were established lines

from X. laevis and T.c. carnifex. The X. laevis line was originally derived 

from Dr. K.A. Rafferty's culture A6, an aneuploid line of epitheloid mor­

phology derived from kidney cells (Rafferty, 1969). It had been in con­

tinuous culture since 1965. The T.c. carnifex cell line was a predominantly 

diploid culture, of fibroblastic morphology, originating from the abdominal 

skin of a female newt. It was established by Dr. Edwina Rudak (1976) in 

this department and had been in culture since 1976. Neither culture showed 

signs of phase III degeneration (Rudak, 1976),

(ii) Sterilization procedures

(a) Tissue culture room

All manipulations requiring a sterile environment were carried out 

in a sterile room specially designed for this purpose. The room and its 

contents could be irradiated with UV light from 2 wallmounted bactericidal 

lamps (Hanovia, Model 13A), which were switched on overnight or immediately 

before the room was to be used.

Actual subculturing of cells, and all other processes requiring a

sterile environment, took place in the tissue culture room under a sterile
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hood (Bassaire) fitted with a fan and light. Before use, all working 

surfaces were swabbed with 70% ethanol on a cotton wool swab, and this was 

repeated at intervals during use. When the fan was turned on, a bunsen 

burner with a small blue flame was placed inside the hood and used for

flame sterilization.

(b) Instruments

Rubber policemen, used for scraping cells for Miller spreads off 

plastic culture dishes, were first washed in distilled water, dried and 
wrapped in aluminium foil, and dry-air sterilized at 1OO°C. For purposes 

of subculture, sterile trypsin rather than a rubber policeman was used,

and trypsinisation was carried out under sterile conditions.

(c) Glassware

All tissue-culture glassware to be sterilised was soaked for at least 

8 hours in a 2% solution of the detergent RBS 25. All labels were removed 

and the glassware rinsed seven times in tap water and twice in distilled 

water. After drying in a heated drying cabinet, the mouths and necks of

all bottles were sealed securely with a double-layer cap of aluminium foil. 
Bottles were sterilized by dry-heat, for 2 hr_ at 16O°C. Bottle caps were 

placed in deep petri dishes or small beakers, wrapped in 2 - 5 layers of 
aluminium foil, and sterilised by dry heat for 2 hrr at 100 - 105°C. Bottles 

were capped in "the sterile hood, and protected by foil caps.

Glassware used for Miller spreads or RNA extraction was soaked in

distilled water overnight, washed in the same manner as for tissue-culture

glassware, and dried in a heated drying cabinet, before being capped with 
foil and sterilized by dry.heat for 4-5 hrs at 180°C, to inactivate 

nucleases. All other equipment was washed as above, and dried before use.

Gloves were worn at all times.



22.

(iii) Solutions.

Triple distilled water was sterilized either hy Millipore filtration 

into sterile hotties or autoclaved in 100 ml aliquots in sterile bottles, 

for 15 min at 15 Ih/sq in. pressure.

(a) Amphibian wash solution
Grams

per litre NaCl 6.100

KOI 0.58

NagHPO^ 1 .065

a-D glucose 0.400

(Armour) BSA (50%) 10.0 ml

(Gihco) phenol red (w/v 0.5%) 2.0 ml
sterile

triple distilled water to 1000 ml

Sterilize hy Millipore filtration into sterile hotties.

Store: 100 ml aliquots at +4°C,

To use: add 1.0 ml penicillin/streptomycin per 100 ml aliquot.

(h) Versene solution

per litre Na^EDTA 0.200 g

' NaCl 6.000 g

KOI 0.200 g

Na2EP04 1.065 g

sterile phenol red (w/v 0.5%) 1.0 ml

triple distilled water to 1000 ml

Sterilize hy Millipore filtration into sterile hotties.

• Store: at room temperature.
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(c) Stock Eagle’s MEM purchased sterile in 500 ml hotties.

Store: at +4°C.

To use: Cells cultured in medium comprising

88 ml Eagle’s MEM )
)

10 ml foetal calf serum )
) referred to as ’’MEM'1

1 ml glutamine )
)

1 ml penicillin/streptomycin )

(a) Eagle’s MEM (IX) with Earle's salts, with 1-glutamine. 
Gibco Cat. no. 109.

(b) Sterile foetal calf serum, in 100 ml bottles.
Gibco Cat. no. 629 stored in 10.0 ml aliquots in sterile 
plastic centrifuge tubes (Ealcon) at -20°C,

(c) 1-glutamine (200 mM 100s) Sterile in 100 ml bottles.
Gibco Cat. no, 503. Stored in 1.0 ml aliquots in 
sterile plastic tubes (Ealcon) at -20°C,

(d) Eagle’s basal medium (BME) in amphibian salts, with 0.5% lactalbumin 

hydrolysate.

per litre NaCl 5.15 g 1

KOI 0.075 g )

MgS047H20 0.204 g ) 500 011

Ca(N05)2 4H20 0.078 g )
)

CaCl2 )

Na^HPO^ . 0.03 g )
) 250 ml

kh2po4 0.037 g )

MaHCO . 0.750 g )
3 ) 250 ml

lactalbumin hydrolysate (Difco) 5.0 g )

sterile phenol red (w/v 0.5%) 1.0 ml

triple distilled water to 1000 ml
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NaCl, KC1, MgSO^TH^O, CaCNO^)^!!^© and. CaCl^ were dissolved in 500 ml 

of distilled water. The phosphates were dissolved in 250 ml distilled 

water. NaHCO^ lactalhumin hydrolysate were dissolved in a further 250 ml 

distilled water. These three solutions were then combined, and phenol red

was added. This procedure was found to prevent precipitation, which occurred

when all the components of the medium were dissolved together in 1 litre of

distilled water.

Sterilize by Millipore filtration into sterile bottles

Store: at +4°C.

To use: 86 ml medium

10 ml foetal calf serum 

1 ml BME vitamins (lOOx)

1 ml BME amino-acids (lOOx)

1 ml penicillin/streptomycin 

1 ml 1-glutamine

)
)
)
)
) referred to as ’’BME" 
)
)
)
)
)
)

(a) BME (lOOx) amino-acids without 1-glutamine, 100 ml aliquots 
Gibco Cat. Mo. 1055
Stored at +4°C.

(b) BME (lOOx) vitamin solution, 100 ml aliquots 
Gibco Cat. no. 104.
Stored at -20°C.

(e) Penicillin-streptomycin. Difco 6 x 10 ml vials (5854-60)

Obtained in sterile desiccated form in vials, each containing 100,000 

units of penicillin G-potassium, and 100,000 pg streptomycin sulphate.

Each vial was rehydrated with 10.0 ml sterile triple distilled water, and 

stored as 1 ml aliquots in sterile plastic tubes, at -20°C. Unreconstituted 

vials were stored at +4°C.
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(f) Trypsin. Difco Bacto-trypsin 6 x 10 ml vials, code 0155-60

Obtained in sterile desiccated form in vials. Each vial was rehydrated 

with 10 ml sterile triple distilled water, giving 10,0 ml of a 5% solution 

of trypsin. This was stored in 1 ml aliquots in sterile plastic centrifuge 
tubes at -20°C. Unreconstituted vials were stored at +4°C.

To use: Xenopus

1 ml of 5% trypsin was added to 99 ml versene to give 100 ml of a 

0.05% solution, which was stored either as 10 ml or 2 ml aliquots, in 

sterile plastic centrifuge tubes, at -20 C.

Triturus

1 ml of 5% trypsin was added to 99 ml amphibian wash solution, and 

divided into 10 ml aliquots. These were stored at -20°C.

(iv) Tissue culture vessels (Falcon) Cat.no.

(a) Tissue culture flasks

25

75

cm^ growth area, 

cm^ growth area.

20 per pack, 500/case 3013

30245 per pack, 100/case

(h) Petri dishes

60 x 15 mm 20 per pack, 500/case 5002

(c) Tubes with caps

17 x 100 mm 2001

12 x 75 mm 2005F

(a) Pipettes (sterilin)

1 J0 ml serological individually wrapped 106B

5.'0 ml serological 10 per pack 154

10.i0 ml serological 10 per pack 155
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(v) Culture methods

(a) Procedure used, to subculture cells of Xenopus laevis

To subculture cells, old medium was decanted and the monolayer washed

twice with 5 ml versene. The wash solution was decanted and 5 ml fresh 

versene, together with 1.5 ml 0.05% trypsin, was added. Trypsinization 

was allowed to proceed for 5 mins, at 25°C, after which the culture vessel 

was gently rocked, to promote detachment of the cells. 1.5 ml of BME was

added to the cells, in order to inactivate the trypsin, and the cell suspen­

sion was pipetted into a sterile capped tube, before being centrifuged for 

5—10 min at 900 rpm (MSE bench centrifuge). The supernatant was discarded 

and the cell pellet gently resuspended in 8 ml BME. 1 ml of the cell suspen­

sion was added to each of the two culture vessels (75 on growth area) 

containing 14 ml BME. If small culture vessels (25 cm growth area) were 

used, volumes were scaled down accordingly. Inoculation density was also 

varied, for particular experiments. Cells were checked under an inverted

phase contrast microscope.

For routine purposes, a culture of X. laevis cells was maintained at 
6 2an initial inoculation density of about 5 x 10 cells per large (75 cm 

growth area) culture vessel. This culture was allowed to grow for one 

week, until confluent, and every Monday a 1:8 cubculture was made, into two

'<new culture vessels. The cells were incubated at 25°C, in a water-cooled 

incubator, until the following Friday, when the old medium was discarded, 

and 15 ml fresh medium added. A haemocytometer was used to count cells. 

Growth rate experiments showed that at the above inooulation density the 

cells attained stationary phase in 7 days (Appendix II).
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(b) Procedure used to subculture cells of Triturus cristatus carnifex

(Hudak, 1976)

When a monolayer (large culture vessels were used) had attained con­

fluence, the old medium was decanted and the cells washed twice with 6 ml 

aliquots of amphibian wash solution (AWS). The AWS was discarded, and 10.0 

ml of 0.05^ trypsin in AWS added to the cells. After 5 min trypsinization 

at 25°C, the cells were detached by gentle shaking, and 1 ml MEM added, to 

inactivate the trypsin. The cell suspension was pipetted into a sterile 

capped tube and centrifuged for 10 min at 900 rpm. The supernatant was 

discarded and the cells gently resuspended in 6 ml MEM. 2 ml of cells was 

added to each of 3 large (75 cm growth area) culture vessels, each con­

taining 13 ml MEM. Two separate cultures of the newt cells were maintained, 

and used interchangeably. Both were grown at 25°C, in a water-cooled 

incubator,•and a 1:3 subculture was made of each, at intervals of three

weeks.

Part 2. Visualisation of actively transcribing regions of the chromatin

(i) Hardware required for Miller spreading

(a) Carbon-coated grids

For all Miller spreads I used grids coated with a thin (15 - 25 nm) 

carbon support film, in preference to carbon-Formvar. The generally low 

contrast of spread preparations necessitated the use of as thin a film as

possible.

Two pieces of freshly cleaved mica (2.5 cm x 4.5 cm) were placed, 

cleaved side up, in the chamber of a vacuum coating unit (Balzers Mikro 

BA3, Balzers,Liechtenstein), and secured in position by porcelain tabs.

The vacuum was reduced and carbon slowly evaporated on to the pieces of mica
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The thickness of the carbon layer was judged by the colour of the porcelain 

tabs, on to which evaporation also occurred. Carbon films were used at 

once. The mica was held carefully in a pair of watchmakers’ forceps, and 

about 2 mm was cut off round one short edge and two long edges.

A black Langmuir trough with a tap at the bottom was filled with 

distilled water. On a triangular glass support in the centre of the trough 

was placed a copper gauze, previously cleaned by rinsing in glacial acetic 

acid followed by distilled water, and about the same size as the carbon 

film. Gauzes were kept submerged in distilled water until needed. The 

water surface in the trough was cleaned by placing a few drops of pyroxalin

in butyl acetate on it, allowing these to form a thin film, and removing 

the film, together with any adherent dust, with watchmakers’ forceps.

Copper grids (Athene 400’s, diameter 3.05 mm) were cleaned by rinsing 

in glacial acetic acid, washing twice in distilled water and twice in 

acetone, before drying on filter paper. Cleaned grids were placed dull

side up on the copper gauze in the trough.

The mica bearing the carbon film was picked up with a pair of watch­

makers’ forceps and its trimmed short edge touched to the meniscus at an 

angle of about 30°. This caused the edge of the carbon film to float away 

from the mica, and once this had occurred, the piece of mica was gently

lowered into the' trough, causing the entire film to float off onto the

water surface.

The film was now gently manouevred into position over the grids and 

water slowly emptied from the trough, thus lowering the film onto the grids.

When the water level had dropped below that of the grids, the gauze was 

pieked up, toughed to filter paper (Whatman) to remove excess water, and 

placed in a Petri dish before being dried in air overnight.
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The amount of film on each grid, was checked, either by eye or under a 

dissecting microscope. Only those grids with at least 50% coverage were 

used. These carbon films were very stable and grids could be used for a 

long period after they were made, although in practice, a batch of grids 

was used up in about two weeks.

(b) Microcentrlfugation chambers

Microcentrifugation chambers were made of Perspex into which two wells,

each just large enough to admit an electron microscope grid, had been bored. 

The dimensions are given in Pig. 1-1. Por centrifugation each chamber was 

placed on top of a solid Araldite plug (Pig. 1-2), Each plug fitted snugly 

into a balanced 50 ml polypropylene centrifuge tube (26 x 104 mm) adapted 

to fit into the 5.75 inch swing-out rotor of a Sorvall enclosed superspeed 

bench centrifuge.

(ii) Miller spreading technique

Por visualisation of transcription in a number of different cell types 

I used various modifications of the technique originally devised by Miller 

and co-workers (Miller & Beatty, 1969a, b; Miller & Hamkalo, 1972). These 

will be described below or in the appropriate chapters.

Solutions'required

All solutions were made up with either glass distilled triple or single 

distilled water. Solutions were made up freshly for each preparation using 

water that had been boiled for 5 min, or autoclaved previously to remove 

carbon dioxide, and then cooled. All solutions were Millipore filtered 

(type GS. 0.22 pm pore size) into clean plastic bottles, and kept on ice

until needed.
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(a) 0.1 M sucrose plus 10% formaldehyde (sucrose formalin fixative, s/f)

During my experience with the spreading technique I used a number of 

different methods of making up the sucrose-formalin fixative. I found that 

the condition of the fixative was critical for my preparations, and the final

method given here is the one that I found gave the best results.

1. For a final volume of 20 ml, 0.6846 g of sucrose (Analar) was dissolved 

in 18 ml distilled water. 2 ml formalin (Analar) was added, and the pH 

adjusted to 8.5 with either borate buffer or 0.1 N NaOH.

2. I noticed that formalin grew acid very quickly, causing deterioration 

in the quality of the preparations. Chromatin disperses best under condi­

tions of high pH and low ionic strength, It was therefore necessary to use 

a formalin solution that had been made relatively alkaline.

5 g of paraformaldehyde (BDH) was suspended in 25 ml distilled water.

2 drops of 1 N NaOH were added. The suspension was heated gently until the 

paraformaldehyde dissolved. 10 ml of this 20% solution was added to 0.6846 g 

sucrose (RNAse-fre, Serva) together with 10 ml distilled water. The whole 

was brought to pH 8,5 with 20 pi of 0.1 N NaOH. If more than 20 pi was 

required, the fixative was discarded. This method of preparation gave the

best results.

(b) Dispersal medium "Joy" .

As for the fixative, a variety of modifications of the Joy solution 

used to disperse chromatin, were employed. For tissues of T.c. carnifex 

0.2% Joy was used, whereas 0.1% was used for tissues of X. laevis. It was 

later found that this variation was not necessary (see below), and all 

tissues, including those of Necturus maculosus were dispersed in 0.1% Joy.
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Method (3) was the most efficacious. Joy was a gift to H.G.C., from

Professor Oscar Miller, Jr.

(1) 0.1 ml Joy was added to 9.9 ml of distilled water. Of this 

solution, 2 ml was added to 18 ml distilled water, giving a 0.1% solution, 

which was adjusted to pH 8.7 with stock borate buffer.

(2) Slightly better preparations were obtained when the modification 

of Grainger and Ogle (1978) was used. 0,3423 S sucrose (RNAse free, Serva) 

was added to 20 ml of a 0.t% or 0.2% solution of Joy, and adjusted to pH 

8.7 as before.

(3) Chromatin preservation and contrast were greatest when the 

additional modification of Poe (Foe et al.. 1976; Poe, 1977) was used.

Small RNA from yeast was included in the spreading solution. The yeast RNA 

competes as a substrate for endogenous nucleases, and may also remove histone 

H1 from the chromatin (Poe et al.. 1976) resulting in a reduction of the 

dispersal time.

0.3423 g sucrose (RNAse free, Serva) was added to 20 ml of a 0.1% 

solution of Joy, containing 100 pg/ml small RNA from yeast (Sigma). pH 

was adjusted to 8.7 as before.

(c) Photoflo solution

0.1 ml of Kodak Photoflo was added to 24.9 ml distilled water to give 

a 0^4% solution, which was adjusted to pH 8,6, with 20 pi borate buffer.

(iii) Stains

All stains were made up freshly for each preparation.
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(a) Phosphotungstic acid (PTA)

1 part of a 40 solution of PTS (BDH) in distilled water was added to 

3 parts of filtered 95% ethanol. The whole was Millipore filtered.

(b) Uranyl acetate (UA)

1 part of a 4% solution of uranyl acetate (BDH) in distilled water 

was added to 3 parts of filtered 950 ethanol. The whole was Millipore filtered

.(iv) Glow discharging of grids

Immediately before use, grids were placed in the chamber of a vacuum 

coating unit and glow discharged for 1 - 1y mint They were then placed 

on a filter paper in a plastic petri dish, covered, until required. Grids 

were freshly glow discharged for each preparation.

(v) Visualization of transcription in cultured cells

Por the visualization of transcription in tissue-culture cells, a 

spreading technique different from the one normally used for oocyte nuclei 

was devised. The germinal vesicles of oocytes are large and can be isolated 

manually. Tissue culture cells, on the other hand, are so small that they 

cannot be broekn open manually. I used a technique modified from Miller's 

method (Miller & Hamkalo, 1972) for cells other than oocytes. This involves 

lysis of the cells and dispersal of the released chromatin in weak alkaline 

solutions of the commercial dishwashing liquid "Joy" (Procter & Gamble, 

Cincinnati, Ohio). Dispersal of chromatin in this detergent has been used 

for a number of systems (Hamkalo -et al.. 1973; Glatzer, 1975; Amabis & Nair, 

1976; McKnight & Miller, 1976; McKnight et al.. 1976; Puvion-Dutilleul & 

Bernadac, 1976; Busby & Bakken, 1979)* The ultrastructure of transcription 

is not affected by either the detergent (Miller & Bakken, 1972; Glatzer,

1975) or its perfume (Puvion-Dutilleul et al.. 197S)11
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The DNA content of T.c, carnifex cells is high, and it has been generally

noted that cultured cells show low transcriptional activity. In order to

increase the number of transcription figures in preparations of tissue

culture cells, I decided to try to eliminate chromatin from cells in mitosis 

although these were rare, the Mitotic Index being 0.2% for confluent cultures 

of both lines. To this end, I treated tissue culture cells of both species 

with low concentrations of the detergent Nonidet P-40, which breaks open 

cell membranes, but leaves nuclear membranes intact (Tres, 1977). After 

gentle centrifugation the pellet of nuclei was then dispersed in Joy, As

before, a number of modifications were tried of which the last, due to its

rapidity, gave the best results.

(a) Nonidet P-40 treatment

A 0.5% solution in distilled water was adjusted to pH 8.6 with stock 

borate buffer. The solution was Millipore filtered into plastic bottles 

and made up freshly for each preparation.

Cell monolayers were trypsinized routinely, centrifuged, and the super­

natant discarded. The cell pellet was suspended in 8 ml of cold 0.5%

Nonidet P-40. The cells were plunged into ice and detergent treatment was 

allowed to proceed for 5 min with frequent shaking to ensure complete removal 

of cytoplasm. The suspension was spun at 1000 rpm for 10 min and the super­

natant discarded.' The pellet of nuclei was suspended in pH 9 water to the
[Zdesired concentration (6 x IO"’ nuclei/ml) before spreading.

For each preparation, the extent of removal of cytoplasm was estimated 

by examining the nuclei under phase contrast, after suspension in either 

AWS or versene. There were generally less than 1% whole cells in any

preparation.
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(b) Lysis of nuclei in Joy

Nuclei, suspended, in pH 9 water, were lysed, and. their chromatin dispersed, 

in Joy. The lowest possible Joy concentration required to cause lysis of 

nuclei was assessed for each tissue culture line by injecting 50 pi of a 

suspension of nuclei into a well slide containing 50 pi of various Joy 

concentrations. Lysis was monitored using an inverted phase contrast 

microscope, and those concentrations were chosen that effected complete 

lysis of the nuclei in 1 - 2 min. These were 0.2% for T.c. carnifex and 

0.1% for X, laevis. very similar to the concentrations used for other 

systems. I later observed that 0.1% Joy would cause lysis and dispersal 

of both X. laevis and T.c. carnifex whole cells, and also those of 

N. maculosus. which suggests that Nonidet may in some way make nuclei

resistant to attack by Joy.

The suspension of nuclei was diluted twentyfold into Joy in a clean 
4 /Eppendorf tube, to give a final concentration of nuclei of about 3 x 10 /ml. 

The tubes were covered with a clean square of Parafilm and the-' chromatin 

allowed to disperse for up to 75 min. Dispersal for shorter periods did 

not give adequate spread. Loading of grids was controlled empirically by 

the amount of Joy layered onto the sucrose-formalin fixative.

(c) Lysis of whole cells

To reduce the preparation time necessary for spreads of cultured cells, 

it was decided to eliminate the Nonidet treatment. The greater rapidity 

of the technique for lysis and dispersal of whole cells outweighed the 

advantages of removing the DNA of cells in mitosis. Preparation time was 

thus reduced to 15 - 20 min; from 1-§- hr-. Transcription in preparations of 

spread nuclei was sparse, and it did not look as if removal of mitotic DNA

had increased the relative abundance of transcription figures.
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Cells were trypsinized and suspended in pH 9 water to a concentration 
of about 8 x 10^ cells/ml. They were then either diluted into Joy as for 

nuclei or diluted twentyfold into a 95 |il droplet of Joy on a clean square 

of Parafilm in a sterile Petri dish. The second method gave the better and

more repeatable results. Dispersal was for 75 min.

The best preparations of cultured cell chromatin with regard to contrast 

and preservation of chromatin structure were obtained by a modification of 

the spreading method of Puvion-Dutilleul et al.(1978) together with the use 

of sucrose/Joy containing RNA.

Cells were grown at 25°C in 5 ml medium in small sterile plastic 

Petri dishes (Falcon) instead of closed culture vessels. After 2 days growth 

to ensure attainment of log phase the medium covering the cells was decanted 

and the cells washed with 5 ml pH 9 water. The cells were scraped off the 

substrate in 0.5 ml Joy, using a sterile plastic policeman, and immediately 

diluted twentyfold into Joy droplets as for whole cell preparations. In a 

few preparations, dispersal was for 1 hour, but this was later reduced to 

between 10 and 15 min. The whole procedure took some 20 min;.

(vi) Preparation of microcentrifugation chambers

The preparation method for microcentrifugation chambers was the same for 

all cell types investigated, and is modified from Miller & Bakken (1972).

15 min. before the end of dispersal, microcentrifugation chambers were 

cleaned by compressed air (EMscope, London) and the wells filled with 

sucrose-formalin fixative until the meniscus was convex. A fine-bore Pasteur

pipette was used.
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Freshly glow-discharged grids were picked up with plastic forceps, and 

rinsed in 95% ethanol, followed by sucrose-formalin fixative. The grids were 

then carefully slid just under the meniscus of fixative and dropped so that 

they fell in film side up. Excess fixative was removed from the chambers 

until only 2.5 nun remained over the grids.

Chambers were prepared no more than 15 min before they were required in 

order to prevent loss of hydrophilic charge from the grids, and changes in 

pH of the fixative.

(vii) Centrifugation and drying of grids

At the end of dispersal, chromatin was carefully layered on to the 

cushion of s/F in the chamber, using a finely pulled Pasteur pipette (1.0 mm 

diameter). In my hands, dispersal of the chromatin in the centrifugation 

chamber did not yield good results, and I used the above pipetting procedure

in preference.

The preparation was covered with a clean 3/8” circular coverslip and 

the chambers were placed in centrifuge tubes. The tubes were placed in the

swing-out rotor of a Sorvall superspeed bench centrifuge and brought slowly 

up to 3500 rpm (2000 g), The preparation was spun at 2000 g for 6 min . 

at room temperature.

The preparations were removed, and the coverslips discarded. The two

wells of each centrifugation chamber were filled up with sucrose-formalin

until the meniscus of each well was convex. The chambers were then inverted

so that each grid fell into the meniscus. The grids were picked up with

curved watchmakers’ forceps. The grids were rinsed, in Photoflo for 10

sec, and placed on filter paper to dry in air at room temperature.
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(viii) Staining of preparations.

Dried grids were stained for 1-5- min. in PTA, rinsed for 15 sec in 95% 

ethanol, stained 1-g- min in UA, rinsed again in 95% ethanol, washed in 100% 

ethanol and finally in isopentane. They were then dried in air.

Uranyl acetate staining only resulted in a slight increase of contrast 

over that resulting from the use of PTA. Later preparations stained with 

PTA alone were of a high enough degree of contrast to make the use of 

uranyl acetate unnecessary. At this point, preparations could also be 
rotary shadowed, at an angle of 5 - 8° with 5 mm of Pt. Pd wire. For each 

preparation, eight grids were made, originating from four centrifugation 

chambers, each containing two wells.

(ix) Examination of preparations

Spread preparations of chromatin were examined on a Phillips EM5O1 

operated at 60 kV. Magnifications were calibrated using catalase, and 

length measurements were made either with a calibrated map measurer or a 

digitizer (Leicester University; St. Andrews University).
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Part 5.

3Labelling of tissue culture cells with H-uridine

Confluent cultures of T.c. carnifex and. X. laevis cells were trypsinized 
2at the same time and both were inoculated into small 25 cm culture vessels 

(24 vessels per line), at a cell density of about 6.5 x 10^ cells/vessel 

(total volume 5 ml). Previous experiments had shown that at this cell 

density (rather less than the usual subculture density for X, laevis)

RNA synthesis in X. laevis was maximal. At higher densities it was depressed. 

T.c. carnifex showed little difference in the rate of -KNA synthesis at

different but comparable densities.

The cells were incubated at 25°C for 24 hr - to allow attachment of the 

cells to the substrate.

(i) Labelling

"^H-uridine (nonsterile Sp-Act 25 ci/mMol) was used to label RNA at 

5 |ici/ml/culture vessel (25 P-Ci/vessel) . To each batch of 59.7 ml of either 

MEM or BME (fresh, prewarmed to 25°C) 300 p.1 of isotope was added (total 

volume 60 ml). The radioactive medium was sterilized by Millipore filtra­

tion into sterile bottles.

About 1 hr before labelling was due to begin, old medium was decanted 

from the control cells (l2 vessels per line), which were given 4.9 ml each 

of fresh unlabelled medium, and replaced in the incubator.

The vessels containing cells to be labelled were decanted, and 5»0 ml 

labelled medium placed on the side of the vessel opposite to the monolayer.

The vessels were sealed tightly and the medium gently shaken to mix well

with any dregs of the old medium. 0.1 ml of medium was removed from each
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culture vessel (final volume in vessle 4.9 ml) and placed on a filter 

(Whatman grade 5MM 2.5 cm diam) in order to assess the variation in input 

of label between culture vessels. When dry, the filters were counted in

toluene scintillant in a Nuclear Enterprises 8512 scintillation counter.

At zero hour, all the culture vessels were turned over and reincubated 

at 25°C. Samples of T.c. carnifex were taken at 15 min, 50 min, 1 hr, 2 hr,

4 hr, 10 hr, 22 hr, 54 hr, 46 hr, 58 hr. Labelling reached a peak at 58 

hr but samples of cells were counted at 82 hr, 106 hr, 150 hr, 154 hr, in 

order to plot an accurate growth rate. For X. laevis the last two samples

were taken at 70 hr and 82 hr, as the increase in cell number is much faster

than for T.c. carnifex. Cells were checked for contamination under the

inverted phase contrast microscope. •

(ii) Sampling of cells

For each sample, culture vessels were removed from the incubator, the

radioactive medium decanted and the cells washed with ice cold versene or

AWS. The cells were trypsinized routinely, on ice, centrifuged and the cell

pellet suspended in a known volume of AWS or versene. The cells were counted

at each time point, in order to calculate Tau, the mean generation time.

Using an Eppendorf tip 100 pi of each sample was dried on to each of 2 
3filters in order'to. measure the rate of incorporation of H-uridine. In a 

previous experiment, the effect of SDS lysis of the cells on the incorpora­

tion figures was examined. Ho difference in the values for incorporated 

label between cells lysed in SDS before being dried and counted, and 

unlysed cells, was observed, indicating that the counting method described 

below releases incorporated label from the cells effectively.
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One dried filter from each time point was left in ice-cold 5% TCA at 

0 - 4°C overnight, in order to remove unincorporated label. The filters 

were rinsed 8-9 times in ice-cold 5% TCA, rinsed twice in ice-cold absolute 

ethanol and air-dried. The filters were counted in toluene scintillant.

For each time point, 100 p,l of labelled medium was placed on each of two

filters. One was treated with TCA and the other counted without TCA treat­

ment, in order to assess the efficiency of removal by TCA of unincorporated 

label. This demonstrated that 98 - 99$ unincorporated label was removed.

The ratioactivity in 100 p,l of the medium from each culture vessel was

counted in order to determine the point at which the label in the medium was

exhausted.

(iii) Data

Cell number for each line at each sampling time was plotted and Tau

determined by measuring the time taken for the cells to double in number.

Incorporation was plotted as counts per minute per cell against 

percentage cell cycle time (each time point expressed as a percentage of 

Tau), and as counts per minute per cell against absolute time.
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Part 4.

Determination of RNA size on sucrose gradients

Confluent cultures of X. laevis and T.c. carnifex were trypsinized 
2and one large culture vessel (75 cm growth area) of each set up at an 

inoculation density of about 1.65 x 10^ cells/vessel. The cultures were 

grown for 3 days at 25°C.

(i) Labelling

Medium was decanted from the culture.vessels, and 9.5 ml fresh pre­

wanned medium, together with 0.5 ml ^H-uridine (0.5 mCi, Sp. Act 29 ci/mMol) 

was added to each culture vessel, on the opposite side to the cells,

0,5 ml medium was removed and 50 pi of this was counted to assess variation

in label input. At zero hour, the culture vessels were turned over and 
the cells labelled for 1 hour at 25°C.

After 1 hour of labelling, the labelled medium was decanted, the cells

washed twice in ice-cold versene or AWS, trypsinized, and the RNA extracted.

(ii) Extraction of RNA (Penman 1966)

All solutions were treated by autoclaving for 15 min at 15 lb/sq. in 

with 0.1$ diethylpyrocarbonate to destroy nucleases. The cells were counted 

and each pellet washed twice in 10 ml isotonic salt solution (0.14 M NaCl.

10 mM Tris. pH 7,5. 1 mM MgCl^). Cells and solution were centrifuged for 

10 min at 1250 rpm to pellet the cells, and the pellet carefully resuspended 

in 1.25 ml RSB buffer (0.01 M NaCl. 0.01 M Tris 7.4. 0.0015 M MgCl2).

100 pi of a 1 mg/ml solution of RNAse-free DNAse (Sigma) in RSB was added

and the cells incubated 10 min at room temperature. DNAse treatment of
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whole cells was found, to he necessary to break up cell clumps held, together 

by DNA released, from broken cells. Even in a young culture, especially of 

T.c. carnifex, there are some broken cells, and if this step is omitted, 

most of the labelled RNA becomes trapped in clumps of DNA that are difficult

to disperse.

250 pi of an 8 mg/ml solution of proteinase E (Sigma) was added to the 

cells, together with 0.4 ml 5% SDS (final concentration 1%) . After incuba­

tion for 30 min at room temperature 0.87 ml of 1 M NaCl (final concentration 

of NaCl is 0.3 M in a final volume of 2.6 ml) was added to each suspension 

and the RNA extracted twice with a mixture of equal volumes of phenol:

cresol, and chloroform:isoamyl alcohol.

The aqueous phase containing the RNA was placed in a clean tube and 

given a second treatment with DNAse (100 pi of 1 mg/ml DNAse). Protein 

breakdown-products were removed and the RNA further purified by three extrac­

tions with phenol cresol-chloroform isoamyl alcohol. After two further 

extractions with chloroform:isoamyl alcohol alone, to remove excess phenol,

the RNA was precipitated overnight in 2 volumes ice-cold absolute ethanol.

(iii) Removal of contaminating DNA and protein from the RNA

To remove any residual networks of DNA, which were especially persis­

tent in T.c. carnifex preparations, the precipitated nucleic acids were 

spun for 40 min at 4000 rpm (Sorvall superspeed centrifuge, swing-out 

rotor), The ethanol was decanted and the tubes dried and inverted on 

tissue pads.

1.76 ml RSB buffer was added to each pellet to redissolve the RNA, 

which was digested for 15 min with 10 pg/ml DNAse (RNAse-free. Sigma) and 

for 15 min with 10 pm/ml proteinase E, 0.5% SDS.
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The nucleic acids were extracted once with phenolcresol/chloroform/ 

isoamyl alcohol, twice with chloroform/isoamyl alcohol, and precipitated 

overnight in two volumes of ice-cold absolute ethanol.

($.v) Running of gradients

Precipitated dried RNA was denatured in SDS at 65°C for 2 min, in a 

water bath. The denatured RNA was carefully layered on to 14 ml gradients 

of 5 - 20$ sucrose, 0.5$ SDS, 2 mM EDTA, 10 mM Tris T»4 and centrifuged for 

2 hr at 36000 rpm, at 22°C in a superspeed 65 centrifuge, using the 6 x 14 

ml Ti swingout rotor. Gradients were fractionated and a trace of ultra­

violet absorbance taken. 50 pi of each 0.5 ml sample was dried on to a 

filter with 50 pi 5 mg/ml BSA (Bovine serum albumin) as carrier. The 

filters were then washed four times in ice-cold 5$ TCA to precipitate the 

RNA, twice in 95$ ethanol, and counted in toluene scintillant. Incorpora­

tions were plotted as percentages of the total radioactivity on the gradient
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Part 5,

Bleomycin treatment of chromatin

Cells of both X. laevis and T.c. carnifex were inoculated into large
2 6 (75 cm growth area) culture vessels at 3 x 10 cells per vessel. Two 

cultures were set up for each line. This high cell density gave an adequate 
yield of DNA for loading onto gels. Cells were grown for 2 days at 25°C.

(i) Bleomycin treatment of spermidine-extracted chromatin

Cells of both lines were trypsinized routinely. Nuclei were prepared 

by homogenisation in buffer containing spermine and spermidine (Hewish & 

Burgoyne,\1973)• Nuclei were checked under phase-contrast illumination 

and spun through sucrose to remove debris.

DNA was isolated after the method of Hewish & Burgoyne (1973).

Chromatin concentration was checked spectrophotometrically and stock solu­

tions were used, DNAs were centrifuged and taken up in 25 H-l activation 

buffer together with 1 unit of Bleomycin (Hewish & Burgoyne, 1973; Kuo &

Hsu, 1978). Chromatin samples were treated with serial dilutions of 

Bleomycin. Digestion was allowed to proceed for 10 min, and to stop the 

reaction, 5% SDS in 20 mM EDTA was added to the samples. Chromatin samples 

were phenol extracted, as was a control sample not treated with Bleomycin.

(ii) Bleomycin treatment of spread chromatin

Nonidet P-40 isolated nuclei of both lines were lysed and the chromatin 

spread (75 mih in 0.1% or 0.2% Joy) as for a Miller preparation-; Spread 

chromatin was centrifuged and treated with Bleomycin as above. After the 

reaction was stopped with SDS, chromatin samples were phenol extracted.
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As before, different dilutions of Bleomycin were used, and one aliquot of 

the spread chromatin remained untreated for purposes of comparison. 5 P-1 

of bromophenol blue in 10% ELcoll was added to each sample to give a final 

Sicoll concentration of 5%.

(iii) Gels

Samples were electrophoresed overnight at 50v (75 mA) on a 20 cm x 

20 cm x 3 mm 1.4% agarose gel. The gels were stained with ethidium bromide

and fluoresced under an ultraviolet light.
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Part 6.

Determination, of cellular and nuclear dimensions of tissue culture cells.

Measurements were made for each cell line at two different inoculation

densities, because crowding of the cells at high concentrations causes them

to be less well displayed. Cells were inoculated into small (25 cm ) culture

vessels, using routine culture techniques as described earlier in this
section. Inoculation densities were 6.5 x 10^ cells/vessel and 3 x 10^

cells/vessel for X. laevis, the former density being that used for Miller 
5spreads. T.c. carnifex low-density cultures were grown at 1.25 x 10

cells/vessel, as the cells were larger than those of X. laevis. High-density 
5

cultures were inoculated with 6.5 x 10 cells, as for X. laevis. Separate 

cultures were set up for cell volume and nuclear cross-sectional area deter­

minations, and were grown for 2 d at 25°C to ensure attainment of logarithmic 

growths

(i) Determination of cell volume

Cells growing as monolayers have many cell extensions, making it 

impossible to measure their volumes accurately. However, trypsinization 

results in the cells rounding off and withdrawing their processes, facilitat 

ing accurate measurement. Cultures were trypsinized and the cell pellet 

suspended in growth medium, which is isotonic to the cells and therefore not 

likely to cause swelling or shrinkage. Little or no clumping occurred,

A drop of medium containing cells was placed on a clean slide and 

sealed with a cover&lip. A large excess of fluid was used to prevent com­

pression of the cells. The slide was then placed on the stage of an 

inverted phase-contrast microscope. Cells were measured using a x20 objec­

tive and a x 10 eyepiece containing a calibrated micrometer scale, Under

these conditions 1 eyepiece division was equivalent to 4.2 pm.
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Cells were selected for measurement by moving the slide randomly over 

the stage. The cell nearest the centre of each of 50 random fields was 

selected, If more than one cell was at the centre, a new field was chosen.

The cells were assumed to be roughly spherical because they were seen

to roll over when the coverslip was touched with a mounted needle. As I

used a large droplet, I assumed the cells were not compressed. However, as 
cells are only roughly spherical, two diameters, at 90°, were measured, i-e

The mean of these measurements was calculated and half of this value, the 

mean radius, was used to determine the cell volume, expressed by the

formula .Ti.r . .

For any determination cells were selected fro® two or more slides to 

minimise the effects of changes in cell size due to possible temperature 

variation and/or evaporation of the medium.
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(ii) Determination of nuclear Q<ppss-sectional area

Both cultures grew in the form of monolayers. When the cell number in 

the culture is low the cells are well stretched, with many processes, and

the nuclei are clearly visible.

