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1e1_The equations of mst epaticsl physigs

The mathem tionl formul:tion of many probleass in science and
technology leads edther to & partisl differenticl eguation (pedee.}
or to o set of sueh equations., . partial differentisl equation 4s an
equation involving ‘e rates of cheonge of unknown guantitics {such as
tenperature, pressure ...) with res cot to two or more imdependent
varisbles usually representing tisme, length or angle.

The gxact solution to o pedees in « region R with doundery
R is some function wiich satisfies the equation at eve:y point in R
and motehes certain bouncory geonditiong on 97, For exa ple, the
function representing the steady motion of an incompressible fluid
through a straight uniforw duct satisfivas e partial <i lerential
equation (Laplace's equation) at every point ani! tetus (o value
2(x* ¢ y*) on the boundary. 5

For arbitrarily shsped regions anéd general bdoun .7 conditions
it is not usually possiile to deteruine an exact solution to a given

pertial differentisl equation, In »n sttempt to solve such prob.ems

approximate methods have been developed, Approxiccte methods fall
into two classes:~
(a) spelyticel spororigate e hods where, for exa:le, & truncated

series may be obtaimed for the solution, These methods are
usually valid only in certein areas of the rogion under
consideration. I‘iowever, in these areas, they may sive extresely

useful information regarding the behaviour of the solution,

Jedahit: 3
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eaploying finite di:ference
leohniques; these are more freguently used and universaslly
applicable, "he concept of u« finite difference method will be
developed luter,

Consider mow he two dimensional second order artisl di ferentisl

squation

ot ofp o ol el e,

where a, b, e g are functions of the independent vurlal es X,y and
yerhaps of the dependent varlable u., Speeisl csses of (1.,1.1) occur
frequently, as they are t ¢ mathumatioal forms of ‘1o conservation

principles of physies, Hquation (.1.1.1) is saii to be

(1) elliptie 4if beac < 0,
(11) parsbolic if dPeac = 0 ,
(411) hyperboliec if bP=go > 0 ,
for all x,y,u in the region unier considerstion.

The simplest and best known elliptic equations are lLaplace's

. 8.

and Polsson's equation

If u 4s the eleotric potential and gEw=pfe www § 4is » gharge

equntion

density and « the dieleetric constant, them Folsson's juntion 4s the

partial differe:tial equetion formulation of Geuss': _:w, This states




that the flux through any clesed surfac- is equal to the tetal charge
enclosed by the asu:f ce,

Those problons in which one of the two Aindependent variables x,y
becomes the time verdi ble t are usually of purabolic or hyperbolie
ypee The simylest parebolic equation is the heoat condugtion equation

&

R
which governs the {low of Leet in a bar or red. The boundary conditions
oonsist of either the tewperatu:e given at the two ends of the bdar
(two values of x ), or some messure of diffusion fros the ends, It is
usual for the temperature distribution in the bar to be “noewn at some
instant in time, This ia termed the initial condition.
: Likewise in the cese of the simplest hyperbolie equ.tion, the wave
equation

(14142) f;ﬂ = 9.

the boundary e :nditions are given on two lines x = a,b and the initial
conditions, usually u and its time derivative H s Bre given at some
’illtllt in time, The majordty of h.perbolic equitions arise froa
vibration proble s, or those in which discontinulitics, such as shock
waves, persist in time,

The wave equ:  tion esn be written in » different manner as two first
order equations,. ‘e introduce, as new dependent varisbles, the

quantities »
2
(1e1e3) wy = ;* Se. M. b
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and therefore (1.1.2) becones

(1eteds) %’% - a‘-

From (14143) 4t in ceay to s«e thet u¢ and up are connected by the

first order partiel di ferentieul equation

(1e105) 52 - B,

On introduction of the vector unknown W = ( W the equations (1etek)

l.l./'
and (1s145) can be written as the first order system o rartial

differential equations

Uy . /
(1e146) "%‘ (u./-?,j ) & ‘\::,‘) =0

or

B
where A 4s the 2x2 satyix in (1.1.6)0

This formulation of the wave equation 1s triviel in itself,

but the principle involved forms the basis of the next section,

e
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The classification of systeus of partial diffa:+ iisl equations
is nost easily desoribed whin the equations are forwuluted in matrix
notation,

Consdder the syste  of artial differential equat .ns

(te2et) 32 o Ag ¢Pal

where u 1s an nedisensional vector whose cosponents u, (i=1,2,.een)
are unknown functions of the two independent va: icbles x and t ,
ids an mxn matrix wose entries 8, \'i,H.Z..oon) are functions
of x,t and perhaps u , and | is an nevector whose couponents are

~ functions of x,%,u, Saarsoterigtic of the aystem {(1,241) in the
x,t plane is defined as being e curve along which the velues of u given
on the curve together with equation (1,2,1) are not sufficient to
deteruine the normel derdvative of u to the curve, let s denote the
are length elonz a curve in the x,t plane and let ' be aslsdlarly defined
along the norsal to the surve, Then by the usual cin rules for
pvartial di ferentiation we have

BoRepE.BE-p-oB.Eg

(1e202)

31 P%"anoy' %x gT

Thus, substituting the adove relations into (14241}, gives

(1e203.) (17 x";x)ﬁﬁ s (8T I.A)P. eBal
where I denotes the unit m:n matrix and t'-ﬁ eto,




On a charagterdsilic curve, it follows that the d.'s minant of
the matrix of coefficlients of terms invelving the derdvative normal

to the curve muas! vanish, and so

(Te2es) l%{I "—'"l =0

Therefors the cherscterdstie curves of the system (1,2,1) ere
given by the s:lutions of the ordinary differential equations

(101-'05) g = ‘1

where A, (4 = 1,2, soe n) are th elgenvalues of the matyix A, If

(t = 1.2. e .)

s, i3 a row edgenvecior associated with the sigenvalue 11 then
multiplying (142,3) throu hout on the left by 3, we obtain

(14246) l‘(t.I B x.,;) E +30 =0

Sach derivative in (142.,6) 4s direeted slong the tangent to the

ourve (1.2+5)e If all the cigenvalues A, are real, and if the matrix

i
A has full set of resl, lincarlyeindependent edgeavecioia 34, ses Sn
associated with them, then (14241) cen be tranafor=me ini. the eanonieal

form
31<;:‘.20¥‘A);:03‘B-0 (4 = 1,2, sse B)
s s s

where each egquniion involves dirferentiation in ome charseteristiec

/ot -
direction )} given by
)

'.l:o*/“l;‘ 'y

If the nbove redustion is possible, that 4s i the matrix . has




- T . % ..m,.“

reel eigonvalues an' & full set of n lin:arly indopendent edgenvectors,
then the system (1421 4s termed hycerbolds.

If the matrix © hes n complex eigenvelues thenm the charaoteristics
are imaginery and the aystem is of glliptie type.

In the lines:r cease, where the matrix A is independent of the solution

veetor u, and has n real gistinct eigenvalues, the system (1.,2.1) cen in
fact be reduced to the diagonal form

Féo\tﬁlo b, =0

where the components Ui are linear combinations of the u,; and the d

i i

sre known functions of x, t, U = (Us, eee Un)e

In the following we 2hall only be concerned wit systems which are
of hyperbolic types It has been shown that a ggoesaury ocndition for
the system to be 'yp rbolie 4is that the metrix A has n resl elgenvalues
and & full set of limearly independent eigenvectors. The simplest

Safficlent ondition is that the metrix A is gymmetris, thst is,

th

‘U = &  where s“ is the elenent 4in the 1 row and Jf"li eolumn of

JA
the matrix As Vhen tids oocurs, the system is termed gymmetric
hyperbolic.

et us now consider the extension of these ileas to the general

first order system in ¥ s;ace dimensions,
¥

)

(162e7)  dou, = ) Ainxi B
=i
where the matrices ;\1(1 ® 3y ees M) and the vectors u and " are ‘efined

as befores . uppose for the moment thet B = @ and that all the matrices




are comstant, “Then by the method of separation of vardsbles,

solutions of the o
(‘0208) U= C.i 10:“.0 * ace ¥ lh).u‘

exiat where M, e l"i and A\ are parameters such that
K
(14249) lM - i A I = 0
° it M

and C 48 = constant nunegero vector such that

H
(1e2410) MC= B A
i=1

If My eeey \u are real, then (1,28) can be regarded us o general tern

14"

in a Fourier reprcsen‘ation of th: solution of (1e2e/js If every
root A of (1.249) 43 reel, in addition, then the s-l:‘ion of (142.7)
is oscillatory, nedther growing or decaying expomen | 1ly in time,.
Therefore we are led, in the multidimensional case, to suy that
(1e247) 18 of hparboldc type 4 all the roots A of (142,9) are real,
and have associated with them a complete set of n linveriy inispendent
edgenvectors satisfing (142410), This definition is also a 1lied to
the quasilinear systes (142:7)e

In prastice, as IRIENIICIS (6’ has siown, the majority of systens
of the form (142,7) are in fact of the gymmetric lyperbolic type with
the varisble t _ligelike. This nomenclature implies that all the
matrices /o, M, eeey Ay are symmetric and in addition, ¢ is positive
definite, It follows that a satrix © exists such that

-

Fig¥! = 1
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and therefore the roots of (1.2,9) are the roots of

U
(1e2011) | £ N PA, -« =0

.
¥
For any real choice of A, , (421, see N) the maiwix £ A PA P
$a1

is symmetric an! thus A must be rwal, and the neccssary set of n
linesrly independent charagteristic vectors exists.

In the next section the sctusl wmechanism will be givem for
the reduction of & gencresl second order hyperbolie partial

dfferential equatin to a first order symmetric hy erbolie systen,



/.

Squation to s first opder systes.
In this section 4t will de shown that equations ex;ressible
in the fom
S L n a
(1a301) FF = | Y and lower order terss.
i=1 =
can be reduced to a first order symmetrie hyperbolic aystem of the

form
n

(1e3.2) ﬁ = ) A’.& + BU

Cem—

i=i

where U is » vector whose components are limear coubinations of u,

and the first partial derivatives of u with respeet to the space
vardsbles, Ve shell restrict ourselves to the caze when the

coelficients 8y 4 Bre funetions of x,, (L = 1, oo n) an' t only,

It will follow that A, (1 = 1, eee 0) and B are likewise fumections of

Xy 0 (4 1, eoe n) 2n! & Since the second order operator on the

right of (1,3e1) muat be of elidptic type, it follows that 8'Cs 4s &

positive definite gquaireatie form for any real none-szere vector

i = (". 'R .),. Ihli‘. G‘ “ th. ..w ot .“fmmtl ‘1.,.

The first step in the reduction is to formulate (1.3.1) 4in the

form (14247)e This is sccomplished by introducing the wvector of
unknowns

Ve (u‘.. “en U.'. Ut) e (Us, eoe Unﬁ)

and writing (1e.341) in the form

Al 24

e R M Ae e |

Thy sl B sabe-id . St
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” ] u ]
(1e3e3) k" = ) 5“;_“_4 ¢+ lower order te:us,
el Wiy

By the definition of the ecomponents of the wecior ' we alse have

the equations

n n
A au \

(1e3eh) 'i 81‘: t{’ “.‘1"&1" a0 (Jj= iy sse M)
=t i=1

The oombination of (14%5¢3) and (14344) as & metrix equation then
gives us a aystem of the form

n
(1e3¢5) ‘o H = : ':‘&!1 + By
11

where jg, ;':1, (L = 1, ses n) are symsetrie matrices, The matrix i
is given by

B B8 eeee G000
&2 e« 0
. .o
e . .
. .0
. ..
&n gnn0
0 01

For any veotor = (81, see Sn, 3ne¢)’ the quadretic form 2’4 %
is guaranteed to be positive definite by the ellipticity of the right

hand side of (14341) an’ therefore the matrix Ap is positive derinite,

oo e o e b s

LT O T ¥

o
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It follows that there exieis e matrix F depending o1 x4, eee ¥n,t
such that
Pie?' a 1

We define a limear combination of the components of V by the relation

(1e346) v = P'U,
Introducing (1¢3.6) into (143¢5) and multiplying through on the left
by the matrix P leads to the trenaforumed systea,

a
Ve &(F‘L’) = ZP:‘ f:-l(wv) + FRp'Y
i=1

or

Pig P! go Fle g Us
which 4s of the reguired fomrm:
n
&' Z:A‘.&Qw
i=1

where the matrices i, (4 = 1, see n) are aymmetric,

n n
‘"‘P'J\;P'Ei . 2_‘ PT‘!% U+ B0
i1 =t

It should be noticed that no restrietions ame reqg ired on the
matrix By In what follows we shall sssume that the netrix B is

identically sere, that is, we are interested in solving the equation
|
.

(oed) B = ) AR

™
particularly for the cose M = 2, Ths extension to the case of more
than two space dizensgions will be mentioned in the oconeluding

renarks.

|
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lab_Some oxaap.gs

Before intro ucing the notation and conscepts of mumerdcal
analysis required in the ollowing chapters, we shall briefly
indicate a few symneirie hyperbolie systems related to physical
probless, The restriction to lineer systems wili be im osed execept i»
Chepter V where the none=linear oase will be consi o-e . In detail,

In section 141 4t was shom how the needimensionel wave
oquation can be writlen ss & first order ayste=m, Indoo? MTEDRICHS
has shown how La lace's eguation and the heat conduction equation cen
be similarly deseribed 6., But as we shall be nmainly interested in
the numerical selution of problems in two (or more apace dimensions
we shall restrict curselve: to examples of this type.

The twoedimensi nel wave egquation can be written as s first
order system in a vardety of waysie

@ R -C)BGOB =)

Uy, s being coupled solutions of the wave e uation,

SR MCiDE @

and even

R -(B-GYB -Cdy

;
:
A,;
,i
3
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A threee=dimonsional e ample is furnished by the welleknown

NHaxwell's equations

Bovagao, Wavgao
goveraing the elootriec and magnetic intensity vectors, [ = (5 , Ee, 53)
and B = (By, B, B3), whore Vag is the ourl of the vector 8.

If v = (B¢, Ba, By, 53, Bg, 5) then the above oguations cean de
written in the symmetriec hyperbolic fomm

Foooo?\ [ E ama ™Y (00 o s o |
| | | s
i..""'-.% e 0 0 e 0 i.!oo.“:
oo o oo e o o o o=l e e s 8 .|
go } go Bo‘ ; P'-O

19-10 ooo! g W los oo @ .
; L r |

e o 1 0 0o s e 0 o s i""loooo °|
_i_:oooo_:l :_0.1.OL, 01000 _o_‘

In the above exemples all the matrices A, (in the notation of
(1:.3.7)) are iniependent of x, and t, However Af we gonsider the

polar form of the wave eguation

2 .
ot § = B o1 B B
then it i3 not difioult to show that an equivalent aystem 45 given by
/ey . uw, 1 ’m“
k #(u.) ( cost .m \u.

where uy, us both satisfy (1ekel), and the matrices are no longer
constant,
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de2 _Zindte Diffepences

As stated in 1,1, it is5 usually not possible to obtain an exact
solution of an arbitrary partial differential equation in a general
region, and even though & so=called olesed form so.ution is found it
may not be in a form suiteble for computation, For exs:yle consider
the problem of solving i'edsson': squ:tion

(%.5.1)&0& *+2=20

over the rectang.o =1 € x, y¢€ 1, with ¢ &« 0 on the poria ters The
olosed form solutiom for this problem is given by

clt B gl e N o o, G

A numerical method will certainly provide an adeguate numerical solution
more easily and ef lciently than the laborious evalustion of the above
solution.

In a finite difTerence method the regiom of interest, -1€x,y¢1
in the sbove exasjle, is covered by o grid or regtenguiaer mesh formed
by two sets of lincs parellel to the xey axes respectively, (see
Flgure 145¢1)

i_.. .



i

The grid i1s assumed %o be uniform, the distance between parellel lines
being he The gypdsa, or latidce points ere the intersoctions of the
lines. The partisl 4if erential equation (1,5.1) 13 r¢ lsced by &
set of simultansous linear equations conneoting the volues of ¢ at the
lattice points in such & way as to approximate the par-ii 1 differemtial
equationse For exa:ple, consider the fol.owing part of the grid
shown in Flgure 145.1

Lt Ja

SAAES Je2as

mum of the p.hlt. (h’. *.). (!‘ .‘1’0‘1. 8 = “‘;.U.‘).
Let Ou denote the velue of ¢ at the point (1,J)e ™en Af we take
the combination

Piet,d " “z..: b Y Y "‘"1,4

and expand by Taylor's thecrem about the point (1,)) we obtain



/8

a‘uu- [h' ﬁ + ;‘f H. + ...] 4,3

Therefore

b xdy, «Bﬂ.: + o(n*)

is on ap roxdastion o ’;“ the point (i,J), and the error is second
order in h, [later this will 1» feot be referred to as having a
fourth: order truncation error], Replacing & similarly, Podsson's
oquation (1,5.1) bevoses

b Pia1, " By, 5% Puay, M, 30178y 0y 0q [42000")

(16562)  0340,5 * Pant, g * Pa 000 * 0y, 51 = My ¢ 2 = 00F)
The terms of order ' en the right hand side of equation (145.2)
constitute the principel part of the trumegti-n srror of this formula,
Negleoting the truneation error in (1,5.2) and scanning over the whole
region with such a formuls results in a large set of simultanec.s
eguations requiring to be sclved for the unknown functi.ons 01."0
Obviocusly the sasaller we take h the better accuracy we ottein, But
any decrease in h and increesse in scoursnoy will be o sol by the fact
that & larger set of equations will have to be solved, Illowever we
shall not concern guselves further with this problem but, having
introduced the congept of a finite difference method will now tumm to
an important initicleboundary value problea.

