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Abstract

When investigating the dynamics of an animal population, a primary objective is
to obtain reasonable estimates of abundance or population size. This thesis concentrates
on the problem of obtaining point estimates of abundance from capture-recapture data
and on how such estimation can be improved by using the method of plant-capture.

Plant-capture constitutes a natural generalisation of capture-recapture. In a
plant-capture study a pre-marked population of known size is added to the target
population of unknown size. The capture-recapture experiment is then carried out on
the augmented population.

Chapter 1 considers the addition of planted individuals to target populations
which behave according to the standard capture-recapture model M,. Chapter 2
investigates an analogous model based on sampling in continuous time. In each of these
chapters, distributional results are derived under the assumption that the behaviour of
the plants is indistinguishable from that of members of the target population. Maximum
likelihood estimators and other new estimators are proposed for each model. The results
suggest that the use of plants is beneficial, and furthermore that the new estimators
perform more satisfactorily than the maximum likelihood estimators.

Chapter 3 introduces, initially in the absence of plants, a new class of estimators,
described as coverage adjusted estimators, for the standard capture-recapture ‘model
M,,. These new estimators are shown, through simulation and real life data, to compare
favourably with estimators that have previously been proposed. Plant-capture versions
of these new estimators are then derived and the usefulness of the plants is
demonstrated through simulation.

Chapter 4 describes how the approach taken in chapter 3 can be modified to
produce a new estimator for the analogous continuous time model. This estimator is
then shown through simulation to be preferable to estimators that have previously been
proposed.
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Introduction

Capture-recapture methods can be used to estimate population size and other
fundamental demographic variables. The most popular class of models that describe the
behaviour of closed populations were first introduced as a set by Pollock(1974, 1976)
and later more fully described in a wildlife monograph by Otis et al. (1978). Another
important reference for this class of models is White et al. (1982). Each model within
the class requires a sequence of t samples to be taken from the population. After each
sample is taken animals within the sample not previously caught each receive a unique
tag so that they can be recognised if recaptured in a later sample. After each sample is
taken all animals are released. In each of their models Otis et al. (1978) allow the
capture probabilities to vary due to time(t), due to heterogeneity (h) between the capture
probabilities of the different animals, and due to a behavioural (b) response to the traps
used. A total of eight possible models within this class results from the fact that each of
these three factors can be present or absent. The sampling scheme considered within the
Otis et al. (1978) monograph is referred to as discrete time sampling.

There is a continuous time sampling analogue of each of the models described
by Otis et al. (1978), in which the population is under continuous observation for some
period of time, with the animals being seen according to independent Poisson processes.
For this continuous time sampling procedure one animal is seen at a time and animals
seen for the first time receive a unique tag so that they may be subsequently recognised.

Plant-capture constitutes a natural generalisation of capture-recapture. In a
plant-capture study a pre-marked population of known size is first added to the target
population of unknown size. The capture-recapture experiment is then carried out on
the augmented population. Under the assumption that members of the planted
population behave in an identical manner to those of the target population, one obtains,
through sightings of the plants, additional information which can improve estimation of
target population size.

This thesis concentrates on closed populations which behave according to two
of the eight closed capture-recapture models described by Otis et al. (1978). The most
basic model M, is considered in chapter 1, and the important heterogeneity model M,
is considered within chapter 3. While chapter 1 is largely concerned with the case
where plants are present, the emphasis in chapter 3 is on proposing an improved class of
estimators for the standard model M, .

The work contained within chapters 2 and 4, which considers the continuous
time analogues of the models considered in chapters 1 and 3 respectively, could also be
applied in a software reliability context where the population in question is one of errors
or 'bugs' in a computer program.
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The assumption that members of the planted and target populations behave in an
identical manner is central to most plant-capture methodology. Indeed one should only
apply plant-capture methods when there are adequate grounds for believing that this
assumption is a reasonable approximation to reality.

The use of plants to assist population size estimation has been considered in a
number of quite different situations. Change-in-ratio methods have been widely used to
estimate the abundance of animal populations, see Seber(1982, chapter 9). It was
Kelker(1940) who first introduced the idea that the size of a wildlife population could
be estimated from a knowledge of sex ratios before and after a differential kill of the
sexes. Rupp(1966) recognised that the theory was still valid when the ratios are changed
by the insertion of planted individuals. In a software reliability context the idea of
introducing plants into the population prior to sampling has been considered by
Mills(1972), and by Duran & Wiorkowski(1981) who speak of ' deliberately seeding
errors into the software' prior to testing. Laska & Meisner(1993) have described how
the U.S. Census Bureau used a plant-capture method in an attempt to estimate the size
of a selected component population of homeless people. Laska & Meisner(1993) state
that 'there are many potential applications' of their methodology. Martin et al. (1995)
have also investigated using a plant-capture method for estimating the size of the street
dwelling population. Goudie(1995) has considered the use of plants in order to improve
stopping rules for determining , within a specified error probability, when all members
of a target population have been seen. Yip(1996) describes a martingale based approach
for estimating population size from plant-capture data. Norris and Pollock(1996b) have
considered the use of plants in connection with the heterogeneity model M, .

N.B. Although every effort has been made to ensure that the notation used throughout
this thesis remains consistent, the notation used to denote estimators must be viewed as
being specific to each chapter.




Chapter 1 : Plant-Capture Applied to the Model M, :

Discrete Time Sampling Procedure

§ 1.1 : Introduction

This chapter considers how the method of plant-capture may be used to aid the
problem of estimating population size in a multiple capture-recapture experiment when
the population in question behaves according to the standard capture-recapture model
known as M,,. The model M,, is one of the set of models described by Otis et al. (1978)
for capture-recapture data in closed populations.

The discrete time sampling procedure considered within this chapter essentially
constitutes what is known in the literature as a Schnabel Census with random sample
sizes, see Schnabel(1938) or, for a more comprehensive review, Seber(1982). In the
absence of plants the most commonly used estimator for the model M), under discrete
time sampling, is the maximum likelihood estimator, which was first considered by
Darroch(1958) and later by Otis et al. (1978).

§ 1.2 : Sampling Procedure and Assumptions

The sampling procedure may be described as follows. Prior to the
commencement of the experiment it is assumed that the target population, whose size N
we wish to estimate, is augmented by the insertion of a known number R of planted
individuals. Each planted individual is assumed to have received a unique tag prior to
its release. A sequence of t sampling experiments is then carried out on the augmented
population which is assumed to be closed and of size N+R. Independently of other
animals and independently of its previous capture history animal i (i=1,2,...,N+R) is
captured in sample j (j=1,2,...,t) with probability p. After each sample is taken every
animal within that sample not previously marked receives a unique tag before its release
so that it may be recognised on subsequent trapping occasions. The experiment
generates an N+R by t matrix A where

1 ifanimaliis  caught on sampling occasion j
i = {0 if animal i is not caught on sampling occasion j
i=1,2,..,N+R.
1292w b
The sample space is the set of such matrices.




In the absence of plants, the sampling procedure considered here is the one most
commonly used in practice.

Please note that the above implies that the behaviour of the planted individuals is
assumed to be indistinguishable from the behaviour of members of the original
population.

§ 1.3 : The Sufficient Statistics

In order to obtain the sufficient statistics some notation is needed :

Let X% = the number of animals from the target population with capture history

w. For example, for t = 3, X{{) is the number of animals seen on the first

and third but not the second capture periods.
X® = the number of animals from the planted population with capture history

w.
X, =Y X{) = the number of distinct animals seen from the target population.

w
X, = ZXf’ = the number of distinct animals seen from the planted

population.
N.B. 2 is used to represent the summation over all w except w =0.

w

X=X,+X, = the number of distinct animals seen from the augmented
population.
i, = the number of ones in w.
Z,=)i,X{) = the total number of captures from the target population
W

Z,=i,X{ = the total number of captures from the planted population.

Z=7,+7Z, = the total number of captures from the augmented population.

And let {X$} denote the vector of the X{'s, except for the unobservable X§, i=1, 2.

For the moment if we consider only the target population it is seen that the distribution
of {Xﬁ’,Xf_,”} is multinomial, with 2" cells and N trials. Given {X{’} and N one can

easily deduce the unobservable value of X{” so we consider Prob({XS)}) in place of
Prob({X$, X$}).



po{fx2}) =) [T

(N-x )[HX“’!] B

w

where P, denotes the cell probability of capture history w,
and H is used to represent the product over all w except

w=0.

N! N-x ; =i TS
. [0 ] T [p™ (1 -p)™]
—xl)![r[w x&?z] :

NI N-x; Xix® XD
- [(-p) ] o (1-pR
N-x b, 45
(N [1:[ )
N! N-x; x-2y
[(t-p)] P (1-p)
(N -x, [HX“’!
N' z -2y
- X, )!(H Xy
w /

This result was first obtained by Darroch(1958).
In a similar way it may be shown that

PlOb({X(z)}) ) ] p(1-p)" ™.

(R- xz){]:[xif)l

In view of the independence between target and planted populations we may write

po 2.2 Pro{ {0} ()

N! 3 g R! , =
(1 o p)IN ] p 2 (1 _ p)tR

(N- x,)!(nxg)z)p | (R=x,) [HX‘”!

w w

N! R!

s { e

w w

— t{(N+R)—z

which implies that

(N plxm th)) N!

(N=-x,)!
where L(N,p|X$),Xff)) represents the likelihood function for N and p. Hence by the

t(N+R)-z

p*(1-p)

Neyman-Pearson factorisation theorem it is seen that the sufficient statistics for N and p
are in fact x, and z=12, +z,.




§ 1.4 : The Distribution Function of the Sufficient Statistics

The joint distribution function of X, and Z may be obtained as follows :
Prob(X, =x,,Z = z) = Prob(Z = z)Prob(X, = x,|Z = z)
= Prob(Z =z zPIOb( =T S Fe)PioblZ, = |Z=12)
= Prob(Z = z)ZProb( =x|Z, =2;|Prob(Z; =2,|Z =)

Prob(Z, = z,[X, = x, )Prob(X, =x;)
Prob(Z, = z,)

= Prob(Z = Z)Z

Zy

Prob(Z, =z, |Z =7). @.1)

From the above assumptions it is known that

X, ~Bin(N,1-(1- p)‘),

Z, ~ Bin(Nt,p)
and that Z ~Bin((N+R)t,p).
The distribution of Z,|Z is hypergeometric. And we may observe that Z, |X, =X, is the
sum of x, zero truncated Binomial random variables, the probability function of which
is derived in appendix 3.

Now from (1.1) it follows that
Prob(X, =x,,Z=2) =

o g TR LT

(Nt)pzl (1p)™ ((N+R)t)

7% 7

(a3 )[z[u [ lj}(_l)x, ;
- C:]pz(l g :0 (7? ](U + Rt]( 1y -

% =0; L 250N
zZ= X, X;+1, X;4+2,...., tX, + IR,

The joint probability function, given by (1.2), of the sufficient statistics X, and Z has
not previously appeared in the literature for values of R greater than or equal to zero.
However, the conditional distribution of X, given Z has previously been considered in
an urn model context. For R = 0 the conditional distribution of X,' given Z is identical

to the distribution of the number of occupied urns where there is a limit r on the




capacity of each urn, Romanovsky(1934). Charalambides(1981) generalised this result
of Romanovsky(1934) by introducing a control urn of capacity s, where s is not

; 8 4 o ;
necessarily equal to r. When — is integer valued, the situation considered by
+

Charalambides(1981), with R = —S—, is probabilistically equivalent to the one considered
.

here, and so led Charalambides(1981) to derive the conditional distribution of X, given
Z : for values of R greater than or equal to zero.

N.B. The summation which appears in (1.2) is of importance within this chapter and is
considered in more detail in the following section.

§ 1.5 : The 6 - Numbers

The §-numbers are defined as follows

5(x,,z;t,R)=i("})(tj+tRJ(-z)*'"J’,

=0\ J Z
2= Xkt LE 42,00 e IR

Within this chapter these d-numbers are of importance since they appear in the
joint probability function of X, and Z, as given by equation (1.2).

The J&-numbers are multiples of a subset of the Gould-Hopper numbers, see
Gould and Hopper(1962) , Charalambides(1979) and Charalambides and Singh(1988).

Explicitly the Gould-Hopper number is defined as G(z,x,,t,s)=i’[A"'(ty+s)z]y e
x;! “

|
When % is integer valued, the Gould-Hopper number G(z,x,,t,s) = %5(x,,z: t,%).
!

The Gould-Hopper numbers are a generalisation of the C-numbers. The C-
numbers have been extensively studied, see Charalambides and Singh(1988), and are
defined as C(z,x,,t)= —1—'[A"’ (ty)z]y_o . The relationship between the &-numbers and

x,! -
the C-numbers is given by

Clzx,t)= ;(Z—!—IE(X,,z:t,R =0).
J

In order to investigate the distributional properties of the estimators which are
considered further on in this chapter it is necessary to evaluate the é-numbers over
some particular range of parameter values. This can lead to computational problems




since the form of the §-numbers is not desirable from a computational point of view.
That is the alternating sign within the summation means that, for large values of N, R
and t, very large numbers are repeatedly being added to and in particular subtracted
from one another, and this is a major source of rounding error. To help avoid this, and
other significant computational problems, one may consider the following 'triangular’
recurrence relation of the &-numbers.

z8(x,,z:t,R) = (tx, + tR —z+1)8(x,,2— 1:t, R) + tx,6(x, — L, z— L:t,R). (1.3)
A direct proof of this is as follows

(tx, + tR —z+1)8(x;,z — L:t,R) + tx,8(x, — 1, z—L:t,R)

T e vy v o

pary z-1

=(tx, +tR—z+ 1)(0('Z T;R) (tx, +tR—z+ I)E(t‘ J(U:_th}(_l)*n—i

i=0

wlfx, =1Yt+tR :
+t ‘ By
"'2( j ]( z-l)( )

=0

_ ) VA tX]+tR
= (tx, +tR Z+1)(tx,+tR—z+1)( 5 J

+:‘§'01 (1) —j[tj;_thJI:(tx] +tR—-z+ l)[?] - txl(xlj_ 1)]
_ Z(tx, ~Z1- tR)

+§; 1y 1( J(tj;m)—(dHRZ_ZH)[(tx,+tR—z+1-)—txl(*%1:il}
EE T g
(xl+tRj ZXIZ( e J](UHRJ

A

28(x:Z:LR),

tx, +tR
t

Equation (1.3), when R=0, essentially reduces to the recurrence relation of the C-
numbers as given by equation (3.25) in Charalambides and Singh(1988).




The triangular recurrence relation (1.3) along with the initial conditions

tR
6(0,z:t,R) = ( . ), 8(x,,x:t,R)=t" and &(x,,tx, +tR:t,R) =1 (1.3a)

enables one to evaluate the required J-numbers without having to perform any
subtraction operations whatsoever, and hence one can more easily avoid computational
rounding error.
N.B. The first and third initial conditions are easy to show directly. The second can be
shown to hold as follows. Firstly substituting z = x, into (1.3) implies that

8(x;,x,:t,R) =t8(x, - 1,x, - 1:t,R), then after observing that 6(0,0:t,R)=1 it is easy to
see that &(x,,x,:t,R) =t for all x, 2 0.

Comments

Using (1.3), one can show that a similar 'triangular’ recurrence relation exists
between the probabilities of the joint distribution of X, and Z, given by equation (1.2).
It can be shown that

Py, = Z—(lli?)[(tx, +R=z+ 1Py 5 +(N =%, +1)Py 5], (1.4)

where Py , =Prob(X, =x,,Z=2z).

It is also straightforward to show that (1.4) is subject to the initial conditions

IN+tR-2z tR
P, =p*(1-p)""" (Z) 2=0,1,2,....,tR.  (1.4a)
N +R—x
Pe o =(X jp" (1-p)™ e x,=0,1,2,......,N.  (1.4b)
1

N i
and le.,xlm:(x )p""““(1~p)‘“‘*. X, =0,1,2,......,N.  (1.4¢c)

1

Again in an attempt to avoid numerical computational problems, one can determine the
initial conditions (1.4a) and (1.4b) using the following recurrence relations :

: tR—z+1

Q) Py,= i f’p)[ : :IPO'Z_I, z=1,2, .., tR.
4 t N-x, +1

(ll) PX,.Xl = (1 _pp)[ X: :'le-l.xl-l > X = ], 2, ..... 5 N.

Where the appropriate initial condition for both (i) and (i) is Py =(1-p) ™™,

( Technically (1.4¢) is not an 'initial condition', since the Py . . can be generated

using (1.4) along with (1.4a) and (1.4b). (1.4c) is included for completeness. )



§ 1.6 : The Maximum Likelihood Estimator

From equation 1.2 it follows that the joint likelihood for N and p is given by
N! {(N+R)t—z

L(N,p) o< ——p*“(1— : 1.5

(N,p) (N_xl)!p( p) (1.5)

This is maximised over p as follows :

_g_];_ < —pz(t(N % R) L Z)(l - p)t(N+R)—z—l 4 sz—l (1 - p)l(N+R)—-z

equate to zero to obtain P :

p*(t(N+R)-z)(1—- p)'(N""R)"'l =2p*'(1- p)l(N+R)—z
p(t(N+R)~-z)=z(1-p)
e s, 0 0 B
- PEN+R)

p is now substituted into (1.5) to obtain the profile likelihood for N :

NI % z 2 (N+R)t-z
.l (N—x,)![t(N+R)] [1_ t(N+R)] ’

It is more convenient to consider the log-profile-likelihood from this point. It is easily
shown that the log-profile-likelihood may be written as

1(N) o< 1{@?;—)‘} — t(N+R)In[t(N +R)]+[t(N + R) — z]ln[t(N + R) ~ z]. (1.6)

Due to numerical complications, which can occur for larger values of N, it was found
that the most satisfactory way of calculating the value of the maximum likelihood
estimator is as follows :

After observing that the likelihood function is uni-modal it is seen that N= k,
where k is the smallest integer in the set {x, Xy LR+ 2 } to satisfy the condition

L(k)>L(k+1)
& 1(k) > 1(k +1)

ln[(k—idx—)’jl — t(k +R)Inft(k + R)]+[t(k + R) - z]In[t(k + R) — z]

5 ln[ﬁ%} —t(k+1+R)In[t(k + 1+ R)]+{t(k +1+R) —z]In[t(k + 1+ R) — z]

from (1.6)

= m[(kil)s]—ln{(k(f;‘lzl)‘]

> t(k+R)In[t(k +R)]-[t(k + R)—z]in[t(k + R) —z]
— t(k+1+R)In[t(k + 1+ R)]+[t(k +1+R) —z]Inft(k + 1+ R) - z]




o h{%}[t(k+R)—z]1n[t(k+R)-z]—t(k+R)1n[t(k+R)]

> [t(k+1+R)-z[ln[t(k +1+R)—z]-t(k+1+R)In[t(k +1+R)].

N.B. Once N has been determined, this value may then be used in the calculation of the

maximum likelihood estimate of p: p= .
t(N+R)

§ 1.7 : A Peterson-Type Estimator

This section introduces an estimator of population size which is only dependent
upon the observed numbers of distinct animals seen from the target and planted
populations. The estimator is derived from the conditional distribution of X, given X.

From the assumptions stated above one may deduce that
X, ~Bin(N,1-(1-p)'),
X, ~ Bin(R,1~(1-p)')
and that X ~Bin(N+R,1-(1-p)').
It is then easy to show that the distribution of X,|X is in fact hypergeometric with
probability function

Prob(X, =x,[X =x)= (N]( % )/[N N R], max(0,x — R) £ x, < min(N, x).

X AX-X X

The likelihood function for N based on this probability function is maximised by the
Peterson-type estimator N, =RX,/X,. To avoid introducing an estimator which
becomes infinite when X,=0, the estimator N, is now slightly modified. That is from

this point consideration is given to the estimator NP =[0.5+%—2)1(T‘} where [.]
2

denotes the integer part of.




§ 1.8 : A Conditionally Unbiased Estimator

This section introduces the Conditionally Unbiased Estimator Nu, which is an

estimator of population size N defined by

Nu:(z+1)5(xl,z+lzt,R)_(Rt~z)’ w0
t 4 dx.zLR) t
o tj+tR ,
where  6(x,,z:t,R)= (x‘ J( ¥ )(_1)":—) ,
=0\ J z

as defined in section 1.5.

This Conditionally Unbiased Estimator (CUE) was derived from the conditional
distribution of X, given Z. As previously mentioned in section 1.4, the conditional
distribution of X, given Z has appeared in the urn model literature.
Charalambides(1981) considered a situation which in some respects may be described
as a generalisation of the one discussed here - this being the reason why the conditional
distribution of X, given Z can be obtained from his work. In addition,
Charalambides(1981) introduced an estimator which is essentially equivalent to Nu :
for values of R geater than or equal to zero. He shows it is a minimum variance
unbiased estimator with respect to the conditional distribution of X, given Z, provided
that Z=N.

In the absence of plants an estimator very similar to Nu has previously been
considered in a capture-recapture context : Pathak(1964) derived an estimator in terms
of X, and n={n,,n,,....,n, }, where the n; are the number of animals seen on the ith
sampling occasion. Pathak(1964) assumed the n, to be known constants. A special case
of Pathak's estimator is obtained when all the n; are equal to one : in this situation
Berg(1974) showed that Pathak's estimator reduces to a ratio of Stirling numbers of the
second kind. This latter result is consistent with the work of Harris(1968). Berg
continued his work on Pathak's estimator ; a problem associated with the estimator of
Pathak(1964) is that it can be very difficult to compute : being a ratio of two rapidly
growing sumations. To overcome this problem, in the situation where all the n,; are
equal to one, Berg(1975) derived a recurrence relation which enables one to more easily
evaluate the estimate produced by Pathak's estimator. In Berg(1976) the result for this
latter special case was extended to include the general multiple-capture census. These

recurrence relations for Pathak's estimator were given as functions of X, and
n={n;,n,,...,n,}. The work of Berg(1974, 1975, 1976) provided the motivation for

much of the work presented within section 1.8a of this chapter and of section 2.10a in
chapter 2.
In order to prove that, provided that the condition Z >N holds, N, is in fact

unbiased over the conditional distribution of X, given Z, as a first step and to make the
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following proof more straightforward, the probability function of X, given Z is
obtained explicitly :
Prob(X; =%, Z=12)

Prob(Z = z)

N -

o A\™

- Nt + Rt i
IR

This follows from equation (1.2) and the fact that Z ~ Bin(Nt+ Rt,p). Hence the

probability distribution function of X, given Z can be written as

N)S(xl,z:t,R)

e
Prob(X, =x,|Z=z)= I(Nt p Rt)
z

This is essentially identical to the probability function (2.8), on page 604 of
Charalambides(1981).
Now the expectation of N, taken over the conditional distribution of X, given Z is

Prob(X, =x,|Z=2)=

(1.8)

given by

E(N, )= ZN Prob
—2((‘? - (5 pontx ==

X

(X,
)

B (z 1)5(xl,z+1tRP.Ob(xllz)}_(Rtt—zJ
)

U, 1) xl,z
X

=x,|Z=2z)

using (1.8)

N o 't,R
(z +1 6(x1,z+1tR (5 =LE) _(Rt—z)
8(x,,z:t,R) (NH'RtJ t
z

N
)6(xl,z+l:t,R)

i (ZH);(}(l (Nt+Rt) "(Rtt_z)
_ E‘“:i“) o)

Nt+ Rt Nt + Rt t
z+1

(a2 K=

=N.




This shows that N, is unbiased over the conditional distribution of X, given Z,
provided that the condition Z = N holds. Furthermore, again provided that Z = N, since
X, and Z are sufficient, it follows that Nu is the minimum variance unbiased estimator,
Rao(1952).

In view of the fact that population size N is integer valued, in later sections
consideration is given to the following slightly modified version of Nu :

& = O5+(z+1)6(x,,z+1zt,R)_(Rt—z)
L ' t 8(x,,z:t,R) t §

where the square brackets have been used to denote the integer part.

§ 1.8a : A Note on the Evaluation of the CUE

Direct use of equation (1.7) to evaluate the estimates produced by the estimator
Nu can often be difficult, and involve very cumbersome computation. This is due to the

fact that the &-numbers, present within (1.7), grow rapidly with increasing arguments.
To overcome this computational problem, a recurrence relation linking the Nu is stated

and proved. To make the following proof more easily read some shorthand notation is

necessary.

Let N =K =(z+1)5(x1,z+lzt,R)_(Rt—z)
SR WA t 8(x,,z:t,R) t

and let 8, .= 0(x;,Z:t,R).

The N, , are then subject to the following recurrence relation

N 3 tNx,-l,z-l +Rt'—Z+1 (N ) (1 9)
=X —~ XK'} .

e T UAN, g FRE—z ] e

with initial conditions N,,.=0 for z=0,1, 2,...., (R, (1.10)

and N, =%[2Rt+tx, —x,+t+1]  for x,20. (L11)

12




Proof of (1.9) :

tN, .20 TRE—2z+1
X+ (le,z-l = xl)
tN, ,,+Rt—=z+1

Xy.2-1

)

6){ -1,z
z————~—~Rt+z-1+Rt—z+1 (

. o) -
i o %y -1,2-1 Esxl.z _(Rt Z+1)—x1]
2% _Rt+z-1+Rt—z+1 ' Onai ¢
Xp,2-1
5)( -1, 6)& z-1 (Z5K % (txl +Rt—z+ 1)6)! 7-|)
=x + 1-1,2 1 1 1%
l 6x|-l.z—l 6)([.7, tax.,z-l
3. ., (z&x . —(tx, +Rt—z+1)8, z_l)
P Xl + 171 13 i
t6x z ax -1,z-1
1 -1
S, 4 (txlax | z-l)
e ing (1.
! t(‘)'xl z 5)(“]'“ using (1.3)
" X,0,, .1,
=X
P
((Z+1)5x.,z+1 ~(tx, + Rt —2)8, z) _
=X; + 5 = using (1.3) with z replaced by z+1
X2
5 (z+1), (%, +Rt—2)
.. t
i (Z+ 1)8;: 241 . (l{t il Z) "
t 1

(z+lj - (Rtt—z)

Proof of (1.10) :

N =(Z+1)60,z.” _(Rt'—Z)
a t 60, t

Rt z Rt
=(z+1 z+1 7 Rt—

)

i
L
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Proof of (1.11):

As a first step in this proof it is necessary to prove the identity
L5 |
By nn =%[2Rt+tx, -x,]. (1.12)

The identity (1.12) may be proved by induction :
Anchor : (1.12) is clearly true for x, =0, since §,, =Rt.

k
Assume true for x; =k, i.e. assume &, ,,, = —t:—z—[ZRt +tk — k].

Then

B = k—iz[(t(k F 1)+ Rt = (k+2) +1)8, o + K+ 18, 1] using (1.3)
= E—i—i[(tk +t+ Rt —k =1t +t(k + l)£2k—[2Rt +tk— k]jl using assumption
- 2(;": 55(20tk 1+ Re—e= 1)+ (k+ DR+ )]
= 2(1"::2) [3tk +2t — 3k — 2+ 4Rt + 2kRt + tk* — k?]
” 2(: ) [(k+2)(2Rt + t(k +1) - (k +1))]

k+l

t2 [2Rt + t(k +1)— (k+1)].

This shows that, if (1.12) is true for x, =k, then it must also be true for x;, =k +1.

Since it has been shown that (1.12) is true for x, =0, it follows by induction that (1.12)
holds for all x, 2 0.

The proof of (1.11) may now be completed :

—_ (xl +1) 0y i __(Rt—xl)
e t S t

XXy

t*
=(X1 +1)7[2Rt+txl —Xl]_(Rt_xl)
t o t
= zit[(xl +1)2Rt+tx, —x,) 2Rt —x, )]

1
=—[2x, Rt +tx? — x,2 +tx, + X
2t[ I 1 1 1 1]

=%[2Rt+txl—x,+t+1].
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§ 1.9 : A Comparison of All Three Estimators

In order to compare the performance of the three estimators which have so far
been discussed we consider their mean, standard deviation and root mean square error
conditional on the event C={Z>X,}. This conditioning is necessary since the
maximum likelihood estimator N yields infinite estimates when Z = X,. It is important
to note however that both the Peterson-type estimator IQI,, and the CUE Nu produce
finite estimates with probability one. The unconditional performance of N, and N, is
considered later on in section 1.10.,

Conditional on the event C = {Z > X,}, the mean, standard deviation and root
mean square error of each estimator are presented in tables 1.1a,b,c, 1.2a,b,c, 1.3a,b,c
and 1.4a,b,c. These tables summarise the performance of the estimators for each
combination from the following factorial design :

0
10
0.05
N—stt—lox =0.10 X R—-lo
~ g A 9"0'20 = e
100 20 ' 50
100

Note however that, for each value of population size N, only values of R up to and
including N are considered,; this is done for obvious practical reasons.
The notation used within each table is as follows :

Statistics
exp. = mean or expectation.
s.d. = standard deviation.
rmse = root mean square error.

P(inf mle) = 1-Prob(C) = Prob(C) = Prob(Z = X, ), which is the
probability of the maximum likelithood estimator
producing an infinite estimate.

Estimators
X1l = X,,  the number of distinct individuals seen from the
target population.
P = Np, the Peterson-type estimator of section 1.7.
CUE = N .» the conditionally unbiased estimator of
section 1.8.
MLE = N, the maximum likelihood estimator of section

1.6.
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It is straightforward to obtain the distributions of both N and Nu given C. In
order to obtain the conditional distribution of the Peterson-type estimator lQI,, given C
we need to derive the conditional distribution of X, and X, given C. This may be done

as follows :

C is defined as being the event {Z > X, }.

Let C be the complementary event {Z =X, }.

C occurs & X,=0 and each animal in target population is seen at
most once.

Now Prob(X, =0)=[(1~p)]". (1.13)

( This follows from the fact that X, ~Bin(R, 1-(1-p)').)

Let Y, = the number of sightings of animal i, it follows that Y, ~ Bin(t,p).

It may then be observed that
Prob( each animal in target population is seen at most once )

N
= [ Prob(Y, <1)

=1
1N
=[1-p+w)i-p)"]" (1.14)
Use of (1.13) and (1.14) implies that
Prob(C) =1- Prob(C)
N

=1-[(-p) ] [a-p+w)1-p)""

Now
Prob(X, =x,,X, = x,|Z> X, ) = ProbiX, 1:;{1;’(}2(2:;2),2 2 %)
1
_ Prob(X, =x,,X, = X, )Prob(Z > X,[X, =x,,X, = x;)
Prob(Z > X,)
_ Prob(X,=x, )Prob(X,=x, )Prob(Z>X,[X,=x,,.X,,=x, )
Prob(Z>X,) '

It is clear that Prob(Z S| X =% xz) =1if X, >0.

When X, =0 it may be observed that Z|X,X, = Z|X, . It is known that the
distribution of Z, |X1 may be characterised as being the sum of X, zero truncated
Binomial random variables, the distribution of which is derived in appendix 3.

Explicitly the probability function of Z,|X, is given by

7 (1 _ K175
Prob(Z, = zI|X1 =X, ) = p(#)————5(7(,,21 50

[1-(-p) "
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It follows that
Prob(Z > x,[X, =x,,X, =%, ) =Prob(Z, > x,|X, =x,)
=1-Prob(Z, =x[X, =x,)
e Lp)m_:l S
[1-(-p)["
= |- i (1 — p)mx " % using 1.3a.
[1-(-p)|"
Using the notation P(C)= Prob(Z > XX, =x,,X, = xz) then allows one to write :
N (T aN-x R T2 (TR
8 ) NN ) T () e
P(C) ’
0,.,2,.,N for R>0
* ={ 1,2,..N for R=0’
1,2,...R for R>0,x,=0
X, #4019, R. Toif R>O.% >0,
0 for R=0

(x1 » Xy ;t,O)

Prob(X,=x,,X,=x,[Z>X, )

1 for X,>0
o, Xy~ Xp (1 X)X
WhCI'C P(C)= l_t P (J‘_p) fOI’ X2=O
[i-0-p) "

and  P(C)=Prob(Z>X, }=I-{(1-p) | [(--p+p)(i-p) ] .

§ 1.9a : Discussion

Let us firstly compare the performance of the Peterson-type estimator IQIp to that
of the CUE Nu ; the comparison between these two estimators is straightforward in
situations with or without plants. In the absence of plants , i.e. when R = 0, since ﬁ’p
reduces to X, the number of distinct individuals seen from the target population, one

would expect Nu to clearly outperform N o+ This is broadly true, in that for the great

majority of situations considered, when R = 0, the CUE generally possesses both a
better mean and root mean square error. In the remaining three situations where the root
mean squate error of ﬁu is marginally greater then that of Np, the CUE is less biased.

When sampling with plants, i.e. when R > 0, the CUE is again seen to be clearly a better
alternative to IQIP. When R>0 both estimators have very small bias. However the

estimator I:Iu is in almost all situations less biased than IQIP, and where its bias is worse
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the difference is minimal. The standard deviation of ﬁI“ is always less than that of Np,
the difference between these two statistics being appreciable when the number of plants
is small relative to population size. In terms of root mean square error, when R > 0, IQIB
is uniformly better than Np ; the root mean square error of Nu is more appreciably

better than that of ﬁp when R is small relative to N.

In situations where only a very small amount of information is available the
maximum likelihood estimator N has a tendency to be positively biased, sometimes
extremely so. This is most noticeable when considering the larger population sizes. In
contrast to this the CUE tends to be negatively biased when only a very small amount of
information is present. As more information becomes available both N and N, each
perform extremely well in terms of mean , with IQIu on all but a few occasions being the

less biased of the two. With regard to bias, it appears that, of the two estimators N and

A

N, , the CUE behaves in a far more desirable way. To illustrate this consider table 1.4a,

in which N = 100 and p = 0.05. Consider the situation where R is equal to zero : for t =
5, 10, 15 and 20 the mean values taken by N are respectively 115, 108, 102 and 101 ;
whereas the corresponding mean values taken by ﬁu are respectively 80.6, 99.9, 100
and 100. This shows how the bias of the estimators can alter as more information is
gained through additional sampling occasions. To show that the estimators respond in a
similar way as information is gained through the planted individuals consider the
column giving results fort =5 : for R =0, 5, 10, 25 and 50 the mean values taken by N
are respectively 115, 123, 122, 111 and 105 ; whereas the corresponding mean values
taken by Nu are respectively 80.6, 92.0, 97.1, 99.9 and 100. These examples highlight
in particular the general feature that the mean of the CUE improves uniformly with
more information whereas that of the MLE is less predictable.

In all but a few situations, the CUE exhibits a smaller standard deviation than
the MLE. In particular, when the number of sampling occasions is small the standard
deviation of IQIll tends to be significantly smaller than that of N. The MLE only has a
smaller standard deviation than that of ﬁu in a few situations, wherein p = 0.20, and
notably in these situations one would expect to see on average at least 96% of the target
population.

Since, on the whole, the CUE tends to posses both a smaller absolute bias and
standard deviation, it necessarily follows that IQTu usually also has the smaller root mean
square error. When only a small amount of information is available IQIU, in terms of root
mean square error, is seen to significantly outperform N. Whereas, as more information
is gained the two estimators are seen to behave more closely in terms of root mean
square error, although again with Nu tending to be ahead.
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In the above discussion a deliberate attempt has been made not to place too
much emphasis on mean square error. This being due to the fact that mean square error
is known to reward negative bias. So that when only a small proportion of the
population is seen during sampling, that is when Nu is negatively biased with 'small’
variance and N is positively biased with 'large' variance, one would expect mean
square error to perhaps unfairly favour the estimator ﬂu. It is true that this can
occasionally happen : for an example consider table 1.2a. When N =25, p=0.05, R
=5 and t = 5 the mean, standard deviation and root mean square error of Nu are
respectively 18.1, 9.47 and 11.7; whereas the corresponding values for N are
respectively 26.2, 17.4 and 17.4. In this situation, on the basis of root mean square error
alone, one would choose the CUE, however it could be argued that an alternative loss
criterion which places more weight on the mean of an estimator might more sensibly
favour the MLE. Examples of this type however are few and far between. Generally the
mean of N, is as good as or better than that of N, and as a result of N, also tending to
have a smaller standard deviation, it may be concluded that one should always use the
CUE in preference to the MLE.
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Table 1.1a

N =10
p =0.05 5 10 15 20
R | Estimator | exp.| s.d. | rmse| exp. | s.d. | rmse| exp.| s.d. | rmse | exp. | s.d. | rmse
0 X1 296 | 1.24 | 7.15| 440 | 146 | 5.79 | 554 | 1.51 | 471 | 6.48 | 1.49 | 3.82
P 296 | 1.24 | 7.15| 440 | 146 | 579 | 554 | 1.51 | 471 | 648 | 1.49 | 3.82
CUE 393 | 232 | 6.50 | 6.63 | 3.31 | 472 | 846 | 3.51 | 3.83 | 9.47 | 3.32 | 3.36
MLE 430 | 3.02 | 645] 792 | 503 | 544 | 979 | 544 | 544 | 104 | 495 | 4.97
P(inf mle) 0.7957 0.4063 0.1534 0.0465
5 X1 231 1.33 | 780 | 4.03 | 1.55| 6.17 | 537 | 1.58 | 4.89 | 6.42 | 1.52 | 3.89
P 656 | 511 | 6.16 | 9.24 | 590 | 595 | 9.93 | 536 | 536 | 10.0 | 4.50 | 4.50
CUE 6.60 | 454 | 567 | 9.27 | 5.00| 5.05 | 9.87 | 418 | 4.18 | 10.0 ] 3.25 | 3.25
MLE 930 | 7.64 | 7.67 | 11.3 | 8.12| 822 | 10.6 | 6.08 | 6.11 | 10.0 | 4.10 | 4.10
P(inf mle) 0.2207 0.0313 0.0033 0.0003
10 X1 227 | 132 | 7.84| 401 | 1.55] 6.18 | 537 | 1.58 | 489 | 6.42 | 1.52 | 3.89
P 863 | 674 | 6.88] 995 | 596 | 596 | 10.0 | 453 | 4,53 | 10.0 | 3.56 | 3.56
CUE 852 | 6.14 | 631 | 9.87 | 526 | 526 | 996 | 3.84 | 3.84 | 9.99 | 2.93 | 2.93
MLE 11.6 | 105 | 10.7 | 11.0 | 7.57 | 7.64 | 10.1 | 4.56 | 4.56 | 9.77 | 3.16 | 3.17
P(inf mle) 0.0612 0.0024 0.0001 0.0000
Table 1.1b
N =10
p=0.10 5 10 15 20
R | Bstimator | exp.| s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | rmse | exp. | s.d. | rmse
0 X1 449 | 147 | 571 | 657 | 148 | 3.73 | 7.95 | 1.28 | 2.42 | 878 | 1.03 | 1.60
P 449 | 147 | 571 | 657 | 1.48 | 373 | 795 | 1.28 | 242 | 878 | 1.03 | 1.60
CUE 6.62 | 3.10 | 459 9.38 | 3.21 | 3.27 | 997 | 231 231 | 10.0| 1.57 | 1.57
MLE 7.60 | 443 | 504 102 | 493 | 493 1 994 | 3.09| 3.09 | 9.61 | 1.72 | 1.76
P(inf mle) 0.4275 0.0467 0.0025 0.0001
5 X1 411 | 1.55 | 6.09 | 6.51 | 1.51 | 3.80 | 7.94 | 1.28 | 2.42 | 8.78 | 1.03 | 1.60
P 9.27 | 5.82 | 587 10.0 | 440 | 440 | 10.1 | 3.02 | 3.02 | 10.1 | 2.16 | 2.16
CUE 929 | 4.82 | 487|999 | 3.20| 320 | 999 | 2.02 | 2.02 | 100 | 1.34 | 1.34
MLE 113 | 799 | 8.09] 10.1 | 3.98| 3.98 | 9.64 | 2.12 | 2.15 | 9.55| 1.43 | 1.50
P(inf mle) 0.0307 0.0002 0.0000 0.0000
10 X1 410 | 1.55 | 6.11] 651 § 1.51 | 3.80 | 794 | 1.28 | 2.42 | 878 | 1.03 | 1.60
P 9.96 | 585 | 585 10.1 | 3.47 | 347 | 10.1 | 230} 230 | 10.1 | 1.63 | 1.63
CUE 990 | 513 | 5.13| 10.0 | 2.88 | 2,88 | 10.0 | 1.88 | 1.88 | 10.0 | 1.29 | 1.29
MLE 109 | 743 | 747 9.81 | 3.10| 3.11 | 959 | 1.92| 1.96 | 9.51 | 1.36 | 1.44
P(inf mle) 0.0022 0.0000 0.0000 0.0000
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Table 1.1c

N =10
p=0.20 5 10 15 20

R | Estimator | exp.| s.d. [ rmse| exp.| s.d. | rmse| exp. | s.d. | rmse| exp. | s.d. | rmse
0 X1 678 1 146 | 3.53| 893 | 098 | 145 | 9.65 | 0.58 | 0.68 | 9.88 | 0.34 | 0.36
P 678 1 146 | 3.53 | 893 | 098 | 145 | 9.65 | 0.58 | 0.68 | 9.88 | 0.34 | 0.36
CUE 9.58 | 3.08 | 3.11| 998 | 144 | 144 | 986 | 0.75]| 0.76 | 9.90 | 0.35 | 0.37
MLE 102 | 450 | 451 959 | 1.56 | 1.61 | 9.69 | 0.63 | 0.70 | 9.89 | 0.34 | 0.36

P(inf mle) 0.0475 0.0001 0.0000 0.0000
5 X1 672 | 148 | 3.60 | 893 | 098 | 1.45 | 9.65 | 0.58 | 0.68 | 9.88 | 0.34 | 0.36
P 10.1 | 420 | 420 | 10.1 | 2.00| 2.00 | 10.0 | 1.07 | 1.07 | 10.0 | 0.60 | 0.60
CUE 10.1 | 3.06 | 3.06 | 100 | 1.29 | 1.29 | 985 | 0.73 ]| 0.75 | 9.89 | 0.34 | 0.36
MLE 100 | 3.76 | 3.76 | 9.52 | 1.33 | 1.42 | 9.66 | 0.60 | 0.69 | 9.88 | 0.34 | 0.36

P(inf mle) 0.0002 0.0000 0.0000 0.0000
10 X1 672 | 148 | 3.60 | 893 | 098} 1.45] 9.65 | 0.58 | 0.68 | 9.88 | 0.34 | 0.36
P 101 | 330 | 3.30| 10.0 | 1.52 | 1.52 | 100 | 0.84 | 0.84 | 10.0 | 0.48 | 0.48
CUE 100 | 274 | 274 100 | 1.21 | 1.21 | 980 | 0.70 | 0.73 | 9.89 | 0.34 | 0.36
MLE 9751295129} 950 | 1.27 | 1.37 | 9.66 | 0.59 | 0.68 | 9.88 | 0.34 | 0.36

P(inf mle) 0.0000 0.0000 0.0000 0.0000
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Table 1.2a

N =25
p=0.05 5 10 15 20

R | Estimator | exp.| s.d. | rmse| exp.| s.d. | rmse | exp. | s.d. | rmse | exp. | s.d. | rmse
0 X1 624 1 203 | 189} 102 | 241 | 150 | 134 | 248 | 11.8 | 160 [ 2.40 | 9.28
P 624 | 203 | 189 102 | 241 | 150 | 134 | 248 | 11.8 | 16.0 | 2.40 | 9.28
CUE 115 | 591 | 147| 21.2 { 8.89 | 9.65 | 24.5 | 835 8.36 | 25.0 | 6.39 | 6.39
MLE 151 | 953 | 138 | 27.1 | 155 | 156 | 27.5 | 134 | 13.6 | 259 | 8.44 | 8.49

P(inf mle) 0.5648 0.1052 0.0092 0.0005
5 X1 574 | 209 | 194 100 { 245| 152 | 134 | 249 | 11.8 | 16.0 | 2.40 | 9.28
P 175 | 11.0 | 133 | 23.7 | 13.5| 13.6 | 248 | 122} 122 | 25.0| 10.1 | 10.1
CUE 18.1 | 947 | 11.7| 244 | 104 | 104 | 250 | 7.68 | 7.68 | 25.0 | 5.52 | 5.52
MLE 262 | 174 | 174 287 | 172 17.6 | 262 | 9.99 | 10.1 | 252 | 6.14 | 6.15

P(inf mle) 0.1567 0.0081 0.0002 0.0000
10 X1 568 | 209 | 194 | 10.0 | 245 152 | 134 | 249 | 11.8 | 16.0 | 240 | 9.28
P 22,1 | 143 | 146 | 249 | 129 | 129 | 250 | 962 | 9.62 | 250 | 7.44 | 7.44
CUE 22.1 ) 121 | 125 249 ) 996 | 996 | 250 | 6.85| 6.85 ( 25.0 ) 5.09 | 5.09
MLE 30.1 | 223 | 229 274 | 141} 143 | 256 | 7.80( 7.82 | 25.0 | 536 | 5.36

P(inf mle) 0.0435 0.0006 0.0000 0.0000
25 X1 5.66 | 2.09 | 19.5] 100 | 245 | 152 | 134 | 249 | 11.8 | 16.0 | 2.40 | 9.28
P 249 | 145 145] 2501 9131 9.13 | 250 | 6.77 | 6.77 | 25.0 | 5.39 | 5.39
CUE 249 | 134 | 1341 250 | 8.19| 819 | 250 | 585 | 585 | 25.0 | 4.51 | 4.51
MLE 285 19.6 | 199 25.6 | 898 | 9.00 { 25.0 | 6.08 | 6.08 | 24.7 | 4.63 | 4.64

P(inf mle) 0.0009 0.0000 0.0000 0.0000
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Table 1.2b

N=25 t
p=0.10 5 10 15 20

R | Estimator | exp. | s.d. | rmse{ exp.| s.d. | rmse | exp.| s.d. | rmse | exp. | s.d. | rmse
0 X1 104 | 241 | 148 | 163 | 238 ] 9.04 | 199 | 2.02 | 553 | 22.0] 1.63 | 3.45
P 104 | 241 | 148 163 | 238 | 9.04 | 199 | 2.02 | 553 | 22.0| 1.63 | 3.45
CUE 209 | 844 | 939 250 | 6.25| 625 | 25.0 | 3.56 | 3.56 | 250 | 2.29 | 2.29
MLE 265 | 147 | 148} 2591 829 | 834 | 248 | 3.78 | 3.79 | 246 | 2.35 | 2.38

P(inf mle) 0.1195 0.0005 0.0000 0.0000
5 X1 102 | 246 | 150 | 163 | 2.38| 9.04 | 199 | 2.02] 553 | 22.0| 1.63 | 3.45
P 237|134 | 135] 250 | 992 992 | 250 | 6.70| 6.70 | 25.0 ) 4.78 | 4.78
CUE 243 | 103 | 103 | 25.0 | 541 | 541 | 250 | 3.26 | 3.26 { 25.0 | 2.21 | 2.21
MLE 28,6 | 17.2 1 17.6 | 252 | 6.05] 6.05 | 247 | 3.36 | 3.37 | 246 | 2.23 | 2.27

P(inf mle) 0.0086 0.0000 0.0000 0.0000
10 X1 102 | 246 | 150 163 | 238 9.04 | 199 | 2.02| 553 | 22.0] 1.63 | 3.45
P 249 | 127 | 127 | 250 | 7.26 | 7.26 | 25.0 | 490 | 490 | 249 | 3.54 | 3.54
CUE 2491 994 | 994 | 250 | 496 | 496 | 250 | 3.14 | 3.14 { 25.0] 2.14 | 2.14
MLE 272 | 141 | 143 ] 25.0 | 524 | 524 | 246 | 3.18 | 3.20 | 24.5| 2.16 | 2.20

P(inf mle) 0.0006 0.0000 0.0000 0.0000
25 X1 102 | 246 | 150 163 | 238 | 9.04 | 199 | 2.02 | 5.53 | 220 1.63 | 3.45
P 250 | 895 | 895 250 | 527 | 527 { 25.0 ) 3.63 | 3.63 | 25.1 | 2.57 | 2.57
CUE 250 | 806 | 8.06 | 25.0 | 441 | 441 | 25.0 | 291 | 291 | 25.0 | 2.05 | 2.05
MLE 25.6 | 8.83 | 885 | 248 | 453 | 453 | 246 | 293 | 296 | 245 | 2.06 | 2.11

P(inf mle) 0.0000 0.0000 0.0000 0.0000
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Table 1.2¢

N=25 t
p=0.20 5 10 15 20

R | Estimator | exp.| s.d. | rmse| exp. | s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. [ rmse
0 X1 16.8 | 235 | 852 | 223 | 1.55] 3.10 | 24.1 | 092 | 1.27 | 247 | 0.53 | 0.61
P 16.8 | 2.35 | 852 | 223 | 1.55] 3.10 | 24.1 | 092 | 1.27 | 247 | 0.53 | 0.61
CUE 249 | 6.12 | 6.12 | 25.0 | 2.14 | 2.14 | 25.1 | 1.07 | 1.07 | 24.8 | 0.61 | 0.64
MLE 257 | 815 | 8.18 | 24.6 | 2.18 | 222 | 244 } 1.08 | 1.21 | 24.7 | 0.54 | 0.61

P(inf mle) 0.0005 0.0000 0.0000 0.0000
5 X1 16.8 | 235 | 852 | 223 | 1.55 | 3.10 | 24.1 | 0.92 | 1.27 | 24.7 | 0.53 | 0.6]
P 25.1 ] 945 | 945 | 25.0 | 444 | 444 | 250 | 240 | 240 | 250 | 1.34 | 1.34
CUE 25.1 | 526 | 526 250 | 2.05| 2.05 | 25.1 | 1.03 | 1.04 | 24.8 | 0.60 | 0.64
MLE 252 | 580 | 5.81} 245 | 207 | 2.12 | 244 | 1.08 | 1.21 | 24.7 | 0.53 | 0.61

P(inf mle) 0.0000 0.0000 0.0000 0.0000
10 X1 16.8 | 235 | 8.52| 223 | 1.55] 3.10 | 24.1 | 092 | 1.27 | 24.7 | 0.53 | 0.61
P 250 | 6.88 | 6.88 | 249 | 3.29 | 329 | 25.0 | 1.86| 1.86 | 25.0 | 1.11 | 1.11
CUE 250 | 481 | 481 | 250 ( 1.99 | 1.99 | 25.1 | 1.02| 1.02 | 24.8 | 0.58 | 0.63
MLE 249 | 5.04 | 5.04 | 245 | 2.01 | 2.07 | 244 | 1.07 | 1.22 | 24.7 | 053 | 0.61

P(inf mle) 0.0000 0.0000 0.0000 0.0000
25 X1 168 | 235 ] 852 | 223 | 1.55] 3.10 | 24.1 | 0.92 | 1.27 | 24.7 | 0.53 | 0.61
P 250 ) 5.02 | 5.02| 25.1 | 238 | 238 | 25.0 | 1.32| 1.32 | 25.0| 0.76 | 0.76
CUE 250 | 426 | 426 | 250 | 1.91 | 1.91 | 25.1 | 0.98 | 0.98 | 24.7 | 0.56 | 0.62
MLE 247 | 433 | 434 245 | 1.92| 1.98 | 244 | 1.06 | 1.22 | 24,7 | 0.53 | 0.61

P(inf mle) 0.0000 0.0000 0.0000 0.0000
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Table 1.3a

N =50 t
p=0.05 5 10 15 20

R | Estimator | exp.| s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | rmse | exp. | s.d. | rmse
0 X1 11.7 | 290 { 384} 20.1 | 345 30.1 | 26.8 | 3.53 | 234 | 32.1 | 3.39 | 18.2
P 117 f 290 | 384 20.1 | 345 30.1 | 26.8 | 3,53} 234 | 32.1 | 339 | 18.2
CUE 30.1 | 134 | 240 | 486 | 183 | 183 | 499 | 127 | 12.7 | 50.0 | 8.64 | 8.64
MLE 433 | 244 | 254 | 57.7 | 31.7| 327 | 523 } 162 | 163 | 50.6 | 9.37 | 9.39

P(inf mie) 0.3190 0.0111 0.0001 0.0000
5 X1 114 1 295 | 387 | 20.1 | 3471 30.0 | 26.8 | 3.53 | 234 | 32.1 | 3.39 | 18.2
P 37.0 ] 208 | 245 47.7 | 259 | 26.0 | 49.6 | 234 | 234 | 500 195 | 19.5
CUE 40.8 | 18.7 | 2091 498 | 177 | 17.7 | 50.0 | 11.3] 11.3 | 50.0 | 8.01 | 8.0l
MLE 579 | 363 | 371 | 552 | 263 | 268 | 51.4 | 128 129 | 503 | 843 | 8.44

P(inf mle) 0.0885 0.0009 0.0000 0.0000
10 X1 113 | 296 | 388 | 20.1 | 347 | 30.1 | 26.8 | 3.53 | 234 | 321 | 3.39 | 18.2
P 454 | 2751 279 | 499 | 243 | 243 | 50.0 ) 179 | 179 | 500] 13.9 | 13.9
CUE 463 | 223 | 226 | 500 | 160 | 160 | 50.0 | 104 | 104 | 500 7.58 | 7.58
MLE 615 | 418 | 434 | 534 | 206 | 209 | 509 | 11.3] 11.3 | 502 | 7.88 | 7.88

P(inf mle) 0.0245 0.0001 0.0000 0.0000
25 X1 113 | 296 | 388 | 20.1 | 347 | 30.1 | 26.8 | 3.53 | 234 | 32.1] 3.39 | 18.2
P 499 | 257 | 257 500 | 159 | 159 | 500 | 11.8| 11.8 | 50.0 { 9.36 | 9.36
CUE 498 | 225 225[ 5001 13.0] 13.0 | 50.0 ] 9.07 | 9.07 | 50.0{ 6.87 } 6.87
MLE 56.8 | 33.1 | 33.7| 5141 142 | 142 | 503 1941 | 941 | 499] 7.00 | 7.00

P(inf mle) 0.0005 0.0000 0.0000 0.0000
50 X1 113 | 296 | 388 | 20.1 | 347 | 30.1 | 26.8 | 353} 234 | 32.1 | 3.39 | 182
P 500 | 19.7 1 197} 500 | 12.5| 125 | 50.0 | 943 | 9.43 | 500 | 7.55 | 7.55
CUE 500 | 1861 186 500 | 11.3 | 11.3 | 50.0 | 8.18 | 8.18 | 50.0 | 6.33 | 6.33
MLE 527 | 21.2 | 21.3 | 505 | 11.7§ 11.7 | 50.0 | 832 ) 8.32 | 49.8 | 6.40 | 6.40

P(inf mle) 0.0000 0.0000 0.0000 0.0000
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Table 1.3b

N =50 t
p=0.10 5 10 15 20

R Estimator | exp. | s.d. | rmse} exp.| s.d. | rmse | exp. | s.d. | rmse | exp. | s.d. | rmse
0 X1 205 | 346 | 29.7 | 32.6 | 3.37 | 17.8 | 39.7 | 2.86] 10.7 | 439 ] 231 | 650
P 205 | 346 | 29.7 | 32.6 | 3.37| 17.8 | 39.7 | 2.86| 10.7 | 43.9 | 2.31 | 6.50
CUE 482 ) 18,1 | 182 | 500 | 854 | 854 | 500 | 486 | 4.86 | 50.0 | 3.21 | 3.21
MLE 57.7 | 31.8 | 32.7| 50.6 | 929 | 931 | 498 | 497 | 497 | 49.6 | 3.24 | 3.27

P(inf mle) 0.0143 0.0000 0.0000 0.0000
5 X1 205 | 348 | 29.7 | 326 | 337 | 17.8 | 39.7 | 2.86 | 10.7 | 43.9 | 231 | 6.50
P 479 | 258 | 259 500 | 19.1 | 19.1 | 50.0 | 12.8 | 12.8 | 50.0 | 9.09 | 9.09
CUE 498 | 17.7 | 17.7]| 50.0 | 789 | 7.89 | 50.0 | 471 | 471 | 50.0 | 3.14 | 3.14
MLE 554 | 268 | 273 | 50.2 | 830 | 831 | 49.7 | 476 | 477 | 49.6 | 3.15 | 3.18

P(inf mle) 0.0010 0.0000 0.0000 0.0000
10 X1 20.5 | 348 | 29.7] 32.6 | 3.37| 178 | 39.7 | 2.86 | 10.7 | 439 | 2.31 | 6.50
P 499 1 2391239 500 | 13.5] 135 | 50.0 | 9.07 | 9.07 | 50.0 | 6.58 | 6.58
CUE 50.0 { 16.0 | 16.0| 50.0 | 7.48 | 7.48 | 50.0 | 455 | 4.55 | 50.0 | 3.08 | 3.08
MLE 5341 209 | 21.1 | 50.1 | 7.78 | 7.78 | 49.7 | 4.61 | 4.62 | 49.6 | 3.10 { 3.14