Cultures were examined under the same conditions of microscopy

and magnification as above, except that culture vessels containing untryp-

sinized monolayers were used. The sampling method was as above.

The nuclei appeared as ellipsoid bodies often containing a prominent

nucleolus. Two diameters were measured and half the mean value, the radius,

used to determine nuclear cross-sectional area. This area, as cells and

nuclei are relatively transparent, and the latter assumed to be roughly

spherical, really represents the maximum cross-sectional area, and as such

may be affected by possible- irregularities in the shape of the nucleus. 

However, this value, rather than nuclear volume was determined, as nuclei 

are much more elongated in shape than trypsinized cells, which generally 

approached the spherical. The ’’depth” of the nuclei was impossible to 

determine without fixation and sectioning of the cell layer and without

accurate values for this parameter nuclear volume cannot be determined with

accuracy. I did not have sufficient time to determine nuclear ”depth",
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RESULTS

(i) Xenopus laevis culture cells. Characteristics of transcription

During my investigation of transcription patterns in X, laevis cultured 

cells I experimented with a variety of modifications of the Miller technique 

Most of these yielded data, hut observations of transcription itself came 

largely from one preparation made at a late stage of this study.

Early preparations were made from cells grown at the usual subculture
g

inoculation density of 5 x 10 cells per large culture vessel., and when 

they were in log phase to maximise the chances of finding transcription 

figures. The quality of these preparations was relatively poor with regard 

to contrast and the preservation of structural detail, and little material

was present on the grids. When cells were grown at twice the usual subcul­

ture density, more material was present on the grids, although contrast was 

not improved, and I obtained slightly more data from these preparations.

The poor quality of the preparations prevented my finding many transcription 

figures at either cell density.

During my studies of tritiated-uridine incorporation by these cells, it

became clear that RNA synthesis was depressed if X. laevis cells were grown 

at high cell density. Using modifications of the Miller technique that 

resulted in an improved contrast and preservation of chromatin, I found that 

transcription figures were most frequent when the cells were grown at an
g

inoculation density of 1.95 x 10 cells per large culture vessel (the cell 

density resulting in maximal rates of incorporation of "H-uridine), and 

only preparations of chromatin from cells grown at this concentration were 

analysed further. The frequency of transcription figures was higher than 

in the early preparations discussed above. Nonetheless, valuable informa­

tion about other aspects of chromatin structure was obtained from my early 

preparations,
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When preparations were made from Nonidet P-40 extracted nuclei the 

chromatin appeared predominantly in the form of clumps, roughly the size of 

an individual nucleus although smaller clumps were also seen. The clumps

themselves had a granular structure in which no significant detail could 

be resolved (Fig. I-5a).

The degree of dispersal of the chromatin varied, but was in general 

almost complete after 75 min of spreading. In the majority of cases dis­

persed chromatin radiated from larger clumps (Fig. I-3a). The degree of 

dispersal varied between different preparations, different grids of the same 

preparation, and sometimes over the area of a single grid, under the same 

spreading conditions. I have found that the Miller technique is very subject

to variation which I assume to be due to uncontrollable factors such as

fixative pH, grid charge etc. In many cases, chromatin tended to lie close 

to grid bars or around breaks in the carbon films, perhaps due to differences 

in charge in these regions.

Most of the chromatin in preparations of X. laevis culture cells exhi­

bited a clearly beaded appearance (Figs I-3b and c). These beads were, in 

later preparations especially, ubiquitous, and this, together with their 

size, which varied from between 9.7 nm and 14.7 nm + 2.5 nm and periodicity, 

suggests that they are analogous to the ”nu-bodies” or nucleosomes described 

by Olins and other authors (Olins, 1977). The variation in their size is 

probably due to my method of visualisation. In stained preparations the 

nucleosomes were significantly smaller than in rotary shadowed preparations, 

where progressive deposition of metal on the chromatin increases their

dimensions.

In some cases the nucleosomes were seen to be interconnected by a fine
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fibril about 5 - 6 nm wide, and varying in length depending upon the fre­

quence of nucleosomes in the preparations. Later preparations, involving 

short dispersal times in the presence of yeast transfer RNA, sucrose and 

Joy, showed an improved preservation of chromatin secondary structure.

Nucleosomes were more closely spaced and the interconnecting fibrils were 

seldom visible (Fig. I-13a - d).

Chromatin often had a "stretched” appearance, consisting of low contrast 

fibres with few if any nucleosomes (Fig. I-3&). These fibres were about 

10 nm wide. Occasionally completely smooth fibres were present interspersed 

with nucleosomal chromatin (Fig. I-3c). The width of these fibres is such 

that the DNA must be covered in protein, although a beaded structure is not 

apparent. Naked DNA is only 2 nm in width. It is not clear whether such an 

unbeaded conformation occurs in vivo, or is merely a preparative artefact.

My later observation that chromatin of these cells when spread under better 

conditions is almost entirely nucleosomal in appearance suggests that smooth 

chromatin strands are indeed a spreading artefact.

Transcription figures were rarely seen in preparations from these cells. 

Their frequency varied between preparations. It is not clear whether this 

is a real effect or because of the small proportion of a total cell popula­

tion that is analysable with this technique, thus resulting in large dif­

ferences in the'origin of the chromatin on any preparation. Spreading 

conditions might also affect the amount of transcription seen. Of forty 

preparations only fourteen had transcription figures present.

Transcription occurred predominantly in the form of isolated RNP 

fibrils attached to the chromatin axis. These were generally of higher 

contrast than the DNP, and were identified as RNP by this criterion, and by 

the fact that they were generally of a more diffusely beaded structure, and
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occasionally present as arrays. Replication forks were rare in preparations
%

of cells grown at high inoculation densities, but much commoner in preparations 

of cells from sparser cultures. They always took the form of replication 

"bubbles” (Fig. 1-4), which were never broken. Thus putative transcripts, 

with a single free end, were scored as such, rather than as broken replica­

tion forks.

In the majority of investigations made to date, (Amabis & Nair, 1976; 

McKnight & Miller, 1976; McKnight et al., 1976; Puvion-Dutilleul & Bernadac, 

1976; Puvion-Dutilleul et al. , 1978; Busby & Bakken, 1979) transcription 

units have been measured. If as in all the above cases, several adjacent

RNP fibrils are considered, the data are much more reliable than if isolated 

fibrils alone are scored. In the case of X. laevis cultured cells, arrays 

txf fibrils were rare, so that it became necessary to base my studies on the 

sizes of single RNP fibrils. To supplement these data I decided where 

possible either to measure the lengths of transcription units, or where this 

could not be done, the lengths of the terminal (longest), RNP fibrils 

(determined by Laird Analysis) of less well spread transcription units. The 

latter type of analysis was eventually done because few of the transcriptional 

units or arrays I found could be analysed in any other way. The low density 

of RNP fibrils made accurate determinations of overall transcription complex 

length difficult. Although foreshortening of the RNP occurs, so that an 

RNP fibril appears shorter than the DNP from which it is transcribed, 

measurements of terminal (longest) fibrils of arrays do approximate more 

closely to transcription unit size than do measurements of isolated RNP

fibrils.

I photographed and analysed all clear instances of transcription that 

I found. A transcription unit is defined here as two or more adjacent RNP 

fibrils closer together than an arbitrary distance, which I set at 1 |im.
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Groups of two RNP fibrils spaced more than 1 pm apart were considered to 

belong to different transcription units. In general, transcription took 

the form either of isolated fibrils separated by several microns of chromatin, 

or of arrays of fibrils separated by fractions of a micron. In practice no 

transcription figures separated by distances of slightly under or slightly

over one micron were observed.

In rare instances, arrays were well spread enough for a so-called 

"Laird Analysis" (Laird & Chooi, 1976; Laird et al.. 1976) to be done. The 

point of initiation of transcription of a transcription unit, and hence its 

true length can be determined if the length of each RNP fibril of the array 

is plotted against its position in the array (Pig. 1-5). A line drawn down 

the resulting slope will cut the x-axis at the presumptive initiation point.

In practice only minimum transcription unit length can be determined,

because the size of the longest fibril of the array will depend upon the 
\

stage of transcription at which the unit was "frozen". Thus, if a particular 

gene is being intensively transcribed from the very start of transcription, 

a certain interval will be required for polymerases to reach the termination 

point of the gene. If the chromatin is spread and fixed before this point, 

even a Laird Analysis will give an underestimate of transcription unit size.

In many of the systems studied, ribosomal transcription units appear 

as the classical-"Christmas Tree" figures (PerksBn et al.. 1975; Hamkalo & 

Miller, 1975; Trendelenburg et al.. 1975; Berger & Schweiger, 1975a, b, c; 

Franke et al.. 1976b; Puvion-Dutilleul et al., 1977a; Reeder et al.. 1977; 

Trendelenburg & Gurdon, 1978). Their tandem repetition, amplification to 

form free nucleoli, and biochemical analyses of gene length and product size 

all support the idea that these structures do indeed represent the genes for 

28S and 18S ribosomal RNA. Determinations of initiation point are easy becaus 

of the clear fibril gradients and high transcriptional activity of these genes



54

The majority of arrays found, in many tissue types are of a different 

conformation and are thought to represent nonrihosomal transcription 

(Angelier & Lacroix, 1975; Derksen, 1975; Laird & Chooi, 1976; Laird et al., 

1976; McKnight & Miller, 1976; Puvion-Dutilleul et al.. 1977a; Harper & 

Puvion-Dutilleul, 1979 in press). They are characterized hy a low RNP fibril 

density, absence of a clear gradient of fibril lengths, and the fibrils 

themselves are often much longer than those of ribosomal transcription units. 

Laird Analysis gives much more equivocal results, and in many cases, the 

initiation point cannot be determined with any certainty. In my analysis, 

quantitative measurements included only those transcription units defined 

as nonrihosomal by the above criteria. Laird Analyses were done where

possible.

In Xenopus cultured cells, the lengths of isolated RNP fibrils fell 
P

around a median value of about 0.44 dm (Table I J Pigs 1-6 and I-7&, b).
z xThe RNP lengths extended over a range of 2.1 pm (Table Ij/ Pig. 1-6). In 

one case an isolated fibril, at least 2 pm long, and possibly consisting of 

two fibrils entangled, was found (Pig. I-7b). Unfortunately no arrays were 

found well enough spread for either their length or the length of their 

terminal fibril to be measured (Fig. I-7c).

In cells grown at a higher concentration, a few analysable arrays were 

photographed, Laird Analysis of one of these gave a length of 3*5 pm 

(Pig. I-8a). & second array about 2.8 pm long but not further analysable,

was seen (Fig. I-8b). Arrays were too rare for any quantitative measurements 

to be made, although they were of a size order found in other cell types 

(Puvion-Dutilleul & Bernadac, 1976; Puvion-Dutilleul et al., 1978; Busby & 

Bakken, 1979).
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Median lengths of isolated RNP fibrils, terminal fibrils of multifibril 
transcription complexes, and transcription complex length in different cell 
types.
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Ribosomal genes were found only on one or two preparations. It is not 

clear why this should he so, for phase contrast observations indicated that 

these cells have prominent nucleoli. However, the fact that the genes are 

tandemly arranged may lower the probability of their detection unless a - 

large amount of chromatin is examined. Only smallish clumps of ribosomal 

genes were seen, presumably of unamplified cistrons (Fig. 1-9). There was 

no indication that transcription of circular DNA was occurring. Only three 

measurable ribosomal transcription units were found, having a mean length of 

5.2 |im, (Table IX') which is greater than Scheer's estimate (1977) ov 2.2 pm 

for X. laevis oocyte ribosomal genes. This may be due to stretching of the 

chromatin. These ribosomal genes had the characteristic "Christmas Tree" 

structure, with prominent polymerases. In my preparations clear RNA poly­

merases were only present on ribosomal genes, and were consistently larger 

and more contrasted than nucleosomes, being about 20 - 24 nm in diameter. 

This may be because ribosomal and nonribosomal genes are transcribed by 

different polymerases (Roeder et al.. 1970; Biswas et al.. 1975).although 

the size differences between these are probably not great enough to be

visible in a Miller spread. On the whole, attached RNP was sparse and of 

low contrast, perhaps due to a high endogenous nuclease activity in these

cells. No clearly traceable spacers were seen.

The appearance of the primary transcripts varied between different

preparations, but-most often they were compact and of higher contrast than 

their chromatin axes. Only in one case (Fig. I-7b) was a clearly beaded 

structure observed, the beads being about 14 nm in diameter and probably 

analogous to the RNP particles described by Sommerville (1975)• Tn most of 

my preparations, the subunit structure of primary transcripts, tlioigh evident 

was usually less discrete than that of the DNP axes. In the case above 

(Fig. I-7b) the beaded structure was very clear, suggesting that in some



TABLE X.

Lengths of ribosomal transcription complexes from culture cell chromatin.

Xenopus laevis.

Low inoculation density cultures

Treatment Matrix unit 
length 
(pm)

Mean

(pm)

Spacer
length
(pm)

Mean

(pm)

Repeat unit 
length 
(pm)

Mean

(pm)

2.59 — —
Control 5.70 5-2 - - -

5.2 - -

5.5 1.44
2.7 - -
2.46 5.1 5.7

+ cortisol 2.52 2.7 1.5 2.01 4.1 4.9
2.55 -
2.65 -
2.62
2.74 -

TABLE XI.

High inoculation density cultures (after Laird Analysis)

Treatment Matrix unit 
length 

' (ihn)

Mean

(pm)

Spacer
length
(pm)

Mean

(pm)

Repeat unit 
length 
(pm)

Mean

(pm)

Control - - - - - -

1.65
2.26 - -

+ cortisol 0.54 1.45 - - - -
0.82 - -
1.96 - -
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cases at least, broken replication forks might be mistaken for RNP molecules. 

Porks themselves were generally found in tandem arrays (Fig. 1-4). of which 

even very long ones were never broken, which argues against this interpreta­

tion. The DNP itself appeared on the grid as very long strands, sometimes

extending over several grid squares, which again indicates that the degree

of breakage was probably very small, as does the observation that conforma­

tions perhaps originating from broken forks with 2 ends (•{. were not seen.
T

Because all transcriptional figures seen were photographed, the percentage

of different types of transcription figure will be a valid index of the 

relative amounts of different sequences being transcribed. It could further 

provide a new criterion with which to characterize stage specific transcrip­

tion. In X. laevis culture cells, single RNP fibrils comprised 94.4% of 

the total transcription whereas arrays of two fibrils closer together than

1 pm were entirely absent. Arrays of three or more fibrils comprised a 
PS6

further 5«6% of the total transcription observed (Table II/). Such a distri­

bution is similar to that obtained for Strongylocentrotus purpuratus (Busby 

& Bakken, 1979) although the small sample size makes my data rather incom­

plete. This low frequency of transcriptional figures is in agreement with 

the finding that tissue culture cells express only a minimum of genes, those 

determining the "household functions" common to every cell type. Both growth 

rate (Appendix II) and Mitotic Index of the cells were characteristic of a 

slowly growing and metabolising cell line.

Due to the low transcriptional activity of these cells I was not able 

to determine the percentage of the total chromatin comprising transcription 

complexes (McKnight & Miller, 1976).



TABLE II

The frequency of different types of transcription complex expressed as 
percentage of the total number of transcription complexes found in different 
cell types.
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43 5 4 52 82.7 9.6 7.7 17.3

X. laevis 
cultured cells 
plus cortisol

51 13 7 71 71.8 18.5 9.8 28.1
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(a) Packing ratios

(1) DNA -packing ratio (DNA P.R.) of transcriptionally inactive regions

In a further attempt to characterize stage-specific transcription I 

decided to examine DNA and DNJ\/RNA packing ratios in these cells (Laird & 

Chooi, 1976; Laird et al.. 1976). In later preparations both transcrip­

tionally active and inactive chromatin appeared beaded and the characteris­

tics of these beads suggested that they were nucleosomes. Biophysical and 

biochemical data demonstrate that on average one nucleosome and its adjacent 

filament on one side contain some 200 base pairs of DNA. If- so, then the 

average number of beads (x) per pm of chromatin will containxx200 base pairs 

of DNA, The DNA packing ratio, or the length of ^-structure DNA per pm of

chromatin is therefore

x x 200 bp/pm chromatin) x 3.4 x 10 pm/bp.

(l bp ^-structure DNA measures 0.34 nm or 3.4 x 10 pm)

For determinations of packing ratio the number of nucleosomes on each

of 10 randomly selected, straight, transcriptionally inactive regions of

chromatin, 1 pm in length, was calculated. A preparation made under spreading

which I found resulted in high contrast and good preservation of structural 
detail was used and give a DNA packing ratio of 2.1 (Table Tll^f. The mean 

diameter of nucleosomes in this preparation was 14.7 nm + 2.5 nm, slightly 

larger than the generally accepted size, and probably a result of rotary

shadowing.

Earlier preparations showed variable degrees of disruption of the 

nucleosome structure so that, in my experience, packing ratio varied between 

1.0 (apparent lack of nucleosomes, with assumed maximal stretching of the 

chromatin) and a maximum of 2.1. It is now known that the detergent Joy



TABLE III

The DNA packing ratio (pm of p-structure DNA per pm of chromatid) 
of transcriptionally inactive regions of the chromatin of different cell 
types, mean nucleosome diameter, and dispersal conditions for each 
preparation.
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removes chromatin proteins (Scheer, 1978), and the long dispersal times I 

used a®e probably responsible for this variation. Thus, unlike the case of 

chromatin spread in ”pH 9 water” it is not clear how valid my data on packing 

ratio are; they probably represent only an approximation to the in vivo

condition.

(2) DNA/RNA packing ratio (DNA/RNA P.R.)

The DNA/RNA packing ratio is a measurement of the amount of foreshortening 

undergone by the primary transcripts of a transcription unit, and is

expressed as a ratio between the length of the terminal transcript of an 

array and the total ^-structure DNA length of the transcription unit (Laird 

& Chooi, 1976; Laird et al.. 1976). DNA/RNA packing ratio was determined 

as described by Laird.

In favourable cases, for arrays consisting of three or more transcripts, 

a Laird Analysis was done to give an estimate of transcription unit length, 

and to determine whether or not the fibrils indeed belonged to the same 

transcription unit. DNA/RNA packing ratio was determined for arrays from 

preparations where the DNA packing ratio of transcriptionally active regions 

was known. Arrays whose DNP axis was beaded were considered. I assumed 

beads on the axis lacking attached transcripts, to be nucleosomes. However, 

without Sarkosyl-rtreatment, there is no reliable way of determining whether 

such beads are nucleosomes rather than polymerases. The contrast and size 

of the beads resembled nucleosomes rather than polymerases in my preparations, 

but as polymerases were only observed on ribosomal transcription units, the 

significance of this is debatable. The number of such beads per array was 

used to calculate DNA PR for transcriptionally active regions.
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Length of array x DMA packing ratio = length of p-structure DMA
(of transcriptionally in T. unit, 
active regions)

DMA/rM packing ratio = length of array x DMA packing ratio = 5
___________________(active regions) y

length of terminal fibril of array

5C-

In a few cases, DMA/RNA packing ratio was determined for transcription 

complexes on unbeaded chromatin, taking the D^A packing ratio of the tran­

scription unit axis to be 1.0 (fully stretched). When values for the DMA 

packing ratio of transcriptionally active regions were not available, the 

value for inactive regions was employed, to calculate DNA/RNA packing ratio,

Using these criteria as defined by Laird I found that T.c. carnifex 
FSq

oocyte ribosomal genes (Appendix III) (Table VI^) had a DMa/rMA packing ratio 

of 13.3* This is rather high and may be due to insufficient spreading of

the preparation, which was one of the earliest that I made. In X. laevis 

culture cells the only clear array was found in a preparation where little 

or no nucleosome structure was observed. Thus I assumed -the DMA packing 

ratio to be 1.0. Table VI shows that this array (Pig. I-8a) had a DMA/RMA

packing ratio of 10 - 12.



TABLE VI.

The DNA/RNA packing ratio (degree of foreshortening) of terminal 
(longest) RNP fibrils of transcription complexes from different cell types.

To determine the length of p-structure DNA per transcription complex, 
the DNA packing ratio of transcriptionally active regions of chromatin was 
used, where available (see Tables III and IV).

Cell type
Transcriptional

complex
length
(pm)

DNA
length
(pm)

DNA'
packing
ratio

Length of 
terminal
RNA fibril 
of complex 

(pm)

dna/rna

packing
ratio

X. laevis 3-48 3.48 1 .0 0.29-0.35 10-12
cultured cells

T.c. carnifex
cultured cells

X. laevis '2.59 4.2 1 .62 3.42 1 .23
liver 1.28 2.1 1.62 1.70 1 .23

T.c. carnifex
liver

N. maculosus 3.79 8.4 1.42 0.22,0.32 17-25
liver 1.52 2.16 1 .42 1.49 1 .45

T.c. carnifex > 2.86 > 2.86 1.0 0.72 >/ 4.0
neurulae z

X. laevis 13.8 24.0 1.74 4.2 5.71
cultured cells 3.45 6.0 1.74 1.54 3.9
+ cortisol 2.77 , 4.5 1.63 0.22. 20.5

T.c. camifex 2.15 2.9 1.35 0.21 13.8
oocyte 2.32 3.13 0,24 13-04
ribosomal genes 3.12 4.21 0.24 17.5

1.94 2.62 0.32 8z2 mean
2.2 2.97 0.19 15.5 13,3
1.99 2.68 0.19 14.1
2.13 2.87 0.27 10.6
1.99 2.68 0.24 11.2
2.2 2.97 0.24 12.4
2.3 3.1 0.19 16.3
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(b) Mitochondrial DNA

(l) Replication

During my investigation of transcription in X. laevis cultured cells,

I noticed, in whole cell preparations, rare circular DMA molecules. About 

one third of these bore structures resembling the ’’bubbles” characteristic 

of replicating DMA (Fig. I-10a,-c). These DMA circles were always ’’smooth" 

with a width, in rotary shadowed preparations of 12 - 16 nm. Although 

rotary shadowing increases dimensions by metal deposition, a comparison with 

nuclear chromatin on the same preparation suggests that these rings were

covered with protein, rather than being naked DNA.

The putative "fork" structures always showed a much greater degree of 

contrast that the rest of the circle, and in this were comparable to RNP

from the same preparation.

-71

It is not clear why this should be so, for it is not likely that newly repli­

cated DNA should be associated with twice as much protein, That the proteins 

might be qualitatively different and thus vary in their staining properties 

is also hard to understand, and this casts doubt on the idea that the "bubbles"

are indeed forks.



*' The--circles (Table VII^) were all roughly the same size, around 4.4 pm 

in contour length, which is similar to values previously obtained for 

mitochondrial DNA (Dawid & Wolstenholme, 1968; Wolstenholme & Dawid, 1968; 

Wolstenholme et al., 1973b; Koike & Wolstenholme, 1974; Borst & Grivell, 1978; 

Pinhn et al., 1978). That they are mitochondrial in origin is supported 

by the fact that they were only seen in whole cell preparations. Their size

is such that they could not be mycoplasma genomes, and there was little or

no bacterial contamination on my preparations. Finally, their uniform 

length argues against an interpretation that they are randomly broken pieces

of DNA that have recircularised.

The circles I observed always lacked a beaded structure, unlike those 

observed by Pinon et al. (1978) who observed large 20 nm beads in X, laevis 

mitochondrial circles. To my knowledge, my findings are the first such 

obtained with the Miller technique.

When the putative ’’fork” regions of the circles were measured it was 

seen (Table VII^) that they all fell between 0.15 and 0.29 P-m in length.

When the measurements were expressed as percentages of the total circle 

length, in order to compensate for variation in spreading conditions they 

all fell between 4.7 and 6.7%. Tandem arrays of forks were never observed.

If these structures are indeed forks, this would imply that replication of 

these circles is synchronous. However, my pictures were obtained from 

several preparations made at different times, from different cultures of 

randomly growing cells, which argues against this. The results may have

been artefactual due to the small sample size, but nonetheless it is reason­

able to assume that circles with many different lengths of '’fork” would have

61.

been found.



TABLE VII,

Characteristics of putative mitochondrial circles.

Replicating; forms

Treatment Circle
length
(pm)

Mean

P

Pork
length
(pm)

Mean

P

Percentage of total 
contour length com- 
rised by replication 
fork

Mean
%

- cortisol 4.39
0.15

0.21
5.84
+

0.84
4.34 0.29 6.68
4.44 0.19 5-0.

+ cortisol 4.97 4.64 0.28 0.24 5.6 . 5.15

0.45
4.34 0.20'. 4.7

Mean of
total
sample

4.52 0.22
5.S9

4*

0.99

TABLE VIII.

Transcribing forms

Treatment Circle
length
(pm)

Mean

(pm)

Transcript
length
(pm)

Position on 
circle 
(pm)

Length of 
"transcription 

unit" (pim)

5.02 — — -
- c®rtisel 4.98 0.2 —

4.37 4.65 1.3 0 3.15
- 1.13 0.38

4.24 0.23 - -

3.39
+ cortisol 5.47 4.43 0.21 - -

- 1.01 - -
- 0.67 - -

Mean of
total
sample

- 4.58 - - -
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In Novokoff rat ascites hepatoma cells (Koike & Wolstenholme, 1974) 

replication of mitochondrial DNA circles is discontinuous. As with Drosophila 

mitochondrial DNA (Goddard & Wolstenholme, 1978) replication is unidirec­

tional from a specific origin. When fork lengths are expressed as a percen­

tage of total circle length, it is found that over the first 2% - 44% of the 

circle, fork: lengths fall into 7 or 8 discrete size classes. This suggests 

that over the length of the mitochondrial circle there are several points 

at which DNA replication can be blocked. Although the replication inter­

mediates found in these cells are also characteristic of normal chick and 

rat liver cells (Koike & Wolstenholme, 1974) it is not clear whether this 

type of '’discontinuous'* replication occurs in other mitochondrial DNAs.

There is no direct evidence in Drosophila, X. laevis or mouse L-cells, that 

mitochondrial DNA synthesis is discontinuous and this also applies to 

Crithidia kinetoplast DNA (Berk & Clayton, 1976; Manning & Wolstenholme,

1976; Barat et al., 1977; Goddard & Wolstenholme, 1978). The nature of 

mitochondrial DNA replication in yeast (Borst & Grivell, 1978) is still 

not clear.

If my pictures do indeed represent replicating mitochondrial DNA 

molecules the presence of only one size class of ’’blister” is certainly 

consistent with such a discontinuous mode of replication. However, the 

Miller spreading methodology, like biochemical extraction procedures,

(Koike & Wolstenholme, 1974) may result in the removal or dilution of 

factors necessary for replication to proceed over "stop points”, thus 

giving rise to discrete size classes of replication fork that would be absent 

in vivo. If this is so, it is hard to understand why "stop points" should 

be necessary in the first place, if replication over them is continuous 

in vivo. The length distribution of the forks is thus unlikely to be 

artefactual. In qualification, however, it must be considered that isolation
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and spreading procedures need not necessarily terminate replication at the 

same place as that which it had reached when preparation was made.

All the rings that I found were fairly well spread. None had the 

supercoiled structure reported by other authors (Dawid & Wolstenholme,

1968; Koike & Wolstenholme 1974). Oligomeric molecules consisting of 

series of linked circular molecules were not seen (Wolstenholme et al., 

1973b; Berk & Clayton, 1976).

(2) Transcription

Among the DNA circles that I found, there were some that appeared to 

be in the process of transcribing RNA. These were commoner than the 

putative replicating circles. The size of these circles fell around a mean 

of 4.7 pm, which suggests that they were mitochondrial genomes (Table VIII). 

I consistently obtained a lower value for circle length than the previously 

determined value of 5-35 pm for X. laevis mitochondrial D^A (Dawid & 

Wolstenholme, 1968) but this may be due to differences in spreading 

conditions.

The presumptive RNA (Figs I-11a-d and 1-12a) of these circles varied 

in length from 0,2 to 1.13 pm (Table 7113^), a size distribution overlapping 

that for X. laevis primary transcripts from nuclear chromatin. In appear­

ance it exhibited a degree of contrast greater than that of the circles 

to which it was attached and similar to that of the putative ’’forks” seen 

on other circles. It did not have any apparent subunit structure. This 

may be more artefactual than real, as RNP from nuclear chromatin had the 

same appearance on this preparation, whereas it had a distinctly particulate 

structure in other preparations.



64.

In one instance it was possible to measure the separation between two 

putative transcripts attached to one ring, and to make a Laird Analysis 

(Fig. I-12a-c), The two molecules were about 0.4 pm apart, and attached to 

a circle 4.4 pm in length. If the separation between them is indeed 0.4 pm 

(Fig. 1-12b) then a Laird Analysis (see above for definition) suggests that 

they might form part of a transcription unit at least 3-2 pm long, i.e. 73% 

of the entire contour length of the circle. If, on the other hand, they are 

separated by 4.0 pm of DNA, then to obtain the observed conformation, 

transcription must proceed without termination, more than once around the

circle. It is not possible to differentiate between these two alternatives

here. The second alternative cannot be eliminated because small DNA circles

bearing transcripts longer than the contour length of the ring to which

they were attached and therefore indicative of transcription moving several 

times round the ring, have been observed in Dytiscus oocytes (U. Scheer, 

pers. comm.).

Although I did not succeed in my efforts to isolate X, laevis mitochondria

from cultured cells, and so lyse them and visualise their DNA, the size

distribution of those circles that I did find does suggest that they are 

mitochondrial, -fco my knowledge, the only pictures of transcribing mitochon­

drial circles that have so far been published, are those of Chooi & Laird 

(1976), which indicated a coupling of transcription and translation.

It is known that the mitochondrial genomes of yeast and Neurospora 

crassa (Dawid, 1970; Borst & Grivell, 1978; Hahn et al.. 1979) contain genes 

for the mitochondrial ribosomal RNAs, and about 12-15 transfer RNA genes 

used in mitochondrial protein synthesis. The mitochondrial genome also

codes for an unknown number of proteins of the mitochondrial inner membrane 

(Bos et al.. 1978). If my pictures do represent mitochondrial DNA circles
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in the process of transcription, then a transcription unit, size of 5-2 pm 

would imply the production of polycistronic RNA, which would also he the 

case, if transcription proceeded around the ring more than once. Unfor­

tunately I know of no studies on mitochondrial primary transcripts. The 

presence or absence of processing would modify this conclusion. The results 

of Dawid (1970) deal only with bulk RNA extracted from X. laevis mitochon­

dria, and demonstrate that three main size classes of RNA exist, 21S, 13S, 

and 4S RNA, of which the first two are structural components of the mito­

chondrial ribosome.

(c) Rings attached to X. laevis chromatin

In one preparation of X, laevis culture cell chromatin, small rings 

were seen to be attached to the DNP (Pig. I-15a-d). That these were not 

merely accidental twists in the chromatin was suggested by their great numbers 

and by the fact that many occurred on lengths of DNP that had been stretched 

by centrifugation (Pig. I-13a). Finally, they were found only on this one 

preparation, which was characterized by a dispersal time of only 15 min.

A short dispersal might be expected to preserve details of chromatin'

secondary structure that might otherwise be disrupted.

The small circles seemed to be of various types, some resembling 

twists in the chromatin (Fig. 1-15"b), and others the putative excision 

intermediates seen on lampbrush chromosome RNA (Fig. I-15c) (Scheer et al.. 

1976; Hill, 1979 in press). A third class of circle resembled primary 

transcript molecules whose free end was somehow associated with the chroma­

tin axis (Pig. 1-13d).

I decided to measure the sizes of these circles, and the contour 

lengths of a random sample fell around a median of 0.4 pm, with a range of
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2.5 inn. (Fig. I-l4a). The distribution, was skewed slightly towards the 

right, and for this reason the median value is more meaningful than the

mean. No discrete size classes were observed.

This distribution overlaps the one obtained for X. laevis culture 

cell primary transcripts from nuclear chromatin so that it is conceivable 

that the rings might be RNP,. However, they were more frequent than RNP, 

which may rule this out. Moreover their contrast was similar if not iden­

tical to that of the chromatin, and, although having a beaded structure, it 

resembled DNA rather than RNA. These facts argue against such an interpre­

tation, but it would be informative to spread the chromatin of these cells 

in the presence of Sarkosyl, which removes nucleosomes, but not RNA poly­

merases, from the chromatin (Scheer et al.. 1977)-

The possibility exists that the rings are ’’supernucleosome” breakdown 

products. ’’Supernucleosomes" in the sense of Hozier et al. (l977) are 

higher order chromatin packing structures containing 8-9 nucleosomes. 

Dispersal removes most of the protein from chromatin, but enough might be 

left to hold the remnants of the supernucleosome together. This could be 

resolved by counting the beads on the rings, but as it is not clear how

heterogeneous supernucleosomes are, in their nucleosome content, this would 

not be very illuminating. Unfortunately, the nucleosomes on the prepara­

tion where the rings were found were so closely packed that it was not 

possible to count them accurately. Some of thelarger rings could represent 

structures of totally different origin.

A third possibility is that the rings could represent putative excision 

intermediates. This is supported by the structure of some of the loops 

(Pig. 1-15c). However, even these might represent supernucleosomes less

dissociated than the open rings. Excision of DNA sequences implies that
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amplification of some sort occurs if information is not to be lost from the 

genome. Ribosomal amplification is the commonest type of DNA sequence 

amplification, but cannot be occurring here as most of the rings are much 

less than the necessary 2 pm in length. Evidence exists that in Daucus 

carota, nonrihosomal DNA amplification occurs. In explants of carrot 

tissue, a heavy satellite occurs that is not detectable in the DNA of the 

whole carrot plant, and metabolic turnover of the DNA occurs (Schafer 

et al.. 1978). Treatment of carrot plants with gibberellic acid results 

in the unique sequence fraction of untreated carrot DNA hybridising to the 

middle-repetitive fraction of the DNA of treated plants (Schafer & Neumann, 

1978). Thus the unique sequence class is labile and apparently amplified. 

These results do not rule out the amplification of nongenic sequences 

because the unique sequence fraction includes a large number of noncoding 

sequences. The results of Strom (Strom & Dorfman, 1976) suggest that 

during differentiation in the chick limb bud, cartilage specific sequences 

are amplified. However, it is not yet known definitely whether very small, 

noncoding sequences are amplified and excised.

(d) Coincident transcription and replication

Electron microscope evidence for the coupling of transcription and 

replication has been obtained from Drosophila melanogaster embryos 

(McKhight & Miller, 1977; McKhight et al.. 1977). Here, homologous RNP 

fibre arrays occur on the two arms of replicating regions of DNA,

Only in two instances were putative replicating regions bearing RNP, 

found (Fig. I-15a-b). One of these (Fig. I-15a) was equivocal, perhaps 

consisting of two strands of DNP crossing each other, the end of one of 

which had broken and then become more condensed in structure. However, the 

contrast and width of the putative RNA molecule were much greater than that
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of the DNA, which does have a few nucleosomes on it. Such forms, when

found, were not included in transcript length distributions.

(e) Higher order packing structures

One complete partially spread nucleus was found where the chromatin 

appeared as thick "cables”, considerably thicker than the usual form of 

chromatin from these cells (Fig. 1-16). At high magnifications the cables 

were seen to have a segmented structure which in some places had broken 

down to release spirals perhaps consisting of linked beads (Fig. I-17a-b). 

One odd characteristic of the cables was that in places they appeared 

double (Fig. 1-18a). The cables were, on average, about 29 nm wide, whereas 

the segments were about 16 nm wide. The beads in the loose regions had a 

diameter of about 15 nm (Fig. I-19), and the double regions each had a 

width of 15 nm.

This cable structure may be analogous to the 20 - 50 nm chromatin 

fibres described in chicken erythrocyte chromatin and other systems (Olins, 

1977; Renz et al.. 1977), and which consist of superpacked nucleosomes.

The structures I found are probably more similar to the 30 - 50 nm solenoid 

structure derived from a coiled 10 nm "nucleofilament" (Finch & Klug, 1976), 

as discontinuous clumps of nucleosomes were not seen (Olins, 1977). The 

do-called "supernucleosomes" were also absent from preparations of X. laevis

culture cell chromatin.

The integrity of the 30 nm knobby chromatin fibre is dependent on the 

presence of histone H1 and at low ionic strength, as is the case for Miller 

spreads, the fibre is disrupted (Renz et al.. 1977). This is probably why 

I only observed this type of structure once. Organic drying agents such as 

ethanol and metylbutane also distort chromatin structure to some extent,
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so that the structure I saw may hear little relation to chromatin structure 

in vivo. Differences in ionic strength and isolation procedures are perhaps

responsible for the coiled appearance of the chromatin fibres, which appear

as linked clumps or large beads after mild digestion and lysis of nuclei. 

Biochemical evidence suggests that the JQ nm fibre unfolds to produce 

nucleosome chains. My observations are in agreement with this.

The large size (15 nm) of the beads may be due to metal shadowing of the 

preparation.

(f) Contrast

The contrast of many of my preparations was poor, and evidence from 

various sources shows that dispersal of chromatin in Joy results in the 

removed of some chromatin proteins, thus reducing its stainability. Nucleo­

some structure is also disrupted and it was for this reason that I did not

do any studies on nucleosome distribution. Any distributions that occur 

are likely to be largely artefactual.

(ii) Triturus cristatus carnifex cultured cells. Characteristics of 

transcription

As with X. laevis cultured cells, during my investigation of transcrip­

tion, I used a variety of methods to visualise RNA synthesis. I obtained 

most of my results with the modification involving the lysis of Nonidet 

P-40 extracted nuclei, but a number of data were obtained with later modifi­

cations of the Miller technique which resulted in greater contrast and 

preseirvation of structural detail.

Most of the preparations were obtained from cells inoculated at twice 
the-usual subculture density (8.6 x 10^ - 1.8 x 10^ cells/large vessel),
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and grown for two days at 25°C, until they had attained log phase. Growth 

phase was checked by determining growth rate of the cells at various 

inoculation densities (Appendix II). I had technical difficulties with 

isolation and dispersal of the cells at lower cell concentrations, which 

necessitated this. Triturus cells are 5-6 times larger than those of

X, laevis. and so a culture vessel of the same size as those used for

X. laevis will contain fewer cells. Many of these are broken due to their 

fragility, and the Nonidet pellet is often difficult to see, and therefore 

easy to disrupt and lose. Later on I found that adequate preparations 

could be obtained from cells grown at lower inoculation densities, and the

most effective method was to grow cells in Petri dishes, scrape them off 

in ’’Joy", and disperse them immediately. However, transcription figures 

were always extremely rare in this cell line and little or no difference in 

their frequency occurred in different types of preparation.

Dispersal of Nonidet P-40 extracted nuclei resulted in the presence 

of large nucleus-sized clumps of chromatin on the grids. These were very 

compact (Pig. I-20a), although a few fragments occurred. Nearly all had a 

clearly beaded structure (Fig. I-20a-b) and the beads were approximately 

29 nm in diameter. Thus they appear to be analogous to the "supernucleosomes" 

described by other authors (Olins, 1977; Renz et al.. 1977). Structures 

resembling the "cables” observed in X, laevis culture cell chromatin were

not observed.