Consider the solution of the eguation

utou’-o
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in the region

CeExsa; t»0
subject to the imitinl eondition

wiz,0) s f(x); 0€ x¢ a
and the voeundary o nditions

u(0,t) = g(t), ule,t) = ‘.(t.); t» 0

The region 1s ocovered by & rectangular grid with lP.seing h in the
xedirection and k in the t(time) « direction, as s:own in

Figure (‘0903)

W 1 5

The velues of u at the ;oints marked 0 are known from the initisl
and boundary eoniitionc. 'f §h = a, the points on the line x = a,
known for all time asay be denoted by wu(lh,jk). 3Suppose we have by

some means culculated al. the values u(ihy jk) for i=i,seeiie®l, jsl,00em



e ——— M

20. j

The problem is now to introduce a replacement of the first order
equation in such & way that the velues u(ih,(me1)k),(1=1,0sen=1) may be
caloulated from the k own values u(dih, J),(4a1,,eliel, J=1,00em)s This
will result in o gtep by step procedure for the numerical integration
of the differential equations

Ferha;s the simplest replacezent would be

u -2

21 # \ s {Saai®
&-ﬂ 4 (“t01.ﬂ.u1.1..) s 0 (kels”)

which is usually written in the form

(10503) g oy =9y = W2 (ug o =wi )« 0 (K ekK)
where
p = kh
is the mesh ratio, n alternative scheme of comparsbls sccuracy is
given by

g = 1 { Y e o 2
(1e564) Uy,a01 T 2 Pie1,0"et,n’ yz(“lﬂ.a‘uiﬂ.n‘ ¢ 00 » un")

At first sight it ia not obvious which of thess sche.e: ome should

enmplay in an sotual ecalou.ations Both values of Uy et
’
th

20lely in terms of the values of u at the m ™ time lavel, Suech

are obtained

schemes are termed gxplicit. An impliolt scheme 4is ome involving
more than one point st the (l-o1)“
the important difference between schemes (1,5.3) and (14544) when we

consider tielir gtobliity with respect to growth of roun -off error,

level, Ve shall see in a later section

pohidat o ai Ao bl b AR BE el e
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In the precedin: sections s certain amount o no oiion has already

boen introduced, such as the representation of the volie ¢(ih, Jk)

by ¢i, ;- Ia the following chapters we shall be intcrested in problens
involving the iniependent variables x,y,t, with solution u(x,y,t)e

A square mesh in the s;cce coordinute plane will be assuved, and

therefore the foliowing notation will be appropriate:

1
“(w. ﬁ‘l *) - s 1..’

Sometimes this will be written simply as uge The formulation of the
schenes will be =ore eompect Af we introduee the following diTerence
operators:e

k2l m
v 1" %11,3"

L3
Vzu 1, = u"i" - ll.‘.‘."

” (-
gl ¥ Buked -, Sad A

(2] L]
LW R ".1,.1 Rl S

At“. = Usdy - Um

The vuardsble vy will be restrioted to denote the val .w " the funetion,
or veotor fumction u, at the poimnt (ih, jh,mk), and Uy will denote the

veotor of the totality of u° over the appropriaste ra e of 4,J.

th

iJ
Us therefore denotes the totality of values at u at noles on the o

tine level,
We shall only be intercsted in tmp level differsnce schemes,

that is schemes wiich commeet points on two neighbouring time levels,



Such schemes can be written (for a twoespace dimensioncl ;roblem) in

the form

(1a6e1) ) Ta'u, (wediyedn) = ) Ta ua(xetn,yesh)

1,9 193
where the summations are over a finite range of 4,J, not necessarily
the same at the two time levels., If the notation introduced above is

now employed, (1.041) can be ut into the form

Ay (02 g0y W2 Vy) uass = Ag(lOz gy Wiy ¥y )us

or briefly
(14642) Muaty = Mg

The inversion of tie operator Ay, Af poasidblo, » . lows us to
write (1.642) as
(1e6e3) uaes = Cus
where C may now have an infindte expansion in terms of the difference
operatorse It should be noticed that the existence of Ay ds
tantamount to assuming that (1.642) ean de solved for unese Also, Af
in (14641), Fourder series are substituted for wees(x,y) and wa(x,y),

followed by a cancellation of a common faetor, the remaining terms can be

written as
(1e6e4) GaVasy = CaVa
where
Sy
G, = /\,' Ay oxp ii(prh oylh)} o

Ty

and §,y are real nuberss Equation (1.6.4) may be written in the fora

i il § N LA L L o bt
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(1e6e5) Vaws = G(5,¥)Va o '

The quantity G(f,y) s referred to as the ggulifigution notrdx of the

aysten (1,6,2)¢ In general h will be some function % so that t'e

operator C in eguuation (1.6..3) oan be regarded as iavolving k only,
If (14602) 48 derived from a differentiel problem of the form

Rem

where A is & lincer differential operntor in the space ccordinates
%,7, then scheme (1.62) is seid to be gomsistegt if

oo |52 - 4l ull =0

uniformly in time, {1el] denotes some norm!, This ia simply e

statement of the weguirement that as k tends to sero (and hence h tends
to sero «s some function of k) the truncation error vanishes,

Let us mow tumm to the concept of gitebility with respect to
sequences of calculations, esch sequence with & Mxed tie incresent
ky such that ki tends to sero as i inercases, The ccloulstion ean be
regarded as applying the infinite set f operators

(k)" o€ mk, €7
L » Y8000
to the initial date, The requirement of stability 1s that no
component of the imital data can be amplified more than a certain smount
in any numerical procedure, The approximation is said to be stable
Af the above set of gperstors is uniformly bounded for the pesitive
decreasing sequence {kﬂ; o This definition 13 a projerty solely of
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the difference equation and 1z independent of the dif‘erential equstion.
In faot, to test for stobility the amatrices G(f,y) are used, Ve atats,
without proof, the twe conditions for stability which shall be
enployed from time to time in this thesis.

A pecegsary condition for stability, the yop JIUJMANN condition (25),
is that
(14546) la‘l €1+ 0(k) (L 1,3, sos B)
where li.(i ® 1,2, eee N) are the sigenvalues of G{/y)
(The quentity o(k) must de incliuded to allow for probless whose solutions
have a g nuine growth 4in time .

A guffielgnt ecndition due to LAXeRICHU™YZER (47 and ZREISS [14],
(16] 4s that
(14647) lugl € 1« o(x) (1 = 1,2, eee 0)
wheie u‘.(i = 15 see 0, are the eigenvalues of (%G, whe:o 0 is the
hermitian transpose of Gy This sufficlent conditlon ¢ Le used in the
alightly different form
(1e648) [le%e]] s 1 + o(x)
where {1,() is some nowm,

= Operating on the fmitial data wp, m times with C(k) gives
W = (k) ®ue

which 1s an approxinetion to the exact solutien i' of the differential
equation at (ih, i,uk) whore mk = T, The operators C(k,) are said to
form a gonvergen: spproximation to the solution of ithe initial wvalue
problesm Af
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Lin i -
o |10(ke)" wo ~all =0
whére gktg is & positive strictly deorecasing sequenve, such that

Lin
tom g%y * T

LAX [17] has shown that for a properly posed linesar initicl walue
problen, & consistent finite difference replacensnt is convergent 4f
and ouly Af 4t is stabie,

liow let us retum and consider, in the light of these concepts,
the sotenes (14543) ani (14 0b)e It i3 » straightforvard caloulation
to verdfy that thesc schenes are oonsistent, lLet P3, Pa denote the
Seplification fagtors (for this problen G is a one-by-one matrix) of
the schemes (1e5¢3) and (1.5¢4)e Then

los]® = 1 4.f;»a1uﬁph.
(14649) loal® = cos®ph « & atifen

=1« (1 -S»)ua'n.

It is cbvious thnt lp.§ e i |§| € 1 for any ocholce =f dependence of
hoon ke Therefore (1.544) 45 stable for p € 1, lowever with regard
to (146.9) it doep matter what the relation is between h and k.,  Sup-ose
pha¥ , a>»0
and thus
(106010) [0sl® = 1 + p"%*"** s1n"en
or
lesl & 1« o(x)
Af and only if
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«a %y,
Therefore k must tend to sero faster than h® in order thet (1,5.3)
be atable, Howover in practice (1.5¢4) is a much more seceptable
scheme and (145.3) would rarely be used,
Finally let us eonsifer the doma'ng of depsndence of hyperbolic
partial differential equations an! their related difference schemes.

In particular we shall goncernm ourselves with the selution of the

BB

with appropriate iritiel and boundary conditions, i: I region

wave eguation

X 4
/-, > & (@)
/
// « h
.'\// m
i K
€=°
- W
) - (b)
g
3 & |
{ q
K
t=o

Fiauce 1461
P |
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Suppose the value of u at the point marked = (see Pigire 1,6,1) has
been obtained tarough some finite difrerence calculotion which uses

the polnts marked o o Let Dh dencte the domain of deyendence of the
difference replagesent, that is the interval betwson the extrems data
points © on the line € = 0 euployed in ealeculating the U walue,
Similarly let D denote the correaponding domain of dependence for the
differential equation, This consists of the interval on ¢ « 0 between
the charsoteristics which pasa through the point © and are inclined
at 45° to the x,t axes, In Figure 1.6.1(a), k has been chosen so that
D= Do utB-DnD‘. Then any change in the initial date in E

al though affecting the final selution of the differential equation will
in no way affect the solution of the difference scheme, This situation
persists as the sesh sise 43 reduced, the mesh ratio being kept constant,
T“herefore the difforence sclution cannot be expected Lo converge to the

solution of the differential equation unless

Dh?D

" as in Plgure 146,1(b)s This is referred to as the Cou ant=Friedrichselewy

Condition (3 and 4t is = necessary condition for the stability end
sonvergence of a Uinite difference approximation to & hy,erbolie egquation

(or aystean),




Lol _Existing Mathods.
The  reblem which we shall consider in the ollowing three

chapters will be the numericel solution of the firat order linear
hyperbolic system in two space dimensions

(1e701) §8 = 8 & *

where u is an mevector and 4,3 are mm symmetrie matrices which may be
funetions of x,y,t.

Although scvera. suthors have proposed schemes for the numerical
integration of (147.1) only two schemes have any practicsl value. The
zost used schene without doubt is the LATSVEDROFY metiod |23
(#ee BURSTEIN [2)), which nay be written, in dirfers o~ operstor
notation, in the fomm
(10742) uawem [T &+ (paep®a®) Lz ei(panp®i®) Vool (pheg®s® s,

*i(pBep®® Wy ok P (AB4BA) (22 4% ) (Ly#%y ) lumeO (1)
This is an explicit scheme involving nine podnts ot the base level
(see Flgure 1,7.1)
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The worst fonture of (1.7.2) 4a 4its poor stability characteristics,

If we let

el = sex §Inl0 Iyl

[a=nzf =0, 3 «n1f =0
then the ocondition for (1.7.2) to be stable is

plhlcﬂv,

STRAG [34] has shown how to modify this method so that the stability
condition is
plaal 1

(the maxioum allowsble for an explicit scheme, by the Courante
Friedrichs~lLewy c¢ondition) but the coamplexity renders trang's scheme
valueless in practical ealoulations,

The seconi schewe is due to WEIDROF? (40!, It is an eightepoint
explicit schome based on four points at esch of two nedghbouring time
levels (Figure 147.2) '

Fiquee 1" 'T-2




and 45 given by
(10703) [T03(Topd) b2 + i(IopD) Syed(Topiap) Byls Juaty

o (Tei(Toph) fa & i(Tepd) Bywi(Tepieph) Syhs jumed()

If data i given on the planes, x,y = 0 this met o’ is effectively
explieit,

However although Vendroff demonstrated the convergence of this
schene for a restrieted class of proble.s he was unadble to prove
anything with respect tc its stability, Also, the scheme is only
applicable if the matrices /,P are negative definite,

KiEISS (13) end ZiBISS (154
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.8 _Qutiogk
In the following chapters new implicit metinis will be developed

with a view to obtaining optinum stability cherseterdstics, All the
methods developed will be of the sace accuragy as the methods of
Lax and Vendroff, and Wendroff.

In Chapter II a olass of formulse based on the sare nodes as
Vendroff's formuls is investigated, In Chapter III & study of an
eighteen-point schewe consisting of tv: nime-point operaters is male.
Chapter IV intrcduees o technique whereby all knowm and newly

developed sethods oecn be chtalned by an algebrais procedire without
direct resort to Taylor's theorsn,

In Cha ter V & fresh start is nade to consilder t': ;roblex when
the matrices A and P are purely functions of the gsmponants of u in

such & way that the systen may be presented in the gongervation form

“ « g5, B(“) -0

Finelly in Chapter VI we consider briefly the nolifieations

necessary to extend the schenes to the general Negpace (imensional systen
N
- |

&"l ‘aﬂ;
1

i=
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introdugtion.
A twoelevel difference scheme based on a total of eight nodes,

four at each time lovel, will now be introduced for the numerieal
solution of the first order limear hyperbolic aystes (1,7.1)s A
general formule will bde derived which will contain, as a apecial case,

the formula of Jendroff mentioned in seotion 1,7, From the genersl
formula & new scheus, which 4s ome of a fandly of schemns, is
obtained and cest in an gltermating direetion fora,

An sltermating ‘ireotion method i» one whereby a artial
differential equation in q spage variables is solved b, o multi-step
finite difference progedure of a particular type, "he name arises
from the fact that at eno” step in the proocedure we solve 2)ongz lines
parallel to a space coordinste axis, this axis delng different at
easch stepe Although the finite difference schene nt each stage is
implieit in nature, it is of a perticular form which may bo solved by
a direct or noneiterative method,

Alternating direction methods were first intreoduced by
PEACEMAN and RACHFULD in 1955 [27) for the numerical selution of the
heat conduotion egquation in two space variables, Sinee then, they have
been extended t: cbtain numericel solutions of the heat equation in an
arbitrary number of s;sce variables, La laces equation the wave equation
and the biharmonic eguation,

The alternating lirection methods introduced in this thesis are

believed to be the first attenpts at solving hyperbolic systeas by such




progscures,
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To introduce the techniques involved in replseing the partial
differsntial aystem (147e1) by & finite &if erence sche @, consider

fivet of all the rv; lacenent of the scalar forw of (1471 igthat is

e eop

where A,B are scalar constents and u 4s & secalar funotion of Xe¥ste

Assuming the origin to de a mesh point, the grid shown in Figure
24141, contains the poimts u(hh.hh,hk)-u::.h(lqd,iﬂ 1lasd, Jo1 j1gun,mel)
where h,k are the mes: spacdngs in the apice and time coordinate
direotions respectivelys Introdueing, as before, the ‘orwerd difference

operators 4z, Oy defined by




Az“:.J 4 u.i"..j R u:.J
(2e141) a o

A“ i,J’ ui'J“ - “1.4
we obtain

“.10‘.4 - (1 + A‘l) u;.J

- n A
(‘0102) “1’.”1 = (1 4+ t.,“} “:.J

“241,.»1.(1 * Ag)(1 A;)u;.J

and similer results at the (nﬁ).t time level, Therefore a general
formula through the edght points shown in Figure Zeie!1 can be written
in the form

(2e103) [1eatxobiyentyls U™ [ 14d0; sotyefs Az W®
1, 1,J

where a,b,esof are arbitrary nonegero coefficients.

e 0

If the values of d;’s. Agu; g are now expanded, by Taylor
’ ’
serdes, in terms of u and its derivatives with respect to x,y,t

at the point (4,J,m), the expressions

g~ -

* ! k‘ a2 n
R b“”ﬁ’n B+ oo e

o
—_—

a m
(2.'0‘6) &8“;.4 = L“*l&*ﬁ B T J QI:.J

i,

eto, are obtained, The derdvetives with respect to in (2s1e4) are

now replaced by using the re.ations
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oo
B8R A0 AR ol

P = k/h,

and th? res iting capressions substituted in (2.1.3)¢ On ecuating the
coe f'ficients of l&. %, !{Fx" h‘& ® { - evaluated at (1,J,m) to
gero we find that! the fallowing conditions on the unnowns &,b,eeef holdie

. am 1 epa) d= {1+ pa)
(24145) b= (1«8 o= (1« pn)

feo = ;p (A ¢B)

The difrerence re lagewent (2.1.3) now takes the fora

(2c146) (1 + (1 «pi)is « (1 =« pBla, » &u-u:]ui %
= (1 @0 (1 epa)iz ¢ 5(1 «pB)y ¢ rAgA:jui.J

where
£feo0=p(seh)
and the principal part of the truncation error is o -ricr W,
The cholce
%[1-;(5.03)] r-{- [109(‘43)]
transforms (241,6) into Veniroff's schese (1.7.3) for the soalar form
of (147¢1)s
However if wo nae the choice
..%(1 “p)(1epd)  fad(iep)(tep)
then (2.1.6) can be written in the forn
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(261:7) (1 @ (1epB)iy [ 1 ¢ (1epa)iz v 1 o s 1e(1epB oy || 10;(109,1)6:}“‘.4
On introduction of sn intermediate or auxiliary solution \/;”J by means
*

of the relation
(2.1¢8) 1 ¢ (1 = pi’)c.,,],,1 3" 10 3(1 « pA)Ag]u;’J
equation (2,1,7) takes the form

(1@ 5(1 = gB)Agll1 & (1 « pa)aalyl J- e {tep)ay e (1-9%)%1“ 3
which is equivalent to
(2.1.80) [1 + (1 pA)A;]u,; = 1 ¢ 25 oﬂ)A,]v‘ 4

od

Bquationa (ce1.8a’ and (241.8b) constitute an alternsting direction
factorisation of (2,1.7) &s they require the solution of two point
regurrence relotlions

(a) in the y=direction at the first steg

(b) in the xedireeotion at the seec ni siope

This process nay Le represented dlagremmatically ss 1a  lgure 2,1,2
q A
3
| ”
|
¥ i A — —— > t
) QP (e
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¥e shall refer to this et risation as being of FesgemaneRachford
(Fek) types In o later section it will be shown that this process
requires modification nesr bouniary plancs,

The mult plication of both sides of (2,1.50) by (1=pB) gives

(1=pR) [ 14 (1=pi)as u‘{:’ = [ tepBei(1ep) (1pB )iy v‘:?