P(inf mle) 0.0001 0.0000 0.0000 0.0000
25 X1 205 | 348 | 29.7| 326 | 3.37 | 17.8 | 39.7 | 2.86 | 10.7 | 439 | 2.31 | 6.50
P 500 | 156 | 15.6 ] 50.0 | 9.15} 9.15 | 50.0 | 6.30 | 6.30 | 50.1 | 4.54 | 4.54
CUE 500 129 | 129 500 | 6.75| 6.75 | 50.0 | 431 | 431 | 500 | 297 | 2.97
MLE 513 | 141 | 142 | 499 | 6.86 | 6.86 | 49.6 | 433 | 4.35 | 49.5} 2.97 | 3.01

P(inf mle) 0.0000 0.0000 0.0000 0.0000
50 X1 205 | 348 | 29.7| 326 | 3.37 | 178 | 39.7 | 2.86| 10.7 | 43.9 | 2.31 | 6.50
P 500 ] 123 | 123 | 50.0 { 7.39 | 7.39 } 50.0 | 5.13 | 5.13 | 50.1 | 3.68 | 3.68
CUE 500 | 11.2 | 11,2 | 500 | 620 | 6.20 | 50.0 | 4.09 | 4.09 | 50.0 | 2.88 | 2.88
MLE 505 | 11.6 | 11.6 | 49.7 | 625 | 626 | 49.6 | 410 | 4.12 | 49.5| 2.89 | 2.92

P(inf mle) 0.0000 0.0000 0.0000 0.0000
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Table 1.3c

N =50 t
p =020 5 10 i5 20

R | Estimator | exp.| s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | rmse | exp. | s.d. | rmse
0 X1 336} 332 | 167 446 | 219} 580 | 482 | 1.30} 2.19 | 494 | 0.75 | 0.95
P 336 | 332 | 16.7)| 446 | 2.19| 5.80 | 482 | 1.30 | 2.19 | 494 | 0.75 | 0.95
CUE 499 | 830 | 830) 50.0 | 298 | 2.98 | 50.0 | 1.50 | 1.50 | 50.0 ] 0.92 | 0.92
MLE 50.5 ] 905 9.07) 496 | 3.00 ) 3.03 | 495 | 1.48| 1.55| 49.5] 0.78 | 0.95

P(inf mle) 0.0000 0.0000 0.0000 0.0000
5 X1 33.6 1 332 | 16.7| 446 | 219 | 5.80 | 48.2 | 1.30 | 2.19 | 494 | 0.75 | 0.95
P 500 | 182 | 182 | 500 | 843 | 843 | 50.0 | 4.56 | 4.56 | 50.0 | 2.56 | 2.56
CUE 500 | 7.66 | 7.66 | 50.0 | 291 | 291 | 50.0 | 1.49] 1.49 | 50.0 | 092 | 0.92
MLE 502 | 8.07 | 807 | 49.6 | 292 | 295 | 495 | 146 ] 1.54 | 495 | 0.78 | 0.95

P(inf mle) 0.0000 0.0000 0.0000 0.0000
10 X1 3361332 | 167} 446 | 219 | 580 | 482 | 1.30 | 2.19 | 494 | 0.75 | 0.95
P 500 | 12.8 | 12.8 | 50.0 | 6.12 | 6.12 | 50.0 | 3.35| 3.35 | 50.0 | 1.88 | 1.88
CUE 499 | 720 | 7.20 | 50.0 | 2.86 | 2.86 | 50.0 | 1.49 | 1.49 | 50.1 | 0.91 | 0.91
MLE 500 | 750 | 7.50 | 49.5 | 2.88 | 2.91 | 49.5 | 146 | 1.54 | 434 | 0.77 | 0.95

P(inf mle) 0.0000 0.0000 0.0000 0.0000
25 X1 33.6 | 332 | 167} 446 | 2.19| 580 | 48.2 | 1.30| 2.19 | 494 | 0.75 | 0.95
P 50.0 | 871 | 8.71 | 50.1 | 421 | 421 | 50.0 | 231 | 231 } 500 1.32 | 1.32
CUE 500 ) 646 | 6.46| 500 | 276 | 2.76 | 50.0 { 1.47 | 1.47 | 50.1 | 091 | 0.92
MLE 498 | 6.57 | 6.57 | 49.5 | 278 | 2.82 | 495 | 143 | 1.52 | 494 | 0.77 | 0.95

P(inf mle) 0.0000 0.0000 0.0000 0.0000
50 X1 33.6 | 3321 167} 446 | 219 | 580 | 48.2 | 130 2.19 | 494 | 0.75 | 0.95
P 500 ] 7.05| 7.05} 50.1 | 340 | 340 | 500 | 1.86| 1.86 | 50.0 | 1.07 | 1.07
CUE 500 | 596 | 596 | 50.0 | 2.68 | 2.68 | 50.0 | 1.44 | 1.44 | 50.1 | 0.91 | 0.92
MLE 497 | 6.02 | 6.03 | 49.5 | 2.68 | 272 | 49.5 | 142 | 1.51 | 494 | 0.76 | 0.95

P(inf mle) 0.0000 0.0000 0.0000 0.0000

27




Table 1.4a

N =100 t
p=0.05 5 10 15 20
R | Estimator | exp.| s.d. | rmse| exp.| s.d. | rmse | exp. | s.d. | rmse| exp. | s.d. | rmse
0 X1 228 | 415 ] 77.3| 40.1 | 490 | 60.1 | 53.7 | 499 | 46.6 | 642 | 4.80 | 36.2
P 228 | 415 | 773 | 40.1 | 490 | 60.1 | 53.7 | 499} 46.6 | 642 | 4.80 | 36.2
CUE 80.6 | 33.2 | 385|999 | 29.1| 29.1 | 100 | 172} 172 | 100 | 11.9 | 11.9
MLE 115 | 664 | 68.0| 108 | 39.2 | 399 | 102 | 185 | 186 | 101 | 123 | 12.3
P(inf mle) 0.1018 0.0001 0.0000 0.0000
5 X1 227 | 418 | 774 | 40.1 | 490 | 60.1 | 53.7 | 4.99 | 46.6 | 64.2 | 4.80 | 36.2
P 772 | 40.1 | 46.1 | 954 | 502 | 50.5 | 99.1 | 45.7 ] 45.7 | 99.9 | 38.1 | 38.1
CUE 920 | 39.8 | 40.6| 100 | 263 | 263 | 100 | 162} 162 | 100 | 11.5 | 11.5
MLE 123 | 77.9 | 81.2| 105 | 319 | 324 | 101 | 172 | 17.2 | 100 | 11.8 | 11.8
P(inf mle) 0.0282 0.0000 0.0000 0.0000
10 X1 22,6 | 418 | 77.5| 40.1 | 490 | 60.1 | 53.7 | 499 | 46.6 | 64.2 | 4.80 | 36.2
P 93.1 | 545 | 54.9| 99.7 | 46.8 | 468 | 100 | 34.5] 345 | 100 | 26.6 | 26.6
CUR 971 | 42.6 | 427 | 100 | 243 | 243 | 100 | 155 155 | 100 | 11.1 | 11.1
MLE 122 | 77.6 | 80.6 | 104 | 27.7| 28.0 | 101 | 162 | 16.2 | 100 | 114 | 11.4
P(inf mle) 0.0078 0.0000 0.0000 0.0000
25 X1 22.6 | 418 | 77.5| 40.1 | 490 | 60.1 | 53.7 | 499 | 46.6 | 64.2 | 480 | 36.2
P 99.8 | 48.0 | 480 ] 100 | 29.2| 292 | 100 | 21.5| 21.5 | 100 | 17.1 | 17.1
CUE 99.9 | 385 | 385 | 100 | 20.7 | 20.7 | 100 | 140} 14.0 | 100 | 10.4 | 104
MLE 111 | 542 | 554 | 102 | 222 | 223 | 101 | 144 | 144 | 100 | 105 | 10.5
P(inf mle) 0.0002 0.0000 0.0000 0.0000
50 X1 226 | 418 | 77.5| 40.1 | 490 | 60.1 | 53.7 | 499 | 46.6 | 64.2 | 480 | 36.2
P 100 | 344 | 344 | 100 | 21.7 | 21.7 | 100 | 163 | 16.3 | 100 | 13.1 | 13.1
CUE 100 | 309 | 30.9 | 100 | 18.0| 18.0 | 100 | 12,7} 12.7 | 100 | 9.65 | 9.65
MLE 105 | 351 | 355} 101 | 187 ] 187 | 100 | 129 | 12.9 | 999 | 9.73 | 9.73
P(inf mle) 0.0000 0.0000 0.0000 0.0000
100 X1 22.6 | 418 | 77.5| 40.1 | 490 | 60.1 | 53.7 | 499 | 46.6 | 64.2 | 480 | 36.2
P 100 | 269 | 269 | 100 | 175 | 17.5 | 100 | 13.2] 13.2 | 100 | 10.6 | 10.6
CUE
MLE 102 | 269 | 27.0] 100 | 16.1 | 16.1 | 100 | 11.6 | 11.6 | 99.7 | 8.98 | 8.99
P(inf mle) 0.0000 0.0000 0.0000 0.0000
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Table 1.4b

N =100 t
p=0.10 5 10 15 20
R | Estimator | exp.| s.d. | rmse| exp.| s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | rmse
0 X1 410 | 492 | 593 65.1 | 477§ 352 | 794 | 404 | 21.0 | 87.8 | 3.27 | 126
P 410 | 492 | 593 | 65.1 | 477 | 352 | 79.4 { 404 | 21.0 | 87.8 | 3.27 | 12.6
CUE 999 | 298| 29.8| 100 | 11.7 | 11.7 | 100 | 6.83 | 6.83 | 100 | 4.50 | 4.50
MLE 108 | 414 | 422 | 100 | 122] 122 | 99.8 | 6.89 | 6.89 | 99.6 | 4.51 | 4.53
P(inf mle) 0.0002 0.0000 0.0000 0.0000
5 X1 410 | 492 | 593 | 65.1 | 477 | 352 | 794 | 404 | 21.0 | 87.8 | 3.27 | 12.6
P 95.8 | 502 | 504 99.9 | 373 | 373 | 100 | 25.1 ] 251 | 100 | 17.7 | 17.7
CUE 100 | 26.7 | 267 | 100 | 11.3 | 11.3 | 100 | 6.69 | 6.69 | 100 | 4.46 | 4.46
MLE 106 | 33.0 | 33.5) 100 | 11.6 | 11,6 | 99.7 | 6.75| 6.75 | 99.6 | 447 | 4.49
P(inf mle) 0.0000 0.0000 0.0000 0.0000
10 X1 41.0 | 492 | 593 | 65.1 | 477 | 352 | 794 | 404 | 21.0 | 87.8| 3.27 | 12.6
P 99.8 | 46.0 | 46.0| 100 | 26.0| 26.0 | 100 | 174 | 174 | 100 | 12,5 | 125
CUE 100 | 245 | 245 | 100 | 11.0 | 11.0 | 100 | 658 | 6.58 | 100 | 4.41 | 4.41
MLE 104 | 283 | 28.6| 100 | 11.2| 11.2 ]| 99.7 | 6.63 | 6.64 | 99.6 | 443 | 4.45
P(inf mle) 0.0000 0.0000 0.0000 0.0000
25 X1 410 | 492 | 593 | 65.1 | 477 | 352 | 794 | 404 | 21.0 | 87.8 ] 3.27 | 12.6
P 100 | 28.6 | 28.6| 100 | 16,7 16.7 | 100 | 11.5| 11.5 | 100 | 8.39 | 8.39
CUE 100 | 20.7 | 20.7 | 100 | 102 | 102 | 100 | 6.33 | 6.33 | 100 | 4.31 | 4.31
MLE 102 | 22.2 | 223 | 100 | 104 | 104 | 997 | 636 | 6.37 | 99.6 | 4.32 | 4.34
P(inf mle) 0.0000 0.0000 0.0000 0.0000
50 X1 410 | 492} 593 ]| 65.1 | 477 | 352 | 794 | 4.04 | 21.0 | 87.8 | 3.27 | 12,6
P 100 | 21.3 | 21.3| 100 | 128 | 12.8 | 100 | 8.86 | 8.86 | 100 | 6.47 | 6.47
CUE 100 | 17.9 | 17.9| 100 | 9.48 | 9.48 | 100 | 6.07 | 6.07 | 100 | 419 | 4.19
MLE 101 | 18.6 | 186 99.9 | 9.56 | 9.56 | 99.6 | 6.08 | 6.09 | 99.5| 4.19 | 4.22
P(inf mle) 0.0000 0.0000 0.0000 0.0000
100 X1 410 | 4921 593 | 65.1 | 477 352 | 794 | 4.04 | 21.0 | 87.8 | 3.27 | 12.6
P 100 | 17.2 | 17.2| 100 | 104 | 104 | 100 | 7.22 | 7.22 | 100 | 5.28 | 5.28
CUE
MLE 100 | 159 | 159 997 | 881 | 881 | 99.6 | 5.78 | 579 | 99.5 | 4.06 { 4.09
P(inf mle) 0.0000 0.0000 0.0000 0.0000
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Table 1.4c

N =100 t
p=0.20 5 10 15 20
R | Estimator | exp.| s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | rmse | exp. | s.d. | rmse
0 X1 672 | 469 | 33.11 893 | 3.10 | 11.2 | 965 | 1.84 | 3.97 | 988 | 1.07 | 1.57
P 672 | 469 | 3311 893 | 3.10 | 11.2 [ 965 | 1.84| 3.97 | 988 | 1.07 | 1.57
CUE 100 | 114 | 11.4| 100 | 417 | 417 | 100 | 2.08 | 2.08 | 100 | 1.12 | 1.12
MLE 100 | 11.8 | 11.8 | 99.6 | 419 | 421 | 99.5 | 2.08 | 2.14 | 99.5| 1.19 | 1.27
P(inf mle) 0.0000 0.0000 0.0000 0.0000
S X1 672 | 469 | 33.1| 893 | 3.10| 11.2 } 96.5 | 1.84 | 3.97 | 98.8 | 1.07 | 1.57
P 100 | 356 | 356 | 100 | 165 ) 165 | 100 | 8.85| 8.85 | 100 | 499 | 4.99
CUE 100 | 11.0 | 11.0| 100 | 414 | 414 | 100 | 2.07 ] 2.07 | 999 | 1.12 | 1.12
MLE 100 | 113 | 11.3 ] 99.6 | 4.14 | 416 | 99.5 | 2.07{ 2.13 | 995} 1.18 | 1.27
P(inf mle) 0.0000 0.0000 0.0000 0.0000
10 X1 672 | 4691 33.1| 893 | 310| 11.2 | 965 | 1.84 | 3.97 | 98.8 | 1.07 | 1.57
P 100 | 24.6 | 246 | 100 | 11.7 | 117 | 100 | 6.43 | 6.43 | 100 | 3.61 | 3.61
CUE 100 | 10.6 | 10.6 | 100 | 409 | 409 | 100 | 2.06 | 2.06 | 99.9 | 1.i1 | 1.12
MLE 100 | 109 | 109 | 996 | 410 | 412 | 995§ 2.06 | 2.12 | 99.6 | 1.18 | 1.26
P(inf mle) 0.0000 0.0000 0.0000 0.0000
25 X1 672 | 469|331 8.3 | 310} 112 | 965 | 1.84 | 3.97 | 98.8 | 1.07 | 1.57
P 100 | 159 { 159 ] 100 | 7.80 | 7.80 | 100 | 4.27 | 427 | 100 | 2.40 | 2.40
CUE 999 | 984 | 9.84 | 100 | 400 | 4.00 | 100 | 2.05] 2.05| 999 | t.11 | 1.11
MLE 999 | 998 | 998 | 995 | 402 | 404 | 995 | 2.05| 2.11 | 99.6 | 1.18 | 1.25
P(inf mle) 0.0000 0.0000 0.0000 0.0000
50 X1 672 | 469 | 33.1| 8.3 3.10| 11.2 | 965 | 1.84| 3.97 | 98.8 | 1.07 | 1.57
P 100 | 122 | 122 | 100 | 6.01 | 601 | 100 | 3.25]| 325 | 100 | 1.85 | 1.85
CUE 100 | 9.11 | 911 | 100 | 3.89 | 3.89 | 100 | 2.02 | 2.02 | 99.9| 1.10 | 1.11
MLE 99.8 | 9.18 | 9.19] 99.5 | 3.91 | 3.93 | 99.5 | 2.03 | 2.09 | 99.6 | 1.17 | 1.24
P(inf mle) 0.0000 0.0000 0.0000 0.0000
100 X1 672 | 469 | 33.1| 893 | 3.10| 11.2 | 965 | 1.84 | 3.97 | 98.8 | 1.07 | 1.57
P 100 | 992 | 992 | 100 | 490 | 490 | 100 | 2.62 | 2.62 | 100 | 1.51 | 1.51
CUE
MLE 99.7 | 844 | 844 | 99.5 | 3.78 | 3.81 | 99.5 | 2.00 | 2.06
P(inf mle) 0.0000 0.0000 0.0000 0.0000
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§ 1.10 : The Unconditional Performance of the CUE and the Peterson-Type

Estimators

In the previous section, in order to compare the relative performance of all three

estimators considered within this chapter, it was necessary to consider the distribution
of each conditional on the event C={Z>X1}. This was necessary because the MLE is

known to yield infinite estimates when Z=X,, and this would result in the MLE having

an infinite mean, standard deviation and mean square error over the entire joint
distribution of X, and Z. The discussion of the previous section recommended that,
conditional on the event C={Z>X}, one should favour the CUE N,. In view of this,

and due to the fact that the CUE and Peterson-type estimators are both finite with
probability one, the distributional properties of l(Iu and ﬁp are now presented

unconditionally over the entire joint distribution of X, and Z. The results are contained
in tables 1.5a,b,c, 1.6a,b,c, 1.7a,b,c and 1.8a,b,c. The values of N, t, p and R which are
considered are identical to those of section 1.9. Notation is the same as in previous
section.

§ 1.10a : Discussion

The performance, and relative performance, of the estimators over the complete
sample space is seen to be very similar to their performance in the previous section. As
one would expect, the difference is most noticeable when the probability of X, being

equal to Z is Jarge.

Tables 1.5 to 1.8 clearly indicate that the overall performance of the CUE is
superior to that of NP. In the absence of plants ﬁp reduces to X, so it is not surprising

that IQT“ is seen to clearly outperform IQIP in this situation. When R>0, both perform
very well in terms of bias, with IQI“ almost always being the less biased of the two. The
standard deviation of N , 18, in all but four of the situations considered, le'ss than that of
IQIP: the difference, when not in favour of Nu, is small. The standard deviation of ﬁp

tends to be large when R, greater than zero, is small relative to N, and it is in these
situations that the standard deviation of IQIll is appreciably smaller than that of IQIP. In

each of the four situations where, for R>0, the standard deviation of lQIu is greater than
that of lQIp, the CUE exhibits a smaller bias. In conclusion, one should always use the

CUE in preference to the Peterson-type estimator l(Ip.
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able 1.5a

N=10
p=0.05 5 10 15 20
R Estimator | exp. | s.d. | rmse| exp. | s.d. | rmse | exp.| s.d. | rmse | exp. | s.d. | rmse
>=0 X1 226 | 132 | 785 401 | 1.55] 6.18 | 537 | 1.58 | 4.89 | 642 | 1.52 | 3.89
0 P 226 132 | 785)| 401 | 1.55| 6.18 | 537 | 1.58 | 489 | 642 | 1.52 | 3.89
CUE 370 | 3.13 | 7.04 | 7.31 | 460 | 533 | 9.10 | 4.62 | 4.71 | 9.80 | 4.02 | 4.03
J P 7.87 1 629 | 664 9.60 | 6.35| 6.36 | 998 | 546 | 5.46 | 10.0 | 4.51 | 4.51
CUE 824 | 679 | 7.02| 978 | 614 | 6.15 | 995 | 449 | 449 | 10.0 | 3.31 | 3.31
10 P 950 | 816 | 8.18 | 100 | 6.16 | 6.16 | 10.0 | 454 | 4.54 | 10.0 | 3.56 | 3.56
CUE 950 | 811 | 812 995 | 559 | 559 | 997 | 3.87 | 3.87 | 999 | 2.93 | 2.93
Table 1.5b
N =10
p=0.10 5 10 15 20
R | Estimator | exp.| s.d. | rmse| exp. | s.d. | rmse| exp.| s.d. | rmse | exp. | s.d. [ rmse
>=0 X1 410 | 1.56 | 6.11 | 6.51 | 1.51 | 3.80 | 7.94 | 1.28 | 242 | 878 | 1.03 | 1.60
0 P 410 ) 1.56 | 611 | 651 | 1.51 | 3.80 | 7.94 | 1.28 | 242 | 878 | 1.03 | 1.60
CUE 727 | 441 | 518 971 | 394 3.95| 10.0 | 244 | 244 | 10.0 | 1.58 | 1.58
5 P 9.64 | 631 | 632 101 | 442 | 442 | 10.1 | 3.02] 3.02 | 10.1 | 2.16 | 2.16
CUE 9.81 1 600 | 6,01 10.0 | 325 3251 9.99 | 2.02| 2.02 | 10.0 | 1.34 | 1.34
10 P 10.0 | 6.05 | 6.05| 10.1 | 3.47| 348 | 10.1 | 2.30| 2.30 | 10.1 | 1.63 | 1.63
CUE 997 | 545 | 545| 100 | 288 | 2.88 | 10.0 | 1.88 ] 1.88 | 10.0 | 1.29 | 1.29
Table 1.5¢
N =10
p=0.20 5 10 15 20
R | Estimator | exp.{ s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | rmse | exp. | s.d. | rmse
>=0 X1 6721 148 | 3,60} 893 | 098} 145 9.65| 0.58 | 0.68 | 9.88 | 0.34 | 0.36
0 P 672 | 148 | 3.60 | 893 | 0.98 | 1.45 | 9.65 | 0.58 | 0.68 | 9.88 { 0.34 | 0.36
CUE 991 ] 379} 379|999} 145 145 | 986 | 075 ] 0.76 | 990 | 0.35 | 0.37
5 P 10.1 | 421 | 4.22| 10.1 |} 2.00{ 2.00 | 10.0 | 1.07 | 1.07 | 10.0 | 0.60 | 0.60
CUE 10.1 | 3.10 | 3.10| 10.0 | 1.29 | 1,29 | 985 | 0.73 | 0.75 | 9.89 | 0.34 | 0.36
10 P 10.1 | 3.30 | 3.30| 10.0 | 1.52 ) 1.52 | 10.0 | 0.84 | 0.84 } 10.0 | 0.48 | 0.48
CUE 100 | 274 | 274 ] 10.0 | 1.21 | 1.21 | 9.80 | 0.70 | 0.73 | 9.89 | 0.34 | 0.36
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Table 1.6a

N =25
p=0.05 5 10 15 20
R | Bstimator | exp. | s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | rmse | exp. | s.d. | rmse
>=| X1 566 | 209 195 100 | 245 152 | 134 | 249] 11.8 | 160} 240 | 9.28
0 P 566 | 2091 195 10.0 } 245 152 | 134 | 249 | 11.8 | 16.0| 240 | 9.28
CUE 13.8 | 898 | 1437 233 | 123 | 124 | 249 | 956 } 9.56 | 25.0 | 6.56 | 6.56
5 P 197 | 123 | 134 | 239 | 13.8 | 13.8 | 248 | 122 | 122 | 25.0| 10.1 | 10.1
CUE 218 | 146 | 150 249 | 12.0] 120 | 250 | 7.82 | 7.82 | 25.0| 5.53 | 5.53
10 P 23.6 | 164 | 164 | 250 | 13.1| 13.1 | 25.0 | 9.62 | 9.62 | 25.0 | 7.44 | 7.44
CUE 24.1 | 164 | 164} 250 | 103 ] 103 | 250 | 6.86 | 6.86 | 25.0 | 5.09 | 5.09
25 P 250 | 149 | 149 250 | 913 | 9.13 | 250 | 6.77 | 6.77 | 250 539 | 539
CUE 250 | 141 ]| 141 | 250 | 819 | 819 ] 25.0 | 585] 5.85 | 25.0 | 451 | 4.51
Table 1.6b
N =25
p=0.10 5 10 15 20
R Estimator | exp. | s.d. | rmse| exp. | s.d. [ rmse | exp. | s.d. | rmse | exp. | s.d. | rmse
>=0 X1 102 | 246 | 150 163 | 238 | 9.04 | 19.9 | 2.02 | 553 | 22.0 | 1.63 | 3.45
0 P 102 | 246 | 150 163 | 238 | 9.04 | 199 | 2.02 | 553 | 22.0| 1.63 | 3.45
CUE 23.1 ] 120 | 121 251 | 643 | 643 | 25.0 } 3.56 | 3.56 | 25.0 | 2.29 { 2.29
5 P 240 | 137 | 138 | 250§ 992 | 992} 250 } 6.70 | 6.70 | 25.0 | 478 | 4.78
CUE 249 | 12.0 | 120} 250 | 541 | 541 | 250 | 3.26 | 3.26 | 25.0 | 2.21 | 221
10 P 250 | 128 |1 128 | 250 | 7.26 | 7.26 | 25.0 | 490 | 4.90 | 24.9 | 3.54 | 3.54
CUE 250 | 103 | 103 ] 25.0 | 496 | 496 | 250 | 3.14 | 3.14 | 250 2.14 | 2.14
25 P 250 | 895 | 895 25.0 | 527 | 527 | 25.0 | 3.63 | 3.63 | 25.1 | 2.57 | 2.57
CUE 250 | 8.06 | 8.06 | 25.0 | 441 | 441 | 250 | 291 | 291 | 25.0 | 2.05 | 2.05
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Table 1.6¢c

N =25
p=0.20 5 10 15 20
R | Estimator | exp.| s.d. | rmse| exp. | s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | rmse
=0 X1 168 | 235 | 852} 223 | 1.55| 3.10 | 24.1 | 0.92 | 1.27 | 24.7{ 0.53 | 0.61
0 P 16.8 | 2.35 | 852 | 223 | 1.55| 3.10 | 24.1 | 0.92 | 1.27 | 24.7 | 0.53 | 0.61
CUE 250 | 630 630| 25.0 | 2.14 | 2.14 | 25.1 | 1.07 | 1.07 | 24.8 | 0.61 | 0.64
5 P 251 ) 945| 945] 250 | 444 | 444 | 250 | 240 | 240 | 250 | 1.34 | 1.34
CUE 2511526 ) 526| 250 | 205} 205 | 25.1 | 1.03 | 1.04 | 24.8 ] 0.60 | 0.64
10 P 250 | 688 | 6.88 | 249 | 329 329 | 250 | 1.86 | 1.86 | 25.0 | 1.11 | 1.11
CUE 250 | 481 | 481 | 250 [ 1.99] 199 | 25.1 | 1.02 | 1.02 | 24.8 | 0.58 | 0.63
25 P 250 | 5.02 | 5.02| 25.1 | 238 | 238 | 25.0 | 1.32 | 1.32 | 25.0| 0.76 | 0.76
CUE 250 | 426 | 426 | 250 | 1.91 | 191 | 25.1 | 0.98 ] 0.98 | 24.7 | 0.56 | 0.62
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Table 1.7a

N =50
p=0.05 5 10 15 20
R Estimator | exp.| s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | rmse | exp. | s.d. | rmse
>=0 X1 11.3 | 296 | 388 | 20.1 | 347 | 30.1 | 268 | 3.53 | 234 | 32.1 | 3.39 | 18.2
0 P 113 | 296 | 388 | 20.1 | 347 | 30.1 | 26.8 | 3.53 | 23.4 | 32.1 | 3.39 | 18.2
CUE 374 | 215 249 500 | 21.8 | 21.8 | 49.9 | 12.8 | 12.8 | 50.0 | 8.65 | 8.65
5 P 393 | 21.8 | 243 478 | 259 | 26.0 | 49.6 | 234 | 234 | 500 19.5] 19.5
CUE 46.5 | 283 | 2851 50.0 | 18.6 | 186 | 500 | 11.3 | 11.3 | 50.0 | 8.01 | 8.01
10 P 47.1 | 29.6 | 29.7| 499 | 243 | 243 | 50.0 | 17.9| 17.9 | 50.0 | 139 | 13.9
CUE 490 | 292 1 292 | 50.0 | 16.1 | 16.1 | 50.0 | 104 | 10.4 | 50.0 | 7.58 | 7.58
25 P 500 | 262 | 26.2| 500 | 159 | 159 | 500 | 11.8 | 11.8 | 50.0 | 9.36 | 9.36
CUE 499 | 234 | 234 50.0 | 13.0| 13.0 | 50.0 | 9.07 | 9.07 | 50.0 | 6.87 | 6.87
50 P 500 | 19.7 ] 19.7 | 500 | 125 12.5 | 50.0 | 943 | 943 | 500 | 7.55 | 7.55
CUE 50.0 | 186 | 186 50.0 | 11,3 | 11.3 | 50.0 | 8.18 | 8.18 | 50.0 | 6.33 | 6.33
Table 1.7b
N =50
p=0.10 5 10 15 20
R | Estimator | exp. | s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | rmse | exp. | s.d. [ rmse
>=0 X1 205 | 348 | 29.7| 32.6 | 3.37 | 178 | 39.7 | 2.86 | 10.7 | 43.9 | 2.31 | 6.50
0 P 205 | 348 | 29.7 | 32.6 | 3.37| 178 | 39.7 | 2.86 | 10.7 | 439 | 2.31 | 6.50
CUE 49.6 | 22.0 | 22.0| 50.0 | 8.54 | 8.54 | 50.0 | 4.86 | 4.86 | 50.0 | 3.21 | 3.21
5 P 479 | 259 | 26.0| 50.0 | 19.1 | 19.1 | 50.0 | 12.8 | 12.8 | 50.0 | 9.09 | 9.09
CUE 500 | 188 | 188 | 500 | 7.80 | 7.89 | 500 | 471 | 471 | 50.0 | 3.14 | 3.14
10 P 499 | 239 239} 50.0 | 13.5] 13.5 | 50.0 | 9.07 | 9.07 | 50.0 | 6.58 | 6.58
CUE 50.1 | 16.2 | 162 | 500 | 7.48 | 7.48 | 50.0 | 4.55 | 4.55 | 50.0 | 3.08 | 3.08
25 P 500 ] 15.6 | 156 | 500 | 9.15) 9.15 | 50.0 | 6.30| 6.30 | 50.1 | 4.54 | 4.54
CUE 500 | 129 } 129 500 | 6.75| 6.75 | 50.0 | 4.31 | 431 | 5001 297 | 2.97
50 P 500 | 123 | 123 | 500 | 739 | 7.39 | 50.0 | S.13 | 5.13 | S0.1{ 3.68 | 3.68
CUE 500 | 11.2 | 11.2| 500 | 6.20| 6.20 | 50.0 | 4.09 | 4.09 | 50.0 | 2.88 | 2.88
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Table 1.7¢

N =50
p=0.20 5 10 5 30

R Estimator | exp.| s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | rmse | exp. | s.d. | rmse
>=0 X1 33,6 | 332 | 167 446 | 2.19| 580 | 482 { 1.30| 2.19 | 494 | 0.75 | 0.95
0 P 336 | 332 | 167 | 446 | 2.19| 580 | 482 | 1.30| 2.19 | 494 | 0.75 | 0.95
CUE 499 | 830 | 830 | 50.0 | 2.98 | 298 | 50.0 | 1.50 ] 1.50 | 50.0 | 0.92 | 0.92

5 P 500 | 182 | 182 50.0 | 843 | 843 | 50.0 | 456 | 4.56 | 50.0 | 2.56 | 2.56
CUE 500 | 7.66 | 7.66 | 50.0 | 291 ] 291 | 500 | 1.49]| 149 | 50.0{ 0.92 | 0.92

10 P 500 | 12.8 | 12.8]| 500 | 612 | 6.12 | 50.0 | 3.35| 3.35 [ 50.0 | 1.88 | 1.88
CUE 499 | 720 | 7.20 | 50.0 | 2.86 | 2.86 | 50.0 | 1.49 | 1.49 | 50.1 | 0.91 | 0.91

25 P 500 | 871 | 871 | 50.1 | 421 | 421 | 50.0 | 231} 2.31 | 500 | 1.32 | 1.32
CUE 500 | 646 | 646 500 | 276 | 276 | 50.0 | 1.47 | 1.47 | 50.1 | 0.91 | 0.92

50 P 50.0 | 7.05 | 7.05 | 50.1 | 340 340 | 50.0 | 1.86 | 1.86 | 50.0 | 1.07 | 1.07
CUE 500 | 596 | 596 | 500 | 2.68 | 2.68 | 50.0 | 1.44 | 1.44 |} 50.1 | 091 | 0.92
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Table 1.8

N = 100
p = 0.05 5 10 15 20
R | Estimator | exp.| s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | rmse| exp. | s.d. | rmse
>=0 X1 226 | 418 | 77.5] 40.1 | 490 | 60.1 | 53.7 | 499 | 46.6 | 642 | 4.80 | 36.2
0 P 22.6 | 418 | 77.5] 40.1 | 490 | 60.1 | 53.7 | 499 | 46.6 | 64.2 | 480 | 36.2
CUE 920 | 51.6 | 522 | 100 | 29.6 | 29.6 | 100 | 17.2| 17.2 | 100 | 119 | 11.9
5 P 78.6 | 40.5 | 458 | 95.5 | 502 | 50.5 | 99.1 | 45.7] 45.7 | 99.9 | 38.1 | 38.1
CUE 978 | 541 | 542 100 | 264 | 264 | 100 | 162 | 162 | 100 | 115 | 11.5
10 P 94.1 | 557 | 56.0] 99.7 | 46.8 | 46.8 | 100 | 345 | 345 | 100 | 26.6 | 26.6
CUE 994 | 51.1 | S51.1| 100 | 243} 243 | 100 | 155 155 | 100 | 11.1 | 11.1
25 P 999 | 484 | 484 100 | 2921 29.2 | 100 | 21.5| 21.5 | 100 | 17.1 | 17.1
CUE 100 | 394 | 394 | 100 | 20.7| 207 | 100 | 140 | 140 | 100 | 104 | 10.4
50 P 100 | 344 | 344 | 100 | 21.7 | 21.7 | 100 | 163 | 163 | 100 | 13.1 | 13.1
CUE 100 | 30.9 | 309 | 100 | 18.0] 18.0 | 100 | 12.7 | 12.7 | 100 | 9.65 | 9.65
100 P 100 | 269 | 269 100 | 17.5| 17.5 | 100 | 13.2 | 13.2 | 100 | 10.6 | 10.6
CUE
Table 1.8b
N =100
p=0.10 5 10 15 20
R | Estimator | exp.| s.d. | rmse| exp.| s.d. | rmse | exp. | s.d. | rmse | exp. | s.d. | rmse
>=0 X1 410 | 492 | 593 | 65.1 | 477 | 352 | 794 | 404 | 21.0 | 87.8 | 3.27 | 12.6
0 P 410 ] 492 | 5931 65.1 | 477 | 352 | 794 | 404 | 21.0 | 87.8 | 3.27 | 12.6
CUE 100 | 30.5 | 30.5| 100 | 11.7 | 11.7 | 100 | 6.83 | 6.83 | 100 | 4.50 | 4.50
5 P 958 | 50.2 | 504 | 999 | 373 | 373 | 100 | 25.1 | 25.1 | 100 | 17.7 | 17.7
CUE 100 | 269 | 269 | 100 | 11.3 | 11.3 | 100 | 6.69 | 6.69 | 100 | 446 | 4.46
10 P 99.8 | 46.0 | 46.0 | 100 | 26.0 | 26.0 | 100 | 174 | 174 | 100 | 125 | 125
CUE 100 | 245 | 245 100 | 11.0| 11.0 | 100 | 6.58 | 6.58 | 100 | 4.41 | 4.41
25 P 100 | 28,6 | 286 | 100 | 167 | 16,7 | 100 | 11.5] 11.5 | 100 | 8.39 | 8.39
CUE 100 | 20.7 | 20,7 | 100 | 10.2 | 102 | 100 | 633 | 6.33 | 100 | 4.31 | 4.31
50 P 100 | 21.3 | 21.3 | 100 | 128 | 12.8 | 100 | 8.86 | 8.86 | 100 | 6.47 | 6.47
CUE 100 | 179 | 179 | 100 | 948 | 9.48 | 100 | 6.07 | 6.07 | 100 | 4.19 | 4.19
100 P 100 | 17.2 | 17.2]| 100 | 104 | 104 | 100 | 7.22 | 7.22 | 100 | 5.28 | 5.28
CUE
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Table 1.8¢c

N =100 t
p=0.20 5 10 15 20
R | Estimator | exp.| s.d. | rmse| exp. | s.d. | rmse | exp. | s.d. | imse [ exp. | s.d. | rmse
>=0 X1 672 | 469 | 33.1| 893 | 3.10| 112 | 965 | 1.84 | 3.97 | 98.8 | 1.07 | 1.57
0 P 672 | 469 | 33.1| 893 ] 3.10| 11.2 | 96.5 | 1.84 | 3.97 | 98.8 | 1.07 | 1.57
CUE 100 | 114 | 114 | 100 | 4.17 | 417 | 100 | 2.08 | 2.08 | 100 | 1.12 | 1.12
5 P 100 | 35.6 | 35.6 | 100 | 16.5| 16.5 | 100 | 8.85| 8.85 | 100 | 4.99 | 4.99
CUE 100 | 11.0 | 11.0 | 100 | 4.14 | 414 | 100 | 2.07 | 2.07 | 999 | 1.12 | 1.12
10 P 100 | 24.6 | 24.6| 100 | 11.7 | 11.7 | 100 | 643 | 6.43 | 100 | 3.61 | 3.61
CUE 100 | 10.6 | 10.6 | 100 | 4.09 | 409 | 100 | 2.06 | 2.06 | 99.9 | 1.11 | 1.12
25 P 100 | 159 | 159 | 100 | 7.80 | 7.80 | 100 | 4.27 | 4.27 | 100 | 2.40 | 2.40
CUE 99.9 | 9.84 | 9.84 [ 100 | 400 | 400 | 100 | 2.05 | 2.05 | 99.9 | 1.11 | 1.11
50 P 100 | 12.2 ] 122 | 100 | 6.01 | 6.01 | 100 | 3.25 | 3.25 | 100 | 1.85 | 1.85
CUE 100 } 9.11 | 9.11 ] 100 | 3.89 | 3.89 | 100 | 2.02] 2.02 | 999 | 1.10 | 111
100 P 100 | 9921 9.92| 100 | 490 | 490 | 100 | 2.62 | 2.62 | 100 | 1.51 | 1.51
CUE
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§ 1.11 : The Performance of Plant-Capture
When Applied to the Model M,,_: Under Discrete Time Samplin

In previous sections it has been argued that the overall performance of
the CUE IA\Iu should always be considered superior to that of the MLE and Peterson-
type estimators. Rather than only discussing the way in which the information gained
through plants may improve the performance of the CUE, this section considers how
the method of plant-capture can affect the performance of all the estimators described
within this chapter. This approach is taken since, in spite of the evidence of the previous
sections, it is believed that more traditionally minded practitioners may still prefer to
use the MLE. The following discussion is based on an inspection of all the 24 tables of
this chapter.

It has previously been mentioned that mean square error is known to reward
negative bias, and that this characteristic can lead to incorrect conclusions being drawn,
that is if one places too much emphasis on mean square error alone. When comparing
the performance of estimators, one should always, where possible, consider firstly their
mean and standard deviation, and only then should one consider mean square error, or
alternative loss functions such as mean absolute deviation. This approach is taken in the
following discussion ; consideration of mean square error alone can lead to counter
intuitive conclusions. For example, consider the performance of the CUE in table 1.6a,
where N = 25, p=0.05 and t = 5. As R is increased from O to 10 the mean square error
of Nu increases from 14.3 to 16.4 ! However, only when one considers the way in
which the bias of IQTu is being significantly reduced can one see that the extra

information gained from the plants is in fact improving the performance of the CUE.
This last example is quite typical of the way in which the information gained
from plants enhances the performance of the estimators in situations where very little
information is gained from the target population, however in many of these situations
the improvement in bias is accompanied by a reduction in mean square error,
Except for situations where only a small amount of information is available, the
CUE IQIU is usually unbiased, and where not its bias is negligible. In those situations

where only a small amount of information is available, ﬁu tends to be negatively

biased, with this bias reducing significantly and uniformly as the number of plants is

increased. This behaviour is intuitively very reasonable, since the CUE is unbiased
conditional on the event Z=2Z, +Z, > N. That is because Z, ~ Bin(Rt,p), the event

Z=7,+7Z,2N is more and more likely to occur as R is increased. The standard
deviation of IQILI is generally seen to reduce uniformly as more and more plants are used.

Where the standard deviation of the CUE is not reduced by an increase in R, this is
always due to its bias being significantly improved.

39

FDUERINEPT TN




In the absence of plants, the Peterson-type estimator reduces to X,, commonly
referred to as the 'enumeration estimator'. For this reason, ﬁlp is only considered here

when plants are used. In terms of bias, the Peterson-type estimator behaves in a very
similar way to the CUE, although N , 1s on almost all occasions less biased. When the

number of plants is small relative to the size of the target population, IQIP tends to have a

relatively large variance, however this is on almost all occasions seen to reduce
uniformly as R is increased.

The CUE is seen to utilise the information gained through the plants in a very
'smooth’ way. That is, as R is increased, usually either the mean of Nu is significantly
improved at the expense of a slight increase in standard deviation or both the bias and
the standard deviation are reduced. The behaviour of the MLE when in situations where
little information is available is less predictable as more plants are introduced. Consider
for example table 1.3a, in which N = 50 and p = 0.05. When the number of sampling
occasions is equal to 5, for R =0, 5, 10, 25 and 50 the mean and standard deviation of
N are respectively 43.3, 24.4; 57.9, 36.3; 61.5, 41.8; 56.8, 33.1 and 52.7, 21.2 : the
corresponding values taken by Nu are respectively 30.1, 13.4; 40.8, 18.7; 46.3, 22.3;
49.8, 22.5 and 50.0, 18.6. The CUE in this example behaves in the manner described
above, 1.e. as R is increased its performance improves 'smoothly'. However, as the
number of plants is increased from O to 5 to 10, both the mean and standard deviation of
the MLE are seen to become worse ! This result appears counter intuitive, that is until
one considers the way in which the value of R affects the probability of obtaining a
finite MLE. In the above situation, where t = 5, for R = 0, 5, 10, 25 and 50, the
probabilities of obtaining an infinite MLE are respectively 0.3190, 0.0885, 0.0245,
0.0005 and 0.0000. In other words the introduction of plants is seen to dramatically
improve the probability of obtaining a useful MLE. When this advantage is considered
along with the performance of the MLE, it can be argued that even in situations where,
as in the above example, very little information is obtained from the target population,
the presence of plants is beneficial to the overall performance of the MLE. Other than
those extreme situations in which very little information is present, an increase in the
number of plants is generally seen to improve the performance of the MLE via a
reduction in both bias and standard deviation. And where both statistics are not
improved, one of the two is.

In conclusion, the introduction of plants can be seen to enhance the performance
of all three of the estimators which have been considered within this chapter, this being
under the assumption that the planted individuals do indeed behave in an identical
manner to members of the target population. In particular the plants are seen to be of
most use when only little information has been gained from the target population.
Furthermore, on the basis of the above discussions, whether sampling with or without
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plants, it is recommended that the CUE be considered superior to both the MLE and
Peterson-type estimator.
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Chapter 2 : A Plant-Capture Approach for Sequential Tagging

§ 2.1 : Introduction

This chapter considers how the method of plant-capture may be used to aid the
problem of estimating population size when the population in question behaves
according to a continuous time analogue of the standard capture-recapture model
known as M,,. The model M, is one of the sequence of models described by Otis et al.
(1978) for capture-recapture data in closed populations. The sampling procedure
considered within this chapter assumes that the population in question is under constant
observation for some period of time, and that individuals are seen one at a time.
Existing methods for estimating the value of N are based on either truncated sampling,
in which sampling continues for a fixed predetermined amount of time , or censored
sampling, in which sampling continues until a predetermined number of tagged
individuals have been seen. Within this chapter consideration is given to the problem of
estimation under the more commonly used method of truncated sampling. In the
absence of plants this version of the problem has previously been studied by
Nayak(1988), who derived a maximum likelihood estimator.

§ 2.2 : Sampling Procedure and Assumptions

Prior to the commencement of the experiment it is assumed that the target
population, whose size N we wish to estimate, is augmented by the insertion of a known
number R of planted individuals. Each planted individual is assumed to have received a
unique tag prior to its release. Sightings of any particular member of the target
population form a homogeneous Poisson process of rate 4. The augmented population,
of size N+R, is randomly mixed. It is assumed that the planted individuals behave
exactly as members of the target population, so that the augmented population
constitutes N+R independent homogeneous Poisson processes each of rate A. One
member of the augmented population is randomly selected at a time : individuals that
are seen for the first time receive a unique tag, so that they may be recognised on
subsequent occasions. Individuals having been seen are then immediately released into
the population. The augmented population is assumed to be closed and under
continuous observation during the predetermined time period [0, 7].
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§ 2.3 : A Note on Software Reliability

In the above, N has been referred to as being the size of ' a population '. More
specifically, N may represent the size of a wildlife population, in which case the above
sampling procedure constitutes a sequential Schnabel census with samples of size one,
see Schnabel(1938) or, for a more comprehensive review, Seber(1982). The theory
discussed here however is equally applicable to the problem of estimating the original
number of faults , N, in a reliability system. Only the interpretation of the theory in both
cases is a little different : probabilistically both situations are identical. In the situation
where N represents the unknown number of errors in a piece of computer software the
above model was originally proposed by Jelinski & Moranda (1972). Other models
which aim to describe the stochastic failures of a piece of software have been proposed
however the Jelinski & Moranda model is commonly regarded as being central to the
topic of software reliability, see Langberg & Singpurwalla (1985). Originally attempts
to estimate the value of N based upon the Jelinski & Moranda model assumed that only
the times at which errors were first detected would be recorded. Nayak(1988)
introduced a design called recapture debugging in which he developed a sampling
procedure, which is analogous to the sequential Schnabel census, in an attempt to get
extra information from the population prior to estimating the value of N. In Nayak's
model the software is assumed to originally contain N errors. Whenever an error is
detected it is corrected, without further errors being inserted, but a counter is added to
record how often that area of the software is accessed during the remainder of sampling
time. This ensures that recapture debugging uses the available sampling time more
efficiently.

§ 2.4 : The Sufficient Statistics

Nayak(1988) determined the sufficient statistics for the situation in which no
plants are present. This section utilizes the theory of Nayak(1988) in order to determine
the sufficient statistics for situations in which the number of plants is greater than or
equal to zero. The following notation is used :

X, = the number of distinct unplanted individuals seen in time [0, T].
X, = the number of distinct planted individuals seen in time [0, 7].
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Z, = the total number of sightings made from the target population
in time [0, 7].
Z, = the total number of sightings made from the planted population
in time [0, 7].
Z = the total number of sightings made from the augmented population
in time [0, 7].
Within this section it is more convenient to let
N® = N = the size of the target population
and  N® =R = the size of the planted population.
Suppose that the individuals within each population are labelled as 1, 2, 3, .... according
to the order in which they were seen.
Consider firstly the target population.

Let
TS = the time at which individual i is first seen, fori=1, 2, ..., X,.
W) <) M
It follows that 0 S T(;) < Ty <....STx ) < 7.
and let M{" = the number of times individual i is recaptured after its initial

capture, i = 1, 2, ..., X,. In other words M’ = Y —1, where
Y is the total number of times that individual i is seen during
the time interval [0, 7].
Similarly for the planted population let
T() = the time at which individual i is first seen, fori= 1,2, ..., X,.

It follows that 0 < T() < T() <. TR ) < 7.

and let M? = the number of times individual i is recaptmed after its initial
capture, i =1, 2, ..., X,. In other words M® = Y® —1, where
Y is the total number of times that individual i is seen during
the time interal [0, 7].

. s ) () o
Now define the vectors Uy = (XI,T(,),T(Z), --7T(x,))
RV M
Vo= (MM, M
L 2) @) @)
and Ug = (Xz’T(l) o PoSPRe T(Xz))

Ve = (M®,MP,.....M2).
By the independence of the target and planted populations, it follows that

2
Pmb(Um’V(l)’U(Z)’V(z)) HProb( @ = Yo =V(i>)

2
H 1ob( o =Y |Ugy = um)Prob(U(l) ug) QD)

Under the model, the following distributional results hold :
(@ Given Ugy, M ~ P(A(T—tD)), forj=1,2,.., X3 i=1,2,

where P(A) denotes a Poisson distribution with mean 2.




This implies that

Prob(Vm|Um) = IXJIProb(ME” = m?’) by independence
j=1
B Gl ) S )
gl )
@ % 1% am®
Ar exp{—-?uXi'L'-l- ),Ztg)):}n('r = tEB) ’
3 7 T
= Xl 3
(y
I
X;
where m® =3 m{.
j=1

(if) Prob(Ug,) = Prob(X, = X JProb(T, TS,..... TR Xy = X5 )
where X, ~ Bin(N®,1-exp[-A7]).
Given that an individual is seen by time 7, its conditional time to detection has
Aexp|-At]
1—exp[-At]’
It then follows that the joint conditional probability distribution function of the order
statistics of the X, seen by time 7 is

X4
X o ()
Iﬁ Aexp[-—ﬂ'tgg] _ X,IA CXP|: l;t(ﬁj'
] i 1—exp[-A7] (1 —exp[- AT])X.

probability density function 0t 1.

; fori=1,2.

Hence

%
Xi!/lx'exp[-/thS;]

=1

(1- exp[—lf])x'

Pl-ob(Um = u(s)) = (I\)I(")J(I - exp[-—/lr])xx (exp[_ AT])N“'-xi

N(i) Nl -5 X
={X J(exp[—/'t'r]) XA expl A Dt |
=1

Substituting these results into equation (2.1) yields the following :
2

Prob(Uyy, Veys Ugys Vay) = [ T Prob(Veg, = v, |[Ugy =g, JProb(Ug, =1u,)
i=1

2 xi xi m(i)
e -ax S -0

2 3 W _ X0 .
st 131
i=1 Hm?)! X =

=1

i=1
i
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N iy exp[—N<",1r]ﬁ(r ~ tii?)miﬂ
j=1
(N® -X, )!Hm}”!
j=1
N®IR exp[—N“’M]lﬁI (z-t3 )mi“
i=1

(€)
(N - xi)!ﬁ m!
j=l

=11

2
i=1

=11

2
i=1

It follows that the likelihood function for A and N = N’ may be written as
N(l)
L(2,N®) e ( % )/lz"“z%xp[—(N“) -+ N‘Z’)AT].
1

Hence, by the Neyman-Pearson factorisation theorem, the sufficient statistics for A and
N=N®Pare X, and Z=Z,+Z,.

§ 2.5 : The Distribution Function of the Sufficient Statistics

The most direct way of deriving the joint probability function of X, and Z is to
consider the decomposition
Prob(X, = x,,Z = z) = Prob(X, = x,|Z =z)Prob(Z = z). (2.2)
Firstly, from the above assumptions it follows that Z has a Poisson distribution with
parameter (N + R)A7.

[(N+R)A7] exp[—(N +R)A1]
z! ’
The conditional distribution of X, given Z has previously appeared in an urn model

Explicitly Prob(Z=1z)= 2=0,1, 2. (2.3)

context, see Johnson and Kotz(1977) p.122. Suppose one thinks of the N+R members
of the augmented population as N+R urns and that each time an individual is seen a ball
is placed into the urn representing it. Initially let N of these urns be empty and R
contain one ball. So that at any subsequent time the number of tagged individuals in the
population is represented by the number of urns containing at least one ball. Now the
probability of X, given Z is the probability that X, of the initially empty N urns
contain at least one ball given that Z balls have been randomly allocated to the N+R
urns, the balls being allocated to the urns in such a way that the probability of a ball

being allocated to any one urn is - 3 The distribution of X, given Z is then exactly

the variation of the classical occupancy situation discussed in Johnson and Kotz (1977)
p.122, where a derivation of the probability function of X, given Z may be found.
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Alternatively one may obtain the probability function of X, given Z more directly as

follows.
Prob(X, =x,|Z =z)= Y Prob(X, =x,|Z, =z, Z =z)Prob(Z, = z,|Z =z),
7, =0
using the theorem of total conditional probability.
= ZPIOb( =x,|Z, =2, |Prob(Z, =z|Z = z). (2.3a)
z,=0

From assumptions, it is known that Z, has a Poisson distribution with mean NA7.
Since Z has a Poisson distribution with mean (N +R)A7, it is easy to show that the

distribution of Z,|Z is Binomial : explicitly Z,|Z ~ Bin(Z,EI}E).

The conditional distribution of X, given Z, constitutes what is known in the literature
as a Classical Occupancy distribution. For completeness, the Classical Occupancy
distribution is described in Appendix 1, wherein its probability function is derived.

Explicitly
N
Prob(X, =x,|Z, =z,)=N"™ (x )x,!S(x,,zl),

i
%, =0, 1,2, ..., min(N,z,),

where S(x,,z,)= —1-2[ ')(—l)k(xl —k)" is a Stirling Number of the second kind.

X! =0
The conditional distribution of X, given Z may now be obtained as follows :

Prob(X, = x,|Z =2) meb( | =%,|Z, =z,)Prob(Z, =z,[Z=z) from (2.32)

zy=0

- ZN[ )x,us x,,z,)(zz )(NI:RNNER)
C:)(MR) 208 X2 ( ]Rz_z,

)(N+R) —o(x, kzo[ )( 1~ ))(ZZJR

i (: %(N TRY (x) ) Z(sz(x e

NiRy 2 ( )(—1) (R+x,-k), (2.4)
% =0, 1, 2, .:; min(N,z).
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Substitution of (2.3) and (2.4) into equation (2.2) then yields the joint probability
function for X, and Z :

Prob(X, =x,,Z = z) = Prob(X, = x,|Z = z)Prob(Z = z)
_ (NJ 1 i(?;l )(_ 1) (Ro+x, — k) [(N+R)Az] exp[-(N +R)A7]

X, J(IN+R)* &5 z!
-9 exP[;(!N HRie] [ﬂ;}(’;’ ](—D"(R +x; = k)’ 2.5)

x,=012, ....;,N,
Z =X, X+ 1, X+ 2,

§ 2.6 : The Q - Numbers

The Q - numbers are defined as follows :
SORESEDY ) SIS
k=0
X =0,1,2,...
Z = Xy Xt X042, .
These Q - numbers are of importance since they appear within the joint probability
distribution function of the sufficient statistics, as given in the previous section.
The Q - numbers are a generalisation of the Stirling numbers of the second kind.
Explicitly the relationship is given by the equation

Q(x,,2z;R = 0) = x,!5(x,,2). (2.6)

In order to investigate the distributional properties of the estimators which are
considered further on in this chapter it is necessary to evaluate the Q - numbers over
some particular range of parameter values. This can lead to computational problems
since the form of the Q - numbers is clearly not desirable from a computational point of
view. That is the alternating sign within the summation means that very large numbers
are repeatedly being added to and in particular subtracted from one another, and this is a
major source of rounding error. To help avoid this, and other significant computational
problems, one may consider the following 'triangular' recurrence relation of the Q -
numbers :

Q(x,,z:R) =x,Q(x, - Lz- R) + (R +x,)Q(x,,z- ;R). (2.7)




A direct proof of (2.7) is as follows :

x,Q(x, -1,z-;R) + (R +x,)Q(x,,z- ;R)

=x,::(x‘l;1)(—1) (R+x,—1-k)* R+x,)§;(x )( (R +x, — k)™
=xl§(’;1_'11)(_1)i-‘(1{+x,—3) +(R+x,) x:(’;‘) (R 4%, = k)

+R+x,)
Xl_l xl 21
X, k—l +(R+x,) k (-)*(R+x, —k)

=(R+x,) + ; “H _(1’;‘! (;cl,)!— 0 +(R+x, )[ k‘)}(—l)k(R +x, - k)™

Upon using the identity (2.6), the recurrence relation (2.7), when R = 0, can be shown
to reduce to the well known relationship between Stirling numbers of the second kind,
namely
S(x,,z)=S(x, ~Lz-1)+x,5(x,,z-1).

The triangular recurrence relation (2.7) along with the initial conditions

Q(0,2z;R) =R* and Q(x,x,;R)=x,! (2.7a)
enables one to evaluate the required Q - numbers without having to perform any
subtraction operations whatsoever, and hence one can more easily avoid computational
rounding error.

N.B. The first initial condition is easy to show directly. The second can be shown to
hold as follows. Firstly substituting z = x; into (2.7) implies that
Q(x;»%;3R) = x,Q(x, -1,x, - ;R), then after observing that Q(0,0;R) =1 it is easy to see
that Q(x,,x,;;R)=x,! for all x, 20.
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Comments

Using (2.7), one can show that a similar 'triangular' recurrence relation exists
between the probabilities of the joint distribution of X, and Z, given by equation (2.5).