The clumps of beaded chromatin were usually surrounded by halos of 

well-spread filaments, almost always entirely smooth and devoid of nucleo­

somes. These chromatin filaments were usually of low contrast (Fig. I-20b) 

and measured about 15 nm in stained preparations, thus demonstrating that in 

spite of the absence of nucleosomes, the DNA was associated with proteins.



TABLE IX.

Lengths of clearly measurable transcripts 
from a long transcription complex found in 
a preparation of T.c. carnifex cultured cells

Cell type Transcript length 
(pm)

T.c. carnifex 
cultured cells

2.7 )
10.8 j adjacent

5.9
4.5
1.9
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In all these preparations, transcription occurred, on ’’smooth” DNA filaments 

of this type, hut this was thought to he artefactual, due to extended 

dispersal in 0.2% Joy. Later preparations showed many nucleosomes, with 

which transcripts could he associated.

Transcription figures were rarer in these preparations than in 

X. laevis culture cell chromatin. Of 34 preparations, only 4 showed clear 

instances of transcription. The great majority of these consisted of single 

isolated RNP fibrils (Fig. I-21a-b), although two putative arrays were 

seen. The criteria used for selection and measurement were the same as

for X. laevis preparations.

Isolated RNP fibrils had a mean length of 0.33 pm (Fig. 1-22) hut the 

z'sample size (Table Ly was small, so that it is debatable whether these 

results have any statistical significance. One group of two fibrils was 

found, and here the terminal RNP fibril measured about 0.4 pm.

Only two arrays of RNP fibrils were found in these cells (Figs I 23a-b 

and 1-26). Both consisted of long stretches (9-15 pm) bearing long, 

rather sparse RNP transcripts, and reminiscent of transcription on 

T.c. carnifex lampbrush chromosomes (Scheer et al.. 1976); in one case the 

array stretched over most of one grid square. Neither array showed a clear 

length gradient of RNP fibrils and thus were clearly of nonribosomal origin. 

It was not possible to make a Laird Analysis of either of these arrays as, 

for a large part, they were obscured by chromatin. I cannot say how many 

transcription units were involved. A third array consisting of four very 

long transcripts was found but the ends of the fibrils were not traceable.

Several of the transcripts on one array (Figs I-23a, 1-24 and 1-25)
P lo

were measurable. The longest (Fig. I-23b. Table IX^ was 10.8 pm, and as 

such compares well with the longest transcripts found in T.c. carnifex
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lampbrush chromosome arrays. The others measured were between 2 and 6 pm 

in length. It is interesting to note that the 10.8 pm transcript is adjacent 

to one of only 2.7 pm, and may indicate the occurrence of processing. Some

parts of this array show short gradients of fibrils which may rule out

random breakage as the origin of the size difference of these two transcripts 

In certain transcripts, secondary structure was extensive (Fig. 1-24).

The second array bore very long fibrils but it was not possible to 

photograph the ends of many of these (Fig. 1-26), so that further analysis 

was not possible. Long arrays of this type were never observed in X. laevis. 

To my knowledge, this is the first time that long fibrils of this type have

been found in chromatin from cultured cells.

The DNP axes of the two arrays lacked nucleosomes, but their width 

(over 10 nm) implied some association of the DNA with chromatin proteins.

The transcripts had a diffuse subunit structure, and in this resembled those 

found in X, laevis chromatin. Where clearly visible, subunits were up to 

20 nm in diameter. In more recent preparations, under better conditions of 

both cell culture and chromatin spreading, rare isolated RNP fibrils 

occurred (Fig. 1-21a-b) but arrays of any sort were either absent of 

undetectable. A major drawback of the Miller technique is that only small 

amounts of chromatin can be conveniently scanned. Spreading of a population 

of randomly growing cells or nuclei means that chromatin at all stages of 

the cell cycle is- present on the grid, and these may vary in transcriptional 

activity. For cultured cells, which express relatively few genes it is 

necessary to perform biochemical experiments to supplement the data from 

spreads.

As with X. laevis. RNA polymerases were not detectable at the point

of attachment of the transcript to its DNP axis. In the first long array
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I found, RNP fibrils were distributed fairly uniformly along the DNP axis.

In the second one, on the other hand, putative transcripts tended to be 

arranged in blocks (Figs 1-26 and 1-27). Although RNP ends were not visible, 

so that the number of separate transcription units cannot be determined, this

may imply that here transcription proceeded in short bursts.

psi
In T.c, carnifex cultured cells (Table Up isolated fibrils comprised 

73% of the total transcription, whereas troups of two fibrils made up only 

9%. Arrays comprised about 18%. In this T.c. carnifex shows a somewhat 

greater percentage of arrays than does X. laevis. Because of the small 

sample size, however, these distributions may be artefactual. They could 

imply, nonetheless, that although less transcription seems to occur in 

T.c. carnifex culture cells, a higher percentage of certain sequences are 

transcribed. On the other hand, the fact that most tissue culture lines 

are thought to express similar numbers of genes, would seem to militate

against this conclusion.

Ribosomal transcription units were never seen. Neither small circles

attached to chromatin, nor putative mitochondrial circles were observed.

This is unfortunate as the work of Wolstenholme & Dawid (1968) suggests that 

there is a size difference between the mitochondrial DNAs of anurans and

urodelans. Transcription units of opposite polarity were apparently absent 

(Angelier & Lacroix, 1975; Grainger & Ogle, 1978).

(a) Packing ratios

It was not possible to determine DNA packing ratios for early prepara­

tions of T.c. carnifex culture cell chromatin due to the absence of nucleo­

somes. Because these were the only preparations to show arrays of RNP fibrils,

it was impossible to calculate the degree of foreshortening of the RNP.
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In a later preparation, the DNA packing ratio of transcriptionally 
fs*

Inactive regions was found, to he 1-.’88 (Table III^) . Nucleosomes were 11.9 nm 

+ 2.4 nm (rotary shadowed, preparation). No arrays were seen.

(b) Coincident transcription and replication

In one of the two long arrays that I found (Fig. 1-26) part of the DNA 

axis appeared double for about 8.5 pm of its length, and had the form of a 

typical replication ’’bubble”. This region was quite heavily covered in 

putative transcripts. Both arms of the "fork" appeared to have transcripts 

attached. As both ends of the "bubble" had attached fibrils, it is possible

that the "bubble” really consists of a long piece of chromatin that had 

looped around the DNP axis. The fact that both arms of the ’’bubble" 

apparently bore RNP does not necessarily rule this out, as a piece of tran­

scribing chromatin could have got looped around. However, the fact that 

the RNP was of similar length on both sides of the "bubble" does make this 

interpretation less likely.

Although the ends of many of the putative transcripts in the bubble 

region could not be traced, they were visible at other places along the 

array, which strengthens the interpretation that this is in fact a transcrip­

tion figure. Many long transcripts were visible of the size order found 

in the first long array.

If the fibrils on the bubble are indeed RNP, this structure resembles 

those already observed in Drosophila embryo chromatin (McKnight & Miller, 

1977; McKnight et al.. 1977), where homologous arrays of fibrils occurred 

on each arm of the presumptive replication fork. Replication of DNA is 

bidirectional in Triturus (Callan, 1972), whereas transcription in this

particular array is probably unidirectional, although this cannot be stated
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with, certainty. If progress of the ’’bubble” is also bidirectional, replica­

tion must be proceeding in a direction opposite to that of transcription.

The results of McKnight et al. (1977) suggest that in the case of 

Drosophila embryo ribosomal genes, a replication fork cannot enter an active 

ribosomal gene opposite to the polarity of RNA polymerase movement. In my 

pictures, one cannot distinguish whether replication started before transcrip­

tion or vice versa. Transcripts were probably present on both sides of the 

putative fork (Fig. 1-26) which may imply that RNA synthesis was in progress 

before replication started. Although many pictures have been published of 

transcription units through which replication has progressed, I know of none 

where a fork has apparently initiated in the centre of an array, and pro­

gressed outwards. However, my pictures should be treated with caution, as 

the identification of DNP and RNP is not absolutely proven and the number 

of transcription units comprising this array is unknown.

(4) Higher order packing structures

In many stained preparations of T.c. carnifex culture cell chromatin, 

clumps roughly the size of individual nuclei, and consisting of spherical 

subunits about 29 nm in diameter, were found (Pig. 1-28). Many of these 

appeared to be associated with networks of collagen (Fig. I-20a).

In favourable, cases the strings of beads, which may be equivalent to 

the ’’superbeads” of Renz (Renz et al.. 1977; Pinon et al.. 1978) and other 

authors, appeared stretched (Fig. I-29a). Stretched beads were less discrete 

than when unstretched, but were nonetheless clearly visible. The chromatin 

fibre between the superbead remnants was some 16 - 19 nm wide, and had no 

resolvable structure. I did not find any clear instances of a transition 

between the superbead structure and the unbeaded spread chromatin (Fig. I-29b)
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In a few cases, structures resembling partially unwound spirals of 

nucleosomes were seen (Fig. I-29c). The heads in these structures were 

indistinct hut were about 13 - 19 nm in size, and so may represent nucleo­

somes. They did not, however have a clumped structure like the superbeads, 

and it is not clear what relation they bear to the latter.

In preparations of spread whole cells, superbeads were almost entirely 

absent, as were chromatin clumps of any size. Superbeads were found in 

greatest numbers in spreads of NP40 extracted nuclei. This suggests that 

Nonidet F-40 in someway facilitates their visualisation. That they were

not an artefact is indicated by the presence of short lengths of superbeads

in later preparations, as well as their occurrence in spread chromatin of 

X. laevis liver cells (Chapter II, this study),

If the beads I found are analogous to the superbeads described by other 

authors, they differ inasmuch as the nucleosome subunit structure could not 

be seen (Renz et al.. 1977; Rattner & Hamkalo, 1979). This could, however, 

have been due to my method of visualisation. These putative higher order

structures were much more frequent than the cables found in X. laevis culture

cell chromatin and may imply a greater degree of metabolic activity in the

latter cell line.

The possibility does exist that the superbeads are in some way a 

preparative artefact, because T.c. carnifex nuclei, at this stage of my 

work, were routinely spread in 0.2% Joy, whereas X, laevis chromatin was 

spread in 0.1% Joy. A preparation of X. laevis nuclei dispersed in 0.2%

Joy was made, but was unsuccessful, and I have not yet been able to repeat 

this experiment.
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Much evidence suggests that the superbead structure is an universal 

unit of chromatin packaging (Olins, 1977; Rena et al.. 1977). If so it is 

not clear why ’’cables” rather than superbeads were found in X. laevis 

chromatin. Differences in spreading conditions may have caused a distortion

and compaction of the superbead structure but it is still difficult to 

account for the double aspect of the cables. Such double regions were 

entirely absent from T.c. carnifex culture cell superbeads.

3(iii) Incorporation of H-uridine by cultured cells

The Miller technique is relatively insensitive, and only a small propor

tion of the total transcription in a cell or population of cells can be

examined. In order to look at the total RNA population, I decided to carry

out some biochemical experiments. To determine the rate of incorporation

of H-uridine by my cultures, cells of each line were labelled with low 
■2

specific activity "H-uridine. For each sample (see Materials and Methods) 

both cell number and total incorporation were determined. - The results were

expressed as incorporation per cell per hour, and incorporation per cell 

per 1% cell cycle time. Cell counts allowed me to determine Tau, the mean 

cell cycle time, for each culture.

I found the mean cell cycle time to be 30.6 hr for X. laevis and 

94.2 hr for T.c, carnifex cultured cells (Fig. I-30a-b). The rate of 

incorporation per"cell per hour (Fig. 1-31) was similar for both cell lines. 

When incorporation was expressed as cpm per cell per 1% cell cycle time,

T.c. carnifex was seen to incorporate label about 4 times faster than 

Xenopus (Fig. 1-32). As the cell cycle time was about three times greater 

for T.c. carnifex. this implies that, per cell cycle, the total RNA synthe­

sised per cell was about 4 times greater in T.c. carnifex than in X. laevis.



78.

If one now assumes that pool sizes are the same for the two cell lines,

that the rate of addition of nucleotides to RNA. is similar, that the two 

cell types have an equivalent number of sites synthesising RNA, and that 

the polymerase density of both cell types is similar, this result implies 

that in T.c. camifex the sites synthesising RNA are on average about 4 

times as long as In X. laevis.

Established cell lines do not express many genes, merely those that 

are concerned with the '’housekeeping” functions required by every cell.

It is therefore likely that both my cultures were expressing rather similar 

numbers of genes.

To further test the above assumptions I attempted to measure polymerase 

density in these cells, but without success. On the other hand the similarity 

of thedistributions of different types of transcription figure in spreads 

of chromatin from these cells do suggest that polymerase density does not

differ greatly between the two cell lines.

I was not able to determine pool sizes. The rate of uptake of isotope 

into a pool affects the incorporation pattern seen. An appreciable amount 

of TCA-precipitable incorporation had occurred after 15 min of labelling 

of both cultures, which may suggest that there was little or no lag between 

the addition of label and its incorporation into RNA. Finally, eukaryotic 

RNA polymerase rates are very unifrom, with a maximum rate, at 25°C, of 

less than 2 x iCh5 nucleotides per minute per'polymerase (Kafatos & Gelinas, 

1976).

The mostserious objection to my interpretation of these data is that 

I did not determine how much of the observed incorporation was due to 

ribosomal RNA synthesis. Thus my rate values may be spurious, and it would
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be desirable to try to eliminate ribosomal RNA synthesis. Another objection

to my interpretation is the possibility of mycnplasma contamination of my 
3cultures, which was not determined. Uptake of H-uridine by mycoplasma 

would greatly affect any rate differences that might exist.

Triturus cells are about 3 - 6 times larger than X. laevis cells.

Thus the concentration of RNA is likely to be similar in both cell types, 

if one considers the amount of RNA synthesised per cell cycle.

(iv) Size determination of RNA from X, laevis and T.c. carnifex cultured cells

In order to supplement the data from Miller spreads, I decided to carry 

out a conventional RNA extraction and sizing experiment. Figure 1-33 shows 

that a greater proportion of labelled total cellular RNA is of higher mole­

cular weight in T.c. carnifex than in X. laevis. X. laevis. on the other 

hand, appears to synthesise more small RNA. T.c. carnifex RNA shows slight 

peaks at about 58S, 68S and 9?S, and there are suggestions of peaks at these 

positions in the X. laevis distribution. On the other hand the T.c. carnifex 

distribution is still level when the X. laevis distribution is beginning to

tail off.

These data suggest that T.c. carnifex culture cells do indeed make 

larger RNA than cells of X. laevis. Unfortunately, due to technical problems 

I was not able to similarly extract and size nuclear RNA from these cells.

The distributions discussed here therefore include a large proportion of 

small cytoplasmic RNA. This, together with a necessary DNAse step in the 

extraction procedure may be responsible for a less striking difference in 

size distribution than that observed by Lengyel & Penman (l975). If their 

data are valid, one might expect a slightly greater mean size difference 

than 2 - 2.5 in the case of organisms where the C-value difference is greater

than five to sixfold, as in the case of Aedes and Drosonhila,
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Due to the high C-values of these organisms, I found it necessary both 

to treat whole cells with DNAse, to reduce aggregation due to DNA released 

by broken cells, and also to treat the nucleic acids with DNAse at various 

points during extraction. If this was not done, labelled RNA became trapped 

in large aggregates of DNA which sedimented in the high molecular weight 

region of the gradients, giving spuriously high count levels in these regions. 

Although extremely pure enzyme was used one cannot be absolutely certain 

that contaminating RNAse was absent. Thus any size difference that exists

might be further diminished by this procedure.

The phenol extraction method I used increases the likelihood of aggrega­

tion of the RNA (Pederoff et al.. 1977)» even after denaturation. I was 

unsuccessful in my attempt to measure size differences in RNA centrifuged 

through formamide, where denaturing conditions are present in the gradient

itself.

As with the incorporation rate experiment, a large proportion of the 

total RNA sample consists of ribosomal RNA. In an attempt to eliminate 

this component, and so accentuate the differences between the nonribosomal 

populations, I labelled cells in the presence of low concentrations 

(0,04 pg/ml) of actinomycin D, for a total of 1 hr 25 min. In HeLa cells 

(Penman et al.. 1968) such low concentrations of actinomycin D cause a 

preferential reduction in the synthesis of 45S ribosomal RNa, However, my 

cell cultures appear to be sensitive even to.low concentrations of this 

drug, as RNA synthesis was eliminated completely. In this experiment RNA 

was isolated by a process of enzymic digestion and centrifugation through 

caesium chloride (Glisin et al.. 1974). This technique reduces the degree 

of breakage of high molecular weight transcripts, as does isolation of RNA 

from preparative agarose gels (Case & Daneholt, 1976).
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Although the RNAs of both cell cultures were coextracted, it would he

informative to extract RNAs after mixing the two cell types together follow- 
3 14ing labelling with either H-uridine of C-uridine, which would give some 

measure of the degree of degradation that occurred (Lengyel & Penman, 1975).

A final qualification is the possibility of mycoplasma contamination of 

my cultures, which might affect the size distributions seen, although, if 

one assumes that increase in C-value results in an increase in RNA length, 

high molecular weight RNA on the gradients would not be masked.

(v) Gel electrophoresis of bleomycin-treated chromatin

Very few of my Miller spreads showed contrast approaching that of typical 

oocyte-ribosomal gene preparations, and I suspected that this was because

Joy in the spreading solution was removing proteins from the chromatin and 

thus reducing its stainability. To test this hypothesis chromatin extracted

with spermidine, which preserves nucleosome structure, and chromatin from 

a Miller spread were electrophoresed through agarose gels. Both chromatin 

samples were treated with bleomycin (Kuo &• Hsu, 1978) which attacks 

chromatin preferentially at internucleosome linker regions.

Both Xenopus and Triturus culture cell chromatin behaved in the same

way. Bleomycin treatment resulted in the spermidine extracted DNA showing 

a banding pattern typical of different sized aggregates of nucleosomes 

(Fig. 1-34), whereas in the absence of the antibiotic, all the fluorescence 

was at the high molecular weight end of the gel, showing that little or no

autodigestion had occurred.

When Miller spread chromatin was treated with bleomycin no fluorescence 

was observed. The untreated control showed fluorescence only at the high 

molecular weight end of the gel (Fig. 1-35).
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These1 results indicate that the Miller technique as I used it in some 

way disrupts nucleosome structure. This allows bleomycin to break the DNA 

into very small fragments that run off the gel, rather than cutting between 

nucleosomes. It must therefore be borne in mind that observations made on

nucleosomes from chromatin dispersed in detergent-containing spreading

solutions may be artefactual.

In many cases, the smooth DNA of my early preparations where protein 

removal was likely to be maximal was about 10 nm wide, suggesting that the 

chromatin proteins, rather than being removed, had adopted a non-nucleosomal

conformation.

The Miller technique used to prepare chromatin for this experiment was 

an early modification. Later versions resulted in higher contrast, and 

an improved preservation of nucleosome structure. However, I was not able 

to repeat this experiment using later modifications of my spreading method,

These data are in accord with the findings of Scheer (l978) that 0.3%

Joy removes 75% of the chromatin proteins. The preparative method I used 

results in large clumps of ”superbeads” being visible in electron microscope 

preparations. Thus one might expect some residual subunit structure to 

persist in gels of bleomycin treated spread chromatin. That none was observed

may perhaps be due to bleomycin cleaving the chromatin into separate super­

beads, which later unravel and lose their nucleosome structure.
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(vi) Cellular and, nuclear dimensions of cultured cells of X, laevis and

T.c, carnifex

I wished., for a number of reasons, to-know the dimensions of cells and

nuclei in my tissue-culture lines. It is relatively easy to measure fixed 

and stained material, but even the best fixatives e.g. Sanfelice, result in 

considerable shrinkage of cells and nuclei. It was therefore necessary to 

take measurements from living cells.

All the size distributions were slightly skewed to the right so that

a minimum cell or nuclear size must exist. For this reason, I determined

median rather than mean values. Although the distributions are not normal 

I calculated the variance for each histogram, in order to assess the degree 

of spread of the size distributions.

Figs I-36a and I-37a show that at high inoculation densities, the median 
3 3cell volumes of X. laevis and T.c. carnifex are 4492 p. and 26914 P- respec­

tively, T.c. carnifex having cells some six-fold greater in volume. The 

variances of these distributions were 8% and 14% of the medians, respectively, 

showing that there was little spread in the distributions. Nuclear areas are 

205 p- and 1386 p. respectively (Figs I-38a and I-39a) and show that 

T.c. carnifex has nuclei about 6.8 times greater in cross-sectional area 

than X, laevis. The variances were 6% and 9% of the median values, respec­

tively. If the cell layers of both species are similar in thickness, then 

this reflects a real difference in the size of the nuclei.

At lower cell densities the size difference was less marked; it is not 

clear why, unless the selection procedure or sample size I used was in some 
way responsible. Cell volumes (Figs I-36-c and I-37c) fell around 7500 p.^ 

for Xenopus and 19900 pu for T.c. carnifex. Variances were 19% end 11% of
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2 2the median values. X obtained values of about 300 p and 1100 p (Figs 

I-38c and I-39c) for nuclear areas of the two cultures. Variances were 4% 

and 6% of the median values. In these cultures, T.c. carnifex has a cell 

volume only 2.7 times greater than that of X. laevis and a nuclear area

greater by a factor of 3.5.

Both the absolute values and their relationship to each other vary 

with inoculation density. However, these data do agree with previous 

findings (Van t’Hof & Sparrow, 1963; Ssarski, 1976; Olmo & Morescalchi, 

1978) that nuclear size and generally also cell size correlate positively

with C-value.
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DISCUSSION

The experiments described, in this chapter indicate that in the case 

of tissue-culture cells, T.c. carnifex synthesizes both longer primary 

transcripts and hnRNA than does X. laevis. Although the mean values for 

isolated RNP fibril length are very similar, 0.33 pm and 0.44 pm respec­

tively, cells of T.c. carnifex can synthesize primary transcripts of up 

to 11 pm in length. RNP of this size order was never seen in Xenopus 

chromatin, where the longest RNP fibril observed was 2 pm long.

A similar relationship between C-value and hnRNA size has been noted 

in a variety of species (Lodish et al., 1973; Kung, 1974; Lengyel & Penman, 

1975; Hereford & Rosbash, 1977; Williamson & Tobin, 1977; Busby & Bakken,

1979). However, none of these experiments demonstrate as great a range of 

primary transcript size as the five-fold difference I found. This difference 

though great, is still somewhat less than the 7 - 10-fold difference in

the actual C-value. As much evidence points to a similarity in gene

number amongst eukaryotes (Rosbash et al., 1975; Edstrom & Lambert, 1975) 

this would imply that, assuming coding sequences to be approximately the

same length in both Triturus and Xenopus, not all the extra DNA is transcribed.

In a study of the DNA sequence organization of anurans and urodelans 

Baldari and her. colleagues (Baldari & Amaldi, 1976, 1977) found that within 

the same taxonomic group, differences in C-value were largely due to

differences in the amount of repetitive sequences. Within each taxonomic 

group, species of different C-value had similar amounts of unique DNA, 

although higher C-value species within each group had shorter unique

sequences. The actual lengths of unique sequences were found to be similar 

in the Anura and Urodela. The differences between the two groups, involved

all sequence classes. Furthermore, between the two groups, differences in
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C-value due to variations in the amount of repetitive sequences did not 

involve variation in length of the repetitive sequences (380 bp long).

Thus, within the same subclass, increase in C-value is due partly to

increase in the number of repetitive sequences and partly to changes in 

interspersion period (unique sequence length). Between subclasses, changes 

occur over the whole genome, which nonetheless maintains the same general

organization.

HnRNA consists largely of interspersed repetitive and unique sequences 

(Jelinek et al., 1973; Herman et al., 1976; Davidson et al.. 1977). This, 

and the data of Baldari & Amaldi (1976, 1977) certainly do not exclude 

the idea that between Xenopus and Triturus there exists a pronounced 

difference in hnRNA length. However, it is not clear why a high C-value 

species should transcribe a greater proportion of the interspersed noncoding 

sequences in its genome. Por increase in C-value to result in the synthesis 

of longer primary transcript molecules, interspersed noncoding sequences 

would have to be evenly distributed between coding regions.

The significance of apparent C-value dependent differences in primary 

transcript size is not yet clear. The recent discovery of DNA sequence 

classes of different degrees of repetition in the genome, and their relative 

spatial organization (Crain et al., 1975; Davidson et al.. 1975a, b;

Goldberg et al.,1975: Manning et al.. 1975) has led to the idea that 

these sequences might constitute regulatory elements of some sort. The 

most comprehensive model to account for eukaryote sequence organization is 

that of Britten and Davidson (Davidson, et al.. 1977).

Briefly, it is assumed that the coordinated activity of many different 

genes is required to establish a differentiated state. The structural 

genes, coding for proteins, are conceived of as belonging to batteries,
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defined as those groups of strutural genes which share a given receptor

sequence, to which an activator RNA or protein can bind. Binding results 

in transcription of the contiguous structural gene. The activator RNA 

or protein molecules are encoded in the so-called integrator genes.

Patterns of activation of sets of batteries are determined by the coordinate

transcription of sets of integrator genes, leading to the production of 

sets of regulatory molecules governing functionally related gene batteries.

Finally, to ensure the coordinate activation of each set of structural 

gene batteries, it is suggested that the integrator genes of each integrator 

gene set are transcribed as a single hnRNA molecule.

This model differs fundamentally from those that postulate a 

precursor-product relationship between the primary transcript and mRNA 

(Bastos & Aviv, 1977; SgyhAzi, 1978), in that the great bulk of the hnRNA 

is considered to be regulatory in function. The precursors to polysomal 

messenger RNA are assumed to be transcribed in a process separate from 

the transcription of giant hnRNA. hnRNA, which is known to be very hetero­

geneous in its sequence organization, would thus consist of repetitive 

regulatory sequences interspersed with single copy spacer sequences.

A number of observations do, however, conflict with this model, 

primarily the data on Drosophila sequence organization and primary tran­

script length. The interspersion pattern of the Drosophila genome cnnsists 

almost entirely of repetitive sequences from 0,5 - 1.5 kb in length inter­

spersed with single copy sequences of about 15 kb in length (Manning et al.. 

1975). Although some clusters of middle repetitive DNA may exist, there 

is little evidence (Crain et al.. 1975) to suggest that a significant 

proportion of the Drosophila genome has the short period interspersion 

pattern. The evidence of Lengyel and Penman (1975) demonstrates that the 

mean length of Drosophila culture-cell hnRNA is about 4700 bp. Although



88.

The relationship of the coding sequences to the single copy DNA is obscure,

if Davidson’s suggestion that hnRNA is a coordinate regulatory transcript 

of great sequence length and heterogeneity is valid, it is hard to recon­

cile these data with the model. Drosophila hnRNA is not long enough to

include both unique and repetitive sequences of the length found in 

Drosophila DNA. However, primary transcripts of at least 10 pm (30,000 bp) 

long are synthesized in Drosophila spermatocytes (Glatzer, 1975) and 

band-sized primary transcripts have been detected in other Drosophila 

tissues (Chooi, 1976). Nonetheless, this does not dispose of the lack of 

correlation between interspersion pattern period and culture cell hnRNA 

size. However, it must be remembered that hnRNA is not necessarily equiva­

lent to the primary transcript, which may be longer (Old et al.. 1977; 

Scheer et al.. 1979)* If so, the Britten and ^avidson model may apply, 

i.e. the 4700 bp long Drosophila culture cell hnRNA may be a processing 

product.

The two ideas are compatible if some portion of the Drosophila genome 

shows a short-period interspersion pattern, which does not appear to be 

the case. If it were, it would easily account for the suggestion of Wold 

(Wold et al., 1978) that there are two classes of primary transcript, long 

hnRNA molecules of unknown function, and premessenger RNA. It must be 

remembered that the Drosophila interspersion pattern is characteristic of 

small genomes, and suggests reduction of the genome by deletion, resulting 

in long repetitive DNA clusters instead of small separate sequences. The 

complexity of single copy sequences in Drosophila hnRNA represents a 

fraction of the genome similar to that found in vertebrate and echinoderm 

cells (Davidson et al.. 1977), so that the long interspersed unique DNA 

may have the same complexity as several-short interspersed sequences of 

the short-period interspersion pattern. This might also be true of the
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repetitive sequences, and in this case, the Drosophila data would agree 

fairly well with Davidson's model.

On the other hand, the results of Wold (Wold et al., 1978) show that 

in the sea urchin virtually all biastula messenger RNA sequences are

present in the nuclear RNAs of adult tissues, although most of these

messenger RNA sequences are absent from the cytoplasmic and polysomal 

RNAs of adult cells. Blastula messenger RNA sequences are present in

hnRNA. at the same concentration as the nuclear transcripts of most unique

DNA sequences. Calculations suggest that a magoritj’- of these molecules are 

not message precursors. They suggest that nuclear RNA consists of both

message precursor and a second component of unknown function. These data

are in accord with the hypothesis that hnRNA is mainly regulatory in

function, and the presence of extensive overlap in sequence between dif­

ferent cell types does not require an extreme RNA processing model, or 

exclude transcriptional control.

The two main branches of the Britten and Davidson model involve either

RNA or protein activators. Both give rise to testable predictions. If 

integrator genes produce activator RNAs, and if receptor sequences adjacent 

to structural genes are repetitive, the activators would also be transcribed 

from repetitive sequences. This would permit overlap between gene batteries. 

Thus hnRNA is envisaged as a sequence of repetitive integrator gene 

transcripts, each about 300 base pairs long, and linked by single copy 

spacer DNA. Preliminary calculations (Davidson et al., 1977) show that 

repetitive sequence transcripts are present in the nucleus at concentrations 

high enough to saturate putative binding sites within a few minutes of their 

synthesis, which certainly lends credibility to this idea. High hnRNA 

turnover rates are interpreted as a means of regulating the steady state 

concentration of activator sequences, and to change the state of differen­

tiation, so that regulation is a dynamic process.
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The major flaw of this theory is that it fails to account satisfac­

torily for C-value dependent size differences in hnRNA. Given DNA sequence 

organization and hnRNA sequence structure, there is no reason to assume 

that hnRNA size should change with C-value. Davidson (Davidson et al..

1977) suggests that because free hnRNA length differs from that of hnRNA 

still attached to its DNA template, hnRNA size could he arbitrary, and 

perhaps due to almost random cutting at spacer sequences. Thus it would be 

desirable to look at the hnRNA of a specific gene. A good candidate would 

be the silk fibroin gene, whose putative transcription unit has been 

visualised (McKnight et al.. 1976). Although it might be difficult to 

eliminate isolation artefacts, I think it might be possible to determine 

whether the size of the free hnRNA varied in this way. Electron microscopic 

evidence exists for the excision of short lengths of RNA from lampbrush 

chromosome nascent RNP (Scheer et al.. 1976), but:it is not clear how this 

fits in with the above observations, unless short regulatory sequences are 

being clipped out, rather than the processing of a large to a small molecule.

If activator molecules are proteins there is no need for most of the 

main features of hnRNA organization that have been proposed. If a battery 

of structural genes is defined as that set of genes sharing receptor 

sequences belonging to one repetitive sequence family, with each battery 

activated by the binding of one species of activator protein, only one 

activator per battery is required for any differentiated state. Considera­

tion of gene number, gene number per battery, and activator number per 

battery suggests that the complexity of integrator gene sequences coding 

for protein activators is less than 10% of that of the structural genes 

expressed at any time, i.e. less than 1% of the hnRNA complexity which is 

generally ten times greater than that of the mRNA. This is far less than 

would be expected from the known size and sequence organization of hnRNA,

and implies that integrator genes must be repetitive if the transcription
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unit is indeed, a device for coordinate regulation. This alternative is 

also unsatisfying as it now fails to explain the presence of short inter­

spersed sequences in the hnRNA.

If activator molecules are indeed RNA, larger nuclei would require a

larger number of hnRNA molecules than smaller nuclei, in order to maintain 

activator concentration. My data represent incorporation into total RltA. 

rather than exclusively hnRNA, and it is not clear how much they are affected 

by possible mycoplasma contamination (see Results above). I.found that per 

cell cycle, cells of T.c. carnifex were synthesizing nearly four times as 

much RNA as X. laevis. The difference in nuclear size between these species

is large but the significance of my result is debatable, for the reason 

outlined above. However, a study of hnRNA synthesis rate would be a

desirable experiment to do, as this is a field in which little work hae

been done. Unfortunately, in the case of- cultured cells my Miller spread 

data were too sparse to check rate of synthesis by measuring polymerase 

density or percentage of total transcription comprised by arrays.

The second major model proposed to explain hnRNA structure is that of 

Cavalier-Smith (1978). This model is fundamentally quite different from 

the one outlined above. Much experimental work shows DNA content to 

correlate strongly with cell and nuclear volume, cell cycle length and mean 

generation time (van t’Hof & Sparrow, 1963; Nagl & Ehrendorfer, 1974;

Olmo & Morescalchi, 1978), and although it is difficult to prove a causal 

relationship, these observation can best be explained by postulating that 

DNA has two functions unrelated xo its coding capacity. The first is the 

control of cell volume by the control of replication origins, as is known 

to occur in bacteria (Lewin, 1974), and the second, which will be discussed 

here, is the determination of nuclear volume by bulk DNA (Morescalchi,
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1977a, b). This latter function is referred to as ’’nucleotypic” (Bennett, 

1972; Bennett & Smith, 1972) rather than ’’genic”.

Cell growth rates depend upon cell volume and the area of nuclear 

envelope available for the transport of metabolites. This is itself depen­

dent upon nuclear volume and hence on DnA content, especially as the nuclear 

membrane is attached to some of the chromatin. Nuclear pore number per 

unit area is roughly constant in most species (Cavalier-Smith, 1978) 

and thus it has been suggested that eukaryote DNA consists of G—DNA, 

which codes for protein, and S-DNA, which plays a major role in nuclear 

volume determination. It may also share some of the function of G-DNA 

by coding for nucleoskeletal RNA.

Eukaryotes are subject to widely differing forms of natural selection, 

of which the most important are the two opposing forces of r- and k-selection 

r-selection is characteristic of species that need to colonise ephemeral 

environments and favours rapid development and reproduction, small body 

size and short lifetime, k-selection on the other hand is most important

for those species that compete in stabler but crowded environments.

k-selection favours slower development, delayed reproduction, large body 

size and longer lifetime (Bachmann, 1972a), and for any species there is 

a particular compromise between these two forms of selection. Cavalier-Smith 

suggests that organisms adapt to varying r- and k-selection by evolving 

particular cell volumes and cell growth rates. Among unicellular organisms 

such as bacteria, selection is for small size and high growth rate, and 

C-values are therefore small. On the other hand, slow-growing algae with 

large cells have high C-values. This relationship is true of both pro- and 

eukaryotes, though in the latter case it is somewhat obscured by three

factors. First, the indirect relationship between cell and organismic
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growth rates, secondly, independent variation in cell and "body size, and 

thirdly, variation in cell size and growth rates in different cells in 

the body. For instance, among plants, r-selected annuals have low C-values, 

whereas k-selected perennials have high C-values. Slow sluggish amphibians

such as Amphiuma and Triturus have the highest'C-values, whereas small- 

celled rapidly metabolising species such as birds and teleost fish, the

lowest.

As developmental processes are sensitive to cell size and growth 

rate, it follows that different cell sizes and growth rates are likely to 

be optimal in different tissues. Thus a means of modulation of cell and 

nuclear volume is required. Cavalier-Smith suggests that this modulation 

could be achieved by polyteny or endopolyploidy, which result in changes 

in nuclear DNA content, or by the synthesis of nucleoskeletal RNA. It is 

suggested, therefore, that the major function of hnRNA sequences is to 

change nuclear volume, and that only a small fraction functions as a 

messenger RNA precursor. These hnRNAs, whose sequences might be irrelevant, 

could combine with swelling proteins to achieve changes in nuclear volume 

(Cavalier-Smith, 1978). Differences in the amount of primary transcript 

might exist between different tissues of the same organism. However a 

second means of varying hnRNA content is that of varying the length of 

hnRNA. In some ways, this mechanism is more economical than changing 

polymerase density, and is a way of exploiting the extra DNA sequences 

already in the genome. During the course of my research I found that hnRNA 

length varied between different cell types of an organism, and also in the 

cells of different species whereas the percentage of arrays in any sample 

of transcription figures was more or less constant. This may mean that 

hnRNA length modification rather than copy number modulation is the means 

of control actually used by the cell. It is conceivable that in some situ­

ations, both methods of control would be used (Chapter IV this study).
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This model then, accommodates the observed correlation of hnRNA size

with C-value far more effectively than Davidson's hypothesis. It also 

accounts for the fact that in most cases, differences in hnRNA length are 

not as great as the difference in C-value. S-DNA is postulated to be 

largely interspersed throughout the genome, but some is also present as

blocks of largely untranscribed sequences, which may be identical to

constitutive heterochromatin.

The results of Wold (Wold et al.. 1978), outlined earlier, fit in quite 

well, and the model predicts that different sets of genes would be used 

in different tissues according to their nuclear volume requirements. An

intriguing possibility, suggested by the considerable degree of sequence

overlap in hnRNA between different tissues, is that under certain condi­

tions, hnRNAs of different lengths might be transcribed from the same

functional unit.

A number of testable predictions result from this hypothesis. Firstly, 

increase in the amount or length of hnRNA synthesized should result in an 

increase in nuclear volume (Chapter IV this study). Different tissue types 

should also show differences in transcription patterns analysable by the 

Miller spreading procedure. Polymerase density, the percentage of the 

total transcription represented by arrays, and RNA length might all be 

expected to vary. Finally, I predict that in certain situations, a small 

C-value species could synthesise RNA of a size order generally found only 

in a species of much higher C-value (Chapter IV this study, Chooir 1976). 

This is reinforced by the accumulation of evidence demonstrating the 

lability of all components of the eukaryote genome (Stanfield & Helinski, 

1976; Strom & Dorfman, 1976; Scheer & Neumann, 1978; Schafer et al.. 1978). 

All these propositions are testable using the Miller technique, and the 

rest of my thesis describes my attempts to do so.
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This model clarifies the situation in Drosophila, whose small hnRNA

is now seen to he an answer to a requirement for small cell and nuclear

size. Drosophila, with its small body and cell size, and fast develop­

mental rate, is an extremely r-selected organism (Cavalier-Smith, 1978) 

adapted to an ephemeral and unstable environment. Small genome size is

necessary for the maintenance of these characteristics. Modulations in 

nuclear size over and above that due to the small DNA content are perhaps

at a premium, in order to preserve- the fast developmental rate. It would

therefore be very interesting to investigate transcription in different 

tissues of Drosophila, as opposed to amphibians, which, together with the

difference in the sequence interspersion pattern of their genomes, are 

extremely k-selected organisms with large nuclei and cells, and long

developmental times.

The major flaw of this model is the fact that it is hard to reconcile

the nucleoskeletal function of hnRNA with its short half-life of 50 min - 

1 hr (Attardi et al., 1966; Soeiro et al.. 1968). However, short half-life 

could conceivably be a means of effecting rapid modulation of differentiated 

states. Small changes in the rate or type of RNA being made would be 

quickly manifested in the population of molecules present in the nucleus. 