= (10’5%10:(1'?5)%3'1::5 - «;:fq’;

This is equivalent %o the formula
(21480) (1=pB) 1+ (“‘Pa‘x)&]w.;; - -eytv‘;; o (1opB) 1o (1opa)oaluf e

The two sters (241482) and (. .1.,8¢) constitute an alternative
formulation which we shall vefer to ss the Douglaseischford (D.'.)
type factorisation of (2.147)s

Although the above schenes are of 4nterest in themselves they are
of no great practice!l velus as they refer to the soal r form of (1,7.1),
In the following sections we shsll exauine to whri extent they carry
through to the case when A and B are nxn matrices which may depend on

X Yoty and Wis on nevector funection of x,y,t.



4.0,

2:2_The Veotor Gage.

Let us now cons der the case whepe A, B are nxn gonstant satrices

e A o T Iid e i dad o

and u 4s an nevector fumotion .o x,y,te Assume thut "’;‘j now represents

the vector u evaluated at ‘he point (4,J,m).

Following (2.148a) and (2,1.80) we introduce the pulr of F.R.
type formulae

’ mee r ) m
(Ie (eI + £3)4y JV’.,J s (I e (rl ¢ si)iz ]"‘1..’
(24241)

(T o(0r & 2)8a1u]¥y = [T « (=1 » )iyl g}

whero I is the unit ma matrix (or matrix operator), and r,s,e,f are
Aoalar ooer'ficients involving the mesh ratio p = /he Yidaination

of v‘:;' leads to the formula

(Io(el » M)A, 1T » (oI » tA)Al]u';r

(2:242) , .
 (Ie(rl « aB)byl(T o (rI + 8d)A: u;.’

whioh an evaluation of the products gives

(I » (oI ¢ 2)Au4(0T + fa)bae(el + £B)(el ¢ £2)4,4, w;;'
= (I o (rl ¢ aB)oye(rl + 82)0:¢(rI « sB)(xI » &s}AgAx]wzJ

As in the scals: case the velues of u, & w eto, nt the soints

(i,5,m) and (1,J,m¢1) are expanded as Taylor series in torms of i

and its derivatives at the node (4,J,m)s Derdvatives wiih prespect to

tine are replaced by the relstions

(24243) g‘!-%ﬂt‘,‘ & :
2024

ﬁh»‘lo(uou)ﬁy’v%ﬁ




Al .

whore the latter assumes the matrices A ani B are constant,
If the cosfficients of b, *. g‘g z n’& ¥$ at the
node (1,J,m) are in turm equated to sero, the equations
(pefepisfeer)I =0
pefepgRe(o=r)lIa=0
(20244)
(e 2pf)i® s (P oe2popma)io(ewr)l=d
(" +2pr)2* s (Fo2pavs)Bo(aer)l =0
(" » p£)(A2 « BA) « (£* « 0")BA « (po & of « re)(aed)e(0*=r®)Ia0
are obtained, Ve seek o solution of equations (2,0.4) for the scalars
¢,f,r,8 which is vaiid for sll matrices A and B, ‘bvicusly the
fol owing set of eqi tions must be satisfied:~
pefewsgsal eer=0
pledpf = 0 £ e 2p0 =5 =0
a0 pe + of = rs = 0
leading to the unique 3 lution
=T ey
of = 8= P
Substitution of the above values into (2,2.1) and (2.242) leads to the
foruulae
(Te (I Pa}f»u]vz? o (Tei(Ie N)&Juzj

(2e245)
(1 ¢ 5 (1« padasluly’ = (T« o1 o p)oy V7Y

and
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(I & 3(T = pB)ayliT e (1 = u)mu;?

(2.2.6) =
(I o (I epdagllTe (e PA)A:]U.IJ

respectively, where the truncation error ia of order h‘.

The extension of the D.R., type feetorization (2,1.0a) and
(241480) follows a similer pattern, and is given by

[ - ' .

I’!(I ﬂ)A“ V“ .AI"(I”A)A' u'iJ
(242.7)

(I opB)Xe e )Azlu = =2pBy} O(Iﬂm Ieg{lep )-s]u“

On elimination of v’i'?. (2.2-7) reduces to (242.6),

It is intercating toc compare (2.,2,6) with Wendreff's formula,
iecalling that the latter can de written 4n the Ffum

(I o #(I = pA)icei(T « vB)Aw"(I - l(“')A“A‘]“LJ
® (1 & i(X o pAdiaai(T « p)oyel(T o plaenfiyas T,
which is
[ § Toa(Tep)ag § {Toi(topalia § <f pPmasyte oy
o [ 1« i(Topd)agl {30‘(1%)“'}':’: "W‘]“:J
we see that
Lu = Lus fp"adyte(u]y = of;)

where L , L. are the di/ference operators im (2.,2+6) and (2.2.8)
respectively, Vendroff's schexe was devised initially as a centred
dirference schese in order to lend itself to analysis by the
Friedrichs energy metiods In fact Wendrof'f's schess w.s shown to de
convergent flor a particulsr elasss of problems for -y mumber of
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space disensions, that is for the equation
-
]
s )
#-) 4R
is1
where At(t ® 1, ¢oe /i) are negative definite symn 'ric sutrices, but
its stability could be demonstrated in one space dimenszion only (40 ..

It should be noted that the one-dimensionsl anclojueof (2,2.6) coincides
with ¥Wendroff's one Jimensional scheme to give

(T @ i1 @ padaglug™ = (T @ §(T « pa)aa]u]

where of course no fuctorisation is possidle,
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23 The Family of Gint Foint sq

The scheme (242.6) 4s in faot only one of = fond v of possible
edght point stheses commecting four points on esch of two nedghbouring
t L‘mo

~{
x

{m) Lm*‘)

ZASure 290:1

We define 8n (a,b) formula (a,b=0,1,2,3) as one which depends on
the four points at the corners of square "a" at the time stage (m)
together with the four points et the corners of the sgquere "b" at time
stage (me1). (see Figure 2,3.1) The schmes fall into three distinet

categories,
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(1) (a,8) or "stinightethrough" type, consistin: of
(0,0) [ Toy(I=pB)ay [ Te (lepi)ia J’u:? o[ Io (TopB)oy ] Te.(Topa)is ;u,"' 5

(1) [ Toi(Topd)ay ]| Soi(Toph)Vs Junes
= To.(Toph oy ) [ Te; (Iwpa)Vs Jua,

(20301) [ Toi(10pB)Vy || T (T4pa ) Vs Junes
(2,2) ol T (T )Wy | Twi(Topi) Vs Jum,
(303) (Twy(TopB)Vy | 1o (Twpi)is lunes

o/ To (TopB)¥y | [ Ioi(Tepa)as Jumy
(where of course (0,0) was the scheme derived in sectdon (2,2))

(41) (e,821) modulo 4 or "lateral"” type, consisting of

(0p1) [ To (TapB)ay | Te;piVs luney = Tey(lepB)ay [ Teipils lun,
(0,3) (T=iphVy I [ To.(Topa)ia juaes = Te ptly ][ Ie;(Tepa)ix Jun,
(1,0) [ Tou(TapB)iy || Te pils unes =[Too(TopB)iy ) Top¥: uy,
(142) (Tejph¥y [ Ie (Tepi)¥s unse o ToipBay ]l Tey(Tepi)Ve e,
(241) [ TwipBdy ' 1o (lopA)Vs upes ol TepBVy ]| Iay(Tepi V. ua,
(243) [Tey(TopB)¥y [ T« pils ey = Tey(TepB)Vy] Te p¥: ue,
(350) (1= pBay | [ T¢ (Zepi)ic unes =[Tesph¥y ) T+i(Tepi)is u,
(352) [Twi(TopB)Vy ] To il ey = [Twi(XwpB)Vy |/ Te piT lumy

(444) (a,242) modulo 4 or "ddegonal" type, consisting of
(052) [ZwipBVy | (Tmipa¥s Ju"" = (Leiphty](Teipats uf,
(1,3) [ TeiphVy | [Teipiic uate = [Teiphiy |/ Teipa¥s Jun,

(2,0)[ TwypBiy | [ Tw pite Junty =  TegpBYy | T4ipAV¥s jue,
(3,1) [ TowipBly | T Taipi¥s uney = [ ToiphV, |/ Te pAts jun,
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Wb

where 4, V are the ‘orwerd and backward difference operators defined
in section 1.6.

All the above sclw:es have overall trumcation errors of 0(W?),
but, whereas each step of type (441) 1s a consistent replacesent of
the differential equation, each step of types (1) end (14) 4s not,
Therefore the "straighisthrough™ and "lateral" type schemes do not
fall d4nto the “"gemoral classification of sltermating (irection methods"
proposed by DOUGLAL and CUNN (5.,

All the seieses (a,b) may be derived by a procecure identicsl to
that oarried through in seetion 2,2 for the scheme (0,0), and their
analogous F.R., and U, « factorizations obtained,
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&aks Stablitye
In this seotion we shel. nake an exasination of the stability of
formula (24246), again for e case of A,B gonstant symmetric matrices.
¥aking & Fourier transformction of the sysce varisbles, as described
in the introduction, the result
Boﬂl.;:.? 4 M?id
is obtained, whore
SR T sin &8
(2eke1)
M,B.-Ino?:tpﬂnu?
and £,y are arbitrary real numbers,
The smplification o trix C of the =method (2,2.6) 13 therefore
given by
¢ = (Baha)™ (Beas) = (BaT0)™ (Byay)
where By 1s the complox comfugate of Byy The problem of stebility is
that of finding estinates for the bounds of powers of the amplification
matrix G. The LaxeRightmfyer sufficient econdition for stability
reqgiires that
(2e002)  |lo*a|] &1 & 0(k)
where G* is the hpfmitian transpose of G,
liere
(264e3) 3% = (T4By) (aaRe )" (BaX4) " (Bess)
and thus if AB = BA,

%G = 1

=l
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and the method is uncondit onelly stsble by the oriterion (2.4.2),
However in asctual jroble s the commutation condition will rarely be
satisfieds A more genersl orn lysis is therefore required,

The spectral norn of Ay will be given by the square root of the
naximun modulus eigenvalue of the atrix

itia = 1 oos® &R o p"a%san® <

since A is & symmetrie mairixe If u;.u: are the maxisum snd minimum
edgenvelues of A% it 7 llows that

Haell = 5] = (oos® J‘h ooty st ?
AT = Coos® BB opy® stniel)™

Irvg.v:mthn:mw the minimum eigenvalues of B*, we
likewise have
[Bel] = HE ] = (con® %R « v} s1n® Y)*
TR “r¢'ll-(oo"?oy'v:oh'¥)"
A property of o noram (11,11) 4s

Hxel| « [ixd] vl

and thsrefore, on taking morms through (2,4,3) and ingerting the
above values, the result

[lessll « [IZ D] [IBoll FIBS* L TIAR*HIRSC L LIS Limadl Haoll

(i) (g

VR et B ot Pt it P




o S 10’.( R '109.(" .)lin‘
o ( ( (cos® 0;‘1!‘.13’ #)

is obtained, Further since
sin s < 3
for positive s (and we need only eonsider positive Sh, yh).

Ve have,.

a
|love]| « o= e G - “) ) s Y'!‘(U
ﬁ.y( ; + ? ,'u'lin@)/ ! (coc' ? 0p'v.d.n' ?))
By elenentary oalculus it con be shown that the minimusm value of

(cos® 9 - p‘u: sin® ?) is either 1 or y'n: depending on the sign of
( ‘ = 1)e In either case we obviously have the result

[ie*e]]| < 1 + o(x*),
By Lax and iichtgye:'s condition (2e4e2) this is = (necessary and)
sufficient coniition for the stedility of the scheme (2,2.,6), Stability
analyses for the remuining mombers of the family may be carried through
in a similar sanner %o deconstrate their unconditionasl stability,

However we must not only ensure stability in the tiie direction
but also guarantee that the two point recurrence re.st ous inherent in
the alternating direetion formulation, are solved in s.ch: » sanner as
to prevent growth of roundeoff error in the x an?! y irvetions,

Consider solving an egquation of the fora

x=(xebd
by a two point recurrence relation of the fornm

Xn# = Qxn b




On subtraction of the above two equations, 4t ean be scen that the
error
G = =~ X
obeys the two point regurrence relation
Gnts = l@ne
Therefore in order that the errors do mot grow, ‘he ¢ ndition
(20k0d) Hell « 1
mist = be iuposed,
Consider nov the first step of the Pel. formulation (2,2.5)
(T @ 41 = ATV} (T @41« padeauf,

whioch may be written in the “orm,

PR v (e @AY = (1o i epalaainf, .,

The two point regurrence relation say be s lved in two directions.

For caleulation in the positive yedirection, coniition (24..4) requires
(2 = 8)*(1 » pB)|| @ 1o

This is equivalent to requiring B to be negative definlite, Reversing

the calculation an! solving in the negative yedirmeti n will require the

positive definitensss of B,

If we oocnsider the first step of the factorized form of the (0,2)

penber of the family -f eight point schemes, that is
(T o LoBA ate r ' T ®
I ,_,ﬂug]vu = I e “m‘“tj
or equivalently
(1 o spll/:;' - :'z!?'v';:.‘ = [I ¢ ;pAig 'u'iJ

& similar analysis to the above shows that the em'ition
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(2) 48 pA € 1 for celeculation 4n the positive y ddr-ction,
(b) 4s pA » 1 for caloulation in the negative y ‘irection,
where A is an eigenvalue of By Siailar oriteria cen be derived for

the resaining mesbers of the eight point family,




The acouracy of the eight point sciemes when . and B depend on
Xpy and t can be verified by direet substitution using Teylor expansions
in terms of u and its derdvatives at the point (4,/,m)s This process
will be demonstrated for the (2,0) mesber of the faunily, that is for
the sgheme

(20501) [Topfte = By o Bneyans)d ol Toipitae povyed ghon, 0. o

On exgansion in terms of u and 4ts derisetives at the point (4,J,m)
up to and ineluding terms of 0(a"), the left hand siie bucoues

-1 B - Bl
“luonlo B b e g - B BB
- oo oY) -fu'{;lo!?'-:};ugn:’
JCRT 0% TF -{'-(9.-9).!?::};(,@)3:‘

which is simply
(1« pA%a o ¥y o § PPBVuT2 0]

and thus the scouracy of (2,5.1) is demonstrated in t'w case of the
matrices A and B depending on x,y and t, It should be noted that the
matrices on the let hund side of equation (2,5.1) are evaluated at
t=n ¢ 1 whereas thoge on the right hend side are evaluated at ¢t = m,
Applying the sbove technique to each member of the fandly of
formulae in seotion 2,3, it can be veriried that schemes of t pe (441)

are still satisfied up to and including terus of order h® ghereas those
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of types (1) and (i1) now have a truncation error of 0(h®). However
Wendrof'f showed that if the coefficient matrices A und B were eveluated
not at the point (i,J,8) but at the point (de¢ , 5+ y8) (8 = a,m « 1)
then his scheme had sooond order accuracy, Since the method
developed in section 2.2 dirfers from Wendroffs for.uls (even in the
oase of varisble ococefficients) by a term of 0(h*) it follows that
the eight point schemes of "straightethrough” type will have third
order truncation ervor, if we evaluate the matrices, not at the point
(1,3,8) but at the point (4 2 3,J ¢ 3,8) (s = mm e 1), The aigns in
(1 2 4, * 4y8) ave chosen so thathhis point 1s at the centre of the
square of nodes at cach time level, A similar modiffcation is
possible for the "latersl" schemea.