It can be shown that

AT
P, . = 7[(1{ +%, )Py, 20 + (N =%, +1)Py 5] (2.8)

1

where Py , =Prob(X, =x,,Z=1z).

It is also straightforward to show that (2.8) is subject to the initial conditions

P, = (A7) exp[~(N + R)A7] R

220, 14:2 semns (2.8a)
z!

N
and Py y =(A1)"exp[-(N+ R)M][x ) x; =0, 1,2, ,....N. (2.8b)
1

Again in an attempt to avoid numerical computational problems, one may use the
following recurrence relations to determine the intitial conditions (2.8a) and (2.8b) :

€] Po,z = [(AT)lePo'z_l F=,. 253 e
Z
N -
() Pyx =[(M)( o +1)]le_l‘xl_, Ky 128,00 N,
X

Where the appropriate initial condition for both (i) and (ii) is P, , = exp[~(N + R)At].

§ 2.7 : The Maximum Likelihood Estimator

It follows from equation (2.5) that the joint likelihood function for N and A may
be written as
N
L(N, ) < A%exp[—(N + R)/’L'r](x J (2.9)
1

This is now maximised over A :

g—i— o A*(-(N +R)7)exp[—(N + R)A7] +zA"'exp[-(N + R)A7],

equate to zero to obtain A
A*(N + R)Texp[—(N - R)ZA,'L'] = zi"‘exp[—(N B R)if]

~ Z
= 1_(N+R)'c'
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)’: may now be substituted into (2.9) to obtain the profile likelihood for N :
N
L(N)oc( ](N+R)”", N=xX; Xo+1 20F2, 00
X

There is no closed form expression for the value of N which maximises this profile
likelihood function. However, for given values of x, and z, one may determine the
estimate produced by the maximum likelihood estimator N, using the following
method.

Firstly, if z = x, the profile likelihood for N is clearly increasing and hence N = co.
Now if z > x, one may observe that the profile likelihood function is uni-modal. Hence
N =k, where k is the smallest integer in the set 8 B b L% #2000 } able to

satisfy the condition ~ L(k)>L(k+1) ¢ — +( i )'<1
k+1 \k+R+1

Once N has been determined, this value may then be used in the calculation of the

maximum likelihood estimate of A : AA, = —:L-u
(N ¢ R)T

§ 2.8 : The Harmonic Mean Estimator

The Harmonic mean estimator was first considered by Joe and Reid (1985).
Explicitly a point estimate of N is given by

ﬁh =(0.5+ —-1—2—1 where [.] denotes the integer part.

e
o; N,
The values of n, and n, are defined as follows :
n, =inf{ N >x : L(N|x) = cL(Nx) }
and n,=sup{ N=x : L(NJx) = cL(N[x) },

where ¢ € (0,1].
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§ 2.9 : A Peterson-Type Estimator

This section introduces an estimator of population size which is only dependent
upon the observed numbers of distinct animals seen from the target and planted
populations. The estimator is derived from the conditional distribution of X, given X.

Within section 2.4 the following distributional results were observed to be true
X, ~ Bin(N,1- exp[-A7]),
X, ~ Bin(R,1-exp[-47])
and X ~Bin(N +R,1- exp[-A7]).
It is then easy to show that the distribution of X,|X is in fact hypergeometric with
probability function
NY R N+R
Prob(X, =xl|X=x)=( ]( a ]/( ], max(0,x — R) £ x, <min(N,x).
X A X=X, X
The likelihood function for N based on this probability function is maximised by the
Peterson-type estimator N, = RX, /X, . To avoid an estimator which becomes infinite
when X,=0, N, is now slightly modified : from this point consideration is given to the
(R+1)X,

(X, +1)

estimator I:Ip = [0.5 + ], where [.] denotes the integer part of.

§2.9a : A New Estimator for Homogeneous Populations

A simple closed form estimator may be found by considering the expected value
of f, ~ the number of animals seen exactly once during the experiment.

From the assumptions made above it follows that

f1=ZI(Xi=1) where I(X;=1) = 1 w.p. At.exp(-A7) |
0 w.p. 1-A7.exp(-2A7)

The expected value of f, is then given by

Blt, ] = EE[I(Xi ~1)]

= Y At.exp(-Ar)

i=1

= (N+R)Az.exp(-A7).
By equating f; to its expected value one can obtain the equation
~(N+ R)/’Lr)

(NTR) (2.9a)

f,=(N+ R))xt.exp(
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The total number of sightings Z has a Poisson distribution with mean (N+R)Az.
Hence z may be used as an estimate of (N + R)A7, and substituting this into equation
(2.9a) yields

-Z
f, = z.exp(N+ R)'

Solving this for N gives N = e , and so a point estimate of population size N
f,

. A z

is given by N, ~R.

el

Care must be taken with this estimator since the estimate it produces is only
dependent upon the values of f, and z. That is one may obtain a distorted view of
population size if one observes the population only through the values of f, and z. This
problem only occurs when sampling for a very long period of time and so in most
practical situations it is expected that the above estimator may be considered for use in
connection with the majority of experiments. Consider, for example, the data set
contained within Table 4.2 of Seber(1982) p.137 which gives the capture-recapture data
from a population of butterflies : from Craig(1953). For this data set R=0, f =258,
f,=72, f,=11 and z=435. The maximum likelihood estimate and Darroch &

Ratcliff(1980) estimate of population size are 853 and 838 respectively. The above

. : e TR 435
estimator's estimate of population size is N, = ———— = 833.

ln{@}
258

Simulation results have shown that, provided no more than about 80% of the
population is seen during the experiment, the estimator IQIfz competes very well with the
maximum likelihood estimator and the estimator of Darroch & Ratcliff(1980). The
behaviour of N, in situations where less than about 80% of the population is seen, is
in fact very similar to the behaviour of the maximum likelihood estimator - although the
performance of the maximum likelihood estimator is on the whole marginally superior.
The performance of Nfz diminishes after sampling has continued for a very long time,
and is unsatisfactory when more than about 80% of the population is seen during the
experiment. For this reason and the fact that IQIfz is not a function of the sufficient
statistics alone, the estimator IQIrz is not considered any further at this stage.
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§ 2.10 : A Conditionally Unbiased Estimator

This section introduces the Conditionally Unbiased Estimator (CUE) Nu,

which is an estimator of population size N defined by

£ o Q(x,,z+1;R) B

= 2.10
" QxuzR) &1

Xy

where Q(x,,zR)= Zﬁ: J(—l)k(R +x, - k),

k=0
as defined in section 2.6.
The CUE N, was derived from the conditional distribution of X, given Z.

When R=0, Nu reduces to an estimator which has previously been considered in an urn

model context, Harris(1968). In the absence of plants Harris(1968) showed that,
provided Z 2N, N, is a minimum variance unbiased estimator of N with respect to the
conditional distribution of X, given Z. As previously mentioned in section 1.8 of
chapter 1, when R=0, Nu is equivalent to a special case of the estimator proposed by
Pathak(1964). Berg(1975), using the notation of Pathak(1964), derived a recurrence
relation for N, in the R = 0 situation. In section 2.10a a recurrence relation for N, is

derived which allows for values of R greater than or equal to zero.
For values of R greater than or equal to zero, the CUE N, can be shown to be

unbiased with respect to the conditional distribution of X, given Z, provided that
Z 2 N, as follows.

E(N, )= ZNProb L =x,[Z=12)

(x,z+LR) N 1 _
"2[ Q(x,,z:R) —R:I(xl)(N+R)ZQ(X"Z’R)’

this follows from equation (2.4).

X],Z+1R N 1 - ]
_2 Qx1,%R) ( }(N+R)’Q(x*"’R) R

S
1 il
N+R)Z(XIJWQ(X“Z+LR) R
=(N+R).1-R if Z>N.
=N.

Hence N, is unbiased over the conditional distribution of X, given Z, provided that
the condition Z =N holds. Furthermore, again provided that Z =N, since X, is
sufficient for N with respect to the conditional distribution of X, given Z , it follows
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that N, is the minimum variance unbiased estimator of N with respect to the
conditional distribution of X, given Z , Lehmann and Scheffe(1950).

In view of the fact that population size N is integer valued, in later sections
consideration is given to the following slightly modified version of Nu :

1(1“ =[0'5+9_(}_1’z_+1;5_).._1{:|,
Q(x,,z;R)

where the square brackets have been used to denote the integer part.

§ 2.10a : A Note on the Evaluation of the CUE

Direct use of equation (2.10) to evaluate the estimates produced by the estimator
N, can often be difficult, and involve very cumbersome computation. This is due to the
fact that the Q - numbers, present within (2.10), grow rapidly with increasing
arguments. To overcome this computational problem, a recurrence relation linking the

~

N, is now stated and proved.

To make the following proof more easily read some shorthand notation is necessary.

Let Qx.,z = Q(xl,z;R)
and let Nx . =N“ =_Q._(}J£-_15_R_}._R= Qxl.z+l R
1 Q(Xl,Z;R) (2)“‘2

The N, , are then subject to the following recurrence relation

N =x,+ M(N -x,) @2.11)

Xy,Z 1 N—xl iy +R Xp.2-1 1)? o
with initial conditions Ny, =0 for 2=0; 1; 2 (2.12)
and N, , = 1‘2l[xl +2R +1] for x,20. (2.13)

N.B. Substituting R = 0 into (2.11), (2.12) and (2.13) yields the 'Property 5' of
Berg(1975) p.92.
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Proof of (2.11) :

N R
X+ {ﬁ](]\lxl.z-l — X )

_____g"--hz -R+R
—“X‘I‘,E—'—'R‘i‘R Qxl.z-l
Xq,2-1
=x. + Qx,vl,z Qxl,z-l (Qx,.z_(R+xl)Qx,.z-l)
I Qx,-l.z—l Qxl,z Qx,,z-l

Qx,-l.z Qx,,z-l (lex,-l.z-I)

=X, + using (2.7
: Qxl-l,z-l Qxl,z Qx,,z-l g ( )
X
- i + IQQxl‘l.Z
(Qx,,z+l A (R + x] )Qx|,z) . .
= X, + 3 using (2.7) with z replaced by z+1
= x, + 2l (R )
o Qxl.z+l R
Qx,,z
= le_z.

Proof of (2.12) :

NO = QO‘Z-H R

0,z

=R using (2.7a)
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Proof of (2.13) :

As a first step in this proof it is necessary to prove the following identity

!
Qi =%(2R+x,)(xl +1), x, 0. (2.14)
The proof of (2.14) is by induction :
Anchor : (2.14) is clearly true for x, =0, since Q,; =R.
!
Assume true for x, =k, i.e. assume Q,,,, = %(ZR +k)(k+1).
Then
Qinrz =K +1)Qy g + (R +Kk+1)Quyy 4 using (2.7)
!
=(k+ 1)%(2R +k)(k+1)+(R+k+1)(k+1) using assumption
and (2.7a)
1
= Q‘;—l)'[(zR +K)(k+1)+2(R +k+1)]
!
=(k+l)'[2Rk+4R+k2 +3k+2]
!
= (kgl)'[(2R+k)(k+2)+k+2]
(k+1)!

[(2R + (k+1))((k +1)+1)].

This shows that, if (2.14) is true for x, =k, then it must also be true for x, =k +1.
Since it has been shown that (2.14) is true for x, =0, it follows by induction that (2.14)
holds for all x;, 2 0.

The proof of (2.13) may now be completed :

N, . =M_R
g Qx“xl
-’fﬁ(zR+ X, )(x, +1)
=2 = -R using (2.14) and (2.7a)
)
=%(2R+x,)(x1+1)—R

= %[ZRX, +2R +x,> +x, —2R]

=%[x,+2R+1].
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§2.11 : A Comparison of All Four Estimators

In order to compare the performance of the four estimators which have so far

been discussed, consideration is given to their mean, standard deviation and root mean
square error conditional on the event C= {Z > X,}. This conditioning is necessary

since the maximum likelihood estimator N yields infinite estimates when Z = X,. Itis
important to note however that the Peterson-type estimator N,, harmonic mean
estimator ﬁh and conditionally unbiased estimator ﬁu produce finite estimates with
probability one. The unconditional performance of ﬁp , N , and IQIll is considered later
on.

Conditional on the event C={Z>X,}, the mean, standard deviation and root
mean square error of each estimator are presented in tables 2.1a,b,c, 2.2a,b,c and
2.3a,b,c. These tables summarise the performance of the estimators for each
combination from the following factorial design :

0.1
0.2
0.3 0
10 0.4 5
N=2§ x A=1x% T=log(1_} ): p=05 x R=10 X,
50 0.6 25 where p=E(F).
0.7 50
0.8
0.9

Please note however that, for each value of population size N, only values of R up to
and including N are considered; this is done for obvious practical reasons.
The notation used within each table is as follows :

Statistics
exp. = mean or expectation.
sd. = standard deviation.
rmse = root mean square error.
P(infmle) =  1-Prob(C)=Prob(C)=Prob(Z=X,), which is the

probability of the maximum likelihood estimator
producing an infinite estimate.
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Esti 'S

X1l = X,, the number of distinct individuals seen from the
target population.
P = ﬁp, the Peterson-type estimator of section 2.9.

CUE = ﬁu, the conditionally unbiased estimator of
section 2.10.

MLE = N . the maximum likelihood estimator of section
2.7

HME = IQI,,, the harmonic mean estimator, Joe & Reed(1985)

It is straightforward to obtain the distributions of both N and Nu given the

event C. In order to obtain the conditional distribution of the Peterson-type estimator
NP given the event C, one must derive the conditional distribution of X, and X, given

C. The following proof was provided by I. B. J. Goudie ( pers. com. ).

Firstly recall that C is defined as being the event {Z>X1} and that C is used to denote

the complementary event {Z=X,}.

C occurs = X,=0 and each individual in target population is seen at
most once.

Now Prob(X, =0) =[exp(-A7)[" (2.15)

( This is because we know that X, ~ Bin(R,1-exp(-17)) )

Let Y, = the number of sightings of individual i. It follows that Y, ~ P(A7).

It may then be observed that

Prob( each individual in target population is seen at most once )

= fIProb(YiSI)
=[(A7 + Dexp(-A7)]". (2.16)

Use of (2.15) and (2.16) implies that
Prob(C)=1-Prob(C)

=1-[exp(-A7)] [(A7+ Dexp(-27)]".

Now
Prob(X,=x,,X,=X,,Z>X,)

Prob(X,=x,,X,=x,|Z>X )

Prob(Z>X,)
_ Prob(X,=x,,X,=x, Prob(Z>X,[X,=x,,X,=x, )
- Prob(Z>X)
_Prob(X,=x, )Prob(X,=x, Prob(Z>X, [X,=x,,X,=x,) B
Prob(Z>X,)
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It is clear that Prob(Z>X[X,=x,,X,=x, }=1 if X,>0.

When X,=0 it may be observed that Z}X,,X2 = ZI|Xl . The distribution of Zl]X,
may be characterised as being the sum of X, zero truncated Poisson random variables:
this distribution is known in the literature as a Stirling distribution of the second kind;
the probability function of this distribution is derived in appendix 2.
Explicitly the probability function of ZIIXl is given by
x! (A0)"S(x,2,)
z)! (exp(A7)-1)""
Zy Ry Xp Pl Fy F 20w
It follows that Prob(Z>x,[X,=x,,X,=x, J=Prob(Z,>x,|X,=x, )
=1-Prob(Z,=x,X,=x, )
(Ag)"
(exp(A7)-1)"
Following on from equation (2.17), and using the notation
P(C)=Prob(Z>X,[X,=x,,X,=x,), allows one to write :

Prob(Z, =z X, =x,) =

Prob(X, = x,,X, = xZ> X, ) = Prob(X, =x, )Prob(X, = x, )Prob(Z > X,|X, = x,,X, =x,)

Prob(Z > X,)

(1 Ji-esptaa [esp(-2)f ™ J1-exp-ao) [exp(-22)] 0

P(C) '
0,12,..N for R>0
X ==
"112..N for R=0’
12,,R for R>0,x,=0
X,=10,1.2,.,R for R>0, x,>0,
0 for R=
1 for X,>0
where P(C)= 1— (A7)" for X,=0

(exp(A7)—1)"
and  P(C)=Prob(Z > X,)=1~[exp(-A7)] [(A +1)exp(-A7)] .
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2.11a: The ¢ Constant

The Harmonic Mean Estimator, as defined by Joe & Reid(1985),

depends upon a constant ¢ € (0,1]. There is no natural or obvious value that this
constant should take. The problem of deciding which single value of ¢ should be used in
connection with the HME is therefore highly subjective. It is for this reason that the
following tables illustrate the performance of the HME when used in connection with a
range of possible c values . In practice however it would be necessary to have chosen a
priori an appropriate value of c. Hence we now aim to recommend a single value of ¢
that may be considered suitable for general use. This is not straightforward: in some
situations the performance of the HME depends heavily upon the value taken by the c
constant, whereas in other situations varying the constant has little effect. Joe &
Reid(1985), although still concerned with population size estimation, considered a
different problem to the one described here. It is worthwhile to note however that one
conclusion they reached, bearing in mind that they only considered populations of size
N = 10 when R = 0, was that changing c did not substantially affect the performance of
the HME. The same conclusion may be drawn from tables 2.1a,b,c when R is equal to
zero. So this, at least, is broadly consistent with Joe & Reid(1985). However when one
considers situations in which N = 10, R > 0 and in particular those in which N > 10, R
>= 0 one can see that varying the c constant can in fact produce significant change in
the performance of the HME, and that the effect of the constant is most significant for
the smaller values of 7. For these small values of 7, which represent situations in
which little information is available, the likelihood functions can be very spread out,
almost flat and although remaining unimodal, are certainly not peaked, their shape
representing the paucity of information. It is in each of these situations that the shape
of the likelihood function can allow the harmonic mean estimate to differ greatly from
the maximum likelihood estimate. The reason for this being that, due to the shape of the
likelihood function, it is in each of these situations that the ¢ constant has most effect
upon the resulting harmonic mean estimate. Consequently, for small values of 7, the
performance of the HME can be greatly affected by changing the ¢ constant. For the
larger values of 7, which represent situations in which a large amount of information
has been obtained, the likelihood functions become peaked. In each of these situations
the estimate produced by the HME is therefore not likely to differ greatly from the
maximum likelihood estimate. This is the reason why, for the larger values of 7, the
HME and MLE perform in a very similar way. And furthermore, due to the peakedness
of the likelihood functons, the c constant has little affect upon each resulting harmonic
mean estimate. Hence for the larger values of 7 the c constant does not significantly
affect the performance of the HME.
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Regarding the way in which the c¢ constant affects the HME when its
performance is in turn being compared with that of the MLE, the general trend is that
for small values of ¢ the HME, when compared with the MLE, tends to have both a
smaller mean and variance, and that as ¢ is increased the mean and variance of the
HME increase to those of the MLE. For the larger values of c, as one would expect, the
performance of the HME is very similar to that of the MLE : in particular when c¢=1
the HME and MLE are equivalent.

In view of this behaviour, when seeking to choose an appropriate value for the ¢
constant, one must be careful not to place too much emphasis on mean square error. It
would be inappropriate to base a choice of ¢ solely upon the effect that this constant
may have upon the mean square error of the HME, since this loss function is known to
favour estimators possessing negative bias and small variance. Hence consideration of
mean square error alone would lead one to choose an unduly small value for the c
constant.

Based on an inspection of tables 2.1a,b,c, 2.2a,b,c and 2.3a,b,c it is believed that
for general use the most appropriate value of the c constant should be ¢ = 0.5. In
reaching this decision consideration was given to mean, standard deviation and mean
square error. Joe & Reed(1985) recommended use of the HME with a ¢ value of 0.5.
Hence from this point when reference is made to the HME a ¢ value of 0.5 is to be
assumed.

§ 2.11b : Discussion of Relative Performance of Estimators

The reasons underlying the differing performance of the MLE and HME have
been discussed above. For the largest values of 7 considered in the tables the MLE and
HME perform in a very similar way. However for the smaller values of 7 the HME can
in some situations be seen to perform significantly better than the MLE : particularly in
terms of mean square error, although it is important to note that this is often at the
expense of negative bias. On the whole, within the range of population sizes covered in
the tables, it can be said that the performance of the HME is either better than or as
good as that of the MLE. Whilst it is important to bear in mind the fact that the HME
tends to possess a comparatively small mean square error as a result of its negative bias,
it is recommended that the HME be preferred to the MLE.

At this stage it is important to observe that, given the proportion of the
population seen during the experiment, the performance and relative performance of the
MLE, CUE and Peterson-type estimators can be seen to be essentially identical under
both the discrete time sampling procedure of the previous chapter and the continuous
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time sampling procedure of this chapter. Hence the conclusions reached in chapter 1
regarding the relative performance of the MLE, CUE and Peterson-type estimators are
valid here. So that firstly, on the basis of tables 2.1,a,b,c, 2.2a,b,c and 2.3a,b,c, it can be
argued that the CUE is clearly a better alternative to the Peterson-type estimator. And
that secondly, for the reasons stated fully in chapter 1, one should always use the CUE
in preference to the MLE.

The comparison between the HME and CUE is quite straightforward, this being
a result of the fact that both estimators behave in a very similar way. When little
information is available both the HME and CUE tend to be negatively biased with small
variance, this bias then reduces smoothly as more information is obtained. In view of
the fact that both the HME and MLE behave in a very similar way with regard to bias, it
is worthwhile to note that in all but one of the one-hundred and eight situations
considered in the tables, that the standard deviation of the CUE is smaller than that of
the HME. For values of 7 greater than 0.36, the absolute bias of the CUE is only
greater than that of the HME in six out of the seventy-two situations considered, and in
terms of mean square error the CUE is uniformly better. For values of 7 less than or
equal to 0.36, both the CUE and HME can be negatively biased, and in particular for
these small values of 7 the CUE can be more negatively biased than the HME. The
standard deviation of the CUE however remains smaller than that of the HME, and
consequently, for values of 7 less than or equal to 0.36, the HME possesses a smaller
mean square error than the CUE in only nine out of the thirty-six situations considered,
and in none of these nine cases is the reduction in mean square error particularly large.
In view of the above discussion, it is believed that one should always use the CUE in
preference to the HME. This conclusion has been based entirely on consideration of
performance : it is worthwhile to note however that for any given data set the estimate
produced by the CUE is usually much easier to calculate than the harmonic mean
estimate.
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Table 2.1a

N=10
7[R [IPO X1 | P | CUE[MLE HME
x10°4 01Jo2Jo3]o4aJo5]06[07]08]09
0.11 |0 9452 | exp. 1.91 1.91 225 | 248 | 3.781 3.77| 3.21| 2.80| 2.89| 285 | 2.86| 2.67 | 2.48
s.d. 0.91 0.91 1.60 | 207 | 1.79] 1.81 | 1.54] 1.86 | 2.11]| 200 | 2.04 | 2.36 | 2.06
mse | 8.14 | 814 | 791 | 7.80 | 647] 6.49 | 697 | 7.44 | 7.42| 7.43 | 7.43| 7.70 | 7.80
5 5453 | exp. | 1.10 | 3.50 | 3.39 | 543 | 236 239 | 2.82| 2.89 | 3.25]| 3.88 | 4.27| 436 | 4.98
s.d. 099 | 373 | 342 | 5.76 | 240 253 | 3.10] 3.34 | 390 399 | 453| 496 | 5.12
rmse | 895 | 749 | 7.44 | 7.35 [ 801 | 802 | 7.83| 7.86 | 7.80| 7.31 | 7.30| 7.51 | 7.17
10 3146 | exp. | 1.06 | 540 | 527 | 834 | 260 3.17 ]| 3.35| 4.12 | 442] 561 | 6.03] 6.81 | 7.52
s.d. 097 | 561 | 525 | 924 |1 292|389 | 431|481 ]|550] 624] 7.01] 7.60 | 8.33
rmse | 899 | 7.26 | 7.06 | 9.39 [ 7.95[ 7.86 | 793 7.60 | 7.83 | 7.63 | 8.06] 8.24 | .69
0.22 |0 8094 | exp. | 270 | 2.70 | 3.71 | 431 | 5.25| 5.25| 4.61| 439 | 469| 458 | 4.61| 4.63 | 4.29
s.d. 1.18 | 1.18 | 249 | 340 | 231|240 | 249 268 | 3.14| 3.04 | 3.16] 3.49 | 3.37
rmse | 7.39 | 7.39 | 6.76 | 6.63 | 5.28| 5.32 | 5.93| 6.22 | 6.17] 6.21 | 6.25] 6.40 | 6.63
5 2694 | exp. | 204 | 6.06 | 6.03 | 892 | 4.54| 469 | 5.33| 5.58 | 6.29| 6.77 | 7.36| 7.84 | 8.27
s.d. 127 | 5.02 | 450 | 7.67 | 3.41| 3.77| 434| 483 | 548] 5.62| 6.20] 6.70 | 7.08
rmse | 8.06 | 6.38 | 6.00 | 7.75 | 6.44| 6.52 | 6.37] 6.55 | 6.62| 6.49 | 6.74| 7.04 | 7.29
10 897 | exp. | 1.99 | 8.17 | 8.07 | 11.46| 481 572 | 6.28| 6.94 | 7.47| 857 ] 9.20] 9.94 [10.72
s.d. 1.26 | 678 | 6.18 | 10.72| 391 | 494 | 5.69| 6.25| 7.06| 7.69 | 8.37] 9.00 | 9.83
rmse | 8.11 | 7.027| 6.47 | 10.82] 6.50] 6.53 | 6.80| 6.96 | 7.50| 7.83 | 8.41 | 9.00 | 9.86
0.36 |0 5915 | exp. | 357 | 357 | 545 | 650 ]| 6.79] 6.83 | 6.36| 6.21 | 6.70| 6.59 | 6.63| 6.76 | 6.45
s.d. 136 | 1.36 | 3.16 | 457 | 2.69| 291 | 3.34| 3.49 | 3.92] 400 | 4.21| 435 ] 4.48
rmse | 657 6.57 | 554 | 575 | 4.19| 430 | 494 5.15 | 5.13| 5.26 | 5.39| 5.43 | 5.72
5 978 | exp. | 3.06 | 8.12 | 8.17 | 1096 ] 6.64| 6.90 | 7.55| 795 ]| 8.70] 9.07 | 9.59]10.16]10.41
s.d. 145 | 580 | 498 | 859 | 3.88| 441 | 5.01| 558 | 6.15]| 6.48 | 7.02] 7.49 | 8.12
rmse | 7.09 | 6.10 | 5.30 | 8.64 [ 5.13]| 5.39 | 5.58] 5.95 | 6.28| 6.55 | 7.03| 7.49 | 8.13
10 162 | exp. | 3.03 | 958 | 9.50 | 11.70 | 6.65| 7.46 | 8.12] 8.69 | 9.15] 9.77 [10.34| 10.78] 11.35
s.d. 145 | 679 | 6.02 | 976 | 416| 501 | 568 6.27 | 6.89]| 7.34 | 7.88 ] 843 | 9.13
rmse | 7.12 | 6.81 | 604 | 9.91 | 5.34| 561 | 5.99| 6.41 | 694 7.34 | 7.88| 8.46 | 9.23




Table 2.1b

N=10
T R 1-P(C) X1 P | CUE|MLE HME
X104 01]]02(03]04]05]06[07] 08109
0.51 10 3757 | exp. | 437 | 437 699 | 835 8.11] 820 7.95] 7.82 | 832] 831 [ 830][ 8.46 | 8.26
sd. | 146 | 1.46 | 352 | 527 | 295] 3.26 | 3.83| 4.01 | 434 4.58 | 4.84] 493 | 5.16
rmse | 5.82 | 5.82 | 4.63 | 5.52 | 3.51] 3.73 | 4.35| 457 | 465] 4.88 | 5.13] 5.16 | 5.45
5 293 | exp. | 4.01 | 927 | 929 | 11.31] 8.07] 8.35 | 8.87] 9.27 | 9.83 [ 10.11]10.42] 10.90]10.95
sd. | 155 597 | 491 | 819 | 3.87| 442|499 551 | 597[6.36 ] 6.81] 7.22 | 7.85
rmse | 6.18 | 6.01 | 496 | 8.30 | 432 472 | 5.12 5.55]597] 6.36 | 6.82] 7.27 | 7.90
10 23 | exp. | 400 | 996 | 9.92 | 1090 7.90| 8.43 | 891] 935 | 9.66 | 9.93 [10.30] 10.56] 10.80
sd. | 1.55] 6.00 | 520 | 7.49 | 3.92| 452 496 537 | 5.78] 6.01 | 6.37[ 6.71 | 7.17
rmse | 6.20 | 6.00 | 5.20 | 7.55 | 445 4.78 | 5.07| 5.41 5791 6.01 | 6.37] 6.74 | 7.22
0.69 [0 1915 | exp. | 520 | 520 | 834 | 9.73 | 931 9.41 | 930] 9.20[ 9.58] 9.65 ] 9.57] 9.74 | 9.62
sd. | 151 | 1.51 | 3.64 | 556 | 3.10] 3.44 ]| 3.98| 424 | 449479 [ 5.10] 5.21 | 5.45
rmse | 5.03 | 5.03 | 400 | 5.57 | 3.17| 3.49 | 4.05| 4.31 | 451 481 | 512 5.22 | 5.47
5 61 | exp. | 499 | 9.83 | 9.80 | 10.85] 9.11 [ 9.26 | 9.58 | 9.85 [10.15]10.32[10.45] 10.74] 10.63
sd. | 1.58 | 5.62 | 441 | 671 | 3.56| 4.00 | 446| 4.83 | 5.15[ 5.49 [ 5.78 | 6.08 | 6.52
mse | 525 | 562 | 442 ] 6.76 | 3.67]| 407 [ 447] 483 5.15] 5.50| 5.80] 6.12 | 6.55
10 2 | exp. | 498 |10.01]10.03]10.24| 8.86]9.11 ] 937 9.61 | 9.77] 9.88 [10.08]10.20]10.19
sd. | 1.58 | 493 | 420 | 521 | 344 379 | 4.03| 4.24 | 4.46[ 455 4.72| 489 | 5.14
rmse | 5.26 | 493 | 420 | 522 | 3.62]| 3.90 | 407 426 | 446| 455 [ 472] 490| 5.15
0.92 [0 688 | exp. | 6.11 | 6.11 | 9.33 | 10.37 | 10.32] 10.32]10.21] 10.13]10.31] 10.39]10.24] 10.37] 10.27
sd. | 151 | 1.51 | 345 ] 530 ] 3.05]3.35] 3.78] 409 [ 429 4.57 | 4.88 | 5.02 | 5.22
rmse | 4.18 | 4.18 | 3.51 | 531 | 3.07] 337 | 3.78 | 4.09 | 4.30[ 459 ] 4.89| 5.03 [ 5.22
5 7 | exp. | 6.02 10.02] 9.98 | 10.24 | 9.87] 9.80 | 9.90 | 10.01]10.10] 10.15]10.19] 10.23]10.09
sd. | 155 486 | 3.58 | 469 | 3.02| 3.31 | 3.58| 3.80 | 394 4.19| 427 4.47 | 4.68
rmse | 427 | 486 | 3.58 | 470 | 3.03| 331 [ 3.59] 3.80 | 3.95] 4.19 428 | 447 ] 4.68
10 0 | exp. | 6.01 [10.03]10.03]| 9.87 | 9.57]9.58 | 9.65] 9.75| 9.81] 9.81 | 991 | 9.90 | 9.75
sd. | 1.55| 391 | 325 | 3.59 | 282 3.03| 3.16] 3.27| 3.33] 3.39 | 3.42| 3.53 | 3.65
rmse | 4.28 | 3.91 | 3.25 | 3.59 | 2.86| 3.06 | 3.18 | 3.28 | 3.34] 3.39 | 3.42| 3.53 | 3.66




Table 2.1c

N =10

T R 1-P(C) X1 P | CUE|MLE HME
x1074 011021030405 06]07]| 08109
1.20 10 163 | exp. | 7.01 7.01 9.82 | 10.27 [10.92] 10.76] 10.54] 10.45]10.42] 10.45/10.28} 10.30] 10.15
s.d. 1.43 143 | 296 | 439 | 2.76| 298 | 3.24 411 423 | 4.35
rmse | 331 | 3.31 | 2.97 | 439 | 291 3.07 | 3.29 412 424|436
5 0 exp. | 6.99 | 10.06 | 10.02 | 9.87 |10.33]10.10{10.02 9.96| 9.83 | 9.66
s.d. 145 ] 396 | 2.72 | 3.11 | 243 256 | 2.72 2991 3.13 | 3.17
rmse | 3.34 | 3.96 | 2.72 | 3.12 | 245] 2.56 | 2.72| 2.83 | 2. 1299312 3.9
10 0 exp. | 6.99 | 10.08 | 9.99 | 9.68 |10.06] 9.86 | 9.85 9.80] 9.69 | 9.47
s.d. 1.45 | 3.08 | 250 | 2.61 | 2.24| 236 | 2.47 259 2.68 | 2.68
rmse | 334 | 3.08 | 2.50 | 2.63 | 2.24| 237 | 247| 2.54 | 2.55| 2.61 | 2.59] 2.70 | 2.73.
1.61 [0 15 | exp. | 800 | 800 | 998 | 9.82 |11.11]10.79/10.49 9.95]| 9.85 | 9.68
s.d. 1.26 | 1.26 | 2.17 | 2.84 | 2.19] 2.27 | 2.37 2.81)| 2.87 | 2.87
rmse | 2.36 | 236 | 2.17 | 285 | 2.46] 241 | 242 257 | 281 287|288
5 0 exp. | 8.00 | 10.08 | 10.01 | 9.65 |10.62] 10.30]10.11 9.71 | 9.51 | 9.40
s.d. 126 | 296 | 191 | 204 | 1.82] 1.84 | 1.92 205 2.13 | 2.04
rmse | 237 [ 296 | 1.91 | 2.07 | 1.93] 1.86 | 1.92] 1. 207 219]213
10 0 exp. | 8.00 | 10.09 | 9.98 | 9.57 |10.46] 10.15] 9.99 964 9.46 | 9.33
s.d. 1.26 | 2.25 1.82 1.84 | 1.70) 1.72 | 1.79 192] 199 | 1.84
rmse | 237 | 226 | 1.82 | 1.89 | 1.76] 1.73 | 179 1. 1.95] 206 | 1.96
2.30 |0 0 exp. | 9.00 | 9.00 | 10.00| 9.56 |10.89]10.51|10.17 9591 947 | 944
s.d. 0951 095 | 1.31 1.39 | 147 1.46 | 1.44] 1. 144 1.41 | 1.38
rmse| 138 [ 1.38 | 131 | 146 | 1.72]| 1.55 | 1.45] 1.46 ; 150 1.51 | 1.49
5 0 exp. | 9.00 | 10.06 | 10.03 | 9.51 |10.64]| 10.30}10.06] 9.82 | 9.70] 954 | 942 9.29 | 9.35
s.d. 095 ] 192 ] 1.21 125 | 125 127 1271 1.26 | 1.29] 1.24 | 1.25] 1.19] 1.18
rmse| 138 | 192 | 121 | 1.3 | 141 131 [ 1.27| 1.27| 1.32] 1.33| 138| 1.39| 133
10 0 exp. | 9.00 | 10.04 | 10.04 | 9.47 110.57]10.22| 9.97] 9.78 | 9.61 5.50 9.36 | 9.24 | 9.31
s.d. 0.95 1.46 1.15 1.21 | 1.21] 1.20 | 1.20] 1.22 | 1.23| 1.22 ]| 1.20] 1.15] 1.15
rmse] 138 146 | 115 | 132 [ 134|122 120 124 1:29]| 1.32 | 1.36| 138 | 1.34
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Table 2.2a

N =25
T R 1-P(C) X1 P | CUE|MLE HME
x10%4 01]02[03]04]05[06]07] 08|09
0.1T 10 8685 | exp. | 3.44 | 344 | 553 | 698 | 6.85] 6.97] 6.51] 6.43 [ 7.03] 6.92] 7.09[ 7.24 | 6.92
sd. | 148 | 1.48 ] 378 | 5.71 | 3.16] 3.45]| 4.05| 4.26 [ 473]| 487 [ 5.19] 5.35 [ 5.57
rmse | 21.61 | 21.61 | 19.83 | 18.90 | 18.43] 18.36] 18.92 19.06 18.58J 18.72]18.65 18.55]18.91
5 5011 | exp. | 273 | 929 | 9.44 | 15.22] 6.97] 7.48 | 8.68 ] 9.36 [10.55] 11.30]12.40] 13.21] 14.14
sd. | 1.55] 720 | 6.56 | 11.62] 5.13] 595 6.70] 7.51 | 8.33] 8.77 [ 9.52|10.21[11.04
rmse | 22.32 | 17.29 | 16.89 | 15.18 | 18.74] 18.51]17.64] 17.35}16.67] 16.27] 15.80] 15.60{ 15.49
10 | 2891 | exp. | 2.66 [ 13.75] 13.73 | 22.13 | 8.13| 10.12]11.33] 12.76[ 14.13] 16.03] 17.31] 18.81]20.45
sd. | 1.54 [ 1057 9.47 | 17.48 | 6.54] 8.12 | 9.38 | 10.45]11.87] 12.74]13.74] 14.93] 16.21
rmse | 22.40 | 15.44 | 14.72 | 17.72 | 18.09] 16.95|16.58] 16.09]16.10] 15.58| 15.74] 16.16[ 16.84
25 555 | exp. | 2.61 [ 21.22 | 21.10 | 31.09 | 11.06] 13.60] 16.10] 18.21]20.47] 22.36] 24.65] 26.70| 28.69
sd. | 1.53 | 16.67 | 15.64 | 28.59 [ 10.02] 12.40] 14.68] 16.41]18.32] 20.23]22.08] 24.10{26.20
tmse | 22.44 | 17.09 | 16.12 | 29.23 [17.16] 16.85]17.17] 17.76| 18.87] 20.40| 22.09] 24.16] 26.46
0.22 [0 5894 | exp. | 555 | 5.55 | 11.13 | 15.16 | 11.54] 12.10]12.52] 12.78]| 13.66] 13.99] 14.42] 14.78] 14.88
sd. | 192 | 192 6.22 | 1030] 5.22| 5.84 [ 6.79] 7.42] 7.79] 8.39 | 8.95] 9.37 | 9.91
rmse | 19.54 | 19.54 | 15.20 | 14.25 | 14.44| 14.16|14.21] 14.29| 13.76] 13.84| 13.86] 13.86| 14.16
5 1962 | exp. | 5.04 | 16.21 | 17.02 | 25.39 | 13.61] 14.98]16.68] 18.00[ 19.54] 20.61]21.91] 23.08]24.33
sd. | 1.99 [ 1056 | 9.50 | 17.35| 7.55] 8.84 [10.02] 11.01]12.03] 13.03]14.15] 15.00| 16.44
rmse | 20.06 | 13.74 | 12.41 | 17.35 [ 13.67] 13.36[13.03| 13.05] 13.21] 13.75] 14.49] 15.12| 16.45
10 653 | exp. | 4.97 | 21.00 | 21.14 | 29.93 | 15.10] 17.61]19.46| 21.18|22.76] 24.20] 25.67] 27.03] 28.68
sd. | 1.99 | 14.18 | 12.11 | 22.40 | 9.19]10.93]12.28] 13.80[15.27] 16.54] 17.82] 19.34]20.86
rmse | 20.13 | 14.73 [ 1271 | 22.93 [13.50] 13.20] 13.48| 14.32|15.43| 16.56| 17.83] 19.45| 21.18
25 24 | exp. | 4.94 | 24.75 | 24.71 | 29.41 [17.02] 19.25[21.24] 22.73]24.07] 25.33] 26.44] 27.56| 28.55
sd. | 1.99 | 15.61 ] 14.38 | 22.21 |10.65] 12.41]13.85] 15.11]16.30] 17.38] 18.55] 19.64]20.89
rmse | 20.16 | 15.61 | 14.38 | 22.64 | 13.31] 13.68]14.35] 15.28]16.33] 17.39] 18.61] 19.81]21.19
0.36 |0 2690 | exp. | 7.90 | 7.90 | 17.36 | 23.62 | 17.24] 18.19]19.10] 19.86|20.67] 21.47]22.03] 22.70] 23.11
sd. | 223 | 223 | 821 | 14.35] 7.10] 8.04 | 894 ] 9.93 [10.59] 11.41]12.12] 12.90] 13.62
rmse | 17.24 | 17.24 | 11.21 | 14.42 {10.52] 10.54]10.71]| 11.1811.44] 11.94]12.48] 13.11[13.75
5 445 | exp. | 7.60 | 21.33 | 22.49 | 29.56 | 19.39 21.02]22.56] 23.78]24.93] 26.07[27.03] 27.93] 28.86
s.d. | 229 [12.92]11.05 ] 19.81 | 8.91]10.33[11.58] 12.72]13.88] 14.99]16.22] 17.28] 18.65
rmse | 17.55 | 13.43 | 11.33 | 20.32 [10.52] 11.08]11.83] 12.78] 13.88] 15.03| 16.35] 17.53] 19.04
10 74 | exp. | 7.57 | 24.24 | 24.39 | 29.54 [19.99] 22.12[23.34] 24.57]25.52] 26.40] 27.31[ 28.04] 28.95
s.d. | 2.30 [ 14.80 | 11.96 | 19.99 | 9.51 | 11.04]12.20] 13.38] 14.41| 15.54]16.60] 17.67] 18.85
rmse | 17.59 | 14.82 | 11.98 | 20.50 | 10.75] 11.41]12.31] 13.39}14.42] 15.61]16.76] 17.93]19.26
25 0 | exp. | 7.56 [ 25.01 | 24.95 | 26.66 |20.25] 21.79]22.88] 23.68| 24.39] 25.04]25.54| 25.98]26.36
s.d. | 230 [ 11.75] 10.64 | 12.94 | 8.85] 9.66 [10.24] 10.76]11.20] 11.57[11.95| 12.26[ 12.62
rmse | 17.59 | 11.75 | 10.64 | 13.05 [ 10.05] 10.18]10.45] 10.84| 11.22] 11.57]11.96] 12.30{12.70
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Table 2.2b

N =25
T R 1-P(C) X1 P | CUE| MLE HME
x10°4 01]1]02]103]04]05]06|07] 08/ 09
0.51 10 865 | exp. | 10.13 | 10.13 | 21.78 | 27.85 |21.70] 22.73]23.55] 24.35] 25.03] 25.81]26.30] 26.96]27.30
sd. | 241 | 241 | 9.18 | 16.16 ] 7.90| 9.05 [10.02] 11.03[11.94] 12.81]13.56] 14.46] 15.30
rmse | 15.06 | 15.06 | 9.73 | 16.41 | 8.56 | 9.33 |10.13| 11.05|11.94} 12.84]13.62| 14.59]15.47
5 68 | exp. | 10.00 | 23.70 | 24.49 | 28.57 | 22.53| 23.78]24.72] 25.47]26.09] 26.86|27.38| 27.80] 28.28
sd. | 245 [13.58[10.43]16.99] 8.61| 9.86 |10.83] 11.82]12.70] 13.47|14.40] 15.24] 16.15
rmse | 15.20 | 13.64 | 10.44 | 17.36 | 8.96 | 9.94 | 10.84| 11.83]12.74] 13.60{ 14.60] 15.50] 16.48
10 5 | exp. | 9.99 | 24.93 | 24.98 | 27.31 [22.39] 23.81|24.36] 25.10]25.52] 25.96]26.40] 26.71]27.07
sd. | 245 [13.00| 9.83 | 13.79] 830 9.29 | 9.96 | 10.61]11.16] 11.69[12.27] 12.73]13.27
rmse | 15.21 | 13.00 | 9.83 | 13.98 | 8.69| 9.37 | 998 | 10.61|11.17] 11.73}12.34] 12.85]13.43
25 0 | exp. | 9.99 |25.04 | 25.00 | 25.62 [22.08] 23.06|23.72] 24.10]| 24.54] 24.82]25.13] 25.36] 25.53
sd. | 245] 917 | 816 | 890 | 7.27] 7.65] 7.92] 8.12 ]| 8.28 | 8.45 | 8.58 | 8.69 | 8.84
rmse | 15.21] 9.17 ] 8.16 | 892 [ 7.84] 7.90 | 8.03| 8.17 | 830 8.45 [ 8.58| 8.70 | 8.86
0.69 [0 161 | exp. | 12.50 | 12.50 | 24.20 | 28.04 [24.50] 25.1625.66] 26.12]26.61] 26.94]27.24 27.65[27.71
sd. | 248 | 248 | 8.84 | 14.65] 7.79] 8.79 | 9.64 | 10.44]|11.23] 11.92]12.55] 13.26]13.97
rmse | 12.75 | 12.75| 8.88 | 1496 | 7.80| 8.79 | 9.66 | 10.50]11.35] 12.08]12.75] 13.52] 14.23
5 5 | exp. | 12.46 | 24.66 | 24.94 | 26.67 | 24.18] 24.75]25.19] 25.51]25.80] 26.17]26.38] 26.47] 26.60
sd. | 250 [ 12.80] 841 | 11.55] 7.40| 8.09 | 8.65] 9.18 | 9.59] 9.94 [10.44] 10.81|11.20
rmse | 12.78 | 12.80 | 8.41 | 11.67 | 7.44| 8.10 | 8.65] 9.19 | 9.63 10.01110.53110.91|11.31
10 0 | exp. | 12.46 | 25.03 | 25.00 | 25.86 |23.82| 24.50|24.71] 25.07] 25.28] 25.46]25.62] 25.73] 25.81
sd. | 250 [ 1052 7.50 | 8.86 | 6.76| 7.29 | 7.54| 7.80 | 8.03| 8.17 [ 8.41| 8.56 | 8.74
rmse | 12.79 | 10.52| 7.50 | 891 | 6.86| 7.31 | 7.54| 7.80 8.03] 8.18 | 843 | 8.59 | 8.78
25 0 | exp. | 12.46 | 25.01 | 24.99 | 25.11 |23.37| 23.87]24.22] 24.45|24.66| 24.76]24.91] 25.04] 25.09
sd. | 250 | 734 | 639 668 | 595 6.15] 6.29] 6.37 | 6.43] 6.50 | 6.54 | 6.57 | 6.69
rmse | 1279 7.34 | 639 | 6.68 | 6,17 | 6.26 | 6.33 ]| 6.39 | 6.44| 6.50 | 6.54 | 6.57 | 6.69
0.92 [0 12 | exp. | 15.04 | 15.04 | 24.92 | 26.41 |25.72| 25.83]25.98] 26.06]26.27] 26.22]26.33] 26.43]26.33
sd. | 245| 245 7.09 | 10.01 | 6.63] 7.18 | 7.62| 8.04 | 8.40] 8.73 [ 9.07] 9.37 | 9.72
rmse | 10.26 | 10.26 | 7.09 | 10.11 | 6.67 | 7.22 | 7.69| 8.11 | 8.50 | 8.82 | 9.17 | 9.48 | 9.81
5 0 | exp. | 15.04 | 24.99 | 25.00 | 25.50 [25.06| 25.14]25.20] 25.30| 25.39] 25.53] 25.56] 25.55] 25.49
sd. | 2451098 6.18 | 7.15 ] 582 6.07 ]| 6.27] 6.46 | 6.58]| 6.69 | 6.89| 6.97 | 7.10
mmse | 10.26 | 1098 | 6.18 | 7.16 | 5.82| 6.08 6;27 6.47 | 6.59] 6.71 | 6.91] 6.99 | 7.12
10 0 | exp. | 15.04 | 25.04 | 25.01 | 25.16 | 24.68] 24.85]|24.96] 25.03] 25.06] 25.12] 25.19] 25.18]25.12
sd. | 245 822 563 | 606 | 530| 5.54 ] 5.63| 574 | 577 5.84 | 5.92] 5.98 | 6.09
rmse | 10.26 | 822 | 563 | 6.06 | 531] 5.54 | 563 5.74 | 5.77| 5.84 | 592 5.98 | 6.09
25 0 | exp. | 15.04 | 25.01 | 24.99 | 24.84 |24.25| 24.42]24.56] 24.65|24.71| 24.77|24.79] 24.85] 24.75
sd. | 245 589 | 497 | 5.10 | 477 486 | 493 | 496 | 499 5.01 [ 5.01] 5.07] 5.11
rmse | 10.26 | 589 | 497 | 5.10 | 483 | 489 | 495| 4.97 | 5.00] 5.01 | 5.01] 5.08 | 5.12
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Table 2.2¢

N =25
T |R [I-P© X1 [ P [CUE[MLE HME
X104 o1Jo2Jo3Jo4]o5]o6]07] 0809
1.20 [0 0 exp. | 17.47 | 17.47 | 24.99 | 25.29 |25.99] 25.82]25.71] 25.60]25.61| 25.47|25.45] 25.41|25.27
s.d. 229 | 229 | 5.09 | 594 | 501 522 | 533 546 | 551 5.61 | 5.74] 5.81 | 5.94
rmse | 7.87 | 7.87 | 5.09 | 5.95 | 5.11] 5.28 | 5.38 | 5.50 | 5.55| 5.63 | 5.76] 5.82 | 5.95
5 0 exp. | 17.47 | 25.06 | 24.99 | 24.96 |25.42] 25.3025.20] 25.16]25.15] 25.16|25.10] 25.03|24.91
s.d. 229 | 886 | 452 | 481 | 442|450 | 456| 462 | 4.64| 468 | 476 4.83 | 4.82
rmse | 7.87 | 886 | 452 | 481 [ 444] 451 | 456| 4.63 | 4.65| 4.68 | 4.76 | 4.83 | 4.82
10 0 exp. | 17.47 | 25.04 | 25.01 | 24.81 |25.11] 25.08125.06] 25.02|24.98] 24.96|24.91| 24.86]|24.73
s.d. 229 | 643 | 425 | 439 | 4.12| 4.21 | 422| 428 | 4.27| 431 | 436 443 | 442
rmse | 7.87 | 6.43 | 425 | 439 | 4.12| 421 | 422| 428 [ 4.27| 4.31 | 436 | 4.43 | 4.43
25 0 exp. | 17.47 | 25.02 | 25.01 | 24.67 |24.79| 24.74|24.73| 24.74|24.75]| 24.75]|24.76| 24.66|24.54
s.d. 229 | 471 386 | 391|379 381 | 384|385 385|384 390|397 3.89
rmse | 7.87 | 4.71 | 3.86 | 3.92 | 3.80| 3.82 | 3.85] 3.86 | 3.86| 3.84 | 3.91] 3.98 | 3.2
1.61 0 0 exp. | 20.00 | 20.00 | 24.99 | 24.75 |25.90] 25.59(25.38] 25.20]25.15] 25.06]|24.92] 24.83|24.66
s.d. 200 | 2.00 | 337 | 353 |339|346| 3.46| 347 | 3.48| 3.53| 3.58] 3.57 | 3.59
rmse | 5.38 | 5.38 | 3.37 | 3.54 | 3.51| 3.51 | 3.48 | 3.48 | 3.48| 3.53 | 3.58| 3.58 | 3.61
5 0 exp. | 20.00 | 25.04 | 24.97 | 24.71 |25.56] 25.30]25.21] 25.05|24.96] 24.90|24.79| 24.68] 24.55
s.d. 200 | 656 | 3.14 | 322 | 3.10] 3.14 | 3.16| 3.19| 3.19] 3.20 | 3.28 | 3.26 | 3.28
rmse | 5.38 | 6.56 | 3.14 | 3.24 | 3.15| 3.15 | 3.17] 3.19 | 3.19| 3.20 | 3.29| 3.27 | 3.31
10 0 exp. | 20.00 | 25.01 | 25.03 | 24.63 |25.36] 25.12]25.08] 24.99]24.86| 24.81]24.69] 24.58| 24.48
s.d. 200 | 480 | 3.02 | 3.06 | 296| 3.02 | 298| 299 | 3.03| 3.04 | 3.12] 3.08 | 3.10
rmse | 5.38 | 4.80 | 3.02 | 3.08 | 298] 3.03 | 298] 2.99 | 3.03| 3.05 | 3.14| 3.1 | 3.1
25 0 exp. | 20.00 | 25.03 | 25.01 | 24.58 |25.07| 24.92|24.81] 24.87|24.79] 24.69]24.60| 24.47| 24 .41
s.d. 200 | 356 | 282 | 285280279 277|276 286 288 2.89| 2.85| 2.92
rmse | 538 | 3.56 | 2.82 | 2.88 [ 2.80| 2.79 [ 2.77]| 2.76 | 2.87| 2.89 | 292 2.90 | 2.98
2.30 |0 0 exp. | 22.49 | 22.49 | 25.00 | 24.56 |25.73] 25.33|25.10] 24.91]24.77| 24.71|24.57| 24.47|24.32
s.d. 1.50 | 1.50 | 2.00 | 2.02 | 1.94] 2.00 | 2.06| 2.07 | 2.08| 2.08 | 2.05] 2.07 | 2.03
rmse | 2.92 | 2.92 | 2.00 | 2.07 | 208 | 202 | 2.07| 2.07 | 209| 210 | 2.10] 2.14 | 2.14
5 0 exp. | 22.49 | 25.03 | 24.99 | 24.55 |25.61]25.19]25.01] 24.87|24.66] 24.67|24.54| 24.44]|24.28
s.d. 1.50 | 4.27 1.93 194 | 185190 198] 200 1.99] 196 | 1.96] 1.99 | 1.93
rmse | 2.92 | 427 | 193 | 1.99 [ 1.95[ 1.91 [ 1.98 | 2.00 | 2.02 | 1.99 | 2.01 | 2.07 | 2.06
10 0 exp. | 22.49 | 24.93 | 25.00 | 24.54 |25.51]25.12]|24.94] 24.86|24.58] 24.65|24.53]| 24.41|24.24
s.d. 1.50 ] 3.16 | 1.88 | 1.89 | 1.80| 1.85] 1.92]| 197 195] 1.89 | 1.89]| 1.95| 1.87
tmse| 292 | 3.16 | 1.88 | 1.94 | 1.87| 1.85 | 1.92| 1.97 | 2.00] 1.92 | 1.95] 2.03 | 2.02.
25 0 exp. | 22.49 | 25.05 | 25.00 | 24.53 [25.40] 25.05]|24.81] 24.79]24.54| 24.59|24.51| 24.37|24.21
s.d. 1.50 | 2.29 | 1.81 1.83 | 1.72]1 1.79| 1.84]1 190 ] 190 1.78 | 1.81] 1.88 | 1.78
tmse| 292 | 229 | 1.81 | 1.89 | 1.76]| 1.79 | 1.85] 1.91 | 1.95] 1.82 | 1.87| 1.98 | 1.95
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Table 2.3a

N =50
T R 1-P(C) X1 P | CUE| MLE HME
x10%4 011]02]03]104]05)]06]07] 08]09
0.11 |0 7543 | exp. | 599 | 5.99 | 13.22 ] 19.04 | 13.23] 14.07|14.85] 15.38|16.50| 17.04|17.75| 18.28] 18.59
sd. | 212 | 212 | 7.72 | 13.20| 6.50| 7.34 | 8.41 | 9.32 | 9.80]10.60/11.24| 11.91|12.60
rmse | 44.06 | 44.06 | 37.58 | 33.65 |37.34| 36.67|36.15 35.85 34.91]34.62|34.15] 33.88|33.84
5 4352 | exp. | 5.40 | 19.87 | 21.55 | 35.05 | 16.80] 18.90|21.40] 23.33|25.62] 27.30]29.40| 31.14]33.33
sd. | 2.18 | 12.58 | 12.00 | 22.13 | 9.62 | 11.28]12.85] 14.07|15.39] 16.72] 18.11] 19.29{20.93
rmse | 44.65 | 32.65 | 30.88 | 26.71 |34.56| 33.09|31.35] 30.15]28.83 | 28.19(27.42] 26.98|26.76
10 2511 | exp. | 5.29 | 28.72 | 29.32 | 47.41 |20.39] 24.48]27.54| 30.60|33.54| 36.30|38.90| 41.67|44.70
s.d. | 2,17 | 18.74 | 16.11 | 31.32 | 12.50] 14.89/16.93] 19.09]21.12] 22.92|24.87| 27.07|29.15
rmse | 44.76 | 28.36 | 26.21 | 31.42 |32.14] 29.55|28.13| 27.22|26.78| 26.71|27.24| 28.32{29.63
25 482 | exp. | 5.22 | 43.06 | 43.06 | 62.98 | 28.07| 33.47|38.23]| 42.10|45.86] 49.21]52.77| 56.12]59.50
s.d. | 2.16 | 28.66 | 25.75 | 49.31 |18.60] 22.7126.06| 29.22|32.37] 35.49|38.71| 42.05]45.50
rmse | 44.83 | 29.48 | 26.66 50.99 |28.75] 28.09 28.60] 30.27|32.63| 35.50|38.81| 42.49|46.48
50 31 | exp. | 5.21 | 49.27 | 49.19 | 60.97 |31.54]| 37.16]|41.22]| 44.75|48.06| 50.99|53.62] 56.13|58.63
s.d. | 2,16 | 31.66 | 30.17 | 48.60 |21.73] 25.82|29.08| 31.88|34.70] 37.34|40.04| 42.80]45.60
rmse | 44.84 | 31.67 | 30.19 | 49.82 | 28,52 28.84[30.38| 32.31|34.75| 37.35|40.21| 43.24] 46.41
0.22 0 3473 | exp. | 10.33 | 10.33 | 28.86 | 42.89 |27.12]29.51|31.61| 33.58|35.34| 37.12|38.51| 40.16|41.46
sd. | 276 | 2.76 | 13.75 | 25.40 | 11.57] 13.52]15.17] 16.75]18.26 19.62/20.96] 22.51|23.98
rmse | 39.77 | 39.77 | 25.22 | 26.38 |25.64| 24.55| 23.84, 23.45]123.41]23.47]23.90] 24.57]25.45
5 1156 | exp. | 9.99 | 34.38 | 38.98 | 56.90 |32.84| 36.65]39.92]|42.77|45.37| 47.87|50.27| 52.49|54.87
sd. | 2.81 | 19.49 | 18.64 | 36.17 | 14.93] 17.66]20.06| 22.30|24.57| 26.77]|28.99] 31.33|33.73
rmse | 40.11 | 24,98 | 21.65 | 36.82 |22.75] 22.13| 22.45| 23.44| 25.00] 26.85]28.99] 31.43]34.08
10 385 | exp. | 991 [43.51|44.77 | 61.82 |36.32| 41.06]|44.39] 47.46]50.02] 52.57]55.07] 57.27]59.72
sd. | 2.81 | 26.96 | 22.20 | 42.47 | 17.48] 20.74|23.64| 26.22|28.77| 31.40|34.08| 36.8239.56
rmse | 40.19 | 27.73 | 22.80 | 44.08 |22.20| 22.58|24.29| 26.34|28.77| 31.50|34.45] 37.53]40.74
25 14 | exp. | 9.88 | 49.62 | 49.60 | 58.41 |39.76] 43.80|46.65] 49.02|51.06] 52.79|54.39| 55.78|57.22
s.d. | 2.81 | 27.85 | 24.19 | 37.70 | 19.14] 22.09|24.34| 26.40| 28.33]| 30.16|32.04| 33.86|35.79
rmse | 40.22 | 27.85 | 24.20 | 38.63 | 21.71] 22.95| 24.57| 26.42|28.35] 30.29|32.34| 34.35|36.51
50 0 | exp. | 9.87 | 50.02 | 49.98 | 53.56 |40.21| 43.56]|45.70| 47.43|48.90] 50.15|51.07] 52.08|52.87
s.d. | 2.81 | 21.76 | 20.40 | 24.10 | 17.25] 18.75] 19.84| 20.59]21.32] 21.99]22.60| 23.12|23.63
rmse | 40.22 | 21.76 | 20.40 | 24.37 | 19.83] 19.82|20.30 20.75]21.35} 21.99]22.63} 23.21}23.80
0.36 10 724 | exp. | 15.26 | 15.26 | 43.30 | 58.29 |41.09]| 44.11|46.53| 48.55|50.52] 52.17|53.78| 55.46] 56.80
sd. | 3.21 | 3.21 | 18.44 | 34.74 | 15.36] 18.07]20.53| 22.54|24.61| 26.55]|28.59 30.64|32.77
rmse | 34.89 | 34.89 | 19.62 | 35.71 | 17.76] 19.00|20.82] 22.58]24.62| 26.64|28.84] 31.12] 33.47
5 120 | exp. | 15.14 | 43.84 | 48.16 | 59.82 |43.88] 47.09149.37| 51.37|53.03]| 54.61|56.15| 57.36|58.67
sd. | 3.24 | 24.55 | 20.90 | 37.23 |17.10] 20.02|22.44| 24.62]26.75| 28.77]30.79] 32.9135.08
rmse | 35.01 | 25.31 | 20.98 | 38.50 | 18.1620.23|22.45| 24.66]26.92| 29.14|31.39| 33.72|36.14
10 20 | exp. | 15.12 | 48.93 | 49.57 | 57.50 |44.62|47.71]49.53]| 51.24|52.53| 53.61|54.80| 55.80|56.71
s.d. | 3.25 | 28.16 | 20.78 | 33.01 |17.18] 19.61|21.67| 23.42]25.06] 26.6928.28| 29.83|31.44
rmse | 35.03 | 28.18 | 20.79 | 33.85 | 18.01] 19.74|21.67| 23.45|25.18] 26.93| 28.68] 30.39|32.14
25 0 | exp. | 15.12 | 50.02 | 49.98 | 53.12 |44.76| 47.02|48.38| 49.43|50.32] 51.08|51.74| 52.24| 52.80
s.d. | 3.25 | 20.61 | 17.20 | 20.59 |15.10] 16.27|17.08| 17.82| 18.36] 18.86| 19.38] 19.76]20.19
rmse | 35.03 | 20.61 | 17.20 | 20.83 | 15.98] 16.55|17.15] 17.83] 18.36| 18.89]19.46] 19.89]20.38
50 0 | exp. | 15.12] 50.03 | 50.03 | 51.36 |44.61]| 46.48|47.59| 48.47|49.19] 49.79|50.29] 50.71]51.06
sd. | 3.25 | 15.81 | 14.50 | 15.49 | 13.28 13.86| 14.21| 14.46] 14.72| 14.91]15.06] 15.23|15.34
rmse | 35.03 | 15.81 | 14.50 | 15.55 | 14.33| 14.30| 14.41| 14.54|14.74| 14.91]15.06] 15.24]15.38
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Table 2.3b

N =50

T R

1-P(C)

X1

CUE

MLE

HME

x10°4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

75

exp.