Hitherto unsuspected components of the genome might also synthesize longer- 

lived nucleoskeletal R^A. For instance, there is some evidence that 

satellite sequenc.es are transcribed on occasion (H.C. Macgregor, pers. Comm.)

A second consideration is that although it is true to say that the 

nuclear membrane is attached to the chromatin of some nuclei, it is not 

true of all. Obvious exceptions are dipteran salivary gland nuclei, and 

oocjrte nuclei. Thus the relationship between DNA content and nuclear

volume is not necessarily direct. Furthermore, although nuclear pore number

sequenc.es
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per unit area of the nucleus is constant in many species, this parameter

can vary between the nuclei of different tissues in a single organism.

The most important requirement, at present, is for more information 

on hnRNA complexity and sequence organization. Modifications of the Miller 

spreading technique allowing in situ hybridisation would be invaluable, 

as would a means of scanning preparations for RNP at low magnifications. 

Although autoradiography is now possible, the technique is very time 

consuming and tedious, and not suitable for all systems.
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CHAPTER II.

TRANSCRIPTION PATTERNS IN LIVER CELLS OF Xenopus laevis.

Triturus cristatus carnifex AND Necturus maculosus

INTRODUCTION

The results of my investigation into primary transcript length in

cultured cells of Triturus cristatus carnifex and Xenopus laevis suggest

that with increase in C-value there is a concomitant increase in the

length of the hnRNA. However, tissue culture cells although an excellent 

system for biochemical and labelling experiments, are not ideally suited 

to the Miller spreading technique. Their low transcriptional activity 

makes it difficult to detect enough transcription figures to form a statis­

tically significant sample for analysis.

In order to supplement the data presented in Chapter I, I decided 

that it would be necessary to examine the effects of C-value on primary 

transcript length in the somatic tissues of X. laevis and T.c. carnifex.

It was also possible, during the course of my research, to study transcrip­

tion in tissues of Necturus maculosus. although a cell culture of this 

species was not available. As the C-value of N, maculosus is about 52 pg, 

this extended the scope of my work.

For this investigation I decided that it would be most informative 

to look at liver cell transcription in these animals. The liver, due to 

its role in detoxification and other metabolic processes, is of high 

metabolic activity. Thus it is likely that in the electron microscope a 

large number of transcription figures should be seen, allowing more 

reliable conclusions to be made. The easy availability of liver was also 

an advantage. For several reasons, I wished to make a study of tissue- and
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stage-specific transcription in the Amphibia, and. liver cells were a 

natural choice for this. Furthermore, their use would, extend the appli­

cability of the Miller technique.

One possible disadvantage of liver cells, as a system for the study

of transcription, is that in many vertebrates they show a high degree of

polyploidy, which might be expected to affect the patterns seen, and confuse 

any differences due to variation in C-value. On the other hand, adult 

Axolotl and possibly other amphibian livers contain very few if any 

polyploid cells, up to 1% at the most. (H.G. Callan, pers. Comm.) The 

results of Collins (1978) demonstrate that in rat liver cells of different 

ploidy, there is little or no difference in the amount of RNA synthesized 

per ploidy level. Although it is obscure whether the length of the primary 

transcript would be affected, these data do imply that there are an 

approximately constant number of actively transcribing sites, regardless 

of DMA content, in rat liver cells. If valid for amphibian liver cells, 

this result makes it all the more desirable to study transcription in

this tissue.

Finally, as mentioned in the Discussion to Chapter I, I wished to 

further investigate Cavalier-Smith's proposal (1978) that variation in 

C-value and the amount of RNA synthesis in some way modulates nuclear and 

cell size to meet environmental requirements.
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MATERIALS AND METHODS

As with tissue culture spreads, I used different modifications of the 

spreading technique that I devised for liver cells. In nearly all cases, 

the last described variation was used, and gave the most consistent results

However, in the case of T.c. carnifex liver, which was studied some time 

before the others, a different technique was used, which is described at 

length below. All solutions and glassware were treated as for culture-cell

preparations.

(i) Removal of liver

Females of X. laevis. T.c. carnifex (Gerrard & Haig; Xenopus Ltd.), 

and of N. maculosus ((Xenopus Ltd.) were anaesthetised in a 1% solution of 

MS222 (Sandoz). The animals were opened and a piece of liver 5 - 4 mm 

cube was removed from the edge of the lobe nearest the opening. In the

case of X. laevis. chromatin from such a piece of tissue was largely 

inactive (see Results), so that a larger piece proved to be necessary.

This allowed cells from the body of the tissue to be spread. The piece of 

tissue was placed in a sterile plastic Petri dish (Falcon), and kept on 

ice until required. In practice it was used at once.

(ii) Lysis and dispersal of liver cells

Preparations of T.c. carnifex liver were made using the first "Joy" 

solution (0.2%) described below. All other preparations involved the use 

of the second solution (0.1%) which gave better results.
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(1) A 0.2% solution of Joy in distilled water was adjusted to pH 8.7 

with stock borate buffer.

(2) A 0.1% solution of Joy in distilled water, containing 0.05 M sucrose

(RNase Free. Serva) and 100 pg/ml yeast transfer RNA (final vol.

20 ml) was adjusted to pH 8.7 with stock borate buffer.

The Petri dish containing the liver was placed on the stage of a 

dissecting microscope. Using two pairs of sharpened No. 4 watchmakers’ 

forceps, and avoiding blood vessels, a piece of tissue about 0.3 - 0.5 mm 

cube was teased away. This was washed briefly in pH 9 water to remove 

blood and surface debris. The tissue was then placed in a 100 pi droplet 

of Joy, on Parafilm, in a sterile plastic Petri dish (Falcon). After about 

1 min, to allow slight disaggregation of the tissue, the piece of liver 

was carefully macerated, using watchmakers’ forceps, and the chromatin 

allowed to disperse. Unlike Harper and Puvion-Dutilleul (1979, in press)

I did not find it neceessary to homogenise the liver, or isolate nuclei.

The advantage of my method is its ra-pidity; the time from opening of the 

animal to dispersal of the tissue is only 5-10 min.

Dispersal times varied from 75 min for T.c. carnifex liver to

15-50 min for X. laevis and N. maculosus liver. I found that for tissues 

from all these species, 15 min was an adequate dispersal time, resulting 

in optimum spread, and structural preservation, of the specimen.

(iii) Further processing of preparations

The first few preparations of X. laevis liver that I made were estremely 

dirty, and this was thought to be due to the high melanin content of this 

tissue. Melanin was less of a problem in spreads of the other two species.
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To overcome this, dispersal of X, laevis liver cells was allowed to proceed 

for slightly longer than usual (20 - 30 min), which resulted in most of the 

melanin sinking to the bottom of the Joy droplet as a greyish deposit.

The supernatant containing the chromatin was then carefully pipetted off, 

disturbing the layer of pigment as little as possible. This protocol

gave fairly clean preparations.

Centrifugation, washing, drying and staining of these preparations

was as described in Chapter I. 8 grids were made per preparation.
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RESULTS

(i) Transcription natterns in liver cells of Xenopus laevis

Three preparations were made of X. laevis liver cells, of tissue taken 

from the edges of lohes of liver. Smooth or nucleosomal DNP was absent 

from all these preparations, although the chromatin was otherwise well- 

spread and contrasted. All the chromatin took the form of lengths of 

’’superbeads”, and was either well spread or appeared as oval clumps, 

probably unspread nuclei. The superbeads were from 26 - 45 nm in diameter, 

roughly spherical, with no observable substructure (Pig. II-1a), In this 

they resembled those found in T,c. carnifex culture-cell chromatin. In a 

few cases (Fig. II-1b) they were stretched, consisting of dark elongated 

masses, connected by a fibril 8 nm in width. These measurements were made 

on stained preparations, and compare well with those obtained from

T.c. camifex culture-cells.

In a few cases, clumps of chromatin were covered by long strands 

showing a repeating structure (Fig. II-1a), and presumed to be collagen.

These preparations were very dirty, probably due to the large amounts of

melanin in the cells.

Later preparations were made from tissue derived from deeper within

the liver, and here the chromatin was entirely different in its charac­

teristics. It was well spread, although a few clumps occurred, and largely 

nucleosomal (Fig. II-2). Superbeads were absent. The nucleosomes measured 

16 nm + 5 nm in diameter, a relatively high value, probably due to rotary 

shadowing of the preparation. Nucleosomes occurred in both transcriptionally 

inactive and active regions (Figs II-2 and II-5a, b). The beads observed

in transcription complexes are presumed to be nucleosomes because at no
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time were clearly discernible RNA polymerase molecules ever seen at the 

point of attachment of the transcript to its DNP axis. Their size was 

also similar to that of nucleosomes in the same preparation.

In the case of transcription, the selection and measurement criteria

that I used were the same as those discussed in Chapter I. Single fibrils

formed a distribution falling around a median of 0.66 pm (Pigs II-3a and 
FS'U

II-4a, b) and with a range of 6.3 P-m (Table l). It was possible to measure 

the lengths of the terminal fibrils of arrays of two or more fibrils 

(Pigs II-3b and II-4c), and these fell around a median of 0.4 pm, with a 

range of 3.6 pm (Table These values are, surprisingly, lower than

those for single fibrils, probably because of the small sample size avail­

able for analysis. All these fibrils and arrays are presumed to be of 

nonribosomal origin, because of their characteristic morphology. Arrays 

were sparsely covered with transcripts, which had a diffusely beaded 

appearance.a No clear fibril length gradients were apparent. Tandem 

repetition was not observed (Poe et al.. 1976; Laird & Chooi, 1976; Laird 

et al.. 1976). I did not observe any ribosomal transcription in these 

preparations.

Only two analysable nonribosomal arrays were seen (Pig. II-5a, b) 

and of these, the RNP of one (Pig. II-5a) had the diffusely beaded appear­

ance’ previously observed in culture-cell RNP. The beads were 14 - 18.7 nm 

in size. The contrast of the RNP was very similar to that of the DNP.

The RNP of the second array (Pig. II-5b) was very much more contrasted 

than the DNP. Unlike that of the first array it was not clearly beaded, 

and had extensive secondary structure, in this resembling primary tran­

scripts in D. melanogaster embryos (Laird & Chooi, 1976). High contrasted 

RNP of this latter type, was, however, rare in preparations of X. laevis
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liver cell chromatin. Laird. Analysis showed that these arrays measured 

1.5 pm and 2.6 pm respectively. Detached RHP was also seen in these 

preparations, the result of either processing or endogenous nuclease action 

(Fig. II-4a). There was little evidence of processing, except in the case 

of one array (Fig. II-5b).

Transcription figures in liver cells were more frequent than in 

cultured cells, so that the sample available for analysis was larger 

(Table 1^). This allowed me to estimate the percentages of the total tran­

scription made up by different types of transcription figure. Isolated 

RHP fibrils made up 86% of the total, whereas groups of two fibrils separated 

by less than 1.0 pm of DHP, made up 9.2%. Arrays of three or more fibrils 

comprised a further 4.6% of the total (Table 13^). The great predominance 

of isolated fibrils prevented an analysis of the percentage transcriptional 

activity of the chromatin (McKnight & Miller, 1976) as well as the fact that 

although transcription was more frequently seen than in cultured cell chromatin, 

it was still not so frequent as to make this type of analysis possible.

The DHA/RHA packing ratio represents the degree to which the RHP fibrils

of a transcription unit are foreshortened. For each of the two analysable 
PS1}

arrays that I found, the DHA/RHA packing ratio was 1.23 (Table Vljj). As no 

other arrays were analysed it is not clear whether this value of 1.23 is

universal for X. laevis liver, or whether a broad distribution, or size 

classes of packing ratio might occur. My results differ from those of 

McKnight and Miller (1976) who show that in D. melanogaster embryos, 

nonnucleolar arrays fall into two classes. These are characterized by a 

length of up to 2 pm, and a high RHA polymerase density (nonnucleolar 

Type i), or a length of 3.6 pm, and a lower polymerase density (nonnucleolar 

Type II). However, the small sample size could again account for my results.
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The preservation of nucleosomes was such as to allow analysis of their 

distribution. Dispersal of the chromatin was in Joy, which is known to 

remove chromatin proteins and disrupt nucleosome structure. In spite of 

this I decided to measure DNA packing ratios to see whether this removal

was reflected in the chromatin structure observable in the electron

microscope. Assuming Joy removes protein equally from chromatin of different

origins, under the same dispersal conditions, then the packing ratios of

preparations dispersed in similar conditions should be comparable. The

DNA packing ratio for transcriptionally inactive regions (mean of 10
7 to-

randomly selected 1 pm regions) of the'chromatin was 1.84 (Table III^).

Although preparations made under different conditions, and from 

different chromatin, will vary, it should be possible to obtain a valid

estimate of the DNA packing ratios of transcriptionally active and inactive

chromatin from the same preparation, assuming that Joy removes proteins

equally from transcribing and inactive regions of the DNP. Only a few

nonribosomal transcription complexes were available for analysis in this

cell type. All had DNP axes with a beaded structure. The mean number of

nucleosomes per micrometer of chromatin was determined for the arrays 
P J05

(Table IVj) and this gave a value for DNA packing ratio of 1.62, which is 

lower than the value of 0.84 for transcriptionally inactive regions. If 

the assumptions I made are valid, this suggests that although transcrip­

tionally active chromatin is nucleosomal, its structure is more extended 

than the rest of the DNP. However, it is possible that transcripts on an 

array may conceal nucleosomes. If the number of transcripts is added to 

the number of beads per array, DNA packing ratio is now 2.0, higher than

for inactive regions (Table IV^. This result is in agreement with those 

of Busby & Bakken (l979) for Strongylocentrotus purpuratus gastrulae.



TABLE IV.
The DNA packing ratio (pm of ^-structure DNA per pm of chromatin) 

of transcriptionally active regions of the chromatin of different cell types 
The values obtained when it is assumed that each RNP fibril of a
transcription complex conceals a nucleosome are also given.

Cell type DNA packing 
ratio

Sample size
(transcription
complexes)

DNA packing ratio, 
assuming transcripts 
conceal nucleosomes

X. laevis - - -
cultured cells

T.c. carnifex - - -
cultured cells

X. laevis 1 .62 3 2.0
liver

T.c. carnifex - - -
liver

N. maculosus 1 .42 2 1.69
liver

- - -

T.c. carnifex ' - - -
neurulae -

X. laevis 1.74 2 2.23
, cultured cells

plus cortisol 1,63 6 2.5
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In these cells, isolated RNP fibrils formed the commonest type of 

transcriptional structure. I therefore decided to look at; nucleosome distri­

bution near single fibrils to see if it bore out the results presented above. 

If chromatin structure is indeed less condensed in regions of transcription, 

the number of nucleosomes in a 0.5 pm interval should increase with distance 

away from the transcribing region. It was only possible to measure the 

nucleosome density for about 2.0 Jim on either side of the RNP fibril.

The mean number of nucleosomes in 0.5 nm intervals to either side of

an isolated RNP fibril were determined. It is not possible to determine 

the direction of transcription, in the case of isolated R^P fibrils, so 

the values for 0.5 P-m. intervals on either side of the fibril were pooled.

For X* laevis liver cells there is a slight increase in mean nucleosome 
riot

number (Table V/) with distance away from the RNP fibril, which seems to 

support my hypothesis. The ranges of values for each interval do not 

overlap. However, the increase is very small (l nucleosome/pm DNP) and 

may be a chance effect.

(a) Anomalous putative RNP

In a few cases, putative RNP of an anomalous structure was observed.

These structures resembled groups of two RNP fibrils, whose free ends had 

in some way become associated to form a ring-like structure (Pig. II-6a, b).

In some cases, the attachment points of the two presumptive transcripts to 

the DNP were so closely apposed as to suggest that they were in fact loops 

of DN? (Pig. II-6a). The lack of differentiation of contrast between axis 

and loop, and the similarity of their beading, support this interpretation.

In some cases, RMP and DNP had similar contrast. However, in other cases 

(Fig. II-6b) the attachment points were sufficiently well separated to suggest



TABLE V

Nucleosome number (per 0.5 pm of chromatin) for intervals increasingly 
distal to, an isolated RNP fibril attached to the DNA. Values for regions 
on either side of the transcription event were pooled.

Cell type
IntervaIs of chroma- 

(at po£
bin distal from transcript 
sition 0 pm) Sample

size
0 - 0.5 pm 0.5 - 1 pm 1.0 - 1.5 pm 1.5 ~ 2.0 pm

X. laevis - - - - -cultured '
cells

T.c. carnifex - - - -
cultured
cells - - - -

X. laevis
liver

§
CD
a 15.2 15.5 14.5 14.5

10

ra
ng
e 12.5 + 4.8 12.5 + 5.5 14+4 14 + 4

T.c. carnifex
liver

- - - - -

N. maculosus
liver me

an 12.2 11.5 11.7 11.2
10

0

cdR
15.5 + 6.5 10.5 + 5.5 14.5 ± 6'.5 11.5 ± 5.5

T.c. carnifex
• neurulae

j

me
an

 :
. ..

..
..

i

6.5 6.27 6.2 5.7
10

ra
ng
e - - - -

X, laevis
cultured 
cells + 
cortisol

§
0
a

14.5 15.6 15.5 16.0

100hfl3
cd 14.5 + 4.5 15.5 + 4.5 14.5 + 5-5 16+5
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that the structures were RNP, as does the fact that most of these structures

occurred on well-stretched chromatin axes, which may rule out their being

random twists. Unlike X, laevis culture cell chromatin, no rings of any

type were seen.

(ii) Transcription patterns in liver cells of Triturus cristatus carnifex-

Melanin was not a problem with spreads of T.c. carnifex liver, unlike 

X. laevis. so that the preparations I obtained were cleaner than those of 

the latter species. On the other hand, the T.c. carnifex liver was less

easy to macerate, so that chromatin occurred as large viscous clumps in 

the Joy droplet. This meant that loading of the grids was more difficult 

to control. The problem was partly overcome by using small pieces of tissue 

and relatively large Joy droplets.

Preparations of T.c. carnifex liver were made quite early in the course 

of my research, and involved long (75 min) dispersal times, in Joy lacking 

RNA or sucrose. Nonetheless, contrast and preservation of structural detail 

was good. A few preparations made later, involving Joy containing small 

RNA from yeast, sucrose, and shorter dispersal times, show little difference

save in the occurrence and distribution of nucleosomes. There was no

significant difference in the frequency of transcription complexes. Their 

frequency did vary a little between preparations, perhaps due to differences 

in transcriptional activity between different regions of the liver, as 

appears to be the case in X. laevis: however, these differences were not

so marked in T.c. carnifex.

Dispersal of chromatin was excellent in all preparations, whether made 

with 0.2$ or 0.1$ Joy. In the latter case, dispersal time was only 30 min. 

Of nine preparations made (8 grids each), seven yielded analysable data.
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This high proportion seems to be characteristic of liver cells and is

greater than for tissue-culture preparations, although it is impossible 

to judge accurately the amount of chromatin on any grid.

The appearance of the chromatin varied between preparations. In many, 

a nucleosomal structure was apparent (Fig. II-7) and in others the DNP was 

relatively smooth, as for culture-cell chromatin (Pig. II-8a). This 

variation is probably a preparative artefact, as noted in Chapter I, as 

T.c. carnifex liver chromatin spread under optimal conditions showed a 

high frequency of nucleosomes. Nucleosomes were 16 nm + 4 nm in diameter, 

and were present in both trans.criptionally active and inactive regions 

(Figs II-7 and II-l0b). As with other tissue types, clear RNA polymerases 

were rarely visible at the attachment points of RNP to DNP. In one case 

(Fig. II-8a), a putative RNA polymerase molecule, measuring 28.5 nm in 

diameter, was observed. This value is greater than previous estimates of 

11.5 - 14.5 nm (Miller & Hamkalo, 1972; Franke et al.. 1976a; Morgan, 1978). 

"Smooth” DNP measured 8.5 - 20 nm in width, indicating that the DNA was 

associated with protein.

Superbeads were scarce in these preparations, although a few short 

lengths were observed. None occurred as large clumps, and this may be 

connected with the high metabolic activity of liver cells.

Ribonucleoprotein was found in the form of transcription complexes of 

various types, but also occurred as clumps (Fig. II-7). These may have 

been superimposed but tangled transcription complexes, or detached transcripts, 

perhaps the result of nuclease action or processing. Detached transcripts 

also occurred in preparations of X. laevis liver (Fig, II-4a) where there 

was scant evidence for processing.
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Transcription predominantly took the form of isolated RNP fibrils, 

which formed a distribution skewed rightward around a median of 0.6 pm, 

and with a range of 6.5 pm (Figs II-8a, b; II-9a) (Table . Terminal 

fibrils of arrays of two or more fibrils formed a similar distribution 

around a median of 0.95 pm, and with a range of 9.6 pm (Figs II-9b and 

II-10a) (Table I/). The longest fibril seen was 9.8 pm in length (Fig.

11-11).

Several long transcription units were seen and in one of these 

transcription extended over at least 4 -5 pm (Fig. 11-12), although only 

a few fibrils were'clear. Laird Analysis was not possible. The lengths 

of some of the transcripts that I found are of the same size order as those 

observed in lampbrush chromosome transcription complexes (Scheer et al., 

1976). A value for array length of 5.21 pm was obtained for another array.

Of the arrays found, several (Figs II-10a and II-11) included long 

transcripts adjacent to short transcripts, where the separation between 

the two fibrils was less than the difference in length between them. Such 

configurations could indicate the existence of proessing, although the 

possibility of random breakage of RNP cannot be eliminated. If they do 

represent processing, they were more frequent in T.c. carnifex than in

X. laevis.

RNp had a beaded appearance, and was more contrasted than the DNp 

in the same preparation (Fig. II-7). Some variation in these characteristics 

did occur, however (Figs II-8b and II-10a). The beads, as for culture cell 

transcripts were less discrete than nucleosomes, and the RNP had a more 

’’fuzzy” appearance. Beads had a mean size of 26 nm. Most of the RNP 

from newt liver showed little or no secondary coiling, except in the case 

of the long lampbrush-complex-like array (Fig. 11-12), and in this differed 

from the primary transcripts of D. melanogaster embryos as visualized by 

Laird and Chooi (1976).
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The relatively large sample size of transcription complexes allowed 

me to determine, with reasonable assurance, the percentage frequency of 

different types of complex. Isolated fibrils comprised 66%, groups of two 

fibrils closer together than 1 pm, 25%, and arrays of three or more fibrils 

8.5% of the total transcription (Table 11$.

In one preparation, where chromatin superstructure had been well

preserved, it was possible to calculate the DNA packing ratio of transcip- 

tionally inactive regions (Table 111$), which was 1.65. I was not, however, 

able to compare the nucleosome distribution in transcribed and untrans­

cribed regions of chromatin. Unfortunately no arrays were observed in the 

preparation for which the UNA packing ratio was known, so that I was unable 

to calculate the DNA/RNA packing ratio. Due to the variability of my 

preparations, and dispersal of the chromatin in Joy, which removes some 

protein, DNA/RNA packing ratio was only measured in preparations where 

the DNA packing ratio was known.

Ribosomal genes, with their characteristic '’Christmas-tree” structure, 

tandemly repetitive arrangement and RNP fibril length gradient, were never 

observed (Trendelenburg et al.. 1973). Rings, whether of mitochondrial 

or other origin, were also absent.

(a) Anomalous RNP-like structures

In several preparations of T.c. carnifex liver cells, long structures 

resembling RNP fibrils were observed (Fig. II-13a, b). These were of 

higher contrast than the neighbouring DNP, and either free or present as 

clumps. They were at least 2 pm long, and occasionally over 14 pm in

length. None were seen to be attached to a presumptive DNP axis.
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The fibrils were anomalous in that they appeared to bear short lateral

fibrils along their length. Laird Analysis however, gave completely 

meaningless results for several of these long fibrils, which at first I 

thought to be sparsely transcribing, tandemly reiterated ribosomal genes. 

This, together with the fact that the presumed '’RHP” lateral fibrils were 

always much shorter than either ribosomal or nonrihosomal transcripts 

observed in preparations from any cell type, persuaded me that they were 

not in fact primary transcripts. Many fibrils were only 24 nm in length, 

and so may be super'coiled regions rather than true lateral fibrils. The

fact that the fibrils were often more contrasted than the axis supports

this idea.

If these structures are free transcripts their high degree of secondary 

structure is baffling, for it was not present in RHP still attached to the 

chromatin. Their great length is compatible with the data from lampbrush 

chromosome spreads, where transcripts of up to 10 pm in length have been 

seen. In most cases, the ends of the fibrils disappeared into dense clumps 

(Pig. II-13a), ‘which argued for a much greater length. The fact that I 

never saw any attached to DNP also argued against the interpretation that
s. \

they are primary transcript molecules. That the fibrils are DHP is not

supported by visual evidence, for in all cases their contrast was greater 

than that of the rest of the chromatin. The results of the Laird Analysis 

also imply that 'the fibrils are not DHP. Pew clear beads occurred along 

the length of the fibrils, and those that were present did not resemble 

nucleosomes on the same preparation (Pig. II-13a), being irregular in size 

and distribution, and more electron-dense than nucleosomes.
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(iii) Transcription patterns in liver cells of Necturus maculosus

To complete my study of C-value dependent differences in transcription

I decided to examine the chromatin of N, maculosus liver cells. The results

presented here are incomplete as X was only able to make two preparations; 

however both of these yielded data.

As with preparations of the other two species, the chromatin of

N. maculosus cells appeared as well spread, beaded fibres. Partially 

dispersed nuclei were occasionally seen, but clumps were in general small. 

Dispersal was maximal after 15 mir_ of spreading, and both contrast and the 

preservation of structural detail were optimal at this spreading time.

In my experience 0.1% Joy will lyse even the very large cells of N. maculosus 

This is in contrast to the case of plethodontid spermatocytes, which require

O, 565% Joy (Morgan, 1978) for lysis to occur.

Little or no ’’smooth” DNP was seen in these preparations, and super­

beads were also apparently absent, Nucleosomes measured 16.5 nm + 4 nm in 

diameter, approximately the same as those found in spreads of other livers 

(Fig. H-l4a-c). Both actively transcribing and inactive regions of the 

chromatin were characterised by a nucleosomal structure (Fig. II-14-a, b 

and II-18a, b).

As with ail the cell types so far described, nearly all the transcrip­

tion observed was in the form of single RNP fibrils attached to the DNP 

(Fig II-l4a-c). In a few cases (Fig. II-18b) a putative RNA polymerase 

molecule was observed at the base of a transcript, and this measured 

16.5 nm+4 nm in diameter. All the transcription that I observed was 

nonribosomal according to the criteria discussed in Chapter I. Selection

and measurement were also according to -these criteria.
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Isolated RNP fibrils formed a distribution falling around a median 

of 1.1 pm, and with a range of 9-13 P-m (Fig. II-15&) (Table L) , Terminal 

fibrils of arrays of two or more fibrils had a median of 1.96 pm and a size 

range of 7,08 pm (Figs II-15b and 11-16) (Table . Transcription complexes 

of three or more fibrils showed low polymerase densities, and long complexes 

of lampbrush chromosome array-like morphology were not detected. As with 

T.c. carnifex liver, but unlike X, laevis liver, long transcripts sometimes 

occurred next to short ones (Fig. 11-17) indenting the occurrence of pro- 

celling or of random breakage. Putative detached transcripts were also

found.

RNP was beaded in structure and never showed the degree of secondary

structure occasionally seen in X. laevis liver cell primary transcripts.

Beads were less discrete than on the BNP, and measured 13 - 15 nm in

diameter. This value is less than the 20 - 30 nm measured for compacted 

lampbrush chromosome RNP (Mott & Callan, 1975).

I was able to calculate the frequency of different types of arr§.y

and found that single RNP ribrils formed 65.2$ of the total transcription 
W

(Table Ilf). Arrays of two fibrils formed 23.9$, and arrays of three or 

more fibrils 10.9$. In all the cell types, irrespective of origin that I 

investigated this relative frequency was always the same, i.e. single fibrils

were in excess -of groups of two fibrils, which were commoner than arrays 

of three or more fibrils. This differs from Busby & Bakken's (1979) 

observation that in Strongylocentrotus purpuratus multiple-fibril arrays

were more frequent than groups of two fibrils, isolated fibrils being in

excess of either of the other types of array.

The values for DNA packing ratio of transcriptionally inactive regions 

that I obtained for the two preparations that I made were 1,4 and 1.64
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f ir­
respectively (Table IlSj)-. When the DNA packing ratio of transcription

complexes was measured, for the preparation where the DNA packing ratio of 
. f 10$

inactive regions was 1.64 it was found, to be 1,42 (Table 1^. If RNP 

fibrils were assumed to conceal a nucleosome, and their number added to the 

total number of beads per array, the packing ratio obtained was 1.69 

(Table IV^ . Thus it would seem that, as with X, laevis. transcribing 

chromatin in N. maculosus has a more extended structure than non-transcribing

chromatin.

Determination of nucleosome number per 0.5 P-m interval away from 
Plot

isolated fibrils (Table V/) gave an inconclusive result, with little dif­

ference between the values for each interval. This is probably due to the 

limitations of the method of analysis that I used. However my result may 

imply that differences in nucleosome distribution are very small for such 

sparsely transcribing units as the ones I studied.

Laird Analysis was possible for most of the arrays that I found, so 

that DNA/RNA packing ratio could be determined (Table VI^. In the first 

preparation DNA/RNA packing ratios were 1.45 for one array (Fig. II-!8a) 

and between 17.0 and 25-0 for a second array (Pig. 11-19 a-c). This second 

array resembled a typical ribosomal gene in morphology but its length 

(5*8 pai) was considerably greater than for ribosomal genes of either 

X. laevis or T.c. carnifex ( 2.0 pm). Although it may be that ribosomal

genes in Necturus are larger than in the other species, this is not likely, 

and this array may therefore represent a second class of ribosomal gene-like

transcription unit.

In a second preparation, three arrays were found. Laird Analysis for

these gave no clear length value, as the lateral fibrils did not form a 

definite length gradient. The DNA/RNA packing ratios are 1.4, 0.44 and 0.92.



115.

The last two values, being less than 1.0, indicate that either no fore­

shortening of the primary transcript had occurred, or that Laird Analysis 

gave an inaccurate value for array length. The latter is the most likely 

explanation of my result. Circular DNA was not observed.

DISCUSSION

The three species X. laevis. T.c. carnifex and N. maculosus have 

haploid DNA contents of about 3 pg, 25 pg and 52 pg respectively. Mean 

single RNP fibril lengths are 0.66 pm for X, laevis. 0.6 pm for T.c. carnifex 

and 1.1 pm for N. maculosus respectively. At first sight it seems that 

T.c. carnifex liver primary transcripts are smaller than those of X. laevis. 

However the size range (although this is only a minimum value) of the 

transcripts shows some increase with C-value, from 6.3 pm, through 6.5 pm, 

to 9.15 pm for Necturus. and further, long transcription units of lampbrush-

chromosome type were seen on the chromatin of T.c. carnifex, but not on

that of X. laevis. It is not clear how much the small size of the sample

that I analysed affects these conclusions. None of the size distributions

that I obtained have any large gaps so that it is likely that my values are 

a valid measure of differences in primary transcript length, and therefore 

transcription unit length. None of the.&stograms showed obvious size

classes; all formed a normal distribution slightly skewed to the right.

Further corroboration comes from a consideration of the lengths of

the longest or terminal RNP fibrils of transcription units, although here, 

the sample size was only about half of that of the single fibrils. All 

the length distributions show gaps, so that more data are necessary before

a firm conclusion can be drawn. This is all the more necessary, as arrays

of lateral fibrils can be more reliably identified as RNP than single
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fibrils, which, in some cases, might be broken replication forks. Terminal 

fibril lengths range from 0.4 pm in X. laevis, through 0.95 pm in T.c. carnifex. 

to 1.96 pm in IT. maculosus. The size ranges also increase from 5*6 pm in 

X. laevis, through 9*6 pm in T.c. carnifex. with 7.08 pm for Necturus. The 

values for X. laevis are probably lower than they should, be, as one would, 

expect the mean of terminal fibril length to be greater than that of single 

fibrils, the former consisting of RNP nearer the end. of transcription than 

the latter. If it is valid, to assume, first, that liver cells of all these

species are expressing similar numbers and. types of genes, and. secondly,

that the degree of foreshortening of the RNP is the same for all species,

then this result suggests that with increase in G-value, transcription

unit length also increases.

The C-values of the organisms that I used are in the ratio 1:7.6:17.3* 

Primary transcript length, on the other hand, does not show so great a 

range in size. The difference in length of RNP between X. laevis, with 

the smallest genome, and N. maculosus, with the largest, is about two-fold, 

except in the case of terminal fibrils of arrays, which are in the ratio 

1:2.4:4.9- As mentioned above, this last is probably an overestimate of 

the true relationship. The results are similar to those that I obtained 

from culture-cells, where the difference in primary transcript length 

between Xenopus and Triturus is less than the difference in their C-values.

The results presented in this chapter are, however, more reliable than

those from cultured cells.

In liver cells of T.c. carnifex and N. Maculosus, I found RNP molecules

of a size order up to 10 pm, previously only observed in lampbrush chromo­

somes (Angelier & Lacroix, 1975; Scheer et al., 1976) or spermatocytes
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(Kierszenbaum & Tres, 1974, 1975; Glatzer, 1975; Amabis & Nair, 1976;

Morgan, 1978)« In one or two cases (Fig. 11-12) these large molecules had. 

the ’’bushy” structure reported, for spermatocyte transcripts, but for the 

most part they were long and. extended., resembling shorter transcripts in 

appearance (Figs II-lOa and 11-11). This strengthens their identification 

as RNP, unlike the case of spermatocytes (Morgan, 1978), and in this they 

resemble the transcripts of lampbrush chromosomes. In no case, however, 

were the putative circular excision products characteristic of lampbrush 

chromosome RNP ever seen (Angelier & Lacroix, 1975; Scheer et al., 1976).

In an attempt to further characterize stage-specific transcription I 

looked, ats the percentage of total transcription encompassed by different 

types of transcriptionaly event (Table Ily) . It is clear that the values I 

obtained are very similar for T.c. carnifex and N. maculosus. X. laevis, 

on the other hand, apparently shows a higher percentage of isolated RNP 

fibrils. That this may be artefactual is indicated by the presence of 

anomalous ring-like structures attached to the DNP (Fig. H-6a, b). If 

these are indeed, as suggested, groups of two fibrils whose free ends are 

in some way associated, then the value for arrays of two fibrils in X. laevis 

(9.2%) should be higher, and bring the values for this species much closer 

to those for the other two. Bearing this in mind, together with the 

probablg similarity in gene number in these species, I think it is possible 

to conclude that liver cells from these three organisms are of a similar 

degree of transcriptional activity. However, it would be desirable to 

know the number of different genes being expressed in these tissues, for 

instance by determining polysomal mRNA complexity. A determination of 

the percentage of the chromatin being transcribed would also throw some
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light on this problem. However, I was not able to perform this experiment

for liver cells.

My figures differ from those of Busby & Bakken (1979) who found that 

for gastrulae of the sea-urchin Strongylocentrotus purpuratus. arrays of 

three or more fibrils were more frequent than arrays of two RNP fibrils.

On the other hand, isolated fibrils were the commonest type of transcrip­

tional event. This indicates that embryos of S. -purpuratus are transcribing 

certain gene sequences more rapidly than are liver cells, and this phenomenon

may be connected to the specific needs of embryonic cells.

Because of the good preservation of structural details in preparations

of liver cells, especially of Xenopus and Necturus. I was able to examine

DNA and DNA/RNA packing ratios, together with nucleosome distribution with

respect to transcription. If it is assumed that, under similar conditions

of dispersal, Joy removes proteins from chromatin from differenc sources,

to the same extent, then chromatin of different cell types can be compared 
. fST-
(.Table IIID. For liver cells, the DNA packing ratios of transcriptionally 

inactive regions were 1.84 for X. laevis. 1.63 for T.c. carnifex and 

1.4 - 1.64 for Necturus maculosus. However, spreading conditions, i.e. 

dispersal time and Joy concentration, varied between 20 - 75 min, and 

0.1 - 0.2% respectively. These factors must be considered in the inter­

pretation of my data.
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The values for DNA packing ratio are quite similar hut it would he 

dangerous to use them to conclude anything about differential gene expres­

sion. The similarity of transcription pattern that I observed in the three 

types of liver cell investigated suggests that DNA packing ratio ought to 

he similar in each cell type, assuming that a more extended chromatin 

structure is concomitant with increased transcriptional activity. The 

values I determined vary more than might he expected on this assumption 

and may he more preparative artefacts than reflections of the in vivo

situation.

It is valid, however, to compare nucleosome distributions for tran­

scribing and nontranscrihing regions of the chromatin within the same 

preparation, regardless of dispersal conditions, and assuming that Joy

removes proteins from these regions to the same extent. Where nucleosome 
hoy

distribution in transcription complexes could be determined (Table 11^), 

for Xenopus and Necturus. it was found that the DNA packing ratio was lower 

than for transcriptionally inactive regions, thus implying a more extended 

structure. This conclusion is qualified by the fact that I interpreted 

beads along the arrays, and lacking attached RNP, as nucleosomes rather 

than RNA polymerase molecules (Laird & Chooi, 1976; Laird et al.. 1976;

Scheer, 1978), In my preparations, polymerases could rarely be distinguished 

at the base of nonribosomal transcripts, which strengthens this interpreta­

tion. On the other hand, in the few instances where they could be identified, 

they were almost exactly the same size as nucleosomes. Furthermore, RNP
g

molecules of less than 0.15 s 10 Daltons molecular weight cannot be

resolved by the Miller Technique, and will appear as "beads” on the DNP, 

hardly distinguishable from nucleosomes (Scheer, 1978). A more rigorous 

investigation might involve the use of the anionic detergent "Sarkosyl"

which removes all chromatin superstructure but leaves transcription complexes
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intact (Scheer et al.. 1977). These considerations perhaps imply that the 

packing ratio of transcriptionally active DNP is lower than the values I 

obtained. The difficulty lies in demonstrating whether, in spreads, tran­

scription complexes have a nucleosomal or nonnucleosomal structure.

When nucleosome distribution in intervals increasingly distal to an

X. laevis liver cells, the mean number increases with distance from the 

transcript, albeit only slightly. For N. maculosus. on the other hand, 

it remains constant or even declines slightly. I was not able to make 

such an analysis for T.c. carnifex liver cells. These apparently contra­

dictory results are probably due to the method of analysis and the nature 

of the transcrp.ption complexes themselves. However, it does seem that the 

structure of transcriptionally active chromatin in amphibian liver cells

is more extended than that of inactive chromatin.