The stablility of o difference scheme with slowly vurying coefficients
is governed by the Jocal amplification met:dix, ccoidliy to Lax (20,
the difference scheme is stable if the norm of the locol amplificetion

matrix does not exceed ones In the previous sectlion, 1! was shown

that
0% a1

provided

(24542) AB = BaA,

and 8o (2,542) would appear to be the condition for the edght point
methods with variable coefficients to be stable, ™is resirictive
condition was also required by Lax and Vendroff in order that their
high accuracy ex;licit scheme be stable for the case of varisble
coefficients (22, It is hoped that even when (2,5¢2) 1a not
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. & 5 . A Sha s " . g ‘ : i o
satisfied, the m .8 given above can be used in case of variable

A% -

goefficienta,



Consider the spplication of the faetordsed forw of the (2,2)
sember of the fanily of schemes to a mumerdeal probis ., This forsuls
t is not wvalid at nodes which are influenced by values on the boundary
: planes x = 0, y = 0 (that 43 at the points O in the disgram
Flgure 2,6.1)
4
0
o
o
0
o ¢ -0-¢ -0
0 X

The totality of equations obtained by using the uns;liit £ ra over
points on the (ge1)x(ge1) grid of the quadrent x,y » 0 of the x,y plane
een be written in the form
(I« i(Zn o pB)RYI(T « o(In & pa)rox)v™™
® (1o (In=pBlity] (I« i(In=piliixU® ¢ ;(In + pi )™
(24641)

+ i(Tn + PRI & (In & p0)(In + pAIKE*'= i(1n = pa)id

* (I « pB) @ 0& (Tn « p8)(In = pA)I3
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where the matrix operato.s Hx, Hy are the ¢ x q bluok notrices

—
3 guic Ing e
{ =Inq Ingq -
Hx = Wy =
. .I.q
. .

i being the q x q blodk matrix

«In In o
“In »

and I thonuitutﬂxd‘omrlq'. &thimnﬂ.u.kﬂm

veotors involving bouniary wvalues picked up by Vz, Vy, V,Vz reppectively
at station m in tine, U™ represents th: totality of weetor funections

unhotorhrnsttboq"dnuonthplmt--kmﬂ rowwise.
L]
The totality of eguations obtained by using the fmotorised form
of (2,2) and scanning points by rows can be written in U foru

(T« i(Zn & pB)HY V™™ @ [T « §(In = pA)ix U™ & C
(2.642)
(I @ 3(In » pA)EXIU™® & [T « 3(In = po)ity V"'

where C and D depend on the boundary values of u on the planes
x #0, y = 0. =luination of V™ gives
(24663) (I = 5(In & @)Y (T = 2(Tn + pa)HxjU™*
# (I o i(In = pB)Hy][Te § (In = pA)EXU® ¢ T « (In = pB)HY)C
¢ (I« i(in + pB)RylD
Comparison of (2,641) and (2,6,3) shows that if
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C = aekiMeagld™ il i i
(246e)

D = bold " Pebaid™ bk end  cbgid  sveid

then
Dy = =0(Tn « pB) by = «((In ¢ pd) By = C(In + pB)(In « pa)
B =Q (In=pB) by = QIn=pi) by = ;0(In = pB)(In = pa)

Q= (428)°%(1 « pB) (4 ® 1,2,0006)
and .
& = oI « @B)° V(1 « ﬂ)b‘ (1 » 1,2,0006)
Similarly if we choose to use the D.5, typs factoriszation then
(242) becones
(1 @ 3(Tn & 8)ily V" (I « {(TInepd)Ex]U®e(252 )" (1n + pB)K
(In & PBI(I = 3(In & pA)ExIU™"'« 2pBV™* %4(In = pB) I « . (In = pa)HxU"
where K ropresents the last six terms on the right hvn sdie of (2.6e1)e
The scheme (2,2) was chosen to dezomstrate this molification
because in a following seotion 4t 4s applied to a siuple problem and
compared with the Lax Vendroff method.
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227 _4n Alternative Fsotorisation.

In Seotion (2,1) the P.i. and DiR. type fuotorisntions were
introiuced, Both are designed to simplify the solution of an implicit
scheae of the type
(2e701) " - o
where ! and G may cach be writien as the product

Heilhlgy © =Gl
of two simpler eporatorse The FR. wethod for the golution of
(247+1) then takes the form

V" o oe0®

BU™* = g™
whoreas the D.l, method takes the foram

V" - ogt®

g™ ™ « g 4 youu®

£ +ylly = allge
Both of these methods require modification at boundsry slanes (see
seotion 2,6), In mayy cases this wodification may be very complex
or may not even exist (as in the case for the "lateral” and "diegonal"
schemes develo;ed in seotiom 2,3)s However a thir: i pe of
factorisation exists whieh requires straightforward mo’irication and
involves very little extra work,

Por (247.1) this D JAONOV (4] type fsotorization (Detype)

Lecones

HyVa®t o GeGgim

HeU#t = Vady
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In the notation of seotion 2,7, the D-type splitiin; o tre (2,2)
menber of the ramily of schemes takes the form
(T = 3(In & pB)Vy V™™ = (T @ §(Tn « pB)HY)(T = ((Tn = pa)Hx)U®
(T = #(In + pA)V: U™ = ®
where the boundary walues for V®*' in the first step are given by the
seocnd stepe This is eguivalent to the formulation
(T« §(ZIn o PRy o [T « 4(Tn = pB)HY![T = 4(In = pA)Ex]U™ o C
(1 = i(In » pA)E=™** o "
where C is a contribution from the velues of V™' and is given by
C [l e i{In+ pi)¥ju™™
on a boundary st the V™* level, and
C= 0
elsewhere,
This procedure extends naturally to more than two space dimensions,

For exanple for three s ace dimensions it takes the fomm

" . a*

e o P

MR o, ™
where on the resy-ctive boundaries

v o

S . ™
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The method given by (2.6.2) 4s now applied to = simple problem,
Consider the aystem
-2 1 -1 o
: H. 1 ‘.)e’(. ‘)g
where the solution

ue :)

is given by
ug = ain (xet) + sin (yet)
ug = ain (x=t) + cos (yeat)
Two cases are conslidered,
(1) @ = 1 where A2 = BaA
(41) o = 2 where 438 § BA
In cach onse the solution given sbove will be used to cbiain adequate
boundary data, so th~t any difference epproximation under oonsideration
can be successfully employed to obtain & solution in o prescribded
region. For exasple we shall choose the region to be the
rectangular parellelipiped 0 € x, € 1, 0 € ¢t € T, and so the high
sgcuragy explicit Lax Vendroff method (1,7.2) will require date on the
five planes ¢ = 03 2,7 = 0,1, The method (2,6,2' will require
starting data on the three ;lanes ¢t = 0, 2,y = 0, The langer of
overdeteraining & well-posed problem in order to solve it by a
particular finite difference scheme has been examined by P TER [25)
in the case of one syace dimension,

The sethod of the present chapter with h = *1 requires one
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hundred nodal values to be ealculated at each half step, These appear
in groups of ten and each group invelves the otcp by step solution
of a two point recurence relation

(a) 4n the jositive y dircotion at the first step

(b) in the positive x direotion at the second step,

This two point rocurrence must be solved in sueh o way that there
is no significant error growth, This is scocomplished sasily in the
present exauple as the natrices are both negative definite,

For comparison the method is solved by the most freguently used
method, the Lax Vendroff methed, which theoretically requires p € 0°12
for stability in this problen., In fact problem (i) was found to be
stable for p € 0°33 and prodlea (44) for p € 0°29, BIO™VIN [2),
using the Lexeiiendirofi method to solve the equations of comore-.{ble
fiow 4n conservation form (see Chapter V )also observed tist the
Laxeliondrof'f theoretical stability limit was too severs,

For h = 0*1 the »thod (2.642) and the Lex VWeniro [ vethod
(1e742) were allowed to run for 150 tise steps in provi-=s (1) and (11)
for p = 0°1, 0*3 and the results are quoted in Tebles Z,1 and 2,2,
Further results for the alternating direction metiod for higher wvalues
of py dut fewer time steps are shown in Table 2.3« The results ape for
the errors in uy correet to seven places of desimals, The results for
Ug are gosparable and are not guoted,

Although the alternating direction method developed in this
chapter is of comparable accuragy to the LaxeWendrof! method, it has
advantages in its unconditional stability and its requirement of less

| S
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boundary ‘atas fHowevor, it can only be used for probl: s where the

tweo peint recurrencs relations ean be solved without growth of

roundeoff error, Further, it requires a proxinsately 20°/o zore

computing time thon the Lax Vendroff nethod,
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{4004 BE55
-04005 4723
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Iptreductions

In this ehaster an eighteen point implicit method will be
developed for the numordcal solution of the first order symmetric
yp rbolie systen,

& = A(x¥,t) ?x + B(x,y,t) g ¥

This method is of cosparsble sccuracy to the best existing methods and
enjoys uneonditionsl stability, It is shown that this schene may be

factorised in three ways, each of which requires tie inversion of two

block tridiagon:l matrices,




&8,

del Notvetion

In the pravious chapter a claz: of eight point cethods was
introduced for the numerdeal solution of the hyperbolic system
(3e1e1) a- ‘E’# .
1t was shown that these scheucs could be written in u fectorized form
and that they enjoyed unconditional stability, jrovided certain
two-point recurrenc: relations oould be solved without growth of
rounde-of'f error. This usually required the positive or negative
definiteness of tie matriess A and B,

In this ohepter, we eliminate such restrictions by introducing a
schene based on eighieen points, This scheme requires boundary data
on four plenes. In Teot we are now considering the initicleboundary

value problem consisting of (3.1.1) 4n the region 0 € x,5 € 1, ¢t » 0,
subject to the initisl condition
u(xy7,0) = wo
and the boundary conditions
uw(0,5,t), uli,y,t), u(x,0,t), ulx,1,t)

given for ¢t » 0y It iz sssumed that there is no dlscontinuity between
the initiel and bouniary conditiens,

The only schene in use at the moment for the solution of the
above problem is the Lax-Vendroff scheme (1.7.,2)¢ Altiough this method
is socurate to second erder in h, it suffers from the rather severe

riw

stability restrietion
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where p = k/h is the mesh ratio with h,)c the mesh spscings is the space
and time coordinates respeetively and
'H = 23X ”1" ol’,”o
where
la=a2l e §-nd =0,
I beinz the mam unit satrix, The eighteen point scheme to be introduged |

in this chapter, on joys unconditional stability,




0.

E e

The region %0 be exasdned 0 € x,y € 1, 0 € t € T 41s covered by a
rectangular grid parcilel to the coordinate axes, with h,k the space
and time increments respectively, Let p = k/h bs the mesh retie: As
before, we intreduce the notation

i | iy 1,J,2 iategers

064,68 qg+ 1 (=1/n)

nd» 0

Vaus = “:.J d ':-1..’

where 4, V are forward and backwsard difference operators respsotively,
Consider the cighteen point central difference repl.cesent of (3,1.1)
in the farm

(ZIn « (8 # Vz) & Dallg o Vy) ¢ 00ty ¢ V) (s # Va) luges
(3e241)
s [In » 028z # Vg) » Dglly & Vy) + ¢ (A~ Ty)(Axr Vi) 1 U

where a,, b, oy (4 = 1,2) are functions of p, A and B, and In 4s the
nxn unit satrix, This formula contains two nine point o erators at the
ad jacent time levels m, mets (see Figure 3,2,1)

(m) [m+1)

Fusurg g o |
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In order to obtain the values of the coeficients we make the
assunption that the natrices A and B are constant, Therefore

differentiation of' (%,141) with respret to t gives the relation

(5“.2)9-&'&0 (AB Q‘A)& 0)‘9.

The terms in (3.2.1) are now expanded by Teylor's thiorem about the
node (ih, M,mk) and after elimination of ? quy mens of (3ete1)
and (34242) the coofrislents of bk, n& n® ﬂ n‘?;i , 3P g-,-}
are equated %o sero, Thip leads to tie following so’ of equations
for the m satrls quentities ey, b,y 0, (4 =1,2:

289 + pA = 20

o + 98 = 2

hpoe ' e p*A%=0

LpbyB ¢ p*B%=0

p°(4B « BA) + 2p(e4® + bjA) ¢ 4(oy = 0g) = 0

The unique sclution of this set of equations is glven by

oo b
b o= *--{ﬂ

0t sy =0
where C 4is an undeternined parameter, If these values are substituted
into (3¢2.1) the scheme

(Zn = #(A; + V) #(Ay * 'g) - .(A' * ")(5‘1 * Yz luaes
("3.’)
« [In obA(l}: + V2) cb(du *+ %) eo(dyg « Vy)(iu + ¥2) lum

is obtained, This scheme has truncation error of order W,
In the next section the cholee of the parasets ¢ will be
discussed,




2

The chodoe
e=0
in equation (34243) leads to & scheme, illustreoted in FMgure 3,3.1, which
involves only five points at esch time level .

(™) mt1)

SAGNES Je3.1
The actual solution of sueh a set of implieit equations would involve
considerable 41~ iculty and would require to be obtained by some
iterative method, Vi GA [ 38]].
However if we meake the cholece
¢ = '& p*BA
then each side o (3.2+5) oan be written as the product of two factors

in the form
(3e361) [In = iﬂ(&u + %) l[Xa -bA(Aa + Vz) luety
= (In + 19(0y + Vy))(In + $pAGGz # V) Jua
On introduction of the suxiliary solution Vees equ-tdon (3.3.1) can be
written in the tso atep form




3.

(In = é’(t‘. * %) vaes = [In o*pﬂ& +V2) lua
(o = fpaldy & ¥s) uass = [In + SpB(ay + ¥y) Jvass

Each equation " (3+5+2) only requires the inversion of a bloek
tridiagonal satrix to caloulate Vaes and ua+y respectively,

As in Chapter II, 1ot us now consider the totality of equations
(3e342) over the ¢* internel points (ih,h)(1 € 4,%q). These
equations csn be writtan in the form
(3343) (1 {unu (1 - dpitxlUaer = (1 o fpbity)(1 + dpiix e

éu(h + ™) 0{1’(& « 3" ﬁln(ﬂ - 8"
where the elenents of Uy are the values of u at the ¢* irntorne’ mesh
points at the ' time level, the grid being seanned rowswise fyom
the y = 0 plane, ik, iy are the 49 block matrices

L 4 0 Inq i
Yy ~Inq 0 Inq
k= u iy = olnq ©
. .
b 4 3 g

with N the gxq block satrix

— -
¢ In
«in © In
"Il 4] .
» 3 .
L‘ -

and the unit setriges In, Ing, and T a'e of order n, ny, aq‘ respectively,
The vectors K, ¥, 1§, each with ¢® couponents, constitute the




o

Th.

sontributions from the boundsry conditions pioked up by {2z ¢ Vi)u,

th

(by +V)u and (4y « '9) (l.h ¢ V2)u resrectively at the = time level,

Using (3.3+2) as & gulde we now write (3.3.3) in the factorised form,

T .iﬂlyj:'.n b ¢ Q*Mh)u- +C
(x -iﬂhim - (I 0'11"0]'-«0 D

VWhere Vpes 48 an interwediate sdlution and C and D are voctors to be

(3e3e4)

obtained in terns of &f, k8, X3 (8 = m,m¢1)c This is sccomplished
by eliminating Vaes frowm (3.3.4) to give

(30305) [T = {poiy](T = fpAlixlUnes = (I o pBity)(7 o fpate)va
¢ (I o{’lmco x -bﬂv]n

The comparison of (343¢5) and (3¢3.3) shows that
(34346) € = D 'H" « ™) Oill(li « 8" vb’u(ﬂ - 5"
and 80 (3¢3e4) and (3.346) constitute » Femceman = " ghford type
alternating direotion schems of second order acoursay for the
hyperbolic aystem (J.ie1)
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ek Alternative Pactorisstions.
An alternative D.'. fype fectorization of (3.2.3) with
= *U'IA

exists and can be chtained by a process similar to that given in
section 2,1 for the eight point scheme, It is therefore given by
the schece
(Suket) (Tn = FpB0y + %) lvaes = [In + dpalas + 22) 'ue

[In -*M(Ax * V2) luats = Zvmey =[In @ bA(Aa ¢ Vi) us
The elimination of vaey from (3eket) gives (3.3.1)¢ If we consider the
totulity of equations (3.441) over the whole region the formulae

(X -iﬂ&\b«u eI oi’ﬂﬂh * K
(T o dpiiix)Uass = Wass ~(T + JpalixUa

are obtained where X denotes the last thres terms 1n (J3.243), and the
notation is that o seetion 3.3,

(30402)

A third fagtorisationy of the D'JANONOV type 'L , 2lz0 exists for
(3e341) and 4s given by

(Ia .*p(bg ¢ V) lvass = [In iﬂ(bg ¢ Vy)lla 0{’4(6: + Vx) lus
(3eise3)
[In -fu(a. & ¥2) Juetr = van

This scheme need not be considered over the whole region as
“boundary values" at the ymes level may be reploced by boundary values
at the unes level, using the second squation in (3.ie3)

For general megions it would appecr that the third factorization
is of most use, Ilowever all caloulations carried out enployed the
Feaceman Rachford fastordsation.s These caloulations will be described
in a later seotion,




o

¥ t  Vard:ble lat .