20.00

20.00

48.94

57.49

47.97

49.94

51.45

52.56

53.59

54.53

55.32

56.11

56.84

s.d.

3.45

3.45

18.32

30.95

15.70

18.07

20.04

21.70

23.29

24.86

26.32

27.88

29.40

30.20

30.20

18.35

31.85

15.83

18.07

20.10

21.85

23.57

2527

26.86

28.54

30.18

exp.

19.98

47.68

49.87

5491

48.02

49.68

50.73

51.63

5234

53.05

53.67

54.09

54.53

s.d.

3.46

25.92

17.26

24.98

15.04

16.83

18.18

19.34

20.35

21.28

22.18

23.14

24.09

30.22

26.02

T

125.46

115.17

16.84

18.20

19.41

20.49

21.50

2248

23.50

24.51

10

exp.

19.98

49.87

50.02

53.17

47.68

49.21

50.07

50.80

51.31

51.82

52.28

52.66

52.99

s.d.

3.46

24.39

15.65

19.74

13.97

15.09

16.00

16.69

17.29

17.85

18.37

18.84

19.29

30.22

24.39

15.65

19.99

14.16

15.11

16.00

16.70

17.34

17.95

18.51

19.03

19.52

25

exp.

19.98

50.03

50.03

51.38

47.19

48.39

49.08

49.63

50.06

50.43

50.71

50.95

51.28

s.d.

3.46

15.97

12.89

13.98

11.97

12.46

12.79

13.05

13.28

13.46

13.62

13.76

13.88

30.22

15.97

12.89

14.05

12.30

12:57

12.83

13.06

13.28

13.46

13.64

13,79

13.94

50

exp.

19.98

50.01

50.00

50.51

46.82

47.92

48.55

49.04

4941

49.72

49.99

50.23

50.44

s.d.

3.46

12.57

11.25

11.66

10.67

10.94

11.13

11.23

11.33

11.40

11.49

11.56

11.60

30.22

12.57

11.25

11.67

11.13

11.14

11.22

11:27

11.35

11.41

11.49

11.56

11.61

0.69 10

exp.

24.92

24.92

4994

53.20

50.20

50.96

51.50

51.87

52.15

5251

52.65

52.88

53.10

s.d.

3.53

3.53

14.12

19.02

12.96

14.12

14.97

15.69

16.31

16.94

17.43

17.96

18.50

25.33

25:33

14,12

19.29

12.96

14.16

15.04

15.80

16.45

17.12

17.63

18.19

18.76

exp.

2492

49.28

50.01

51.90

49.60

50.31

50.62

5091

51.14

51.38

51.57

51.74

51.84

s.d.

3.54

24.49

12.51

14.67

11.68

12.39

12.88

13.27

13.56

13.82

14.07

14.32

14.50

rmse

25.33

24.50

12:51

14.80

11.69

1239

12.90

13.30

13.61

13.89

14.16

14.42

14.61

exp.

24.92

50.02

49.99

51.25

49.19

49.85

50.11

50.45

50.68

50.88

51.02

51.13

51.25

s.d.

3.54

19.63

11.47

12.67

10.82

11.29

11.62

11.85

12.01

12.20

12.34

12.46

12.56

rmse

25.33

19.63

11.47

12,73

10.85

11.29

11.62

11.85

12.03

12.24

12.38

12.51

12.62

exp.

2492

50.02

50.02

50.52

48.58

49.16

49.53

49.75

49.94

50.12

50.24

50.36

50.48

s.d.

3.54

12.77

9.90

10.35

9.51

9.71

9.90

9.99

10.07

10.14

10.21

10.27

10.32

rmse

25.33

12.77

9.90

10.36

9.61

9.75

9.91

9.99

10.07

10.14

10.22

10.28

10.33

exp.

2492

50.00

50.00

50.06

48.20

48.78

49.13

49.35

49.57

49.72

49.85

49.94

50.05

s.d.

3.54

10.20

8.90

9.07

8.59

8.73

8.82

8.86

8.91

8.95

8.99

9.04

9.10

rmse

25.33

10.20

8.90

9.07

8.78

18.82

8.86

8.88

8.93

8.95

9.00

9.04

9.10

092 |0

exp.

30.07

30.07

50.00

51.02

50.80

50.89

50.85

50.96

50.98

51.06

51.03

51.07

51.03

s.d.

3.46

3.46

9.78

10.89

9.51

9.89

10.10

10.30

10.43

10.55

10.64

10.73

10.85

rmse

20.22

20.22

9.78

10.94

9,54

1993

10.14

10.35

10.47

10.60

10.69

10.78

10.90

exp.

30.07

49.89

50.00

50.59

50.27

50.40

50.48

50.46

50.51

50.59

50.60

50.67

50.60

s.d.

3.46

21.09

8.95

9.56

8.70

8.93

9.10

9.20

9.30

9.38

9.45

9.48

9.57

rmse

20.22

21.09

8.95

9.58

8.70

8.94

9.12

9.22

9.32

9.40

9.47

9.51

9.59

10

exp.

30.07

50.04

50.00

50.35

49.96

50.14

50.13

50.28

50.31

50.32

50.34

50.40

50.33

s.d.

3.46

15.31

8.44

8.85

8.18

8.45

8.49

8.60

8.63

8.70

8.75

8.79

8.85

20.22

15.31

8.44

8.86

8.18

8.45

8.50

8.60

8.64

8.70

8.76

8.80

8.86

25

exp.

30.07

50.00

50.00

50.02

49.46

49.63

49.75

49.84

49.89

49.93

49.98

50.07

49.97

s.d.

3.46

10.22

7.58

7.75

139

7.50

7.57

7.62

7.65

7.68

13

7.73

7.80

rmse

20.22

10.22

7.58

175

7.41

7.51

7.57

7.62

7.65

768

713

7.73

7.80

50

exp.

30.07

50.03

49.99

49.82

49.12

49.34

4949

49.60

49.69

49.70

49.74

49.84

49.71

s.d.

3.46

8.23

6.97

7.05

6.82

6.90

6.92

6.95

6.98

7.01

7.00

7.05

7.07

rmse

20.22

8.23

6.97

7.05

6.88

6.93

6.94

696

6.99

- 7.02

7.01

7.05

7.07
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Table 2.3c

N =50
T |R |[IPO X1 | P [CUE[MLE HME
x10° 01]o2]o3]o4Jos5]o6]07]08]09
.20 [0 0 | exp. | 34.94 | 34.94 [ 50.00 | 50.15 | 50.88] 50.71]50.53| 50.48[50.45] 50.40| 50.36| 50.29] 50.12
s.d. 324 | 324 | 691 | 723 | 6.88]| 7.01 | 7.03] 7.10 | 7.16] 7.17 | 7.18] 7.23 | 7.27
rmse | 1541 | 1541 | 691 | 7.23 | 694 7.05 | 7.05| 7.12 | 7.17| 7.18 | 7.19| 7.23 | 7.27
5 0 | exp. | 34.94 | 50.04 | 50.01 | 50.00 [ 50.57[50.41]50.35] 50.25]50.21| 50.18[50.18] 50.11[49.95
s.d. 324 117.02| 652 | 6.74 | 648 6.52 ]| 6.61 | 6.63 | 6.67| 6.71 | 6.71 | 6.75 | 6.78
rmse | 15.41 | 17.02 | 6.52 | 6.74 | 6.51| 6.54 | 6.62| 6.63 | 6.68] 6.71 | 6.71] 6.75 | 6.78
10 0 | exp. | 34.94 | 50.04 | 50.01 | 49.93 |50.34] 50.22]50.15] 50.12]50.05] 50.06]50.06] 50.02]49.84
s.d. 324 | 1196 | 627 | 642 | 6.21 ] 6.27 ]| 6.29] 6.33 | 6.36| 6.39 | 6.39| 6.43 | 6.46
rmse | 1541 [ 1196 627 | 642 [ 622 6.27 | 629 633 | 6.36| 639 | 639 6.43 | 647
25 0 | exp. [ 34.94]50.03 [ 50.01 | 49.77 [49.95] 49.91]49.88] 49.87[49.85] 49.8649.90| 49.81]49.66
s.d. 324 | 817 | 579 | 587 | 5.70| 5.77 | 5.80| 5.81 | 5.85] 5.85 | 5.86| 5.91 | 5.89
rmse | 1541 | 8.17 | 5.79 | 587 | 5.70| 5.77 | 5.80| 5.82 | 5.86| 5.85 | 5.86 | 5.91 | 5.90
50 0 | exp. | 34.94]50.04 | 50.00 | 49.67 [49.67| 49.67|49.70| 49.69[49.68] 49.7549.78[ 49.65]49.55
sd. | 324 | 662 | 542 | 545 | 5.36| 540 | 5.39| 5.41 | 5.47| 5.44 | 547 5.49 | 5.50
rmse | 15.41 | 6.62 | 5.42 | 546 | 5.37| 5.41 | 5.40| 5.42 | 548 | 5.45 | 5.48 | 5.50 | 5.52
.61 [0 0 | exp. | 40.01 ] 40.01 [ 50.01 | 49.74 | 50.79] 50.54] 50.30] 50.19[50.14] 50.06[49.93[ 49.78[49.63
s.d. 283 | 283 | 466 | 475 | 468|471 | 474|476 | 4.75]| 4.77 | 478 | 4.78 | 4.77
rmse | 1039 | 10.39 | 4.66 | 4.76 | 4.75| 4.74 | 4.75| 4.76 | 4.75| 4.77 | 4.78 | 4.79 | 4.78
5 0 | exp. | 40.01 | 50.05 | 49.99 | 49.70 [50.61] 50.32]50.18] 50.10] 50.06 | 49.96[49.85[ 49.71 [49.55
s.d. 283 | 1257 | 451 | 455 | 452 452 | 458 456 | 458 4.59 | 4.60 | 4.60 | 4.59
rmse | 10.39 [ 12.57 | 4.51 | 4.56 | 4.56| 4.53 | 4.58 | 4.56 | 4.58 | 4.59 | 4.60| 4.61 | 4.61
10 0 exp. | 40.01 | 50.02 | 49.99 | 49.68 |50.47] 50.23|50.11} 50.03|50.00] 49.92]49.79] 49.65]49.51
sd. | 283 | 890 | 439 | 442 | 4.38| 442 | 442 4.44 | 445 | 4.47 | 4.48 | 4.46 | 4.44
rmse | 1039 | 8.90 | 439 | 4.43 | 440| 443 | 442| 4.44 | 445 | 4.47 | 448 | 4.47 | 4.46
25 0 | exp. [ 40.01 [ 50.00 | 50.00 | 49.61 [50.27] 50.06]49.94] 49.91[49.90] 49.82[49.68| 49.57[49.43
s.d. 283 | 6.19 | 416 | 419 | 4.13| 4.15]| 421 | 421 | 420| 422 | 422]| 4.18 | 4.18
rmse | 1039 | 6.19 | 416 | 421 [ 414|415 | 4.21| 4.21 | 420 4.23| 424 | 4.21 | 4.22
50 0 | exp. | 40.01 | 50.01 | 50.00 | 49.57 [50.03|49.90[49.81|49.84]49.83]49.7049.59] 29.52]49.36
s.d. 283 | 504 | 397 | 399 | 397|396 | 402| 401 | 401 | 4.01 | 403 3.97 | 3.94
rmse [ 1039 5.04 | 397 | 4.02 [ 3.97] 3.96 [ 402] 4.01 [ 4.02| 402 [ 405 [ 4.00 | 3.99
2.30 10 0 exp. | 44.99 | 44.99 | 50.01 | 49.57 | 50.65] 50.36]50.13| 49.98|49.81| 49.67|49.56] 49.47|49.39
sd. | 212 212 | 277 | 279 | 2.85] 2.86 | 2.84| 2.81 | 2.83 | 2.81 | 2.83 | 2.79 | 2.87
rmse | 544 | 544 | 277 | 2.83 | 293 2.89 | 2.85| 2.81 | 2.84| 2.83 | 2.87| 2.84 | 2.93
3 0 exp. | 44.99 | 50.01 | 50.00 | 49.56 | 50.60| 50.30]50.04| 49.92|49.78 49.64|49.53| 49.45[49.37
s.d. 212 | 809 | 273 | 2.74 | 2.82| 2.79| 2.78] 276 | 2.77]| 2.76 | 2.78 | 2.72 | 2.82
rmse | 5.44 | 8.09 | 273 | 277 [ 2.88] 2.80 | 2.78] 276 | 2.78 | 2.79 | 282 2.78 | 2.89
10 0 | exp. | 44.99 | 50.05 | 50.00 | 49.55 | 50.54] 50.24]50.00| 49.86[49.76] 49.63|49.51 [ 49.43[49.35
s.d. 212 | 588 | 269 | 270 | 2.79| 2.74 | 274 2.72 | 2.72| 2.72 | 2.75] 2.67 | 2.77
rmse | 5.44 | 5.88 | 2.69 | 2.74 | 2.84| 2.75 | 2.74| 2.73 | 2.73 | 2.74 | 2.80| 2.73 | 2.85
25 0 | exp. | 44.99 | 50.09 | 50.00 | 49.53 |50.42]50.17|49.93[49.79]49.69] 49.60[49.44] 49.41(49.32
404 | 261 | 2.62 | 2.68| 2.64 | 2.67| 2.65 | 2.62| 2.62 | 2.67| 2.58 | 2.70
4.05 | 2.61 | 2.66 | 2.71 | 2.64 | 2.67| 2.66 | 2.64| 2.65 | 2.73 | 2.64 | 2.79
50.06 | 50.00 | 49.52 |50.32] 50.13149.92] 49.74149.62| 49.60]49.40] 49.41{49.27
326 | 254 | 255|259 257 2.59] 2.60 | 2.54| 2.54 | 2.62| 249 | 2.63
326 | 2.54 | 2.60 | 2.61| 2.58 | 2.60| 2.61 | 2.57 | 2.57 | 2.68 | 2.56 | 2.73
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Table 2.4a

N =10

T |R [P&D X1 [ P [CUE HME
X109 01 Jo2]o03]o04Jo5]06]07]08] 09
0.1110 6990 | exp. 224 | 224 | 3.69 | 457 | 465 | 499 | 536 | 5.91 7.72 | 10.47 | 14.27 | 28.11
s.d. 0.67 | 0.67 | 2.04 1.65 198 | 270 | 3.61 | 473 | 5.71 8.41 | 13.46 | 27.75
rmse | 7.78°| 7.787] 6.63 | 5.68 | 5.71 | 5.69 | 5.87 | 6.25 | 6.15 | 842 | 14.12 | 33.14
5 5089 | exp. 1.69 | 726 | 7.65 | 5.08 | 6.03 | 837 | 9.96 | 13.14] 17.80 2-4.50 37.68 | 76.69
s.d. 091 556 | 634 | 425 | 594 | 8.76 | 11.41 | 1598 22.27 | 32.73| 5440 | 118.6
rmse | 836 | 620 [ 6.77 | 650 | 7.14 | 891 [ 11.41 | 16.28 | 23.60 | 35.80 | 61.04 | 136.0
10 3546 | exp. 1.43 | 897 | 9.05 | 471 | 649 | 793 | 10.27] 12.76] 17.31 | 23.15 | 34.51 | 66.84
s.d. 095 | 847 | 886 | 536 | 841 | 11.76 | 15.60 | 21.47| 29.89 | 44.41 | 72.94 | 159.2
rmse | 8.63 | 853 | 891 [ 7.53 | 9.11 | 11.94 | 15.60 | 21.65 | 30.77 | 46.32 | 76.95 | 169.1
02210 3546 | exp. | 268 | 268 | 482 | 561 | 585 )] 639 ]| 7.10 | 820 | 10.16] 13.72] 19.36 | 37.62
s.d. 096 | 096 | 3.11 | 258 | 322 | 4.18 | 543 | 7.17 | 9.16 | 13.26 | 21.29 | 44.60
rmse | 7.38 | 7.38 | 6.05 | 5.09 | 5.25 | 5.52 | 6.16 | 7.39 | 9.16 | 13.77 | 23.26 | 52.46
9 1586 | exp. | 225 | 815 | 859 | 6.18 | 7.10 | 9.04 | 10.48 | 13.21] 16.65 ]| 21.93 | 32.05 | 61.21
s.d. 1.16 | 6.20 | 693 | 493 | 6.81 9.51 | 1243 | 17.04| 23.71 | 34.65 | 56.96 | 124.3
rmse | 7.84 | 6.47 | 7.07 | 623 | 741 | 9.56 | 12.44 | 17.34| 24.62 | 36.65 | 61.08 | 134.4
10 663 | exp. | 209 | 955|959 ) 572 | 7.19 | 839 | 9.81 | 11.42| 14.14 | 17.44 | 23.47 | 40.06
s.d. 122 | 837 | 845 | 542 | 7.86 | 10.63 | 13.85] 18.61| 25.46 | 37.16 | 60.53 | 131.1
rmse | 8.01 | 838 ] 846 | 691 | 835 | 10.75 | 13.86 | 18.67] 25.79 | 37.89 | 62.01 | 134.5
0360 1257 | exp. | 335 335 636 | 7.06 | 7.51 | 8.17 | 9.11 | 10.70] 12.81 | 16.80 | 23.78 | 44.97
s.d. 125 | 125 | 412 | 337 | 432 | 557 | 7.23 ]| 9.49 | 12.60 | 18.08 | 29.20 | 62.03
tmse | 6.77 | 6.77 | 5.50 | 447 | 499 | 5.86 | 7.28 | 9.51 | 12.00 | 19.32 | 32.29 | 71.21
5 289 | exp. 3.10 | 9.04 | 9.41 743 | 8.15 | 9.47 | 10.55]| 12.39] 1437 | 17.47 | 23.26 | 39.19
s.d. 141 | 653 | 681 | 502 | 675 | 9.02 | 11.66 | 15.59] 21.43 | 31.02 | 50.43 | 109.5
mmse | 7.05 | 6.60 [ 6.83 | 564 | 7.00 | 9.03 [ 11.68| 15.77]| 21.87 | 31.90 | 52.14 | 113.3
10 6l exp. | 3.04 | 9921 990 | 690 | 7.87 | 871 | 9.50 | 1027|1136 | 12.69| 14.65] 19.76
s.d. 144 | 744 | 7.04 | 482 | 634 | 8.02 | 9.99 | 12.77] 16.80 | 23.74 | 37.82 | 80.56
rmse | 7.11 [ 744 [ 7.04 | 5.73 | 6.69 | 8.12 | 10.00| 12.78| 16,86 | 23.89 | 38.11 | 81.15
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Table 2.4b

N =10

T

R

P(Z<=1)

X1

CUE

x10°M

0.9

0.51

372

exp.

4.12

44.53

1.44

73.01

| 6.06 |

7.10 | 80.76

41

4.01

22.69

1.54

¢ | 618 | 636 | 602 | 483 | 5.

79.34

R 80»35 ;

10

4.00

12.42

1.55

39.35

173943

0.69

80

5.02

36.03

1.54

S22 )52

73.64

78.10

4.99

13.76

1.58

4543

| 5.26

45.59

10

4.98

10.36

1.58

14.64

326

14,64

0.92

6.02

23.36

1.54

427,

59.85

6132

6.01

10.53

1.55

18.94

428

11895

10

6.01

9.76

1.55

4.78

2| 428 | 3.

479
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Table 2.4¢

N'=

10

T

R

PZ<=1)

X1

CUE

HME

x 1074

0.3

0.7

0.8

0.9

1.20

6.99

10.80

11.41

12.17

14.21

1.45

4.20

11.29

17.69

37.20

334

| 428 | 5.

1783

37.44 |

6.99

9.97

9.85

9.69

1.45

3.34

3.96

6.09

334

334

- 3.96

6.10

10

6.99

9.80

9.69

9.47

1.45

2.59

2.69

2.71

334

260 |

270

297

1.61

8.00

10.09

10.07

10.16

1.26

4.89

7.12

14.23

237 23722

489 |

712

1423

8.00

9.71

9.51

9.40

1.26

2.06

2.15

2.15

237

208

221

2.23

10

8.00

9.64

9.46

9.33

1.26

1.92

1.99

1.84

2.30

9.00

)

155

2.06

1.96

10.17

9.59

9.47

9.45

0.95

1.44

1.53

1.64

2.25

R

R R

2 1.59

172

231

9.00

10.06

9.42

9.29

9.35

0.95

1.27

1.25

1.19

1.18

} B

s ]

1.39

135

10

9.00

9.97

9.36

9.24

9.31

0.95

1.20

1.20

1.15

1.15

1 120} L.

T8

134 |

78




Table 2.5a

N =25
T R e X1 CUE HME
RI0N 01 ]02|03]]04]05]06] 07| 081 09
110 2397 | exp. [ 3.19 33.72 | 67.32
sd. | 1.25 36.08 | 75.74
rmse | 21.84 | 53]37.12 | 86.76
5 1586 | exp. | 2.97 83.09 | 169.1
sd, | 1.37 99.02 | 216.3
rmse | 22.07 .89 | 114.8 | 259.9
10 | 1032 | exp. | 2.84 87.43 | 171.6
sd. | 1.43 141.7 | 309.2
rmse | 22.21 221 | 154.8 | 3422
25 266 | exp. | 2.66 55.55 | 91.66
sd. | 1.50 152.3 | 329.4
rmse | 22.39 | 21. 528 | 1554 | 336.1
02210 266 | exp. | 5.05 61.63 | 120.7
sd. | 1.90 72.30 | 154.9
rmse | 20.04 | .57 | 81.05 | 182.1
5 103 | exp. | 4.98 75.41 | 140.2
sd. | 1.95 128.8 | 280.3
rmse | 20.11 | 138.3 | 303.1
10 39 | exp. | 4.95 56.95 | 94.25
sd. | 1.98 131.3 | 283.7
rmse | 20.14 | | 135.2 | 292.0
25 2 | exp. | 4.94 30.07 | 34.00
sd. | 1.99 60.34 | 125.0
rmse | 20,16 | 16. ]60.55] 1253 |
0360 12 | exp. | 7.57 68.88 | 125.9
sd. | 2.29 102.4 | 221.6
rmse | 17.58 | 17. 111.4 | 2435
5 2 | exp. | 7.56 4823 | 73.22
sd. | 2.29 107.0 | 230.0
rmse | 17.59 | 13 | 109.5 | 235.0
10 0 | exp. | 7.56 33.53 | 40.86
sd. [ 230 71.90 | 151.7
rmse | 17.59 | 15.46 | 13 13 | 72.40 | 1525
25 0 | exp. | 7.56 26.03 | 26.48
sd. | 230 15.84 | 24.93
“rmse | 17.59 46 | 15.87 | 24.98 |
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Table 2.5b

N =25
T R o) X1 P | CUE HME
XH0M 01 ]02]03]04]05]06])] 07| 08]09
05110 0 | exp. | 999 | 9.99 [ 23.59]22.96 | 25.04 | 26.97 | 29.30 | 31.95| 35.75 [ 41.19 | 51.76 [ 81.72
sd. | 245 | 245 [12.37]10.14 [ 13.74 | 17.78 | 23.17 | 30.43 | 41.49 [ 59.76 | 96.85 | 208.6
rmse | 15.21 | 15.21 | 12.45] 1035 | 13.7 2356 | 3121 [ 42.86 | 61.92 [ 1005 | 216.1
5 0 | exp. | 9.99 28.71 | 30.09 | 32.24 | 37.89
sd. | 245 [13.76 38.75 | 60.56 | 127.4
rmse | 15.21 | 13.80 | 11. ] 39.08 | 61.00 | 128.1
10 0 | exp. | 9.99 | 24.97 26.73 | 27.25 | 28.24
sd. | 245 ]13.10 19.83 | 28.32 | 55.93
rmse | 15.21 | 13.10 | | 19.91 | 2841 | 56.03
25 0 | exp. | 9.99 | 25.04 25.13 | 25.36 | 25.53
sd. | 245 9.17 861 | 877 | 9.17
rmse | 15.21] 9.17 | 8.1 46 | 861 | 8771 9.18
0.69 [0 0 | exp. | 12.46 | 12.46 31.43 | 34.53 | 42.63
sd. | 250 [ 250 39.18 | 62.06 | 131.6
mmse | 1279 | 12.79 | 104 13970 [ 6278 | 132.8
5 0 | exp. | 1246 ] 24.68 26.36 | 26.65 | 26.92 | 27.57
sd. | 250 [ 12.82 13.40 | 16.75 | 23.82 | 46.88
rmse | 12.79] 12.83 | 8. | 13.47 | 16.83 | 23.89 | 46.95
10 0 | exp. | 12.46 | 25.03 25.47 | 25.64 | 25.75 | 25.86
sd. | 2.50 | 10.53 852 | 9.10 [ 10.26 | 14.91
“rmse | 1279 | 1053 7.52° 1 853 ] 9.13 [1028]14.94
25 0 | exp. | 12.46 | 25.01 24.76 | 24.91 | 25.04 | 25.09
sd. | 250 [ 7.34 650 | 6.54 | 6.57 | 6.69
rmse | 12.79 7~34 .39 | 0. | 650 | 6‘54 | 6.57 | 6.69
09210 0 | exp. | 15.04 | 15.04 26.53 | 26.79 | 27.17 | 27.93
s.d. | 245 245 13.10 | 16.85 | 24.87 | 50.37
rmse | 10.26 | 1026 | 7.43 | 691 | 7.74 | 8. | 13.19 | 16,94 | 24.96 | 50.45
5 0 | exp. | 15.04 | 24.99 25.54 | 25.57 | 25.56 | 25.52
sd. | 245 [ 1098 693 | 737 | 8.14 | 11.46
rmse | 10.26 | 10.98 | 6. 695 ] 7.39 | 816 | 11.47
10 0 | exp. | 15.04 | 25.04 25.12] 25.19 | 25.18 | 25.12
sd. | 245 822 584 | 593 | 6.01 | 6.23
rmse | 10.26 | 822 | 585] 594 | 602 | 623
25 0 | exp. | 15.04 ] 25.01 24.77| 24.79 | 24.85 | 24.75
s.d. | 245 5.89 501 | 501 | 507 [ 5.11
rmse | 10.26 | 589 | 4.97 S01'] 501 ] 508 ] 512
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Table 2.5¢

N =25
T R Pl X1 P | CUE HME
R0 01 ]02]103]04]05]06]07]|08] 09
1.20 |0 0 25.49 | 25.47 | 25.44 | 25.32
599 | 6.49 | 7.59 | 12.02
| 601 | 651 | 7.61 | 12.03
5 0 25.16 | 25.10 | 25.03 | 24.91
468 | 477 | 484 | 491
65 | 469 | 4.77 | 4.84 | 491
10 0 24.96 | 24.91 | 24.86 | 24.73
431 | 436 | 443 | 4.42
27 | 431 | 436 | 443 | 443
25 0 2475 24.76 | 24.66 | 24.54
384 | 390 | 397 | 3.89
6 | 3.84 ] 391 ] 398 | 392
1.61 10 0 25.06 | 24.92 | 24.83 | 24.66
353 | 358 | 3.59 | 3.65
| 3531 359 | 359 | 3.67
5 0 24.90 | 24.79 | 24.68 | 24.55
3.20 3.26 | 3.28
971 320 ] 3291 327 | 331
10 0 24.81 | 24.69 | 24.58 | 24.48
304 | 312 3.08 ] 3.10
T a0h | 34| o [ 315
25 0 24.69 | 24.60 | 24.47 | 24.41
288 | 289 | 2.85 | 2.92
1289 | 292 ] 290 | 298
23010 0 24.71 | 24.57 | 24.47 | 24.32
208 | 205 ] 207 | 2.03
9210 20| 214 214
5 0 24.67 | 24.54 | 24.44 | 24.28
196 | 196 [ 1.99 [ 1.93
| 2921427 § 1.93 | 195|191 ] 198 200|202} 199 | 201 | 2.07 | 2.06
10 0 | exp. | 22.49]24.93]25.00] 25.51 | 25.12 | 24.94 | 24.86 | 24.58 | 24.65 | 24.53 | 24.41 | 24.24
sd. | 1.50 1.85] 192 1.97 ] 195| 1.89 ] 1.89 | 195 1.87
mse | 29213116 | 188 | 187 | 185 | 192 | 1.97 [ 2:00 | 192 | 195 | 203 | 202
25 0 | exp. | 22.49 | 25.05 | 25.00] 25.40 | 25.05 | 24.81 | 24.79 | 24.54] 24.59 | 24.51 | 24.37 | 24.21
sd. | 150 229 | 1.81 ] 1.72] 1.79| 184 ]| 190 | 190 ] 1.78 | 1.81 | 1.88 | 1.78
rmse | 292 229 | 181 | 176 | 179 ] 185 | 191 ] 1.95| 1821 1.87 | 1.98 | 1.95
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Table 2.6a

N =50

T R, | Pe=n X1 P | CUE HME
x10° 01 ]02]03]04]05]06]07]08] 09
0.1110 266 | exp. | 5.33 | 5.33 4395 60.03 | 91.58 | 184.9
s.d. | 206 | 2.06 40.94 | 58.44 | 94.25 [ 201.1
rmse | 44.72 | 44.72 | 35. 3.86] 41.38 [ 59.29 | 103.0 | 242.1
5 166 | exp. | 5.28 | 24.49 78.65 | 107.2 | 162.5 | 326.4
s.d. | 2.10 | 13.41 80.64 | 118.6 [ 194.8 | 424.6
rmse | 44.77 | 28.82 | 27. 36 | 85.58 | 131.7 | 224.9 | 506.6
10 103 | exp. | 5.26 | 35.48 86.69 | 115.0 [ 169.3 [ 327.3
sd. | 2.12 | 2283 1083 | 159.6 | 262.8 | 573.4
rmse | 44.80 | 27.06 | 29.29| 01] 1144117232886 | 637.0
25 24 | exp. | 522 [47.27 71.56 | 8598 [ 111.1 [ 179.8
sd. | 2.15 [ 3557 11831 171.1 [ 277.5 [ 598.8
Tmse | 44.83 | 35.67] 0] 1202 | 174.8 | 284.2 | 6127
50 2 | exp. | 5.21 [49.90 53.82 | 57.79 | 62.96 | 73.44
sd. | 2.16 | 34.09 92.50 | 142.8 ] 297.6
rmse | 44.84 | 34.09 4]92.83]1433] 2985
02210 2 | exp. | 9.88 | 9.88 105.1 | 152.7 [ 292.2
s.d. | 2.81 | 2.81 84.71 | 123.9(203.0 | 441.1
mse | 4022 [ 4022 190.16 | 135.6 | 227.5 | 503:2
5 1 | exp. | 9.87 | 36.66 80.88 [ 99.64 | 134.5 [ 235.0
s.d. | 2.81 [ 20.16 107.6 | 157.2 ] 256.6 | 556.3
_rmse | 40.22 | 24.17 | 2879 25. 12| 111.9| 164.8 | 270.1 | 586.2
10 0 | exp. | 9.87 | 45.65 69.96 | 80.83 [ 99.73 | 152.2
s.d. | 2.81 [ 29.12 100.5 ] 144.7 | 233.6 | 502.1
rmse | 40.22 [ 29.44 ] 30.30] 26. 1024 | 148.0 [ 238.9 | 512.4
25 0 | exp. | 9.87 | 49.89 54.16 | 56.39 | 59.05 | 64.25
s.d. | 2.81 [ 28.81 49.18 | 65.10 | 98.12 | 201.2
rmse | 40.22 | 28.81 4935 65.41 | 98.54 | 201.7
50 0 | exp. | 9.87 | 50.02 50.16 | 51.08 [ 52.11 | 52.93
s.d. | 2.81 | 21.79 22.48 | 23.59 | 25.57 | 33.23
rmse | 40.22 | 21.79 | 20. 2248 23.62[ 25.65[33.36
03610 0 | exp. | 15.12] 15.12 7342|8540 107.8 | 171.3
sd. | 325 3.25 91.39 | 1322 214.2 | 461.8
rmse | 35.03 | 35.03 | 25. 19435 [ 136.8 [ 2219 | 477.5
3 0 | exp. [ 15.12]44.27 61.12] 65.72 | 73.01 [ 92.53
sd. | 3.25|24.79 70.10 | 98.56 | 156.2 | 331.2
‘mse | 35.03 | 25.45 | 25.22 1 70.98 | 99.80 | 157.9 | 334.0
10 0 | exp. | 15.12]49.12 55.19 | 57.11 | 59.56 | 64.78
s.d. | 3.25 [ 28.50 46.15] 61.73 ] 93.94 | 1939
rmse | 35.03 | 28.51 | 22.53] 19, 46.44 | 62.14 | 94.43 ] 194.5
25 0 | exp. | 15.12 ] 50.02 51.10 | 51.76 | 52.28 | 52.87
s.d. | 3.25 [ 20.63 19.48 | 20.63 | 22.82 | 31.66
rmse | 35.03 ] 20.63 | 17.24] 16.01 | 19.51 | 20.70 | 22.93 | 31.79
50 0 | exp. | 15.12]50.03 49.79 | 50.29 [ 50.71 | 51.06
s.d. | 3.25 | 15.81 1491 [ 15.06 | 15.23 | 15.35
rmse | 35.03 | 15.81 | 14.5 7411491 [ 15.06 | 15.25 | 15.39




Table 2.6b

N =50
TR =Y X1 P | CUE HME
04 01]o2]o3]oaflos]o6]07] 08709
05110 0 exp. | 19.98 | 19.98 | 49.75] 48.62 | 50.96 | 52.90 | 54.54 | 56.30 | 58.31 | 60.86 | 65.16 | 76.36
s.d. 346 | 346 | 21.10] 17.85| 22.36 116.2 | 2447
rmse | 30.22 | 30.22 [ 2111 | 17.90 [ 2238 [ J17.21 246.1
5 0 exp. | 19.98 | 47.71 | 49.98 | 48.11 | 49.82 55.23 | 56.98
s.d. 346 | 2595|1796 15.56 | 17.90 55.05 | 109.7
_rmse | 30.22 1 26.05 1 17.96 15.67 | 17.90 | ! 1 55.30 | 109.9
10 0 exp. | 19.98 | 49.87 | 50.03 | 47.69 | 49.23 52.78 | 53.25
s.d. 3.46 | 24.41 14.06 | 15.28 : A ; 26.84 | 45.19
_rmse | 30.22 | 24.41 | 15781 14.25 ] 1530 | 16.33 | 17.28 | 18.33] 19.72 | 21.98 | 26.99 | 45.30
25 0 exp. | 19.98 | 50.03 | 50.03 | 47.19 | 48.39 | 49.08 | 49.63 | 50.06 | 50.43 | 50.71 | 50.95 | 51.28
s.d. 346 | 15971 12.89]| 11.97 | 12.46 | 12.79 | 13.05| 13.29| 13.46 | 13.63 | 13.78 | 13.98
“rmse | 30.22 | 15.97 | 12:89] 12.30 [ 12.57 | 12.83 | 13.06 | 13.29] 13.47 | 13.65 | 13.81 | 14.03
50 0 exp. | 19.98 | 50.01 | 50.00 | 46.82 | 47.92 | 48.55 | 49.04 | 49.41 | 49.72 | 49.99 | 50.23 | 50.44
s.d. 3.46 | 1257 | 11.251 10.67 | 1094 | 11.13 : 2 : 11.56 | 11.60
_rmse | 30.22| 12,57 | 11.25 | T1.13 | 1114 | 11.22 | 11.27 | 11.35| 1141 | 11.49 | 11.56 | 11.61
0.6910 0 exp. | 24.92 | 24.92 | 4998 50.24 | 51.01 | 51.58 | 51.98 52,23 52.71 | 52.94 | 53.34 | 54.09
s.d. 354 | 354 | 1444|13.19| 1462 | 1585 17.18 | 18.84 | 21.35 | 25.68 | 35.38 | 67.78
rmse | 2533 | 25.33 | 14.44] 13.19 [ 14.65 | 15.93 | 17.29 | 18.98 | 21.52 | 25.84 | 35.53 | 67.90
5 0 exp. | 24.92 | 49.28 | 50.01 | 49.60 | 50.31 | 50.62 51.77 | 51.89
s.d. 3.54 12449 | 1253 11.70 12.96 16.42 | 22.47
“rmse | 25.33 | 24.50 | 12.53 | 11.71 | 12.43 | 1207 | 13 1652 22.55
10 0 exp. | 24.92 | 50.02 | 49.99] 49.19 | 49.85 | 50.11 51.13 | 51.26
s.d. 354 119.63|11.47|10.82] 1130 11.63 12.61 | 13.20
rmse | 25.33 1 19.63 | 11.47] 10.85 | 11.30 | 11.63 | 11.86 | 12.0 1266 | 13.26
23 0 exp. | 24.92 | 50.02 | 50.02 | 48.58 | 49.16 | 49.53 50.36 | 50.48
s.d. 354 | 1277 ] 990 | 9.51 | 9.71 | 990 10.27 | 10.32
mmse | 25331 12.77] 9.90 | 9.61 | 975 | 9.91 | 9.99 | 10.07] 10.14 | 10.22 | 10.28 | 10.33
50 0 exp. | 24.92 | 50.00 | 50.00 | 48.20 | 48.78 | 49.13 | 49.35 | 49.57 | 49.72 | 49.85 | 49.94 | 50.05
s.d. 35411020 890 | 859 | 873 | 882 | 886 | 891 | 895 | 899 | 9.04 | 9.10
rmse [ 25.33]1020] 890 | 878 | 882 [ 886 | 888 | 893 | 895 [ 9.00 | 9.04 | 9.10
09210 0 | exp. | 30.07 | 30.07 | 50.00] 50.80 | 50.89 | 50.85 | 50.96 | 50.98| 51.06 | 51.03 | 51.07 | 51.03
s.d. 346 | 346 | 978 | 9.51 | 990 | 10.12 | 10.33 | 1048 10.64 | 10.83 | 11.20 | 12.84
rmse [ 20.22]20.22] 978 [ 9.54 | 994 | 10.15| 10.387] 1052] 10.69 | 10.88 | 11.25 | 12.89
5 0 exp. | 30.07 | 49.89 | 50.00 | 50.27 | 50.40 | 50.48 | 50.46 | 50.51 | 50.59 | 50.60 | 50.67 | 50.60
s.d. 346 |21.09] 895 | 870 | 893 | 9.10 ] 920 | 930 | 938 | 945 | 9.49 | 9.62
rmse | 20.22121.09} 895 | 8.70 | 894 | 9.12 | 9.22 | 932 | 940 | 947 | 9.52 | 9.64
10 0 exp. | 30.07 | 50.04 | 50.00| 49.96 | 50.14 | 50.13 | 50.28 | 50.31 | 50.32 | 50.34 | 50.40 | 50.33
s.d. 346 | 1531 | 844 | 8.18 | 845 | 849 | 860 | 863 | 870 | 875 | 879 | 8.85
rmse | 20.22 { 1531 ] 844 | B.18 | 845 | 8.50 | 8.60 | 864 | 870 | 876 | 8.80 | 8.86
25 0 exp. | 30.07 | 50.00 | 50.00 | 49.46 | 49.63 | 49.75 | 49.84 4<f§9 49.93 | 49.98 | 50.07 | 49.97
s.d. 346 | 10:22/) 758 1 739 ) 750 757 | 7.62| 765 | F6B | T3] 773 | T8O
mmse [20.22 1022 7.58 | 741 | 7.51 | 7.57 [ 7.62 [ 7.65| 768 | 7.73 | 7.73 | 7.80
50 0 exp. | 30.07 | 50.03 | 49.99 | 49.12 | 49.34 | 49.49 | 49.60 | 49.69 | 49.70 | 49.74 | 49.84 | 49.71
s.d. 346 | 823 |1 697 | 682 | 690 | 692 | 695| 698 | 7.01 | 7.00 | 7.05 | 7.07
rmse | 20.22] 823} 697 [ 688 | 693 | 694 | 696 | 699 | 7.02 | 7.01 | 7.05 | 7.07
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Table 2.6¢

N =50
T R BiZ<e1) X1 P | CUE HME
X10% 01102 03]04]05|]06]07]o08] 09
1.20 [0 0 | exp. | 34.94 ] 34.94 50.40 | 50.36 | 50.29 | 50.12
sd. | 324 | 324 717 [ 718 [ 723 | 7.28
mmse | 15.41 1 1541 | 691 | | 7} 718] 719 723 | 7.28
5 0 | exp. | 34.94 | 50.04 50.18 | 50.18 | 50.11 | 49.95
sd. | 3.24 [17.02 671 ] 671 | 675 [ 6.78
mmse [ 15.41 [ 17.02] 652 | 6. 671 | 671 675 | 678
10 0 | exp. | 34.94 | 50.04 50.06 | 50.06 | 50.02 | 49.84
s.d. | 3.24 [11.96 639 | 639 [ 643 | 6.46
rmse | 1541 [ 11.96 [ 6.27 | 6. 36 | 6.39 | 6.39 | 643 | 6.47
25 0 | exp. | 34.94 | 50.03 49.86 | 49.90 | 49.81 | 49.66
sd. | 3.24 | 817 585 ] 586 | 591 | 5.89
rmse | 1541 817 [ 5" 585 | 586 | 591 | 590
50 0 | exp. | 34.94 | 50.04 49.75 1 49.78 | 49.65 | 49.55
sd. | 324 | 6.62 544 | 547 | 549 [ 550
rmse | 1541 662' 15371 5411 8| 545 | 548 | 550 | 552
1.61]0 0 | exp. | 40.01 | 40.01 50.06 | 49.93 | 49.78 | 49.63
sd. | 2.83 | 2.83 477 | 478 | 478 | 477
rmse | 10.39 | 10.39 | 4.66 | 4.7 751 4771 478 | 4.79 | 478 |
5 0 | exp. | 40.01 | 50.05 49.96 | 49.85 | 49.71 | 49.55
sd. | 2.83 [12:57 4.59 4,60 | 4.59
rmse | 10.39 | 12.57 | 4.51 | 4.56 | 4. 58 | 459 | 460 | 461 | 4.61
10 0 | exp. | 40.01 | 50.02 49.92 1 49.79 | 49.65 | 49.51
sd. | 2.83 | 8.90 447 | 448 | 446 | 444
rmse | 10.39 ] 8.90 45 | 447 | 448 | 447 | 446
25 0 | exp. | 40.01 | 50.00 49.82 | 49.68 | 49.57 | 49.43
sd. | 2.83 | 6.19 422 | 422 | 418 | 4.18
rmse | 1039 6.19 423 ] 424 | 421 | 422
50 0 | exp. | 40.01 | 50.01 49.70 | 49.59 | 49.52 | 49.36
sd. | 283 5.04 401 | 403 | 397 [ 3.94
mmse | 10.39] 5.04 | 397 | ] 4021405 ] 400 ] 39
23010 0 | exp. | 44.99 | 44.99 49.67 | 49.56 | 49.47 | 49.39
sd. | 212 ] 212 281 | 283 | 2.79 | 2.87
rmse | 544 | 544 | 277 | | 2831 2.87 | 2.84 | 2.93 |
5 0 | exp. | 44.99 ] 50.01 49.64 | 49.53 | 49.45 | 49.37
sd. [ 212 | 8.09 276 | 238 2.72 | 2.82
rmse | 5.44 | 8.09 ] 273 | 2. 279 | 282 ] 278 | 2.89
10 0 | exp. | 44.99 | 50.05 49.63 | 49.51 | 49.43 | 49.35
sd. | 212 5.88 272 | 275 | 261 | 277
rmse | 544 | 588 | 2. 73 | 2741 2.80 | 2.73 | 2.85
25 0 | exp. | 44.99 | 50.09 49.60 | 49.44 | 49.41 | 49.32
sd. | 212 [ 4047 2. : ; ; 262 | 267 | 258 [ 270
rmse | 5.44 | 4.05 | 2.61 | 2. 64 | 267 | 2 4 | 265 | 273 | 2.64 | 279
50 0 | exp. | 44.99 ] 50.06 | 50.00] 50.32 | 50.13 | 49.92 | 49.74 | 49.62 | 49.60 | 49.40 | 49.41 | 49.27
sd. | 212 326|254 259 257 259 | 260 | 254 | 254 | 262 | 249 | 2.63
mmse | 5.44 | 326 | 2.54 | 261 | 258 | 260 | 261 | 257 | 2.57 | 268 | 2.56 | 2.73




§ 2.13 : The Performance of Plant-Capture
When Applied to the Model M, _: Under Continuous Time Sampling

It has been argued that, conditional on the event C ={Z > X}, the performance

of the CUE should be considered superior to that of the HME, and that the
performance of the HME should in turn be considered superior to that of the MLE and
Peterson-type estimators. In addition to this the distributional properties of the CUE,
HME and Peterson-type estimators were investigated conditional on the less restrictive
event A={Z>1}. The conclusion drawn from the latter investigation was that,
conditional on the event A ={Z>1}, one should again consider the CUE to be the
estimator whose performance is most desirable. Rather than only discussing the way in
which the information gained through plants may improve the performance of the CUE,
this section considers how the method of plant-capture can affect the performance of all
the estimators described within this chapter. This approach is taken since, in spite of the
evidence of the previous sections, it is believed that more traditionally minded
practitioners may still prefer to use the MLE. The following discussion is based on an
inspection of all the 18 tables of this chapter.

It has previously been mentioned that mean square error is known to reward
negative bias and that this characteristic can lead to incorrect conclusions being drawn
if one places too much emphasis on mean square error alone. When comparing the
performance of estimators, one should always, where possible, consider firstly their
mean and standard deviation, and only then should one consider mean square error, or
alternative loss functions such as mean absolute deviation. This approach is taken in the
following discussion because consideration of mean square error alone can lead to
counter intuitive conclusions. For example, consider the performance of the CUE in
table 2.2a, where N = 25 and 7=0.36. As R is increased from 0 to 5 to 10 the root mean
square error of ﬁu increases from 11.21 to 11.33 to 11.98! However, only when one
considers the way in which the bias of l(Iu is being significantly reduced can one see
that the extra information gained from the plants is in fact improving the overall
performance of the CUE.

This last example is quite typical of the way in which the information gained
from plants enhances the performance of the estimators in situations where very little
information is gained from the target population. In many of these situations, however,
the improvement in bias is accompanied by a reduction in mean square error.

Except for a very few situations where only a small amount of information is
available, the CUE Nu is usually unbiased, and where not its bias is negligible. In those
situations where only a small amount of information is available, IQIu tends to be

negatively biased, with this bias reducing appreciably and monotonically as the number
of plants is increased. This behaviour is intuitively very reasonable, since the CUE is
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unbiased conditional on the event Z=7Z, +2Z, 2N. Now as Z, ~ P(RA7), the event
Z=7,+7Z,2N is more and more likely to occur as R is increased. The standard
deviation of N . 18 generally seen to reduce monotonically as more and more plants are
used. Where the standard deviation of the CUE is not reduced by an increase in R, this
is always due to its bias being significantly improved.

In the absence of plants, the Peterson-type estimator reduces to X,, commonly
referred to as the 'enumeration estimator'. For this reason, Np is only considered here

when plants are used. In terms of bias, the Peterson-type estimator behaves in a very
similar way to the CUE, although l(Iu is on almost all occasions less biased. When the

number of plants is small relative to the size of the target population, Np tends to have a

relatively large variance. On almost all occasions, however, this is seen to reduce
uniformly as R is increased.

The CUE is seen to utilize the information gained through the plants in a very
'smooth' way. That is, as R is increased, usually either the mean of Nu is significantly
improved at the expense of a slight increase in standard deviation or both the bias and
the standard deviation are reduced. The behaviour of the MLE in situations where little
information is available is less predictable as more plants are introduced. For an
example consider again table 2.2a, in which N = 25 and 7=0.36. As the number of
plants is increased from O to 25 the mean and standard deviation of N are respectively
23.62, 14.35; 29.56, 19.81; 29.54, 19.99 and 26.66, 12.94 : the corresponding values
taken by ﬁTu are respectively 17.36, 8.21; 22.49, 11.05; 24.39, 11.96 and 24.95, 10.64..
The CUE in this example behaves in the manner described above, i.e. as R is increased
its' performance improves 'smoothly’. However, as the number of plants is increased
from O to 5 to 10, the standard deviation of the MLE is seen to increase, whilst its mean
either becomes worse or is not significantly improved ! This result appears counter
intuitive, that is until one considers the way in which the value of R affects the
probability of obtaining a finite MLE. In the above situation, wherein N = 25 and
7=0.36, for R = 0, 5, 10 and 25, the probabilities of obtaining an infinite MLE are
respectively 0.2690, 0.0445, 0.0074 and 0.0000. In other words the introduction of
plants is seen to drastically improve the probability of obtaining a useful MLE. When
this advantage is considered along with the performance of the MLE, it can be argued
that even in situations where, as in the above example, very little information is
obtained from the target population, the presence of plants is beneficial to the overall
performance of the MLE. Other than those extreme situations in which very little
information is present, an increase in the number of plants is generally seen to improve
the performance of the MLE via a reduction in both bias and standard deviation. And
where both statistics are not improved, one of the two is.
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In conclusion, the introduction of plants can be seen to enhance the performance
of all four of the estimators which have been considered within this chapter, this being
under the assumption that the planted individuals do indeed behave in an identical
manner to members of the target population. In particular the plants are seen to be of
most use when only little information has been gained from the target population.
Furthermore, whether sampling with or without plants, it is recommended that,
conditional on the event C={Z>X1}, the performance of the CUE should be

considered superior to that of the HME, MLE and Peterson-type estimators.

87




Chapter 3 : Estimation Under the Capture-Recapture Model M, :
Discrete Time Sampling Procedure.

§3.1 : Introduction

This chapter introduces, initially in the absence of plants, a new class of estimators
for the standard capture-recapture model M, . The model M, is one of the set of models
discussed in the wildlife monograph by Otis et al. (1978) for capture-recapture data in
closed populations. In section 3.7 it is shown how these new estimators can be modified so
as to utilize the information gained from planted individuals.

In the previous two chapters consideration was given to a capture-recapture model
which assumed that each animal in the target population was equally likely to be caught.
Indeed in the large statistical literature on capture-recapture methods the majority of work
present is seen to adopt this central assumption, see Seber(1982). However, although the
assumption that every animal in the population is equally likely to be caught is convenient
from a mathematical point of view, in practice this will rarely be the case. In particular if
the population under investigation possesses significant heterogeneity between capture
probabilities then, in experiments where the true population size is known, the usual
estimators, for example the maximum likelihood estimators as described in chapters 1 and
2, have been shown to become extremely negatively biased, see Edwards &
Eberhardt(1973) or Cormack(1966).

The discrete time sampling procedure considered within this chapter is identical to
the one considered in chapter 1 : it essentially constitutes what is known in the literature as
a Schnabel Census with random sample sizes, see Schnabel(1938) or, for a more
comprehensive review, Seber(1982). The sampling procedure considered here is the one
most commonly used in practice, and is described in detail in the following section.

§3.2 : Sampling Procedure and Assumptions

A sequence of t sampling experiments is carried out on the target population which
is assumed to be closed and of size N. Independently of other animals and independently of
its previous capture history animali (1= 1, 2, ..., N ) is captured in sample j (j= 1,2, ..., t)
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with probability p,. After each sample is taken every animal within that sample which has
not previously been marked receives a unique tag before its immediate release so that it
may be recognised on subsequent trapping occasions. The experiment generates an N by t
matrix A where
1 ifanimaliis  caught on sampling occasion j
i~ {0 if animal i is not caught on sampling occasion j
i=1; 2, s N
J=1,2 wen b
The sample space is the set of such matrices.
It is assumed that the p;, fori=1, 2, ..., N, are a random sample from some probability
distribution f(p), p €[0,1], with c.d.f. F(p).