In recent years, a number of lines of evidence, both biochemical and 

morphological, have led to the tentative conclusion that nucleosome struc­

ture is preserved in transcriptionally active regions of the genome. The

results of digestion with staphylococcal or micrococcal nuclease have been

interpreted as showing that both transcriptionally active and inactive

regions of the genome have a nucleosomal structure. Avian reticulocyte 

globin genes, ovalbumin genes (Pelsenfeld, 1978), Tetrahymena pyriformis 

ribosomal genes (Mathis & Gorovsky, 1976) rat liver (Lacy & Ax©l, 1975)> 

mouse, X, laevis and Physarum -polycephalum ribosomal genes (Reeves, 1976; 

Butler et al.. 1978; Gottesfeld & Melton, 1978; Grainger & Ogle, 1978) 

have been investigated. However, the major drawback of these experiments 

is that only in a few cases (Reeves, 1976; Butler et al.. 1978) is it known 

that an appreciable number of genes is transcriptionally active at the

time of isolation.
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It is known that DNAse I preferentially degrades transcriptionally 

active chromatin (Pelsenfeld, 1978). This is the case for both maximally 

and sparsely transcribed genes so that the transcription complex itself

does not confer sensitivity. DNAse I-sensitive regions are staphylococcal 

nuclease resistant in a way that indicates they must be protein-associated. 

McKnight et al. (1977) have shown that transcriptionally active regions of 

the genome react with antibodies to the histones H2B and H3. The

DNAse-I-sensitive regions are packaged with proteins in a way that mimics 

nucleosomes but such that only DNAse I attack is permitted. These observa­

tions indicate that there is no simple relationship between chromatin acces­

sibility to nuclease and its transcriptional activity (Reeves & Jones, 1976). 

They point to a modification of nucleosome structure, rather than its absence 

or unmodified presence in transcriptionally active regions (Weintraub et al., 

1976; Poe, 1977; Gottesfeld, 1978; Scheer, 1978).

The fractionation experiments of Gottesfeld (1978) demonstrate that 

both transcriptionally active and inactive components of rat liver chromatin 

have a beaded structure. The chemical composition, sedimentation proper­

ties, differential sensitivity to DNAse I and nuclease S^, together with 

optical melting behaviour of the active fraction, all confirm the idea that 

this fraction has a more open configuration. In the past, fractionation 

experiments have been dogged by the difficulty of eliminating cross­

contamination of-active with inactive fractions, but the procedure used

here reduces this.

The biochemical work done to date implies that inactive and transcrip­

tionally active chromatin, whether the latter is of ribosomal or nonribosomal 

origin, and including satellite DNA (Lipchitz & Axel, 1976; Lee, 1978), 

has a beaded structure (Brown et al.. 1977). This is somewhat at variance
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with the morphological data obtained from Miller spreads, even though the 

results of Reeves (1976) show that with increasing transcriptional activity, 

the bead number of ribosomal genes decreases.

In a number of systems, Miller spreads show that maximally transcrib­

ing ribosomal genes lack a nucleosomal structure (Foe et al.. 1976; Franke 

et al., 1976a; Laird & Chooi, 1976; Laird et al.. 1976; Woodcock et al., 

1978; Foe, 1978; Franke & Scheer, 1978; Scheer, 1978; Villard & Fakan,

1978). Oh the other hand, nonnucleolar transcription units tend to be 

beaded in morphology (Foe et al.. 1977; Franke & Scheer, 1978), although 

it is not yet absolutely proven that the '’nucleosomes” of these arrays are 

not in fact polymerases (Eair$ & Chooi, 1976; Laird et al.. 1976; Franke 

& Scheer, 1978; Busby & Bakken, 1979). Nonetheless the DN^- packing ratios 

of nonnucleolar arrays are less than that of inactive chromatin, so that 

transcription seems to be accompanied by an opening out of chromatin 

structure (Laird & Chooi, 1976; Laird et al.. 1976; Busby & Bakken, 1979).

It is debatable whether the ’’subunits” visualised in many digestion 

experiments are indeed analogous to the nucleosomes seen in'the electron 

microscope (Brown et al.. 1977), and evidence has recently been produced 

that DNP in vitro, although appearing ’’smooth” in the electron microscope, 

can have a subunit structure with respect to nuclease attack (Moudrianakis 

et al.. 1977; Woodcock & Prado, 1977; Foe, 1978). The nucleosome itself 

may be a transient structure within the transcription unit (Scheer, 1978) 

implying that chromatin structure is dynamic rather than static.

Bearing in mind the fact that my preparations were of chromatin 

dispersed in solutions containing Joy, my resiilts are basically in accord 

with what is so far known about nucleosome organization and distribution.
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I found greater differences in DNA packing ratio between transcribing and 

nontranscribing chromatin than did Busby & Bakken (1979), and although 

this might be an effect of sample size, these data are also compatible 

with the observations of Foe (1977) who found that in 0. fasciatus chromatin, 

DNA packing ratios for inactive, ribosomal and nonrihosomal chromatin 

were 2.3> 1.6 - 1.9, and 1.0 - 1.2 respectively. Unfortunately, ribosomal 

genes were not evident in any preparation of liver cells, so that I was 

unable to calculate DNA packing ratio for purposes of comparison with those 

for transcriptionally inactive DNP and nonrihosomal arrays.

I was also able to determine the DNA/RNA packing ratio for a number 

of arrays from X, laevis and N. maculosus. Compared to the value of 13.5 

I obtained for T.c. carnifex oocyte ribosomal genes (Appendix III), the 

values for nonrihosomal arrays from these cells fell around 1.23 - 1.45 or 

between 17 - 25. This sharp demarcation into classes may be significant, ’ 

The high value was that for an array (Fig. 11-19 a-c) resembling a classical 

ribosomal gene in morphology, but longer than is usual for amphibian 

ribosomal genes. Its sparse coverage by RNP, and lack of tandem repetition 

suggest that it is nonrihosomal. However, in its DNA/RNA packing ratio it 

resembles ribosomal genes. All the arrays of low DNA/RNA packing ratio 

were of nonrihosomal morphology so that in my hands, DNA/RNA packing ratio 

could be used as a criterion for distinguishing between these two types of 

array. This is in contrast to the situation in Oncopeltus fasciatus 

('Foe et al., 1976) where the DNA/RNA packing ratios for all arrays, irres­

pective of origin, were between 6 and 7. This may be due to differences 

in spreading conditions and it is necessary to study more arrays before 

this question can be resolved.
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Although it is conceivable that the array of ribosomal morphology is 

really ribosomal, its length (3-8 pm) is so much greater than that of 

ribosomal genes in Amphibia, that stretching may not be responsible for it.

If it is nonribosomal then DNA/RNA packing ratio cannot be used as a 

criterion to distinguish between these two types of array. It is intriguing, 

however, to speculate that1 a high DNA/RNA packing ratio on the other hand, 

is characteristic of those genes whose products, like the 45S preribosomal 

RNA precursor, transfer RNAs, and 5S RNAs, are never translated, and so need 

not maintain an extended conformation for polyribosome attachment. It is 

still unknown whether other classes of nontranslated RNA exist, besides 

the ribosomal and transfer RNAs, and it would be desirable to investigate

this.

There was some variation in the size of the subparticles visible in 

primary transcripts. These were determined to be about 20 nm in diameter, 

in amphibian oocyte transcripts (Sommerville, 1973; Malcolm & Sommerville, 

1974; 1977; Mott & Callan, 1975) whereas, in stained preparations of liver 

chromatin I found their dimensions to be 14 - 19 nm for X. laevis. about 

26 nm for T.c. carnifex. and 13 - 15 nm for N, maculosus. This range of 

values is probably due to the diffuse appearance of RNP in my preparations,

which made accurate measurement difficult.

I did not observe any circular DNA molecules in my liver cell prepara­

tions; it is not clear why, for the conditions of spreading were similar

to those used for culture cells, and in both cases, whole cells were used.

In the latter case, putative mitochondrial DNA was seen. It might be 

possible to extract and spread the contents of mitochondria both to examine 

replication and transcription of these genomes and to see if there were 

any C-value dependent difference in mitochondrial DNA contour length.
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Such a difference, of 20%, has been shown to exist between mitochondrial 

circles of the urodelans Necturus maculosus, and Siredon mexicanum. and 

the anurans Xenopus laevis and Rana pipiens (Wolstenholme & Dawid, 1968).
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CHAPTER III.

TISSUE-DEPENDENT TRANSCRIPTION PATTERNS IN Xenopus laevis AND

Triturus cristatus carnifex

INTRODUCTION

During the course of my investigations, I experienced some difficulty 

in obtaining transcription figures from the chromatin of X. laevis and 

T.c. carnifex tissue-culture cells, due to their low RNA synthetic activity. 

In order to obtain more data on C-value dependent differences in transcrip­

tion patterns I decided to make spreads of tissues of these organisms that 

might show a higher degree of &NA synthetic activity than cultured cells.

The results I obtained also allowed me to compare transcription patterns

in different tissues of the same species.

A number of investigations suggest that, in general, embryonic cells

show a relatively high rate of RNA synthesis, so I decided to use newt and 

frog embryos fur further study. Miller spreading demonstrates that embryonic 

cells produce large amounts of hnRNA, and transcription patterns have been 

characterized in embryos of Oncopeltus fasciatus (Foe et al.. 1976; Laird 

et al.. 1976; Poe, 1978), Drosophila melanogaster (Laird & Chooi, 1976; 

McKnight & Miller, 1976; McKnight & Miller, 1977; McKnight et al.. 1977)* 

and Strongylocehtrotus purpuratus (Busby & Bakken, 1979)* Determinations 

of the percentage of the genome that is transcriptionally active suggest 

that in embryos the level of hnRNA synthesis is high (McKnight & Miller, 

1976). A number of biochemical investigations have also been performed 

(for review see Davidson, 1976), for both the sea urchin and Amphibia, 

where embryonic RNA synthesis has been extensively characterized (Brown 

& Gurdon, 1965; Lerner et al.. 1965; Denis, 1974; Kung, 1974; Hough-Evans 

et al.. 1977; Kleene & Humphreys, 1977). In the embryo of X. laevis.
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transcription, levels are negligible, and protein synthesis is actinomycin- 

insensitive until the gastrula stage (Denis, 1974) so I decided to use 

neurulae, a slightly later developmental stage, for my investigation of 

embryonic RNA synthesis.

An advantage is the easy availability, in great number, of amphibian 

embryos. Injection of animals with chorionic gonadotrophin allows one to 

obtain embryos all the year round for X. lagvis, and during the breeding 

season (duration about 1 month) for T.c. carnifex.

To date, the Miller spreading technique has not been used systemati­

cally to study tissue-specific transcription patterns. Smbryogenesis in 

D. melanogaster is characterized by a progressive activation of nucleolar 

and nonnucleolar genes, and there is an increase in the amount of chromatin 

transcribed, (McKnight & Miller, 1976). In few other cases where information 

on different tissues of one organism is available, for instance Drosophila 

hvdei spermatocytes and polytene chromosomes (Derksen, 1975; Glatzer, 1975) 

the difficulty of obtaining good spreads in the latter case precludes all

but a descriptive approach. A large variety of cell types from the rat

have been investigated, but in only one instance, the cortisol stimulation 

of primary cell cultures, has a quantitative analysis been possible 

(Puvion-Dutilleul et al.. 1978). The other cell types studied have shown 

only low levels of transcriptional activity, so that again, only a qualita­

tive analysis was possible (Puvion-Dutilleul & Bernadac, 1976; Puvion- 

Duteileul et al.. 1977; Harper & Puvion-Dutilleul, 1979, in press). Thus 

a study of transcription as a function of cell type is clearly necessary if

gene regulation is to be understood.

The results of biochemical analysis are sparse. In Rana pipiens it

has been shown that hnRNA size increases during development, and size
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differences in the hnRNA exist between axial and belly regions of tailbud 

embryos (Shepherd & Pliokinger, 1979)- However, although precautions 

were taken to minimise nuclease activity in the RNA preparation, and to 

ensure that aggregation of the RNA did not occur, it has been Tgtiggested 

(Pederoff et al.. 1977) that the preparative technique used by these authors 

results in some degree of aggregation of hnRNA. Aggregates of RNA can 

be eliminated during analysis of a Miller spread (see Chapter I this study), 

for only clear RNP fibrils or transcription complexes need be considered.

Thus the type of analysis described in this chapter is all the more necessary

in order to supplement the biochemical data.
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MATERIALS AND METHODS

(i) Injection of T.c. carnifex with chorionic gonadotrophin

The breeding season of T.c. carnifex in captivity in Scotland occurs 

in March and lasts for about one month. To obtain embryos for Miller 

spreads, newts were injected with chorionic gonadotrophin several days

before these were needed, 10 female T.c. carnifex in breeding condition 

(Maples, 1977) were injected with 100 • international units (i.u.) each of 

horse chorionic gonadotrophin (400 iu/mg. CIBA) dissolved in„distilled 

water. Each female newt was’placed in a tank containing Elodea. together 

with a male T.c. carnifex (uninjected) also in breeding condition (Day 1). 

Newts were fed on Day 1 with live Tubifex worms. Neurulae were obtained 

on the eighth day after injection, as described in Hamburger (1966), Newts 

and embryos were maintained at 16°G in a room specially designed for this 

purpose.

Day 1 Inject newts. Place in tanks with weed. Peed.

2 Peed.

3 Remove weed. Add pesticide-free grass.

4

5

6 Late blasthae

7 Gastrulae

8 Neurulae

On Day 3, the Elodea was removed, and pesticide-free grass added in 

its place. Eggs are laid on the grass and are much easier to find than 

when laid on Elodea. Eggs laid on the grass were collected daily and 

placed in small plastic tanks containing 1/10 strength Steinberg saline. 

They were sorted into stages according to the stage series for X. laevis
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(Hieuwkoop & Faber, 1956; Hamburger, 1966; Rudak, 1976), and checked daily.

Any mouldy embryos were discarded.

Stage (Hieuwkoop & Faber, 1956)

6-8 blastulae

9-12 gastrulae

13-20 neurulae

Heurulae between stages 16 and 17 were used.

(ii) Solutions

(a) Full strength Steinberg solution (FSS). (s. Hennen, pers. Comm, to H.G.C,)
per litre

17$ HaCl 20 ml

0.5$ KC1 10 ml

0.8$ Ca (H0^)2.4H20 10 ml

2.05$ MgS04.7H20 10 ml

1.00 H HC1 4 ml

Tris buffer 560 mg

Streptomycin sulphate 50 mg

Pencillin-G-sodium 30 mg

G-lass-distilled water 946 ml

Stock components were stored at 0 - 4 C.

The complete solution was Millipore filtered into sterile glass

bottles as for tissue-culture solutions. Dilution was with non-sterile 

distilled water because l/lO Steinberg solution was not required sterile.

All solutions were stored at 0 - 4 C.
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(b) Jqv

Chromatin was spread in a 0.2$ solution of Joy in distilled water, 

adjusted to pH 8.7 with stock borate buffer.

(c) Sucrose-formalin fixative

0.1 M sucrose (Analar) in distilled water containing 10$ formalin 

(Analar) was adjusted to pH 8.5 with 0.1 M NaOH.

(iii) Decapsulation of embryos (Rudak 1976)

To remove the outer membranes.of the embryos, they were placed in PSS 

in a small glass Petri-dish with a layer of black wax at the bottom. The 

outer gelatinous membrane was removed by piercing it at the top, going 

through the gelatinous layer, and coming out at the bottom and into the wax,

with one point of a pair of sharpened stainless steel Ho. 5 watchmakers' 

forceps. Keeping the forceps still, the point of a tungsten needle was 

brought close to the embedded forceps point and both were quickly drawn 

across each other in a scissor-like motion. When this is done successfully, 

the embryo in its vitelline membrane is released from its gelatinous capsule

The embryo was then transferred using a bent, wide-bore, siliconised 

glass pipette, to a small plastic Petri dish containing PSS over 2$ Agar 

(Noble; Difco) in PSS.

The vitelline membrane was removed from the embryo by grasping the 

membrane at the top with a pair of sharpened stainless steel No. 5 watch­

makers' forceps, then inserting the tip of a tungsten needle at this point 

and making a tear in a downwards direction, thus tipping out the ball of 

cells on to the agar surface.
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(iv) Dispersal of chromatin

Using a pair of sharpened, number 5 watchmakers' forceps and. a tungsten 

needle, small pieces of tissue (1 mnr) were cut out of the neural fold region 

of a decapsulated embryo, and rinsed briefly in pH 9 water to remove Steinberg 

solution, whose high salt concentration would be likely to prevent dispersal 

of the chromatin. A few minutes previous to this operation 100 pi droplets 

of Joy were placed on clean squares of Parafilm in sterile plastic Petri 

dishes (Falcon). A piece of washed tissue was placed in a droplet and 

carefully macerated with two pairs of sharpened no. 4 watchmakers’ forceps.

The Petri-dishes were covered and the chromatin allowed to disperse for 75 

min at room temperature. For each experiment, eight small Petri dishes, 

each containing 1 droplet of Joy, were set up. Chromatin from 10 - 20 pi 

of each droplet was centrifuged on to one grid (8 grids prepreparation).

Fixation and staining of chromatin were as described in Chapter I for 

preparations of culture-cell chromatin. Preparations were not rotary

shadowed.

(v) Injection of X. laevis with chorionic gonadotrophin.

On Day 1 three male X. laevis were anaesthetised in 0.1% MS222 (Sandoz) 

and injected in the dorsal lymph sac (Brown, 1970) using a long needle,with 

300 iu (0.5 ml vol) horse chorionic gonadotrophin in distilled water (CIBA). 

The frogs were then kept in glass tanks, at 18°C for 1 day.

On Day 2 the three male X. laevis injected on day 1, and three female 

X. laevis, were anaesthetised as before. The males were each injected with 

300 iu (0.3 ml vol) of Horse chorionic gonadotrophin and the females were 

given 500 iu (0.5 ml)of chorionic gonadotrophin.
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The frogs were -then divided into mating pairs, and placed in glass 

tanks which had been aerated, and provided with a plastic neeeting framework 

to prevent damage to any eggs that might be laid. The mating pairs were 

maintained at 18°G.

Although I ran two experiments, in one case giving the females rather 

than the males a primer injection of hormone, the frogs failed to go into

amplexus and no eggs were laid, although it should be possible to obtain

embryos all the year round in this species.
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RESULTS

(i) Transcription patterns in embryonic cells of Triturus cristatus carnifex

Under the dissecting microscope T.c. carnifex embryonic tissue appeared

to consist of large cells filled with yolk. In the case of DNA fibre

autoradiographs of T.c. carnifex blastulae and gastrulae, a network of

some material, possibly glycogen, prevented the DNA from free extension 

(H.G. Callan, personal communication). This was not the case for Miller 

spreads of neurulae, probably because any yolk particles or glycogen sank 

to the bottom of the Joy droplet in the same way as melanin from X. laevis 

liver cells (Chapter II, this study). In addition, the sucrose in the 

fixative prevents cell debris from pelleting on top of the chromatin.

Preparations from T.c. carnifex neurulae consisted of dense networks

of chromatin. It was difficult to adjust the loading of the grids, even

though small pieces of tissue were used, due to the high C-value of this

species, and in general the amount of chromatin on the grids made scanning 
3for RNP difficult. Ideally, pieces of tissue less than 1 mm should have 

been used, or a larger droplet of Joy (200 p,l).

Much of the DNP in these preparations was of a '’smooth” appearance 

and nucleosomes were sparse (Fig. III-1a). Superbeads were never observed. 

Nucleosomes measured 14.8 nm + 3 nm in stained preparations. The lack of 

extensive nucleosomal structure is probably due to the lengthy dispersal 

of the chromatin in the presence of a relatively high concentration of Joy. 

’’Smooth” fibrils were about 14 nm wide, indicating that they consisted of 

DNA associated with protein. Earlier investigations (see Chapter i) show 

that their presence is an artefact of the spreading conditions that I 

employed (nearly all the DNP of preparations spread under conditions of 

minimum detergent concentration and dispersal time had a nucleosomal configura­

tion.)
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Transcription figures gave the impression of being commoner than in 

either of the cell-lines that I studied, or in liver cells of T.c. carnifex.

However, this is an impression difficult to substantiate, because there is 

no way of determining how much chromatin is present on a grid. Transcription 

figures were not frequent eenough to allow me to determine the percentage 

of the genome being transcribed.

Transcription was again predominantly in the form of isolated RHP

fibrils. Isolated fibrils (Fig. III-1a-c) formed a skewed distribution

(Fig. III-2a) around a median value of 0.82 pm, and with a range of 2.3 pm

(Table 1^ . Few arrays were found so that only a small sample was available

for analysis of the length of terminal fibrils of transcription complexes.

These formed a distribution falling around a median of 1.3 pm, and with a 
P

range of 1.4 pm (Figs III-2b and III-3b-c) . (Table I^).

As with other cell types, I was able to determine the percentage of 

different types of array. Isolated fibrils formed 82.7% of the total tran­

scription observed whereas groups of two fibrils made up 9.6% of the whole. 

Arrays of three or more fibrils (Fig. III-3c) formed 7.7% of the total 

transcription (Table 11^ . These figures are very similar to those determined 

by Busby & Bakken (1979) foii embryos of Strongylocentrotus purpuratus, where 

single fibrils made up 82% of the total, groups of two fibrils 7.0%. and 

arrays of three or more fibrils 11.0%.

The RHP of these preparations showed a higher degree of contrast than 

did the DHP (Figs III-1b-c and III-3a-b). It was greater in width than the 

DNP, at 15.7 nm+4.3 nm but a beaded structure was not clearly definable.

In a few cases (Fig. III-3a and c) configurations indicative of RNA processing 

of breakage were found.
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Although, much of the DNP was ’’smooth" in appearance, I was able to 

determine the DNA packing ratio for transcriptionally inactive regions of 

the chromatin. I obtained a value of 1.35 (Table Illy) for regions of DEg 

having a beaded structure. None of the smooth DNA (packing ratio assumed 

to be 1.0) was included, so it is more reasonable to express the DNA packing 

ratio as being 1.0 - 1.35. Clearly analysable transcription complexes 

were not available so that I was unable to determine the DNA packing ratio 

for transcriptionally active regions of embryo chromatin.

However, I was able to measure the nucleosome density in regions of 
. Plot

chromatin progressively distal to an isolated RNP fibril (Table Vy). The 

mean number of nucleosomes per 0.5 pm interval were very similar for all 

the intervals, as was the range of values per interval. This result is 

inconclusive. One drawback of the method of analysis that I used is that 

because it is not possible to determine the direction of transcription for 

a transcription complex carrying only one RNP molecule, the fact that

identical intervals on either side of the fibril are summed means that any

differences in nucleosome distribution between either side of the fibril

may be obscured.

In arrays of T.c. carnifex embryo chromatin there was no apparent

nucleosome structure. Thus I assumed the DNA packing ratio of these regions

to be 1.0, and the DNP to be maximally extended. In one case an array was

found, having a DNP length of about 2.86‘pm (Fig. III-3c)• The length of

its terminal fibril was 0.72pm, giving a DNA/RNA packing ratio of about 
Ps^

4.0 (Table Vlj). This value is only a rough approximation, for it was not 

possible to determine the position of the initiation point of transcription 

for this array with certainty. Thus the true DNP length is likely to exceed 

2.86 pm and the DNA/RNA packing ratio will be greater than 4.0.
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Ribosomal transcription was never observed in these preparations and 

this confirms the report of Busby & Bakken (1979) on transcription in 

S. purnuratus embryos. BNP rings, of mitochondrial or other origin, were

also absent.

(a) Putative -polyribosome-like structures

In several preparations of embryo chromatin, structures resembling 

polyribosomes were found (Fig. III-4). These consisted of varying lengths 

(up to 4.0 pm long) of darkly staining oval bodies connected by a fine fibril 

The oval bodies measured 26 nm + 1.7 pm by 34.7 nm + 7 P-m, and thus are 

probably too large to be supernucleosomes. Their oval shape and arrangement 

on the interconnecting fibril also precludes this interpretation.

These structures bear a superficial resemblance to beaded high molecular 

weight RNA extracted from amphibian oocytes (Sommerville, 1973; Malcolm & 

Sommerville, 1974, 1977). The double structure of some of the beads seen in 

my preparations resembles ribosomes rather than RNP particles. Also, it is 

not clear why RNP attached to BNP should not..also have this structure, if 

the "polysomes” are in fact RNP.

None of the polysome-like structures were seen to be attached to a

BNP axis and there is certainly no evidence for a coupling of transcription 

and translation, unlike the situation in bacteria (Miller et al.. 1970). 

Similar polysomes were observed by McKnight and his colleagues (McKnight 

et al.. 1976) in spreads of Bombyx mori silk-gland cells, and by Baneholt 

(Baneholt et al., 1976) in Chironomus tentans salivary glands.

Unfortunately I was not able to make spreads of Xenopus embryonic 

tissue because, despite two attempts, I was not able to obtain embryos.



158,

COMPARISON OF TRANSCRIPTION PATTERNS IN DIFFERENT TISSUES OF Xenopus laevis

I observed a considerable difference in the overall characteristics of 

trans on’ptjon between X, laevis cultured cells and liver cells, the two 

tissues I was able to study (see Chapters I and II of this study for details)

Isolated RNP fibrils in X, laevis liver cells have a median value 

1.5 times as great (0.44y. and 0.66p-) and a range three times as great 

(2.1{A and 6.5n) as in cultured cells (Table 1^). Unfortunately, I was not 

able to measure terminal fibril lengths in preparations of X. laevis cultured 

cells, so that a strict comparison cannot be made. These differences are 

significant and probably stage-specific, reflecting those sets of genes 

expressed in each tissue.

There is also a marked difference between the two cell types, in the 

distribution of different types of transcription complex. In cultured cells, 

94.4$ of the transcription takes the form of isolated RNP fibrils, whereas 

only 5.6$ consists of arrays (of 5 or more fibrils). Groups of two fibrils 

were absent. On the other hand, only 86.1$ of the total transcription in 

liver cells, consisted of isolated fibrils, and arrays of two or more 

fibrils comprised 15.8$ (9.2$ + 4.6$. See Table IIJ. This suggests that 

liver cells are transcribing proportionately greater amounts of certain

DNA sequences than are cultured cells, and that these sequences are part of 

the more numerous, transcription complexes seen in chromatin from this cell

type.

DNA packing ratio for transcriptionally Inactive regions of X. laevis

cultured cells was 2.1, whereas for liver cells I obtained a value of 1.84 
PS*

(Table Illj). This suggests that in the more transcriptionally active tissue, 

liver, even transcriptionally inactive regions of chromatin have a more

extended structure. However, the conditions of dispersal varied between
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the two preparations. In the case of cultured, cells, dispersal was for 

15 min in a solution containing 0.1% Joy, whereas in the case of liver 

cells, dispersal was for 1 hr in 0.1% Joy. This means that more protein is 

likely to have been removed from the liver cell chromatin, perhaps resulting 

in a lower DNA packing ratio. If the packing ratio for liver cells is in 

reality greater than 1.84, then it approaches that for cultured cells.

As this value describes the foreshortening of transcriptionally inactive 

regions of the DNP, it is not really incompatible with the observed dif­

ferences in transcriptional activity between the two tissues. Loosening 

of the chromatin structure might occur only in potentially active regions 

(see Chapter II of this study).

I was only able to determine the DN-4 packing ratio for transcriptionally 
active regions in X. laevis liver (Table ivj) so that comparison is not 

possible. In the same way, analysis of nucleosome number at intervals 

increasingly distal to an isolated RNP fibril was only possible in the case

of liver cells.

The small sample of arrays available for analysis affects my deteraina- 

tions of DNA/RNA packing ratio (Table Vlj), but I found that this parameter 

apparently fell into classes. For X. laevis liver, the values I obtained 

were 1.25 and 1.25, whereas for cultured cells a value (l array) of 10 - 12 

was obtained. Although these values might define the limits of a normal 

distribution, as has already been noted for Qncopeltus fasciatus (Poe et al.. 

1976), the differences in morphology between transcription complexes in my 

preparations may also support the first interpretation. The results for 

other cell types also support the conclusion that DNA/RNA packing ratio 

shows size classes. Ideally such comparisons are best made between prepara­

tions spread under the same conditions, although in practice the morphology

of arrays in general did not vary under different spreading conditions.
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Analysis of transcription patterns in Necturus maculosus liver cells indicates 

that DNA/RNA packing ratio may be a criterion as to whether a primary 

transcript is translated., rather than a means of distinguishing between 

ribosomal and nonrihosomal transcription complexes, and if this is so,

DNA/RNA packing ratio would be expected to show size classes.

Ribosomal transcription was observed in X. laevis cultured cells but 

was apparently absent in liver cells. This may be a tissue-specific charac­

teristic, but it is difficult to believe that ribosomal RNA synthesis is 

entirely lacking in a somatic tissue. Early embryonic stages rely on 

maternally synthesized ribosomes (Foe, 1977; Busby & Bakken, 1979) and are 

characterized, both biochemically and morphologically, by an absence of 

ribosomal RNA synthesis. However, all somatic tissues, especially such 

metabolically active ones as liver, must support some degree of ribosomal 

RNA synthesis. This might be expected to be intense in liver-cells. The 

absence of such transcription complexes in X. laevis liver cells may be due 

to chance inasmuch as I made fewer preparations than for X. laevis culture 

cells. Furthermore, these genes are probably present exclusively as a block 

of tandem repeats integrated into the genome, so that a relatively large

amount of chromatin would have to be scanned before ribosomal transcription

units would be noted. In cultured cells, I observed that the ribosomal

genes tended to occur in large clumps of tandemly repeated complexes, and

were rare. ■

Circular DN4 molecules were a characteristic of Xenopus cultured cells, 

but were not seen in preparations of liver cell chromatin. As far as the 

putative mitochondrial circles are concerned, this is probably a chance

effect, as it' is likely that liver cells contain many active mitochondria. 

Rings of other types may have been visualised in X. laevis cultured cells

because the preparation in which they were found was characterized by a
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very short (15 min.) dispersal time. This may have resulted in the preserva­

tion of structural details lost from the liver cell chromatin. Thus it is 

probably not true that the presence of the types of circle noted here 

(Chapters I and II) is a tissue-specific characteristic. My results do not 

eliminate their occurrence in other cell types.
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COMPARISON OF TRANSCRIPTION PATTERNS IN DIFFERENT TISSUES OP

Triturus cristatus carnifex

I was able to examine three different cell types from T.c. carnifex, 

tissue-culture cells, liver cells and embryonic cells. The general trends 

in transcription pattern between different tissues are similar for both

T.c. carnifex and X. laevis.

The median length of isolated PUP fibrils increases from 0.33 pm in 

cultured cells, through 0.6 pm in liver to a maximum of 0.82 pm in embryonic 

cell chromatin in a ratio of about 1:1.8:2,5 (Table If). There is also a 

difference in the total range of length between these three cell types.

The range for cultured cells is 1.03 pm, and for liver cells 6.5 pm, a 

difference greater than for the median values. This may be partly because 

I was only able to analyse a small sample from culture cells. The range 

for embryonic cells is 2.3 Pm (Table Ij), and implies that the distribution 

of RNP lengths is narrower than for the other cell types. The sample sizes 

for liver and embryonic cell RNP were similar and no gaps occurred in the 

histograms. Thus the calculated values are probably a valid index of 

transcriptional events in these cells. If so, the difference in range 

between liver and embryonic cells (6.5 pm and 2.3 pm respectively) is 

probably a tissue-specific characteristic, and does not follow the difference 

in median value; In both T.c. carnifex and X. laevis, liver cells apparently 

make longer primary transcripts than do cultured cells. However, long 

molecules up to 10 pm (30,000 bp, Scheer et al.. 1979) in length were 

observed in T.c. carnifex cultured cell chromatin. Nonetheless, the

difference is likely to be real, as the frequency of long RNP molecules 

was greater in liver cell chromatin. Such molecules were never seen in

embryonic cells.
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A similar trend, is observable if the terminal RNP fibrils of arrays

of two or more fibrils are considered.. Median terminal fibril length

increases from 0.4 ^m in culture cells to 0.95 pm in liver respectively, and 

to 1.3 pm in embryonic cells, i.e. a ratio of 1:2.4:3*2 (Table L). This 

relationship is probably a better approximation to real differences in 

transcription unit length between these tissues than is single fibril 

length. Similarly the range of values also varies, being 0.2 pm in cultured 
cells 9«6 pm in liver cells, and 1.4 pm in embryonic cells (Table Ip

Although these data are incomplete, due to the small number of samples 

available for analysis, the range of values is narrower in embryonic cells

than in liver and the three values are related to each other as are the

median values for isolated fibril lengths. This suggests that embryonic

cells are expressing genes whose transcription unit lengths are more similar

than those in liver cells, although their mean length is greater than in

either cultured cells or liver.

One qualification must be borne in mind when interpreting the size 

distributions of terminal fibrils of arrays. In all cases of groups of 

two fibrils, the spacing bewween the molecules was less than 1 pm (see 

Chapter i). However such configurations fell into two classes, both of 

which were included in my analyses, the first class consists of two fibrils

the difference in whose length is about the same as their spacing on the 

DNP axis. Here, 'the longer fibril was interpreted as being the terminal

fibril. The second class consists of two fibrils the difference in whose

length is greater than their spacing on the DNP. These latter configura­

tions could be the result of either processing or breakage. If the former

has occurred, then the shorter of the two fibrils is the terminal fibril.

If the latter, then either fibril could be the terminal fibril. In fact, 

the longer fibril was consistently included as the terminal fibril. The



144.

fact that terminal fibril distributions nearly always gave a median value 

greater than for the single fibril distributions suggests that this is probably 

not a significant source of error.

I was able to assess the percentage of different types of array for 

all the tissues I used. Due to the small sample size for arrays from 

cultured cells, the values for these are probably less reliable than for the 

other two tissues. I obtained values for single fibrils, for groups of two

RHP fibrils, and for arrays of three or more fibrils, respectively, of 

72.7%, 9.1%, 18.2% for cultured cells, 66.2%, 25.5% and 8.5% for liver, and 

82.7%} 966% and 7.7% for embryonic cells (Table lip. These values differ 

markedly, more so than did the values I obtained for liver cells of species 

differing in C-value (Chapter II. This study).

In liver cells, arrays of all types comprise nearly 54% of the total 
transcription, whereas they form only 17% of the total in embryos (Table 11^. 

This suggests that greater amounts of certain gene sequences are being

transcribed in liver cells than in embryonic cells. It is not clear how 

this is related to the observation that the range of RHP fibril length is 

greater in liver than in embryos. However, determinations of the percentage 

of different types of transcription complex take no account of the absolute

number of transcription complexes per nucleus, which cannot be determined 

in my preparations .• Only in cultured cells is the percentage of groups of 

two fibrils less than the percentage of arrays of three or more fibrils 

(Busbv & Bakken, 1979).

It may be that the metabolic requirements of embryos dictate the expres­

sion of more different genes than in liver cells. Thus the percentage of 

isolated fibrils would be higher, as it is, in embryonic cells, which show

the highest percentage of single fibrils of the three tissues. On the
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other hand, that small subset of liver cells spread in my preparations may 

have had a need for a large number of transcripts of a few sequences, i.e.

of key enzymes.

The DNA packing ratio of inactive regions of the chromatin was 1.88 

for T.c. carnifex cultured cells dispersed for 20 min, in the presence of 

0.1$ Joy. Values for the other two tissues were 1.65 for liver and 1.55 

for embryos, both for chromatin dispersed for 75 min in the presence of 

0.2$ Joy, and which are therefore comparable (Table II3jj). Slight differences 

in the pcrobocol for making up the sucrose-formalin fixative may affect my 

interpretation, however. This result implies that transcriptionally inactive 

regions of the T.c. carnifex neurula genome are more extended than similar 

regions of the liver genome. This observation agrees well with the observed 

greater transcriptional activity of embryo chromatin. In reality (see 

section (i) of Results, this chapter) the DNA packing ratio of embryonic 

cells is likely to be less than 1.55, as DNP lacking nucleosomes was not 

included in my analysis. It would be interesting to compare the DNA packing

ratios for these two tissues after dispersal of the chromatin in more favour­

able conditions (i.e. for 15 min in the presence of 0.1$ Joy) to see if this 

relationship still held true.

Unfortunately, analysable arrays were not found in preparations of 

any of these tissues so that I was not able to determine the DNA packing 

ratios for transcriptionally active regions of the genome. The mean 

nucleosome number for regions increasingly distal from a single RNP fibril 

remains roughly constant for embryonic cells but I was not able to define 

this parameter for either cultured cells or liver. Similarly, a DNA/RNA 

packing ratio was only determined for one array (Table VI^ in embryonic 

cells; I obtained a value of at least 4.
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Ribosomal genes were absent from preparations of all these tissues.

Low transcriptional activity probably accounts for the absence of ’’Christmas 

trees” from cultured cell chromatin but it is not clear why they were absent 

from liver cells of T.c. carnifex, and the other two species that I investi­

gated (Chapter II, this study).

Ribosomal RHA synthesis was apparently absent from embryonic cells. 

Although early embryonic stages synthesise little ribosomal RITA, in X. laevis 

and probably also in T.c. carnifex. ribosomal RHA synthesis has already 

begun by the neurula stage- (Brown & Gurdon, 1965). My result may be due to 

chance and the fact that I was not able to make many preparations. Further­

more, individual cells in the neurula may differ in the extent to which they 

are transcribing ribosomal RHA. I spread pieces of tissue cut out of the 

neural fold region, and there is no guarantee that the same cells were

spread in any two preparations.

Rings were absent in preparations of all these^tissues. Putative 

polysomes appeared in preparations of embryo chromatin alone; it is not 

clear why. Differences in polysome length and therefore the degree to which 

they pellet down should not be responsible, for most mRHAs are of similar 

length. Polysomes would not however occur in most of my culture cell prepara­

tions as they were spreads of nuclei rather than cells, and lacked cytoplasm. 

However, this still- does not account for their absence from liver cells, 

where whole cells were dispersed, and which are transcriptionally, and there­

fore probably also translationally, active.
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DISCUSSION

The results presented, and. discussed, in this chapter show that primary 

transcript length can vary between different tissues of an organism. Both 

T.c. camifex and X. laevis tissue-culture cells, the least-transcriptionally 

active of the cell types that I studied, apparently transcribe the shortest 

RNP, whereas embryonic cells (in T.c. camifex). transcriptionally most 

active, synthesise the longest. In both speciqs the RNP of liver cells is 

longer than that of culture cells. However T.c. carnifex cultured cells 

synthesise occasional. (10 - 11 pm) long transcripts. Parameters such as 

the distribution of transcription events amongst different types of transcrip­

tion complexes, also vary as a function of cell type, and demonstrate that 

tissues differ in the relative amount as well as in the length of the RNA 

transcribed. Evidence also exists (Shepherd & Plickinger, 1979) for tissue- 

specific variation in hnRNA length in Rana niniens.

My data are of limited significance on their own, and merely imply

that at different times, different populations of genes coding for primary

transcripts of various lengths, are activated. In recent years, however, 

an appreciable body of evidence has accumulated, showing that many differen­

tiated states share a large proportion of both their hnRNA and mRNA sequences. 

Assuming that there is some direct relatinnship between the primary transcript 

and the biochemically defined hnRNA, these data have a direct bearing on

the interpretation of my results.