If the matric:s A and B are funotions of x and y only, it is an
eleczentary exercise [ see section 2,5, to show that the eighteen point
schene (3.3.1) still maintains second order sccuracy.

If A and B are functions of x,y ani t however, these procedures
require modificition, We write (3.3.,2) in the form

Tn = JoBasy (24 + V) Ivies = (In & Spia (85 + ¥2)lua

r

(3e501)

-—

(Tn = dphass (G + ¥s)lavs = (Zn + J5Ba (05 + Vo) Vs
where A.. l. (s = a,m¢1) denote the values of the = trices at the

r

points (ih, Jh, sk).

As the expression

(Ba (by » Vy)Basy (5 # Vy) = Bues (& + Vy) Ba (G4 + 9y) ey

may easily be shown to be of third order in h, it /ollows that (3.5.1),
on eiimination of Vin#e, 18 equivalent to
(3502) [In = Fpiasa(sy + ¥y) ) Tn = Spiase(ba + Vx) Jumse

s (In 0{*(59 # V)l In o'lw. (as + ¥3) lua
to second order acouradye

' The totality of the equetions (3.5.2) over the whole X,y plane
is given by
(T = EPBassly )(T = fpineris Wnor = (1 ¢ Sp8aliy (1 + dptalis Va
* b{hﬂ + savid™ ]vb;nuﬂ + Bae) 3™ }q'p'fk! - 3"

where ki, k§ ars defined as in section 3,3 but ki is now the contribution
fron the boundary values picked up by




- ~——— T T— T~

%2

’.(ﬁg + v“)i.(bx <+ Vx) (. = -..01)

Equations (3.5.1) oan now be written in the ‘orm

1 -ip...u,v.q - (I ¢iw.rs]u. *C
(3e544)

(T = dptasatic [Uass = (I + foBally Van + D,

If we assune

€ = adf™ + aadd™s 3™ ¢ alf ¢ 0l ¢ sl
{3e545)
D = oid™ « b e 18" ¢ 0} o Dkl ¢ beil,

then eliminating Va#y from (3.5.4) and eomparing the resiit with (3.5.3)
shows that the ceefficients 8 b1 (4 = 150006) are given by the equations
&‘1 - &”‘1 (i B3 1.‘..6)
1
&+ By o= ipb« G + b = -‘:ph

aa + be -ﬂ-p&m uob--fll-
8 + by -H‘p‘ -oob.-fgp'.

which have the unique solution
& = Qlgwy & = QAg
(3:546) @ma = QBasy 8y = (By
o = <y O
where
Q= i)(&mo&-)"&m .
Therefore the equations (3e5sb), (3¢5¢5) and (3.5.6) o stitute a second

order accurate alter ating direction method for s lviigs the differentisl

equation (3.1.1) when the matrices are funotions of x,7 an’ t.
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In the case of the Douglas - Rachford type formulation an
analysis si ilar to the one sbove shows that (5.4.2) generalises to the
sohe:e

(I -{j."ﬂgj.q s (1 oibl.&jﬂg +«C
(3e547)
B -i-p.ﬂ}k Unty = (2T oilp(l- o Baty )iy Vawy

- Ile -1-;&.& Un ¢ D
when A, B are funotions of x,y end ts The coefficien’'s of C and
Dy defined by (3.545) now satiafy the equations
(Bn = Batt)a, = Basid, (1 = 1,0006)

280 + by = fplats 280 + by = fple
280 + ba = {rBaty 208 + by = Syb

hoob:-—,‘p’ h.obo--,jgr‘

which have the unigue solution

8 = Ulaey & = Ui

8g = (Buey ag = (Bg

o = e ad.d -
where

Q = (Bats + Ba)""Baey

bi = “h(& - Bﬂ”). .
The extension of the DYJLXAOV [4) formulation is straightforward

and leads to the scheme




Y

(In = i‘ﬂ-ﬂ(ﬂu * V%) vaes = [In » '}.ﬂ-(ﬁu + Vy) In*%lf\.(ﬁztvx”u-

(In = i‘p&ﬁ(ﬂz * Vo) Junes = Vaey



In this section the stadility o the alternating direction method
(3¢3¢1) will be exanined for the case of constant matrices A and B,
Away from the boundardes a ocurder transformations of the space
variables is carried out in the usual way and leads to
(366e1) BaigUnty = Beigl
where

MAg = T ¢ ApA sin Fh

BeyBa=l © 4ipB sin yh
with g,y arbitrary real nusbers, From (3.6,1) the 2z 1i’ication matrix
is given by
(34602) G = (Bgaa)™*(B44)

In {17], LAX end RICUTUY.L show thet & sufficlent econditiomn {or
stability is
(3.6.3) |lesel| & 1 + o(k)
88 ky h » 0 (but not independently), where G* 43 the hersitisn transpose
of G and ||| denctes the g norm,

in this case
(3e60t) 6% = (TaBy) (aaBe)"" (Bah)"* (Besa)
where ;u. By dencte the conplex conjugates of i¢, By respectively,
If we denote the meximum and minimum eigenvalues of 4 and B by 8.5 8,
hl.i. respectively, it cen casily be shown thet




8/

Haell = [1%al] = (1 + p*af stnfsm)
&' s [T M = (1 » p*ad ata®sm)™*
HBall = [Bl] = (1« 583 saayn)?
1B3% 1| = [1B5%]| = (1« p*bd atatyn)™

Taking norus through (3¢6.4) and expanding the 1. ht hand side the
following is obtained:
ool | « VIZol] DISell FInS*00 DIAS* LD LIASU LD LIBRYLL Himall Haall

nax S(“ﬂj-‘mﬂh %% “p‘(s-ﬂ)m'vh%

(346e5)

T b 1 + p®ad sin®sh 1 + p"f sin’yh
As the relation
sin = € 2
is always true for positive s (and we need only consider positive Sh, yh)
we have
liewsll « 5% {1 .-—-.-I—--:.(.:; 1) i {1 . S o o %
+p*elsin®sn 1+ p"0 sin'yn
Since the denominaor is always greater then or equal %o one it folliows
that
l1e*e]| €1 « o(x®)
Therefore by the criterion (3.6.3) the method is .table,
Iff the condition
(34646) AB = BA
is satisfioed then it is easy to show that
GG =1

and hence



-

lle*al] = 1.
However the conditim (3e¢e6) 4s certa nly not neces .z = ‘or the best
; constant 1 to appear on the right hand side of (Jeie’'s This may be
shown by considering (3.141) with

A= - B = s U=
D =& ff - ug
This represents a pedr of hyperboiic equ:tions

(3647) W = (a*a®) 9& + 2(»:0..& + (o o+ £*) ’3&. (1 =1,2),

If we set
8 = jip sin Sh, o = }ip sinyh,
then
12 :
A, A, = g SRR
3 “bap 13..5

1 2 eoy ifay
G o [:r., 1 ‘uy} .
Af'ter a laborious but sireightforward caloulation, the result
6% = I
is obtained, where G is again given by (3.6.2)e¢ Thus tho method
(3e341) is unconditionslly stable for the solution of (1.6e7) although
A and B do not commte, In this case,
SRR TR
For the generel cese when the matrices depend on x,y and t no
theoreticel result concerning the stability of (3.3.1) has been obtained,

| Sa Sl S o B Rl E e S E s e B S i e e e S |
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levertheless numerdcsl calc.lations su sest that the outstanding stability
properties of (343+1) sve ;resent also for the cnse of variable

coefficients.



4.

Each oycle of the altermating cirection procedure advocated in
this chapter requires tie imversion of two dlock tridisgonsl matrices.
The proeedure for oarrying out such an inversion is discussed in the
Appendix to this chapter,

The equation used to coupare the numerical res. is cbtained by the
mothod (3+3+1) [in the ‘motordsed form (3.3.4) and (3.746) and the
Lax « Wendroff gethod (1,7.2) 4s

(J.?.i)k-(: ;1)e0(; 3}3 0€ Xy € 1, t» 0,

This 4s e particulor gase of (3.647) with AB § B4 and ug, ug satisfying
the wave equation, /Appropriate initial and douniary enditions are
chosen to give the theoretical solution,

(3e742) “'(n) (.“i::: + cos :3

The theorctical stebility condition for the Lax « Wen roff method is

(373 » Al ¢« g m-‘.,t A.ﬁ)

where
la-xAxl =0 ln-x.xl = 0,

In this case this condition requires
P S 0357,
In fact the Lax « lgndroff method recsined stable fuor | € 075,

The results are ahown in Table 3.1 for a range o walues of Pe

Zach entry in ihe toble ig the difference between the theoretical




35

solution for ue, given by (3e7.2), and the value comuted by the
respective mthoi, at the node X = ¥y = 35 t = nke Values for ug
behaved similerly anl are not gquoted,

The accuracy in the two nethods is comparable, w L the alternating
direction method bedng stable r;or higher values of 1

As a second exsaple we shall consider the polar “orm of (3e7.1)
numely
(surut) B (0000 B8 0 Y0im ey
in the sector 0 € r, & € 1, For ap ropriate initisl ea! boundary
coniitions the solution is given by

R T b - B e B §

The elesents in the matrix 5 become infindte at r = O, The eigenvalues

of Aand B are given by

and so the stability repirietion on the Lax « Wendrof method bscoues
particularly nﬁn near r = Oy The results, shown in Table 3,2(a)
for a range of values of » are quoted at the node r = 0 = ¢ This time
instability developed near xf' w 0 with the Lax Wen'r, wethod for
p > 02 whereas the‘altermating direction method sti.rtsd to lose
accuracy near r = U for p > 0+7,

The probl m given by (3.7.4) with the above solution was solved
in the range 1 € r, 0 € 2 and results were ocbtained similer in accursoy




%6

and stabilty to those obtained from solving (3.7.1)e These results
are shown in Table 3.2(b) end are quoted at the node r « 0 = g.

All results quoted are for the difference betws:n the theoretical
solution given above and the ocomputed solution for th first eomponent,
Values rfor ug were similer and are not quoted,
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Ap observed in seotion 3.7, the application of e alternating
direotion method requires the inversion of a block tridisgonal
satrix of the form

ﬁh Ce i
44 Bg Gy

G i |
! | . Cuocl
seEgaape

where each subastrix Ai’ 31, C1 is of o:der N, Ue are conccrned with
finding the solution z of the system

l\l'ko

If & and k are pertitioned into components Z, and K‘ o' order N, to
correspond to the blook formation of the matrix, then s direct method
exists for obtaining the zi. The procedure can be formulated in two
stages, The firat step consists of caleulating the gquantities

W = B3'Cy , Gy = BI'K,
“ (‘1“‘1“1-1' Y 2616 Nei
c = (D,.qa,‘lsr1 1) (x‘qﬁc 1) 2¢€ 4N

The second step then obtains the solution components .’51 from the

regurrence relation

Z.-Gu..?.itG m'iz"1 1€ 1€ li=i
This process is commonly referred to as the direct =et o0 (VARGA [38)
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and it is based on Geussian elimination,

An alternative, more general method, is that due to SCHECHTER [31],
This is besed on the fpot that we require (Just as in the 'irect method)
to reduce A to the ‘omm
(3¢9.1) Asll
where L and U are pertiticned squere matrices,

Let us introduce the notation (as used by Sehechter)

boa
4 Ba G
2 4 et
RV
& <
= (dn, Ba, Cn ]

The natrices L and U are restrioted to be of the form
Loiep Bap O

Us(0, DagCall
The vectors s and k are partitioned as for the ireet method,
Conparing the two sidos of (3.9.1) we obtain the relations

Dy = By
i = MaDney
Ba = NnCpeeeDn 1e€nc<hi,
‘ if the Dn are nomesingular then the Dn and la are obtained recursively
from




7.

Dn = Bn = AnDRdq Cnes , Dy = By
Mn = AaDR2y 1€neN

To solve for Z let

Us = y,
then
Iy = k
and the y and 3 may be cbtained recursively from
yn = Ko « MHn¥ney, 1€neN
where
Y = Ky
and
Zos Dn'(gn « CaZnesy) 1€n<N,
with

Iy = 'y o
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Antroduction

In this chepter an exact twoelevel difference 1o; lucement (and
hence solution) will be obtained for the first order syjumetrio hyperbolie

aystem

R 2R
Although this d@ifference replacement cannot be used to caloulate
the solution of ‘he above system, it is shown that all the previocusly
known approXimate methols together with those derived in this thesis, can
be obtained as ap;roximations to the exaot difference reylacesent,
in the eage of conmuting natrices it will be shown that O(h*)
acourscy can be obtained whereas in the more ususl cese of nonegommuting

matrices only 0(h*) accursey is possible,




Consider the hyporbolic aystem of equations

(betet) a‘- A&t ﬁ

where A and B are nman real wtr&outduswhqu entries may depend on
xand y; and u 1s an negomponent vector funetion of the space coordinates
“s¥pte It is the purpose of this chapter to derive an exact difference
replacenent of (Le1s1) and to obtain approximstions to this Tormula whioh
oa: be used to solve (Lete1) together with suiteble dmitial and boundary
eonditions, Ve consider such problems as falling into three distinet
typesi=
(a) the Cauehy probiem, where the solution is reguired in
the region == € X < wmy, t > 0, and initial dats is given
on the plane € = 0,
(b) the initial Bounisry value problem, where the solution

is required in one of the ootants of x,y,t space, Ve
will eonsider for simplicity the ootant x,y,%20 and
allow initial end boundary data on the three (usrtereplanes
t=0(x,90), x=0(y,90), y=0(x,90),
(e) the mimed initisleboundary velue probles whe o the
solution is required in the region 0€x,y€1,%0 and
boundary data is given on the pleanes
x=0,1 (o€y€1, 20), y=0,1 (0ex<1, t0)
in addition to indtisl data on the plane te0(0€x,y€1)
The region to be exauined is covered by a rectanguler gri: parallel to

the ooorunau’m. with h,k the space and time ! orements respectivly,




o

The mesh ratio palg/h is assumed to be independent of X,y,te If we
ehoose the ordigin of the system to be & mesh point them, as defore
u(ih, ghyaic) = ufid

betla = Wg,, o =U],
Vol m Uy = Uy, g
bylds ® g o0g = U7 se1

m i
Vulm = ug g = Uy, gt

e
A\L luid “’14

It is eaay to show formally thet
A". = &. - V.

-l
IOA.IS(IO'.)

(hete2)
A:o': - a:'v. 06:':

2 _ gt
A. '. = 6.'.(6. + '.)
for ® = x,y and I the unit operators In what follows we shell meke no

distinotion betwoen the unit matrix of order m and its associated un't
operator, referring to both as I,

Since
.. t ]
"'101,4 b b ’*’ﬂ' b’ ves’) o ,
= thl Q‘;J

by Taylors theoren, we have




6 .

- k] - "
A’“'i..i S “'101,3 u»“

h \
' -]
.(. k-l’/ Uvu
and therefore, formelly we say write
h
e kol * Oz

*-10‘ (I & 4zle
Similarly the relations

i = log (I + &)

*-10;(106')

are obtained, Substituting these expressions into (L.i«1) leads to the
relation

Log(I « at)uj, = pla Jog (I« &2) + B log (T + ') W],

and therefore on egquating the operators we have |
(hote3) Uaee ™ % {p{---(x.:)uc(x * bx)ed(xgy)log (1 Au)}z We

Squation (4eie)) may also be obtained in a slightly different
sanners Since "'!.Z

Wety =8 Wy
a .k(A(:,y)‘; + B(x,y) &] w,

we have, on replacing derdvatives by differences the equation (L.1.3).
Therefore (Le1s3) is equivalent to a Taylor expension of Q;' sbout uj

i)
and is an exact difTerunce represeatation of (L.1e1)e

L.