§3.3 : A Class of Coverage Adjusted Estimators for the Model M,

Probabilistic results for the model M, are covered in detail by Otis et al (1978),
Overton(1969) and Pollock & Otto(1983). The following derivation of an approximate
maximum likelihood estimator borrows heavily from this previous work : the approach
taken here is almost identical to that of Overton(1969) and Pollock & Otto(1983). At this
point it is necessary to introduce some notation :

t = number of sampling occasions.
X = number of distinct animals seen.
Z = total number of sightings made.
pp = capture probability of animali, i=1,2,..,N.
X, = number of sightings of the ith animal, i=1,2, .., N.
f, = iI(X; £ k) = number of animals seen exactly k times, k=0, 1, 2, ...., t.

@]

il
i

]

' Sample Coverage '.

i=1

Let the set S, ={sk:k — 1,2,..,x}, where s, €{1,2,3,...,N} for all k, denote the set of the

indexes of the x distinct animals seen during the sampling period.
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Under this model all of the available information is contained within the vector of capture
frequencies (f,,f,,....f, ), see Pollock et al (1990).

The joint probability distribution of the sufficient statistics, {fi:i=1,2,..,t}, is

multinomial:
N - ! f
Prob(f,,f,,....f [F) = (N-—x £ Ey0nf )(ﬂo)N 1—,1[(”3) G4)
SRR} s dy i=
if ty . riE
where 7, = L [JpJ(l ~p)~dF(p)
j=0,12,...t.

From equation (3.1), assuming that F(p) is known exactly, the profile likelihood for N can
be written as

_ NI o
L(N) = N —’x)!{ o} _
oo
since 77, = J:(l —p)'dE(p)= E[(l - p)'].

If one again assumes that F(p) is known exactly, so that E[(l - p)'] may be viewed as a

known constant, it follows from equation (3.2) that an approximate maximum likelihood
estimate may be obtained by equating L(N) to L(N-1) :

RO IR I e ) e GG U
Lk N{E[1-p) J}=(N-x)
It N-N{E[(1-p) ]} =x
= = - (3.3)

1-{e-2)}
This expression is of no direct use in practice since E[(l = p)'] is not known. However an

estimate of this quantity may be obtained : Overton(1969) used a method based on a
theorem of Horvitz & Thompson(1952) ; Pollock & Otto(1983) obtained exactly the same
result using the theory of weighted distributions as follows :

B[(1-p)'] =7 = ] (1~ p)'dE(p)
=0~

Let f¥(p) be the probability density function of the capture probabilities of all x animals
captured during the experiment. When f“(p) is derived from f(p) as a weighted

90

Ve s mtn it b

R Tl ey e o s ens



distribution, see Patil & Rao(1978), with weight w(p)=1-(1—p), the probability of
capture at least once,
£¥(p) = w(p)f(p)
U
{1-(1-p)}t(p)
1-E[(1-p)]

Now one may observe that, using the properties of weighted distributions, an unbiased

“1 1 1
timator of {1—E{(1—p) |} isgivenby —» ————.
estimator o { [( p) ]} is given by — g:l— (1-p)
It then follows from equation (3.3) that
A 1
N=) — (3.4)
ig: 1 (1 =P )t

would be an unbiased estimator of population size N if the capture probabilities of the
animals seen during the experiment were known exactly. At this point it is also worthwhile
to note that, since the probability of animal i being seen at least once during the experiment
is 1—(l-pi)t for i = 1, 2,..., N, taking an expectation of (3.4), when the p, for i€ S, are
known, would show N to be an unbiased estimator of N. However since these capture
probabilities are clearly not known exactly the approach taken here is to estimate the p, and
in doing so obtain an estimator of N by substituting these estimates of capture probability
into equation (3.4).

It is now necessary to estimate the capture probabilities of the animals which were
seen during the experiment :

Overton(1969) used the fact that under the model X; ~ Bin(t,p;). Based on this
distribution the maximum likelihood estimate of the capture probability of animal i is

given by p’ = -’i—‘ Overton(1969) then substituted the estimates " into equation (3.4) to

produce the estimator N o» defined by

A 1
N, = g:_l _ [1 W f,gl)]t
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The estimates §\” are intuitively reasonable estimates of capture probability -
essentially being 'the number of times the animal was seen divided by the number of times
the animal could have been seen'. However this method of estimating capture probability
does not make full use of all of the available information. In order to obtain better estimates
of capture probability one may proceed as follows :

In addition to estimating the capture probability of each animal in turn, via the (",
we are also able to obtain independently an estimate of the sum of the capture probabilities
of the animals seen during sampling. The approach taken here is to use this latter estimate
to scale the p{" in an appropriate manner :

x% =t PP = k%, where k = constant. (3.5)

It then follows from equation (3.5) that
5 k.
Z @) _ 2 X __z . _k—. (3.6)
ieS, ieS, 1eS

For the reasons stated above we now set

N

- 2.pI(X;>0)
Y=Y Zp, X,>0)=CY p,, where C=4l
ieS, ie8, i=I Ep]

i=1

(3.7)

From assumptions,
X; ~Bin(t,p;) = E[X;]=t.p,

= E[ixi] =EB[Z]=£ p, (3.8)

i=l

= an estimate of Zp, is given by —. The value of sample coverage C may be estimated
i=]

by CI, C2 or C3 : please refer to appendlx 4.

Now from equation (3.7) we require that ¥ p* = C —f— j=l 2Zors (3.9)

ieS,

Combining equations (3.6) and (3.9) enables one to determine the value of the constant k as

follows :
3 HP =k B e éf = k=0, j=1,20r3,
ieS, t t

=  Estimate p, by =G, XT ieS,, ji=1.2r3,
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Explicitly

~2) _ K fl)xi
- h={1-)|h
Piy 13 ( =
O )
’ t z (t-Dz/t
and PR =C, 5= UL TN o LY
- t z (t-1)z (t-1)(t-2)z

These three estimates of capture probability may each be substituted into equation (3.4) to

produce a corresponding Coverage Adjusted Estimator ( CAE ):
1

A
—Pi3

A

cal =

iEle—{l

e\t
EaE
z/t
Similarly
t
Nca2=2 At
W e leteg, 2 ol
L z (t=1)z Jt
and 1QcaS= / fi 2
By e 1*_f_1_ 2§, 6 )1
1 z (t-1)z (t=1)(t-2) z jt

§3.4 : Other Estimators for the Model M,

Within the introduction to this chapter it was stated that the majority of capture-

recapture work has been based on the assumption that capture probabilities are equal for all

animals in the population being trapped. This is true. However, over the years, a number of

authors have considered heterogeneous populations. Overton(1969) introduced the above

Horvitz-Thompson type estimator which allows capture probabilities to vary between

animals. The performance of this estimator was, however, not considered to be reasonable,
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so that, up to this date and beyond, a viable estimation procedure for heterogeneous
populations was still not available. Burnham and Overton(1978) sought to rectify this less
than ideal situation by introducing a nonparametric jackknife estimator of population size,
aimed at heterogeneous populations. The Burnham and Overton(1978) paper stimulated
interest in the topic and since its appearance many other authors have proposed estimators
for the model M,. Pollock and Otto(1983) considered a first order jackknife of the
estimator proposed by Overton(1969). Smith and van Belle(1984) considered bootstrapping
based on the enumeration estimator. Chao(1989), Chao, Lee and Jeng(1992) and, more
recently, Norris and Pollock(1996a) have also proposed estimators for the model M, .

To date, the estimators most commonly favoured have been the jackknife estimators
of Burnham and Overton(1978). Lee and Chao(1994), however, assert that the estimators of
Chao, Lee and Jeng(1992) are to be preferred, except when the heterogeneity is very mild.
In the latter case they recommend the maximum likelihood estimator for the model M,),

details of which may be found in chapter 1 of this thesis.

§3.5 : Simulation Study

A simulation study was carried out in order to investigate the properties of each
estimator. In each simulation the capture probabilities of the N animals were drawn as a
random sample from some probability distribution with mean E(p), variance Var(p) and
coefficient of variation sqrt[Var(p)]/E(p). Live trapping was then simulated on this
population. Each table consists of six cells, with each cell depicting the results for one of t
=5, 10, 15, 20, 25 or 30 sampling occasions. For each value of t one thousand simulations
were carried out : a different set of capture probabilities was used each time. The values
shown in the tables are mostly averages. As many of the estimators are only finite if at least
one recapture occurs, any data set not meeting this condition was discarded. The simulation
procedure continued until one thousand data sets for which the condition did hold had been
generated.

In tables 3.5.1a, 3.5.1b and 3.5.1c the capture probabilities of the animals were
drawn from a uniform distribution on the interval (0, alpha), symbolised by p ~ U(0, alpha).

In tables 3.5.2a to 3.5.2i the distribution considered is Beta : symbolised by p ~ Beta
(alpha, beta). The most comprehensive simulation study to appear in the literature to date
was carried out by Burnham and Overton(1979), and they considered mainly Beta
distributions. It appeared that they essentially varied the parameters of each Beta
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distribution in such a way so as to achieve particular values for the expectation of p. That is
prime consideration was given to E(p). It has, however, been known for many years,
Cormack(1966) and Edwards and Eberhardt(1973), that the performance of the estimators
is dependent not only on the mean but also the coefficient of variation of the distribution of
p. Hence within this simulation study prime consideration is given jointly to both the mean
and the coefficient of variation of each Beta distribution; the parameters of the distribution
leading to these values are considered to be of only secondary importance. It was therefore
decided to choose the parameters of each Beta distribution systematically in such a way so
as to investigate the dependence of the estimators performance on both mean and
coefficient of variation. In practice it is believed that if the model M, is chosen as an
appropriate model to fit the data, using for example the testing procedures described by
Otis et al.(1978), then one may expect to see a true coefficient of variation approximately
in the range of 0.55 % 0.25. Since, if the true coefficient of variation was below say 0.3 one
would expect a choice of model M,. Whereas if there appeared to be a very large

coefficient of variation, say greater than 0.8, it would be reasonable to assume that model
M, would be rejected anyway - in favour of perhaps M, or M,,. It is believed that in
most practical sitnations one may expect the expectation of the distribution of p to vary
between 0.04 and 0.20. For the above reasons tables 3.5.2a to 3.5.2i cover the following
nine points in the ( E(p), sqrt[Var(p)l/E(p)) plane :

0.04 0.3
E(p)=0.12 X sqrt[Var(p)]/ E(p)=0.55.
0.20 0.8
At each point in the above grid it necessarily follows that the parameters of the Beta
2
1“ep—ep and beta:m—(l—ep),

distribution satisfy the equations alpha = 5 !
cv) ep(cv)

where ep = E(p) and cv =sqrt[Var(p)]/ E(p).
The range of detection probabilities covered by the above grid is consistent with the
simulation studies of Burnham and Overton(1979), Chao, Lee and Jeng(1992) and Lee and
Chao(1994).

In order to further investigate the robustness of the estimators over the entire subset
of the ( E(p), sqrt[Var(p)I/E(p)) plane, which is considered here to be appropriate for the
model M, , the simulations of tables 3.5.3a, 3.5.3b and 3.5.3c were carried out in a slightly
different way. At the beginning of each simulation the value of E(p) was selected as a
random observation from a uniform distribution on the interval (0.04, 0.20). The value of
the coefficient of variation was selected as a random observation from a uniform
distribution on the interval (0.3, 0.8). The distribution of p was chosen to be Beta(alpha,
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beta), and so to achieve the required values of ep and cv it was required that

= {—ep)
: ‘? —ep and beta= %
v ep(cv)
animals were drawn as a random sample from this beta distribution and live trapping was
then simulated in the usual way.

alpha =

—(1—ep). The capture probabilities of the N

Notation and imators

N = population size.

t = pumber of sampling occasions.

The following estimators are considered within the simulation study. The notation used for each

estimator is stated, and where possible a detailed expression for the estimator is given,

x = number of distinct individuals seen.

mle = N the maximum likelihood estimator for the model M, for details please refer to
chapter 1.

boot = Ny =x+ Zf 5(1 - ?) the bootstrap estimator of Smith and van Belle(1984).

i=1
~ X

drl = Ny, = E— represents the estimator proposed by Darroch &

1

Ratceliff(1980) for the classical species problem.

2 X f A
aCI=Nacl=A—+,\—l 12
1 1
A X fl A2 )
ac2=N_, ==—+="7%, the three estimators proposed by Chao, Lee
G G
2 X fl A 9
ac3=N_, = —é—- + E— 5 and Jeng(1992), see also Lee and Chao(1994),
3 3

t
Noit > k(k - 1)f,
¥," = max k=2 -1,0 j=1,2,3.

(t— 1)[§llkfk]2 il

k=1
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N.B.

t
A f_
0 =Ng,= Z———'——— the estimator of Overton(1969).

t
calENcﬂ:z fi f o N6
| (1 = (1 - —1)1)
z)t
A ! f
ca2=N_, = z - o the CABEs of section 3.3,
i=1 £ 2. 1. 1
1-(1-{1—-—+ —= |-
A VA (t et 1) z )t
ca3=N_,= X
= (= o B 6  £,)i)
1-|{1—-|1-—+ e —=
z (t-1)z (t=1)(t-2)z )t
pojac = N U the first order jackknife of the estimator proposed by Overton(1969), considered

by Pollock and Otto(1983). Goudie(1996, pers.comm.) noted a typographical
error in that paper . That is N, is in fact explicitly given by

o t=1J* ¢ t—1) 7. )
N, = f1{t-a;,l - -(-—tlam_,} + Zfi [t.ai't - -—( . ){1.ai_“_, +(t- 1)&11,,_I }jl
=2

N\ 1 =l
where a; = {1—(1—%) } ,

jacl = N =X+ (t I 1) f, the first order jackknife estimator of Burnham & Overton(1978).
jacseq = I\AI]k the jackknife of order k - where k is chosen from the set
(1,2,3,4) according to the procedure of Burnham &
Overton(1978).
jacint = N ] the interpolated jackknife estimator of Burnham &
Overton(1979).

The selection procedure proposed by Burnham and Overton(1978) is not entirely objective. That is if

the fourth order jackknife is rejected their recommendation is to select the jackknife of whichever of the first

three orders appears most appropriate. In order to avoid this subjectivity it was decided that, in the event of

the selection procedure rejecting the fourth order jackknife, the estimator N, should be made equivalent to

N 11+ That is the selection procedure has been slightly modified, but only to the extent of always selecting the

first order jackknife when the fourth order is rejected. Alternative modifications of the selection procedure
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were investigated. However, the above version of the sequential jackknife is the one whose performance was

best. Some of the alternative modifications of the sequential jackknife that were considered may merit future
consideration.

When the selection procedure chooses the first order jackknife then the interpolated jackknife N yis

equal to IQT j1- When the selection procedure chooses the jackknife of order k, for k = 2, 3 or 4, then Iq yisa

weighted average of the jackknives of orders k and k-1. When the selection procedure rejects the fourth order
jackknife, Ny is equal to N ,.

s.d. = standard deviation.
rmse = root mean square error.
Pr(infmle) = the probability that an estimator in the set {mle,drl,acl,cal} is infinite : each estimator in

f
this set is infinite if and only if 1-—L = 0.
Z

f
N.B. All results are given conditional on 1-—L> 0.
Z

¢ = C=4l—————— = 'Sample Coverage .

chl = &

ch2 = éz the three estimators of sample coverage proposed by Chao, Lee and
ch3 = ég Jeng(1992), see section 3.3.

cvl = Y,

cv2 = )72 the three estimators of the coefficient of variation proposed by Chao,
cv3 = }73 Lee and Jeng(1992), where ’f’i ,for i=1,2,3, are as above.

N.B. Two of the estimators which were discussed in section 3.4 have not been included in the simulation
study. The estimator introduced by Chao(1989) produces infinite estimates when no animals are seen exactly
twice during the sampling experiment, and so to avoid imposing additional constraints on each simulation this
estimator was omitted from the study. The nonparametric maximum likelihood estimator of Norris and
Pollock(1996a) was also ommitted : Norris and Pollock(1996a) noted that although possessing small bias, the

variance of their estimator was usually large when compared to the estimators of Chao, Lee and Jeng(1992).
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Discussion
The following discussion is based on an inspection of all fifteen tables, but
with particular attention being paid to tables 3.5.3a, 3.5.3b and 3.5.3¢c, which are believed to
give the best overall view of how the estimators perform in practice.
Firstly, as one would expect, the estimators designed for the model M, namely the
maximum likelihood estimator N and the Darroch and Ratcliff estimator IQIOJ, perform

well in situations when the heterogeneity is mild. However these estimators are seen to
become negatively biased when the coefficient of variation becomes significantly large, and
it is these situations in which their performance is unsatisfactory.

The bootstrap estimator of Smith and van Belle(1984) does not perform well. In
almost all situations it is negatively biased, even when a large proportion of the population
is seen during the experiment. And when a small proportion of the population is seen, its
negative bias is extreme. The performance of the first order jackknife estimator IQI“
generally dominates that of the bootstrap estimator ﬁIB. This is an intuitively reasonable
outcome : both IQIJl and NB are based on the enumeration estimator x. But whereas x is an

ideal estimator to jackknife, being biased with small variance, it is not ideal for
bootstrapping. For point estimation, it would be best to bootstrap an estimator with small
bias and large variance. Within this context, however, it is believed that bootstrapping
would be of most use in obtaining confidence intervals.

In terms of bias, the Coverage Adjusted estimators clearly perform better than the
Overton estimator IQIO - particularly when sample coverage is small. The reason for this

being that the estimators p{" tend to overestimate capture probability and consequently the

)

estimator NO, which directly incorporates the p;”’, has a tendency to always underestimate

population size. When sample coverage is small, the estimators p{” are particularly

positively biased and so NO is particularly negatively biased. The estimators f)fzj’ are

reasonable estimators of capture probability for most values of sample coverage and as a
result of this N ﬁmz and Nm generally possess an acceptable mean for all values of

cal?
sample coverage. As one would expect, the Coverage Adjusted estimators perform in a
very similar way to the Overton estimator IQTO when a large proportion of the population is

seen during sampling. This is easily explained by the fact that, for each i and j, the value of
p{> tends towards that of p{” as t is increased - since éj —1 as t— oo, for j=1,2,3. As a

consequence of the significant improvement in mean which N_,, N, and N_,, have over

cal?

IQIO, the Coverage Adjusted estimators, although having a larger variance than NO, usually

posses a much smaller mean square error.
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Consider the relative performance of the Coverage Adjusted estimators and the
estimators of Chao, Lee and Jeng(1992). It is, as a first step, worthwhile to note that, in

most situations, the standard deviations of N Ncaz and ﬁlm are less than those of

cal?

N N and N,103 respectively. With reference to tables 3.5.2a, 3.5.2d and 3.5.2g one may

acl?
observe that in situations wherein the coefficient of variation is small, the coverage adjusted
estimators can become positively biased, whereas in contrast N Nalc2 and Nncz each tend

acl?

to possess a very good mean value. Despite this, in situations of this type wherein less than
about 60% of the population is seen during the experiment, the coverage adjusted
estimators, owing to their smaller variance, are seen to be performing best in terms of mean
square error. With reference to tables 3.5.2b,c, 3.5.2e,f and 3.5.2h,i one may observe that in
situations wherein a moderate to large coefficient of variation is present, the coverage
adjusted estimators tend to perform well : they generally posses a good mean value and a
relatively small variance. Consequently in these situations the coverage adjusted estimators
tend to perform better than the estimators of Chao, Lee and Jeng(1992) in terms of both
mean and variance. Hence for the majority of situations in which the model M, would
seem to be the most appropriate choice it is seen that the coverage adjusted estimators tend
to perform better than the estimators of Chao, Lee and Jeng(1992). Tables 3.5.3a,b and ¢
support this conclusion.

It is clear from tables 3.5.1a, 3.5.1b and 3.5.1c¢ that the estimators of Chao, Lee and
Jeng(1992) do not respond well when the heterogeneity results from the capture
probabilities having a uniform distribution, In situations of this type, even when a large
proportion of the population is seen during the experiment, the estimators of Chao, Lee and
Jeng(1992) can be very negatively biased. In contrast to this the coverage adjusted
estimators perform particularly well in tables 3.5.1a, 3.5.1b and 3.5.1c.

When considering the problem of estimating sample coverage it is seen that the
estimators éz and és are to be preferred to él. This is particularly true when the number
of sampling occasions is small. For this reason, along with observing the performance of
the estimators in the tables, it is recommended that N_,, N_, be preferred to N, ,.Ina

similar way it is believed that N, ,, N_, should be preferred to N,

ac2?

ca2?

The comparison between Ncaz, Nm3 and the first order Jackknife estimator N 0113

seen to depend mainly upon the value of sample coverage - or equivalently upon our
estimate of sample coverage since this quantity may be estimated very well. If sample
coverage is greater than say 0.7 then Nwz, Nm and N,l all perform very well in that they

have small bias and relatively small variance. However if sample coverage is less than 0.7
the first order jackknife tends to be very negatively biased whereas N_,, N_, continue to

achieve a good mean value. The first order jackknife estimator has a very small variance
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and other than x, the enumeration estimator, and ﬁB, the bootstrap estimator, usually has
the smallest variance of all of the estimators. For this reason, even though N_,, N_, have a
better mean than N ,1» When sample coverage is less than 0.7, the first order jackknife
estimator can have a smaller mean square error. Even though this is true, it is believed that
overall the Coverage Adjusted estimators Ncaz, Nm are to be preferred to the first order
jackknife estimator.

The sequential jackknife estimator is generally seen to be superior to the first order
jackknife in terms of mean - particularly when sample coverage is small. This is due to the
fact that the sequential selection procedure developed by Burnham & Overton(1978)
generally works well : when sample coverage is low high order jackknives are usually
chosen whereas when sample coverage is high low order jackknifes are usually chosen.
However even with a lot of data the sequential selection procedure used to determine the
sequential jackknife can be unpredictable. Rosenberg, Overton and Anthony(1995) stated
that, when capture probabilities are low and heterogeneous, the selection procedure should
be 'treated with caution'. The performance of the selection procedure results in the
sequential jackknife estimator having a high variance even with good data. A good
indication as to which jackknife estimator would be most appropriate is sample coverage.
That is if our estimate of sample coverage is high, say above 0.7, then the first order, or
second order, jacknife estimator should be considered most appropriate. If however sample
coverage is smaller then the sequential selection procedure of Burnham & Overton(1978) is
to date the best way of deciding which order jackknife to choose.

Consider the interpolated jackknife estimator. Due to the imprecise and often
unpredictable nature of the sequential selection procedure, it is believed that the
interpolated jackknife does not differ greatly enough from the sequential jackknife to
warrant consideration as an estimator in its own right. In other words the difference
between the interpolated jackknife and the sequential jackknife, in any one given situation,
is believed to be insignificant when compared with the variance of the sequential jackknife
estimator.

Of the jackknife estimators then, the first order jackknife is to be preferred if sample
coverage is high, say above 0.7, whereas if sample coverage is small then the sequential
jackknife should be considered a more appropnate choice.

Our conclusion above was that Ncaz, Nm are to be preferred to the first order
jackknife. The above discussion now also implies that Ncﬂz, Nca3 are to be preferred to the
sequential jackknife estimator when sample coverage is above 0.7. It remains to consider
how Ncu?.’ N 3 compare to the sequential jackknife when sample coverage is small, or
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rather less than about 0.7. When sample coverage is very small, usually for t = 5 sampling
occasions, the sequential jackknife estimator, although being negatively biased, can have a
smaller mean square error than Nwz, ﬁm - although in this situation Nm, Ncna tend to
have a much better mean. As sample coverage becomes larger, or as t is increased, the
sequential jackknife estimator becomes less biased but, as mentioned above, does have a
relatively large variance. As a result of this the Coverage Adjusted estimators N_,, N -

generally perform far better than the sequential jackknife estimator in terms of mean square

ca2?

error - whilst at the same time performing in very much the same way in terms of bias.
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Table 3.5.1a
N =100 : p ~ U{0, 0.08) : E(p) = 0.04
Number of simulations = 1000

sqgrt[Var(p)}/E(p) = 0.5774

Number of sampling occasions, t = .... 5
Estimator mean bias s.d. rmse
x 18.35 ~-81.65 3.759 81.738
mle B82.56 ~17.44 46.494 49.656
drl 106.82 6.82 60.535 60.918
hoot 23.77 -76.23 4.951 76.388
acl 126.91 26.91 77.129 B1.68%
ac2 92.28 -7.72 56.302 56.829
ac3 96.32 -3.68 67.336 67.436
(o] 26.36 -73.64 5.494 73.841
cal 109.29 9.28% 60.930 61.634
ca2 90.27 -9.73 48.950 49,907
cal 91.27 -8.73 49.453 50.218
pojac 45.67 ~54.33 10.066 55.251
Jacl 31.25 -68.75 6.613 69,069
jacseq 48.03 -51.97 11.405 53.209
jacint 45.22 -54.78 10.816 55.843

Pr(inf mle) , mean jacknife order = 0.159, 3.839
¢, chl, ch2, ch3 = 0.241, 0.218 , 0.267 , 0.264
cvhl, cvh2, c¢vh3 = 0.3%2289, 0.08%107, 0.102428

Number of gampling occasions, t = .... 10
Bstimator mean bias s.d. rmse
x 31.67 -68.33 4.462 68.479
mle 85.35 -14.65 42.542 45.373
arl 85.75 -4.25 49.241 49,425
boot 40,95 -59.05 5.822 59,338
acl 105.186 5.16 57.724 57.954
ac2 93.65 -6.35 50.023 50.424
ac3 94.40 -5.60 50.611 50.921
o} 45.64 -54.36 6.537 54,751
cal 101.53 1.53 49.580 49.603
ca2 94.50 -5.50 44.863 45.198
ca3 94.85 -5.15 44,923 45.218
pojac 76.41 ~23.59 12.339 26.624
jacl 53.:95 ~46.05 7.915 46.722
jacseq 70.08 -29.92 16.732 34.280
jacint 65.58 -34.42 15.758 37.856

Pr(inf mle) , mean jacknife order = 0.002, 2.276
¢, chl, ch2, ch3 0.411, 0.373 , 0.405 , 0.403
cvhl, cvh2, cvh3 (.237140, 0.155685, 0,162834

Number of sampling occasions, t = .... 15
Estimator mean bias s.d. rmse
x 42,52 -57.48 4.839 57.687
mle 78.74 -21.26 16.358 26.826
drl 85,17 -14.83 18.381 23.619
boot 54,08 -45.92 6.254 46.344
acl 92.34 -7.66 24.448 25.621
ac2 86.51 -13.49 22.495 26.232
ac3 86.87 -13.13 22.631 26.165
o 59.91 -40.09 7.008 40.698
cal 93.34 -6.66 19.133 20.260
caz 90.23 -92.77 18.176 20.635
ca3 90.43 =957 18.223 20.582
pojac 94.18 -5.82 13.327 14.543
jacl 69.50 -30.50 8.583 31.681
jacseg 90.59 -3.41 20.410 22.475
jacint 82.17 -17.83 19.160 26.174

Pr{inf mle} , mean jacknife order = 0.000, 2.277
c, chl, ch2, ch3 0.542, 0.514 , 0.538 , 0.537
cvhl, c¢vh2, cvh3 0.247527, 0.188130, 0.192005

Number of sampling occasions, t = .... 20
Estimator mean bias s.d. rmsa
x 50.86 -49,14 4.995 49.394
mle 78.89 -21:11 11.824 24.200

drl 83.82 -16.18 13.111 20.828
boot 63.66 -36.34 6.352 36.888
acl 89.53 -10.47 17.792 20.645
ac2 85.93 -14.07 16.828 21.936
ac3 86.14 -13.86 16.893 21.851
o} 70.00 ~-30.00 7119 30.834
cal 93,57 -6.43 14.069 15.468
caz 91.80 -8.20 13.628 15.904
ca3 91.91 -8.09 13.659 15.877
pojac 103.49 3.49 13.670 14.109
jacl 79.79 -20.21 8.416 21.890
jacseq 96.64 -3.36 20.593 20.865
jacint 88.07 =11.93 18.357 21.891

Pr{inf mle) , mean jacknife order = 0.000, 1,962
¢, chl, ch2, ch3 0.640, 0.615 , 0.633 , 0.632
cvhl, cvh2, cvh3 0.246666, (0.204019, 0.206731

Number of sampling occasions, t = .... 25
Estimator mean bias s.d. rmse
x 57.43 -42.57 4.916 42.854
nle 79.25 -20.75 9.281 22.733
drl 83.32 -16.68 10.163 19.531
boot 70.68 =29.32 6.125 29.952
acl 87,97 -12.03 13,113 17.79¢9
ac2 85.52 -14.48 12,553 19.167
ac3 85,66 -14.34 12.583 19.076
(o] 77.11 -22.89 6.810 23.884
cal 93.99 -6.01 11.164 12.678
ca2 92.88 -7.12 10.956 13.065
ca3 92.94 -7.06 10.951 13,030
pojac 107.30 7.30 13.360 15.222
jacl 86.48 ~13.52 8.248 15,837
jacseq 97.18 -2.82 17.041 17.272
jacint 90.38 -9.62 135392 16.491

Pr(inf mle) , mean jacknife order = 0.000, 1.640
¢, chl, ch2, ch3 = 0.711, 0.6%94 , 0.708 , 0.707
cvhl, avh2, cvh3 = 0.247270, 0.216243, 0.217988

Number of sampling occasions, t = .... 30
Estimatoxr mean bias s.d. rmse
x 62,77 -37.23 4.831 37.547
mle 79.65 -20.35 7.746 21.775
drl 83.56 -16.44 8.482 18.500
boot 76.06 -23.94 5.938 24.665
acl 88.25 -11.75 11.351 16.338
ac2 86.54 -13.46 11.007 17.388
ac3 86.61 -13.39 11.031 17.350
o 82.39 -17.61 6.591 18,799
cal 94,79 5,21 9.581 10.908
ca2 94,07 -5.,93 9.430 11.137
ca3 94.11 -5.89 9.429 11.115
pojac 109.03 9.03 13.096 15.905
jacl 90.89 -9.11 8.037 12.149
jacseq 98.57 -1.43 17.026 17,086
jacint 93.72 -6.28 12,975 14.415

Pr(inf mle) , mean jacknife oxder = 0.000, 1.456
¢, ¢hl, ch2, ch3 = 0.768, 0.754 , 0.765 , 0.764
cvhl, evh2, evh3 = 0.279265, 0.255061, 0.256413
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3y e 3.5.1b
N = 100 : p ~ U(0, 0.24) : E(p) = 0.12
Number of simulations = 1000

: sqrt(Var(p)]/E(p) = 0.5774

Number of sampling occasions, t = .... 5
Estimatox mean bias s.d. rmse
x 44,23 ~55.77 4.9%9 55.993
mle 78.95 -21.05 16.384 26.675
drl 94.79 =521 21.210 21.8389
boot 55.23 -44.77 6.294 45,209
acl 109.06 9.06 30.741 32.047
ac2 84.62 ~-15.38 22.439 27.205
ac3 89.38 ~10.62 25.269 27.408
0 60.23 -39,77 6.886 40.358
cal 100.44 0.44 21.731 21.735
ca2 88.44 -11.56 18.137 21.508
cal 90.65 -9.35 18.786 20,984
pojac 93.12 ~6.88 12.266 14.066
jacl 68.98 -31.02 8.095 32.061
jacseq 91.69 -8.31 15.121 17.252
jacint 87.55 ~12.45 15027 19.514

Pr(inf mle) , mean jacknife order = 0.000, 3.378
¢, chl, ch2, ch3 = 0.566, 0.483 , 0.571 , 0.552
cvhl, evh2, cvh3d = 0.397431, 0.166725, 0.213716

Number of sampling occasions, t = .,.. 10
Estimator mean bias s.d. rmse
x 63.76 -36.24 4.710 36.548
mle 78.85 -21,15 7.264 22.364
drl 85,11 -14.89 8.387 17.085
boot 76.38 -23.62 5.775 24 .321
acl 90.53 -9.47 11.169 14.640
ac2 84.68 1532 10.136 18.373
ac3 85.71 -14.29 10.344 17.639
o 82.12 -17.88 6.334 18.973
cal 94.67 -5.33 9.319 10.737
ca2 92.33 -7.67 8.882 11.732
ca3 92.73 -7.27 8.961 11.540
pojac 107.64 7.64 12.277 14.460
jacl 90.22 -9.78 7.562 12,364
jacseq 97.07 -2.93 14.213 14.512
jacint 92.78 =7.22 11.316 13.422

Pr(inf mle} , mean jacknife order = 0.000, 1.494
c, chl, ch2, ch3 = 0.781, 0.752 , 0.788 , 0.782
cvhl, cvh2, cvh3 = 0.320567, 0.234481, 0.250624

Number of sampling occasions, t = .... 15
Estimator mean bias s.d. rmse
X 74.46 ~25.54 4,249 25.889
mle 81.76 -18.24 5.159 18.956
drl 86,33 ~-13.67 5.844 14.869
boot 86.05 -13.95 5.092 14.852
acl 90.54 ~9.46 7.664 12,174
ac2 88.32 -11.68 7.409 13.834
ac3 88.69 ~11.31 7.457 13.550
[¢] 91.12 ~-8.88 5.629 10.512
cal 96,50 -3.50 6.801 7.649
ca2 95.77 -4.23 6.687 7911
ca3 95,90 -4.10 6.715 7.866
pojac 107.11 o RS 11.790 13.765
jacl 97.09 ~2.91 6.747 7.346
jacseq 99.28 -0.72 10.428 10.453
jacint 97.96 ~2.04 8.215 B.466

Pr{inf mle) , mean jacknife oxder = 0.000, 1.157
c, chl, ch2, ch3 = 0.880, 0.864 , 0.880 , 0.877
cvhl, cvh2, cvh3 = 0.347381, 0.312934, 0.318786

Number of sampling occasions, t = .... 20
Estimator mean bias s.d, Irmse
x 80.16 -19.84 3.938 20.228
mle 83.59 -16.41 4.312 16.964
drl 87.37 -12.63 4.745 13.492
boot 20.08 -9.92 4.622 10.941
acl 91.08 -8.92 6.026 10.767
ac2 90.07 -9.93 5.927 11.562
ac3 90.19 -9.81 5.925 11.458
(o] 94.29 -5.71 5.076 7.639
cal 96.89 -3.11 5.682 6.480
ca2 96,59 -3.41 5.645 6.593
ca3 96.63 -3.37 5.656 6.583
pojac 103.83 3.83 10.559 11.232
jacl 98.59 ~-1.41 6.226 6.384
jacseq 99.30 -0.70 7.886 74917
jacint 98.94 -1.06 6.930 7.010

Pr(inf mle) , mean jacknife order = 0.000, 1.052
¢, chl, ch2, ch3 = 0.925, 0.918 , 0.926 , 0.925
¢vhl, cvh2, cvh3 = 0.391368, 0.377440, 0.379452

Number of sampling occasions, t = .... 25

Estimator mean bias s.d. rmse
X 84.04 -15.96 3.624 16.369
mle 85.59 -14.41 3,767 14.895
drl 88.86 -11.14 4.107 11.878
boot 92.54 -7.46 4,184 8.555
acl 92.12 -7.88 5.039 9.350
ac2 91.62 -8.38 5,013 9.764
ac3 91.69 -8.31 5.017 9.707
o 96.06 -3.94 4.610 6.064
cal 97.48 -2.52 4.937 5.542
ca2 97.38 -2.62 4.925 5.581
ca3 97.38 -2.62 4,921 5.573
pojac 102,11 23T 9.811 10.036
jacl 99,19 -0.81 5.504 5.563
jacseq 100.07 0.07 8,429 8.430
jacint 99.73 -0.27 7.053 7.058

Pr({inf mle) , mean jacknife order = 0.000, 1.059
¢, chl, ch2, ch3 = 0,951, 0.846 , 0.950 , 0.950
cvhl, cvh2, cvh3 = 0.419827, 0.413151, 0.413980

Numbezr of sampling occasions, & = .... 30
Estimator mean bias s.d. rmse
X 86.39 -13,61 3.374 14.021
mle 86.95 “13,..05 3.487 13.500
drl 89.77 ~10.23 3.659 10.865
boot 93.66 -6.34 3.847 7.41%°
acl 92.61 -7.39 4.345 8.574
ac2 92.31 -7.69 4,312 8.815
ac3 92.34 -7.66 4.315 8.791
Q 96.65 -3.35 4.174 5.350
cal 97.49 -2.51 4.377 5.045
ca2 97.44 -2.56 4,359 5.057
ca3 97.44 -2.56 4.361 5,056
pojac 100.80 0.80 8.583 8.620
jacl 99.48 -0.52 4.825 4.853
jacseq 100.20 0.20 7.334 7.336
jacint 99 .95 -0.05 6.289 6.289

Pr(inf mle) , mean jacknife order = 0.000, 1.052
¢, chl, ch2, ch3 = 0.964, 0.962 , 0.965 , 0,965
cvhl, cvh2, cvh3 = 0.434079, 0.430362, 0.430754
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N = 100 : p ~ U{0, 0.40) : E(p) = 0.20 : sqgrt[Var(p)l/E{p) = 0.5774
Number of simulations = 1000
Number of sampling occasions, t = ..., § Number of sampling occasions, t = ... 10
Estimator mean bias s.d. mee Estimator mean bias 5.d. rmse
x 60.25 -39.78% 5.004 40.061 x 77.2Q -22.80 4.149 23.175
mle 77.62 -22.38 8.244 23.854 mle 81.89 -18.11 4.661 18.698
drl 89.21 -10.79 10.410 14.99%4 drl 86.96 -13.04 5.332 14.088
boot 722Y -27.79 6.059 28.446 boot 87.50 -12.50 4.867 13.410
acl 98.17 -1.83 14.773 14.887 acl 91.0% ~-8.95 6.796 11:237
ac2 81.09 -18.91 11.519 22.144 ac2 88.16 -11.84 6.492 13.507
ac3 87.08 -12.92 13.519 18.702 ac3 89.01 -10.99 6.575 12.803
o 77.42 -22,58 6.584 23.524 0 91.88 -8.12 5.336 9.716
cal 96.00 -4.00 11.048 11.752 cal 95.82 -4.18 6,199 7.475
ca2 88.81 ~11.19 9.750 14,842 caz 94.96 ~5.04 6.069 7.890
ca3 91.37 -8.,63 10.252 13.400 ca3 95.20 -4.80 6.093 7.754
pojac 106.00 6.00 11,642 13,098 pojac 104.73 4.73 10.596 11.604
jacl 85.66 -14.34 7.623 16.245 jacl 97.03 =2:9% 6.352 7.010
jacseq 97.95 -2.05 14.057 14.206 jacseq 98.36 -1.64 9.042 9.190
jacint 93.02 -6.98 13.689 15.366 jacint 97.62 -2.38 7.623 7.986
Pr{inf mle) , mean jacknife order = 0.000, 2.242 Pr(inf mle) , mean jacknife oxrder = 0.000, 1.110
c, chl, ¢h2, ch3 = 0.749, 0.680 , 0.775 , 0.738 c, chl, ch2, ch3 = 0.905, 0.889 , 0.911 , 0.904
cvhl, cvh2, cvh3 = 0.398147, 0.175534, 0.259839 cvhl, cvh2, evh3 = 0,381294, 0.3359151, 0.352298
Number of sampling occasions, t = ,,.., 15 Number of sampling occasions, t = .... 20
Estimator mean bias s.d. rmge Estimator mean bias s.d. rmse
x 84.52 -15.48 3.611 15.900 x 88.14 -11.86 3.175 12.276
mle 85.70 ~14.30 3.689 14.771 mle 88.18 -11.82 3.182 12.244
drl 89.19 -10.81 4.010 11.532 drl 90.91 -9.09 3.413 9.708
boot 92.51 -7.49 4.108 8,540 boot 94,52 -5.48 3.628 6.571
acl 92.35 ~7.65 4.845 $.054 acl 93.69 -6.31 4.105 7.524
ac2 91.48 -B.52 4.758 9.757 ac2 93.32 -6.68 4.067 7.818
ac3 91.68 ~8.32 4.782 8.600 ac3 93.39 ~6.61 4.080 7.768
o} 95.80 -4.20 4.430 6.106 o} 97.17 -2.83 3.958 4.868
cal 97.11 -2.89 4,723 5.536 cal 97.75 ~-2.25 4.116 4.689
ca2 96.91 ~3.09 4.675 5,603 caz2 97.69 =2:.31 4.101 4.710
ca3 96.96 -3.04 4.690 5.588 ca3 97.70 -2.30 4.108 4.708
pojac 101.85 1.85 9.160 9,345 pojac 101.01 1.01 8.395 B.456
jacl 899.02 ~-0.98 5.401 5,489 jacl 99,47 -0.53 4,634 4.664
jacseq 8863 ~0.37 7.360 7.369 jacseq 99.97 ~0.03 6.082 6.082
jacint 99.41 -0.59 6.521 6.547 jacint 99.79 -0.21 5.485 5.489
Pr(inf mle) , mean jacknife order = 0.000, 1.048 Pr(inf mle) , mean jacknife order = 0.000, 1.043
¢, chl, ch2, c¢h3 = 0.955, 0.948 , 0.955 , 0.953 c, chi, ch2, ch3 = 0.973, 0,970 , 0.973 , 0.972
cvhl, cvh2, cvhld = 0.420097, 0.408829, 0.411348 cvhl, cvh2, cvh3 = 0.456086, 0.451684, 0.452397
Number of sampling occasions, t = ,.., 25 Numbexr of sampling occasions, t = .... 30
Estimator mean bias s.d. rmse Estimator mean bias s.d. rmse
® 90.43 =957 2.898 9.997 X 91.80 -8.20 2.725 8.644
mle 90.43 -9.57 2.898 9,997 mle 91.80 -8.20 2.725 8.644
drl 92.25 -7.75 3.045 8.326 drl 93.04 ~6.96 2.778 7.496
boot 95.68 -4.32 3.27%0 5.418 boot 96.20 ~3.80 2.992 4.838
acl 94.64 -5, 36 3.552 6.433 acl 95.09 -4.91 3.144 5.830
ac2 94 .44 -5.56 3,547 6.597 ac2 94.98 -5.02 3.1286 5.912
ac3 94 .47 -5.53 3.559 6.577 ac3 94.99 -5.01 3.128 5.908
o 97.84 -2.16 3.571 4.174 (o] 97.98 -2.02 3.220 3.799
cal 98.17 -1.83 3.689 4,119 cal 98.14 -1.8¢6 3.245 3.740
ca2 98.14 -1.86 3,681 4,123 ca2 98.13 -1.87 3.237 3.739
ca3 98.15 -1.85 3.684 4.124 ca3 98.13 ~1.87 3.239 3.739
pojac 100.71 0.71 7.480 T..513 pojac 99.95 -0.05 6.717 6.718
jacl 39.97 -0.03 4.209 4,209 jacl 99.75 -0.25 3.8%0 3,898
jacseq 100.48 G.48 5.974 5,.993 jacseq 100.17 0.17 5.324 5.326
jacint 100.27 0.27 5.091 5.099 jacint 100.00 0.00 4.658 4.658
Pr(inf mle) , mean jacknife order = 0.000, 1.043 Pr(inf mle) , mean jacknife order = 0.000, 1.041
c, chl, ch2, ¢ch3 = 0.982, 0.980 , 0.982 , 0.982 ¢, chl, ch2, ch3 = 0.987, 0.987 , 0.987 , 0.987
cvhl, cvh2, cvh3 = 0.474867, 0.472717, 0.472992 cvhl, cvh2, cvh3 = 0.486945, 0.485736, 0.485865
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Table 3.5.2a

N = 100 : p ~ Beta(alpha,beta}) : E(p) = 0.04 : sgrt{Var(p)]/E(p) = 0.30
alpha = 10.6267 : beta = 255.0400 : Number of simulations = 1000
Number of sampling occasions, t = .... 5 Number of sampling occasions, t = ... 10
Estimator mean bias s.d. rmse Estimator mean bhias s.d. rmse
x 18.54 -81.46 3.889 B1.554 x 33.11 -66.89 4.712 67.059
mle 90.88 -9.12 49.735 50.564 mle 106,62 6.62 60.500 60.861
drl 117.40 17.40 64.761 67.058 dri 119.83 19.83 69.456 72.232
boot 24.07 ~75.93 5213 76.101 boot 43.11 ~56.89 6.173 57.223
acl 138.62 38.62 82.613 91.194 acl 131.80 31.80 81,177 87.185
ac2 99.58 -0.42 60.354 60.355 ac2 116.86 16.86 70.074 72.075
ac3 103.03 3.03 72.228 72.291 ac3 117.74 17.74 70.972 73.156
(o] 26.69 -73.31 5.678 73.533 0 48.20 ~51.80 6.952 52.260
cal 119.93 19.93 65.153 68.132 cal 125.91 25.91 6%2.804 74.458
caz2 98.53 -1.47 52.395 52.416 ca2 116.55 16.55 63.108 65.242
ca3l 99.33 -0.67 52.938 52,942 cal 116.90 16.90 63.205 65,427
pojac 46.53 ~-53.47 10.298 54,449 pojac 82.65 =135 13.150 21.768
jacl 31.75 ~68.,25 6.805 68.584 Jacl 57.43 -42,57 8.434 43.396
jacseq 49.11 -50.89 11.546 52.180 jacseq 74,06 -25.94 18.849 32.065
jacint 46.22 ~53.78 10.931 54.882 jacint 70.22 -29.78 17.273 34,427
Pr(inf mle) , mean jacknife oxder = 0.199, 3.874 Pr(inf mle) , mean jacknife order = 0.001, 2,226
¢, chl, ch2, ch3 = 0.201, 0.200 , 0.247 , 0.245 ¢, chl, ch2, ch3 = 0.355, 0.320 , 0.349 , 0.348
cvhl, cvh?, cvh3 = 0.388403, 0.063613, 0,073429 cvhl, cvh2, cvh3 = 0.218941, 0.143147, 0.148654
Number of sampling occasions, t = .... 15 Number of sampling occasions, t = ..,, 20
BEstimator mean bias s.d. rmse Estimator mean bias s.4. mse
X 45.01 -54.99% 5.061 55,225 x 54.18 -45.82 5.121 46.103
mle 97.74 -2.26 24.917 25.020 mle 94.23 =5.77 14.863 15.945
drl 105.47 5.47 27.831 28.364 drl 99.54 ~0.46 16.519 16.525
boot 57.88 -42.12 6.569 42,626 boot 68.63 -31.37 6.499 32.033
acl 113.80 13.80 34.950 37.577 acl 105.61 5.61 21,633 22.350
ac2 105.95 5:95 31.898 32.448 ac2 100.90 0,90 20.221 20.241
ac3 106.34 6.34 32.067 32.688 ac3 101.11 1.11 20.297 20.327
Q 64.46 -35.54 7.361 36.292 (o] 75.91 -24.09 7.295 25.163
cal 114.34 14.34 28.445 31.854 cal 110.20 10.20 17.361 20.137
ca2 109.90 9.90 26.867 28.633 ca2 107.69 7.69 16.741 18.423
cal 110.09 10.09 26.918 28.749 ca3 107.80 7.80 16.770 18.496
pojac 105.04 5.04 14.212 15.078 pojac 116.44 16.44 13.986 21.581
jacl 75.68 -24.32 9.006 25,930 jacl 87.41 -12.59 8.745% 15.327
jacseq 101.76 1.76 22.761 22.829 jacseq 110.61 10.61 21,733 24.183
jacint 93.33 -6.67 21.716 22,717 jacint 99.81 ~0.19 20.533 20.534
Pr{inf mle) , mean jacknife order = 0.000, 2.418 Pr{inf mle) , mean jacknife order = 0.000, 2.171
c, chl, ch2, ch3 = ¢4.480, 0.447 , 0.470 , 0.469 ¢, chl, ch2, ch3 = 0,573, 0.554 , 0.573 , 0.572
cvhl, cvh2, cvh3 = ¢.224203, 0.163480, 0.167183 cvhl, cvh2, cvh3 = 0.207953, 0.16473%7, 0.166782
Number of sampling occasioms, t = .... 25 Number of sampling occasions, t = ..., 30
BEstimator mean bias s.d. rmse Estimator mearn bias s.d. rmse
x 62.54 -37.46 5.034 37.801 x 68.86 -31.14 4.672 31.487
mle 95.02 -4,98 11.623 12.645 mle 94 .47 ~-5.53 9.086 10.634
drl 99,34 -0.66 12.628 12.646 drl 97.94 -2.06 9.910 10.120
boot 78.09 -21.,91 6.366 22.820 boot 84.61 <~15.39 5.860 16.466
acl 104,41 4.41 16.128 16,721 acl 101.92 1.92 12.537 12.684
ac2 101.11 131 15.336 15.377 ac2 99.61 ~-0.3%9 12.069 12.075
ac3 101.26 1.26 15.386 15.438 ac3 $9.71 -0.29 12.070 12.073
o} 85.75 -14.25 7.111 15.923 (o] 92.19 ~7.81 6.552 10.197
cal 111.46 11.46 13.604 17.788 cal 110.81 10.81 10.943 15.378
ca2 109.81 9.81 13.272 16.507 ca2 109,72 9.72 10.736 14.483
ca3 109.90 9.90 13.285 16.567 ca3 109.77 8.77 10.785% 14.530
pojac 124.52 24.52 14.026 28.251 pojac 125.88 25.88 13.818 29.334
jacl 97.31 -2.69 8.426 8.845 jacl 102.86 2.86 8.151 8.640
jacseq 114.8%9 14.8% 19.640 24,649 jacseq 113.53 13253 18.674 23.061
jacint 104.49 4.49 16.856 17.445 jacint 106.37 6.37 14,180 15.546
Pr(inf mle) , mean jacknife orxder = 0.000, 1,894 Pr(inf mle) , mean jacknife order = 0.000, 1.564
c, chl, ¢h2, ch3 = 0.657, 0.635 , 0.650 , 0.649 ¢, chli, ch2, ch3 = 0.71%, 0,707 , 0.719 , 0.719
cvhl, cevh2, cvh3 = 0.212644, 0.179258, 0.180817 cvhl, cvh2, cvh3 = 0.204100, 0.176759, 0.177875
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Table 3.5.2b
N = 100 : p ~ Beta(alpha,beta) : E(p) =
alpha =

0.04 : sqgrt{var(p)l/E(p) = 0.55

3.1336 : beta = 75.2053 : Number of simulations = 1000

Number of sampling occasions, t = .... 5
Egtimator mean bias s.d. rmse
x 18.22 ~-81.78 3.865 81.869
mle 84.19 -15.81 47.739 50.289
drl 1092.19 9518 62.120 62.796
boot 23.64 -76.36 5.081 76.526
acl 130.47 30.47 79.963 85.570
ac2 94.81 -5,19 59,216 59.443
ac3 98.89 -1.11 71.136 71.145
0 26.19 -73.81 5.633 74.029
cal 111.65 11.65 62.526 63.601
ca2 92.20 -7.80 50.324 50.925
ca3 93.20 -6.80 50.9260 51.412
pojac 45 .52 -54,48 10.278 55.436
jacl 31.10 -68.90 6.781 69.234
jacseq 47.96 -52.04 11.612 53.318
jacint 45.14 -54.86 10.999 55.952

Pr(inf mle) , mean jacknife oxder = 0.168, 3.860
¢, chl, c¢h2, ch3 = 0,231, 0.211 , 0.259 , 0.256
cvhl, cvh2, cvh3 = 0.400661, 0.090000, 0.103173

Number of sampling occasions, t = .... 10
Estimator mean bias s.d, mse
x 32,10 -67.90 4.472 68.044
mle 87.35 -12.65 36.223 38.369
drl 98.65 ~1.35 41.271 41.293
boot 41.60 ~58.40 5,839 58.690
acl 110.49 10.49 51,213 52.277
ac2 98.37 ~-1.63 45.155 45,184
ac3 99.19 ~0.81 45,578 45.586
0 46,41 =53:59 6.570 53.996
cal 104.55 4.55 41.639 41,886
ca2 87.39 -2.61 37.659 37.749
ca3 97.76 -2.24 37.702 37.768
pojac 78.36 -21.64 12.261 24,874
jacl 55.01 -44.99 7.912 45.678
jacseq 70.80 -29.20 16.902 33.736
jacint 66.65 ~33.35 15.480 36.766

Pr(inf mle) , mean jacknife order = 0.000, 2.228
¢, chl, ch2, ch3 = 0.396, 0.35% , 0.390 , ©.388
cvhl, cvh2, evh3 = 0.271022, 0.191507, 0.198043

Number of sampling occcasionsg, t = .,,. 15
Estimator mean bias s.d. rmse
x 43,17 -56.83 4,901 57.038
mle 82.04 =17.,96 18.550 25.821
drl 89.06 -10,94 20,892 23.584
boot 55.06 -44 .94 6.332 45.388
acl 97.78 =222 28,030 28.117
ac2 91.42 -8.58 25.73%7 27.128
ac3 91.78 -8.22 25.903 27.177
o] 61.07 -38,93 7.095 39.571
cal 97.45 -2.55 21.618 21.767
ca2 94.16 -5.84 20.537 21.351
ca3 94.34 ~5.66 20.574 21.338
pojac 96.84 -3.16 13.602 13.965
jacl 71.05 -28.95 8.701 30.232
jacseq 93.33 -6.67 20.541 21.59%6
jacint 84.95 -15.05 19.713 24.801

Pr(inf mle) , mean jacknife order = 0.000, 2.314
¢, ¢hl, c¢h2, c¢h3 = 0.524, 0.501 , 0.525 , 0,523
cvhl, cvh2, cvh3 = 0.273519, 0.214161, 0,21791%

Number of sampling owvcasions, t = .... 20
Estimator mean bias s.d. rmse
x 51.60 -48.40 4,932 48,648
mle 82.31 -17.69 13.525 22.269
drl 88.09 -11,91 14.888 19.063
boot 64.87 =35.13 6.357 35.699
acl 95.78 -4.22 19.940 20.381
ac2 91.72 -8.28 18.774 20.520
ac3 91.95 -8.05 18.850 20.499
o] 71.50 -28.50 7.137 29.378
cal 98.13 =1.87 15.800 15.909
ca2 96.22 ~-3.78 15.283 15.743
cal3 96.31 -3.69 15,295 15.734
pojac 107.66 7.686 14.091 16.038
jacl 81.91 -18.09 8.598 20.028
jacseqg 101,75 ¥ SR 20.643 20.717
jacint 92,08 -7.92 18.771 20.372

Pr(inf mle) , mean jacknife order = 0.000, 2.085
c, chl, ch2, ch3d = 0.613, 0.595 , 0.613 , 0,612
cvhl, cvh2, cvh3 = 0.290091, 0.246089, 0.248383

Number of sampling occasions, t = .... 25
Estimator nean bilas s.d, rmse
X 58.96 -41.04 4.881 41.329
mle 83.18 -16.82 9.752 19.444
drl 88.20 -11.80 10.808 16.005
boot 73.00 -27.00 6.080 27.681
acl 95.16 -4.84 14,980 15.743
ac2 92.39 -7.61 14.363 16.255
ac3 92.53 -7.47 14.393 16.217
[¢] 79.85 -20.15 6.764 21.254
cal 99.43 -0.57 11.784 11.797
ca2 98.23 “1.77 11.557 11.691
cal3 98.28 -1.72 11,572 11.699
pojac 113.70 13.70 13.381 19,151
jacl 80.17 -9.83 8.144 12.768
jacseq 104.69 4.69 19.744 20.293
jacint 96.24 -3.76 16.388 16.813

Pr(inf mle} , mean jacknife order = 0.000, 1.803
c, chl, ch2, ch3 = 0.689, 0.674 , 0.688 , 0.687
cvhl, cvh2, cvh3 = 0.307286, 0.274258, 0.275945

Number of sampling occasions, t = .... 30
Estimator mean bias s.d. rmse
X 64.52 ~35.48 4.726 35.7390
mle 83.87 -16.13 8.123 18.057
dril 88.51 -11.49 8,921 14.548
boot 78.76 ~21.24 5.870 22.038
acl 95.14 -4.86 12.624 13.529
ac2 93.14 ~6.8B6 12.235 14,030
ac3 93.23 -6.77 12.261 14.005
(o] 85.61 -14.39 6.535 15.805
cal 100,42 0.42 9.998 10.007
ca2 99.64 ~0.36 9.823 9.829
cald 99.69 -0.31 9.829 9.834
pojac 116.30 16.30 13.270 21,022
Jacl 95,24 -4.76 8.044 9.345
jacseq 105,53 5.53 17.556 18.407
jacint 99.03 -0.,97 13,355 13.390