In man, liver and leukaemic cells show a 75 - 85% homology of their 

messenger RNAs, a result similar to that obtained for chicken and mouse 

cell mRNAs (Ostrow et al.. 1979). An exhaustive analysis of Strongylocentrotus 

-puruuratus mRNAs from seven different tissues (G-alau et al.. 1976) demonstrates 

clearly that cells from these tissues share a small subset of their mRNAs, 
the complexity of which is about 2.1 x 10^ nucleotides, and coding for no
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more than 1000 - 1500 genes. It is possible to estimate gene number from 

messenger RNA complexity data because in most eukaryotes messenger RNAs 

are of similar size and complexity (Galau et al., 1974; Anderson et al., 

1976). A straightforward explanation for this observation is that all cell 

types express a small number of genes coding for the ’’household functions.” 

required by every cell, regardless of its state of differentiation. The 

situation becomes more complex when the nuclear RNA is considered, and it 

is clear that there is no simple relationship involved.

In tissues of the rat (Chikaraishi et al., 1978) extensive overlap 

was noted between the nuclear RNAs of different tissues, when single copy 

sequences were considered. Estimates of the gene number expected for the 

single copy sequence complexity of each hnRNA sample were also made.

However, I do not think this latter procedure justified. The average length 

of rat brain poly A-containing RNA is 4500 base pairs (Chikaraishi et al., 

1978), but this is the value for the abundant low-complexity fraction of the 

hnRNA, made up largely of the transcripts of repetitive genes. If this 

length value is valid for the complex RNAs, considered here, which form the 

smaller fraction by mass, but the greater fraction of the complexity, then 

gene number can be calculated from complexity values. However, there is no 

compelling reason for this assumption, as it is known that hnRNA varies 

greatly in length. Its sequence organization is also such that in some

cases greater sequence complexity will correlate with transcript length. 

Finally, only a small proportion of the unique sequences expressed in the 

hnRNA consists of protein coding sequences.

A contradictory result was obtained for Tripneustes gratilla by 

Kleene & Humphreys (1977) who showed that between the blastula and pluteus 

stages there was no change in hnRNA complexity. This might be because these
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stages are more similar in their patterns of gene expression than other 

groups of tissues. It is possible that hnRNA length coild vary in the 

absence of changes in complexity, but the facts known about hnRNA sequence

organization argue against this.

Conversely, in S. purpuratus (Ernst et al., 1979) some single copy 

sequences present in intestine hnRNA are absent from gastrula hnRNA. A 

more complex situation emerges from the experiments of Wold (Wold et al., 

1978) who showed that in the same organism, blastula mRNA sequences were 

present in the nuclear RNA of adult tissues, but absent from the messenger

RNAs of these tissues.

When the repetitive sequences of S. purpuratus hnRNA are considered 

(Scheller et al.. 1978) it is seen that different families of repetitive 

sequences are highly represented in the hnRNA of different cell types, 

although a few copies of each family are present in all cell types (adjacent 

to housekeeping genes?). Most of the 3'-proximal sequences of large poly A- 

containing hnRNA are homologous to mRNA (Hahn et al.. 1978).

At the most, these data imply that, between different developmental 

stages and cell types, message sequences can show a large degree of overlap.

The single copy sequence fraction of the hnRNA, whether coding or noncoding, 

can show either slight or extreme overlap between differentiated states.

On the other hand, the hnRNAs of different tissues seem to have a smaller 

fraction of their repetitive sequences in common. Between synthesis of 

hnRNA and the appearance in the cytoplasm of mRNA, there appears to be a 

selection step that removes many sequences, assuming a precursor-product 

relationship between hnRNA and mRNA (Giorno & Sauerbier, 1976; Bastos & Aviv, 

1977; Egyhdzi, 1978). Differences in hnRNA complexity could, to some extent,

imply differences in the mean length of primary transcripts, which is
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consistent with the sparse data on hnRNA size differences among tissues. 

Although overlap in expressed sequences exists (Galau et al., 1977), different 

tissues also express non-overlapping subsets of their DNA sequences. Unfor­

tunately it is not known exactly which genes are included in these two 

subsets, and it is clear that much more work must be done before the true

significance of these results emerges.

Neither in the hnRNA nor in the primary transcript distribution of any

cell type is it known which molecules represent which gene, whether

’’housekeeping” or coding for some differentiated product. Although it is 

generally assumed that hnRNA and the primary transcript are homologous, in 

defence of which assumption is cited the parallel between the molecular 

weight distributions of the two classes of RNA (Scheer et al., 1979)» there 

is evidence, morphological and biochemical, for the processing of primary 

transcripts (Derman et al., 1976; Giorno & Sauerbier, 1976; Old et al., 1977)- 

Thus the primary transcript populations of diverse tissues might conceivably 

have even more sequences in common than does the hnRNA. If so, it is hard 

to understand the significance of the observed marked differences in primary 

transcript length between different cell types.

Recently, various models have been proposed to explain the function

of hnRNA and the regulation of gene expression in eukaryotes. As outlined

in the Discussion to Chapter I of this study, the two main models are those 

of Britten and Davidson (Davidson et al.. 1977) and Cavalier-Smith (Cavalier- 

Smith, 1978)* The former model exploits what is already known about DNA 

sequence organization in eukaryotes, and defines hnRNA as a coordinate 

regulatory transcript. The structural genes are postulated to belong to 

gene batteries, defined as those groups of structural genes which share a 

given receptor sequence, to which an activator RNA or protein can bind. 

Binding results in transcription of the contiguous structural gene. The
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activator RNA or protein molecules are encoded in the so-called integrator 

genes. Patterns of activation of sets of batteries are determined by the 

coordinate transcription of sets of integrator genes, leading to the produc­

tion of sets of regulatory molecules governing functionally related gene 

batteries. Finally, to ensure the coordinate activation of each set of 

structural gene bztteries, it is suggested that the integrator genes of 

each integrator gene set are transcribed as a single hnRNA molecule. Thus 

the great bulk of the hnRNA is visualised as being regulatory in function.

This model predicts that in various states of differentiation over­

lapping but partially distinct regions of the genome would be transcribed, 

which appears to be the case. To relate this to observations on primary 

transcript length, it is vital to determine which genes are being tran­

scribed in any two differentiated states whose degree of RNA sequence 

overlap is known, as well as the relationship this bears to the distribution 

of primary transcript lengths. Only in this way can the observed differences 

in primary transcript length be rationalised. Tissue-specific differences 

in primary transcript length might be explained on this theory by postulating 

that larger gene batteries are being used by those cells making longer 

primary transcripts (regulatory hnRNA), and this is worth investigating.

The activator RNA branch of the model (see Chapter I, this study) 

predicts that repetitive sequence families should not show a great deal of

overlap between hnRNA populations, which seems to have been experimentally 

substantiated for the sea-urchin (Scheller, et al.. 1978). If repetitive 

sequences are distributed at random with respect to the location of parti­

cular transcription units, this result would be impossible, because of the

large fraction of the genome represented in the hnRNA of each cell.
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The other main prediction arising from this branch of the model is 

that large nuclei, such as early embryo or oocyte nuclei, require a larger 

number of hnRNA molecules than small nuclei in order to maintain activator 

RNA sequence concentration. Thus one would expect to find correlations 

between nuclear size and hnRNA transcription rate, turnover rate or both.

A higher percentage of multifibril arrays in any random sample of 

transcription units (assuming one transcription unit is equivalent to one 

functional unit, and that the number of transcription units per cell is 

known) implies that a larger number of primary transcripts are being made. 

Both embryonic and liver cells are large (Szarski, 1976) and amphibian livers 

do not contain many polyploid cells. The percentage of multifibril arrays 

in different tissues of T.c. carnifex is 17.3% in embryos, and 34% in liver. 

However, as I was not able to determine the number of transcription units 

per cell in either of these tissues, my results are not sufficient to prove 

or disprove this aspect of the Britten and Davidson model. It might be

possible to estimate transcription unit number per cell by autoradiographic

methods and it is definitely worth attempting to do this.

The model of Cavalier-Smith (Cavalier-Smith, 1978) postulates that most 

of the DNA content of a nucleus plays a major role in nuclear and hence

cell volume determination. It is suggested that the major function of 

hnRNA sequences ‘is.to change nuclear volume independently of changes in DNA 

content, and that only a small fraction functions as message precursor.

As with Britten and Davidson's model, this theory makes a variety of

testable predictions. Its main weaknesses are that in postulating increase

in the amount of nucleoskeletal DNA to be the main means of increasing

nuclear and cell size it fails to account for the fact that many nuclei

attain a large size and increase their surface-area to volume ratio by
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invagination. Similarly, many anurans of low C-value have oocytes of a 

size comparable to those of species with a high C-value. A further problem 

is that all anuran oocytes have sacculated nuclear membranes, whereas those 

or urodeles are essentially smooth. Finally, hnRNA generally has a very 

short half life, although this is not true of the hnRNA of Drosophila hydei 

spermatocytes (Soderstrom and Parvinen, 1976; Geremia et al.. 1977).

>
If hnRNA functions as means of modulating nuclear size, then its 

amount or length (see Chapter I of this study) should correlate positively 

with this parameter. Unfortunately, due to technical difficulties I was

unable directly to determine nuclear and cell size for any of the tissues

discussed in this chapter. The best way of determining nuclear and cell 

size in liver might be to set up primary cultures (Puvion et al.. 1974) 

of liver. Such cultures still retain enough differentiated characteristics

to be comparable to liver cells in situ, but allow nuclear and cell size

to be measured more easily.

I found that liver cells synthesised longer primary transcripts than

culture cells, in both T.c. carnifex and X. laevis. It has been shown 

(Szarski, 1976) that in mammals liver cells are among the largest of all 

somatic cells. The great size of liver cells, however, is partly due in 

the above cases, to polyploidy, and it is necessary to measure size dif­

ferences between diploid liver cells of different species. This is also 

the case among birds, although the tendency is less marked than in mammal,?,

The data of Szarski & Czopek (1965) demonstrate that the liver cells 

of the Urodela are in general larger than those of anurans, which reflects 

the size differences that I found among liver cell primary transcripts of 

these two groups. The proportion of polyploid cells in amphibian livers 

is probably very small, and ploidy classes were not apparent in the
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histograms of Szarski & Czopek (1965). If, therefore, in amphibians as 

well as in mammals, liver cells are among the largest of all somatic cells,

it would, be reasonable to state that increase in cell and. nuclear size is 

accompanied by an increase in primary transcript length and amount (transcip- 

tional activity). If this is true , it would imply that Triturus neurula 

cells must be larger than liver cells, as primary transcript length is 

greater in this cell type. The degree of transcriptional activity could

not be determined.

The problem of nuclear size and hnRNA synthesis could be investigated 

in other systems, for instance Vicia faba meristematic cells, where there 

is a positive linear correlation between nuclear RNA content and chromosome 

volume. This confirms previous work showing that a large natural variation

in chromosome size exists between cells in plant meristems of different ages 

(Bennett, 1970; Bennett et al.. 1972). It has been suggested (Bennett, 1970) 

that this increase in chromosome volume is due to a phenomenon similar to

the puffing of polytene chromosomes, so that in the light of my results,

it would be illuminating to examine nuclear and cell size, the amount and

length of hnRNA or primary transcript etc. This would extend the scope of

the Miller technique, which among plant cells has been applied to few species 

(Berger & Schweiger, 1975a, b, c; Woodcock et al.. 1975; Franke et al., 

1976a).

As yet, insufficient data exist .to allow either regulatory model to be 

confidently eliminated. My data on transcript length and amount in different 

cells could support either of the models outlined above. It is not yet

possible to distinguish between the possibilities that first, cells using

large batteries of genes and hence making long hnRNA, synthesise large
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quantities of primary transcripts in order to maintain activator concentra­

tion in a large cell, or secondly, that requirement for a large cell size 

results in the production of large amounts of long primary transcripts.

One prediction unique to Cavalier-Smith’s theory is that depending on

the state of differentiation in which it is expressed, a gene will code for

transcripts of different lengths. The length variation will depend on the 

distance between different genes. The pattern of this variation might 

depend on the sequence interspersion pattern of the genome. To eliminate 

this possibility it is necessary not only to know the difference in length 

of the primary transcripts of different cell types, but also which subsets 

of genes are expressed separately or shared. Finally the relationship

between primary transcript length and gene expressed must be defined.

Differentiation will only be understood when the questions and problems 

mentioned above are clarified. To date, little is known with certainty 

about the mechanisms of gene regulation. I think it would be interesting 

to extract and size the hnRNAs (biochemically defined) of the various 

tissues that I studied, to see if their size distribution reflects that of 

the primary transcripts. To date, I know of no study of this type. Sequence 

distributions in the hnRNAs of these tissues, determinations of hnRNA and 

mRNA complexity would all yield information that might help towards a

resolution of this problem.
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CHAPTER IV.

THE EFFECT OP CORTISOL ADMINISTRATION OH TRANSCRIPTION PATTERNS IN

CULTURED CELLS OE Xenopus laevis AND Triturus cristatus carnifex

INTRODUCTION

As my attempts to characterize C-value-dependent transcription patterns

progressed., it became increasingly clear that the transcriptional activity

of cultured, cells was low, and. that few transcription complexes would, be 

available for analysis. It was primarily for this reason that I decided.

to attempt hormone treatment of cultured cells, i.e. in order to obtain

more transcriptional figures. This step was suggested by the work of 

Puvion-Dutilleul and her colleagues (Puvion-Duttilleul et al.. 1978) who 

demonstrated that rat hepatocyte primary cultures respond to cortisol treat­

ment with a spectacular increase in the amount of transcription observable

in the electron microscope.

The main difference between this work and mine was that in the former,

primary cultures derived from a mammalian tissue known to be responsive

to cortisol were used, whereas in mine, established cell lines of amphibian 

origin constituted the experimental system. Primary cultures retain many 

characteristics of the differentiated state from which they are derived, 

and liver cells .are known to respond to cortisol (Puvion-Dutilleul et al.. 

1978). Thus it was to be expected that a marked response to hormone treat­

ment would occur. On the other hand, the X. laevis line that I used had 

been in continuous culture for at least eleven years and is derived from 

kidney rather than liver. The newt line was derived from abdominal skin 

cells and had been in culture for three years. Both cell lines are likely 

to have lost all traces of any differentiated characteristics that they 

might have possessed. Nonetheless, steroid hormones are present in amphibians
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Barrington & j/rgensen, 1968), have a substantial effect on all aspects 

of metabolism, and are known to affect gene expression at the transcriptional 

level (lewin, 1974). Thus I decided to investigate any possible effects 

of cortisol on my cultured cells. In the eventuality that cortisol might 

have no effect, I decided also to study the effects of thyroxine treatment. 

Thyroxine was chosen because it is chemically unrelated to the steroid 

hormones. Thus if the cells failed to respond to cortisol, they might 

respond to thyroxine.

Apart from the work of Puvion-Dutilleul et al.. (1978) no studies upon 

the response of transcriptional processes to hormones, and using the Miller 

technique, have yet been done. They would, if performed, supplement the 

biochemical evidence, which concentrates on aspects such as RNA and DNA 

sequence organization (Mascheck et al.. 1977; Parker & Mainwaring, 1977; 

Konstantinove et al.. 1978; Schafer & Neumann, 1978), conformational changes 

in receptor molecules (Senior & Frankel, 1978) and the general induction of 

RNA synthesis (Gvozdev et al.. 1975; De Groot et al.. 1977; Jain, 1977;

Burns et al.. 1978; Thomas et al.. 1978). For this reason I felt that my 

study would be a valuable addition to what is currently known, about the 

control of gene expression (Lewin, 1974).

The second main reason for this study was that I wished to test directly 

one of the main ‘predictions of Cavalier-Smith's (1978) model for the function 

of DNA sequences in the eukaryote genome. Briefly, this model postulates 

that the primary function of the bulk of hnRNA is as a mechanism for con­

trolling nuclear and hence cellular dimensions. An increase in the amount

of hnRNA synthesised is conceived of as resulting in an increase in the size 
of the nucleus, ^ultured cells, if responsive to a stimulus such as hormone

adminstration, form an ideal system in which to test this hypothesis.
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Monolayer cultures such as the cells that I used, can he exposed to hormones 

much more conveniently and reproducihly than tissue cells. Both biochemical 

and morphological studies can he performed. Finally, the measurement of

nuclear and cellular dimensions is easier than with somatic tissues, where

the cells are generally growing in a solid mass rather than in a monolayer

or in suspension.

Increase in the amount of RNA synthesised in response to hormone

treatment, if such occurs, can he assessed hy determining the percentage of 

total transcription made up of multifihril transcription complexes. Direct 

measurement of RNA fihril or transcription complex length will reveal any 

changes that might occur in this parameter. Finally, Miller spreading of 

hormone-treated cells is the most direct way of demonstrating the transcrip­

tional control postulated to he the result of hormone action (Lewin, 1974; 

Puvion-Dutilleul et al., 1978). None of the studies done- to date say 

anything about the effects of hormone treatment on the primary transcript 

(as opposed to hnRNA) or its length, a gap which the Miller technique is 

admirably suited to filling.
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MATERIALS AND METHODS

(i) Culturing of cells

(a) X. laevis

Por hormone treatment, cells of X. laevis were grown at a concentration

known to allow a high rate of RNA synthesis, as measured, by the incropora- 

tion of tritiated, uridine (see Chapter I. this study). This was lower 

than the inoculation density usually employed for routine subcultures.

Details of all processes are as described in the Materials and Methods 

section of Chapter I.

A. Cells were inoculated routinely into sterile plastic culture vessels 
2(75 cni growth area) at the same cell density as the uridine incorporation 

experiment (1 .95 x 10^ cells per flask). The cultures, two per experiment, 

test and control, were grown at 25°C for 2 days to ensure the attainment of 

log phase. A few cultures were set up at normal subculture density but the

results from these were not included in my analysis.

B. This second method of setting up cultures for hormone treatment 

was the one that I found gave the most successful spread preparations, and 

the one that I ahered to. I employed a modification of the method used by 

Puvion-Dutilleul et al.. (1978). A confluent culture was trypsinized 

routinely and cells inoculated into small (60 x 15 mm) sterile plastic
2Petri dishes (Falcon). The growth area of these Petri dishes was 22 cm 

5ao that 5.7 x 10 cells were inoculated per dish, to give the same final 

concentration as (A). The cells were grown, without gassing, for 2 days 

at 25°C, until they had reached log phase. Two dishes, test and control,

were set up for each experimental run.
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(b) T.c. carnifex

Both of the culture methods used for X. laevis cells were employed for 

T.c. carnifex. Cultures were inoculated at the same density as the incor­

poration experiment (Chapter I, this study) to ensure a high level of

transcription, or at the same density as X. laevis. In one case, cultures 
5were set up at 5 x 10 cells per Petri dish. Two cultures, test and control,

were set up for each experimental run.

(ii) Cortisol treatment. X. laevis and T.c. carnifex

Following the suggestion of Puvion-Dutilleul et al. (1978) I treated 

cells with 20 p.g/ml of cortisol for 5 hr, at 25°C. 5 hr was chosen as a

treatment time because it allowed treatment and spreading to be carried out 

on one day. I thought that shorter treatment times, although adequate 

for hepatocyte primary cultures (Puvion-Dutilleul et al.. 1978) might not 

elicit a response in X. laevis or T.c. carnifex cultured cells.

Cortisol (hydrocortisone-21-phosphate, Sigma) was dissolved in culture 

medium to a final concentration of 20 |ig/ml. Carrier was not required as 

the hormone is soluble in aqueous media. To sterilize, medium containing 

hormone was Millipore-filtered into sterile bottles. All media were brought 
to 25°0 before use. OM medium was decanted or pipetted from cultures in 

log growth, and 1-5 ml of the hormone-containing medium (for 75 cm flasks) 

or 5 ml (for Petri dishes) added in its place. Control cells were given a 

similar medium-change, but with medium lacking cortisol. In the case of 

culture vessels, all media were added to the side of the flask opposite the 

monolayer. The flask was then securely capped, making sure that no medium 

had touched the cells, and the cultures turned over at zero hours. Thus

the time of exposure to cortisol could be controlled precisely.
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The cultures were placed in the incubator, and allowed to grow undis­

turbed for 5 hr, at 25°C« In a few cases, T.c. carnifex cells were treated 

for 5 hr with 40 pg/ml cortisol.

(iii) Thyroxine treatment (T.c. carnifex cells only)

Thyroxine(L-form, sodium salt, Sigma) was suspended, at a final concen­

tration of 20 pg/ml of medium, in 1 ml distilled water. 1 drop of 0.1 N NaOH 

was added to dissolve the hormone, and the solution made up to the required 

volume with prewarmed culture medium. 1 drop of 0.1 N HC1 was added to 

restore pH to its original value and the solution filter-sterized as above.

Cells were treated with thyroxine for 5 hr at 25°C, as above.

(iv) Solutions

As with preparations of other cell types, different modifications of 

the solutions required were used. They were made up as described in 

Chapter I.

(a) Sucrose-formalin fixative

0.6846 g RNAse-free sucrose (Serva), 10 ml 20% paraformaldehyde,

10 ml distilled water, adjusted to pH 8.5 with 20 pi of 0.1 H NaOH. Pinal 

solution 0.1 M sucrose; 10% formaldehyde.

(b) Sucrose-Joy (Spreading solution 1)

0.5423 g HNAse-free sucrose in 20 ml 0.1 - 0.2% Joy, adjusted to pH

8.7 with stock borate buffer.
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(c) Sucrose-Joy * yeast tRNA (spreading solution 2)

0.5423 g RNAse-free sucrose in 20 ml 0.1% Joy containing 100 pg/ml 

yeast tRNA (Sigma), and adjusted to pH 8.7 with stock borate buffer. This 

modification gave the best results. About half the preparations were made

with Joy containing RNA.

(y) Miller-spreads of hormone-treated cells

Cells grown in culture vessels were trypsinized routinely and the 

chromatin spread as described in detail in Chapter I. Whole cells were 

lysed and dispersed in 0.1% » 0.2% Joy in a clean Eppendorf tube. Dispersal 

was for 60 - 75 min.

The cells grown in Petri dishes were spread by a modification of the 

method of Puvion-Dutilleul et al. (1978) described in Chapter I. Cells in 

Petri dishes were washed with pH 9.0 water, which was decanted and replaced 

by 0.1% Joy. The cells were then scraped off with a rubber policeman, and 

5 pi of this suspension added to 95 pi droplets of Joy (0.1%) on clean 

Parafilm. The cells were allowed to spread for 15 min - 1 hour. Test and, 

control preparations were made at the same time and 4 grids of each were 

prepared per experiment.

Centrifugation and staining of the chromatin were as described in 

Chapter I of this study. As with all the preparations that I made, dispersed 

chromatin was layered on to sucrose-formalin fixative in the centrifugation 

champber, using a pulled Pasteur pipette. This procedure did not affect 

the morphology of oocyte ribosomal genes, so I assumed that the RNP of

other chromatin would also be unaffected.
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(vi) Determination of cell and nuclear dimensions

For X, laevis and T.c. carnifex measurements were made on cells grown 

at the cell densities described in Chapter I. All other details were as 

described in Chapter I. For each experiment four small vessels were set up, 

two for nuclear cross-sectional area (test and control) and two for cell 

size determinations (test and control).

Hormone treatment. X..laevis and T.c. carnifex

The effect of cortisol on nuclear and cell size was investigated 

for both cell lines, but that of thyroxine was not studied (see Results, 

this chapter). Cells in log phase were treated with cortisol as described 

above.

The criteria for selection of cells or nuclei, and their measurement, 

were as described in Chapter I (this study).
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RESULTS

(i) The effect of cortisol treatment on transcription patterns in

X, laevis cultured cells.

Preparations of chromatin from cortisol-treated, cells were made from 

cells grown at two different cell densities. These were the normal
g

subculture density (5 x 10 cells per large vessel) and a lower inoculation
g

density of about 1.95 x 10 cells per large vessel. The latter cell con­

centration was that used for the determination of H-uridine incorporation

rate, and resulted in a higher rate of transcription than the former concen

tration, as measured by this criterion. For quantitative analysis, prepara

tions made exclusively from cells grown at this lower density were used,

although the results of hormone treatment were similar for both types of

preparation.

The appearance of _ the chromatin varied between preparations, depending 

on the spreading time (15 min - 1 hr), but it always had a beaded structure 

(Pigs IV-1 and IV-2 b-c). These beads, by their size (l4 nm + 5 nm in a 

rotary shadowed preparation) and ubiquitous distribution on the chromatin, 

are presumed to be nucleosomes, and considered as such in my analysis.

In preparations made under optimal conditions (l5 min spreading in 0.1$

Joy) they appeared to be more closely spaced than in other preparations 

(Fig. IV-1). '

The use of cultured cells for making spread preparations allows one 

to control precisely the amount of material on the grid. This was not so 

easy for somatic tissues, where large clumps or even superimposed layers 

of chromatin were noted. In preparations of culture cell chromatin, the 

nuclear material appeared either as small clumps, usually less than the

size of a nucleus, with long fibres radiating from them in all directions
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or as large masses of parallel strands (Fig. IV-1), The contrast and 

degree of spreading of these preparations was good.

All the chromatin appeared as headed fibres, although bead density

varied. Fibres similar to the thin, low contrast, smooth DNP observed in 

plethodontid spermatocyte chromatin (Morgan, 1978) and in my own prepara­

tions of amphibian somatic cell chromatin (Chapters I, II, and III, this 

study) were rare. This may be due to the more favourable preparative condi­

tions used for the spreads discussed here. Supernucleosomes appeared to

be absent, as did structures resembling the cables of X. laevis culture 

cells grown in the absence of hormone.

Cortisol treatment had a marked effect on nonribosomal transcription 

in these cells. On scanning a grid, it was seen that transcription figures 

were more frequent than in untreated cells. Of 10 preparations, 8 yielded 

analysable data, a frequency greater than for unstimulated cells (see 

Chapter I, this study).

The criteria that I used for the selection and measurement of RNP

molecules or transcription complexes are those that are outlined in

Chapter I. As with the other tissues that I studied, transcription primarily

took the form of isolated RNP fibrils. These formed a skewed distribution

around a median of 0.74 pm, and with a range of 7-5 pm (Figs IV-2a-c and

IV-3a) (Table I/)\ The distribution was smooth and size classes were not 
" PS-q-

apparent. A smaller sample (Table l£> was available of the terminal RNP 

fibrils of arrays of two or more fibrils (Figs IV-3b anc IV-4 a-b). These 

formed a similar distribution around a median of 0.65 pm, and had a size

range of 7.1 pm.
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Multifibril arrays were rare even in the chromatin of stimulated, cells, 

although more common than in the control preparations. Six clear arrays 

were observed. (Figs IV-5 a-b) and. of these, the point of initiation of 

transcription could, be determined, for three. Values for total transcription 

unit length of 2.77 pm, 3«45 pm and. 15*8 pm were obtained., which would, 

suggest an increase in transcription unit length after hormone treatment. 

However, in the case of the 13.8 pm array (Fig. IV-6) the complex consisted, 

of only two RHP fibrils separated, by a length of chromatin greater than 

1 pm, and. thus was considered, as two separate transcription events. The 

attached RHP fibrils were 3.2 pm and 4.2 Pm in length. If this putative 

long array is omitted, the array lengths obtained do not differ greatly 

from those for unstimulated cells (3.5 pm and 2.8 pm. See Chapter I, this 

study). However, I was only able to analyse a few arrays, and more must 

be done before any firm conclusions can be drawn. Dur to the low number 

of arrays, I was unable to determine the RNA polymerase density per pm 

of DNP (Puvion-Dutilleul et al.. 1978). Nonribosomal arrays did not fall 

into classes (McKnight & Miller, 1976).

In hormone treated X. laevis culture cell chromatin isolated RHP 

fibrils comprised 71.8% of the total transcription, whereas groups of two
fst

fibrils made up 18.3%, and arrays of three or more fibrils 9*8% (Table lip . 

The total percentage of multifibril arrays of all types was therefore 28.1%.

In nearly all the preparations that I made, the RNP showed higher 

contrast than the DNP, and had the diffusely beaded structure noted before. 

It was linear in configuration, about 170 11111 wide, and showed little 

secondary structure (Fig. IV-6), unlike spermatocyte RNA (Glatzer, 1975; 

Amabis & Hair, 1976, Morgan, 1978) or lampbrush chromosome RNA (Scheer 

et al.. 1976; Hill in press 1979). In a few cases the contrast of the

RHP was similar to that of the DNP. This RHP (Fig. IV-2b) had a very
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extended structure, with, heads similar to nucleosomes. It is possible that

such ’‘transcripts” are broken replication forks, which latter, unbroken,were 

frequent in these preparations. However, if this were so, it is hard to

see why they should all be broken at one end i.e.

—>

or why tandem arrays of forks (Fig. 1-4) never showed breaks. Further, 

pseudomultifibril arrays derived from forks broken in other ways should 

perhaps have been commoner i.e.

V~7

In one preparation, putative "bushy” RHP was observed. This RHP was 

of high contrast, associated with DHP, and showed extensive secondary 

structure (Fig. IV-7a). In many cases, lengths of DHP bearing such "RHP”, 

in excess of tens of microns in length occurred. Only in a few cases 

was the "RHP"sufficiently extended to allow its identification as such.

These arrays never showed a clear fibril length gradient and the density
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of fibrils was low. If they are in fact transcription complexes their 

configuration, which was reminiscent of lampbrush chromosome transcription 

units, argues a more extensive activation of transcription by cortisol 

than had. hitherto been seen. Large detached, clumps of "RNP" also occurred.. 

In a second, preparation tandemly arranged (Fig. IV-7b-c) long, ’’bushy"

RNP fibrils were seen, having less secondary structure than the fibrils

discussed above. They resembled spermatocyte transcripts in appearance 

(Glatzer 1975; Amabis & ^air, 1976; Morgan, 1978).

Although transcriptional activity was more evident in these prepara­

tions than in others that I made, it was still not so frequent as to

allow a determination of the percentage of the chromatin that was transcrip

tionally active.

In cells grown at a low inoculation density, ribosomal genes were 

identified by their tandem repetition, and where evident, RNP fibril 

gradients, as well as by their length (matrix units 2.7 pm, spacer units

2.0 pm (Table X/, Fig. IV, 8a-b), which is somewhat greater than the values 

determined by Scheer for X. laevis oocyte ribosomal genes (2.22 pm and 

1.24 pm respectively, Scheer et al.. 1977). In most cases, however, few 

or no lateral fibrils were present, perhaps due to endogenous nuclease 

activity, and arrays of RNA polymerase molecules alone identified the 

transcriptionally active regions ofrribosomal repeats. Matrix length was 

measured from the first to the last polymerase. The polymerases were

identified as such by their high contrast and large size, which was con­

sistently greater than that of nucleosomes (Fig. IV-8a-b) at 17.4 nm x 

23.7+3 nm (rotary shadowed preparation). Ribosomal genes were the only

transcription complexes where clear polymerases were evident.
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Table X/shows that ribosomal matrix units are more similar to each 

other in length than spacer waits. The difference between my values and. 

those of Scheer et al. (l977) is probably due to the small number of units 

available to me for analysis, their poor preservation, and possibly some 

degree of stretching of the DNP axis.

In one case (Fig. IV-9a) a short length (0.4 dm) of polymerases was 

seen. This may represent a sparsely transcribing gene, or transcription 

within a spacer unit. Transcription of spacers was not otherwise observed.

In a few cases it was possible to look at the nucleosome distribution 

of transcribing ribosomal genes, Nucleosomes were identifiable in a metal 

shadowed preparation by their size, 15.4 nm + 5 nm and by their contrast, 

which was consistently less than that of RNA polymerase moleuules.

Nucleosomes were visible in spacer regions (Fig. IV-8b) but absent, or nearly 

so, in matrix units, even when polymerase density was low.

Ribosomal genes were also seen in preparations of cells grown at high

density before hormone treatment. As before, they occurred in blocks of

tandem repeats. Their preservation was better than those found in later 

preparations, and Laird Analysis could be done, giving a mean matrix unit
O’ ss)length of 1.45 dm (N = 5. see Table Xl£and Fig. IV-9b). Spacer regions 

were not clearly spread. The RNP was short, up to 0.25 dm in length, and 

suggesting a high degree of foreshortening. The mean matrix unit length 

is less than for cells grown at lower densities, perhaps because the arrays 

in the high density cell preparations often showed an irregular (Fig. IV-9b) 

distribution of fibrils, suggestive of low transcriptional activity (Scheer, 

1978). This made accurate determination of initiation point difficult.
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(a) Packing ratios

(1) DMA -packing ratio

The DMA: packing ratio (DMA, P.R) of transcriptionally inactive regions 

of chromatin was determined, for two preparations, and found to "be 1.98 

and 1.77 (mean 1.87) (Table III^.

In both preparations of hormone treated cells for which I was able to 

calculate the DMA packing ratios of transcriptionally quiescent regions,

I was also able to determine the DMA packing ratio of transcription com­

plexes. In all these preparations, arrays had a beaded structure (Pig.

IV-5 a-b), and I assumed that beads lacking attached RMP were nucleosomes.

Where P.R. (inactive) was 1.98, the DNA P.R. (transcription-complexes) 
f loS

was 1.74 (Table IV/). Where DMA P.R. (inactive) was 1.77> the DMA P.R. 

(transcription-complexes) was 1.63*

However, in any array, an RMP molecule could conceal a nucleosome.

If the number of transcripts per complex is added on to the total bead

number for each complex, and the final figure used to calculate DMA

packing ratio, the DMA P.R, (t complexes) rises to 2.23 from 1.74 - 1.92, 
FloS

and to 2.5 from 1.63 (Table IV£. These values are higher than the packing 

ratio for transcriptionally inactive regions of the same preparation.

If, however, nucleosomes are transient structures, as suggested by Scheer 

(1978) and Hill (1979 in press) this calculation is meaningless, as the 

nucleosomes are postulated to dissociate prior to the passage of an RMA

polymerase molecule, and reassociate in its wake. Experiments involving 

Sarkosyl would be useful in distinguishing between nucleosomes and poly­

merases in transcription complexes.
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I was able to measure the number of nucleosomes at intervals increas- 
f |0£>

ingly distant from an isolated RNP fibril, for one preparation (Table V/).

The values show a slight increase for intervals up to 2.0 pm on either side 

of the lateral fibril, but the data as a whole are inconclusive. The method 

of analysis I used is subject to various limitations (for discussion see 

Chapters II and III, this study) which reduce the significance of these 

data.

(?) DNA/RNA packing ratios

The DNA/RNA packing ratio of the terminal RNP fibril for two arrays 

for which the DNA packing ratio of transcriptionally active regions was

known, and of which the position of the initiation point of transcription 

could be determined, was calculated (Table VI^. I obtained values of 3.9 

and 20.5. Por the long array of 13.8 pm (considered in the analysis as 

two isolated single fibrils) a value of 5.7 was obtained.

(b) Coincident transcription and replication

In two cases (Figs IV-4a and IV-10a) transcription figures were seen 

of such a conformation as to suggest coincident DNA and RNA synthesis.

In both cases, a lateral fibril occurred near a putative replication fork. 

The lateral fibrils were identified as RNP by their structure and contrast.

The DNP was thinner and of lower contrast than the RNP which in one instance 

(Pig. IV-10a) was far enough away (0.9 pm) from the fork to eliminate the 

possibility of it being a piece of DNP that was running parallel to another 

strand of DNP for some of its length. In the second case (Fig. IV-4a) 

the transcript was nearer the fork, but the presence of a second transcript, 

of the same morphology as the first and on a nonreplicating region of the

DNP, supported the interpretation of the transcription figure as constituting
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simultaneous RITA and DNA synthesis. Pigs IV-lOb-c show structures that may 

he putative transcription complexes in the region of replication forks. 

Figures IV-lOa and IV-4a are less equivocal than ones’previously seen and 

support observations (McKhight & Miller, 1977; McKnight et al., 1977) made 

on Drosophila melanogaster.

Unlike the case of D. melanogaster embryos I never observed long 

transcriptional complexes associated with replication forks. This may be 

due to the relatively low transcriptional activity of my material.

(c) Putative mitochondrial DNA circles

(l) Replicative forms

As in the case of X. laevis cultured cells untreated with cortisol, 

in preparations from treated cells I observed circular molecules which I 

interpreted as mitochondrial genomes. Preparations were made from whole 

cells, and consequently mitochondria would be lysed together with nuclei.

About half the structures I found had what appeared to be a replica- 
Q&i)

tion fork (Fig. IV-11a). Table Vll^shows that the rings themselves measured 

about 4.64 pm (N = 2) in contour length, which is of the same order as 

mitochondrial genomes from other systems (Dawid & Wolstenholme, 1968a;

. Wolstenholme &.Dawid, 1968; Polan et al.. 1973; Borst & Grivell, 1978;

Pinon et al.. 1978) including X. laevis cultured cells untreated with

cortisol. The ’’fork1’ regions were of higher contrast than the rest of

the circle, the latter being similar in contrast to the nuclear chromatin

and therefore not likely to be single stranded. It is by no means clear 
Q ti)

why the fork regions should be of higher contrast. Table Vll^also shows 

that fork length, and thus the percentage of the total contour length made 

up by the fork, were similar for all the circles (5*69% + 0.99% N - 4).
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Ths is an unexpected result, for the lengths of a random sample of

replication forks should form a normal distribution. The observations 

presented in Chapter I suggest that the replication of mitochondrial DNA 

in Novikoff rat ascites hepatoma cells (Wolstenholme et al.. 1973a;

Koike & Wolstenholme., 1974) may be discontinuous, and this might account 

for my results. However, there is no direct evidence for discontinuity of 

replication of the mitochondrial DNA of D. melanogaster (Goddard & 

Wolstenholme, 1978), Tetrahvmena pvriformis (Goldbach et al.. 1979),

Crithidia acanthocephali (Manning & Wolstenholme, 1978) ok mouse L-cells 

(Berk & Clayton, 1976).

Table VII/ shows the pooled results from both stimulated and unstimulated - r-

cells. The results were essentially similar for both types of preparation 

(see Chapter I for further discussion).

(2) Transcribing circles

The majority of the circles that I found appeared to have attached 

RNP transcripts (Pig. IV-11b). These lateral fibrils were identified as 

such by their structure and contrast, which resembled the transcripts of

nuclear chromatin. The measurable rings (Table VIII£N = 2) were about 

4.4 pm in contour length. Thus both replicative forms and transcribing 

circles are likely, to be of mitochondrial origin. The contrast of the RNP 

resembled that of the fork regions of the replicative forms whereas the 

rest of the DNP circle of both types of ring was of similar contrast i.e.
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In one case (Mg. IV-11b) three putative transcripts were found, attached, 

to one circle. I was unable to determine their spacing, however, and. so 

could, not make a Laird. Analysis, unlike the case of one circle from a control 

preparation (Pig. I-12a-c). This latter demonstrated, that a transcription 

unit comprising, up to 73$ of the total mitochondrial circle might exist.

RNP of a length greater than 1.01 pm was seen attached to circles from 

stimulated cells. This is less than the maximum length of such fibrils 

in control preparations. Thus cortisol cannot be proven to stimulate 

transcription in these circles. However, more circles should be analysed 

before firm conclusions can be drawn. I was able only to analyse 11 circles 
in toto (Tables VII & VIII^

Interlocked oligomers of mitochondrial circles and circles of a size 

order suggesting concatenation were not observed. Such structures have

been observed among both mouse and rat mitochondrial circles, in human

granulocytic leukaemic leukocytes, hamster kidney cells and L-cells

(Wolstenholme et al.. 1973b; Berk & Clayton, 1976). However, my data are 

not sufficient to exclude the possitility of their occurrence.