4s2_Conmstant GooZiiclont Mstrices

We now consider the case where A and B are oo o' nt nonegommuting
nstrices.
Defining
(x 0&)“-1 + pAlg Q%z»(ﬂ'- )28 ¢ oee

and (I » 24)™ sintlerly, equation (4e1.3) reduces to

(he2e1) Ugey = .—'zi(l )1 on)® s (1o 81 o :a)v“§ Wae

If use is maie of (iLe1e2), snother useful form of (4.2.1) may be
obtained employing both forward and backward differences, This is
given by
(00202) Wass = § [ (1 & 20)TPY(E o w)" Pz o 0)88(; o g, )"i®

+(Ie Ao)i"(l - W) (s, ) p"(1--'::)"5’“} We

Obviocusly other more hybrid exact differcnce represesnt: tions of (Lelel)
oxist, A typlesl exas le is given by
(402e3) Suoe » & { (o) PACal2 )T (100 P2 (200 ) P2 (1atg ) P4 1) =204

However, in goncrel we shall confine our attentisn to the forms

given by (Le2.1) mnd [i4242)
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b3 ‘pproxizetions wsing foxwerd diflerepces

The dir.ot detemimation of the right-hand siis of (ke2e1) is
obviowsly impreoticable, ani so approximations to (ke2,1), which can be
used for uloul.:sti.'on, are required, These are most simply described
in terms of ratiomal approximations involving the two operators lx, Oge
All the scheues in tids section are based on points in the ;esitive
quadrants x » ih, 7y > Jh, at time hnh t = uk, (ael )k, for e
reference point (ih, ja,mic),

If the rightehan' slde of (4e2.1) is expanded an arruy of
explicit soheues con be obtained, Typiecal of this arvay are
(he3e1) waey = ‘I + pAic « pBiylug
correet to first differences, and
(ke302) wats = [I & pila + pBiy + ipA(pA = T)AF & ipB(pB = I)af

» P(AB « BA)sly Jua

gorrect to second differences, [IHigher arproximations cen be obtained
in a similar manner,

The simplest wholly dmplicit scheme is obtained by writing

Waty = (I « adx & foy""uy,

expanding the rvight heni side and comparing with (Le2,1) up to first
differences, This yisclds the scheme
(he3e3) (I = pila = By Juas = Ua

More compliceted wholly implicit schemes, obtiinod by further
expansion of (Ls241) a3 an inverse operator, are less iseful for
celoulation and are mainly of scadenic interest,

An implicit scheme of interest is obtained fro- the

k- o
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aprroximation
(be3ek) Uawy = [I & @z & 0hy « Myla [T & afaeddy + olyls Uy
If the right hend side of the sbove is expanded and 1« coefficients
of 03,0y are equated %o the corresponding coef icisnis in the
expansion of (Le2s1), the equ:tions
(4e345) 8=d=pi

beo =g
are obtained, If, in addition, we require the right hand aide of
(ke3e) to factorise inte terms invelving first differences only, the
eonditions

ol = f

ba=¢o

(4e346)

must also be satisfied, Using (Le3e5) and (Le3540) scheme (ie3el)
takes the form

(8e3e7) [T © 08, ][T ¢ digTunes = [T ole ¢ pB)AG 1T ofd & pi)is]un
which can be writian in the i .k, tyre faotorised form as

(Teooly vmte = [T & (4 ¢ pA)Asliun
(ke3e8)
(I o @cluass = (I + (0« pB)ay]vaes

where Ve#y is an intermediate value, but s mt‘in gensral an
approximation to u ot any time station,
In particular, if
(Le3s8) d = ipi, o= ;g8
oquation (LeJef) becoues & ' Ji. type soheme and Vgey becones an
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aprroximation to Uy .

The oosfficdents of dz gly,iz gy 08,08 dn the exvension of the
rightehand side of (Le3el) are now equated to the co wsponding
coefficlents in the expansion of (L.2.1) and the results

&= ;(Iepa) b« (I« pB)
d = (I = pi) e = (I - pd)
(ke3410)
e =f = p(A +B)
obtained, Thus (Le3¢4) becones
(Be3a11) (I & (I = pa)is ¢ (I = PB)Ay o Pyix]uaty
= [I @51 e pAlaa ¢ i(1 « pBliy o oiylslum
' where o,f satisfy (L.3.,10), 1If
c .t[! + plaeB)l

fafiepaen)

equation (Le3+10) is satisficd and (Le3.10) becomes . UIOFF'S scheme
(1.743)e 1If, however,

oeMIemiiopy £af(1emzapi,
equation (Le3.10) is agein satisfied and (Le3e11) beocones the scheme
proposed in chapter il, This scheme can be feotorised and rewritten
in the form
(Le3012) [I ¢ I = pB)agTlvees = (I & (I « pa)is Um

(I e 51 «piloslumes = [T @5(T & pB)ay |Vis

where Vpwy is not on ap roximation to Usese It is fairly safe to
assert that (Le3.12) constitutes the only practicel method smongst the
fazily of implicit schemes given by equations (L43e10) and (Lele11),

E v =gy
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Computational details are given in chapter 1I,
Implicit formulee of higher order of accurscy *hon (Le3.11) ean

be derived but they will be of no practical wvalue,




The approximations in this section are based on the exact
diffe:ence representation (Le2e2), which invoives backward ss well as
forward diffe:ences, lost of the schemes for a refereice point
(4h, Shymk) involve points symmetrically placed about = ih, y = jh at
time lovels ¢t = mit, (m+1)k,

The direet empansion of (4.2.2) correet to iret order in
differences 4z, Vi, Ay, Vy produces the scheme

Uate = (I 4 pilde #Vz) o spB(dy « ¥y)lue
= [Glun
The scheme proposed by GA ABEDIAN (7!, 48 a perturbation of this !n
the form
(bholel) upey = G » t(Az's * O04¥) ume
If we expand (Le2,2) correct to second differences, we obtain
uate = [T (0 + %) + iplay o W)+ fpaCips - 1)d
(helse2) én(ﬂm e« )V & ﬁpl({m - I)af o -l,n(fgto vl
- %p'(m *#BA (s o Va)(0y ¢ V) o ip‘A'Ag'; . i,‘!'b.'. Jua
which can be simplified, using relations (Le1.2), to produce
(bokee3) umes = (I ¢ pAlz + V2) + 2pB(ay ¢ Vy)eup®a®0a¥s o ip*B%0,V,
- b‘(ﬂ + Ba)(0z « V2)(oy « V) vn
= Gy, lue
This is the Lax Vendroff schome (1.7.2).

STRANG'S modification [34] of the LaxeWendrof! schese mey de

obtained by expaniing each of the binomial exprescions in (L.2.2) to

seeond order differences. Only those terms which scannot be represented on
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& ndne point lattice based at the reference point are neglected, It is
then easy to show that Strang's scheme taes the form
waon = (G o 0% {LABPA%A) (0 o V) (uTu)e 2 %0a8) (aye¥u JoxVe]

* b‘f A%%e 3% 8 0aVaiy ¥y lua
An implicit scheme of interest can be obtaine ' {riun for-ula
(4e242) by considering
(bokoh) unty = (I & alx + Dy + Dalyls "' [T & ¥z « @y + A0VV: jum
If the inverse operator is expanded, the right hand side agrees with
(Lehe2) up to temms in seesnd @4 ferences if
8= Pl =ee
D= pB = ed,
If these values are substituted into (Lekel), and the latter
| written as a product of faotors, we obtain the scheme,
(1« qpBly ety = (1 ¢ pi¥s jun

(lhelse5)

(I = ypiiz uats = (I + ;pBVy jwaey
where va+s 1is an approxisation to upe;e Three siudlar schemes to
(4eke5) can be obtained by interchanging
(1) 2z and Vg,

(41) 4y and ¥y, "

(444) 4x end V3, end &y with Wy,
Although (Leke5) is very similar in appearence to ( , . ) together with
(Le349), it is in fact on order of accuracy higher,

These are the "diagonsl" schemes of chapter 11*
Another im lieit approximation to (4e2+2) can be obtained from the

_
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Jomm

Uaee = (I ¢ alls V) o 0(dy « W) ebalny, « 7,0 0x « %) "

(kolee6) y - \ ,
(T ool oVs) « a(ay « V) ¢ deloy ¢ V) ('s & ¥5) lue

This agrees with (Lehe2) to seeond order differences if
s:bA--o
b = pbe -

and then (Leke6) con be written in fastoriszed forw as

(x -bﬂ(tm +Vy)imey = (1 Oiﬂ(d- * Vz) lug
(bolee?)
(1 -bA(Ac * Vz) uaey = (I O*F(Au + Yy van

where vaes is a first order a prozimation to wee.e OScheme (L.bk.7) 18
the scheme studied in dstail in chapter III,

If we oonsider the hybrid formula (4e2.3), an explicit formula
acourate to second differences can be ob'ained by expanding (iLe.2.3) and
siaplifying through the use of (4e1.2)s The result
(bohoBlunss = [T & [PA(T + pA)is +apa(Lopd)VaopBiymiph (Tuzd)sfolp® (34n4)

(bx oWy )iy lun
4s abtained,

An daplicit ap roximetion to (4Le2.3) is obtuine! Ly considering
(holoe9) unts = [Tonlz + Biy + Dadyla™'[I ¢ o¥x ¢ d'y + doty¥sum
This agrees with (L.2,3) wp - second differences if

8 8 wpA = =0
b e oiph o ol
end (LekeS) may then te urit:an as



/08 .

(bolsat0) (I & 3(I = pB)iyiwmes = (I ¢ pi¥s)um
(I « gpiicjuney = (I ¢ 3 (I o pB)ayivees
where waes i3 not an spproximation to u at any time lLuvels This sthene
is one of the "lateral"” sochemes described in chapter I7, The remsining
mesbers of the "lateral” class of schemes cen be obtained by eonsidering €
different hybrid cxaet so’uticns,
It might be expeoted that accuraey higher then second order could

be obtained by considering & faotorised schene of n more generasl typel

Us g -{{I +0lz »WallI ey« l'gl}"'!oofxsoﬂui.’!muoﬂu}h
but, on expanding, it turns out that this inoresse in scourscy can only
be achieved if the matrices A and B commute, 7:ls scheme will be

considered later,
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&ad Summery of schenes sud their scouracye

At this juncture it is worth gathering toget o the achenes
derdved in this chapter which are likely to be of interest, and of
praotical value in solwvi~g the three types of problem sentioned in
section Lel.

The most sijnificant expliocit schemes are (Le2.1) and (Leis1) which
sre accurate to order hy and (Le3e2), (leke3) and (L,4eB) which are
sccurate to order h®, Although it is genmerally accepted that the most
imjortant exilicit scheme is the Lax Wendroff =mo'hod (hele3), it seems
that formulae such as (he342) and (L.4.8) night well be used at extrenitis
of regions where the centred formula (Leke3) 43 not applicable,

Implicit s8henes of note are (he3e3), (4e3sB), sccurate to order b,
and (Leo301), (4e3e12), (hekeB), (Lebe10), (hets7) scournte to order h®,
Exoept for schenss (4elde3) and (4,3.11) (Wendroff's method) all are
factorizable schemes, The accursoy of the factorised soheves (4e3.8),
(boke5)y (boke7) is order 1 at the initial atep, whe sas schemes (Le3.12),
(Lelee10) are inconsistent with the differential system (Lele1) over the
first step. Care must be taken fa incorporate ths boundery cfnditions
scheme|has no socursey at the first stepe This point is fully
explrined with regard to poiese (he3.12) in chapter II, and with regard
to sohe=e (L.le7) in chapter III,

The original alternmating direction schemes mqunod in a general
paper by DOUGLAS and GUNN (5] did not lose accursoy &t the intermediate

step, and so no boundary modification was required with these schemes.
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Let us now consider which schemes are wmost s:i'ed for each
probleam,

For the Cauchy problem, only explieit schemes c:v applicadle
sinoe no boundary data i3 given, It would a; car that the Lex Vendroff
o thod (Lebe3) is the most suitable,

For the initialebounisry value problem the schemes most sui“sd are
those based only on forward dirferences. In this respect the
alternating ddreotion method (4.3.12) would apps r to be the best,

For the mixed initisleboundary velue problen, nesrly al’ the
schemes are ~p licsble, with the schene (4eh.7) cosbining meximur
stadbility with seoond mér agouragy.
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426 Varisble Coelficionis
If the matrices A and B depend on the space wvarisbles x and y,
we should return % (Le1s3) and use 4t as a starting point for deriving
the approximating difference schemes, It is sinpler, however, to take
the constant oocefIieient difference schemes cbtained from (L.2.1) and
(he242) end sttempt to modify them for the case of variable coefficients,
In faot all the schenes accurate to first order maintain their accuracy.
Of the schenes sccurate to seecnd order, faotorised schemes (heke5)
and (Lele7) maintain scoursey in the same form, wherses (i.3.2), the
Lex Wendroff schese (Aeie3), and Yendroff's scheme (he3e11) retain their
accuracy only if thay are written in a modified forms This consists of
replacing terms like Allsly by AMxBAy and so on, or by evaluating the
satrices at some other x,y node, (This wodification is explained in
chapter II for the oight point alternating direetion uethod),.

s e T R —
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Gal Stabllity

Ve will now consider the s tability of the schemes mentioned in
section he5e It is sssmumed that the schemes have constant coeificients
and that the boundary conditions, if any, are periodiec, If these
conditions are satiasfied then the Fourier transformatio. of the space
variables can be made in the ususl way and the result

Yty = G(8,7 va
obtained where G 48 the asplification natrix of the particular scheme
under considerstion and £,y ere erbitrary real nusbers, Again the
condition for stability, the Lax Richtmyer condition requires
Hesal] & 1 « o(x)

The only explicit sohewmes which are likely to be used extensively
are the central sciwnes (Lebhel) and (hele3) whiech have tis smplification
natrices |

#I(cogfh + comyh) + ip(A singh + Baimyh)
,1? I = p*{ 4%(1=couh) + 2 (1-comh) + :(ABeBA)sinfhetnyh{ + 1p(AsinheBain
' respectively, If A ani B are constant, and if
Ial = aex {12 120l §
where
|A - 1A1| =0

B «21] =0
the former scheme is stable if
(Lhe7el) p & u-h- (GARABEDIAN [7])

and the latter if
(he742) p & m (LAX and WENDROFF [23])
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The one quadrent schemes (Le3e1) and (4e3,2) ere unlikely to de
used as principal schenos in a calculation, but they may be employed at
boundaries where the central schemes are not appliceble, It can be
seen from the anplification matrices, (for example the asmplification
motrix of (helet) is
I « pla(1=c0afh)+B(1=cosyh) |+dp AsinfheBsiyh |,
that these schemesz require AR 0 Le positive definite in order even to de
eonditionally stable, '
When A and B arve warichle matrices, it a;pears that (Le7.1) and
(LeT7e2) still give & guide to the stability of the resyective schemes
although the Laxeigndroff formula now reguires soue airletive condition
like the comsmutation of A and B (22, Experimental res:lts obtained by
BURSTEIN [2], and also those given in chapters II anl ‘17 suggest that
(4e742) 48 in fact too severe a restriction on the mesh rstio in many
cases.
The Tactorised implicit schemes (Le3+8) (with (4e349), (Le3e12),
(bolie5)y (ldra7)y (Loket0)) oan all be written in the form
Balg¥uey = Beirmn

and so the ampliffication matrix for any of the sbove scheses is
G = A3'B3"Bess

where the coefficient matrices are respectively




T e A ———

4T

A yha By, Be
(13 iph) 2 ipra®® (13 ip0) 2 ipne™®
AT Spade(r = pa)e™®) i[(1 3 p8) o (12 gB)e™?)
(To iph) = iphet¥P (X o ipd) = ipe WD
It ;pAl sindh It 5pB 4 sinyh
(1 o iph) = ipae "V HE S 50) o (1 2 pB)e™™)

If the matrices A and P commute, it ocan be shown for these implicit
schemes that
6% = I,
end 80 all the iamplieit faotorizadble sche-es desoridbed here are
unconditionally stables The scheme (4.3.8) also requires that A and B
be positive definite, When the commutation condition
AB = BA
does not hold asalyses similar to those given in chapters 17 snd Il
will verify that the schemes are uncondtionally stable,
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o8 JNumerical soluiieon of implicit gelemess

In order to chtain & numerfcal solution of (ketet) from an
im,licit scheue, it is desirable to use the latter in fectorized fora,
For the 4mplicit schenes (4e3e8); (4e3412), (keheS)y (4ahs10) the
method consists of m & two point formula in the y am.ué-.
followed by a siadler procedure in the x direetion, For the ecentral
fornule (Leke?), the inddvidusl steys in the y end x Alrections
regpectively require the sclutlons of 2 three point formula,

In fact, the solution of a two point veetor formule invelving
satrix coeflicients nay impose conditions on the metxdices A and B as
shown in chapter II, It is quite easy to show that for nethods
(4e348) and (Meke5),y AF the caloulations aro ocarrisd out in the
negative y and x directions reapectively, the eigenvalues of A and B
must satiafy the conditiens

A, B -%. A » -}
respectively, in order that round-off errors oomt\tu-s in the calculation
do not grow, I the goheme (Le3.12) 4s used, it spposrs that the
matrices must either be both positive definite, doth negative definite,
or one positive and one negative definite, whereas schens (Lei.10)
requires B either positive or negative definite and A > -;-. where the
caloulation at the second helf step is performed in th negative x direotic

Although the solution of a three point formuls, =s in the
individual steps of (Leke7) dmposes no conditions om . :nd B, extra
boundary wvalues sust be given in order that the solu ! n ean be
carried cut in the y and x direotiocns respectively. (This method osn
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therefore only be used for the mixedeindtisleboundaryevalue jroblem),
These extra boundory velues are also required by the Lax Vendroff scheme in
a finite x,y region, The additional boundary iaformstion required

oould well restrict the uss of eeutral formulee in many problems,
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2ad _ Commmting Metricep.