Pr(inf mle) , mean jacknife order = 0.000, 1.583
¢, chl, ch2, ch3 = 0.743, 0.732 , 0.743 , 0.743
cvhl, evh2, cvh3 = 0.326660, 0.301499, 0.302791
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Table 3.5.2c
N = 100 : p ~ Beta(alpha,beta) : E(p) =

0.04 : sgrt([Var(p)l/E(p) = 0.80

Number of simulations = 1000

alpha = 1.4600 : beta = 35.0400
Number of sampling occasions, t = .... 5
Estimator mean bias s.d. rmse
x 17.87 -82.13 3.825 82.220
mle 70.25 =-29:175 42.584 51.945
drl 20.87 -9.13 55.401 56.149
boot 23.06 -76.94 5.008 77.106
acl 108.53 8.53 72.010 72.513
ac2 80.48 ~-19.52 54.294 57.696
ac3 84.47 ~15.53 64.876 66.709
o] 25.54 ~74.47 5.539 74.671
cal 93.21 -6.79 55.756 56.168
ca2 77.55 -22.45 44.917 50.214
cal3 78.56 -21,44 45,492 50.289
pojac 43,77 -56.23 10.049 57.121
jacl 30.20 -69.80 6.657 70.114
jacseq 45.65 -54.35 11.452 55.546
jacint 43.05 -56.95 10.839 57.976

Pr{inf mle) , mean jacknife order = 0.101, 3.764
¢, chl, ch2, ch3 = 0.279, 0.247 , 0.302 , 0.298
cvhl, cvh2, cvh3 = 0.389301, 0.116463, 0.133231

Number of sampling ogcasions, t = .... 10
Bgtimator mean bias s.d. rmse
x 30.63 -69.37 4.531 69.518
mie 70.16 -29.84 26.266 39.756
drl 79.98 -20.02 30.484 36.471
boot 39.36 -60.64 5.852 60.925
acl 92,11 ~7+89 41.191 41.939
ac2 82.62 ~-17.38 37.183 41.043
ac3 83.44 -16.56 37.827 41,293
o 43.76 -56.24 6.560 56,621
cal 85.54 -14.46 30.928 34.141
caz 80.41 =19, 59 28.276 34.398
ca3 80.81 «19:19 28.39% 34.277
pojac 72.13 -27.87 12.220 30.428
jacl 51.47 -48.53 7.911 49.172
jacseq 66.53 -33.47 16.585 37.356
jacint 61.97 -38.03 15.637 41.120

Pr{inf mle) , mean jacknife order = 0.000, 2.241
¢, chl, ch2, ch3 0.454, 0.416 , 0.448 , 0.446
cvhl, cvh2, cvh3 0.324446, 0.,244188, 0.252078

Number of sampling occasions, t = .... 15
Estimator mean bias s.4. rmse
x 40.38 -59.62 4.854 59.817
mle 68.18 ~31.82 14,435 34,941
drl 74.94 -25.06 16.400 29.949
boot 51.02 -48.98 6.231 49.373
acl 84.67 -15,33 23.747 28,263
ac2 79,59 -20.41 22.100 30.081
ac3 79.95 ~20.05 22,261 29.957
o] 56.37 -43,63 6.987 44.190
cal 82.66 -17.34 17,225 24,442
ca2 80.28 -19,72 16.424 25.667
ca3 80.45 -19.55 16.486 25.576
pojac 87.23 ~12.77 13.359 18,481
jacl 65.00 ~35.00 B.485 36,009
jacseq 83.38 -16.62 19.042 25.276
jacint 75.77 -24.23 17.788 30.059

Pr(inf mle) , mean jacknife order = 0,000, 2.200
¢, chl, ch2, chd = 0.577, 0.554 , 0.577 , 0.576
cvhl, cvh2, cvh3 = 0.348919, 0.295317, 0,299306

Number of sampling occasions, t = .... 20
Estimator mean bias s.d. rmse
x 48.08 -51.92 5.010 52.163
mle 68.94 -31.06 9.913 32.605
drl 74.95 -25,05 11.203 27.442
boot 59.79 -40.21 6.301 40.705
acl 84,79 =-15.21 17.384 23.101
ac2 81.64 -18.36 16.684 24,805
aci 81.85 -18.15 16.734 24.684
o 65,58 -34.42 7.005 35.127
cal 84.17 -15.83 12.168 19.969
caz2 82.89 -17.11 11.883 20.833
ca3 82.96 ~17.04 11.897 20.782
pojac 96.21 ~3:79 13.253 13.784
jacl 74.67 -25.33 8.312 26.663
jacseq 89.81 -10.19 19.565 22.057
jacint 82.05 -17.95 17.261 24.905

Pr{inf mle) , mean jacknife order = 0.000, 1.929
c, chl, ch2, ch3 = 0.662, 0.649 , 0.665 , 0.664
cvhl, cvh2, cvh3 = 0.397515, 0.362089, 0.364475

Number of sampling occasions, t = .... 25
Estimator mean bias s.d. rmse
X 54.44 -45.56 5.106 45.845
mle 71.24 ~28.76 8.341 29.942
drl 76.93 -23.07 2.398 24.907
boot 66.78 -33.22 6.308 33.811
acl 86.66 -13.34 14.850 20.038
ac2 84 .50 -15.50 14.483 21.212
ac3 84.62 -15.38 14.517 21.146
o 72.80 -27.20 6.964 28.079
cal 87.17 -12.83 10.464 16.553
caz2 86.35 -13.65 10.311 17.109
cald 86.38 -13.62 10.314 17.082
pojac 102.32 2.32 13.080 13.285
jacl 81,82 -18,18 8,383 20.020
Jjacseq 94.84 -5.16 18.529 19.233
jacint B87.83 -12.17 15.494 19.702

Pr(inf mle) , mean jacknife order = 0.000, 1.785
¢, chl, ch2, ch3 = 0,729, 0.712 , 0.724 , 0,723

¢vhl, cvh2, c¢vh3d = 0.431791, 0,406248, 0,407800

Number of sampling occagions, t = .... 30
Estimator mean bias s.d. rmse
X 59.33 -40.67 4.739 40,949
mle 12.57 -27.43 7.309 28.391
drl 77.94 -22.06 8.305 23.571
boot 71.80 -28.20 5.865 28.808
acl 87.45 -12.85 12.928 18.020
ac2 85.91 -14.09 12,649 18.934
ac3 86.00 -14.00 12.656 18.873
o 77.79 -22.21 6.535 23,151
cal 8B.78 -11.22 9.418 14.8652
caz 88.22 -11.78 9.324 15.020
cal 88.25 =11.%5 9.328 15,000
pojac 104.80 4.80 13.099 13.951
jacl 86.14 ~-13.86 8.055 16.028
jacseq 95.88 ~4.,12 18.433 18.888
jacint 90.20 -9.80 14.496 17.496

Pr(inf mle} , mean jacknife order = 0.000, 1.582
¢, chl, ch2, ch3 = 0.775, 0.765 , 0.774 , 0.773
cvhl, cvh2, cvh3 = 0.464550, 0.447307, 0,448278
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Table 3.5.2d
N = 100 : p ~ Beta(alpha,beta) : E(p) =
alpha =

0.12 : sqgrt(var(p)l/E(p) = 0.30

2.6578 : beta = 70.8237 : Number of simulations = 1000

Number of sampling occasions, &t = .... 5
Estimator mean bias s.d. rmse
x 46.24 -53.76 4.736 53.970
mle 95.65 -4.35 22.571 22,986
drl 115.87 15.87 29.166 33.205
boot 58.36 -41.64 6.024 42,070
acl 134.23 34.23 40.991 53.403
ac2 101.96 1.96 29.620 29,684
ac3 106.89 6.89 33.012 33.724
¢} 63.93 -36.07 6.642 36.672
cal 121.90 21.%0 29.583 36.810
caz2 105.64 5.64 24.374 25.018
ca3 107.95 7.85 25.065 26.295
pojac 102.05 2.05 12.207 12.378
jacl 73.89 -26.11 7.912 27.278
jacseqg 102.80 2.80 14,878 15.139
Jacint 98.35 ~1.65 14.351 14,445

Pr{inf mle} , mean jacknife order = 0.000, 3.716
¢, c¢hl, ch2, ch3 = 0,494, 0.417 , 0.499 , 0.486
cvhl, cvh2, c¢vh3 = 0,399709, 0.151250, 0.191827

Number of sampling occasions, t = .,.. 10
Estimator mean bias s.4. rmse
x 70.09 -29.91 4.451 30.235
mle 93.91 -6.09 8.598 10.536
dril 100.91 0.91 9.949 9.990
boot 85,27 -14.73 5.559 15.749
acl 106,33 6.33 13.201 14.638
ac2 98.32 -1.68 11.668 11.789
ac3 99 .44 -0.56 11.952 11,965
o] 92.26 -7.74 6.168 9,895
cal 111.95 1. 95 10.778 16.093
ca2 108,31 8.31 10.175 13.135
cal 108.81 B.81 10.247 13.515
pojac 125.75 2595 12,721 28,717
jacl 102.54 2.54 7.487 7.905
jacseq 113.91 13.91 16,183 21,337
jacint 106.66 6.66 13.236 14.815

Pr(inf mle) , mean jacknife order = 0.000, 1.708
¢, chl, ch2, ch3 = 0.735, 0,698 , 0.73% , 0.733
cvhl, cvh2, cvh3 = 0.259418, 0.163912, 0.177511

Numbér of sampling oce¢asgions, t = ..,. 15
Estimatoxr mean bias s.d. rmse
b4 82.68 -17.32 3.697 17,706
mle 95.11 -4.89 5.163 7.112
drl 99.23 -0.77 5.877 5.928
boot 96.83 -3.17 4.530 5.529
acl 102.38 2.38 7.616 7.981
ac2 99.11 ~-0.89 7.180 7.235
ac3 99.55 -0.45 7.231 7.245
(o] 103.01 3.01 5.053 5.880
cal 111.21 11.21 6.787 13.103
ca2 109.99 9.99 6.610 11.981
ca3 110.16 10.16 6.634 12.138
pojac 121.99 21,99 11.734 24.922
jacl 110.14 10.14 6.394 11.991
jacseq 111.76 11.76 9.266 14.973
jacint 110.55 10.55 7.148 12,741

Pr{inf mle) , mean jacknife order = 0.000, 1.110
¢, chi, ch2, ch3 0.854, 0.835 , 0.855 , 0,852
cvhl, cvh2, cvh3 0.245586, 0,195656, 0.202314

Number of sampling oceasions, & = .... 20
Estimator mean bias s.d, rmse
% 89.72 -10.28 3.078 10.732
mle 96.06 ~3.94 3.666 5,379
drl 98.94 -1.06 4.156 4,288
boot 101.59 1.59 3.732 4.057
acl 101.00 1.00 5.150 5.284
ac2 9%.51 -0,49 5.068 5.092
ac3 99.69 -0.31 5.070 5.080
o} 106.43 6.43 4.233 7.700
cal 109.96 9.96 5.076 11.177
caz 109.51 9.51 4.996 10.743
ca3 109.57 9.57 5.016 10,802
pojac 113.13 13,13 10.752 16.973
jacl 110.68 10.68 5.618 12.068
jacseq 110.79 10.79 6.572 12.634
jacint 110.72 10.72 6.050 12.310

Pr(inf mle) , mean jacknife order = 0.000, 1.019
¢, chi, ch2, ch3 = 0.917, 0.907 , 0.918 , 0.917
cvhl, cvh2, ¢vh3 = 0.244734, 0.218949, 0.222307

Number of sampling occasions, t = .... 25
Estimator mean bias s.d. rmse
x 93.84 -6.16 2.429 6.617
mle 87.01 =2.99 2.729 4.048
drl 99.13 -0.87 3.028 3351
boot 103.31 3.31 2,971 4,449
acl 100.55 0.55 3.662 3.703
acz 99.80 -0.20 3.609 3.614
ac3 99.91 -0.09 3.635 3.636
o} 106.92 6.92 3.442 7.730
cal 108,50 8.50 3.873 9.341
ca2 108.30 8.30 3.821 9.140
ca3 108.33 8.33 3.831 9.164
pojac 105.83 5.83 9.427 11.084
jact 108.81 8.81 4.506 9.900
jacseqg 108.80 8.80 5.814 10,546
jacint 108.88 8.88 5.234 10.311

Pr{inf mle) , mean jacknife order = 0.000, 1,023

¢, chl, ch2, ¢h3 = 0.953, 0.%47 , 0.953 , 0.952
cvhl, cvh2, cvh3 = 0.252211, 0.237973, 0.239814

Number of sampling occasions, t = ..., 30
Estimator mean bias s.d. rmse
x 96.10 -3.90 1.999 4.383
mle 97.58 -2.42 2.127 3.222
drl 99.28 -0.72 2.319 2.42¢9
boot 103.57 3.57 2.409 4.307
act 100.28 0.28 2.682 2.696
ac2 99.86 -0.14 2.660 2.664
ac3 99.90 -0.10 2.665 2.667
o} 106,24 6.24 2.781 6.835
cal 106,97 6.97 2.996 7.589
ca2 106.88 6.88 2.985 7.503
ca3 106.89 6.89 2.992 7.513
pojac 100.92 0.92 7.620 7.675
jacl 107.28 7.28 3.634 8.140
jacseg 107.21 7.3 3.716 8.114
jacint 107.25 7.25 3.647 8.119

Pr({inf mle) , mean jacknife order = 0,000, 1.006
¢, ¢hl, ch2, ch3 = 0.972, 0.968 , 0.972 , 0.971
cvhl, cvh2, cvh3 = 0.263439, 0.255651, 0.256595
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Table 3.5.2e
N = 100 : p ~ Beta{alpha,beta) : E(p) =
alpha =

0.12 : sqgrt[Var(p)l/E(p) = 0.55

2.7891 : beta = 20.4533 : Number of simulations = 1000

Number of sampling occasions, t = ,... 5
Estimator mean bias s.d. rmse
x 44 .38 -55.62 4.957 55.838
mle 82.29 ~-17.71 18.973 25.955
drl 99.86 -0.14 24.817 24.817
boot 55,59 -44 .41 6.250 44.849%
acl 117.32 17.32 36.357 40.273
ac2 90.36 -9.64 26.688 28.377
ac3 95 .64 -4.36 29,838 30.155
(e} 60.74 -39.26 6.881 3%.858
cal 105.59 5.59 25.275 25,887
ca2 92.85 -7.15 21.018 22,202
ca3 95.19 -4.81 21.700 22.227
pojac 95.02 -4.98 12.392 13.354
jacl 69.78 -30.22 8.117 31.286
jacseq 94.60 ~5.40 15.220 16.150
jacint 90.41 e Y L 14.890 17.713

Pr{inf mle) , mean jacknife order = 0.000, 3.524
c, chl, ch2, ch3 = 0.541, 0.463 , 0.547 , 0.529
cvhl, cvh2, cvh3 = 0.432891, 0.193849, 0,242735

Number of sampling occasions, t = .... 10
Estimator mean bias s.4. rmse
x 66.19 -33.81 4.667 34.132
mle 84.08 -15.92 7.696 17.687
dri 91.69 -8.31 9.041 12.281
boot 7%.97 -20.03 5.754 20.843
acl 9%.80 -0.20 13.156 13.158
ac2 92.87 =7.,13 11.977 13.940
ac3 94.02 -5.98 12.200 13.589
0 86.33 ~13.67 6.364 15.074
cal 102.00 2.00 9.926 10.125
caz 99.24 ~0.76 9.457 9.487
ca3 99.69 -0.31 9.519 9.524
pojac 116.77 16.77 12.503 20.920
jacl 95.67 -4.33 7.612 8.759
jacseq 106.02 6.02 15.629 16.749
jacint 95.74 -0.26 12.584 12.587

Pr(inf mle) , mean jacknife order = 0.000, 1.693
¢, c¢chl, ch2, ch3 = 0.764, 0.725 , 0.762 , 0.755
cvhl, cvh2, cvh3 = 0.376647, 0.292608, 0.306845

Number of sampling occasions, t = ..,.. 15
Estimator mean bias s.d. rmse
x 77.55 -22.45 4,182 22,832
mle 86.60 ~13.40 5.447 14,467
drl 91.99 -8.01 6.236 10.153
boot 80.52 -9.48 5.094 10.761
acl 98.45 ~1:.55 9.055 9.187
ac2 95.74 -4.26 8.695 3.683
ac3 96.11 -3.89 8,748 9.572
o] 96.30 -3.70 5.655 6.756
cal 103.28 3.28 7.265 7.972
caz2 102.37 2587 7.116 7.501
ca3 102.52 252 7.122 7.556
pojac 116.46 16.46 12.258 20.520
Jjacl 103.39 3.39 7.000 7.777
jacseq 106.56 6.56 12.026 13.700
jacint 104.50 4.50 9,165 10.209

Pr(inf mle) , mean jacknife order = 0.000, 1.215
¢, chl, ch2, ch3 = 0.863, 0.844 , 0.862 , 0,859
avhl, cvh2, cvh3 = 0.405232, 0.376264, 0.381227

Number of sampling occasions, t = .... 20
Estimator maan bias s.d. rmse
x 84.17 ~15.83 3.608 16.231
mle 88.76 -11.24 4.125 11.970
drl 93.09 -6.91 4,623 8.314
boot 95.54 -4.46 4.316 6.208
acl 98.39 -1.61 6.372 6.572
ac2 97.10 -2.90 6.253 6.894
ac3 97.26 -2.74 6.283 6.856
¢] 100.42 0.42 4.804 4.822
cal 103.86 3.86 5.586 6.793
ca2 103.51 351 5.529 6.549
ca3 103.56 3.56 5.545 6.591
pojac 112.34 12,34 10.963 16.510
jacl 105.64 5.64 6.082 8.292
jacseq 106.49 6,49 B.239 10.491
jacint 105,96 5.96 6.825 9.058

Pr{inf mle) , mean jacknife order = 0.000, 1.064
e, ¢hl, ch2, ch3 = 0.914, 0.905 , 0.914 , 0.913
cvhl, ecvh2, cvh3 = 0.440186, 0.425102, 0.427043

Number of sampling occasions, t = .... 25
Estimator mean bias g.d. rmse
x 88.46 ~-11.54 3.183 11.972
mle 90.72 -9.28 3.372 9.869
drl 94 .28 -5.72 3.726 6.825
boot 98.21 -1.79 3.760 4.163
acl 98.78 -1.22 5.082 5.226
ac2 98.09 -1.91 5.047 5.398
ac3 98.17 ~1.83 5.052 5.373
[o] 102.28 2.28 4.182 4.763
cal 104,12 4,12 4,611 6.182
ca2 103.94 3.94 4.601 6.057
cal 103.96 3.96 4.599 6.071
pojac 108.72 8.72 9.874 13,175
jacl 105.72 572 5.261 7.769
jacseq 106.17 6.17 7.302 9.563
jacint 105.99 5.99 6.358 8.735

Pr(inf mle} , mean jacknife order = 0,000, 1.034
¢, chl, ¢h2, ch3 = 0.944, 0.938 , 0.944 , 0.943

cvhl, cvh2, cvh3 = 0.461711, 0.454075, 0.454955

Number of sampling occasions, t = .... 30
Estimator mearn bias s.d. rmse
x 91.22 ~-8.78 2.889 9.241
mle 92.24 -7.76 2.989 8,317
drl 95,19 -4,81 3.219 5.788
boot 99.52 -0.48 3.384 3.418
acl 98.96 -1,04 4.208 4.335
ac2 98.55 -1.45 4.203 4.447
ac3 98.59 -1.41 4,198 4.429
Is] 102.85 2.85 3.750 4,708
cal 103.89 3.89 3.975 5.561
caz2 103.81 3.81 3.971 5.500
ca3 103.81 3.81 3.968 5.502
pojac 105.69 5.69 8.806 10.486
jacl 105.54 5.54 4.469 7.120
jacseq 105.89 5.89 6.711 8.926
jacint 105.890 5.80 5.830 8.222

Pr(inf mle) , mean jacknife order = 0,000, 1..026
¢, chl, ch2, ch3 = 0.961, 0.959 , 0.962 , 0.961
cvhl, cvh2, cvh3 = 0,.478040, 0.473689, 0.474141
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Table 3.5.2f
N = 100 : p ~ Beta(alpha,beta) : E(p) = 0.12 : sqrt[Var(p)]l/E(p) = 0.80
alpha = 1.2550 : beta = 9.2033 : Number of simulations = 1000
Number of sampling occasions, t = .... 5 Number of sampling occasions, t = .... 10
Estimator mean bias s.d. rmse Estimator mean bias s.4d, rmse
x 41 .41 -58.59 4.907 58.794 X 59.92 ~-40.08 4.822 40.3639
mle 65.67 -34.33 12.967 36.694 mle 71.02 -28.98 6.699 29.742
drl 79.63 -20.37 17.3179 26.647 drl 78.49 -21.51 7.916 22,920
boot 51.26 -48.74 6.155 49.132 boot 71.57 -28.43 5.834 29.026
acl 94.82 ~5.18 26.984 27.477 acl 88.64 -11.36 12.303 16.746
ac2 75.08 -24.92 20.942 32.555 acz 83.57 -16.43 11.461 20.030
ac3 80.31 ~19.69 23.870 30.941 ac3 84 .51 -15,49 11.630 19.368
Lo} 55.69 -44.31 6.754 44.822 (o] 76.95 -23.05 6.387 23.319
cal B4.86 -15.14 17.754 23,333 cal 87.65 -12.,35 8.820 15.178
ca2 76.27 -23.73 15,299 28.234 ca2 85.86 -14.14 8.508 16.506
cal 78.47 ~21.53 16.045 26.853 cal 86.18 -13.82 B8.567 16.261
pojac 84.49 -15..51 12.072 19.653 pojac 102.35 2,35 11.965 12.193
jacl 63.42 -36.58 7.977 37.440 jacl 84.80 -15.20 7.490 16.948
jacseq 82.48 -17.52 15.060 23.106 jacseqg 93.77 -6.23 15.055 16.293
jacint 78.58 -21.42 15.046 26.176 jacint 88.175 -11,25 12.396 16.737
Pr(inf mle) , mean jacknife order = 0.000, 3.191 Pr(inf mie) , mean jacknife order = 0.000, 1.664
c, c¢hl, ch2, ch3 = 0.602, 0.534 , 0.620 , 0.595 ¢, chl, ch2, ¢ch3 = 0.794, 0.766 , 0.797 , 0.791
cvhl, evh2, cvh3 = 0,477044, 0,263912, 0.324121 cvhl, cvh2, cvh3 = 0.494638, 0.437884, 0.449143
Number of sampling occasions, t = ,.., 15 Number of sampling occasions, t = ... 20
Estimator mean bias s.d. rmse Estimator mean bias s.d. rmse
X 70.36 -29.64 4.569 29.930 x 76.16 -23.84 4.372 24.238
mle 75.77 ~24.23 5.344 24 .814 mle 78.81 =21.19 4.698 21.702
drl 81.77 -18.23 6.144 19.241 drl 83.86 -16.14 5.265 16.979
boot 81.59 ~18.41 5.463 19.199 boot 86.43 -13.57 5.137 14,507
acl 91.26 ~8.74 9,449 12,873 acl 92.77 ~7.23 7917 10.724
ac2 89.21 -10.,79 9.128 14.136 ac2 91.73 ~-8.27 7.798 11.369
ac3 89.51 -10.49 9.173 13.938 ac3 91.84 -8.16 7.806 11.289
(¢} 86.70 -13.30 6.005 14.588 (o] 91.03 ~8.,97 5.624 10,589
cal 91.97 -8.03 7.198 10.784 cal 93.99 ~6.01 6.271 B.686
caz2 91.36 ~8.64 7.102 11.182 ca2 93.72 -6.28 6.231 8.844
ca3l 91.46 -8.54 7.116 11.116 ca3 93.75 -6.25 6.229 8.824
pojac 106.26 6.26 11.855 13.406 pojac 105.64 5.64 11.327 12,653
jacl 93.29 -6.73 7119 9.784 jacl 96.50 =3:50 6.860 7.702
jacseq 97.81 -2.19 13.200 13.380 jacseq 99.14 -0.886 11.773 11.805
jacint 95.25 ~4.75 10.512 11.534 jacint 97.68 =232 9.217 9.504
Pr(inf mle) , mean jacknife order = 0.000, 1.321 Pr(inf mle} , mean jacknife order = 0.000, 1,191
c, chl, ch2, ch3 = 0.877, 0.862 , 0.875 , 0.873 ¢, chl, ch2, ch3 = 0.%17, 0.90% , 0.916 , 0,916
cvhl, cvh2, ¢vh3 = 0,552546, 0.532779, 0.535884 cvhl, cvh2, cvh3 = 0.596817, 0.587209, 0.588433
Number of sampling occcasions, t = ,.,. 25 Number of sampling occasions, t = .., 30
Estimator mean bias s.d. rmse Estimator mean bias s.d. rmse
x B80.54 ~19.46 4.055 19.879 x 83.61 -16.39 3.739 16.815
mle 81.67 ~-18.33 4.202 18.802 nle 83,94 -16.06 3.817 16.512
drl 85.84 -14.16 4.568 14.879 drl 87.55 -12.45 4.067 13.102
boot 89.69 -10.31 4.686 11.325 boot 91.86 -8.14 4.289 9.198
acl 93.82 -6.18 6,739 9.143 acl 94,88 =5:12 5.821 7.755
ac2 93.27 -6.73 6,661 9,471 ac2 94 .54 -5.46 5.767 7.940
ac3 93.33 ~6.67 6.657 9.426 ac3 94.58 -5.42 5.774 7.922
o] 93.69 -6.31 5.149 8.142 o] 95.42 ~4.58 4.643 6.523
cal 95.43 -4.57 5.510 7.159 cal 96.53 -3.47 4.900 6.004
ca2 95.28 ~4.72 5.485 7.234 caz2 96.46 -3.54 4.893 6.038
ca3 95.30 -4.70 5.496 7.230 ca3 96.47 =353 4.892 6.035
pojac 104.24 4.24 10.192 11.037 pojac 103.30 3.30 9.243 9.812
jacl 97.84 -2.16 6.096 6.467 jacl 98.99 -1.01 5.291 5.386
jacseq 99,20 -0,80 9.596 9.629 jacseq 99.98 -0.02 8.044 8.044
jacint 98.53 -1.47 8,083 8.216 jacint 99.49 -0.51 6.495 6.515
Pr(inf mle) , mean jacknife order = 0.000, 1.087 Pr(inf mle) , mean jacknife order = 0.000, 1.072
c, chl, ch2, ch3 = 0.%42, 0,939 , 0.943 , 0,942 ¢, chl, ch2, ch3 = 0.957, 0.955 , 0.958 , 0.958
cvhl, cvh2, c¢vh3 = 0.622433, 0.617217, 0.617767 evhl, cvh2, cvh3 = 0.646150, 0.642928, 0.643218
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Table 3.5.2g

N = 100 : p ~ Beta(alpha,beta) : E(p) 0.20 : sqgrt[Var(p)l/E(p) = 0.30
alpha = 8.6889 : beta = 34.7556 : Number of simulations = 1000
Number of sampling occasions, t = .., 5 Number of sampling occasions, t = .... 10
Estimator mean bias s.d. rmse Estimator mean bias s.d. rmse
x 65.25 -34.,75% 4.852 35.091 X 86.65 -13.35 3.423 13.786
nle 93.53 -6.47 11.050 12.804 mle 95.49 -4.51 4.283 6.219
dri 108.38 8.38 14.514 16.762 dril 100.25 0.25 4,945 4.951
boot 79.51 -20.49 6.067 21.367 boot 99.46 -0.54 4.084 4,120
acl 119.75 19.75 21.104 28.905 acl 103.08 3.08 6,282 6.997
ac?2 96.08 -3.92 15.462 15.953 ac2 98.64 -1.36 5.825 5.981
ac3 102.12 2.12 17.7%0 17.916 ac3 99.72 -0.28 5.923 5.930
0 85.83 -14.17 6.651 15.649 0 104.81 4.81 4.547 6.621
cal 116.16 16.16 15.129 22.134 cal 110.86 10.86 5.752 12,294
ca2 105.25 5.25 12.979 13.99% ca2 109.31 9.31 5.541 10.838
cal 108.12 8.12 13.5%4 15.834 ca3 109.72 9.72 5.591 11.212
pojac 123.05 23.05 12,717 26.323 pojac 118.82 18.82 10.334 21.467
jacl 96.21 -3.79 7.919 8.780 jacl 110.75 10.75 5.601 12.121
jacseq 116.11 16.11 16.370 22.965 jacseq 1i11.33 11.33 6.853 13.242
jacint 110,60 10.60 16.933 19.979 jacint 110.89 10.89 5.906 12.3290
Pr{inf mle) , mean jacknife order = 0,000, 2.745 Pr({inf mle) , mean jacknife order = 0.000, 1.046
¢, chl, ch2, ch3 = 0,687, 0.609 , 0.707 , 0.678 c, chl, ch2, ch3 = 0.891, 0.865 , 0.895 , 0.888
evhl, cvh2, cvh3 = 0.376778, 0.1308892, 0.195731 cvhl, cvh2, cvh3 = 0,265636, 0,190820, 0.209235
Number of sampling occasions, t = ..,. 15 Number of sampling occasions, t = .... 20
Estimator mean bias s5.4. rmse Estimator mean bias s.d. mse
x 94.31 -5.69 2.306 6.141 x 97.34 -2.66 1.581 3.093
mle 96.92 -3.08 2.506 3.968 mle 97.88 2,12 1.674 2.698
drl 99.48 -0.52 2.803 2.852 drl 99.45 -0.55 1.809 1.889
boot 103.24 3.24 2.778 4.268 boot 103.15 3.15 1.954 3.708
acl 100.91 0.91 3.371 3.492 acl 100.21 0.21 2.085 2.095
ac2 99.63 -0.37 3.307 3.327 ac2 99.78 -0.22 2.075 2.087
acl 99.92 -0.08 3.330 3.331 ac3 99.87 -0.13 2.075 2.079%9
0 106.61 6.61 3.169 7.326 o]} 105.12 5.12 2.274 5.599
cal 108.07 8.07 3.537 8.809 cal 105.52 5.52 2.415 6.029
caz2 107.78 7.78 3.518 8.536 ca2 105.45 5.45 2.403 5.953
ca3 107.84 7.84 3.515 8.596 cal 105,45 5.45 2.410 5.963
pojac 105.60 5.60 8.578 10.244 pojac 98.65 -1.35 6.681 6.815
jacl 108.64 8.64 4,335 9.666 jacl 105.54 5.54 .2.970 6.287
jacseq 108.36 8.36 4.873 9.678 jacseq 105.54 5.54 2.970 6.287
jacint 108,58 8.58 4.397 9.645 jacint 105,54 5.54 2.970 6.287
Pr{inf mle} , mean jacknife order = 0.000, 1.028 Pr{inf mle) , mean jacknife order = 0.000, 1.000
c, chil, ch2, ch3 = 0,958, 0.948 , 0.959 , 0.956 ¢, chl, ch2, ch3 = 0.982, 0.979 , 0.983 , 0.982
cvhl, cvh2, cvh3d = 0.266271, 0.241715, 0.247371 cvhl, cvh2, cvh3 = 0.272016, 0.263308, 0.265115
Number of sampling occasions, t = .... 25 Number of sampling occasions, t = .... 30
Estimator mean biag s.d. rmse Estimator mean bias s.d. rmse
x 98.76 -1.24 1.120 1.670 x 99.35 -0.65 0.846 1,070
mle 98.76 -1.24 1.120 1.670 mle 99.35 -0.65 0.846 1.070
drl 99.73 -0.27 1.222 1.251 drl 99.77 -0.23 0.998 1.025
boot 102.52 2.52 1.410 2.889 boot 101.81 1.81 1.137 2.141
acl 100.14 0.14 1392 1.399 acl 100.07 0.07 1.065 1.068
ac2 99.98 -0.02 1,381 1.381 ac2 99.97 -0.03 1,075 1.076
ac3 100.01 0.01 1.392 1.392 ac3 99:98 -0.02 1.078 1.078
(o} 103.87 3.67 1.672 4.037 0 102.52 2.52 1.341 2.850
cal 103.80 3.80 1.731 4,173 cal 102,55 2.55 1.364 2.894
caz 103,77 3.77 1.732 4,153 ca2 102.55 2:55 1.363 2.889
ca3 103.78 3.78 1.732 4,159 ca3l 102.55 2.55 1.364 2.890
pojac 96.72 ~3.:28 5.048 6.022 pojac 96.61 ~-3:39 3.984 5.230
jacl 103.48 3.48 2.354 4,203 jacl 102.13 2.13 1.845 2.821
jacseq 103,48 3.48 2.354 4.203 jacseqg 102.13 2:313 1.845 2.821
jacint 103.48 3.48 2.354 4.203 jacint 102.13 2.13 1.845 2.821
Pr{inf mle) , mean jacknife oxder = 0.000, 1.000 Pr(inf mle) , mean jacknife oxder = 0.000, 1.000
¢, chl, ch2, ch3 = 0.992, 0.990 , 0.992 , 0.992 c, chl, ch2, ch3 = 0.996, 0.995 , 0.996 , 0.996
cvhl, cvh2, cvh3 = 0.282084, 0.278758, 0.279393 cvhl, cvh2, cvh3d = 0.291759, 0.290382, ©.290617
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Table 3.5.2h
N = 100 : p ~ Beta{alpha,beta) : E(p) =

0.20 : sgrt[Var(p)]/E{p) = 0.55

alpha = 2.4446 : beta = 9.7785 Number of simulations = 1000
Number of sampling occasions, t = .... § Number of sampling occasions, t = .... 10
Estimator mean bias s.d. rmse Estimator mean bias s.d. rmse
x 61.39 -38.61 4.934 38.928 X 80.74 -19.26 3.884 19.649
mle 81.45 -18.55 8.772 20.518 mle 86.73 -13.27 4,586 14.040
drl 94.76 -5.24 11.527 12.664 darl 92.76 -7.24 5.351 9.002
boot 74.08 ~25,92 5.962 26.595 boot 92.47 -7.53 4.638 8.839
acl 106.79 6.79 17.836 19.084 acl 98.88 -1,12 7.565 7.647
ac2 87.47 -12.53 13,919 18.727 ac2 95.26 -4.74 7.191 8.615
ac3 93.94 -6.06 16.092 17.194 ac3 96.18 -3.82 7.287 8.228
[o] 79.66 -20.34 6.479 21.348 0 97.52 -2.48 5.104 5.675
cal 101.91 1.91 12,167 12,316 cal 102.75 2.75 6.250 6.826
caz2 93.90 -6.10 10.643 12.268 ca2 101.64 1.64 6.106 6.321
ca3 96.61 -3.39 11.195 11.698 ca3 101..924 1.94 6.124 6.424
pojac 111.72 11.72 11.786 16.621 pojac 114.11 14.11 11.217 18.027
jacl 88,71 -13.29 7.546 13.576 jacl 103.70 3.70 6.235 7.252
jacseq 105.02 5,02 14.976 15.796 jacseq 105.69 5,69 9.650 11.200
jacint 99.90 ~0.10 15.139 15.139 jacint 104.41 4.41 7.631 8.812

Px(inf mle) , mean jacknife order = 0.000, 2.581
¢, chl, ch2, ch3 = 0.724, 0.653 , 0.746 , 0.711
cvhl, cvh2, cvh3 = 0.438492, 0.218674, 0.2396805

Pr(inf mle) , mean jacknife order = 0.000, 1.160
¢, chl, ch2, ch3 = 0,894, 0.871 , 0.8%6 , 0.889%
cvhl, cvh2, cvh3 = 0,434239, 0.391012, 0.403107

Number of sampling occasions, t = .... 15
Estimator mean bias s.d. rmse
x 88.65 -11.35 3.202 11.794
mle 90.36 -9.64 3.399 10.218
drl 94.21 -5.79 3.770 6.906
boot 97.76 -2.24 3,759 4,37
acl 98.48 -1.52 4,905 5.134
ac2 97.33 -2.67 4.813 5.506
ac3 97.59 -2.41 4,840 5.406
o 101.50 1.50 4,171 4.432
cal 103.17 3.17 4.561 5.555
ca2 102.92 2.92 4,513 5.374
ca3l 102.96 2.96 4.525 5.409
pojac 107.61 7.61 9.529 12,1291
jacl 105.04 5.04 5.202 7.241
jacseq 105.55 5.55 6.930 8.879
jacint 105.33 5.33 6.100 8.101

Pr(inf mle) , mean jacknife order = 0.000, 1,043
¢, chl, ch2, ch3 = 0.949, 0.941 , 0.950 , 0.948
cvhl, cvh2, cvh3 = 0.460934, 0.448011, 0,450664

Number of sampling occasions, t = .... 20
Estimator mean bias s.d. rmse
x 92.68 ~7.32 2.534 7.745
mle 92.88 -7.12 2.611 7.580
drl 95.76 -4.24 2,783 5.075
boot 99.75 -0.25 2.934 2.944
acl 99.05 -0.95 3.569 3,694
ac2 98.62 -1.38 3.512 3.7714
ac3 98.69 -1.31 3,520 3.755
Q 102.54 2.54 3.322 4.181
cal 103.24 3.24 3.500 4,769
ca2 103.16 3.16 3.493 4.708
cal 103.17 3.17 3.497 4.720
pojac 104.34 4.34 8.150 9.233
jacl 104.56 4.56 4.093 6,125
jacseq 104.72 4.72 4.762 6.704
jacint 104.64 4.64 4.350 6,361

Pr(inf mle) , mean jacknife order = 0.000, 1.014
¢, cht, ch2, ch3 0.972, 0.968 , 0.972 , 0.97)
cvhl, cvh2, c¢vh3 0.488531, 0.483369, 0.484236

o

Number of sampling occasions, Lt = .... 25
Estimator mean bias s.d. rmse
x 94.95 -5.05 2.210 5.510
mle 94.95 ~5.05 2.208 5.508
drl 96.77 -3.23 2.368 4.002
boot 100.42 0.42 2.575 2.609
acl 99.28 -0.72 2.993 3.078
ac2 99.05 -0.95 2.975 3.123
ac3 99.08 -0.92 2.981 3.120
o 102.54 2.54 2,890 3.849
cal 102.86 2.86 2,993 4.138
ca2 102.82 2.82 2,983 4.108
cal 102.83 2.83 2.982 4.111
pojac 102.03 2.03 7.387 7.660
jacl 104.05 4.05 3.633 5.437
jacseq 104.35 4.35 5.123 6.722
jacint 104.24 4.24 4.455 6.149

Pr(inf mle) , mean jacknife oxder = 0.000, 1.023
¢, chl, ch2, ch3 = 0.983, 0.981 , 0.983 , 0.983
evhl, evh2, cvh3 = 0.500606, 0.498106, 0.498458

Number of sampling occasions, t = .... 30
Estimator mean bias s.d. rmse
x 96.24 -3.76 1.905 4.212
mle 96.24 -3.76 1.905 4.212
drl 97,37 ~2.63 2.004 3.306
boot 100.51 0.51 2.244 2.301
aclt 99.24 -0.76 2.467 2.580
ac2 99.14 ~0.86 2.457 2.601
ac3 99.16 -0.84 2.459 2.600
0 102.10 2,10 2.497 3.261
cal 102,25 2.25 2.585 3.430
ca2 102.24 2.24 2.581 3.420
ca3l 102.24 2.24 2.581 3.420
pojac 100.39 0.39 6.248 6.261
jaci 103.06 3.06 3.286 4.491
jacseq 103,31 3.31 4.678 5.733
jacint 103.24 3.24 4.191 5.298

Pr{inf mle) , mean jacknife order = 0.000, 1.021
¢, chl, ch2, ch3 = 0.989%, 0.988 , 0.990 , 0.989
cvhl, cvh2, cvh3 = 0.509534, 0,.508207, 0.508373
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Table 3.5.21

N = 100 : p ~ Beta(alpha,beta) : E(p) = 0.20 : sqrt[Var(p)]1/E{p) = 0.80
alpha = 1.0500 : beta = 4.2000 : Number of simulations = 1000
Number of sampling occasions, t = .... 5 Number of sampling occasions, t = .... 10
Estimator mean bias s.d. rmse Estimator mean bias s.d. rmse
% 55.83 -44.17 5.006 44.453 x 72.25 -27,75 4.456 28.108
mle 67.41 ~-32.59 7.423 33.426 mle 75,34 -24.,66 4.804 25.119
drl 78.41 -21.59 $.559 23.616 drl B1.48 -18,52 5.508 19.320
boot 66.33 -33.67 6.077 34.215 boot 82.22 -17.78 5.195 18.51¢%
acl 89.48 -10.52 14.635 18.022 acl 89.88 -10.12 .987 12,892
ac2 76.00 -24.00 12.122 26,891 ac2 87.37 ~12.63 7.693 14.792
ac3 82.13 -17.87 13.736 22,540 ac3 88.03 =11.97 7.764 14.265
(o} 70.88 -29.12 6.599 29,856 (o} 86.61 -13.39 5.632 14.529
cal 84.63 ~15,3%7 10.255 18.479 cal 90.38 -9.62 6.391 11.548
caz 79.64 -20.36 9.222 22.356 ca2 89.69 -10.31 6.290 12,078
ca3 81.90 ~-18.10 9.682 20.526 cal 89.89 -106,11 6.319 11.923
pojac 96.13 -3.87 11,716 12.340 pojac 103.10 3.10 10.748 11.187
jacl 78.16 -21.84 7.655 23.147 jacl 92.35 -7.65 6,613 10.109
jacseq 89.73 -10.27 14.295 17.598 jacseqg 95.52 ~-4.48 11.066 11.940
jacint 85.59 ~14.41 13.700 19.879 jacint 93.80 -6.20 8.925 10.866
Pr{inf mle) , mean jacknife order = 0.000, 2.301 Pr{inf mle) , mean jacknife order = 0,000, 1.266
¢, chl, ¢h2, ¢h3 = 0.772, 0.717 , 0.798 , 0.759 ¢, chl, ch2, ch3 = 0.904, 0.887 , 0.906 , 0.901
cvhl, cvh2, cvh3 = 0,498770, 0.332861, 0.412624 cvhl, cvh2, cvh3 = 0.558968, 0.533515, 0.540548
Number of sampling occasions, t = ..,. 15 Number of sampling occasions, & = .... 20
Estimator mean bias s.d. rmse Bstimator mean bias s.d. rnse
x 79.64 ~20.36 4,133 20.778 b4 84.00 -16.00 3.653 16.410
mle 80.28 -19.72 4.235 20.173 mle 84,02 ~15.98 3.653 16.389
drl 84.65 -15.35 4.593 16.020 dri 87.22 -12.,78 3.890 13.354
boot 88.10 -11.90 4.698 12.794 boot 91.30 -8.70 4.117 9.623
acl 91.98 -8.02 6.373 10.240 acl 93.77 ~6.23 5.302 8.180
ac2 91.12 -8.88 6.274 10.873 ac2 93.35 ~6.65 5,263 B8.482
acl 91.28 -8.72 6.308 10.762 ac3 93.40 -6.60 5,259 8.441
(o] 91.76 -8.24 5.085 9.682 0 94 .42 ~5.58 4.458 7.138
cal 93.33 -6.67 5.408 8,587 cal 95.26 -4.74 4.640 6.634
caz2 93.11 -6.89 5.390 8.745 ca2 95.18 -4.82 4.624 6.678
ca3 93.16 -6.84 5.400 8.716 cal 95.19 -4.81 4.625 6.670
pojac 102.39 2,39 9.853 10.140 pojac 101.88 1.88 8.731 8.230
jacl 96.04 -3.96 6.039 7.219 jacl 97.56 -2.44 5.213 5.756
jacseq 97.47 -2.53 8.921 9.274 jacseqg 98.56 -1.44 7.901 8.031
jacint 96.77 ~3.23 7.498 8.165 jaeint 98.20 -1.80 6.925 7.155
Pr{inf mle) , mean jacknife order = 0.000, 1.117 Pr(inf mle) , mean jacknife order = 0.000, 1.080
¢, chl, ch2, ¢h3 = 0.947, 0,941 , 0,948 , 0.947 c, chl, ch2, ch3 = 0.966, 0.963 , 0.967 , 0.966
cvhl, cvh2, cvh3 = 0.612518, 0,604065, 0.605672 ¢vhl, cvh2, cvh3 = 0,645492, 0.641543, 0.642095
Number of sampling occasions, t = .... 25 Number of sampling occasions, ¢t = .... 30
Estimator mean bias s.d. mse Estimator mean bias s.d. rmse
x 86.83 -13.17 3.325 13.588 x 88.92 -11.08 3.281 11.554
mle 86.83 -13.17 3.325 13.588 mle 88.92 -11.08 3.281 11.554
drl 89.04 ~10.96 3.487 11.505 dri 90.54 -9.46 3.435 10,061
boot 93.12 -6.88 3.752 7.837 boot 94.52 -5.48 3.683 6.605
acl 94,89 5.3 4.750 6.976 acl 95.84 -4.16 4.538 6.157
ac2 94.66 ~5.34 4,732 7.137 ac2 95.72 -4.28 4.513 6.217
ac3 94.69 =5531 4.729 7.112 ac3 95,73 ~4.27 4.516 6.212
o} 95.83 -4.17 4.080 5.836 o} 96.87 -3.13 4.008 5.083
cal 96.30 =330 4.181 5.581 cal 97.16 -2.84 4.088 4.978
ca2 96.27 ~3.73 4.179 5.602 ca2 97.14 -2.86 4,085 4.987
ca3 96.27 -3.73 4.178 5.599 cal 97.14 -2.86 4.082 4.9383
pojac 101.61 1.61 8.431 8.583 pojac 101.22 1.22 8,184 8.274
jacl 98.59 -1.41 4.676 4.885 jacl 99.42 -0.58 4.741 4.776
jacseq 99.80 -0.20 8.459 8.461 jacseqg 100.31 0.31 7.469 7.476
jacint 99.30 -0.70 6.758 6.794 jacint 99.94 ~-0.06 6.192 6.193
Pr(inf mle) , mean jacknife order = 0.000, 1.092 Pr(inf mle) , mean jacknife order = 0,000, 1.073
o, <hl, oh2, ¢h3 = 0.977, 0.925 , 0.977 , 0977 ¢, chl, ch2, ch3 = 0.983, 0.982 , 0.983 , 0.983
cvhl, cvh2, cvh3 = 0,668869, 0.666814, 0.667053 cvhl, cvh2, cvh3 = 0.688996, 0.687744, 0.687866
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Table 3.5.3a

N = 50 : p ~ Beta{alpha,beta) : ep ~ U{ 0.04, 0.20 ) : cv ~ U( 0.30, 0.80 )

Number of simulations = 1000

Number of sampling occasgions, t = .,,, 5§
Estimator nean bias g.d. rmse
x 21.55 -28.45 7.080 29.314
mle 42.18 -7.82 18.68B4 20.254
drl 52.62 2.62 24.766 24.904
boot 26.80 ~-23.20 8.453 24,694
acl 61.34 11.34 32.831 34,735
ac2 47.80 -2.20 24.259 24.359
ac3 50.46 0.46 27.527 27.531
(o] 29.21 -20.79 9.026 22.664
cal 55.34 5.34 24.970 25.534
ca2 48.25 ~1.75 20.175 20.251
ca3l 49.25 -0.75 20.491 20.505
pojac 44 .91 -5.09 12.793 13.767
jacl 33.39 -16.61 10.018 19.399
jacseq 43.19 -6.81 13.212 14.863
jacint 40.83 -9.17 12,680 15.648

Pr(inf mle}) , mean jacknife order = 0.049, 2.866
¢, chl, ch2, ch3 = 0.527, 0.457 , 0.536 , 0.519
cvhl, cvh2, cvh3 = 0.387640, 0.184828, 0.224229

Number of sampling occasions, t = .... 10
Estimator mean bias s.d. rmse
x 31.20 -18.80 7.846 20.372
mle 41.98 -8.02 10.290 13.047
drl 46.34 -3.66 11.678 12.239
boot 37.48 -12.52 8.538 15.150
acl 50.72 0.72 14.664 14.681
ac2 47.21 =279 13.169% 13.462
ac3 47.72 -2.28 13.330 13.524
o 40.39 -9.61 8.825 13.050
cal 51.05 1.05 12.146 12.192
caz2 49.40 -0.60 11.172 11.188
cal 49,62 -0.38 11.186 11.192
poijac 54.40 4.40 10.647 11.520
jacl 44.72 -5.28 9.045 10.475
jacseq 49.00 -1.00 10.997 11.043
jacint 46.98 ~3.02 10.076 10.518

Pr{inf mle) , mean jacknife order = 0.000, 1.474
¢, chl, ch2, ch3 = 0.721, 0.692 , 0.725 , 0.720
cvhl, cvh2, cvh3 = 0.348524, 0.284018, 0.295033

Number of sampling occasions, t = .... 15
Estimator mean bias s.d. rmse
= 36.47 ~13.53 7.308 15.380
mle 42 .84 -7.16 6.583 9.727
dril 45.90 -4.10 7.190 8.276
boot 42.51 ~7.49 7.259 10.428
acl 49.33 -0.67 9.472 9,495
ac2 47.78 =2,22 8.883 9.155
ac3 47.95 ~2.05 8.941 9.174
0 45,26 -4.74 7.188 8,610
cal 51.06 1.06 7.746 7.818
ca2 50.42 0.42 7.523 7.534
ca3 5¢.48 0.48 75531 7.546
pojac 55.68 5.68 8.947 10.600
jacl 48.73 =127 7.043 7.156
jadseq 51,61 1.61 9.700 9.833
jacint 50.23 0.23 8.650 8.653

Pr(inf mle) , mean jacknife orxrder = 0.000, 1.276
¢, chl, ¢h2, ch3 = 0.819, 0.801 , 0.818 , 0.816
cvhl, cvh2, cvh3 = 0.369175, 0.336881, 0.341120

Number of sampling occasions, t = .... 20
Estimator mean bias s.d. rmse
x 40,12 -9.88 6.321 11.729
mle 43,88 -6.12 4,750 7.747
drl 46.28 =3.72 4.891 6.145
boot 45.62 -4.38 5,788 7.259
acl 49,10 -0.90 6.315 6.379
ac2 48.30 -1.,70 6.087 6.321
ac3 48,36 -1.64 6.107 6,323
o] 48.08 -1.92 5.568 5.891
cal 51,37 1.37 5.435 5.605
ca2 51.09 1,09 5.331 5,440
ca3 51.11 1.11 5.351 5,466
pojac 55.25 5.25 8.130 9.673
jacli 50.85 0.85 5.411 5.477
jacseq 52.34 2.34 7.350 7.713
jacint 51.55 1.55 6.363 6,549

Pr({inf mle) , mean jacknife ordex = 0.000, 1,139
¢, chl, ch2, ch3 0.879, 0.868 , 0.878 , 0.877
cvhl, ¢vh2, cvh3 0.398419, 0.379708, 0.381657

Numbexr of sampling occasions, t = ,... 25
Estimator mean bias s.d. rmse
x 42.28 -7.72 5.667 9.578
nle 44.73 -5.27 4.403 6.865
drl 46.67 -3.33 4.350 5.476
boot 47.18 -2.82 4.899 5.651
acl 49.08 -0.92 5.239 5.319
ac2 48.59 -1.41 5.127 5..319
ac3 48.63 -1.37 5.127 5.308
l¢] 49.27 -0.73 4.656 4.713
cal 51.41 1.41 4.728 4.933
ca2 51.26 1.26 4.665 4.832
ca3 51.27 1.27 4.668 4.838
pojac 54.06 4,06 7.636 8.646
jacl 51.54 1.54 4.597 4.848
jacseq 52,62 2,62 6,753 7.244
jacint 52.08 2,08 5.777 6.141

Pr{inf mle) , mean jacknife order = 0.000, 1.095
¢, chl, ch2, ch3 0.913, 0.906 , 0.912 , 0.912
cvhl, cvh2, cvh3 0.414950, 0.404248, 0.405307

Number of sampling occasions, t = .... 30
Estimator mean bias s.d. rmse
3 43,84 -6.16 4.813 7.814
nle 45.34 -4.66 3.746 5.976
drl 46.98 =3.02 3.540 4.653
boot 48.16 -1.84 3.966 4.374
acl 49.16 -0.84 4.173 4.256
ac2 48.87 ~1.13 4.111 4.263
ac3 48.89 -1.11 4.111 4.257
o} 49,95 -0.05 3.781 3.781
cal 51.30 1.30 3.846 4.061
ca2 51.21 1.21 3.825 4.011
ca3 51.22 1.22 3.827 4.016
pojac 53.11 31 7.296 7.931
jacl 51.83 1.83 3.932 4.338
jacseq 52.41 2.41 5.454 5.961
jacint 52,10 2.10 4.556 5.016

Pr(inf mle) , mean jacknife order = 0.000, 1.053
¢, chl, ch2, ch3 0.938, 0.933 , 0.937 , 0.937
cvhl, cvh2, cvh3 0,441960, 0.434874, 0.435427
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Table 3.5.3b

N = 100 : p ~ Beta(alpha,beta) : ep ~ U( 0.04, 0.20 ) : cv ~ U{ 0.30, 0.80 )

Number of simulations = 1000

Number of sampling occasions, t = .... 5
Estimator mean biasg s.d. rmge
x 42.64 -57.36 13.551 58.937
mle 84.19 -15.81 31.991 35.687
dri 102.71 277L 41.912 41.999
boot 531 -46.89 16.039%9 49,555
acl 120.56 20.56 57.043 60.636
ac2 93.03 -6.97 41.537 42.117
ac3 9B.48 =152 47.533 47.557
[¢] 57.87 -42.13 17.125 45.477
cal 108.09 8.09 42.122 42.892
ca2 94.58 -5.42 34.184 34.611
ca3 96.83 =3.17 34.948 35.092
pojac 89.:31 -10.69 23.287 25.623
jacl 66.22 -33.78 18.789 38.650
jacseq 88.35 -11.65 22.917 25.709
jacint 84.28 =152 22.223 27.221

Pri{inf mle}) , mean jacknife orxder = 0.010, 3.405
¢, chl, ch2, ch3 = 0.520, 0.450 , 0.529 , 0.511
cvhl, cvh2, cvh3 = 0.422743, 0.185882, 0.231433

Number of sampling occasions, t = .... 10
Estimator mean bias 5.4d. rnse
x 62,74 =37.28 14.389 39.944
mle 84,12 -15.88 14.334 21.393
drl 91.98 -8.02 15.993 17.891
boot 75.47 -24,53 15.397 28.962
acl 100.46 0.46 20.090 20.095
ac2 93.33 -6.67 17.749 18.963
acl 94.38 =562 18.046 18.900
(¢} 81.40 -18.60 15.712 24.351
cal 101.51 1.5% 16.659 16.728
ca2 98.37 ~1.63 15.481 15.567
ca3i 98.78 =3.22 15.536 15.584
pojac 110.17 10.17 16.278 19.195
jacl 90.17 -9.83 15.662 18.489
jacseqg 100.97 0.97 17.986 18.012
jacint 95.86 -4.14 16.729 17.234

Pr{(inf mle}) , mean jacknife oxder = 0.001, 1.725
¢, ¢hl, ch2, ch3 = 0.726, 0.692 , 0.726 , 0.720
cvhl, cvh2, evh3 = 0,373758, 0.297725, 0.309859

Number of sampling occasiocns, t = .,... 15

Estimator mean bias s.d. rmse
X 73.87 -26.13 13.730 29,517
mle 86.04 -13.96 9.899 17.110
drl 91.21 -8.79 10.298 13.542
boot. 85.89 -14.11 13.252 19.357
acl 97.32 ~2.68 12.416 12.701
ac2 94.29 =591 11.756 13.067
ac3 94.66 -5.34 11.830 12.981
o] 91.30 -8.70 12.887 15.551
cal 101.51 1,51 11.098 11.200
ca2 100.35 0,35 10.827 10,833
ca3 100.47 0.47 10,855 10.865
pojac 11i.10 11,10 12.965 17.068
jacl 98.186 -1.84 11.886 12.028
jacseq 104.14 4.14 14,143 14.738
jacint 101.00 1,00 12.961 13.000

Pri{inf mle) , mean jacknife order = 0.000, 1.373
¢, chl, ch2, ch3 = 0.829, 0.812 , 0.829 , 0.827
cvhl, cvh2, cvh3 = 0,391570, 0.355868, 0.360293

Number of sampling oc¢casions, t = .... 20
Egtimator mean bias s.d. rmse
x 80.08 =19.92 11,881 23.193
nle 87.73 -12,2% 8.498 14.923
drl 91.89 -8.11 8,403 11.682
boot 91.06 -8.%4 10.555 13.835
acl 97.34 -2.66 9.659 10.018
ac2 95.73 -4.27 9.362 10.289
ac3 95.90 -4.10 9.377 10.234
o 95,87 -4.13 9,952 10.775
cal 102.02 2.02 9.060 9,283
caz 101.46 1.46 8.952 5.07¢0
ca3 101.51 .51 8.960 9.087
pojac 110.04 10.04 13.029 16.451
jacl 101.39 1.38 9.131 9.236
jacseq 105,22 5.22 12.673 13.705
jacint 102.97 2.97 10.942 11.338