(d) Free circles

In one preparation of chromatin from hormone treated cells, free rings 

were observed (Pig. IV-12a-c). These were unlike the putative mitochondrial 

circles described above, and also apparently absent from control preparations, 

although this is hard to prove on morphological evidence alone. Most of 

the circles had an irregularly beaded morphology, the beads being somewhat 

larger than supernucleosomes (24 nm + 4 nm diameter). Mitochondrial 

circles from the same preparation were unbeaded.



Pig. IV-13 shows the length distribution of a random sample of these 

circles. The median value was 1.26 pm, and the range at least 14.8 pm.

There is a suggestion of size classes at 0.5 pm and 1.6 pm, hut the distri­

bution is otherwise approximately normal. The smallest circle observed 

was; less than 0.2 pm in contour length, and the longest over 14.0 pm.

The distribution is unlike that of the putative mitochondrial circles.

It is not clear why these circles are of an angular rather than curved 

shape. It may be because certain points became attached to the carbon film

first, with the rest of the circle sliding over the support film when the

grid was dipped in photoflo after centrifugation.

The circles were only found in one preparation, made from whole 

cells, so that their source could be either nuclear or cytoplasmic. I 

never observed any in preparations from unstimulated cells, so they may 

result from cortisol treatment. However, morphological investigations 

alone are insufficient to rule out their occurrence, albeit at a very low 

level, in unstimulated cells. All the rings were transcriptionally inactive 

and none had replication forks.

The nature of these circles remains obscure. A possibility 

exists that they are amplified ribosomal DNA circles, but this is not 

borne out by observations. In Dytiscus oocytes (Scheer & Zentgraf, 1978) 

transcriptionally inactive ribosomal circles, containing varying numbers of 

rDNA repeats occur, and they have a superbeaded structure. The smallest 

of these is about 0.7 pm long, containing an rDNA monomer of 8.6 pm extended 

DNA length. The smallest circle that I found was less than 0.2 pm in length. 

Thus, although size classes may exist among these circles, it is unlikely 

that they are amplified ribosomal genes. In the preparations where the 

rings were found ribosomal RNA synthesis did occur, but such transcription

175.
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units were apparently on linear DNA. Thus it is unlikely that the rings 

consist of ribosomal DNA. It is conceivable that if the cells were exposed

to cortisol for more than 5 hours, RNA synthesis might occur on the rings,

but this possibility was not checked.

The difference in morphology and size distribution between these circles

and those identified as mitochondrial genomes makes it unlikely that the

circles are mitochondrial in origin. The lack of clear subclasses excludes

the possibility that they are mitochondrial concatemers. Absence of clear

size classes may also be attributable to the differences in bead size and 

degree of stretching that I observed between different circles. The real 

size of the circles will therefore be greater than the values given here,

but still different from those for either ribosomal DNA circles or mito­

chondrial genomes.

Similar rings have been observed in eggs and in cultured cells of 

Drosophila melanogaster (Stanfield & Helinski, 1976). In cultured cells 

the circles range in contour length from 0,09 to 7.3 pm, with a mean of 

1.1 pm, and the means and length distributions differ for each source.

Both logarithmic and stationary phase cells contained approximately 3 - 40 

circular molecules per cell, and exposure to various drugs was seen to 

cause changes in the number of small circles per cell. Such rings occur 

in Xenopus. trypanosomes, yeast, and other systems, including a variety of 

tissue-culture lines (Stanfield & Helinski, 1976). In the majority of 

these cases the rings are heterogeneous in size, with buoyant densities 

either like that of the nuclear and/or mitochondrial DNA, or unlike any 

other DNA component in the cell. Furthermore, the intracellular location 

of these circles varied with the organism and both cytoplasmic and mito­

chondrial locations have been reported. Pulse-chase experiments indicate 

that in some cases at least, the circles arise from pre-existing nuclear DNA.
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The size distribution I obtained resembles that for the Drosophila 

ring?.• In the latter case, biochemically isolated circles were measured, 

and a beaded structure was not evident. The rings I found may be homologous 

to the Drosophila rings. Statistical analysis of the rings from Drosophila 

cultured cells indicates the presence of at least eleven distinct size 

classes (Stanfield & Helinski, 1976).

A variety of origins have been suggested for these circles, for 

instance that they arise from recombination events between homologous 

regions on the chromosomal DNA, Other possibilities are the induction of 

integrated viral genomes or reassociation of the single-stranded ends of 

linear DNA fragments. A microorganisomal or plasmid origin cannot be 

eliminated. To date, there is insufficient evidence positively to rule 

out any of these alternatives. However, their presence does underline the 

lability of the eukaryote genome.

(/e) Rings attached to the chromatin

Small rings (Fig. IV-14 a-c) were observed to be attached to spread 

chromatin from stimulated as well as unstimulated cells (for extended 

discussion see Chapter I, this study). In untreated cells (Fig. I-14a) 

the circles had a median length of 0.4 |im, and a range of 2,2 |im, whereas 

in hormone-treated cultures they had (Fig. I-l4b) a median length of 0,48 

(im and a range of 4.95 P-m. This difference may be hormone-dependent.

The size distribution of these small attached circles differed from 
CPU)

both that of the putative mitochondrial DNP (Tables VII and Vllly) and the ' 

free circles discussed above (Fig. IV-l2a-c). Thus it is unlikely that

they are precursors of the free circles.
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(ii) The effect of cortisol treatment on cellular and, nuclear

dimensions of X. laevis cultured, cells.

(a) Cell volume

In cells grown at high density, cell volume showed a 9% increase after
•x czcortisol treatment, from 4492 pm'9 to 4919 pm9 (Fig. I-36a-b). The variances 

of these distributions were 8% and 5-3% of the medians respectively.

However, in low density cultures, cortisol treatment resulted in a decrease 

of about 4% in cell volume (Fig. 1-36 c-d). Further, the values themselves 

were greater than in the former cultures, it is not clear why. Figs.

1-36 c-d show, that the value for the control is 7468 pm whereas that for
szthe hormone treated culture is 7184 pm9. The variances were 19% and 18% 

of the median values respectively. As with nuclear area these values are 

similar for both treated and untreated cultures, and confirm the pattern 

formed by the median values.

(b) Nuclear cross-sectional area

The effects of cortisol on nuclear optical cross-sectional area were 

determined for cells grown at two different densities. The higher inocula­

tion density was the one at which cells were grown for Miller spreads.

The lower cell density should allow a more accurate determination of nuclear 

area, as the separation between cells is greater. Consequently, the cells 

are well stretched, allowing nuclei to be more easily measured (See Chapter 

I, this study, for full details of measurement procedure). Size distribu­

tions were skewed rightwards, showing that a minimum size probably exists 

for both cells and nuclei. Although the distributiorewere not normal, 

variances were determined for each sample, in order to assess the spread

of the distributions.
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At high density, the median nuclear cross-sectional area of the control
Qcells (Fig. I-38a) was 205 pm , whereas the value for the cortisol treated 

culture was 216 pm^ (Fig. I-38b) an increase of about 5%. The variances 

were 6% and 5% of the medians respectively, showing that there was little 

difference in the spread of the distributions. On the other hand, at low 

cell density I observed a decrease of 4% in median nuclear cross-sectional 

area after hormone treatment (Fig. 1-58 c-d) i.e. from 299*3 pm to
2286.9 pm. The variances of this distributions were 4.2% and 5.3% of the 

median values, respectively, suggesting that cortisol did not affect the 

spread of values significantly.

The difference in nuclear size after cortisol treatment, if any,„is

slight. It is not clear why the two sets of values should differ so much, 

from 220 pm to 290 pm“, unless the sample size (N = 50) was too small.

Cells grown at lower density should, in theory, give the more accurate 

value. If so, the latter value implies that cortisol treatment may actually

result in a reduction of nuclear area.

However, certain qualifications must be borne in mind. First, the

nuclei were elliptical in cross-section. Any irregularities in shape may 

have obscured real differences resuling from hormone administration. 

Secondly, the low cell density cultures were grown at an inoculation density 
little higher than the minimum, cell density (about 1 s 10^ cells per small 

vessel) required for growth to continue in these cells. Thus, if they 

were synthesising less RNA than the cultures grown at high density, changes 

in nuclear area might be less evident.

Finally, small differences in nuclear area resulting from cortisol 

stimulation of RNA synthesis might not be detectable by the relatively 

insensitive technique that I used. Xenopus nuclei are small and difficult
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to measure with a micrometer scale, and small changes might be missed.

These results are inconclusive. Distortion of the cells by the coverslip 

may be in part responsible for the wide variation in cell volume between

the two experiments. The size, after trypsinisation, of cells grown at 

different densities may vary. The data, although they do not demonstrate

a cortisol-induced change in cell size, do not eliminate the possibility.

It has to be considered that Cavalier-Smith (1978) suggests that changes in 

nuclear size effect changes in cell size. Thus the former might be more 

marked than the latter which is dependent on it, being a stage further

removed from the process of transcription, the original modulation mechanism.

(iii) The effect of cortisol administration on transcription patterns in

T.c. carnifex cultured cells.

Three preparations (24 grids) were made of T.c. carnifex cells treated 

for 5 hr with 20 pg/ml of cortisol, at 25°C. None of these-showed any 

stimulation of transcription, which was sparse in control preparations 

(See Chapter I, this study). I therefore concluded that either T.c. carnifex 

culture cells were insensitive to the hormone or that stimulation was so

slight as to be negligible. The fact that this cell line originated from 

abdominal skin rather than kidney (Rudak, 1976) may be the reason for its 

insensitivity to cortisol stimulation. It was for the reason that I 

decided to examine the effects of thyroxine treatment on these cells.

When the cells were treated for 5 hr with- 40 pg/ml of cortisol (1 prepara­

tion) again no change in the frequency of transcription was observed. It 

is likely therefore, that the cells are insensitive to this hormone, in 

contrast to the considerable stimulation that occurg in X. laevis.



181.

(iv) The effect of thyroxine treatment on transcription, patterns in

T.c. carnifex cultured, cells

Two preparations of chromatik from thyroxine treated, cultures were 

made. Neither showed, any observable stimulation of transcription. This 

may be partly due to the poor quality of the preparations at this time and. 

so cannot be taken as conclusively showing that T.c. carnifex cells are 

insensitive to thyroxine. Unforunately I was not able to make preparations-

under more favourable conditions.

(v) The effect of cortisol treatment on cellular and nuclear dimensions

in T.c. carnifex cultured cells

(a) Cell volume

3
At high cell density I obtained a median value of 26914 pm for the 

control, and 22741 pm^ for the test, a decrease of 15.5% for the cortisol 

treated culture (Fig. 1-27 a-b). The variance of the distribution of 

cortisol treated cells was less (8% of the median) than for the control 

(14.5% of the median), which reflects the median values. At lower densities 

I observed a 10% increase in cell volume after hormone treatment, from 
19865 pm^ to 21978 pm^ (Fig. 1-57 c-d). The variances of these two distri­

butions were similar, at 11.5% and 11.8% of the median values respectively.

(b) Nuclear cross-sectional area

At high cell density median nuclear cross-sectional area (Figs 1-59 a-b) 
2 2is 1585.6 pm in the control, and 1275.8 pm in the treated cells, a 

decrease of about 8%. Variances were 9% and 4% of the median values res­

pectively, which suggests a slight narrowing of the distribution of treated

cells. In the case of cells inoculated at a lower density nuclear area



182.

2 2was about 1060.3 P-m for the control and 1243*6 pm for the -test, an 

increase of nearly 15% (Fig. 1-39 c-d). The variances were, however, very 

similar, at 6% and 4.3% respectively, and do not reflect the increase in 

the median values. These values are likely to be the more accurate because

cells were better spread and nuclei easier to measure.

Measurement was facilitiated, at least for nuclear area, in cells grown

at low density, and it suggests that there is a substantial increase in 

nuclear area in T.c. carnifex cultured cells in the presence of cortisol. 

However if measurements made at high cell density are inaccurate it is 

hard to understand why cortisol treatment resulted in an apparent reduction

in the size of both cells and nuclei. This may be a chance effect. The

percentage changes are similar for all cultures so that these results might 

be due to chance variation. The qualifications mentioned above also apply 

to the results presented here. At this stage all that can be said is that 

if cortisol stimulation of transcription results in changes in nuclear and 

cell size (which cannot be eliminated by my experiments) the changes are 

too small to be detectable by the techniques I used.
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.DISCUSSION

The data presented, in this chapter demonstrate that exposure of

X, laevis tissue culture cells to cortisol results in the transcription

of RNA nearly twice as long as in unstimulated cells. The range of transcript

lengths increases 5*6 fold between unstimulated and stimulated cells (Table

Ii). Finally, the number of multifibril transcription complexes increases 
psi

by nearly 25$ (Table Ilj) from 5.6$ to 28$, suggesting a real augmentation 

in the amount of transcription as well as in the lengths of the transcripts 

thems.ed.ves. However, though high, the level is never as high as in liver 

cells, where the percentage of multifibril arrays could be as high as 55$.

Hormone treatment resulted in an apparent stimulation of ribosomal RNA 

synthesis; ribosomal genes were more frequently seen in preparations of 

cells grown at both high and low cell densities.

In accord with current concepts about nucleosome distribution are my 

observations on the morphology of X. laevis culture cell ribosomal genes. 

Nucleosomes were present in spacer regions, but not within the matrix units 

themselves. Most of the matrix units that I found were sparsely transcribing 

so that if nucleosomes were present they would have been easily seen. That

a few nucleosomes were present in spacer regions conforms with the observa­

tion that sub-maximally active ribosomal cistrons have more nucleosomes 

than maximmaly active ones (Reeves, 1976; Scheer, 1978). I did not find 

densely fibril-covered ribosomal transcription units like those in oocyte 

preparations, in which both matrix and spacer regions have a ’’smooth" 

non-nucleospmal structure '(Franke & Scheer, 1978; Scheer, 1978).

Analysis of nucleosome distribution in transcriptionally inactive 

regions of chromatin suggests that the DNP of a relatively transcriptionally
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active cell type, has a more extended structure than that of a relatively 

inactive cell type. The DNA P.R. of transcriptionally inactive regions of 

nh-rnTnatln from hormone-treated cells was lower than that of similar regions of

chromatin from untreated cells, when identical dispersal conditions were 

employed. This is in accord with the experimental evidence discussed more 

fully in Chapter II of this investigation. I also found that the chromatin 

of transcriptionally active regions has a more extended, though not "smooth" 

structure, than the rest of the DNP, The differences I found are more pro­

nounced than those reported for Strongylocentrotus purpuratus embryo

chromatin (Busby & Bakken, 1979).
(fSl)

Table shows the values for DNA/RNA P.R. that I obtained, for non­

ribosomal transcription complexes from different sources. Although the 

total sample is small (N = 10), there is an indication that DNA/RNA P.R. 

falls into classes of 1.2 - 1.4, 3 - 12, and 30-25. If real, this result 

is at variance with the observations of Poe et al. (1976) in Qncopeltus 

fasciatus. who showed that DNA/RNA P.R. forms a normal distribution.

Cortisol stimulation of X. laevis cells had no detectable effect upon 

the size of nuclei or cells, ^he small size of X. laevis culture cell 

nuclei and cells may have prevented the detection of such an effect by the 

method of analysis that I used or the increase in the amount of RNA synthesis 

may have been insufficient to cause detectable changes in nuclear or cell

size. This was also the case for T.c. carnifex, which appeared to be insensi­

tive to both cortisol and thyroxine. Thus I was unable to confirm Cavalier- 

Smith’s suggestion that increase in the amount of transcription results in

an increase in cell size.

Puvion-Dutilleul and her colleagues (1978) did not report the occurrence 

of rings of DNA, which I observed in cortisol-treated cultures of X. laevis.

My results do not prove that unstimulated cells lack these rings but rather

that hormone stimulation results in an increase in their number, as is
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known to be the case with drugs such as cycloheximide and puromycin

(Stanfield & Helinski, 1976).

The differences in the transcription patterns that I observed are 

greater than those noted by Puvion-Dutilleul et al. (1978) for cortisol 

treated rat primary culture cells. Furthermore, in the case of the rat

culture cells no determination of the percentages of different types of

transcription complex was made. However, a slight increase in polymerase 

density between untreated and treated cells, together with the differences

in sample ‘size for each type of preparation, imply that here also cortisol 

treatment resulted in an increase in the amount of transcription.

Transcriptional control of gene expression is known to be the case 

for the chicken ovalbumin gene (Swaneck et al.. 1979). It would be illuminat 

ing, therefore, to determine the percentages of different types of array in 

cells known to be expressing genes for certain differentiated products, and

compare them with the values for cells not synthesising those products.

If transcriptional control is the case, increase in the amount of a gene 

product will be accompanied by increase in the percentage of arrays as 

compared with isolated fibrils.

Changes in the percentage of arrays could also be used to distinguish 

between trasncriptinnal and translational control in cells already express- 

ing.a gene, i.e.- in the case of a fine tuning rather than an on/off switch 

mechanism. This is an easy though perhaps indirect way of distinguishing 

between transcriptional and translational control mechanisms. In the absence 

fo criteria for distinguishing specific genes from each other morphologi­

cally, in Miller spreads, (McKnight et al. 1976), and of modifications of 

the technique allowing in situ hybridization of DNA or RNA sequences to 

transcription complexes, such an investigation would be useful. A system



186

to wh-inh it could be applied is the chicken oviduct, where on hormone stimu­

lation coordinate synthesis of ovalbumin and related proteins occurs.

Recently, two genes, X and Y, of unknown function, and contiguous with the 

ovalbumin gene, have been discovered (Carey, 1979)- All are controlled by 

steroid hormones. Genes X and Y do not code for any of the abundant 

oviduct proteins, and expression of the ovalbumin gene is “dominant” over 

expression of X and Y, in hormone treated oviduct. It is not yet clear 

whether regulation of the amount of ovalbumin as opposed to the products 

of X and Y is exerted at the transcriptional or the translational level.

The suggestion that changes in the percentage of transcription com­

plexes could be used to demonstrate transcriptional control is valid as 

long as the sample of transcription complexes selected is random. Further­

more, it is probable that only large differences in the percentages of 

different types of array would be detectable. Any conclusion drawn, at 

least for such systems as cultured cells, would have to be from an average 

of several experiments, in order to compensate for the fact that chromatin

from cells at all stages of the cell cycle would be present on the grids.

The transcriptional activity of such cells may vary.

A considerable body of biochemical investigations have been performed, 

with which my findings are in general agreement, and these data imply that 

hormones in general effect changes in the pattern of gene expression. The 

fact that a substantial change occurs in the length of primary transcripts

in cortisol-treated cells, as well as in the amount of transcription bears 

this out (Puvion-Dutilleul et al.. 1978. This study). Hormone treatment 

stimulates mRNA synthesis in the mouse (Toole et al.. 1979) and nuclear 

RNA synthesis in chick oviduct (Swaneck et al.. 1979) and rat (Degroot et al..
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1977; Aziz & Knowler, 1978; Thomas et al. 1978). Ecdysterone treatment 

prompts changes in- gene expression in Calliphora vicina (Mascheck et al.,

1977) and. hormones specifically induce the expression of the vitellogenin 

gene in the rooster (Burns et al., 1978). General increases in the amount 

of RNA synthesis in response to hormones have been reported for the rat 

uterus (Jain, 1977)» prostate (Loor et al.. 1977; Parker & Mainwaring, 1977) 

and liver (Konstantinova et al.. 1978). The role of hormones in effecting 

changes in gene expression is consolidated hy the reported decrease in

total RNA synthesis in Drosophila cell lines caused hy ecdysterone and 

2-deoxy-a-ecdysone (Gvosdev et al.. 1975). Senior and Frankel (1-978) have 

suggested that steroid hormones exert their effect hy regulating the abun­

dance of certain RNA sequences (Parker & Mainwaring,. 1977) and similar 

effects have been noted in other systems (Lewin, 1974).

In the case of steroid hormones, it is generally accepted that upon 

entering the cell the hormone hinds to cytoplasmic receptor proteins.

These hormone-receptor complexes may act as gene regulators (Lewin, 1974; 

Senior & Frankel, 1978). In a few cases hormone-mediated changed in tran­

scription pattern have been specifically linked to changes in the DNa 

sequences transcribed. In Calliphora vicina ecdysterone induces the tran­

scription of new unique sequences (Mascheck et al.. 1977) whereas in rat 

liver nuclei, cortisone induces both in vivo and in vitro, a preferential 

activation of RNA synthesis on repetitive DNA sequences (Konstatinova et al.,

1978) . It is not clear in this case, however, which class of repetitive 

sequence is involved.

Considerable evidence exists (discussion see Chapter III of this 

study) to show that different tissues express both similar and diverse 

subsets of genes. However, in no case where this has been observed have
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specific genes been identified.. This consideration is of importance in

di graigfl-img the possible role of either the primary transcript cos' hnRNA.

It has been suggested (Davidson et al.. 1977) that hnRNA (here con­

sidered to be homologous to the primary transcript) is a coordinate regula­

tory transcript. That is, some signal causes the transcription of an j
I

integrator gene set whose product is an hnRNA molecule whose interspersed

repetitive sequence elements consitutue the signals whereby structural gene
- i

transcription is switched on. Activator RNA regions of the hnRNA molecule
j

(the repetitive sequences), are postulated to bind to receptor sequences

adjacent to structural genes, causing transcription to occur. Coordinate
■i

transcription of integrator gene sequences is only necessary, however, if
I

structural genes have only one adjacent receptor sequence. Thus the inclusion
i

of any structural gene in more than one gene battery requires that integrator
J

genes be repetitive. This appears to be the case, inasmuch as a smaller
I

number of distinct repetitive sequence families is contiguous with the

structural genes expressed at any stage (Davidson et al.. 1977). Thus
i

expression of a large gene battery necessitates the synthesis of a long

hnRNA, which will probably be processed, so that individual activator RNAs j
J

can bind to their appropriate receptor sequences. Primary transcripts are 

thought to be processed during their synthesis (Scheer et al.. 1979), which 

seems to bear this out. '

In both the rat and X. laevis. cortisol treatment results in the syn- ;
i

thesis of longer primary transcripts. Whether this is a general effect of
I

hormones is still uncertain although the proportion of high molecular weight I
hnRNA seems to increase in the rat after oestradiol treatment (Aziz &

Khowler, 1978). Although it is not known, it is reasonable to assume that cortisol
!

stimulates transcription of the same subsets of genes in both these cell
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types. If hnRNA is indeed, a regulatory molecule of the type envisaged, by 

Britten & Davidson (Davidson et al.. 1977) then this suggests that cortisol 

treatment results in the activation of a large number of genes. Unfor­

tunately, I was only able to measure RNP fibril length rather than tran­

scription unit length so that in many cases transcripts from the same gene 

but at different stages of synthesis would have been included in my sample. 

However, in the case of rat hepatocyte primary culture cells (Puvion- 

Dutilleul et al.. 1978) mean transcription unit length showed an increase 

in the presence of hormone so that it may be true to say that more different

genes were being expressed after hormone treatment i.e. a larger battery.

So far, the results are in accord with the Britten and Davidson model.

Although I attempted to measure both nuclear and cell size in my 

cultures I did not obtain any conclusive results. Although T.c. camifex

cell cultures are a more favourable material for determinations of nuclear

size, they were apparently insensitive to both cortisol and thyroxine. It 

is worth pursuing this line of research with more favourable systems, how­

ever, as it constitutes an eaxy way of distinguishing between the two main 

models for eukaryote gene regulation (Davidson et al.. 1977; Cavalier-Smith, 

1978).

An interesting observation is that after cortisol treatment, X. laevis 

cells are transcribing RNA of a length previously only observed in cells of 

T.c. carnifex. Thus it appears that the postulated C-value dependent dif­

ferences in primary transcript length are not absolute, but that in certain 

situations, overlap can occur. This is in accord with Cavalier-^Smith’s 

suggestions (for a discussion see Chapter I of this study) and implies that 

transcription unit lengths overlap between species of widely differing

C-value. This is demonstrated by the observations of Glatzer (1975) that
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•in Drosophila spermatocytes, primary transcripts of a length approaching 

those previously only observed, on amphibian 'lampbrush chromosomes, are 

found. These spermatocyte transcripts are larger than the hnRNA of 

Drosophila culture cells (Lengyel & Penman, 1975), which is about 4500 bp 

long, equivalent to a primary transcript of 1.5 pm in a Miller spread.

Although it is conceivable that the small culture cell RNA is a processing 

product, it is unlikely that these two populations of RNA molecules are of 

similar length. At this stage it is impossible to distinguish between the

Britten and Davidson and the Cavalier-Smith model for gene regulation, 

because although the different sizes of the Drosophila RNAs could be reflected 

in differences in nuclear and cell size between spermatocytes and culture 

cells, it could equally well be argued that Drosophila culture cells syn­

thesise small hnRNA because fewer genes, or relatively small gene batteries 

are being expressed, as would be the case in culture cells, where only 

"housekeeping genes" are being used.

The results presented here are incomplete and other experiments that

could be done are the sizing of hnRNA from control and hormone-treated cells,

on sucrose gradients, to see if the size difference between the primary

transcripts is carried over into the hnRNA. 'Finally it would be illuminating 
5to investigate the rate of incorporation of H-uridine before and after 

cortisol treatment. Sequence analysis of the hnR^A could also be done.

The Miller technique can be applied to a wide variety of systems, and 

be used to investigate a number of different problems. For instance, large 

cells such as brain cells should be synthesising a great deal of RNA 

(Cavalier-Smith, 1978). Thus it would be fruitful to characterize tran­

scription in these cells, as also in nurse cells. Cavalier-Smith suggests 

that the.function of lampbrush chromosomes is to increase oocyte size, and 

this type of chromosome is absent in systems where the oocyte is associated
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with nurse cells. It might be expected, therefore, that the nurse cell has

taken over the function of the lampbrush chromosomes, and. transcription in

these cells might be extensive.

Another interesting system is the oocyte of the tailed frog 

Ascaphus truei. This species, the most primitive of living Anurans, has a 

C-value of about 3.8 pg, somewhat higher than that of X. laevis. At the

start of meiotic prophase each oocyte contains eight germinal vesicles, each

with its full complement of lampbrush chromosomes. In Rana the total volume

of all the nuclei in a polynucleate oocyte is the same as for the nucleus

of a uninucleate oocyte, and this is also the case for A. truei, all 6f 

whose germinal vesicles contain active lampbrush chromosomes (Macgregor & 

Kezer, 1970). If Cavalier-Smith’s suggestions are correct then either the 

polymerase density on A. truei lampbrush chromosomes should be one eighth 

that on the lampbrush chromosomes of uninucleate oocytes.such as those of 

X. laevis. or the overall length of loops transcribed per chromosome set 

should be one eighth as long in A. truei as in X. laevis.

The Miller technique could also be used to further investigate the 

transcription of mitochondrial genomes. Unlike the isolation techniques 

used in most of the studies done to date (Wolstenholme et al.. 1975b), the 

Miller technique is gentle and less likely to cause disruption of such 

structures as transcription complexes.

There is also a need for some modification of the Miller technique that 

would allow electron microscope scanning at low magnifications for tran­

scription figures. The applicability of the technique would be greatly 

extended if some sort of in situ hybridization of nucleic acids to transcrip 

tion complexes were possible, ‘finally, the technique could also be used to 

investigate the question of gene dosage in S-phase.
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Evidence both biochemical and morphological exists for the simultaneity 

of transcription and DNA replication during S-phase (Mittermayer et al..

1964; Klevecz & Stubblefield, 1967; de la Torre et al.. 1975; McKnight &

Miller, 1977; McKnight et al.. 1977). Differences in DNase resistance 

during the cell cycle imply a cycle of chromatin condensation. Highly 

condensed chromatin binds less actinomycin D than does more extended 

chromatin. The binding capacity of chromatin for actinomycin D decreases 

progressively throughout S-phase, although it is high during G and early 

S-phase (Pederson & Robbins, 1972). This argues for a less condensed struc­

ture of the chromatin during early S-phase, which would facilitate transcription

Nhen the rate of RNA synthesis during various stages of the cell cycle 

is investigated, it is seen to be constant in G-j, rises in S and continues 

in G£ at a greater level than in G (Pfeiffer, 1968; Pfeiffer & Tolmach,

1968; Lewin, 1974). That this is a general effect and not due to changes 

in polymerase activity is demostrated by the fact that all classes of RNA 

are affected equally.

The increase in the rate of RNA synthesis during S-phase is, however, 

too great to be accounted for entirely by gene dosage effects due to DNA 

replication, which may imply that in early S-phase at least, transcriptionally

active regions of the chromatin might be preferentially replicated. The 

rate of DNA synthesis in S-phase is greatest later in S, which lends 

credence to this view (Dendy & Cleaver, 1964).

The results of McKnight et al. (1977) suggest that at least for ribo­

somal genes a replication fork cannot progress into a transcriptionally 

active ribosomal cistron. The synchronization of a population of HeLa 

cells, the system in which the RNA synthesis rate results were obtained,

might allow one to determine whether during early S-phase, active regions
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of the genome were preferentially replicated.. The technique might also be

used, to investigate the timing of replication of genes, although as far as 

the ribosomal genes are concerned., replication occurs throughout S-phase 

(Balazs et al.. 1973)*
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SUMMARY

CHAPTER I.

The ultrastructure of transcription in cultured, cells of T.c. carnifex 

was compared, with that of cultured, cells from X. laevis, using the ’’Miller 

spreading technique”. Primary RNA transcripts of nonribosomal origin, up 

to 10 pm in length, and arranged in long transcription complexes were observed

in T.c. carnifex, whereas the maximum length of primary transcripts in

X. laevis was about 2 pm. In both cell lines transcription was sparse and

predominantly visualised as isolated RNP fibrils. Ribosomal transcription 

complexes were observed in X, laevis but not in T.c. carnifex.

T.c. carnifex chromatin had a nucleosomal structure under favourable

spreading conditions. The DNA packing ratio of transcriptionally inactive 

regions was 1.88. X. laevis chromatin also had a nucleosomal conformation

and a DNA packing ratio of 2.1.

A large proportion of the T.c. carnifex culture cell chromatin consisted

of linearly arranged beads approximately 29 nm in diameter, and considered 

to be homologous to the ’’supernucleosomes” described by other authors. In 

X. laevis. ’’cables” about 29 nm wide, consisting of segments 16 nm wide, 

were seen. These cables may represent a higher order packing structure.

In X. laevis chromatin unbeaded rings of DNA, identified by their size

as mitochondrial genomes, were found. Some of these had putative replication 

forks whose uniform length suggested "discontinuous” replication. A number 

of the circles were associated with lateral fibrils whose appearance and 

contrast suggested that they might be RNP. These are considered to be 

mitochondrial genomes in the process of transcription. Smaller beaded rings 

of variable size and unknown significance, and attached to the DNP of

X. laevis, were also found.
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5T.c. carnifex cells in culture incorporated. H-uridine into total 

cellular RNA at a rate nearly four times as great as X. laevis when computed, 

per cell per 1% cell cycle time. The rate per cell per hour was similar 

for both cultures. The labelled total cellular RNA of T.c. carnifex cells

in culture showed a broader size distribution on sucrose gradients than did

that of X. laevis.

The banding patterns on agarose gels of chromatin prepared by the Miller

technique after bleomycin treatment and of chromatin extracted by a proce­

dure that preserves nucleosome structure, were compared. Chromatin spread 

in the presence of Joy undergoes a dissociation of its nucleosome structure.

CHAPTER II.

Patterns of transcription in liver cells of X, laevis. T.c. carnifex 

and N. maculosus were compared, using the "Miller” technique. Chromatin 

had a nucleosomal structure and transcription complexes occurred on beaded 

chromatin. N. maculosus, with the largest C-value (52 pg) synthesised the 

longest primary transcripts. Transcription complexes of two or more RNP

fibrils were rare in the chromatin of these species. The percentages of 

different types of transcription complex (l RNP fibril, 2 RNP fibrils,

3 or more RNP fibrils) were similar for the three species.

The DNA packing ratios of transcriptionally inactive regions of chromatin 

were compared to those of transcriptionally active regions. For X. laevis 

and N, maculosus. where this parameter was measured, the DNA packing ratio 

was lower for transcriptionally active regions than for the inactive regions.

The DNA/RNA packing ratios, i.e. the degree of foreshortening of primary 

transcripts, of four transcription complexes analysed^ were 1.23 - 1.5 and

17 - 25.
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Ribosomal transcription was not observed, in any of these cell types.

DNA -rings were also apparently absent. Finally, supernucleosomes were rare 

or absent in chromatin prepared, from the liver cells of all three species.

GRAFTER III.

The ultrastructure of ^transcription in T.c. carnifex neurula cells 

was investigated., using the Miller technique. Transcription occurred, pre­

dominantly in the form of isolated RNP fibrils whose median length was 

greater than for T.c. carnifex liver cells or cultured cells, in that order. 

The percentage of transcription complexes of two or more RNP fibrils was 

greater in T.c, carnifex liver (33.8%) than in T.c. carnifex embryos 

(17-3%) Ribosomal transcription was not observed in any of these chromatins.

The DNA packing ratio of transcriptionally inactive regions of the 

chromatin was less in T.c. carnifex embryo chromatin ( 1.35) than in

liver chromatin (1.63)■ The embryo cells were the more transcriptionally 

active of the two cell types.

Transcription patterns in different tissues of X. laevis were compared.

In both cultured cells and liver, transcription occurred predominantly as 

isolated RNP fibrils. Their median length was greater in liver than in 

tissue-culture cells. The percentage of multifibril transcription complexes 

was greater in liver (13«8%) than in cultured cells (5.6%). Ribosomal 

arrays occurred in culture cell chromatin but were absent in the chromatin

of liver cells.

Higher order packing structures (supernucleosomes) were present in 

liver chromatin (transcriptionally inactive) from regions near the edges of 

liver lobes. Chromatin from cells deeper within the tissue (transcriptionally 

active) lacked supernucleosomes.
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CHAPTER XV.

The Miller technique was used to investigate the ultrastructure of

transcription in X. laevis and T.c. carnifex'- culture cells treated with 

cortisol or thyroxine. After cortisol treatment of X. laevis the median 

lengths of isolated nonrihosomal RNA fibrils, and the terminal fibrils of 

multifibril complexes, increased twofold, as did the percentage of multi­

fibril transcription complexes (from 5.6% to 28.1%). The DNA packing 

ratio of transcriptionally inactive regions of the chromatin was slightly

less than that of untreated cells spread under the same conditions. There

was also a decrease in the DNA packing ratio of transcriptionally active

regions of the chromatin of treated cells as compared to the value for 

inactive regions. The DNA/RNA packing ratios of three transcription com­

plexes were 4, 5.7, and 20.5.

Supernucleosomes and other higher order packing structures were not

observed in preparations of chromatin from hormone-treated cells. Cortisol 

treatment resulted in a stimulation of:,ribosomal transcription. Ribosomal 

transcription complexes were sparsely covered with lateral fibrils. The 

matrix units lacked nucleosomes, which were present only in spacer regions.

Rings of three types were seen in preparations of hormone treated cells. 

One class was identified on the basis of contour length as being of mito­

chondrial origin.' Dhbe aded rings with both replication forks or attached 

RNP fibrils were found, as in untreated cells. Free circles of various 

sizes, and with a beaded structure resembling supernucleosomes were seen. 

Finally, small rings attached to the DNP occurred. These were of various 

sizes, and the range in their controur length was greater than that of 

similar rings occurring in control preparations. The distribution was notj.

however, the same as that of the free circles of either class.
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T.c. carnifex cells failed, to respond, to either cortisol or thyroxine.

I did. not treat X, laevis cells with thyroxine.

Nuclear and cellular dimensions were determined for X. laevis. culture

cells before and after cortisol treatment, in cultures grown at two different

concentrations. The results were inconclusive but were not sufficient to

eliminate the possibility that an increase in the amount of transcription

causes an increase in the size of the nucleus. The results were similarly

inconclusive for T.c. carnifex cultured cells treated with cortisol.
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APPENDIX I.

Calibration of electron microscope magnifications

During the course of my research it transpired, that the electron 

microscope '(Philips EM 301) had not been calibrated. After calibration of 

the magnifications it was seen that a substantial difference existed between

the real and the apparent values. To correct measurements taken from

negatives made before calibration and to determine whether, over this

period of time, the magnification values had drifted, I re-examined old

preparations. These had all been made before calibration, but at intervals 

of several months. RNP molecules that had been photographed at an apparent 

magnification of x 19000 were re-photographed as the same apparent magni­

fication (real magnification x 15500). The two negatives of each molecule 

were compared. I found that the difference, if any, was slight (l - 5$) 

and not great enough to affect the conclusions I had made from my data.

It is unlikely, furthermore, that the real magnification had changed much 

over the course of time that the electron microscope had remained uncalibrated
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APPENDIX II.

Growth rates of tissue-culture lines. Xenopus laevis and. Triturus cristatus

carnifex.

Several times during the course of my research it became necessary to 

determine whether my culture lines were in logarithmic growth. This allowed 

me to determine when rates of transcription were likely to be maximal.

Growth rate was checked during the course of the uridine incorporation 

experiment but at other times cells of a known concentration were inoculated 

into flask^ and the cell number determined at intervals of 12 hr or 24 hr. 

Subsequent experiments were either conducted at these concentrations, or 

concentrations less than or very close to those known to result in the 
attainment of log phase after about 2 days growth at 25°C.

MATERIALS AND METHODS

Using the routine subculturing methods described more fully in 

Chapter I of this study, confluent cultures of cells were trypsinized and 

the cells counted in a haemocytomer. Cells were inoculated at the required 

density into small (25 cm growth area) sterile plastic culture vessels 

(falcon) each containing a total volume of 5 ml medium. Two vessels were 

set up for each point of the growth curve. The cells were incubated for 
24 hr at 25°C to ensure attachment to the substrate.

X. laevis cells were sampled at 12 hr intervals whereas the more slowly 

growing T.c. carnifex line (Rudak, 1976) was sampled at intervals of 24 hr. 

At each sampling time, cells were removed from the incubator and trypsinized

routinely, using siliconized pipettes. The cell suspensions were placed in 

siliconized glass centrifuge tubes and centrifuged far 5 - 1° min at 900

rpm in a bench centrifuge (MSE). The supernatant was decanted and a known
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volume of AWS or Versene added to the cells. Using a siliconized Pasteur 

pipette, the cells were gently resuspended, prior to counting in a haemo - 

cytometer (Paul, 1975). Pour independent determinations were made for each 

sample, so that each point on the growth curve was the mean of eight values.

Growth curves were used to determine the onset and duration of various

phases of growth, and to determine Tau, the mean generation time of the

culture.

(ii) Cell concentrations at which growth curves were made

(a) Growth rates were determined for cells grown at the normal subculture 

density (Fig.1a.rb).This was done for one of the T.c. carnifex cultures that 

I used, interchangeably, in experiments. Both lines exhibited similar 

kinetics of growth.

Inoculation densities

X. laevis

T.c. carnifex

1.6 x 1C>6 cells

1.7 - 3.0 x 105

per small culture vessel.

cells per small culture vessel.