Consider now the case where the matriees A0 in the differential

R

are constant and obey the commutation condition

system

AB = BA

Although this case is rarely encountored in practice, it will be of
theoretical interest to exazine spproximations to the exact difference
solutions (Lecet) and (Le2e2)e ‘These squations now tuke the
siapler forms
(4e9e1) uasy = ‘{(I e 02 )1 o Ag)“j un
and
(he942) uats = {(r o 2a)PA o9y ) P o o )iB(; | 'u).“.}r -
reapectively,.

From the form of the above two expressions it can be seen that it
will be sufficient in feot to consider approximations to the quantities:
(4e903) GlBe,p4) = (1 ¢ 2a)™

(haDeh) B(Be, ¥xy pi) = (T o 0a)PA(1 o vy )™ P4
Consider the scalar funotion
(5,0 = (1 ¢ 89
and let us construot the table of Padé approximants to this function

(WALL [39]). A Padd approximation is of the form
R_(8,q)

Pe(2,0) = |:'(;;;y

where ll.(:.q). lt(s.q) sre polynowials in s of degrees & and t resvectively
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such that
f(zyq) = p:(l.q) » 0(2**%)
e will assume that
| i g(0ag) = 1 = 4.(0,9)
W By straightforward algebrn, the Fadl table for (1.2:“ can be derived

and the first few entries are given in Teble 4961

e~ —

| t\\.\ : 0 1 | 2
\ RIS i —— e i f
| © ' I tegs | Nq»q"ﬁui‘ !
e e |
2 1-q2d’(q¢1 L ® '_ 'ﬁ(aﬁ)lﬂiﬂ)(zﬂ)l' |
{ | ! |
| tei(2-q)a¢ tm(ieg) (209"

SRELS lalel

The various difference schemes, which are approximents to (L.9.1)
are then given by
Uty = (M, (0 opa) )™ (6 (82 p0) ) (1 (B y5B) )™* (35, (24 o3B) Jume
This may be written in the form

.t(k.")lt‘ﬁ-ﬂ 2PB Juney = Na(ﬁc .,‘)l'(dﬂ oPBluae
The latter scheme now allows & F.i. type feetorization

My(byypB) Wty = N (2 ,pA)ue

Mo (ls ypi)umer = B (0y ,pB) vaes
(provided a boundery procedure exists), or a D-type fectorized form

EQ ! : : -
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.'(Aloﬂ)'hﬂ = 5.«‘%?‘)'.(50.?5)&

Ho(de ,pA)unts = oo

It ahould be noted that, in the commuting osse, the above
faotorisations held even for explicit and wholly implicit sche es,
Thus the #§ entry, which is aifricult to use in the nomeooumuting case,
oan be applied in the form of a two step factorised se cne illustrated

in Figure 4.9.1
4 A
~rx x
(¢}
ir o
X @ 1) e
Shmixe kelel

Apart from t:is scheme the only new scheme shown in the Padb
table is the sohewe Ff which is sccurate to order h*, This scheme
cannot be used in ., ferm, as a boundary procedure doss not exist
but may prove useful when used in the Detype forwe It can be shown

to be unconiitiona ly steble in the Lamx-Richtayer senso,
Let us tum now to those schemes wilch ardise "rou aprroximations

to (4e9+2) OF course all these derived in section (.. carry through

R N P T T e Y
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and adnit of factorisations, However we shall mot repeat such
schexes here,
Instead wo will oconsider the previously mentioned, nore general
approximation to (4eGe.h) in the form

[Toalec Wal""[1 ¢ 00 ¢ avs)
It omn be shown that » sche e accurate to third order 1s obtained when

s.-a.*(x-,s)(x-*)
h--.-"i-(l o pA) (I 0*)

Once again we are able to deconstrate unconditional stebility in the
L=l sensc,

Since the condition that the metrices commute is rather an

artiriciel one we will not consider this case when the matrices A and B

|

:;
}

are functions of x,y and ts Almost certainly the accurscies deconstrated i

above will no longer be attalned,
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4210 _Co mant
In & series of papers /32 « 37 S7RANG considered the simple

scalar equation

a + *x =0 g const(®0),.

He was able to show that for the solution of an initial boundary value
problen by a scheme which was pot wholly explieit, stability restricted
acouracy to order W' and iu .ot he presented the only ‘wo schenes which
were stable, and attained this order of ascurecy, They correspond to
the ] and P entries in the Padb tadle, Obviouslv in two space

1

|

i
dimensions for the solution of a problem of type (b), we cannot hope, 1
on the basis of Strang's results to obtain a scheme which will be more ]
scourate than order W', What is found, however, is that the 1
anslogues in two space dineunsions of Strang's "best” schemes in one j
space dimension, hold enly for the case of comsuting matrices. It 4
would appear, therefore, that the greatest scocursqy atiainable by a 4
scheme whioh can be used in o physical situsticn (whe:e 4B § BA) 4s
vestricted to order 1*, Since scheme (Leke7) ooibines Loth this !
scourssy -ith umoonditional stadility it would sppear to be the "best" |
attainable.

It should be noted that the above remarks apply only to twoelevel
scheses, There resaing to be considered the failly of multi-level

schemes, This will mot be attespted in this thesis, i




.

[79 .

v



/R0

introdugtion
In this ehapter the numeric:' solution of the hyparbolie system of

Sonsexvation Jawg

p.¥. g-o

where £ = f{u) and g = g{u), will bs considered,

Now methods will be introduced which have sstisfsotory stability
characterdstics, ™™o first is su explicit predictor-scorrector method
which 43 a gemeralisation of a twoegtop formulation of the lLax VWendsoff
method for nonlinesr systems, The remaining meihods are nonl near
analogues of schanes considered in chapters IT ani IIX, The amcoth
incorpeoration of bLoundrry data will be considered in an effort to

mininise the effeots of nonlinear instability sa reported dy PHILLIFS [28]
and RICHTMYER and MORTON [30', ]

"i
'i'
:
4
*1
:
:
3
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aal The Differentisl syates.
The first order nonelineer ,urtisl differential equation written in

ﬂ-uvcrmra:
a * Z.:&..
BNl

is tersed e gongervaotion Jowes It expresses the raet thnt the quantity
of u econtained in any ¥ dimensional hypervolume V of x-spsce, changes

8t o Tate equal to the flux of the veotor (fi,esef,) into v ?j
i

- /m -/f.m

v B

J
where 8 is the bounding surfece of v, and ¥ 43 the normal to th: surface !
drawn inwardse . large musboer of physical laws are conservation laws, i
the quintities u and £ depend ng on the variables which descride the j
state of the physicul system, and perhaps on their d rivatives, In
pertioular if we consider theories which ignore such dissipative

phenomena as viscosity and he:t conduotion, then th: ¢uantities u and

ool S il el el b S L PR o LARNE . 800 il o ss

f are functions of the state varisbles dut mot of il srivatives,

In this chapter we shall be concermed with the ~czes ¥ = 1 eand 2,
slthough 1t 1s most likely that soue of the methods muy be
generalised to an arbitrary mumber of space dimensions, The case ¥ = 1

will be used to serve as sn introduction to the case ' = 2, although

PPt rr, LY

even in the former ¢nse sove new schoues will be introduced,
; If we choose the state verdables as the components of u then

the one dimensional systesm can be put in the forn




"
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(5e101) R + ﬁ =0 u(x,0) = ¢(x)

where u is a veotor of n components and f(u) 4s a veotor valued
function of the components of ue If we carry out the differemtiation
in (5.141), the quasilinear first order system of partisl aifferentisl
equations

(5e1.2) & - A(u)ﬂ = 0,

is obtained, where

A(u) = P

B ..ge

—

is the Jacobian matrix, or gradient of f with res;ect to the couponents

of ue If a genoral system of equations of the form (5¢12) cen be
written in the form (S5e1e1), then we say thaet it can be put into
Sangeryation forme The requirement that the matrix A hus n real
distinet eigesnvalues i, (1 = 1,000n) for all values of u, ensures that
the aystem (5.1¢2) is hyperboliecs The quantitdes #y{i = 1,00em) are
the loosl sound sveeds.

Ve are interested in the initial wvalue  roblen consisting of
(5e1e1) or (5¢142) together with the initial date

u(x,0) = ¢(x)

prescribed on the 1ine ¢t = 0y In practice problems ! sing from
yhysical phenomens are likely to introduce boundary eonditions

on X = ..b “y.

Laatntl Jphi s SEC S S Y SuAu s Ll
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The two dimensionsl snslogues of (5.1.1) and (5e142) sre given by

(5e103) aoﬁog.o

and

(5e104) R - A(u)'* + n(u)'l’l s 0

respectively, whe:¢ .\ and B are the Jacobian matrices of £ and g with
respect to the components of' ue The assumption that nd B have
real distinct eigenvelues, and that they may be simul! neocusly

symaze trised ensures the hyperboldedty of (5e1el)e
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2a< Ixauples of Congervaiion Laws.
The simplest exum;le of a conservation law in ons space
dimension 4s furniched by the scalsr eguation

(5e241) a + 4,!‘ 0 u(x,0) = ¢(x)
This may be written in the conservation form

H B k(nu.) =0
and it 1s & simple matter to verdfy thet solutions of (542.1) satisfy
the equation
(5¢242) u = ¢(x = ut)

The more genc:ecl equation of the form (5.241), namely

ﬂ - Q(G)E =0 u(x,0) = ¢(x)
can likewise be shown to have & solution which satisfies

u = $lu = alu)t)
A solution which satisfies the above egquation is termed a

29t solutign of the squatiom

H - l(\l)g =0, uix,0) = ¢(x)
It is welleknown thet no smooth solution will in gemersl exist
for all time beosuse of the nonelinearity of (5.1.1) 21., Instead

we have to see: Wagh polutions defined by the requiresc:! that

[j ('t“ - -xt’)dnlt - / w(x,0)¢(x)dx = ©
be satisried ior all suooth funotions w which vanish: . |x|et large
enough, The concepts of sot and weak solutions ar: iscussed in
LaXx (18], and NOH and PROTTER [24].

Consider now the equations of one dimension:l gas flow, in

ri
g
i
;
3
i
i
]
[
3
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the fom
B e 2
(5e245) Ft". uyp 300
{.1 N
?
with
W e ; .
B

where p,p,u denote density, pressure and veloeity, and y is the ratio of

the specific heats, This aystem is not in oonservation form, but a
transformation to the now state variables

papy o=wpu® « Py mapu
allows us to write the ocquotions of one dimensionsl gas "low in the

conservation form

(5e246) *% - g = 0

where
P
Ve @ ,
o
and n
b g !
o g

(r-a)-f-;-‘l:-
lotice that this formulation displays the lews of consorvation of mass,
energy and momentum,
In fact, Pricirichs has shown that even if we introduce
magne tohydrodynasic terns into the cospressidle flov equations, the

latter, now called the Iundquist equations, cen de wriiten in

conservation form, [Numericel schemes for the integration of (5.2.6)
have been developed in (24, (8],

|
daal foua o un ok Zoaira b han o o g A AR
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;
In two space dimensions similer simple nonlinear systems exist, i
For example the equations i
ot | “
5o+ olu)gd + v(w)gzt = 0 (4 = 1,2) |
u, (2,5,0) = ¢,(x,5) J :
i i |
have the soft solutions %
ug = @ylx = s (u)tyy = b(vz)t) (4 = 1,2) %
Also the equations of two dimension:l gas flow may bo written in

the conservation form

ReB-B-o

where |
R
W : " g
. i
- £ %S
f= - _
-
g et
0 £ g
A8,
3 |
g= |
0-1)0-@%.'-;-15 1

withm = pu, 2 =pv, o = Pp(u*s®) + P/ye1, and u,v the two velocity




rar

components, As before p and p denote the density an’ pressure
respectively, These cquetions and their mumerical Luto ration are the

subjeet of a paper Ly BURSTIIN [2],

bt abdacdl s hibidot by 5 Al . Ll



Explicit scheses for the muserdcs! solution of the system (5.1.1) J
have been proposed by LiX and WENDROFF [19), and RICHNMYS: [29]. 1In the ]
latter paper, (whioh is an excellent review of sehemes for the solution vj

of (5¢%1e1)) Riohtayer rerwites the LAXWENDROFY gohe e os & mq

. 1

where, as before, q.'- w(ih,mk) and u:'” is an intermediate value, |
In faot, in the sbove formulation, u?" is a first order approximation to ”
l:". The overcll method is correct to second orier,

i
:

= i; - ’/2(’;::. - f:::‘)

1S . e Aahes 448l )

If we use the ap ruximation
(5032) 0™ « i, +ul.,) - V2, - A,)
then we are predicting the value ornr’. eorrwet to oxder h.

The scheme
(30303) W™ = w] ¢ (1ea)u,™ « Ma(b(r2%0 2080 (10p)(2 £ )]
4s a general gorregtor formmle to be used in conjunction with (5.3.2).
It may be regarded as a gemeralisation of the second step in (5.3.1).
If u,™' 1 eliminated from (543.3) by using (5.3¢2) taen for the
resulting formula ‘o Le accurste to order h® the conditions

a =1 b=y

mst be satisfied, Thess conditions are obtained by the usual Tayler
expansions in terms of u and its derdvative at tie  int {(ihyuk),
Thus equations (5¢3+2) and (543+3) together with the -Love oholdce of & and

b give the second order correet predictoregorrector schore:




(5e3eb) "™ = oG, ¢l ) = Pa(ed, -2 )
-:" RN PRI

To investigate the behaviour of o nomlinear finite difference
scheme with respect to growth of round-eoff error, we sssuse that the
concept of stability is a locsl one, and therefore ¢ naller the stability
of the lin:orised version of (Se2eb)s On eldsination of u,"* it een
be shown that (5.3.4) is equivelent in the limearized cose to She schese
(30308 3™ = B o 0200 . ) GO, )
where A is now e constant matrix, Taking Fouricr trensforms with
respeet to the spage vardables in the usual way we obtain the
asplification matyix :

6 = 1 = 8% atn2gn + 28in9h) -lff'-m'pn.

6% = 1 = (pA)® sinn M’f«-hfr-d-‘nh - p*a*)
(where we have assuwed A is symmetric).
The eigenvalues of G%C are less than or equal to one, and the
method is stable, if

pll‘l €1

By a simllar anlysis it osn be shown that the latter condition is
that required for atability of the Lax~Wendroff sche © (J.3.1)e However,
the advantage of the fomulation (5e3e4) will be demonstr-ted when we
turn to the two space dimension case in section 5.8.

The actual implementation of schemes of tho form (5e3e1) or (5e3e4)
involves certain @l ficulties neer boundary pleues., Hethods of
incorporating the boundary data will be considere! in section 5.5.
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ALL the above =othods ere in the gongervetion 4.[le enge fors

» Us®y = Wy + kh.?

L mn}_u-mmwwmmnwmruamuuotm
points such that i all the srgumenta are put equal, the function

‘ reduces to f» Lax heas shown that the solution o' & difference

& equation written in conssrvation form 1s a weak solutdon of the
© nservation law 18 .

r.

|

|

|

£

|
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In a paper meinly concerned with the numerdecn’. sol tion of
problems in fluld dynemics, (8], GARY introduced im licit predictor
corrector schemes whilch are modifications of the basic scheme

‘;'" - -(% A\(ﬁ) (G, = Wiy
Ll e b
OO ) (31 - 3%

= o =P/ (s':l:‘-) (‘zm 5 ":-1)

The above sghoue is derived from the sec:ni oxder implicit scheme
(5ebe2) u§"s PALEY = %) o o] = PAu(el, = 28 )
and has unconditional stability, as may essily be verified, Schene
(5eke2) may not %0 used in general as it requires the solution of
nonlinesr three point recurrence relation,

Considering (5ele2)y 4t would n pear that s more cbvious predictore

(Selset)

eorrector version of it is

(Sebe3) W3 P71 (¢ (ughT )Tl cCug™ i)l
ouf = (9, -0y

- where u;::' is a predicted value of “1:1”‘ sccurats to order h, and
£(n) = n{u)eu.