Pr(inf mle} , mean jacknife order = 0.000, 1.234
¢, ¢hl, ch2, ch3 = 0.880, 0.871 , 0.881 , 0.880
cvhl, cvh2, cvh3 = 0,417228, 0.337975, 0.400036

Number of sampling occasions, t = .... 25
Estimator mean bias s.d. rmse
x 84.86 ~15.14 10.141 18.218
mle 89.86 -10.14 7.009 12.326
drl 93.35 -6.65 6.656 9.409
boot 94.76 -5.24 8.358 9.866
acl 98.03 -1.97 7.071 7.341
ac2 97.10 -2.90 7.008 7.585
ac3 97.19 -2.81 7.024 7.566
(o] 99.02 -0.98 7.694 7,756
cal 102.94 2.94 7.119 7.701
ca2 102.63 2.63 7.048 7.522
ca3l 102.66 2.66 7.060 7.545
pojac 109.08 9.08 12.037 15.077
jacl 103.43 343 7.195 7.971
jacseq 105.55 B5:95 10.255 11.658
jacint 104.23 4.23 8.820 9.781

Pr(inf mle) , mean jacknife order = 0.000, 1.137
¢, c¢hl, ch2, ch3 = 0.916, 0.908 , 0.915 , 0.914
cvhl, cvh2, cvh3 = 0.440923, 0,429554, 0,430571

Number of sampling occasions, & = .... 30
Estimator mean bias s.d. rmse
x 87.30 -12.70 9.544 15.887
mle 90.65 =9.35 7.110 11.746
drl 93.49 -6.51 6.531 9.222
boot 95.5%9 -4.01 7.585 8.580
acl 97.61 -2.39 6.668 7.083
ac2 87.00 -3.00 6.668 7.311
ac3 97.06 -2.94 6.662 7.284
0 99.62 ~0.38 6.951 6.961
cal 102.20 2,20 6.631 6.986
caz 102.02 2.02 6.596 6.899
ca3 102.03 2.03 6.597 6.904
pojac 105.54 5.54 11.401 12.674
jacl 102.98 2.98 6.626 7.265
jacseq 104.43 4.43 10.207 11.128
jacint 103.71 371 8.516 9.289

Pr(inf mle) , mean jacknife oxder = 0.000, 1.088
c, chi, ch2, ch3 = 0,935, 0.933 , 0.937 , 0.937
cvhl, cvh2, ovh3 = 0.449%66, 0.442131, 0.442714
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Table 3.5.3c

N = 200 : p ~ Beta(alpha,beta) : ep ~ U{ 0.04, 0.20 ) : cv ~ U( 0.30, 0.80 )

Number of simulations = 1000

Number of sampling occasions, t = .... 5
Estimator mean bias s.d. rmse
x 86.53 -113.47 26.388 116.503
mle 165.60 -34.40 57.866 67,319
drl 199.03 -0.97 74.760 74.767
boot 107.57 -92.43 31.023 97.496
acl 233.07 33.07 102.399 107.606
ac2 178.36 -21.64 73.940 77.041
ac3 188.63 -11.37 85.094 85.850
o} 117.13 -82.87 33.012 89.200
cal 209.97 9.97 74.935 75.595
ca2 184 .46 -15.54 60.754 62.710
ca3 188.87 -11513 62.014 63.005
pojac 179.88 -20.12 43.406 47.844
jacl 133.84 -66.16 35.953 75.300

jacseq 179.58 -20.42 41.279 46.054
jacint 172.64 -27.36 40.590 48.951

Pr(inf mle) , mean jacknife order = 0.001, 3.747
¢, chl, ch2, ch3 0.528, 0.461 , 0.540 , 0.521
cvhl, cvh2, cvh3 0.451279, 0.186030, 0.240712

Number of sampling occasions, t = ,... 10
Estimator mean bias s.d. rmse
x 125,67 -74.33 28.278 79.527
nle 167.32 -32.68 21.086 38.895
drl 181.67 -18.33 22.622 29.117
boot 150.99 -49.01 29,879 57.401
acl 197.51 -2.49 26,871 26.986
ac2 183.18 ~16.82 23.309 28.744
ac3 185.23 -14.77 23.698 27.925
(o} 162.69 -37.31 30.222 48,012
cal 200.63 0.63 24.017 24.025
ca2 194.66 ~-5.34 22.742 23.360
ca3 195.46 -4 .54 22.864 23.311
pojac 219.50 19.50 27,714 33.888
jacl 180.01 -19,99 29.476 35.613
jacseq 204.85 4,85 31.358 31.731
jacint 194 .51 ~-5.49 29,055 29.570

Pr{inf mle) , mean jacknife order = 0.000, 1.991
¢, chl, ch2, ch3 = 0.729, 0.696 , 0.730 , 0.724
cvhl, cvh2, cvh3 = 0.393350, 0.309276, 0.322405

Number of sampling occasions, t = ,... 15
Estimator mean bias s.d. rmse
x 145.87 -54.13 26.502 60.270
mle 170.95 -29,05 16.640 33.475
drl 180.50 -19.50 16.307 25,416
boot 170.07 -29.93 25.349 39.224
acl 192.27 -7.73 17.246 18,900
ac2 186.18 -13.82 16.805 21.758
ac3 186.91 -13.09 16.890 21.371
(o] 181.02 -18.98 24,434 30.941
cal 201.17 1.17 17.689 17.727
ca2 198.84 ~1.16 17.553 17.591
ca3l 199.08 -0.92 17.567 17.591
pojac 222,16 22.16 20.654 30.289
jacl 195,03 -4.97 21,917 22.474
jacseq 210,24 10.24 23.356 25.500
jacint 202.58 2.58 22.618 22.765

Pr(inf mle) , mean jacknife oxrder = 0.000, 1.565
¢, chl, ch2, ch3 = 0.820, 0.808 , 0.825 , 0.823
cvhl, cvh2, cvh3 = 0.398615, 0.360282, 0.364733

Number of sampling occasions, t = .... 20
Estimator mean bias s.d, rmse
x 161,08 -38.92 23.350 45.384
mle 176.75 -23.25 14.150 27.216
drl 184.22 -15.78 13.351 20.668
boot 182.94 -17.06 20.101 26.364
acl 194.39 ~-5.61 13.666 14.775
ac2 191.24 -8.76 13.613 16.188
ac3 191.56 -8.44 13.630 16.030
o} 192.54 -7.46 18.424 19.878
cal 204.42 4.42 14.012 14.694
ca2 203.32 3.32 13.913 14.304
ca3 203.43 3.43 13.909 14,325
pojac 220.20 20.20 19.749 28.247
jacl 203.38 3.38 15.476 15.841
jacseq 211.36 11.36 18.658 21.846
jacint 206.72 6.72 16.873 18.162

Pr{inf mle) , mean jacknife order = 0.000, 1.309
c, chl, ch2, ch3 = 0.882, 0.873 , 0.883 , 0.882
cvhl, cvh2, cvh3 = 0,423520, 0.403792, 0.405877

Number of sampling occasions, t = .... 25
Estimator nean bias s.d. rmse
x 168.78 -31.22 20.761 37.490
mle 179.55 -20.45 13.210 24.344
drl 185.93 -14.07 12.010 18.4939
boot 188.42 -11.58 16.524 20.177
acl 195.27 -4.73 11.486 12,423
ac2 193.38 ~-6.62 11.443 13.221
ac3 193.54 -6.46 11.444 13.143
[o] 196.88 =-3.12 14.660 14.989
cal 204.90 4.90 12.276 13.219
ca2 204.30 4.30 12.154 12.892
ca3 204.35 4.35 12,160 12.915
pojac 216.53 16.53 20.624 26.431
jacl 205.58 5.58 12.450 13.642
jacseq 210.69 10.69 17.248 20.293
jacint 207.54 7.54 14.430 16.281

Pr(inf mle) , mean jacknife order = 0.000, 1,222
¢, c¢hl, ch2, ch3 = 0.913, 0.907 , 0,913 , 0.912
cvhl, cvh2, cvh3 = 0.448544, 0.437062, 0.438125

Number of sampling occasions, t = .... 30
Estimator mean bias s.d. rmse
X 175.87 -24.13 18.085 30.158
mle 182.99 -17.01 12.003 20.821
drl 188.17 -11.83 10.431 15.771
boot 193.05 -6.95 13.236 14,949
acl 196.20 -3.80 8.998 9.768
ac?2 195.05 -4,95 9.056 10.319
ac3 195.13 -4.87 9.050 10.275
O 200.27 0.27 11.391 11.394
cal 205,43 5.43 10.044 11,419
ca2 205.09 5.09 9.952 11,379
ca3 205.12 5.12 9.967 11.206
pojac 212.96 12.96 18.640 22.701
jacl 207.01 7.01 9.875 12.109
jacseq 209.77 9.77 12.719 16.038
jacint 207.76 7.76 10.756 13.266

Pr{inf mle) , mean jacknife order = 0.000, 1.129
¢, chl, ch2, ch3 = 0,938, 0.933 , 0.937 , 0.937
cvhl, cvh2, cvh3 = 0.460833, 0.453616, 0.454193
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Table 3.5.3¢c

N = 200 : p ~ Beta(alpha,beta) : ep ~ U( 0.04, 0.20 ) : cv ~ U( 0.30, 0.80 )

Number of simulations = 1000

Number of sampling occasions, t = .... 5
Estimator mean bias s.d. rmse
x 86.53 -113.47 26.388 116.503
mle 165.60 ~-34.40 57.866 67.319
dril 199.03 -0.97 74.760 74.767
boot 107.57 -92.43 31.023 37.496
acl 233.07 33.07 102.399 107.606
ac2 178.36 -21.64 73.940 77.041
ac3 188.63 =X AT 85.094 85.850
o 117.13 -82.87 33.012 89.200
cal 209.97 997 74.935 75.595
ca2 184.46 -15.54 60.754 62.710
ca3 188.87 ~11.13 62.014 63,005
pojac 179.88 -20.12 43.406 47.844
jacl 133.84 ~66.16 35.953 75.300

jacseg 179.58 =-20.42 41..279 46.054
jacint 172.64 -27:36 40.590 48.951

Pr(inf mle) , mean jacknife order = 0.001, 3.747
c¢, chl, ch2, ch3 = 0.528, 0.461 , 0.540 , 0.521
cvhl, cvh2, cvh3 = 0.451279, 0.186030, 0.240712

Number of sampling occasions, t = ..,. 10
Estimatox mean bias s.d. rmse
X 125.67 ~74.33 28.278 79,527
mle 167.32 -32.68 21.086 38,895
drl 181.67 -18.33 22.622 29,117
boot 150.99 ~49.01 29.879 57,401
acl 197.51 ~2.49 26.871 26.986
ac2 183.18 -16.82 23.309 28.744
ac3 185.23 -14.77 23.698 27.925
le] 162.69 =37,31 30.222 48.012
cal 200.63 0.63 24.017 24.025
caz 194.66 -5.34 22,742 23.360
ca3 195,46 -4.54 22.864 23.311
pojac 219,50 19.50 27.714 33.888
jacl 180.01 -19.99 29.476 35.613
jacseqg 204 .85 4,85 31.358 31.731
jacint 194.51 -5.49% 29,055 29.570

Pr(inf mle) , mean jacknife order = 0.000, 1.991
c, chl, ch2, ¢h3 = 0.729, 0,696 , 0.730 , 0.724
cvhl, cvh2, cvh3 = 0.393350, 0.309276, 0.322405

Nunber of sampling occasions, t = .... 15
Estimator mean bias s.d. rmse
x 145.87 -54.13 26.502 60.270
mle 170.95 -29.05 16.640 33,475
drl 180.50 -19.50 16.307 25.416
boot 170.07 -29.93 25,349 35.224
acl 192.27 ~7.73 17.246 18.900
ac2 186.18 -13.82 16.805 21.758
ac3 186.921 -13.09 16.890 21,371
(o} 181.02 -18.98 24,434 30.941
cal 201.17 1717 17.689 17.727
ca2 198.84 -1.16 17,553 17.591
ca3 199.08 -0.92 17.567 17.591
pojac 222.16 22,16 20,654 30.289
jacl 195.03 -4.87 21.917 22.474
jacseqg 210.24 10.24 23,356 25.500
jacint 202,58 2,58 22.618 22.765

Pr({inf mle} , mean jacknife order = 0.000, 1.565
¢, echl, ch2, ¢h3 = 0.820, 0.808 , 0.825 , 0.823
cvhl, evh2, evh3 = 0,398615, 0,360282, 0.364733

Number of sawmpling occasions, & = ..,. 20
Estimator mean bias s.d. rmse
x 161.08 -38.92 23.350 45.384
mle 176.75 -23.25 14,150 27.216
drl 184.22 -15.78 13.351 20.668
boot 182.94 -17.06 20.101 26.364
acl 194 .39 -5.61 13.666 14.775
ac2 191.24 -8.76 13.613 16.188
ac3 191.56 -8.44 13.630 16.030
(0] 192 .54 -7.46 18.424 19.878
cal 204 .42 4.42 14.012 14.6%4
ca2 203,32 3.3% 13.913 14.304
ca3 203.43 3.43 13.909 14.325
pojac 220.20 20.20 19.749 28,247
jacl 203.38 3.38 15.476 15.841
jacseq 211.36 11.36 18.658 21.846
jacint 206.72 6.72 16.873 18.162

Pr(inf mle) , mean jacknife order = 0.000, 1.309
¢, chl, ch2, ¢h3 = 0.882, 0.873 , 0.883 , 0.882
cvhl, cvh2, cvh3 = 0.423520, 0.403792, 0.405877

Number of sampling occasions, t = .... 25
Estimator mean bias s.d. rmse
x 168.78 -31.22 20.761 37.490
mle 179.55 -20.45 13.210 24,344
drl 185.93 -14.07 1z.010 18.499
boot 188.42 =1ZL.58 16.524 20.177
acl 195.27 -4.73 11.486 12,423
ac2 193.38 -6.62 11.443 13,221
ac3 193.54 -6.46 11.444 13.143
(¢} 196.88 -3.12 14.660 14.989
cal 204.90 4.90 12.276 13,219
ca2 204.30 4.30 12.154 12.892
cal 204.35 4,35 12.160 12,915
pojac 216.53 16.53 20.624 26.431
jacl 205.58 5.58 12,450 13.642
jacseg 210.69 10.69 17.248 20.293
jacint 207.54 7.54 14,430 16.281

Pr(inf mle) , mean jacknife order = 0.000, 1,222
¢, chl, ch2, ch3 = 0.913, 0.907 , 0.913 , 0.912
cvhl, cvh2, cvh3 = 0.448544, 0.437062, 0.438125

Number of sampling occasions, t = .... 30
Estimator mean bias s.d. rmse
x 175.87 -24.13 18.085 30.158
mle 182.99 -17.01 12.003 20.821
drl 188.17 -11.83 10.431 15.771
boot 193.05 -6.95 13.236 14.949
acl 196,20 -3.80 8.998 9,768
ac2 195.05 -4.95 9.056 10.319
ac3 195,13 ~-4.87 9.050 10.275
0 200.27 0.27 %391 11.394
cal 205.43 5.43 10.044 11.419
ca2 205.09 5.09 9.952 11.179
ca3 205.12 5.12 9.967 11.206
pojac 212.96 12,96 18.640 22.701
jacl 207.01 7.01 9.875 12.108
jacseq 209.77 9.77 12.719 16.038
Jjacint 207.76 7.76 10.756 13.266

Pr(inf mle) , mean jacknife order = 0,000, 1.129
¢, chl, ch2, ch3 = 0.938, 0.933 , 0.937 , 0.937
¢vhl, cvh2, cvh3 = 0.460833, 0.453616, 0,454193
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3.6 : Some Standard Data Se

The aim of this section is to assess how the estimators perform on various standard
data sets which have previously been studied in the literature. Of particular interest in this
section is the fact that some of the following data sets were obtained from experiments
carried out on populations of known size. It is also of interest to see how the results of this
section, being obtained from real life populations, compare with the results of the
simulation study of section 3.5. It is noted however that it would be unwise to draw firm
conclusions from a small number of data sets.

The notation used in the following tables is identical to that of the previous section, with
the following additions :

N = population size ( if known ).

fl = the number of animals seen exactly once.

f2 = the number of animals seen exactly twice.

ft = the number of animals seen exactly t times.
x = number of distinct individuals seen.
z = total number of sightings.

Carothers (1973) carried out a capture-recapture experiment on a population of 420
taxicabs working in Edinburgh. The whole data set, as illustrated in table 3.6.1, was
presented along with various subsets. Tables 3.6.2a and 3.6.2b show how the estimators
perform on all 42 subsets. A number of the subsets intersect and so not all of the estimates
are independent. For details of how the different subsets were obtained please refer to
Carothers(1973). The whole taxicab data set, along with the snowshoe hare data of
Burnham and Cushwa, appeared in the Otis et al. (1978) wildlife monograph, wherein for
both sets of data the model selection procedure of Otis et al. (1978) was shown to choose
the model M, . The model selection procedure of Otis et al. (1978) also selects the model
M, as being most appropriate for the meadow vole trapping data of Pollock et al. (1990).
The model M, has been judged appropriate by Norris and Pollock(1996) for the eastern
chipmunk data of Mares et al. (1981). It is impossible to apply the model selection
procedure of Otis et al. (1978) to the mud turtle data of Chao(1989) : this data set is
included so as to illustrate through a real data example how the estimators perform in a
situation wherein sample coverage is very small.

The performance and relative performance of the estimators in connection with the
standard data sets is almost entirely consistent with the simulation study of section 3.5. One
may firstly observe that the standard data sets illustrate the tendency of the maximum
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likelihood estimator N and Darroch and Ratcliff estimator drl to underestimate in the
presence of heterogeneity. The bootstrap estimator of Smith and van Belle(1984) is
negatively biased, and particularly so when sample coverage is small. Also immediately
apparent is the way in which the coverage adjusted estimators clearly perform much better
than the Overton estimator. The Overton estimator IQTO can be severely negatively biased
and consequently its performance tends to be unacceptable, unless that is, as with the data
of Mares et al. (1981) and Pollock et al. (1990), an extremely large proportion of the
population is seen during the experiment. IQIO is particularly negatively biased when
sample coverage is small whereas in this situation, for the reasons discussed in the previous
section, the coverage adjusted estimators N e IQIM2 and ﬁlm are still able to provide
reasonable estimates of population size.

The estimators acl and cal both make use of chl as an estimator of sample
coverage. In the same way ac2, ca2 and ac3, ca3 incorporate ch2 and ch3 respectively. In
tables 3.6.2a and 3.6.2b it is therefore reasonable to compare cal to acl, ca2 to ac2 and ca3
to ac3. In order to highlight this comparison, the cell containing the better estimate is
shaded in each case. Looking at the shaded cells in tables 3.6.2a and 3.6.2b shows quite
clearly that, for this particular population, the coverage adjusted estimators for each given
estimate of sample coverage, tend to perform better than the corresponding acl, ac2 or ac3.
Explicitly, on 25 of the 42 subsets, the estimate provided by cal is closer to the true value
of 420 than that given by acl. Similarly on 35 of these 42 subsets, the estimators ca2 and
ca3 improve on ac2 and ac3 respectively. This is consistent with the simulation study.
However, for the complete taxicab data, as shown in table 3.6.1, acl is actually more
accurate than cal. For this data set, ca2 and ca3 are respectively more accurate than ac2
and ac3, so it is perhaps worthwhile to recall at this point that the simulation study
recommended use of either ca2 or ca3 in favour of cal.

The complete taxicab data of table 3.6.1 also illustrates how, even with good data,
the sequential selection procedure of Burnham and Overton(1978) can mislead. That is, for
the taxicab data, the sequential selection procedure chooses the third order jackknife as
being the most appropriate - whereas this estimator clearly overestimates by a relatively
large amount. The meadow vole data appears to provide a similar example. The discussion
of the previous section recommended that, if estimates of sample coverage were above 0.7,
then one should consider simply ignoring the sequential selection procedure of Burnham
and Overton(1978) and always choose the first order jackknife. The standard data sets do
lend support to this suggestion.

The mud turtle data set illustrates how, when sample coverage is very small, the
jackknife estimators can possess extreme negative bias - for example, for the mud turtle
data, even the fifth order jackknife estimator provides an estimate of 491 ( Chao(1989)
concluded that, if equal catchability were a reasonable assumption, then there were about
800 turtles in the habitat). This data set, therefore, also highlights the extreme negative bias
of the bootstrap and Overton estimators when sample coverage is very small.
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It has been noted that it would be unwise to draw firm conclusions from a small
number of data sets. With this in mind, it is still, however, pleasing to observe that the
performance of the estimators in connection with the real life data is consistent with their
performance within the simulation study. And that furthermore, the recommendations of
the previous section are supported by the performance of the estimators on the standard
data sets.
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Table 3.6.1 : Standard Data Sets

Source Mares et Carothers | Burnham and | Pollock et A.Chao
al.(1981) (1973) Cushwa. al. (1989)
(see text) (1990)
Description | Eastern Taxicab Snowshoe Meadow | Mud Turtle
Chipmunks Data Hare Vole
N 82 420 - - -
t 13 10 6 5 40
f1 14 142 25 29 94
2 13 81 22 15 S
3 18 49 13 15 0
4 12 7 5 16 0
5 3 3 1 27 0
6 5 1 2 - 0
7 1 0 - - 0
8 1 0 - - 0
9 to f(t) 0 0 - - 0
X 71 283 68 102 99
z 222 500 145 303 104
mle 73 368 75 103 1011
drl 76 395 82 113 1030
boot 78 343 79 113 134
acl 77 416 89 123 1030
ac2 76 386 81 118 1004
ac3 77 393 84 123 1004
O 81 370 83 118 153
cal 82 439 90 121 1053
ca2 82 427 87 120 1028
ca3 82 429 88 121 1028
pojac 86 504 100 144 294
jacl 84 411 89 125 191
jacseq 84 495 89 142 191
jacint 84 469 89 138 191
order jac 1 3 1 3 1
chl 0.937 0.716 0.828 0.904 0.096
ch2 0.947 0.752 0.888 0.929 0.099
ch3 0.943 0.744 0.861 0.904 0.099
cvhl 0.331 0.327 0.478 0.555 0.000
cvh2 0.313 0.232 0.380 0.523 0.000
cvh3 0.320 0.256 0.425 0.555 0.000
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Table 3.6.2a : Taxicab Data : N = 420

Sampling Scheme A Sampling Scheme B
Data Subset alpha Data Subset alpha
Subset a b [ d e f g a b c d e g
[ 5 5 3 5 5 5 5 5 5 5 5 5 5 5
il &5 73 75 09 12 17 135 78 %7 71 112 106 102 116
[ 2 3 7 24 28 24 a2 5 9 7 22 28 26 a8
&) 0 0 0 3 2 1 9 ] 0 T 0 3 3 -
4 0 0 0 [} 0 0 1 0 0 [\ 2 0 0 2
5 0 0 1] 0 0 0 0 0 0 0 [i] 0 0 0
X 77 Ell 52 136 142 145 187 %5 76 79 136 137 131 172
Z % %9 80 166 174 77 250 8 %5 58 T6d 171 163 238
mic 242 373 428 330 339 352 341 503 299|321 347 306 295 290
arl 286 51 521 396 300 428 307 730 350 300 420 360 350 336
boot 59 106 107 174 181 185 235 109 3 03 174 174 166 214
acl 305 506 | 594 355 236 507 271 306 392 | 37l
ac2 228 360 | 417 | 327 325 363 352 o 28 [ 28 280
aca 228 360 | 417 | 335 320 382 373 302 295 286
0 110 17 119 191 199 204 256 191 163 233
cal 296 B B 379 367 357
a2 A B P ) T BT
cad 244 ﬁg T 318
pojac 185 205 210 316 325 338 203 318 189 200 322 300 297 352
Jacl 129 139 142 223 232 230 205 145 130_| 136 226 222 213 265
Jacseq 192 217 723 325 332 350 307 233 199 213 332 315 303 345
Jacint 153 205 211 30 318 334 392 319 189 201 317 302 201 336
order jac 4 4 4 4 4 4 4 4 4 4 4 4 4 4
chl 0.270 | 0.180 | 0.157 | 0.343 | 0.356 | 0339 | 0.460 0.114 | 0212 | 0.193 | 0317 | 0.380 | 0.374 | 0.513
cha 0.337 | 0225 | 0197 | 0416 | 0.437 | 0407 | 0.544 0.142 | 0.265 | 0.233 | 0.384 | 0.462 | 0.454 | 0.613
h3 0.337 | 0225 | 0.197 | 0.407 | 0.431 | 0395 | 0.526 0.142 | 0.265 | 0.227 | 0384 | 0.453 | 0.445 | 0.601
Covl 0.285 | 0371 | 0.389 | 0.431 | 0.345 | 0.478 | 0.469 0.423 | 0343 | 0.566 | 0.596 | 0.374 | 0.391 | 0.394
Cov2 G000 | 0000 | 0.000 | 0000 | 0.000 | 0.155 | 0.177 G000 | 0.000 | 0.308 | 0.345 | 0.000 | 0,000 | 0.000
Cova 0000 | _0.000 | 0000 | 0037 | 0000 | 0231 | 0258 | | 0000 | 0.000 | 035 | 0.345 | 0.000 | 0.000 | 0000
Data Subset beta Data Subset beta
Subset a b c d e f g a b [ d ¢ f g
[ 5 5 5 5 5 5 5 5 5 5 5 5 5 5
i 75 75 71 126 114 115 145 6 68 70 105 106 T00 115
[ 3 7 3 9 75 26 a2 9 10 10 28 75 27 50
3 1 0 0 2 3 2 7 p) 0 0 2 3 3 G
) 0 0 0 0 0 0 0 0 0 0 0 1 1 1
s 0 [ 0 0 0 0 ] 0 0 0 0 0 0 0
X 52 82 79 147 142 143 194 77 78 850 135 135 131 172
z 90 50 %7 170 173 173 250 90 38 50 167 169 167 737
mle 381 428 355 364 347 360 301 227 257 | 300 311 708 272 793
arl 392 521 330 568 216 327 462 280 343 360 364 362 327 T34
oot 107 107 103 190 181 183 245 59 101 104 172 172 166 214
acl 657 482 670 a77 475 519 372|376 | 395 393 | 438 | 3
) 362 344 | 470 | 344 348 385 260 | 275 288 297 316 277 277
a3 788 344 | 488 351 353 396 775 288 301 328 286 283
0 119 110 ™ | 232
cal 504 300 382 356
ca2 426 258 §004 23 g S311
ca3 137 266 T 21 | 315
pojac 211 210 200 359 330 332 428 188 193 198 306 349
Jacl 142 132 136 248 233 235 310 130 132 136 219 220 211 264
jacseq 225 223 211 376 340 341 333 — 198 202 208 311 316 208 31
Jacint 212 211 200 357 325 326 a7 788 191 197 208 303 286 333
Order jac ] 3 7 3 gl [ 3 3 2 3 3 3 3 ]
Thi 0,167 | 0.157 | 0.184 | 0.259 | 0.341 | 0.335 | 0.420 0267 | 0227 | 0222 | 0371 | 0373 | 0401 | 0515
ch2 0200 | 0.197 | 0.230 | 0.315 | 0.413 | 0410 | 0.504 0317 | 0284 | 0278 | 0455 | 0.447 | 0482 | 0.620
ch3 0,194 | 0.197 | 0.230 | 0.309 | 0.405 | 0.405 | 0,490 0.306 | 0.284 | 0.278 | 0.449 | 0438 | 0.473 | 0.608
covl 0.606 0,389 0.368 0.478 0.427 0.374 0.405 ().580 0.329 0.333 (J.}ZTJ 0.518 0.4{ 0.317
cov2 0.373 0.000 0.000 0.101 0.000 0.000 0.000 0.355 0.000 0.000 0,000 0.241 0.152 0.000
cov3 0414 0.000 0.000 0.171 0.000 0.000 0.000 (.408 0.000 0.000 0.000 0.282 0.206 0.000




Table 3.6.2b : Taxicab Data : N = 420

Sampling Scheme A Sampling Scheme B
Data Subset gamma Data Subset gamma
Subset a b [ d e f g a b e d e f g
1 10 10 10 10 10 10 10 10 10 10 10 10 10 10
il 101 | 115 110 | 143 127 | 145 | 142 100 | 103 | 98 110 | 112 | 113 104
2 33 27 27 62 73 67 81 30 26 29 67 62 61 67
B3 4 3 4 19 19 19 49 6 6 6 20 24 19 51
f4 0 0 0 3 3 1 7 0 0 1 3 8 7 12
f5 0 0 0 0 1 2 3 0 0 0 3 0 2 6
6 0 0 0 0 0 0 1 0 0 0 0 0 0 ]
7 to f10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X 138 | 145 141 | 227 | 223 | 234 | 283 136 | 135 | 134 | 203 | 206 | 202 | 241
B 179 | 178 176 | 336 | 347 | 350 | 500 178 | 173 | 178 | 331 340 | 330 | 475
mle 299 | 380 | 347 | 368 | 335 | 373 | 368 287 | 304 | 272 | 287 | 287 | 285 | 288
drl 317 | 410 | 376 | 395 | 352 | 400 | 395 310 | 334 | 298 | 304 | 307 | 307 | 309
boot 177 | 188 | 182 | 284 | 276 | 292 | 343 174 | 174 | 171 | 249 | 252 | 249 | 236
acl 317_| 421 | 301 | 412 | 357 | 421 | aie 321 | 357 | 322 ] 317 | 320 | 329 | 324
ac2 280 | 374 | 345 | 369 | 328 | 376 | 386 286 | 310 | 281 | 287 | 292 | 299 | 306
ac3 201 | 375 | 346 | 372 | 330 | 380 | 393 288 | 313 | 284 | 290 | 296 | 302 | 311
0 196
cal 341
ca2 - 319
ca3 320"
pojac 316 | 354 | 340 | 467 | 425 | 475 | 504 313 | 320 | 308 | 375 | 384 | 383 | 395
Jacl 229 | 249 | 240 | 356 | 337 | 365 | a1l 226 | 228 | 222 | 302 | 307 | 304 | 335
Jacseq 320 | 249 | 240 | 463 | 387 | 465 | 495 347 | 228 | 342 | 342 | 352 | 351 370
Jacint 312 | 249 | 240 | 435 | 345 | 436 | 469 331 | 228 | 326 | 306 | 323 | 319 | 349
order jac 3 1 1 3 2 3 3 4 1 4 2 2 2 2
ehl 0.436 | 0.354 | 0.375 | 0.574 | 0.634 | 0.586 | 0.716 0.438 | 0.405 | 0.449 | 0.668 | 0.671 | 0.658 | 0.781 |
ch2 0.477 | 0.388 | 0.400 | 0.615 | 0.681 | 0.628 | 0.752 0.476 | 0.438 | 0.486 | 0.713 | 0.711 | 0.699 | 0.812
ch3 0.475 | 0.386 | 0.407 | 0.611 | 0.676 | 0.624 | 0.744 0.473 | 0.435 | 0.483 | 0.708 | 0.705 | 0.694 | 0.803
covl 0.000 | 0.186 | 0.228 | 0.256 | 0.160 | 0.295 | 0.327 0.212 | 0.300 | 0.329 | 0.281 | 0.273 | 0.358 | 0.340
cov2 0.000 | 0.000 | 0,000 | 0.000 | 0.000 | 0.116 | 0.232 0.000 | 0.083] 0.160 | 0.105| 0.116 | 0.249 | 0.269
cov3 0.000 | 0.000 | 0,000 | 0.049 | 0.000 | 0.144 | 0.256 0.000 | 0.117 | 0.178 | 0.135 | 0.148 | 0.263 | 0.290
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§ 3.7 : Plant-Capture Applied to the Model M,

o N | duction

Within the previous sections of this chapter consideration was given to the
standard problem of estimating population size from capture-recapture data, in the
absence of plants. The aim of this section is to show how an initial insertion of planted
individuals into the population prior to the beginning of the capture-recapture
experiment can enhance point estimation of population size. This is done by deriving a
Peterson-type estimator in section 3.7.4, and in section 3.7.5 it is shown how the
coverage adjusted estimators of section 3.3 can be modified so as to enable them to
utilize the information gained from planted individuals.

§ 3.7.2 : Sampling Procedure, Assumptions and Some Additional Notation

The sampling procedure considered within this section is almost identical to the
one described in section 3.2. The only difference being that prior to the beginning of the
experiment it is assumed that a known number of R pre-marked individuals have been
mixed with the target population, of size N. It is assumed that the planted individuals
behave in an identical manner to those of the target population.

Once the planted animals have mixed with the target population a sequence of t
sampling experiments are carried out on the augmented population which is assumed to
be closed and of size N+R. Independently of other animals and independently of its
previous capture history animal i (i=1,2,...,N+R) is captured in sample j (j=1,2,...,t) with
probability p,. After each sample is taken every animal within that sample which has
not previously been marked receives a unique tag before its immediate release so that it
may be recognised on subsequent trapping occasions. The experiment generates an
N+R by t matrix A where

1 ifanimaliis  caught on sampling occasion j
g {O if animal i is not caught on sampling occasion j
i=1,2,..,N+R.
] 2520k
The sample space is the set of such matrices.
It is assumed that the p,, for i= 1, 2, ..., N+R, are a random sample from some
probability distribution f(p), p €[0,1], with c.d.f. F(p).
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At this point it is necessary to introduce some additional notation .
As in chapters 1 and 2, let
X, = number of distinct animals seen from target population,
X, = number of distinct animals seen from planted population
and let X =X, +X, = number of distinct animals seen from augmented population.
Now the frequencies for the target, planted and augmented populations are written as
f, = number of animals from target population seen exactly k times,
f. = number of animals from planted population seen exactly k times
and  fi =f, +f, = number of animals from augmented population seen exactly k
times.
Finally let

t
Z,= Zkf ¢ =total number of sightings made.
k=1

3.7.3: ¢ Distributi e

By the independence of the target and planted populations, it follows from
equation (3.1) that the joint probability distribution function of
{X X0 £ 108 o)L E5, fr ) may be written as

701 O L U O o B o

N N-x; : f; R Rex t f;
(N-xnfnfz,--»f.)(”") [1(=) '[R—xz,f:,fz,...,frj(”‘)) (=), 610

i=1 i=1
where 7, = ['| - pi(1-p) R (p)
i Sy 0 j p p 2

i=0,1,2,....t.

It can be shown ( K. Pollock pers.com. ) that this probability function may be
decomposed as follows :

Probi{Xe, X8 By i T B = PP, PP, -
ol
where P, =>Z—§_-;§‘_fi<_,
YA
T (Z: : )R:f:\“‘ Y B e
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P3=( PR R )IL[( . ]mf;

£, + £, b+, fia\1— 7

S 8,
d P - 12+2° 4t 12%2» st t 1
! ( Y £+ 38 ]

£+ £ s, + 1,

N.B. Each summation is to be evaluated over the rangei= 1, 2, ..., t.

§ 3.7.4 : A Peterson-Type Estimator

The Peterson-type estimator proposed here is derived from the P, component of
the probability function (3.11) : this P, component is in fact a hypergeometric density
function. Let L(N) denote the likelihood function for N based on this hypergeometric
density. By equating L(N) to L(N - 1) one can show that the likelihood function for N,
based on the hypergeometric distribution P, is in fact maximised by the Peterson-type

1

estimator N, = . In order to avoid introducing an estimator which becomes infinite

2
when X, =0, and in view of the fact that population size N is integer valued, N, is

slightly modified : from this point consideration is given to the estimator

NP = [0.5 + (I;——Fi)lﬁ] , where [.] denotes the integer part.
2

§ 3.7.5 : Plant-Capture Versions of the Overton and Coverage Adjusted Estimators

Of the estimators considered within this chapter that were initially designed for
the standard problem of estimating population size in the absence of plants, other than
the nonparametric maximum likelihood estimator of Norris and Pollock(1996), only the
Overton estimator and coverage adjusted estimators of section 3.3 can be extended
naturally in such a way that allows them to be able to utilize the extra information
gained from the planted individuals. The plant-capture versions of the Overton and
coverage adjusted estimators are obtained via an approach almost identical to the one
used to derive them in the absence of plants : hence the following derivation is
explained only briefly.
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From equation 3.10 it follows that the likelihood function for N may be written as
L(N) o<

(N I:”xl)! (71'0)”_)(l
= L{E[u = p)t]}N_Xl :

(N-x,)!
If one assumes for the moment that F(p) is known exactly, so that E[(l—- p)'] can be

viewed as a known constant, then, by equating L(N) to L(N-1), one can show that an

approximate maximum likelihood estimate is given by
A~ xl

Using the theory of weighted distributions, and assuming that the capture probabilities

(3.12)

of the animals seen during the experiment are known exactly, one can show that an
K 1 1
unbiased estimator of {1-E[(l1- p)' is given by — » —~————— : the set
e | Xiez’szl-(l—pi)
S? ={s,:k=1,2,..,x}, where s, €{1,2,3,...,N+R} for all k, represents the set of the
indices of the x distinct animals seen during the sampling period.
Now assuming that the p, for all i€ S} are known, use of equation (3.12) suggests the

estimator

ST, (3.13)
X jsml-(1-p;)

A plant-capture version of the Overton estimator can now be obtained by substituting
into equation (3.13) the maximum likelihood estimates of the p; :

t a
N2 = ny 6 s

i)

t

Similarly substituting coverage-adjusted estimates of the capture-probabilities into
equation (3.13) yields the three following plant-capture versions of the coverage
adjusted estimators of section 3.3 :

R S f?
I\Jcal T —;s- i £
z, Jt
e X 1 f?
chnZ = -‘J‘IEZ / AL
= o2 )i
=1 1l B a2
L z, (t-1)z, Jt
and IQT;G:ﬁ = £ -
X G=1 § f: 2 f; 6 fg i
[ £ L L
z, (t-1)z, (t—1)}(t-2)z, Jt

N2, and N

ca3

N.B. In the absence of plants, i.e. when R = 0, the estimators 1(18, Ne

cal?
do in fact reduce to ﬁo, N Nwz and IQIC,13 respectively.

cal?
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3.7.6: t- e Simulation Stud

A simulation study was carried out in order to investigate the performance of the
plant-capture estimators. The simulations were carried out in an almost identical
manner to those of tables 3.5.3a, b and c. In each simulation the capture probabilities of
the N+R animals were drawn as a random sample from some probability distribution p
with mean E(p), variance Var(p) and coefficient of variation sqrt[Var(p)l/E(p). At the
beginning of each simulation the value of E(p) was selected as a random observation
from a uniform distribution on some interval ( . , . ). Similarly the value of the
coefficient of variation was selected as a random observation from a uniform
distribution on some interval ( ., . ). The distribution of p was chosen to be Beta(alpha,

2
beta), where, as in section 3.3, alpha = 1= ef —ep and beta= Lli)z —(1-ep). The
(cv) ep(cv)
capture probabilities of the N+R animals were drawn as a random sample from this beta
distribution and live trapping was then simulated in the usual way. Each table is split

into two columns : each column depicting the results for a certain number of sampling

occasions. Each column is split into four cells : the first cell shows how the estimators
perform in the absence of planted individuals ; the second, third and fourth cells
illustrate respectively the performance of the estimators in the presence of 10, 25 and 50
plants. For each value of t and R one thousand simulations were carried out : a different
set of capture probabilities was used each time. The values shown in the tables are
mostly averages. As many of the estimators are only finite if at least one recapture
occurs, any data set not meeting this condition was discarded. The simulation procedure
continued until one thousand data sets for which the condition did hold had been
generated. This simulation study considers various target populations of size N = 100.
The results of the simulations are presented in tables 3.7.1a,b, 3.7.2a,b, 3.7.3a,b,
3.7.4a,b, 3.7.5a,b and 3.7.6a,b. The notation used within these tables is identical to the
notation of section 3.5, with the following additions :

x1 = X,

xz = X2.

pet = NP.

mlea = the maximum likelihood estimator for the model M,, for details

please refer to chapter 1.
o X
drla =N 01 —_lfz' .
z

a
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Oa = N,.
cala = N,
ca2a = ﬁﬁﬂz
ca3a = N2,
Zpi
a ieS?
ca = C = N+lx1
zpi
i=1
chla = l—f—‘.
ZD.
ch2a = l—f—‘+L&.
Z, (t s 1) Z,
ch3a = 1——f—‘+ 2 1., 6 f—3
z, (t=0)z, (t-1)(t-2)z,
Discussion

An important characteristic of the Peterson-type estimator ﬁ,, is that it remains
virtually unbiased in the presence of heterogeneity : consistent unbiasedness in the
presence of heterogeneity is something no other existing estimator is able to achieve.
However a major disadvantage of the Peterson-type estimator is that it can have a very
large variance when the number of plants is small relative to the size of the target
population.

The plant-capture versions of the Overton and coverage adjusted estimators can
be seen to improve as the number of plants is increased from R = 0 : the beneficial
effect of the plants is most noticeable when the number of sampling occasions is small.
However it is disappointing to observe that this improvement due to the plants is on the
whole only marginal. There is scope for more work here since it is believed that the
plants may be used in a more efficient way to improve point estimation in this situation,
perhaps through considering an estimator in the form of a weighted average of the
Peterson-type and coverage adjusted estimators.
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Table 3.7.1la

N = 100 : p ~ Beta(alpha,beta) : ep ~ U( 0.04, 0.20 ) : cv ~ U( 0.30, 0.80 )
Number of simulations = 1000
=5 t = 10
R=0 R =20
Egtimator mean bias s.d. rmse Egtimator maan biasg s.d. rmse
x1 43.73 -56.27 13.481 57.863 x1 62.49 =37.51 14.459 40.200
mils 84 .22 -15.78 31.533 35.263 nmle 83.92 -16.08 14.706 21.791
drl 102 .45 2.45 41.631 41.703 drl 91.64 -8.36 16.622 18.607
boot 54.37 ~45.63 15.953 48.342 boot 75.11 -24.89 15.455 29.302
acl 120.29 20.29 61.026 64.311 acl 99.91 -0.09 20.910 20.910
ac2 93.14 -6.86 49.668 50.139 ac2 92.74 -7.26 18.404 19.786
ac3 98.88 -1.12 64.136 64.146 ac3 93.73 -6.27 18.682 19.705
o} 59.1% -40.81 17.038 44,220 Lo} 80,94 -1%.06 15.787 24,747
cal 107.96 7.96 41.846 42.597 cal 101.08 1.08 17.353 17 .386
ca2 94,71 -58.,29 34.429 34.833 ca2 97.94 -2.06 16.086 16.218
cal 96.94 -3.06 35.9%09 36.039 cal 98.33 -1.67 16.155 16.241
pojac 90.80 -9.20 23.253 25.007 pojac 105.21 9.21 17.046 19.377
jacl 67.59 -32.41 18.682 37.408 jacl 89,59 -10.41 15.797 18.918
jacseqg 89.50 -10.50 22.841 25.139 jacsea 100,98 0.98 18.9339 18.965
jacint 85.36 -14.64 22.199 26.592 jacint 95,81 -4.19 17.394 17.8%1
Pr{inf mle) , mean jacknife order = 0.012, 3.369 Pr(inf mle) , mean jacknife order = 0.000, 1.755
c, chl, ch2, ch3 = 0.533, 0.463 , 0.543 , 0,525 ¢, ¢hl, ch2, ch3 = 0.728, 0.693 , 0.727 , 0.721
R = 10 R= 10
Estimator mean bias s.d. rmse Estimator mean bias s.d. rmee
*x2 4.27 x2 6.28
pet 101.46 1.46 45,752 45.775 pet 99.58 -0.42 32.501 32.503
mlea 88.18 -11:.82 29.154 31.461 mlea 84,83 =15:17 12.202 19.470
drla 101.80 1.80 41.163 41.202 dria 91.30 -8.70 15.292 17.593
Oa 59.18 -40.82 17.017 44 .227 Oa 80.393 -19.07 15.738 24.725
cala 107.31 7.31 41.370 42.011 cala 100.75 0.75 16.068 16,086
cazZa 94.09 -5.91 33.761 34.274 caza 97.64 -2.36 15.032 15.217%7
ca3a 96.26 -3.74 34.821 35.021 cala 98.06 -1.94 15.106 15.230
ca,chla,ch2a,ch3a = 0.533, 0.464 , 0.545 , 0.526 ca,chla,ch2a,ch3a = 0.728, 0.694 , 0.728 , 0,722
R = 25 R = 25
Estimator mean bias s8.d. rmse Egtimator mean bias g.d. rmse
X2 10.76 x2 15.79
pet 99,72 -0.28 30.925 30.5926 pet 99.83 -0.17 19.123 19.124
mlea 88.56 -11.44 25,440 27.895 mlea 86.35 -13.65 11.566 17.892
drila 99.40 -0.60 32.645 32.650 drla 91.19 ~8.81 13.905 16.462
Oa 58.20 -41.80 16.886 45.085 Oa 81.61 -18.39 15.679 24.167
cala 104.81 4.81 32.909 33.258 cala 100.70 0.70 14.810 14.826
caza 91.92 -8.08 26.879 28.069 ca2a 97.65 -2.35 13.973 14.168
ca3a 94.01 -5.99 27.482 28.127 ca3a 98.07 -1.93 14.072 14.204
ca,chla,ch2a,ch3a = 0.525, 0.456 , 0.536 , 0,518 ca,chla,ch2a,ch3a = 0.728, 0.6%7 , 0.731 , 0.725%
R= 50 R = 50
Estimator mean bias s.d. mse Egtimator maean bias 8.d. mse
x2 21.33 x2 31.46
pet 99.71 -0.29 22.434 22.436 pet 100,18 0.18 15.010 15.011
mlea 89.34 -10.66 17.691 20.656 mlea 87.13 -12.87 10.974 16.916
drla 97.37 -2,63 29.613 29.730 drla 90.46 -9.54 13.787 16.764
Oa 57.62 -42.38 16.648 45,530 Oa 81.41 -18.59 15.811 24.407
cala 102.76 2.76 29.89%0 30.017 cala 99.92 -0.08 14.617 14.617
caz2a 9¢.11 -9.89 24.400 26.329 caZa 36.98 -3.02 13.841 14,166
ca3a 92.16 -7.84 24.878 26.083 ca3a 97.39 -2.61 13.912 14.155
ca,chla,ch2a,ch3a = 0.522, 0.458 , 0.538 , 0.520 ca,chla,ch2a,ch3a = 0.732, 0.702 , 0.735 , 0.72%
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le 7.1b

N = 100 : p ~ Beta{alpha,beta) : ep ~ U{ 0.04, 0.20 ) : cv ~ U{ 0.30, 0.80 )

Number of simulations = 1000

t = 15 t = 20

R =0 R=0
Egtimator maan bias a.d. rmee Estimator mean bias 8.d. msa
x1 73.23 -26.77 13.483 29.973 x1 80.84 -19.16 11.925 22.571
mle B85.59 -14.41 10.032 17.558 mle 88.45 =115 8.310 14.228
drl 90.97 -9.03 10.457 13.818 drl 92.59 ~7.41 8.086 10.970
boot 85.39 -14.61 13.151 19.655 boot 91.76 -8.24 10.481 13.332
acl 97.61 ~2.39 13.327 13.539% acl 98.02 -1.98 9.004 9.219
ac2 94.62 -5.38 12,678 13.773 ac2 96.43 =397 8.703 2.406
ac3 94.95 -5.05 12.759 13.721 ac3 96.60 -3.40 8.732 9.370
o} 90.90 -9.10 12.901 15.788 o] 96.55 ~3.45 9.784 10.373
cal 101.35 1.35 11.460 11.53% cal 102,69 2.69 8.743 2.147
ca2 108.19 0.19 11.216 11.218 ca2 102.14 2.14 8.598 8.861
cald 100.32 0.32 11.247 11.251 cal 102.19 2.19 8.59¢9 8.874
pojac 112.04 12.04 14.037 18.495 pojac 110.24 10.24 12.736 16.345
jacl 98.05 ~1.95 12.191 12.345 jacl 101.93 1.93 8.751 8.961
jacseq 104.72 4.72 15.443 16.150 jacseqg 105.41 5.41 11.587 12.786
jacint 101.11 1.11 13.996 14.040 jacint 103.33 3.33 9.921 10.464

Pr{inf mle) , mean jacknife order = 0.000, 1.409 Pr{inf mle) , mean jacknife order = 0,000, 1,205
¢, chl, ch2, ch3 = 0.824, 0.807 , 0.824 , 0.821 ¢, chl, ch2, ch3 = 0.885, 0.873 , 0.883 , 0.882

R = 10 R = 10

Estimator mean bias 8.d. rmse Estimator maan bias 5.4. rmse

x2 7.32 x2 8.06

pet 100.51 0.51 29.352 29.356 pet 100.20 0.20 17.981 17.982 ,
mlea 86.33 -13.67 9.614 16.715 mlea 88.81 -11.19 7.850 13.668 i
drla 90.95 -9.05 10.244 13,669 drla 92.56 ~7.44 7.864 10.826 t
Oa 90.95 -9.05 12.886 15.749 Oa 96.52 -3.48 9.751 10.354 |
cala 101.36 1.36 11,233 11,314 cala 102.64 2.64 8.483 8.886 '
ca2a 100.20 0.20 11.045 11.047 ca2a 102.11 2.11 8.364 8.627 '
cala 100.33 0.33 11.058 11.063 ca3a 102.16 2.16 8.372 8.645

c¢a,chla,ch2a,ch3a = 0.824, 0.806 , 0.823 , 0,821 ca,chla,ch2a,ch3a = 0.885, 0.873 , 0,883 , 0.882 |

R= 25 R= 25 :
Egtimator mean bias .4, rmge Estimator mean bias s.d. rmse !
*2 18.37 *2 20.12 !
pet 99.39 ~0.61 14.424 14,437 pet 99,75 -0.25 12.362 12.364 :
mlea 86.95 -13.05 8,894 15.791 mlea 88.81 -11,19 8.163 13.849 "
drla 90,68 =932 9,523 13.326 drla 92.00 ~8.00 8.169 11.436
Oa 90.81 =919 12.609 15.601 Oa 96.16 -3.84 10.065 10.774 ‘
cala 101,08 1.08 10.371 10.427 cala 102.20 2,20 8.827 9.0%6 '
cala 99.91 -0.09 10,182 10.183 caza 101.62 1.62 8.719 8.867
cal3a 100.05 0.05 10.207 10,207 cala 101.68 1.68 8.733 8.893

ca,chla,ch2a,ch3a = 0.822, 0.807 , 0.825 , 0.823 ca,chla,ch2a,ch3a = 0.881, 0.871 , 0.881 , 0.880 !