(b) Cells of each T.c. carnifex line were inoculated at twice the usual 

subculture density. This was necessary for RNA extraction experiments where 

the yield of highly labelled RNA from cells grown at the normal density 

was insufficient. At higher densities it was thought that the T.c. camifex 

line, which showed contact inhibition, would have moved into stationary 

phase after a few days. However the growth rates (Fig. 1ab) show that this 

is not the case, and that log phase lasts for at least four days after 

attachment. Experiments were conducted with cells of 2 - 3 days in age.
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Inoculation densities

T.c. carnifex '’black”

” ”red”

55.4 x 10 cells per small vessel.

56.0 z 10 cells per small vessel.

This was not lone for X. laevis. as even at this concentration the

cells were at a lower density than that normally employed for routine

subculture. This is because X. laevis cells are 4-7 times smaller than

those of T.c. carnifex.

(c) During the course of the uridine incorporation experiment it was 

necessary to know the cell number at the various sampling times. The

inoculation densities that I used were different from those above and this
g

allowed me to determine that cells grown at about 1.95 x 10 cells per
♦2parge (75 cm growth area) culture vessel had attained logarithmic growth 

after two days in culture. This inoculation density was used for Miller

spreads of cultured cells.
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APPENDIX III.

Visualisation of nucleolar transcription in Xenopus laevis and.

Triturus cristatus carnifex oocytes

INTRODUCTION

During the early stages of my research I decided, that it would he useful 

to have some test of the effectiveness of the Miller spreading technique in 

my hands. Oocyte ribosomal genes are a useful system because they have 

been extensively characterized and are of a known morphology. Their 

presence in oocytes at high frequency together with their tandem repetition 

and high transcriptive activity allow easy isolation and visualisation.

Changes in their morphology from the standard one described in much of the 

literature (Trendelenburg et al.. 1973) would be attributable to the isola­

tion method that I used.

MATERIALS AND METHODS

(i) Solutions

(a) Nuclear isolation medium ("3:1")

A- solution containing 3 parts 0.1 M KC1 to 1 part 0.1 M NaCl was diluted 

from stock solutions and stored at +4°C.

(b) Dispersal medium "pH 9 water"

Freshly boiled water was adjusted to pH 9.0 with stock borate buffer 

(BDH. pH 9.2) using a plastic 1.0 ml tissue-culture pipette.
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(ii) Procedure for spreading T.c. carnifex and X. laevis oocyte ribosomal

genes

A female T.c. carnifex (Gerrard & Haig) was anaesthetised in a 1% 

solution of MS222 (Sandoz) and a piece of ovary removed. The ovary was 

stored at +4°C in a dry, sealed, embryo glass. To spread chromatin, a few 

oocytes were placed in an embryo glass containing on the stage of a

dissecting microscope. Oocytes of from between 0.98 - 1.00 mm in diameter 

were broken open using two pairs of sharpened Ho. 4 watchmakers’ forceps. 

This caused the yolk to be released together with the oocyte nucleus (Callan 

& Lloyd, I960), which was cleaned of yolk by repeated sucking in and out of 

a finely pulled Pasteur pipette (diam. 0.5mm). As quickly as possible, the 

cleaned nucleus was transferred to a droplet of pH 9 water in a sterile 

plastic Petri dish, and washed to remove saline. This step was repeated 

as chromatin disperses best under conditions of low ionic strength. The 

nucleus was then transfrred to a third droplet of pH 9 water. Using shar­

pened Ho. 5 watchmakers’ forceps, and a fine tungsten wire (Callan & Lloyd, 

I960)- the nucleus was broken open and the nuclear membrane removed. The 

nuclear contents were allowed to disperse undisturbed, at room temperature,

for from 45 - 80 min.

The procedure for X. laevis oocytes was exactly the same, save that 

oocytes of from 1.1 - 1.2 mm were used. Further processing of preparations 

was as for other cell types.

(iii) Measurements

For measurement a random sample of transcription units and spacers 

was considered. Only sufficiently stretched repeating units with well 

identified regions were included. Lengths were measured with a calibrated
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Por determination of repeating unit length the length of the spacer to the

right of each matrix unit was added on to the matrix unit length i.e.
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However, there is no way of telling which spacer of the two on either side 

of a matrix unit actually ’’belongs” to it. Ideally, in determinations of 

repeating unit length, both spacers should be included. The results of

spreading several nuclei were pooled for analysis.

RESULTS

(i) T.c. carnifex ribosomal genes

Nucleolar chromatin appeared as clumps of material, at the periphery 

of which well spread D-^P was seen, often containing tanscripttonally active 

ribosomal genes (Fig. 3 )* These had the classical ’’Christmas-tree” 

morphology (Fig. 3) and were tandemly repetitious in arrangement, being 

separated by transcriptionally inactive spacer ngions of variable length 

(Fig. 4). Size distributions of matrix unit (Fig. 5a), spacer (Fig. 5b)



206.

and repeating unit length (Fig. 5c) yielded values of 2.57 P-m, 1.46 pm and 

5.82 pm respectively. Spacer regions exhibited a greater heterogeneity in 

lengththan matrix units. These values are similar to those already determined 

for Triturus cristatus oocyte ribosomal genes (for review see Trendelenburg 

et al.. 1975), 2-.4 pm, 2.2 pm and 4.6 pm respectively. My values are somewhat 

smaller but this may be attributable to differences in the degree of dispersal

of the nucleolar genes.

Ribosomal genes showed clear RNP fibril length gradients, and in a few 

cases, the distal region of the matrix um'.t.q carried RNP with the terminal 

“knobs” indicating packaging of the ribosomal precursor (Fig. 4). However, 

the heavy shadowing of my preparations tended to obscure structural detail.

I observed very little spacer transcription (Figs. 5 and 6 a-c) although 

in two cases (Figs 5 and 6a) a short matrix similar to the”preclude complexes" 

observed by other authors (Scheer et al.. 1977) was^seen. Matrix units of 

opposite polarity were apparently absent.

Nucleolar chromatin was exclusively beaded in appearance (Fig. 5 and 

6 a-c). Beads occurred in spacer units but in my preparations it was not 

possible to say whether they were polymerases or nucleosomes. They were 

29 nm + 9.7 nm in diameter (N = 10) in a shadowed preparation. In most 

cases, the matrix units were so densely covered in lateral fibrils that 

it was not possible' to determine whether beads lacking attached transcripts 

occurred in these regions. In a few cases (Fig. 7 )the presence of a well 

stretched matrix unit allowed me to determine that such beads were- rare or

absent.

This is in accord with the observations of Scheer (1978) who has suggested 

that highly active nucleolar chromatin lacks nucleosomes, which do, however, 

occur in the spacer regions of submaximally active ribosomal genes.
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I assumed that the heads on spacer units were nucleosomes, and obtained 

a value for the DNA packing ratio of these regions of 1.35 (Table III^).

This low value is in accord with the idea that the chromatin of transcrip­

tionally active regions of the genome is in a relatively extended conformation.

I was also able to calculate the DNA/RNA packing ratio of matrix units 
rsi

(Table using the above value for DNA packing ratio. I obtained a mean 

value of 13.3, which is high and implies a considerable foreshortening of 

the primary transcripts. This may be an artefact of speading conditions. 

Furthermore, if it;is true that the matrix units themselves lack nucleosomes,

unlike the spacers with their beaded structure, then this value is an over­

estimate. In this case, the DNA packing ratio of the matrix units would be 

in the region of 1.0, rather than 1.35.

These results conform closely to previous observations (Trendelenburg 

et al... 1973: Scheer, 1978), and suggest that in my hands the Miller spreading 

technique yields preparations that give a valid idea of transcriptional

events in the chromatin.

(ii) X. laevis ribosomal genes

Oocytes of a diameter of 1.1 mm were used to make spread preparations 

of laevis nucleolar genes. Unfortunately, I had no success with these 

preparations. Lampbrush chromosomes were in a poor state of preservation.

A certain proportion of the chromatin took the form of circular clumps, that 

on occasion had beaded and transcriptionally inactive fibrils radiating from 

their peripheries (Fig. 8). These may be transcriptionally (quiescent nucleoli. 

Scheer et al. (1977) were successful in obtaining spread'preparations of 

X. laevis ribosomal genes from oocytes of 0.5 mm diameter, spread for 10 - 20

min in a variety of solutions. They observed that the nucleoli are tightly
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adherent to the nuclear membrane, which is included in the spreading solution 

together with the nuclear contents. I did not include the nuclear membrane 

in -the spreading solution, which may be the reason for my lack of success. 

Even with long spreading times (30 - 105 min) chromatin clumps remained 

relatively condensed. This may have been due to the nature of the sucrose-

formalin fixative, which was made up with stock formalin rather than freshly 

made formalin from paraformaldehyde which I used later in this study. Thus 

the sucrose-formalin would have been too acid and this might have affected 

the quality of my preparations.
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Transcription in Amphibia, in relation to

the C-value Paradox. An electron microscopic

study.
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by
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I - 1 A diagrammatic representation of a cross-section 

through a microcentrifugation chamber.

(a) microcentrifugation well 4 mm in diameter

and 6 mm deep.

(b) diameter of chamber 2 1
5 cm.

I
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1-2 A diagrammatic representation of the centrifuge

tube and Araldite plug used during centrifugation

of Miller spreads.

(a) centrifuge tube.

(b) Araldite plug.

(c) microcentrifugation chamber.





I - 5a Partially spread. Nonidet-P40 extracted X. laevis

cultured cell nucleus. Large arrow denotes halo

of chromatin fibres around the central undispersed

mass of1 DNP. Small arrow indicates fibres radiating

from the halo and bearing putative RNP.

I - 5b Nucleosomal chromatin showing the regular arrangement 

of beads along the DNP.

I - 3c Well spread chromatin showing both beaded and 

"smooth" DNP lacking nucleosomes.
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1-4 Tandemly arranged replication forks found in a

preparation of chromatin from X. laevis culture 

cells grown at low cell density.
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1-5 Djagrannnat-j <? representation of the determination

of initiation point of a transcription complex by

Laird Analysis.

(a) Tracing of the transcription complex showing 

RNP fibril distribution on the DNP axis.

(b) Plot of RNP fibril length against position of 

each fibril on the DNP axis. A line drawn

through the resulting slope cuts the x-axis

at the presumptive initiation point of the

complex.





I - 6a Histogram showing the length distribution of isolated

RHP fibrils from X. laevis cultured cell chromatin.

Median value 0.44 pm. Range 2.1 pm.
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I - 7a Arrow indicates an isolated RNP fibril attached to

X. laevis cultured cell chromatin, and showing the 

higher contrast generally characteristic of RNP 

molecules visualised by the Miller spreading

technique.

I - 7b Arrow indicates an isolated RNP fibril of some

2 am in length, the longest that was found attached

to X. laevis cultured cell chromatin. This structure

may consist of two fibrils entangled, and exhibits 

clearly the diffusely beaded structure characteristic 

of primary transcript molecules.

I - 7c Putative transcription complex found on X. laevis

cultured-cell chromatin. RNP fibrils were not

clearly traceable so that Laird Analysis was 

impossible.





I - 8a

I - 8b

Arrow indicates a transcription complex consisting

of three to four RWP fibrils, and found on chromatin 

of laevis cultured cells grown at high cell 

density. Laird Analysis gave a value for transcrip­

tion complex length of 3.5 U-m.

As Fig. X - 8a. This transcription complex was 

approximately 2.8 (im long. Arrow denotes region of

putative DNA replication.





1-9. Clump of moderately transcriptionally active ribosomal

transcription complexes from X. laevis cultured cells 

grown at low cell density. Arrow indicates RNA 

polymerase molecules, which were of higher contrast 

than nucleosomes (small arrow) on this preparation.





I - 10a Arrow denotes putative mitochondrial DNA circle found

in chromatin from X. laevis cultured cells grown at 

low cell density. Small arrow denotes putative

replicating region, of higher contrast than the rest

of the circle.

I - 10b As Pig. I - 10a.

I - 10c As Pig. I - 10a.





in chromatin from X, laevis cultured cells grown at

low cell density. Small arrow denotes putative

attached RHP molecule, of higher contrast than the

rest of the circle.

I - 11a Arrow denotes putative mitochondrial DNA circle found

I - 11b As Pig. I - 11a.

I - 11c As Pig. I - 11a.

I - 11d As Pig. I - 11a.
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I - 12a Putative mitochondrial DNA circle (large arrow)

bearing two attached transcript molecules (small 

arrow), and found in chromatin from X. laevis cultured 

cells grown at low cell density.

I - 12b Tracing of I - 12a.

I - 12c Plot of RNP fibril length against position of 

transcript on the DNP circle, assuming the spacing 

of the two fibrils to be 0.4 (im. A line drawn through

the resulting slope gives a transcription complex

length of up to 3.2 pm.
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I - 13a Small rings attached to chromatin of X. laevis cultured 

cells grown at low cell density and spread for 15 min 

in 0.1$ Joy. Arrow denotes chromatin axis, stretched 

by centrifugation. Unstretched chromatin lies adjacent 

to the stretched region.

I - 13b As Fig. I - 13a. Arrow denotes circle resembling a

twist in the chromatin.

I - 13c As Fig. I - 13a. Arrow denotes a circle resembling 

the excision intermediates seen on lampbrush

chromosome RNP.

I - 13d As Fig. I - 13a. Arrow denotes a circle resembling 

a primary transcript molecule whose free end has

become associated with the chromatin axis.
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I - 14a Histogram showing the distribution of the contour

lengths of a random sample of the small rings

attached to X. laevis cultured cell chromatin 

(Pigs 1-13 a-d). Median value 0.4 pm.

Range 2.3 pm.

I - 14b Histogram showing the distribution of the contour

lengths of a random sample of the small rings

attached to X. laevis cultured cell chromatin,

after 5 hr treatment with 20 pg/ml cortisol, at 

25°C (see Chapter IV). Median value 0.47 pm. 

Range 4.95 pm.



£ in n
b

10—



I - 15a Arrow denotes putative primary transcript attached.

to a replicating region of the DNP. Due to the 

prnx-imi ty of the ’’fork" to the **RKP" this structure 

may represent two strands of DNP crossing each other,

one of which has broken off and become more condensed

in structure.

I - 15b As Fig. I - 15a. The distance of the putative primary 

transcript from the region of ongoing DNA replication 

(arrow) suggests that this structure really represents 

coincident transcription and replication.
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Pig. 1-16 Part of a partially spread, nucleus of an X. laevis

cultured, cell grown at high, cell density, and 

showing the ’’cable” structure of the chromatin.
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I - 17a High power photographs of the ’’cable” structures

presented in Fig. I - 16. The segmented structure 

of the cables is clearly visible. Arrow denotes a

region of the cable which may consist of a length of

nucleosomal DNP that has unravelled.

I - 17b As Fig. I - 17a.





I - 18a

I - 18b

As Pigs 1-17 a-b. Arrows denote regions of the

"cables" having a double structure. These double 

regions are connected by chromatin having a

segmented structure of similar appearance and 

dimensions to those presented in Pigs 1-17 a-b.

Nucleosomal DNP from the same preparation as the one

in which the "cables" were found.
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1-19 A diagrammatic representation of the "cables" found 

in one preparation of X. laevis cultured cells. The 

cables were approximately 29 nm wide (a) and consisted 

of. segments 16 nm wide (b). The segments may consist 

of coiled nucleosomes, which were about 16 nm in 

diameter in this preparation.





I - 20a

I - 20b

Compact chromatin clump probably consisting of an 

nospread Nonidet-P40 extracted. T.c. camifex cultured.

cell nucleus. The beaded, structure of the chromatin

is most evident at the periphery of the clump.

Arrow denotes superimposed clumps probably consisting

of collagen fibres. These were commonly associated

with the chromatin.

High power photograph of the periphery of a chromatin 

clump similar to Pig. I - 20a. Arrow denotes halo 

consisting of low-contrast, non-nucleosomal DNP

fibres radiating from the main mass of the chromatin.





! - 21a Arrow denotes an isolated primary transcript molecule 

found in a preparation of T.c. carnifex cultured cell

chromatin. The transcript has a beaded structure, as

does the DNP axis to which it is attached.

I - 21b As Pig. I - 21a
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Fig. I - 22a Histogram showing the distribution of contour

lengths of isolated. RNP fibrils from T.c. carnifex

cultured, cell chromatin. Median value 0.53 pm.

Range 1.05 dm.

Fig. I 22b Histogram showing the distribution of contour

lengths of the terminal RHP fibrils of transcription

complexes consisting of two more adjacent transcripts

from T.c. carnifex cultured cell chromatin. Median

value 0.4 pm. Range 0.2 pm.
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I - 23a Low power photograph of a long transcription, complex

found in T.c. carnifex cultured cell chromatin.

Most of the complex was obscured by chromatin and 

only the portion presented here was clear. The 

longest fibril measured 10.8 pm. Laird Analysis of 

this array was not possible.

I - 23b Tracing of Pig I - 23a.
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1-24 High power photograph of part of the transcription 

complex in Figs X - 23 a-b. The primary transcript 

10.8 hm long (Fig. I - 23b) is seen to be adjacent 

to one only 2.7 pm long, which may indicate processing 

or breakage. The DNP axis of this complex is smooth, 

although its dimensions suggest association of the

DNA with protein. This is in contrast to the attached

RNP, which exhibits a diffusely beaded appearance.





1-25 Part of the array in Fig. 1-24. Groups of relatively 

short lateral fibrils separated, by lengths of DNP 

1 anking attached, transcripts, are evident.





1-26 A second, long transcription complex found, in chromatin

of T.c. carnifex cultured, cells. The ends of the

lateral fibrils were not traceable so that their

identity as RNP is not proven. However, fibrils 

(large arrow) of a size order seen in Pigs 1-23 a-b, 

are present. Transcripts were arranged in blocks.

The small arrow indicates a putative replicating

region of this transcription complex. The DNP of this 

complex had a smooth appearance, though the dimensions 

of the axis suggested association of the DHA with

protein.





1-27 Part of the transcription complex shown in Pig. 1-26 

showing the arrangement of the lateral fibrils in

blocks. The ends of these RNP molecules were not

traceable.
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1-28 Part of a chromatin clump consisting of a partially

spread T.c. camifex cultured cell nucleus, and

consisting of beads 29 nm in diameter and probably 

analogous to the ’’superbeads” described in other 

systems. The arrow denotes a well displayed length

of beads. A few low-contrast unbeaded RHP fibrils

are also ivisble at the periphery of the clump



28



I - 29a A length, of "stretched" superbeads from T.c. carnifex 

cultured cells, showing the diffuse appearance of

these structures when stretched. No resolvable sub­

structure was apparent.

I - 29b As Fig. I - 29a. Both beaded and smooth chromatin

are present but there is no evidence of a clear

transition from one conformation to the other.

I - 29c Arrow denotes a structure resembling a partially

unwound spiral of nucleosomes. The size of the beads 

(13 - 19 nm) suggests that they may be nucleosomes 

but there is no evidence of their association to

form clumps perhaps analogous to the superbeads in 

Figs 1-28 and 1-29 a-b.





I - 50a Growth rates of T.c, camifex cultured, cells. The

upper slope represents the rate of increase in cell 

number of the unlabelled, (control) culture. Tau 

is approximately 94.2 hr.

I - 50b Growth rates of X. laevis cultured, cells. The

upper slope represents the rate of increase in 

cell number of the unlabelled, (control) culture. 

Tau is approximately 50.6 hr.



I

tim
e 

hrs

cells per culture vessel



1-31 Graph, representing the rate of incorporation of 
3tt

H-uridine per cell with time of cultured cells of

T.c, carnifex and X. laevis. The rates of incorpora 

tion are similar for both cultures. The graph

represents incorporation into total cellular ENA.



time hrs



1-52 Graph representing the rate of incorporation of 
^H-uriiine per cell per cell cycle time of 

cultured, cells of T.c. carnifex and X. laevis.

T.c, camifex incorporates label nearly four times

faster than X. laevis. The graph represents incor 

poration into total cellular RNA.
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I - 33 Figure demonstrating the distribution of H-uridine-

labelled whole-cell ENA from T.c, camifex and

X, laevis cultured cells on a sucrose gradient.

A greater proportion of labelled ENA is of higher 

molecular weight in T.c. camifex than in X. laevis. 

The arrows denote the approximate position of the

28S and 18S pre-ribosomal RNAs, which were used as

molecular weight markers. Their position was

determined by making a trace of ultraviolet

3

absorbance.
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1-24 The handing pattern on an agarose gel of spermidine 

extracted DNA from X. laevis (x) and T.c. carnifex 

(t) cultured cells, after treatment with bleomycin. 

The banding pattern is typical of the different sized 

aggregates of nucleosomes resulting from bleomycin

treatment of chromatin. In the absence of antibiotic 

(channel XC or TC) all the fluorescence is at the 

high molecular weight end of the gel, showing that

little or no autodigestion of the chromatin occurs.





1-35 The banding pattern on an agarose gel of Miller spread

chromatin extracted from X. laevis (x) and T.c, carnifex 

(t) cultured cells, after treatment with bleomycin. 

Miller spreading disrupts nucleosome structure such 

that bleomycin can now break the DMA into small 

fragments that run off the gel. Thus no fluorescence

is visible on the test channels. The untreated control 

(XC and TC) showed fluorescence at the high molecular

weight end of the gel.





X - 26a

I - 26b

I - 26c

I - 26d

Histogram to show the distribution of cell volumes in 

X, laevis cultured cells grown at high inoculation

density, in the absence of cortisol. Median value 
4491.7^. Variance 8%

As Fig. I - 26a. Cells grown in the presence of 
20 [ig/ml cortisol. Median value 4919.2n\ Variance 

5.3%.

Histogram to show the distribution of cell volumes, 

in X. laevis cultured cells grown at low inoculation

density, in the absence of cortisol. Median value 
7467.6|P. Variance 19%.

As Fig. I - 26c. Cells grown in the presence of 
20 p.g/ml cortisol. Mean value 7184.4|i\

Variance 18%.
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I - 37a

I * 37b

I - 37c

I - 37d

Histogram to show the distribution of cell volumes 

in T.c. camif ex cultured cells grown at high inocula

tion density in the absence of cortisol.

Median value 26914^. Variance 14$.

As Fig. 1 - 37a. Cells grown in the presence of 
20 p.3g/ml cortisol. Median value 22741^. 

Variance 8$.

Histogram to show the distribution of cell volumes 

in T.c. camif ex cultured cells grown at low

inoculation density in the absence of cortisol. 
Median value 19862.7^. Variance 11$.

As Fig. I - 57c. Cells grown in the presence of 
20 p-g/ml cortisol. Median value 21978h^. Variance 

11.8$.
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I - 38a

I - 38b

I - 38c

I - 38d

Histogram to show the distribution of nuclear cross­

sectional areas in X. laevis cultured cells grown at 

high inoculation density, in the absence of cortisol
2Median value 205.1- Variance 6%.

As Fig. I - 38a. Cells grown in the presence of 
220 pg/ml cortisol. Median value 215-9P- . 

Variance 4.7%.

Histogram to show the distribution of nuclear

cross-sectional areas in X. laevis cultured cells

grown at low inoculation density, in the absence of 

cortisol. Median value 299.3H. Variance 4.2%.

As Fig. I - 38c. Cells grown in the presence of 
o20 pg/ml cortisol. Median value 286.9^. 

Variance 5-3%.
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I - 39a

I - 39b

I - 39c

I - 39d

Histogram to show the distribution of nuclear cross­

sectional areas in T.c. camifes cultured cells

grown at high inoculation density, in the absence 
2of cortisol. Median value 1385-64 . Variance 9%.

As Fig. I - 39a. Cells grown in the presence of 

20 pg/ml cortisol. Median value 1273.84 . 

Variance 4%.

Histogram, to show the distribution of nuclear

cross-sectional areas in T.c, carnifex cultured cells

grown at low inoculation density, in the absence of 
2cortisol. Median value 1060.34 . Variance 5.9%.

As Fig. I - 39c. Cells grown in the presence of 
20 mg/ml cortisol. Median value 1243.6(±\ 

Variance 4.3%.



10-

5-

t-------r
d

10-

5-

n n
I

£] tl

000 2000 1000
n-------r
2000

nuclear area um‘



II - 1a Superbeads found in a preparation of X. laevis liver

cell chromatin derived from cells at the periphery

of the liver. Arrow denotes fibrils showing a

repeating structure, and probably composed of

collagen.

II - 1b As Pig. II - 1a. Stretched superbeads lacking a

clearly observable substructure.





II - 2 Nucleosomal chromatin found in a preparation of

X. laevis liver cells taken from deeper within the 

liver. The internucleosomal DNP is not clearly

visible due to the close packing of the nucleosomes





II - 3a Histogram showing the distribution of contour 

lengths of isolated RHP fibrils attached to

X. laevis liver cell chromatin. Median value

0.66 pm. Range 6.3 pm.

II - 3b Histogram showing the distribution of contour lengths

of terminal RNP fibrils of transcription complexes 

comprising two or more RNP fibrils, from X. laevis 

liver cell chromatin. Median value 0.4 pm. Range 

3.6 pm.
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II - 4a Arrow denotes an isolated RNP fibril attached to

DNP from X. laevis liver. Putative detached primary 

transcripts are also present. The beaded structure 

and higher contrast of the RNP are apparent.

II - 4b As Pig. II - 4a.

II - 4c Group of two RNP fibrils from the same source

as Pigs II - 4 a-b. Arrow denotes a grid bar.





II - 5a Transcription complex from X. laevis liver chromatin, 

consisting of four RNP molecules. Both the RNP and 

the BNP axis of this complex have a beaded structure. 

Beads along the DNP (arrow) are presumed to be nucleo­

somes. Laird Analysis gave a value for transcription

complex length of 1.5 pm-. RNA polymerase molecules

were not Visible.

II - 5b As Pig. II - 5a. The BNP axis of this complex also

has a beaded structure, but the RNP is more contrasted 

than the BNP, unlike Pig. II - 5a. The degree of 

secondary structure of the RNP is also greater than 

in Pig. II - 5a, and a beaded structure is not 

evident. Laird Analysis gave a value -for transcription 

complex length of 2.6 pm. RNA polymerase molecules 

were not clearly visible.





II - 6a Arrow denotes anomalous putative "RNP'* from X. laevis

liver cell chromatin. The close spacing of the two

ends of the structure on the DNP may imply that it

is a twist in the chromatin.

II - 6b As Pig. II - 6a. The relatively wide spacing of the 

attachment points (arrows) of this structure to the

DNP may imply that it consists of two RNP molecules 

whose ends have in some way become associated.





II - 7 Nucleosomal chromatin (large arrow) from T.c. carnifex

liver cells. Small arrow denotes a clump of RNP 

molecules, which are, however, too tangled to be

traced with certainty
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II - 8a

II - 8b

Arrow denotes a long transcript attached, to

T.c. camifez liver cell chromatin. An RNA polymerase 

molecule is visible at the point of attachment of 

the RNP to the DNP, which is relatively smooth in

structure, without nucleosomes. The transcript has

a beaded, structure.

As Pig. II - 8a. Both DNP and RNP have a beaded 

structure. The RNA polymerase at the attachment 

point of the RNP to the DNP, is not clearly visible.





II - 9a Histogram showing the

of single RNP fibrils

liver cell chromatin.

Range 6.5 pm.

distribution of contour lengths

attached to T.c. carnifex

Median value 0.6 pm.

II . gb Histogram showing the distribution of contour lengths

of the terminal fibrils of transcription complezes

consisting of two or more RNP fibrils, from

T.c. carnifex liver cell chromatin. Median value

O..95 pm. Range 9.6 pm.
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II - 10a

II - 10b

Group of two RNP fibrils from T. c. camif ex liver

cell chromatin. The beaded structure and relatively 

high contrast of the RNP are clear. The difference 

in length between the two RNP molecules is greater 

than their spacing on the DNP, which may imply 

processing.

Transcription complex from the same source as 

Fig. II - 10a.





II - 11 Transcription complex from T.c. carnifex liver cells, 

consisting of three RNP fibrils, and of a configura­

tion perhaps indicative of processing. Arrow denotes

a transcript of 9.8 pm.





II - 12 Transcription complex from the same source as

Pig. II - 11. Only a few fibrils were clear (arrows)

but the length of this array is reminiscent of the

tranacription complexes seen on lampbrush chromosomes





II - 13a Arrow denotes anomalous ”RNP-like” structures from

T.c. carnifex liver cell chromatin. DNP is present

adjacent to the fibrils, and is seen to be of lower

contrast, with less secondary structure. The fibril

presented here disappeared into a clump, part of

which is evident at the left of the picture.

II - 13b As Pig. II - 13a. Many of these fibrils have

structures resembling the lateral fibrils seen on 

transcription complexes (arrow). Laird Analysis 

of these structures did not give a meaningful result, 

and a line could not be drawn through the distribu­

tion of fibril lengths. .
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II - 14a Arrow denotes an isolated. RNP fibril from N. maculosus

liver cell chromatin. It is of extensive secondary 

structure and relatively high contrast. The nucleo- 

somal structure of the DNP is apparent. RNA poly­

merases were not clearly visible.

II - 14b As Pig. II - 14a.

II - 14c As Pig. II - 14a.
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II - 15a Histogram showing the distribution of contour lengths

of isolated RNP fibrils attached to N. maculosus

liver cell chromatin. Median value 1.1 pm.

Range 9.15

II - 15b Histogram showing the distribution of contour lengths

of terminal RNP fibrils of transcription complexes 

consisting of two or more R^P fibrils, from N. maculosus 

liver cells. Median value 1.96 pm. Range 7.08 pm.
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II - 16 Group of two RNP fibrils from N. maculosus liver

cell chromatin. The configuration of these fibrils,

where the difference in their length is greater than 

their spacing on the DNP, may be indicative of 

processing. The longer of the two fibrils (arrow)

was considered as the terminal fibril.





II - 17 As Pig. II - 16.
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II - 18a Group of transcription complexes from N. maculosus

liver cells. The large arrow denotes a putative 

RNA polymerase molecule. Laird Analysis was done, 

but did not give a reliable value for transcription 

complex length. The nucleosomal structure of the 

DNP is clearly visible.

II - 18b Transcription complex from the same source as

II - 18a. The DNP axis of this complex is beaded,

and these beads were assumed to be nucleosomes.
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II - 19a

II - 19b

Transcription complex from N, maculosus liver cell

chromatin.

Tracing of Pig. II - 19a.

II - 19c Laird. Analysis of transcription complex presented

in Pig. II - 19a. A value of 5-8 pm was obtained for 

array length, when RNP fibril length is plotted

against position of the fibril in the array.
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Ill - 1a Arrow denotes an isolated RNP fibril attached to

chromatin from T.c. caraifex neurula cells. The

DNP is partly of nucleosomal structure, but a

certain proportion is smooth and lacks beads.

Ill - 1b As Pig. Ill - 1a.

Ill - 1c As Pig. Ill - 1a.
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Ill - 2a Histogram showing the distribution of contour 

lengths of isolated RNP fibrils attached to the

chromatin of T.c. carnifex neumla cells.

Median value 0.82 |im. Range 2.3 pm.

III - 2b Histogram showing the distribution of contour

lengths of the terminal RNP fibrils of transcrip 

tion complexes consisting of two or more RNP

. fibrils, from T.c. carnifex neurula cells.

Median value 1.3 pm. Range 1.4 pm.





Ill - 5a Arrow denotes a group of two RNP fibrils from

T.c. carnifex neurula chromatin, whose configura

tion may be indicative of processing.

Ill - 5b Arrow denotes a transcription complex from the

same source as Pig. Ill - 5a. Laird Analysis 

was not possible.

Ill - 5c As Pig. Ill - 5b. Laird Analysis gave a value 

for transcription complex length of 2.86 pm.





Ill - 4 Arrow denotes a putative "polysome’’-like structure 

found in preparations of T.c. carnifex neurula

cell chromatin. A fine fibril is visible

connecting the spherical darkly staining bodies, 

and this may be RNP.
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IV - 1 Spread chromatin from a preparation of X. laevis 

cultured cells treated with 20 p-g/ml cortisol. 

DNP often occurred as large masses of parallel 

strands, probably as a result of centrifugation. 

Nucleosomes were closely spaced so that the

interconnecting DNP was seldom visible.





IV - 2a Arrow denotes an isolated RNP fibril attached to

chromatin from cortisol-treated X, laevis cultured

cells. The great length and high contrast of such 

primary transcripts is particularly clear. 

Secondary structure is extensive in this lateral 

fibril, but varied considerably between different

fibrils.

IV - 2b As Pig. IV - 2a. The primary transcript is more 

extended than in Pig. IV - 2a, and the difference 

in contrast between RNP and DNP is not so great. The 

RNP has a clearly beaded structure.

IV - 2c As Pig. IV - 2a.





IV - 3a Histogram showing the distribution of contour 

lengths of isolated RNP molecules attached to

chromatin of X, laevis cultured cells treated

with cortisol. Median value 0.74 pm.

Range 7.5 pm.

IV - 3b Histogram showing the distribution of contour

lengths of terminal fibrils of transcription 

complexes consisting of two or more R^P fibrils, 

from X. laevis cultured cells treated with

cortisol. Median value 0.65 pm. Range 7.1 pm.
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IV - 4a Group of two RNP fibrils attached, to chromatin

of cortisol-treated X. laevis cultured, cells.

RNP is identified, by its high contrast and 

condensed structure. Arrow denotes a putative 

replicating region of the DNP.

IV - 4b As Fig. IV - 4a.
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IV - 5a Arrow denotes a transcription complex found in

chromatin of cortisol-treated X. laevis

cells. Laird Analysis gave a value for 

tion complex length, of 5«45 Mm.

cultured

transcrip

IV 5b As Pig. IV - 5a. Laird Analysis gave a value

for transcription complex length of 2.77 Mm.





IV - 6. Group of two RNP fibrils from the same source as 

Figs IV - 5a - b. As the separation of these 

two fibrils is greater than 1 pm, they were counted, 

as two separate transcription complexes in my 

analysis. However, if they are counted as one 

transcription complex, Laird Analysis gives a value 

for complex length of 15.8 pm. The DNP axis is

clearly of a beaded structure.





IV - 7a ’’Bushy” RNP from X. laevis cultured cells treated

with cortisol (arrows).

IV - 7b As Pig. IV - 7a.

IV - 7c As Pig. IV - 7a.





IV - 8a Ribosomal transcription complex from cortisol-

treated X, laevis cultured cells grown at low 

inoculation density. Arrows denote RNA polymerase 

molecules. RNP was sparse, possibly due to the

action of endogenous nucleases.

IV - 8b As Pig. IV - 8a. Arrow denotes a spacer region

characterized by a nucleosomal structure which

was absent in the matrix units.
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IV - 9a Arrow denotes a short length of RNA polymerases

from chromatin of X. laevis cultured cells grown

at low density before cortisol treatment. Such 

RNA polymerases may be indicative of spacer

transcription, as clear polymerases were only

seen on ribosomal transcription complexes.

IV - 9b Ribosomal transcription complexes from chromatin

of X. laevis cultured cells grown at high inoculation 

density before cortisol treatment. Mean matrix unit 

length was 1.45 Mm. Spacer regions were not clearly

displayed.
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IV - 10a Configuration indicative of simultaneous DNA 

replication and transcription. Arrow denotes 

replication fork. A long RNP fibril is present 

0.9 urn away from the fork region.

p = polysaccharide

IV - 10b As Fig. IV - 10a. This structure is more equivocal

than Fig. IV - 10a, and may r-epresent two DNP 

molecules crossing each other, one of which has

broken off and become more condensed.

IV - 10c As Fig. IV - 10b.
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XV - 11

XV - 11b

Arrow denotes a putative mitchondrial DNA circle

from X. laevis cultured cells treated with, cortisol.

This molecule has a "bubble" region perhaps compris­

ing a replication fork.

Arrow denotes a putative mitochondrial DNA circle 

from the same source as Pig. IV - 11a. bearing

three lateral RKP fibrils. These are identified

as such by their high contrast and condensed 

structure. Laird Analysis was not possible.





IV - 12a Free circles found in preparations from the same 

source as Fig. IV - 11a. The headed structure 

of these rings is clear. The heads were slightly 

larger than supemucleosomes.

IV - 12b As Fig. IV - 12a.

IV - 12c . As Fig. IV - 12a (arrow). Nuclear chromatin,

both nucleosomal and smooth, is also present.
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IV - 12 Histogram showing the distribution of the contour

lengths of the free circles found in preparations

of X« laevis cultured cells treated with cortisol

Median value 1.26 pm. Range 14.8 pm.
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IV - 14a Arrow denotes a ring found on chromatin from

X. laevis cultured cells treated with cortisol and

resembling the excision intermediates of lampbrush 

chromosome RNP. Note the DNP axis stretched by 

centrifugation.

IV - 14b As Pig. IV - 14a. Arrow denotes an RNP fibril

on the same preparation.

IV - 14c A group of small rings attached to chromatin of

X. laevis cultured cells treated with cortisol.





la Graph showing the growth rate of X, laevis cultured 

cells at the cell density used for routine

subculture purposes.

Graph showing the growth rate of T.c. camifex 

cultured cells at the cell density used for

routine subculture purposes.
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2a

2b

Graph showing the growth rate of the T.c. camifex

“red." line at twice the usual subculture density.

Graph showing the growth rate of the T.c. camifex

’’black" line at twice the usual subculture density.
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J Clump of partially spread nucleolar chromatin

from a T.c, carnifex oocyte. Its organization 

into alternating spacer and matrix units is 

clearly visible. Arrow denotes a "prelude 

complex" perhaps indicative of spacer transcription.

f = break in the carbon film.
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4. Repeating unit from T.c, carnifex oocyte nucleolar

chromatin.

s = spacer unit. m = matrix unit.

The headed structure of the spacer unit is clear.

Arrow denotes terminal "knobs” of the lateral

fibrils of the matrix unit, indicative of 

packaging of the 45S preribosomal RNA.
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5a Histogram showing the distribution of contour 

lengths of matrix units from T.c, carnifex 

oocyte nucleolar chromatin. Mean value 2.57 l-ua.

5b Histogram showing the distribution of contour 

lengths of spacer unil© from T.c. carnifex oocyte 

nucleolar chromatin. Mean value. 1.46 ym.

5c Histogram showing the distribution of contour

lengths of repeating units from T.c, carnifex 

oocyte nucleolar chromatin. Mean value 5*82 ym.
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6a

unit, from T.c. camifex oocyte nucleolar chromatin

The arrow points to a region of a putative spacer

and bearing RNP fibrils. A typical matrix unit (m) 

is included for comparison.

6b As Pig. 6a. m = matrix unit.

6c 'As Pig. 6a. m = matrix unit.
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7. A stretched matrix unit (m) from T.c, camifex

oocyte nucleolar chromatin, demonstrating the

probable absence of nucleosomes from the matrix 

um',ta themselves. This is facilitated by .the

sparse coverage by RNP, of the matrix unit.
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8. Clump of putative nucleolar chromatin from an 

oocyte of X. laevis (1.1 mm diameter) showing 

the headed, transcriptionally inactive chromatin. 

These clumps were circular and roughly the size 

of nucleoli. All were transcriptionally inactive
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