The overall sche:e ageain enjoys unconditional. stability and may be

extended to two space dimensions in a slightly modified form (see

seotion 5.7).

An intercating point is that u may be obtained by at least

i
two predictors:




-— - - s —

3.

(Suab) g o = P/2ef,, = 23]
o
(5ebe5) ug™'s 4, + o5, ) - V2led, - 22 )
The former is always unstable whereas the latter is stable if the
CouranteFreidriche=levy condition is satisfied, In the solution of
first order ordinary (iffereantial equations of the fomm
¥ = 2(xy)

by predictor-garrector methods, 4t is well Imown that i the predictor
is unstable, the corrector smust be iterated, in order that the overall
method be stable (see (12 )¢ However we shall mainly be interested in
the predictor (Seie5)s

Trouble may sgain be sncountered near boundary planes but
suitable smoothing (see section 5.5) may minimise its effect,

An important difference between (S.uet) and (54445 48 that the
datter is in coaservation form whereas the former ia 2ol

|
:
.
v
1
A
4
‘é
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a2, Sueotiing of Foundery Dats.

Consider the applieation of (5.3¢4) to a problen with bewndary data

given on x = 0,3s Ve impose a grid on the region with §h = a, where h
is the nlhlpnzna.ucuuubamovnmng,d.ﬂ,...cnll
u}.u‘.‘..-.&tm&an:-bnﬂx-ommdﬂh i'o'm
illustrate the picblem of smoothing of bouniary data with res;ect %o
the caloulation of upe: {sve Figure 5.5.1)s

& g ey N
Rl 1+ T
| |

bl ey

(m) e k)

adguce Jedel

The predigtor
(5e501) upmy® = i(ull & W8 ) = ip(ee - 22 )
caloulates the spproximate velue u,"¢' in terms of the known boundary
velues uj end fio The corvecter
ey o, = P (™ - £20) o (o)
hovever requires the boundary value £,°*' (or u™') which of course 1s
not knowm, This difTiculty which 4is present in the esalculation of
uy (4 = 1,80138 = 1,2,300) Wsing (543h) say be oversoss by seversl
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procedures,

Pirst, wo mey 8ot w""'= u*',  This however introduces, in the
eorrestor formula an error which tends to spread through the region with :
timee Thi= may be overcome by iterating the correetor until the iterates
to the values uj'' arc "smooth" or convergent. In difference operstor
notation, this grmerates the scheme

%’ os - Vsed)ue = P/2(0s & ¥2)fa

(5e542) |
J’!ﬂ) LR R ?/“{k‘l](fgz0 fo) k= f,eeed |
‘oul::zof:.‘ The velue of K 4s chosen so that

el - S5V <o

where € is some preassigned anall quantity,
The dhove iteration process may be shown to be convergent by the

following anlysiss Ve shell for ease only sonsider the case of o single

scalar equation, The seqguenee of iterates JN fiet eeek i3 required
to tend to the solution wmwy of the equetion

Uaty = U = T/4(0s @ Vx)(faer ¢ fu)s

If we subtract the asbove equation from the correetor in (5.,5.2) we have 4

W) o wats) = = PA(as o ) (o] - ouy)

If £ is & slowly verylag funetion of u, appreximetion to the above :
equation is ‘mw |

(s = e ) = = B Rt ) (ol - aon)

where i 4s regarded as a constant at the (me1)®® time lovel. Lot

W e W) « uaee

ajbid e LU St Lo D lEL L ARl 4 g L L e s

L Tre T RO TY P el

D AN )

and tharefore
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Oy = = Ai(es # Vs)ey.
Ir&.mtororoms%ltpouumﬂukﬁlml(uaunincthom

to be sero at the boun! ries and the boundary conditions to be periodie)
hba-todhy!k. the following matrix system is sbtained,

o A
?.1 - +’ g
Bgq ™ /lk o e i’i
"
-t o

=A B o
It fellowa that the iterative process will be conve:rgent Aif the
eigenvalues of Ay, given by
Ay = 2481 oo 8% 8 = 1 00elind
are all less than ome in modulus, This requires
olal « 2, |
This condition is satisfied as pla| € 1 for stability, end therefore the ]
muoome'ut.
hdtmﬁnmmuhtommun;'” to the

Ny LR PR L s T IR g

nmdm.iyadimtm. To ensure compatability with
the predictor-cormreetor schene, this value should be obtained with the
Same prinecipsl part of truncation error as the predictor, VWriting
(5e5¢1) in terms of diffeuremce operstars for "', we cbtain

(5e5.3) .;"" # lie =¥ » !)u‘ -’(g‘ * %)

dolidt abh i o i At L) ]
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Using the relation
(1482) = (1e92)""

| bz = Vx(1e92)""
| =V + ¥ & ...
and substituting in (5.5.3) up to second ord:r terms, we obtain the
formula
W o (2« WG - P2 o VE)ED

This hes the same principel part of trumcation error (o order h*) as
equation (5.5.3)¢

Therefore we moy use the formula

(5e50k) g™ = ul & (ul = 28 o 4_,)

'f f. a(f Zf flhz).‘

to supply the missing prodicted walue, Revised stablility requirements
are not necessary s tize formula (5.5.4) is not used more than once
at any time level, Gimiler Doundary predictors c¢un be derived for the
remaining schemes in sections 5.3 and S5.4.

A further method, ;erha;s the simplest of all would be to obtain
the value ol n;"' by an extrapolation of the walues of uy et (3=1,0.0li=t)g

.

“
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226 _Ixplioit Two-Dimensional Cese.
The two=step Lax Vendroff method for the firast order aystea of
conservetion law: in two spac: variables
u - g - g = 0
where £ = f(u), g = g(u), is given in dif crence operator motation by

vasr = 3((% = %+ 2)(by = Yy + 2)JunP/ul (024%5) fue(0y9¥y) gn)

(5e601)
unts = P20 (0 + Va)fasy + (By + Vy)gmes] +um

where ug = u; g ote. (RICHTUYER 129)).
Similarly, the unalogue in two space dimensions of the new
predictor-corrector scheme introduced in section 543 ia given by

h.ﬁ -*l(ﬂa Fye2) (ByaVy+2) un = ’/2[(&0"‘33& + (Lye¥y)gm )

(5¢642) Po B - .
Unts = Un = /4 (Lo #¥z ) (faesefn)o(0yeVy) (goes + @)

Both the above methods are again accurate to second order in h,
Following ‘dchtmyor we will consider the stsbility of the sbove

S L
RaaBoiien i CHAL N |- R L0 Lol

schemos for the system of luld dymanics equations in the nonegonservetive

Eulerian formulation

(54603) §% + AwEE + BEE = 0

where
é
e |¥|
1%
r‘l o . ‘“
Alw)= TSy g 1/' s
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'(') - v ‘/'

oon"_

Ve make the usual Fourder transform of the spaco variables

and intreoduce the notation
C = Asina + Bgligp
Iti.uvtomwatﬁaow\'uaot(:m
(;in'oosh‘ﬁ)i{;' ’%

U +¢

u'=e

where u' -unﬂownmwd-m

let p= ph, and the cijonwvalues of the amplification mairix G of the

lLax Wendroff sohens are then given by
g=1=2" « u(com + cogf),

For the sigenvalues to have modulus less than or eg al to 1, it

follows after sowe sim; le manipulation, that the condition

(546e4) p(lalee) € v2

where |q| - (u® » v‘)* must be satisfied, (RICHTYI: (29)),

A similar anclysis for the new predictor cor:sctor scheme results

in the eigenvalues of the asplification metrix being given by

‘-1-*0*(1 + i(coss + cogf).
After some manipulstion we obtain

lel® = 1 -‘E—(L - (elascio®-p*]

which leads to fhe stabilihy condihion

Ladhhos 2R b o AL S S oy

!
X
&dk&. % P
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139,
ol + 0f ¢ bodsass o)

for all a,fe.

It may be shown that the sinimum of the quentity on the right 4s
one, and therefore for stability we require
(5¢605) pllal + o) €1

A comparison of (Sebek) and (5.6,5) demonstrsites L at the new
jredictor-corrector method has alightly poorer stebili  charseterdstics.

liowever this schers does have an interesting property wiich will be shown

in a numerical execple in seotion 5.8,
In initial bdoundary wvalue probelms, similar procedure to those
developed in segtion 5.5 for the one dimensional case can be ap lied to

snooth the boundary date on the plunes x = 83 ¥y = by The proce‘ure

| involving the iteration of the corrector is again convergent ss a ‘
| similar enslysis shows,.
i-~
|
't? |
| |
k
ii,

!

|
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It is shown in seetion 5.4 that an jmplicit prodietor ecorrector
procedure oan be develop-d for the sslution of the e  imenalonsl
system of conservation laws, In this seotion an ativ. % !s sade to
extend this scheue to tw> space variable probls-a,

The two-dimension:l aoslogue of the sehene (5.4e2) 1a in fect
the alternating direction procedure introduced in Chepter III for the
limar csse. The (ireot extension to the non incer ease no longer
holds as the bouniury incerpeoration procedure given in seetion 3.5 is
no longer walid, However the overell replacement

(umeeoP/h (Cu#¥s ) fnae +(Lyo¥y ) g }0’;“6(%0'5)M(:.;dx)t-u )

(50701) P .’. .
wum = /b (GadVs)tne(0ge¥y) g ¢ AG{AgeVy By (lae¥y ) e’

still has second order scourecy, and unconditionsl stability, I we
introduce a predicted value h.:o (obtained by th: predictor in (5.6.2))
and write the seheme in the split form (U(JAX N0V (4 )8

(1« Puley » 'u)’!(\'::c)')'l:ﬂ «

(5e7.2)
(1o Pulos » ':)h(u::‘)ihﬂ = Wy

where

flu) = salu)en

g(u) = By(u)eu
end H is the expression on the right hand side of equation (547.1),
then the asccuragy is mulintained, The inﬁvduououd‘\h‘:‘ only
introduces an error of third orders The stadbility an:lysis of the
lineorized form of (547¢2) coincides with that given for the scheme
introduced in ehe ter [1I, snd therefore scheme (5.7.,2) is
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unconditionally stable,

An snaloguwous technigque may be used to extend L. schenes
introduced in Chapter II to the nomlinear case, lowever thds time
predicted valuss mey be required for the oints n;:““‘ which ldie
on a grid which interlsoes the main grid, The "diagonzl" schenmes,
however, do not have this drawbasck; ror example, one of the eight
point diegonal schesea for the nonlinear case can be written in the
fors,

vate = §(0aoWs ol )une?/2] (2n 0% ) fa s(by $¥y ) gn
(TespTyBe (vass) sy = (= ip{oufusiygn) vip*iylois
[ToipVaia (unss) Jbavs = tubs

This schese will only be useful if the matrices are positive or

negati e definite.

<M
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228 Jumeries Nogulise

In order to cuspare and contrest the expiieit methods (5eCe1),
(5e642) with the alterncting direction method (5.7.2), test runs were
carried out on the problen

R‘Bk) 0&( Y= 0
with indtial date glven by

u(x,5,0) *(x . y)°®
The theoreticsl solution to this problea is given by
u(u.g).{l-m%.
.= The region undcr conglideration 0 € x, y € 1 was ocovered by a grid
with need spa0ing h = 0%, The three methods were rwn for verious veluss
of the wesh ratio p snl the results for the eriors et the midepoint of
the region are saown in Table 5.8.1.

The results tend 10 show that the three methois have coupershle
scouracy, the altermating diveotion method in gene: . Leing siightly more
apourate.

The effwet of iterating the correetor im the prodictor-corrector

schene seems %o help to danp out the error, but only for swall pe This

:
3

(S D TR S NI ] W AP LT I % TP e e s 7.

2
R

process may be of some value in jrobless where the solitd n of the differentis

equetion is not wellebehaved,
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Antrodugtion.

Extensions of the scheses introduced in

Lthe precseding chapters

are now outlined to gover the oase of more than two s sce ‘imensions.



|

Let us now cunglder the extension of the finite 4difference
scheses introduced in ‘he preceeding chapters, to linear differential
systems of the form

(&1.1)“-4}»*“&

where A,B and C are mm matrix funoti ns of x,y,8 and t,and u is the
required solution vecter, To avoid tedious repetition, we shall restriet
ourselves to a ¢ nsiferction of scheme (3.5.2)
By straightiorward epplication of Taylor's theorea it can be

vorified thet the ormule
(6a142) {Ia-%pcnﬂ (ty # Vy) lIn = %ﬂ-«(ﬁu + ¥y) [In -i,&m(bc + 92) luaty

= (Tn + $90a(8; « 93)1(In + JpBa(ey + Vy))(Tn + fpia(ts + ¥x)lue
is a finite differencs replaceaent of (Ge1.1) with trumeation error of
third order. An anslysis perellel to that given im section 3.6 will
verify the unconditionsl stability of (6.1.2)s In order that eqguation
(6e1e2) midmit of & I,1, factorisation of the forum

In -{!-n(a‘m O'u)m:« = [In oi-k(fsa * Vi) ue

(60143) (In = Rouwe (3 +25) Junts = [In & Baloy + V.) iy

(x -i&ﬂ(nx + %) upe = [Ig 0{‘-‘-(6, * V) el
where Uy and Wess are intermediste velues, the oom utation eondition
' 3C = CB
must be satisfled, This may be verified by elimination of tb.ﬂ. \h.:c
from (6.1.3)¢ Purther, sn sttempt to write the totality of squetions

(6.1.3) for the region (c.f{3e5.4)) will show that there ias nc means of

E—__—__—_._“d_ ! ey Bl Sl 1+ a0l ST e S 13 o,
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incorporating the boundary date in a consistent memme:, (lince the D.%,
factordsation also suifers this ino-nsistency, we mus! twmn to the third
type of faotorisations, the DYJAKONOV form, Formula (< o.1.2) then takes
. the forme

(In = pGass (8 + ¥3) uass = Gue
(6u140)(Tn = Folata(By + ¥y) luaw = vawy

(In = *ﬂo«(ﬁa + 9:) luate = uate
where { is the operator on the right hand side of equotion (6,1.2),
The boundary data may then be inocorporsted sacothly in & nanner
ansloguous to that given in sesction 3.4, Thus the extensions of schece
(3e5¢2) to more then two s s¢e dimensions a: pears to be schieved most
easily when the Defactordsation is employed, Similer conclusions may
be drawn for the extensions of the other schemes given in chapters II snd
iiI, and even for the nonlinesr schemes of chayter Ve

E MmNt ey o ke ga b e Lt al abuge b g o b amis Lk s saaiid i e e e R
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Since the methods developed in this thasis we:o speeifically
desizned to solve the systen

Bogee

(or

ﬂog#g-ﬂ
in the nomelinear case).

they will require comsiderable nﬂhﬂ:-tiou to desl with the more
conplicated ecustion

H = e - % = &(x,y,t,u)

Fowever, in passing, we may note that for the eguation

TP 2 P
the changes are trivisl, For if we employ the D'Jakonov factorisation,

the eighteen point sciene takes the forms
(Tn = £ Buea(ly « V) Junes o (TawiBalty ¢ %) io + Palia + V) vasde
(In = 'li-«(fh e ¥s) lnts = umes
which is again co:reet {0 seeond order in the space i cresent, In faot
ir &= 3(x,y,t) the extension is only slightly more com licated,
It would aypear from experience in using the alternating
direction methods developed in this thesis, that thelr sccuracy compares

favourably with the comuonlye-used Lax Vendrof! method, The main
advantage of the iluplicit mothods is undoubtedly their unrestricted
stability,

It is hoped in the future to test the alisrnating direction
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sethod, and the tw. ex;licit two-step methods, on phys o . problems in

the fields of hydirodymecics and elastielty, especially with regard to their
behaviour in the nelghiourhood of shooks and dise ntin:itlies.

The method of attack in this thesis for the nucerdcal
integration of a partisl differential equetion hes been to reduce the
original ;ertial di ferential equation to a system of first order. In
certain probleas it may be more benefieial to reduce the problem to a
second order aystame For sxanple the equation governdng the vibrations
o a flat plate

» + Q - % + 9 =0
may be reduced to the sccond-order system
s TR ~ 2% =
where w -[&] and A = [ ] The mumerical solution of this

v*u
system has been ¢ nsidered in FAIRW ATHER end GOURLAY (41 ..

e
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