R= 50 R = 50
Estimator mean bias s8.d. rmse Estimator mean bias s.d. rmse
%2 36.72 %2 40,02
pet 99.96 -0,04 10.907 10.907 pet 99.86 -0.14 9.089 9.030
mlea 88.03 -11.97 8.640 14,764 mlea 89.19 -10.81 7.426 13.113
drla 90.80 -3.20 9.778 13,427 drla 91.94 -8.06 7.943 11.318
Oa 90.98 -9.02 13.033 15.849 Oa 95.78 ~-4.22 10.246 11.083
cala 101.13 1.13 10.652 10.712 cala 102.07 2,07 8.513 8.760
ca2a 99.97 -0.03 10.503 10.503 caz2a 101.51 1.51 8.425 8,559
ca3a 100.11 0.11 10.5156 10.515 ca3a 101.55 1.55 8.432 8.574

ca,chla,ch2a,ch3a = 0.825, 0.808 , 0.826 , 0.824 ca,chla,ch2a,ch3a = 0.878, 0.868 , 0.878 , 0.877 }
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Tab 7

N = 100 : p ~ Beta(alpha,beta) : ep ~ U( 0.04, 0.08 ) : ev ~ U{ 0.30, 0.80 )
Number of simulations = 1000

t =5 t = 10 3

R=0 R=0
Estimator mean bias s.d. rmse Estimator mean bias 8.4, rmse
x1 25,42 -74.58 6.215 74.835 x1 43.35 ~-56.65 7.569 57.154
mle 93.50 ~6.50 60.073 60.424 mle 83.51 ~16.49 22.556 27.940
dri 119.20 19.20 77.840 80.172 dril 93.10 ~6.90 26.190 27.083
boot 32.75 ~67.25 7.97% 67.7724 boot 54.98 ~45,02 8313 45.968
acl 144.70 44.70 103.042 112.320 acl 103.51 3,51 34.139 34.319
ac2 107.13 7.13 76.544 76.876 ac2 92.87 -7.03 29.771 30.590
ac3 112.57 12.57 87.982 88.875 ac3 93.89 -6.11 30.242 30.853
o 36.17 ~-63.83 8.772 64.428 o 60.73 -39.27 10.165 40.565
cal 122,66 22.66 78.218 81.433 cal 100.79 0.79 26.841 26.853
caz2 102,71 2,71 63.041 63.099 ca2 95.32 -4,68 24.674 25.114
ca3 104 .32 4.32 63.757 63.903 cal 95.78 ~4.25 24,806 25.167
pojac 61.40 ~38.60 15.079 41.439 pojac 95.83 -4.17 16.357 16.881
jacl 42.61 -57.39 10.347 58.312 jacl 70.45 -29.55 11.636 31.760
jacseq 63.94 -36.06 16.395 39.612 jacseq 90,39 -9.61 21.049 23.138
jacint 60.54 -39.46 15.604 42.434 jacint 83.80 -16,20 20.126 25,8386

Pr{inf mle) , mean jacknife order = 0.035, 3.843 Pr(inf mle) , mean jacknife order = 0.000, 2.333
¢, chl, ch2, ch3 = 0.322, 0.267 , 0.324 , 0,318 c, c¢hl, ch2, ch3 = 0.531, 0.488 , 0.524 , 0.521

R = 10 R = 10

Esgtimatoxr mean bilas s.d. rmse Estimator mean bias g.d. rmse

x2 2.56 x2 4,35

pet 96.04 -3.96 58.198 58.332 pet 99.33 -0.67 43.319 43.325

mlea 96.44 -3.56 49.175 49.304 mlea 85.79 -14,21 20.274 24.759 }
drla 118.58 18.58 78.542 80.710 drla 92.36 -7.64 24.624 25.780 ;
Oa 36.18 -63.82 8.757 64.416 Oa 60.72 -39.28 10.178 40.579 i
cala 122.10 22.10 78.866 81.905 cala 100.08 0.08 25.283 25,283

ca2a 102.22 2.22 63.627 63.665 ca2a 94.70 -5.30 23.232 23.829

ca3a 103.83 3.83 64.320 64.433 ca3a 95.14 -4,86 23.338 23.840

ca,chla,ch2a,ch3a = 0.323, 0.266 , 0.323 , 0.317 ca,chla,ch2a,ch3a = 0.530, 0.489 , 0.526 , 0.522

1
i
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i
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1
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ca,chla,ch2a,ch3a = 0.321, 0.271 , 0.329 , 0.322 ca,chla,ch2a,ch3a = 0.523, 0,485 , 0.521 , 0.517

R= 25 R = 25
Estimator mean bias s.d. rmse Estimator mean bias 8.d. rmge
%2 6.24 x2 10.69
pet 102.02 2.02 50.825 50.865 pet 99.92 -0.08 28.566 28.566
mlea 95.24 -4.76 33.507 33.844 mlea 87.72 ~12.28 18.091 21.865
drla 13318 11.18 62.047 63.043 drla 92.10 -7.90 24.230 25.485
i
Oa 36.02 -63.98 8.500 64.547 Oa 60.05 -39.95 10.573 41.321 i
cala 114.66 14.66 62.257 63.961 cala 99.72 -0.28 24.875 24,876 {
ca2a 96.12 -3.88 50.120 50.270 ca2a 94.33 -5.67 '22.785 23.479
ca3a 97.64 -2.36 50.741 50.796 calda 94.76 -5.24 22.917 23.509 l
H

i

R = 50 R= 50 {

Estimator mean bias s.d. rmse Estimator mean bias g.d. rmge :

- . e o0 ot > i

x2 12.81 x2 2327 I

pet 100.42 0.42 29.729 29.732 pet 100.06 0.06 21.945 21.945 I
mlea 95.80 -4.20 27.8B79 28.193 mlea 89.57 -10.43 16.066 19.183
drla 112.04 12.04 64.877 65,985 drla 91.19 -8.81 22.032 23.726
Oa 36.88 -63.12 8.480 63.689 Oa 59,57 ~40,43 10,378 41,743
cala 115.60 15.60 65.124 66.967 cala 98.76 ~1.24 22.765 22,799
caza 96.91 -3.09 52.538 52,628 caZa 93.42 -6.58 20.880 21.893
ca3a 98.36 ~1.64 53.195 53.220 ca3a 93.82 -6.18 20.964 21,855

ca,chla,ch2a,ch3a = 0.327, 0.273 , 0.332 , 0.325 ca,chla,ch2a,ch3a = 0.518, 0.480 , 0.516 , 0,513
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Table 3.7.2b

N = 100 : p ~ Beta(alpha,beta) : ep ~ U( 0.04, 0.08 ) : cv ~ U( 0.30, 0.80 )

Number of gimulations = 1000

t = 15 t = 20

R =0 R =0
Estimater mean bias s.d. rmae Estimator mean bias 8.4, rmge
x1 55.39 -44.61 8,641 45,441 x1 64.02 -35.98 8.237 36.910
mle 83,06 -16,94 13.585 21.712 mle 83.67 -16.33 10.933 19.656
drl 89.38 -10.62 14.853 18.259 drl 89.08 -10.92 11.539 15.889
boot 68.76 -31.24 10.195 32.860 boot 77.89 -22.11 9.313 23.988
acl 97.07 -2.93 19.723 19.939 acl 96.35 -3.65 14.424 14.878
acz2 91.86 -8.14 18.282 20.011 ac2 93.22 -6.78 13.714 15.300
ac3 92.25 ~T578 18.385 19.952 ac3 93.45 -6.55 13.763 15.244
(] 75.30 -24.70 10.922 27,011 [e] 84.50 -15.50 9.826 18.349
cal 99.45 -0.55 15.977 15.986 cal 100.39 0.39 12.672 12.677
ca2 97.00 -3.00 15.318 15.610 caz2 92.09 -0.91 12.337 12.370
ca3l 97.18 -2.82 15.343 15.601 ca3 99.19 -0.81 12.366 12.392
pojac 109.60 9.60 16.280 18.902 pojac 114.82 14.82 14.612 20.813
jaci 85.33 -14.67 12.126 1%.032 jacl 93.88 ~6.12 10.541 12.188
jacseqg 102.19 2.19 20.580 20.695 jacseq 104.72 4,72 18.001 18.611
jacint 93.61 -6.39 18.131 19.225 jacint 98.29 -1.71 14.820 14.919

Pr{inf mle) , mean jacknife order = 0.000, 1.978 Pr(inf mle) , mean jacknife order = 0.000, 1.620

¢, ¢hl, ch2, c¢h3 = 0.653, 0.628 , 0.652 , 0.650 c, ¢hl, ch2, ch3 = 0,739, 0.724 , 0.740 , 0.739
R = 10 R = 10
Estimator maan bias a.d. mge Egtimator mean bias s.d. rmge
X2 5.47 x2 6.47
pet 101.33 1.33 38.281 38.305 pet 99.07 -0.93 26.791 26.808
mlea 84,78 ~-15.,22 12.840 19.912 mlea 84.75 ~15,25 10.550 18.544
drla 89.21 -10.79 14.318 17.928 drla 89.02 -10.98 11,395 15.823
Qa 75.28 -24.72 10.908 27.023 Oa 84.50 -15.50 9.834 18.357
cala 99.23 ~0.77 15.428 15.447 cala 100.35 0.35 12.528 12.533
caza 96.83 =3n1?7 14.812 15.148 cala 99.06 -0.94 12.193 12.229
ca3a 96.99 -3.01 14.834 15.136 ca3a 99:27 ~-0.83 12.218 12.247
ca,chla,ch2a,ch3a = 0.652, 0.629 , 0.653 , 0.651 ca,chla,ch2a,ch3a = 0.740, 0.724 , 0.740 , 0.739
R = 25 R = 25
Egtimator mean bias g.d. rmsga Estimator mean bias 8.d. rmse
%2 13.63 x2 16.12
pet 100,42 0.42 21.638 21.642 pet 99.97 -0.03 17.949 17.949
mlea 85.86 -14.14 12,765 19.047 mlea 85.96 ~14.04 10,152 17.326
drla 88,66 -11.,34 14.830 18.668 dria 88.85 -11.15 10.795 15.520
Oa 74,39 ~25.61 10.769 27.782 Oa 84.87 -15.13 9.714 17.981
cala 98.62 -1.38 15.861 15,921 cala 100.20 0.20 11.%20 11.922
ca2a 96.20 -3.80 15.236 15.703 ca2a 98.93 ~1.07 11.647 11.696
cala 96.39 -3.61 15.268 15,690 cala 99.02 -0.98 11.671 11.713
ca,chla,ch2a,chlda = 0.650, 0.626 , 0.649%9 , 0,647 ca,chla,ch2a,ch3a = 0,745, 0.728 , 0.745 , 0.743
R = 50 R = 50
Estimator mean bias s.d. rmse Estimator mean bias #.d. rmee
x2 27.53 x2 31.99
pet 100.07 0.07 15,404 15.404 pet 100.38 0.38 13.407 13.413
mlea 87.84 -12.16 11.279 16.583 mlea 87.25 -12.75 9.576 15.942
drla 88.89 -11.11 13.607 17.565 dria 8B.98 -11.02 10.654 15.329
Oa 75.05 -24.95 10.429 27.043 Oa 84.78 -15.22 9.929 18.173
cala 98.95 -1.05 14.659 14.696 cala 100.32 0.32 11.783 11.787
caza 96.50 -3.50 14.046 14.475 caza 99.07 -0.93 11.519 11.556
ca3a 96.70 -3.30 14.087 14.469 ca3a 99.18 -0.82 11.531 11.560
ca,chla,ch2a,ch3a = 0.651, 0.627 , 0.651 , 0,649 ¢a,chla,ch2a,ch3a = 0,744, 0.725 , 0.741 , 0.740
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Table 3.7.3a

N = 100 : p ~ Beta(alpha,beta) : ep ~ U( 0.08, 0.12 ) : cv ~ U( 0.30, 0.80 )
Number of gimulations = 1000
t =5 t = 10
R =20 R=20
Estimatoxr mean bias s.d. rmse Estimator mean bilas B.4. mse
x1 38.41 -61.59 6.104 61.894 x1 59.61 -40.39 6.524 40.911
mle 82.88 =17:12 30.497 34.972 nle 82.83 -17.17 12.361 21.154
drl 101.63 1.63 39.343 39.377 drl 90.82 -9.18 13.688 16.482
boot 48.51 ~51.49 7.653 52.054 hoot 73.08 -26.91 7.904 28,051
acl 119.88 19.88 53.137 56.735 acl 99.55 -0.45 17.772 17.778
ac2 91.44 -8.56 38.424 39.366 ac2 91.67 -8.33 15.766 17.82%
ac3 96.33 -3.67 42.291 42 .450 ac3 92.72 «7.28 16.040 17.613
o 53.18 -46.82 8.398 47.568 [o} 79.47 -20.,53 8.597 22.255
cal 106.69 6.69 39.699 40.259 cal 100.54 0.54 14.680 14.690
caz2 92.36 -7.64 32.280 33.171 ca2 97.12 -2.88 13.684 13.985
ca3 94 .44 -5.56 32.872 33.339 ca3 97.56 -2.44 13.788 14.003
pojac 85.23 -14.77 14.264 20.536 pojac 112.61 12,61 14.717 19.377
jacl 61.52 -38.48 9.804 39.705 jacl 89.25 -10.75 9.894 14.613
jacseq 85.94 -14.06 16.408 21.611 jacsey 103.19 3.19 18.129 18.407
jacint 81.93 -18.07 16.011 24.141 jacint 95.76 -4.24 16.080 16.631
Pr{inf mle) , mean jacknife order = 0.000, 3.8629 Pr{inf mle) , mean jacknife order = 0.000, 1.898
¢, chl, ch2, ch3 = 0,482, 0.409 , 0.487 , 0.473 ¢, chl, ch2, ¢h3 = 0.702, 0.664 , 0.702 , 0.697
R = 10 R = 10
Estimator mean bias s.d. mse Estimator mean bilas 8.4, rmse
x2 377 %2 6.00
pet 100.24 0.24 45,962 45,963 pet 99.63 -0.37 34.845 34.847
mlea 86.05 ~-13.95 23.444 27.283 mlea 84,18 -15.82 11.654 19.646
drla 100.34 0.34 36.635 36.637 drila 90.70 -9.30 13.203 16.146
Oa 53.16 -46.84 B.418 47.593 Oa 79.47 -20.53 8.581 22.251
cala 105.43 5.43 37.028 37.424 cala 100,45 0.45 14.181 14,188
caza 91.40 -8.60 30.379 31.573 ca2a 97.01 -2.99 13.212 13.547
ca3a 93.48 ~6.52 31.110 31.787 ca3a 97.47 “2:53 13.326 13.564
ca,chla,ch2a,ch3a = 0.481, 0,410 , 0.488 , 0.474 ca,chla,ch2a,ch3a = 0,703, 0,664 , 0.702 , 0.697
R = 25 R= 25
Estimator mean bias s8.d. rmse Estimator mean bias g.d. rmee
x2 9,74 x2 14,95
pet 99.14 -0.86 42,684 42.693 pet 98.86 -1.14 18.287 18.323
mlea 87.90 -12,10 19.936 23.319 mlea 85.40 -14.60 11.226 18.417
drla 100.89 0.89 36.230 36.241 drla 90.34 -9.66 13.127 16.299
Oa 53.21 -46.79 8.292 47.523 Oa 78.98 -21,02 8.811 22.792
cala 105.97 597 36.58S 37.068 cala 100.00 0.00 14.101 14.101
ca2a 21.74 -8.26 30.145 31.256 ca2a 96.54 -3.46 13.222 13.666
ca3a 9377 -6.23 31.035 31.654 calda 97.03 -2.97 13,298 13.627
ca,chla,ch2a,ch3a = 0.477, 0.407 , 0.486 , 0.472 ca,chla,ch2a,ch3a = 0.698, 0.662 , 0.700 , 0.694
R = 50 R = 50
Estimator mean bias 8.d. mse Estimator mean bias s.d. rmsa
X2 19.41 %2 29.80
pet 99.92 -0.08 23.052 23.052 pet 99.60 -0.40 14.494 14.499
mlea 90.44 -9.56 17.863 20,261 mlea 86.28 -13.72 10.190 17.092
drla 100.06 0.06 30.842 30.842 drla 89.33 -10,67 11.8098 15.918
Oa 53.71 ~46.29 8.245 47.018 Oa 78.94 -21.06 8.577 22.736
cala 105.21 5.21 31.292 31.722 cala 98.97 ~1.03 12.711 12.753
caz2a 91.32 ~8.68 25.766 27.185 ca2a 85.69 -4.31 11.945 12.698
cala 93.39 -6.61 26.364 27.180 cala 96.14 -3.86 12.015 12.620
ca,chla,ch2a,ch3a = 0.482, 0.409 , 0.487 , 0.473 ca,chla,ch2a,ch3a = 0.702, 0.66% , 0.707 , 0,701
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Table 3.7.3b
N = 100 : p ~ Beta{alpha,beta) : ep ~ U( 0.08, 0.12 ) : ¢cv ~ U{ 0.30, 0.80 )
Number of simulations = 1000

£ = 15 t = 20
R =0 R=0
Estimator mean bilas s.d. rmge Batimator mean blas s.d. rmse
x1 71.70 -28.30 6.528 29.045 x1 79.35 -20,65 6.281 21.588
mle 84.94 -15.06 B.768 17.431 mle 87.11 -12.89 7.556 14.938
arl 90.67 -9.33 9.164 13.078 drl 91.64 ~8.36 7.466 11.206
boot 85.25 -14.75 7.544 16.568 boot 91.83 -8.17 6.966 10.734
acl 97.64 -2.36 11.379 11.621 acl 97.50 -2,50 8.449 8.811
ac2 94.25 -5.75 10.762 12.204 ac2 95.76 -4,24 8.147 9.185
ac3 94.67 -5.33 10.825 12.067 ac3 95,95 -4.05 8.168 9115
0 91.47 =853 8.088 11.756 0 97.35 -2.65 7.357 7.820
cal 101.95 1.95 10.280 10.464 cal 103.02 3.02 8.500 9.020
ca2 100.69 0.69 10.008 10.031 caz 102.46 2.46 8.355 8.710
ca3 100.85 0.85 10.031 10.0867 ca3 102.52 2.52 8.360 8.731
pojac 116.79 16.79 13.402 21.481 pojac 114.19 14.19 12,240 18.737
jacl 99.74 ~-0.26 9.109 9.13¥2 jacl 103.83 3.83 8.057 8.920
jacseqg 105.99 5.99 15.362 16.489 jacseg 105.96 5.96 11.286 12.762
jacint 101.92 1.92 12,158 12.309 jaeint 104.58 4.58 9.517 10.562
Pr(inf mle) , mean jacknife order = 0,000, 1.401 Pr(inf mle) , mean jacknife order = 0.000, 1.141
¢, chl, ch2, ch3d = 0.813, 0.793 , 0.813 , 0.811 c, chl, ch2, ch3 = 0.879, 0.867 , 0.878 , 0.877
R = 10 R = 10
Estimator mean bias 8.4, mee Estimator mean bias 8.d. rmse |
x2 7.22 x2 7:91 ?
pet 99.21 -0.79 20.766 20.782 pet 100.14 0.14 16.522 16.523
mlea 85.54 ~14.46 8.519 16.779 mlea 87.45 -12.55 7.4089 14.570
drla 90.56 -9.44 8.968 13.020 drla 91.62 -8.38 7.395 11.178
Oa 91.46 -8.54 8.018 11.717 Oa 97.34 -2.66 7.365 7.8289
cala 101.86 1.86 10.058 10.228 cala 102.97 2.97 8.414 8.923
caza 100.60 0.60 9.772 9.790 ca2a 102.40 2.40 8,278 8.618
ca3a 100.75 0.75 2.808 9.836 cala 102.45 2.45 8.300 8.655
ca,chla,ch2a,ch3a = 0.814, 0.794 , 0.814 , 0.811 ca,chla,ch2a,ch3a = 0.879, 0.867 , 0.879 , 0.878
R = 25 R = 25
Estimator mean bias s.d. rmse Estimator mean bias 8.d. rmse |
_________________________________________________ e 0 o 4 e 1
x2 17.90 %2 19.68
pet 99.99 -0.01 14.464 14.464 pet 100.18 0.18 11.612 11.613 |
}
mlea 86.27 -13.73 §.640 16.219 mlea 87.50 -12.50 7.350 14.499 t
drla 90.32 -9.68 9.155 13.325 dria 91.14 -8.86 7.397 11.540 :
Oa 91.23 -8.77 8.042 11.898 Oa 96.88 -3.12 7.374 8.007 i
cala 101.60 1.60 10.279 10.402 cala 102.50 2.50 8.375 8.739 H
caza 100.31 0.31 9.945 9.950 ca2a 101.92 1.92 8.228 8.449
ca3a 100.47 0.47 9.981 9.992 ca3a 101.99 1:99 8.247 8.483

ca,chla,ch2a,ch3a = 0.814, 0.794 , 0.815 , 0,812 ca,chla,ch2a,ch3a = 0.876, 0.867 , 0.878 , 0.877

i
R = 50 R = 50 2
Estimator mean bias g.d. rmge Egtimator mean bias s.d. rmse 3
x2 35.73 x2 39.71 i
pet 99.29 ~0.71 11.155 11.178 pet 100.26 0.26 9.184 9.188
mlea 86.14 -13.86 8.132 16.074 miea 88.35 -11.65 6.725 13.454 H
drla 89.29 -10.71 8.831 13.879 dria 91.56 -8.44 6.842 10.865 !
Oa 90.38 -9.62 8.049 12.541 Oa 9'7.49% =251 6.923 7.364 g
cala 100.43 0.43 9.886 9.896 cala 102.91 24931 7.729 8.260 '
cala 99,21 -0.79 9.626 9.658 caza 102.36 2,36 7.598 7.956
ca3a 99.34 -0.66 9.642 9.664 ca3a 102.41 2.41 7.598 77971

ot s

ca,chla,ch2a,ch3a = 0,813, 0.797 , 0.817 , 0.814 ca,chla,ch2a,ch3a = 0,880, 0.870 , 0.881 , 0.8B0

136




Table 3.7.4a

N = 100 : p ~ Beta(alpha,beta) : ep ~ U( 0,04, 0,08 ) : ¢v ~ U( 0.55, 0.80 )

Number of simulations = 1000

t =5 t = 10
R=20 R=0
Egtimator mean blas g.d. rmse Estimator maan bias s.d. rmse
%1l 25.13 -74.87 5.646 75.081 x1 41.52 -58.48 7.378 58.942
mle 83.32 ~-16.68 44,193 47.234 mle 76.73 ~23.27 22.101 32.090
drl 106.12 6.12 57.681 58.005 drl 86.02 -13.98 25.424 29.016
boot 32.26 -67.74 2.237 68.111 boot 52.48 ~47.52 9.017 48.366
act 128.60 28.60 78,620 83.662 acl 96.75 -3.25 32.547 32.708
ac?2 96.33 -3.67 61,388 61.498 ac? 87.31 -12.69 28.624 31.311
ac3 101,87 1.87 75.572 75.595 ac3 88,26 -11.74 29.039 31.322
o 35.62 -64.38 7.8698 64.863 0 57.88 -42.12 9.786 43.243
cal 109.48 9.48 57.940 58.710 cal 93.33 ~-6.67 25,933 26.778
caZ 92.24 -7.76 46,918 47.556 caz 88.60 -11.40 23,676 26.276
ca3 93.%0 -6.10 48.028 48.414 ca3 89.03 -10.97 23.782 26.190
pojac 60.00 -40.00 13.165 42,111 pojac 90,61 -9.39 15.454 18.084
jacl 41.88 -58.12 9.174 58.845 jacl 66,98 -33.02 11.147 34.848
jacseq 62.17 -37.83 14.297 40,440 jacseqg 84.95 -15.05 20.771 25.652
jacint 58.88 -41.12 13.681 43.338 jacint 78.85 -21.15 19.455 28.735

Pr{inf mle) , mean Jacknife order = 0.031, 3,808
c, chl, ch2, ch3 = 0.347, 0.286 , 0.345 , 0.338

Pr{inf mle) , mean jacknife order = 0.000, 2,256
¢, chl, ch2, ch3 = 0,546, 0.507 , 0.542 , 0.539

R = 10
Egtimator mean bilas 8.d. rmse
x2 2.54
pet 94.87 =5:13 54.642 54,883
mlea 89.98 -10.02 46.376 47.446
drla 104.75 4.75 57.335 57.532
Oa 35.62 ~64.38 7.871 64.856
cala 108.20 8.20 57.569 58.150
caza 91.15 -8.85 46.319 47 .157
ca3a 92.76 ~7.24 46.960 47.514

ca,chla,ch2a,chia = 0.347, 0.286 , 0.346 , 0.339

R= 10

Egtimator mean bias s8.d. rmse
x2 4.11

pet 100.88 0.88 48,008 48.016
mlea 80.12 -19.88 19.218 27.649
dria 85.19 -14.81 23.460 27.742
Oa 57.88 -42.12 9.785 43,240
cala 92.52 ~7.48 24.000 25.138
ca2a 87.88 -12..12 21.985 25.103
calda 88.29 -11.71 22.087 24.998

ca,chla,ch2a,ch3a = 0.546, 0.509 , 0.544 , 0,540

R = 25

Estimatox mean bias s.d. rmee
x2 6.26

pet 100.41 0.41 47.373 47.375
mlea 90.31 -9.692 31.996 33.431
drla 100.96 0.96 54.172 54.181
Oa 35.57 -64.43 7.736 64.895
cala 104.40 4.40 54.346 54.524
caza 87.95 -12.05 43.902 45.525
ca3a 89.43 -10.57 44.728 45.961

ca,chla,ch2a,ch3a = 0.349, 0.293 , 0.355 , 0.348

R = 25
Estimator mean bias s.d. rmse
%2 10.45
pet 99.42 -0.58 28.889 28.895
mlea 82.43 -17.57% 16.469 24.080
drla 83.85 -16.15 18.917 24.874
Oa 57.87 -42.13 10.015 43.300
cala 91.19 ~8.81 19.623 21.511
ca2a 86.60 ~-13.40 18.155 22.563
ca3da 87.01 -12.99 18.225 22.382

ca,chla,ch2a,ch3a = 0.545, 0.509 , 0.545 , 0.541

R = 50

Estimatox mean bias s.d. rmse
x2 12,63

pet 99,24 -0.76 32.789 32,798
mlea 91,20 -8.80 28.550 29.877
drla 97.46 -2.54 52.389 52.451
Oa 35.48 -64.53 8.121 65.034
cala 100.89 0.89 52.600 52,607
caza 85.32 ~-14.68 42.695 45.148
ca3a 86.96 -13.04 43.620 45.528

ca,chla,ch2a,ch3a = 0.348, 0.298 , 0.359 , 0.352

R = 50

Estimator mean biasg 8.d. rmse
x2 21.00

pet 99.10 -0.90 19.977 19.997
mlea 84,37 -15.63 14.276 21,165
drla 82.96 -17.04 17.657 24.541
Qa 58.06 -41.94 9.709 43.049
cala 90.32 -9.68 18.386 20.778
ca2a 85.91 -14.09 17.058 22.122
cala 86.31 -13.69 17.138 21.936

ca,chla,ch2a,ch3a = 0.548, 0.515 , 0.551 , 0.547
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Table 3.7.4b

N = 100 : p ~ Beta(alpha,beta) : ep ~ U( 0.04, 0.08 } : ¢cv ~ U{ 0.55, 0.80 )
Number of simulations = 1000
t =15 t = 20
R=20 R=20
Egtimatoxr mean bias s.d. rmse Estimator mean bias 8.4, rmse
x1 53.06 ~46.94 7.651 47.555 %1 61,93 -38.07 7.829 38.869
mle 76.08 -23.92 11.391 26.496 mle 78.22 -21,78 9.050 23.586
drl 82.63 -27.37 12.800 21.578 drl 83.92 -16,08 10.079 18.978
boot 65.60 -34.40 8.879 35.529 boot 74.98 -25,02 8.763 26,511
acl 91.40 ~-8.60 17.943 19.897 acl 92.30 -7.70 14,540 16.451
ac2 86.73 -13.27 16,738 21.360 ac2 89.56 -10.44 13.988 17.456
ac3 87.12 -12.88 16.855 21,214 ac3 89.78 ~10.22 14.058 17,383
0 71.68 -28.32 9.476 29.864 o} 81.19 -18.81 9.251 20.963
cal 92.20 ~7.80 13.735 15.793 cal 94.95 =hi25 11.230 12.395
ca2 90.19 -9.81 13219 16.465 ca2 93 .72 -6.28 11.032 12.697
cal 90.36 -9.64 13.293 16.421 cal 93.80 -6.20 11.043 12.667
pojac 103.49 3.49 14.214 14.635 pojac 109.63 9.63 14.275 17.217
jacl 81.0L1 ~18.99 10.484 21.695 jacl 90.07 -9.93 9.996 14.087
jacseqg 96.13 -3.87 18.914 19.305 jacseq 100.50 0.50 18.338 18.344
jacint 88.51 -11.49 16.990 20.512 jacint 94.56 -5.44 15.393 16.328
Pr(inf mle) , mean jacknife order = 0.000, 1.929 Pr(inf mle) , mean jacknife order = 0.000, 1.620
¢, chl, ch2, ch3 = 0.671, 0.650 , 0.672 , 0.670 ¢, c¢ht, ch2, ch3 = 0.758, 0.742 , 0.757 , 0.755
R = io0 R = 10
Egtimator mean bias s.d, rmge Egtimator mean bias a.d., rmge
x2 5.35 x2 6.22
pet 99.64 -0.36 36.714 36,716 pet 99.51 -0.49 26.9240 26.945
mlea 78.30 -21.70 11.045 24,347 mlea 79.65 -20.35 8.838 22.183
drla 82.42 ~17.58 12.375 21.502 drla 83.86 -16.14 9.682 18.826
Oa 71.67 -28.33 9,456 29.870 Oa 81.22 -18.78 9.206 20.916
cala 91.98 -8.02 13.328 15.554 cala 94.69 -5.31 10.803 12.040
caza 89.95 ~-10.05 12.864 16.326 cala 93.62 -6.38 10.629 12.396
ca3a 90.12 -9.88 12.892 16.241 cala 93.69 -6.31 10.638 12.369
ca,chla,ch2a,ch3a = 0.671, 0.651 , 0.673 , 0.671 ca,chla,ch2a,ch3a = 0.758, 0.742 , 0.757 , 0.756
R = 25 R = 25
Estimator mean bias s.d. rmae Estimatoxr meaan bias s.d. rmse
X2 13,32 %2 15.43
pet 99.94 -0.06 22.562 22.562 pet 99.98 -0.02 18.181 18.181
mlea 80.92 -13.08 10.596 21.829 mlea 81.03 ~18.97% 8.450 20.769
drila 83.02 -16.98 11.600 20.561 drla 83.68 -16,32 9.198 18.734
Qa 71,94 -28.,06 9.693 29.692 Oa 81.07 -18.93 9.037 20,980
cala 92.65 =735 12.590 14.579 cala 94.56 -5.44 10.291 11.639
caza 90.61 =339 12.164 15.368 caza 93.48 -6.52 10,112 12.034
ca3a 90.78 -9.22 12.206 15.298 cada 93.56 ~6.44 10.120 11.994
ca,chla,ch2a,ch3a = 0.671, 0.646 , 0.668 , 0.666 ca,chla,ch2a,ch3a = 0.756, 0.740 , 0,755 , 0.754
R = 50 R = 50
Estimator mean bias 8.d. rmse Estimator mean bias s.d. rmse
%2 26.74 x2 30.65
pet 99.48 -0.52 16.772 16.780 pet 99.98 -0.02 13.508 13.508
mlea 82,32 -17.68 10.042 20.329 mlea 82.31 -17.69 8.528 19.635
drila 82.15 -17.85 11.450 21.231 drla 83.12 ~-16.88 9.332 19.287
Oa 71.83 -28.17 9.601 29.759 Oa 80.52 ~19.48 9.272 21.572
cala 91.76 -8.24 12.455 14.934 cala 93.91 -6.09 10.458 12.102
ca2a 89.78 -10.22 12.066 15.814 caza 92.84 ~7.16 10.301 12.542
ca3a 89.95 -10.05 12.104 15.731 ca3a 92,93 =7.07 10.319 12.508
ca,chla,ch2a,ch3a = 0.674, 0.652 , 0.675 , 0.673 ca,chla,ch2a,ch3a = 0.754, 0,740 , 0,755 , 0.754
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Table 3.7.5a

N = 100 : p ~ Beta{alpha,beta) : ep ~ U{ 0.08, 0.12 ) : cv ~ U{ 0.30, 0.55 )
Number of simulations = 1000
t =5 t = 10
R=20 R=20
Estimator mean bias s5.d. rmse Estimator mean bias 8.4, mse
x1 39.50 ~60.50 5.928 60.793 x1 61.49 -38.51 6.317 39.025
mle 91.54 -8.46 33.475 34.528 mle 88.85 -11,18 11,354 15.912
drl 112.01 12.01 43.487 45,114 drl 97.02 -2.98 13.174 13.506
boot 50.05 -49.95 7.381 50.488 boot 75.80 -24.20 7.515 25.337
acl 130.78 30.78 59.479 66.970 acl 104.96 4,96 18.056 18.725
ac2 98.74 -1.26 43,382 43.400 ac2 96.15 ~3.85 15,919 16.377
ac3 103.28 3.28 48,258 48.370 ac3 97.24 -2.76 16.232 16.465
(] 54,94 -45.06 8,079 45.777 0 82.57 -17.43 8.112 19.225
cal 117.25 ¥7.25 43,763 47.046 cal 107.17 0 AT b 4 14.022 15.750
caz2 100.63 0.63 35,581 35.586 ca2 103.15 3.15 13.117 13.490
ca3 102.60 2.60 36,305 36.398 ca3l 103.63 3.63 13.234 13.724
pojac 88.86 -11.14 13,502 17.507 pojac 118.47 18.47 13.855 23.091
jacl 63.77 -36.23 9,354 37.420 jacl 93,10 -6.90 9.277 11.562
jacseq 90.09 ~9.91 15.305 18.234 jacseq 109.47 9.47 18.321 20.625
jacint 85.96 -14.04 14.820 20.415 jacint 101,08 1.08 16.728 16.763
Pr{inf mle) , mean jacknife order = 0.000, 3.736 Pr{inf mle) , mean jacknife order = 0.000, 2.001
c, chl, ch2, ch3 = 0.451, 0.384 , 0.461 , 0.44% ¢, chl, ch2, ch3 = 0.680, 0.640 , 0.680 , 0.674
R = 10 R = 10
Estimator mean bilas s.d. mse Egtimatox mean bias 8.d. rmse
%2 3.94 X2 6.19
pet 98.41 -1.59 40,982 41.013 pet 99.43 -0.57 28.421 28.427
mlea 92.29 =771 24.523 25.706 mlea 89.71 ~10.29 10.538 14.727
drla 110.54 10.54 37.685 39.132 drla 96.78 -3.22 12.609 13.013
Oa 54,95 -45.05 8.050 45.762 Oa 82.57 -17.43 8.126 19.228
cala 115.76 15.76 38.019 41.155 cala 106.92 6.92 13.507 15.176
caza 99.44 -0.56 30.738 30.743 caza 102.93 2,93 12.685 13.019
ca3a 101.38 1.38 31.222 31.452 ca3a 103.43 3.43 12.762 13.215
ca,chla,ch2a,ch3a = 0.451, 0.384 , 0.461 , 0,450 ca,chla,ch2a,ch3a = 0.681, 0.641 , 0.681 , 0.675
R = 25 R = 25
Estimator mean bias 8.d. rmse Estimator mean bilas s.d. rmge
x2 9.89 %2 15.47
pet 399.6%9 -0.31 37222 37.213 pet 99.28 -0.72 16.695 16.711
mlea 94.41 -5.59 21.601 22.313 mlea 90.48 -9,52 9,721 13.606
drla 112.11 12.11 38.864 40.706 drila 96.20 -3.80 11.777 12,375
Qa 54.76 -45.24 8.097 45.964 Oa 82.52 -17.,48 7:932 19.200
cala 117.35 17.35 39.245 42.909 cala 106.30 6.30 12,621 14.108
caza 100.75 0.75 32.068 32.077 ca2a 102,35 2.35 11.829 12.060
cala 102.80 2.80 32.761 32.880 ca3a 102.84 2.84 11.938 12,268
ca,chla,ch2a,chl3a = 0.449, 0.375 , 0.450 , 0.439 ca,chla,ch2a,ch3a = 0.681, 0.645 , 0,685 , 0.679
R = 50 R = 50
Egtimator mean bias s.d. rmsea Egtimator mean bias B.d. rmee
X2 19.66 %2 30.84
pet 99.25 -0.75 21.666 21.679 pet 99.92 -0.08 13.132 13.132
mlea 94,42 <558 17.742 18.599 mlea 91.79 -8.21 9.219 12.343
drla 108.84 8.84 30.455 31.712 drla 96,46 -3.54 11.542 12.072
Oa 54.50 ~-45.50 8.044 46.202 Oa 82.75 -17.25 8.042 19.029
cala 114.07 14.07 30,822 33.882 cala 106.62 6.62 12.391 14.047
caza 98.04 -1.96 25.133 25.210 caza 102 .64 2.64 11.642 11.939
ca3a 95.97 -0.03 25.582 25.582 ca3a 103.12 3.12 11.726 12.134
ca,chla,ch2a,ch3a = 0.446, 0.377 , 0.452 , 0.441 ca,chla,ch2a,ch3a = 0.681, 0.644 , 0.683 , 0.678
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T e 3.7.5b
N = 100 : p ~ Beta(alpha,beta) : ep ~ U( 0.08, 0.12 } : cv ~ U{ 0.30, 0.55 )
Number of simulations = 1000
t = 15 t = 20
R=20 R=0
Estimatox mean biag g.d. rmsge Egtimator mean bias B.d. rmse
x1 74.72 -25.28 5.570 25.889 x1 82.41 ~17.59 5.161 18.331
mle 90.47 -9.53 6.899 11.761 mle 9%.71 ~-8.29 5,494 9.942
drl 95.68 =434 7.707 8.835 drl 95.66 -4.34 5.876 7.305
boot 89.09 ~10.91 6,190 12.540 boot 95.51 -4.49 5.476 7.084
acl 100,92 0.92 10.348 10.388 acl 99.68 -0.32 7.404 7.411
ac2 97.15 -2.85 9.738 10.146 ac2 97.74 -2.26 7.158 7.506
ac3 97.58 =242 9.814 10.107 ac3 97.95 -2.05 7.214 7.499
o 95.68 -4.32 6.587 7.876 (o} 101.20 1.20 5.783 5.907
cal 107.47 7.47 8.673 11,449 cal 107.40 7.40 6.822 10.068
caz2 105.99 5.99 B.428 10.337 caz 106.71 6.71 6,739 9.507
ca3 106.15 6.15 8.445 10.448 ca3 106,77 6.77 6.744 9.558
pojac 121.64 21.64 12.742 25.110 pojac 117.08 17.08 11.998 20.876
jael 104.28 4.28 7.594 8.719 jacl 107.61 7.61 6.666 10.116
Jjacseq 110.08 10.08 13.984 17.236 jacseq 109.05 9.05 9.280 12.960
Jacint 106.30 6.30 10.537 12,277 jacint 108.02 8.02 7.389 10.908
Pr{inf mle) , mean jacknife order = 0.000, 1.355 Pr{inf mle) , mean jacknife order = 0.000, 1.037
c, chl, ch2, ch3 = 0.806, 0.783 , 0.805 , 0.802 c, chl, ch2, ch3 = 0,875, 0.863 , 0.875 , 0.874
R = 10 R= 10
Estimator mean biasg s.d. mse Estimator mean bilas s.d. rmse
x2 7.48 x2 8.27
pet 99.88 ~0.12 19.983 19.983 pet 99.73 -0.27 15.544 15.546
mlea 90.89 -9.11 6.628 11.268 mlea 91.99 -8.01 5.399 9.659
drla 95.59 -4.41 7.444 8.654 dria 95.69 ~4.31 5.762 7,198
Oa 95.66 -4.34 6.512 7.823 Oa 101.26 1.26 5,737 5.874
cala 107.41 7.41 8.376 11.180 cala 107.44 7.44 6.674 9.996
caza 105.89 5.89 8.144 10.051 caza 106.78 6.78 6.583 9.451
ca3a 106.07 6.07 8.152 10.165 ca3a 106.84 6.84 6.592 9.499
ca,chla,ch2a,ch3a = 0,806, 0.784 , 0.805 , 0.803 ca,chla,ch2a,ch3a = 0.875, 0.862 , 0,875 , 0.873
R = 25 R = 25
Egtimator mean bias s8.4. rmae Egtimator mean bias s.4d. rmse
x2 18.48 x2 20.50
pet 99,94 -0.06 13.677 13.677 pet 100.81 0.81 10.543 10.575
mlea 90.74 ~9.286 7.049 11.639 mlea 92.31 =-7.69 5.26%9 9.319
drila 94.64 -5.36 7.798 9.461 drla 95.60 ~-4.40 5.572 7.102
Oa 94.60 -5.40 6.863 8.731 oa 101.38 1.39 5.659 5.826
cala 106.32 6.32 8.750 10.7%5 cala 107.32 T.32 6.433 9.745
ca2a 104.81 4.81 8.509 9.775 ca2a 106.692 6.69 6.344 9.217
ca3a 104.99 4.99 8.518 9.869 cala 106.76 6.76 6.358 2.279
ca,chla,ch2a,ch3a = 0.800, 0.782 , 0.804 , 0.802 ca,chla,ch2a,ch3a = 0.877, 0.866 , 0.878 , 0.877
R = 50 R = 50
Estimatox mean bias g.d. rmsae Egtimator mean bias s.d. rmee
X2 37.37 x2 41.14
pet 99,77 -9,23 9.723 9,726 pet 100.14 0,14 8.147 8.148
mlea 91.78 -8.22 6.279 10.346 mlea 92.44 ~7.56 5.150 9.148
drla 95.33 -4.67 6.983 8.400 drla 95,57 -4,43 5.410 6.990
Oa 95.50 ~4.50 6.599 7.990 Oa 101.24 1.24 5.561 5.696
cala 107.11 b i % 7.860 10.600 cala 107.34 7.34 6.241 9.634
ca2a 105.64 5.64 7.660 9.512 caza 106.69 6.69 6.152 9.091
ca3a 105.81 5.81 7.679 9.631 ca3a 106.75 6.75 6.167 9.142
ca,chla,ch2a,ch3a = 0.805, 0.784 , 0.806 , 0.803 ca,chla,ch2a,ch3a = 0.875, 0.863 , 0.875 , 0.874
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Table 3.7.6a

N =100 : p ~U{ 0, 0.16) : E(p) = 0.08 : sqrt[Var(p)i/E(p) = 0.5774

Number of simulations = 1000

t = 5 t = 10

R=20 R=20
Egtimator mean bias 8.d. rmge Egtimator mean bias 8.d. mse
x1 32.44 -67.56 4.510 67.706 x1 51.70 -48.30 5.086 48.572
mle 83.09 -16.91 35.492 39.317 mle 78.57 -21.43 11.588 24.363
drl 102.80 2.80 46.371 46.455 drl 86.01 -13.99 13.362 19.343
boot 41.33 -58.67 5.789 58.952 boot 64.19 ~35.81 6.389 36.374
acl 120.86 20.86 63.997 67.312 acl 92.88 -7.12 17.699 19.079
ac2 91.23 -8.77 48.615 49.400 acz2 84,67 ~15.33 15.402 21.731
ac3 95.56 ~-4.44 58.350 58.519 ac3 85.65 -14.35 15.681 21.259
o 45.49 ~54.51 6.427 54.888 o 70.19 -29.81 7.100 30.649
cal 107.11 Tl 46.654 47.193 cal 94.69 -5.31 14.201 15.161
ca2 91.29 -8.71 38.065 39.049 ca2 90,80 -9.20 13.240 16.121
ca3 92,98 -7.02 39,085 39.711 ca3 91,26 -8.74 13.323 15.936
pojac 74.64 -25,36 11.693 27.925 pojac 103.01 3.01 13.154 13.494
jacl 52.99 -47.01 7.659 47.628 jacl 79.66 -20.34 8.460 22.028
jacseq 76.15 -23.85 13.895 27.606 jacseq 95,57 -4.43 17.518 18.070
jacint 72.40 -27.60 13.428 30.696 jacint 87.79 ~-12.21 16.026 20.147

Pr{inf mle) , mean jacknife order = 0.001, 3,723 Pr(inf mle) , mean jacknife order = 0.000, 2.056

c, c¢chl, ¢h2, c¢h3 = 0.421, 0.352 , 0.425 , 0.416 ¢, chl, ch2, ch3 = 0.648, 0.60% , 0.649 , 0.644

R = 10 R = 10
Estimator mean bias s.d. mse Estimator mean bias 8.d. rmee
x2 3.14 X2 5.05
pet 103.40 3.40 58.831 58.929 pet 101.92 1.92 33.834 33.888
mlea 87.47 -12.53 28,244 30.897 mlea 81.32 -18.68 11.408 21,885
drla 101.37 137 43.967 43.988 drla 86.00 ~14.00 12.963 19.07%
Oa 45.48 -54.52 6.412 54.898 Oa 70.21 -29.79 7.103 30.628
cala 105.75 5.75 44,266 44 .638 cala 94.69 ~5.31 13.819 14.806
ca2a 90.22 -9.78 36.486 3%.775 ca2a 90.81 -9.18 12.915 15,851
ca3a 91,96 -8.04 37.809 38.655 ca3a 91.25 ~8.75 12.994 15.663

ca,chla,ch2a,ch3a = 0.420, 0.354 , 0.427 , 0.417 ca,chla,ch2a,ch3a = 647, 0.609 , 0.648 , 0.644

R= 25 Re= 25
Esgtimator mean bias s.d. rmse Estimator mean bias 8.d. rmse
X2 8.10 X2 12.91
pet 99.88 ~0.12 33.742 33.743 pet 99.50 -0.50 23.299 23.305
nlea 89.82 -10.18 23.650 25,749 mlea 82.33 -17.67 10.864 20.741
drla 101.24 1.24 42.967 42.985 drila 84.53 -15.47 11.978 19.565
Oa 45.45 -54.55 6.520 54.941 Oa 69.55 -30.45 6.835 31.212
cala 105.62 5.62 43.250 43,613 cala 93.10 -6.90 12.756 14.504
caza 380.09 -9.91 35,090 36,464 ca2a 89.29 -10.71 11.935 16.038
ca3a 81.73 -8.29 35.623 36.575 ca3da 89.74 -10.26 11.9%4 15.782

ca,chla,ch2a,ch3a = 0.420, 0,350 , 0.422 , 0.412 ca, chla, ch2a,ch3a = 647, 0.613 , 0.653 , 0.648

R = 50 R = 50
Estimator mean bias s.4. rmse Estimator mean bias s.d. rmee
%2 16.19 %2 25.76
pet 99.31 -0.69 24.791 24.801 pet 99.60 -0.40 16.670 16.675%
mlea 90.48 -9.52 19.390 21.600 mlea 84.83 ~15.17 10.135 18,240
drla 97.25 -2.75 33.498 33.611 drla 84.81 -15.19 10.997 18.750
Qa 45.20 -54.80 6.424 55.178 Oa 69.70 ~30.30 6,424 30.974
cala 101.58 1.58 33.847 33.884 cala 93.43 -6.57 11.751 13.462
ca2a 86.85 -13.15 27.855 30,803 caza 89.61 -10.39 11.034 15,157
ca3a 88.52 -11.48 28.619 30.834 cala 90.06 ~3.94 11.087 14.892

ca,chla,ch2a,ch3a = 0.418, 0.354 , 0.427 , 0.417 ca,chla,ch2a,ch3a = 0.646, 0.610 , 0.650 , 0.646
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Table 3.7.6b

N =100 : p ~ U( 0, 0.16) : E(p) = 0.08 : sqgrt[Var(p)l/E(p) = 0.5774

Number of simulations = 1000

t = 15 t = 20

R =0 R=0
Estimator mean bias s.d. mse Estimator mean bias 8.4. rmee
x1 62.94 -37.06 5.041 37.405 x1 71.08 -28.92 4.479 29.268
mle 78.77 =21.23 7.575 22.540 mle 80.82 -19.18 5.664 19.997
drl 83.72 -16.28 8.525 18.374 drl 85.05 -14.95 6.230 16.199
boot 75.82 -24.18 6.172 24.958 boot 8§3.42 ~-16.58 5.330 17.419
acl 88.59 -11.41 11.476 16.182 acl 89.41 ~10.59 8.233 13.415
ac2 84.97 -15.03 10.803 18.508 ac2 87.52 -12.48 8.021 14.837
ac3 85.38 -14.62 10.882 18.226 ac3 87.72 -12.28 8.050 14.682
o] 81.78 -18.22 6.803 19.449 o] 88.93 -11.07 5.844 12.514
cal 94.08 =5,95 9.554 11.255% cal 95.86 -4.14 7.232 8.333
ca2 92.56 -7.44 9.305 11,915 ca2 95.19 -4.81 7.140 8.607
cal3 92.74 -7.26 9.336 11.829 ca3 95.26 -4.74 7.146 8.576
pojac 107.36 7.36 12,925 14,874 pojac 107.75 T.75 11.872 14.178
jacl 89.92 -10,08 8.139 12.952 jacl 95,78 -4.22 6.958 B.138
jacseq 96.28 ~3.72 14.260 14.737 jacseq 98.52 -1.48 11.372 11.469
jacint 91.92 -8.08 10.884 13.557 jacint 96.78 -~3.22 8.764 9.336

Pr(inf mle) , mean jacknife order = 0.000, 1.429 Pr(inf mle) , mean jacknife order = 0.000, 1.181

&, chl, ch?, ohd =0.772, 0.755 ., 0777 , 0.795 c, chl, ¢h2, ch3 = 0.850, 0,837 , 0.850 , 0.849

R = 10 R= 10
Estimator mean bias s.d. rmse Estimator mean bias 8.d. rmge
%2 6.35 x2 7.09
pet 99.40 -0.60 27.989 27.996 pet 100.02 0.02 21.859 21.859
mlea 80.07 -19.93 7.725 21.374 mlea 81.56 ~-18.44 5.611 19.271
drila 83.66 -16.34 8.465 18.402 drla 85.04 -14.96 6.111 16.158
Oa 81.78 -18.22 6.815 19.448 Oa 88.95 -11.05 8. 737 12.466
cala 94,00 -6.00 9.493 11.232 cala 95.85 -4.15 7.067 8.197
ca2a 92.50 ~7.50 9.231 11,893 cala 95.18 -4.82 6.963 8.469
ca3a 92.68 -7.32 9.242 11.790 ca3a 95.23 -4.77 6.983 8,455

ca,chla,ch2a,ch3a = 0.772, 0.755 , 0.778 , 0.775 ca,chla,ch2a,ch3a = 0.850, 0.837 , 0.850 , 0.849

R = 25 R = 25
Estimator mean blas 8.4, rmee Estimator mean bias s.d. rmse
x2 15.82 %2 17.83
pet 100.55 0.55 17.111 17.120 pet 99.77 -0.23 14.789 14.790
mlea 82.61 -17.39 7.202 18.821 mlea 82.55 -17.45 6.138 18.494
drla 84,74 -15.26 7.818 17,144 dria 85.06 -14.94 6.701 16.377
Oa 82.76 ~17.24 6.232 18.334 Oa 88.98 -11.02 6.375 12.727
cala 95.19 -4.81 8.786 10.017 cala 95.88 -4.12 7.413 8.743
ca2a 93.66 -6.34 8.522 10.622 ca2a 95.22 -4,78 7.625 9.001
ca3a 93.85 -6.15 8.548 10.532 ca3a 95.29 -4.71 7.633 8.968

ca,chla,ch2a,ch3a = 0.776, 0.753 , 0.776 , 0.773 ca,chla,ch2a,ch3a = 0.849, 0.837 , 0,850 , 0.849

R = 50 R = 50
Estimator mean bias s.d. rmse Egtimator mean bias B.d. rmse
x2 31.74 %2 35,76
pet 99.89 -0.,11 13.293 13.293 pet 99.23 =073 10.608 10.636
mlea B3.67 =16:33 7.210 17.854 mlea 83.33 -16.67 5.672 17,606
drila 84.3% -15.65 7.592 17.397 drila 85.03 ~14.97 6.039 16.144
Oa 82,43 -17.57 6.186 18.625 Oa 88.91 -11.09 5.719 12,480
cala 94.79 ~5.21 8,514 9,983 cala 95,87 -4.,13 6.944 8.081
caza 93,28 -6.72 8.290 10.674 ca2a 95.17 -4.83 6.883 8,406
ca3a 93.45 -6.55 8.316 10.586 cala 95,25 ~4.78 6.886 8.367

ca,chla,ch2a,ch3a = 0,776, 0.753 , 0.776 , 0.773 ca,chla,ch2a,ch3a = 0.850, 0.836 , 0.849 , 0,847
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Chapter 4 : Estimation Under The Capture-Recapture Model M, :
Continuous Time Sampling Procedure

§ 4.1 : Introduction

Within this chapter a new estimator of population size is proposed for a
continuous time sampling procedure. The population in question is assumed to behave
according to a continuous time analogue of the standard capture-recapture model M, .
This chapter concentrates on the standard estimation problem when no plants are used.

The sampling procedure considered here is identical to the one of chapter 2. But
whereas within chapter 2 it was assumed that each animal in the population behaved in
exactly the same way, this strong condition is no longer imposed. As was the case in
chapter 3 however, a link between the behaviour of the animals is still needed and this
is described below.

The estimation problem considered here has previously been studied in a
software reliability context by Chao, Ma and Yang(1993) and more recently, in a
capture-recapture context, by Yip and Chao(1996).

§ 4.2 : Sampling Procedure, Assumptions. Some Notation and the Sufficient Statistics

It is assumed that one animal is seen at a time and that animals seen for the first
time receive a unique tag so that they may be recognised if subsequently recaptured.
Sampling stops after a fixed predetermined amount of time 7. It is assumed that there
are N animals in the population and that each animal is seen according to a Poisson
process with rate A;,i=1, 2, ..., N. It is further assumed that 4, =k.u,, for i=1,2, ..,
N, where k is a constant and the u, form a random sample from some probability
distribution with c.d.f. F(u), u €[0,1]. Detection times for different animals are assumed

to be independent.

Let
X = number of distinct animals seen in time (0, 7).
Z = total number of sightings made in time (0, 7).
X, = number of sightings of the ith animal, i=1,2,..,N.
N
fi= ZI(Xi =k) = number of animals seen exactly k times, k=0, 1,2, ....
i=1
m = the most number of times any one particular animal was seen.
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occasion, i=1,2,.., N.
The set S, ={s,:k=1,2,..,x}, where s, €{1,2,3,...,N} for all k, is used to denote the

set of the indices of the x distinct animals seen during the sampling period.

Nayak(1991) showed, in his proposition 2.2, that (x ; X,,X,,..... ,X, ) or equivalently
(m; f,f,,......,f,, ) are complete and sufficient for the parameters, namely A,,4,,...., A,
and N.

§ 4.3 : A New Coverage Adjusted Estimator for the Model M,

Under this sampling procedure, no usable information is gained from observing
N
the value of z alone, i.e. even if one were able to know the value of 1'2 A, exactly this
i=1
would not aid estimation of population size N. (This is also true when looking at the
model M, : under the model M,, one obtains the same likelihood function for N from
both the probability distribution of x given z and from the joint probability distribution
of x and z, see chapter 2 ). For this reason the approach taken here is to derive an
estimate of population size from the conditional distribution of the frequencies given Z.
This is essentially equivalent to treating the continuous time data set as if it were
obtained from a discrete time sampling experiment with z sampling occasions, where z
is viewed as a known constant.
Consider the estimator
N= 2oy

Under the assumptxons described above, it is straightforward to show that Nwould be

(4.1)

an unbiased estimator of population size N if the capture probabilities of the animals
seen during the experiment were known exactly. However since these capture
probabilities are clearly not known exactly the approach taken here is to estimate the p,
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and by doing so obtain an estimator of N by substituting these estimates of capture
probability into equation (4.1).

It is now required to estimate the capture probabilities of the animals which
were seen during the experiment :

One could use the same approach that Overton(1969) did in the discrete time
version of the problem, and use the fact that, under the model, X;|Z ~ Bin(z, p, ) Based

on this distribution the maximum likelihood estimate of the capture probability of

£} o
=

. » - . x' . . . ~ . .
animal i is given by =L On substituting the estimates p" into equation (4.1) one
z

may obtain the estimator ﬁTO, defined by
R, = :

- jes, 1 — [1 - f)gl)]z

The P are intuitively reasonable estimates of capture probability. This method
of estimating capture probability, however, as was the case in chapter 3, does not make
full use of all of the available information. The main problem with using the p" is that
the sum of these estimates of capture probability is always equal to 1. Whereas they
should sum to 1 only if the entire population was seen during the experiment, that is if
x=N . If x <N then the sum of the capture probabilities of the animals seen during
the sampling period must clearly be less than 1. Hence the estimates p.” always tend to
overestimate capture probability. In order to obtain better estimates of capture
probability one may proceed as follows :

The above discussion implies that, firstly, one can argue on intuitive grounds

that the estimates of capture probability should be proportional to Z‘.i_’ but that the sum
Z

of these estimates of capture probability should be strictly less than 1, unless x =N.

The sum of the capture probabilities of the x animals seen during the experiment is in

fact the quantity which has previously been referred to in the literature as 'sample
N

Y AI(X; > 0)

coverage' : defined by C==—
2 A
i=1

recapture literature, see Seber(1982). The fact that the sum of the capture probabilities

. This quantity is well known in the capture-

of the animals seen during the experiment is given by C, sample coverage, may be seen
directly .
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A good estimator of sample coverage was presented in a software reliability context by
Chao, Ma and Jeng(1993) : a derivation of the estimator is outlined in appendix 5.

Explicitly a point estimate of sample coverage is given by sl -fi
z

Now returning to the question of how to estimate the p, for i € S,, one may proceed as

follows :
It is required that p; o< L
z
= p= k2L, where k is a constant. 4.2)
yA
For the reasons stated above we now set
Zﬁi = é =1- 5‘
ieS, Z
X f, ;
= ky L=1--1 using (4.2)
ie§, z z
= k=1t
zZ

=> estimate the p, by P e (I - ﬁjﬁ, for ie8,.
Z)2

These estimates of capture probability are now substituted into equation (4.1) to
produce the coverage adjusted estimator N_, : defined by

A 1
“ ieS, 1 = []. = f)§2) ]2
_ 1
ieS, 1 [l ! (1 = ELJZELT
Z)Z
Z f‘

§ 4.4 : Simulation Study

The results presented in this simulation study concentrate on situations in which
the capture probabilities of the animals are obtained via a scaled random sample from a
Beta distribution. For each value of N, results are also given for the situation in which
each animal in the population is equally likely to be caught. Explicitly results are
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presented for situations in which the capture probabilities of the animals are obtained as
follows :
Case 1: A =c 1], 2.8 N
Case 2 ; A =60 where u,,u,,Uq,.0000 ,uy are a random sample
from B(alpha, beta) : alpha > 0, beta > 0.

N
The constant ¢ in each case is a normalising constant used to ensure that zﬂ,i =1.

i=l1

1

N
So that for case 1 Z)Li=1 =. Ne=1 = c=% =5 pi=/’L.=%.

i=1
1
=A=cu = ¢=

N N %
Z A; z:.“j
=

For each case 1000 simulations were generated where each simulation ended

Similarly forcase 2 p, =

when the fixed predetermined stopping time 7 was reached. On each resulting data set
the estimates produced by each of the estimators were calculated and at the end of the
1000 simulations the mean and root mean square error of each estimator was
determined. For each version of case 2, a different random sample was used to obtain a
different set of capture probabilities in each of the 1000 simulations. Results are given
for populations of size 100 and 400, for various stopping times. For each value of N
four stopping times were considered. For N=100 results are given for 7 = 41, 69, 139
and 230 : these are the times for which in the homogeneous case, case 1, one would
expect to see the proportions 0.33, 0.5, 0.75 and 0.9 of the population. For N=400
results are given for 7 = 89, 143, 277 and 644 : these are the times for which in the
homogeneous case, case 1, one would expect to see the proportions 0.2, 0.3, 0.5 and 0.8
of the population. Results are conditional upon seeing at least one animal more than
once during sampling, i.e. results are conditional upon the maximum likelihood
estimator N, of chapter 2, producing a finite estimate. In each table 'cv' represents the
coefficient of variation of the population ; 'average D' gives the average number of
distinct individuals seen. The stopping time 7 is denoted by t.

Results are given for the following estimators :

mle = IQT the maximum likelihood estimator described in chapter 2.
A x . £ .
chao = N, = E + —é— ’)/2 is the estimator introduced by Chao, Ma and Yang(1993),
~ N’ - -
where §% = max{—fz ii—-Df, -1, O}.
Z 7
& X . A
Np = —é— is the estimator proposed by Darroch
and Ratcliff(1980).
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i

o z—1
njl N, =x +( )f, a first order jackknife estimator - when z is assumed to be a
zZ

constant, this estimator is equivalent to the first order jackknife estimator of

Burnham and Overton{1978, 1979).
again under the assumption that z is a pre-chosen constant, this estimator is

l
Z

bov

equivalent to the interpolated jackknife estimator of Burnham and
Overton(1979). This interpolated jackknife is obtained as follows. When the

selection procedure of Burnham and Overton(1978) chooses the first order

jackknife then N i is equal to N 11- When the selection procedure chooses the

Jjackknife of order k, for k = 2, 3 or 4, then lQT i is a weighted average of the

jackknives of orders k and k-1. When the selection procedure rejects the fourth
order jackknife, N is equal to N,.

[f
Z>
I

and ca represents the coverage adjusted estimator.

Discussion

In case 1 the maximum likelihood estimator N for homogeneous populations,
from chapter 2, is seen to perform best when both mean and mean square error are
considered together. However N becomes unacceptably negatively biased in most
heterogeneous situations.

The estimators f)?’, as mentioned above, tend to produce estimates which
overestimate the capture probabilities of the animals seen during the sampling period.
For this reason the estimator N, which directly incorporates the p{", has a tendency to
underestimate population size. When sampling for a small amount of time the p!" are
particularly positively biased. The reason for this is that the sum of the p{" is always
equal to 1, whereas, as proved above, the sum of the capture probabilities of the animals
seen during the experiment should sum to the random quantity C, sample coverage,
which is equal to 1 only if x = N. For small sampling times one would expect the sum
of the capture probabilities of the sighted animals, or equivalently the value of C, to be
small - 'a lot less than 1'. Conversely for longer sampling times one would expect the

A1)

value of C to be large - 'a lot closer to 1'. This is why the p,”’ overestimate more for
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small sampling times and less for longer sampling times. A direct consequence of the

behaviour of the p® is that the estimator N, tends to be extremely negatively biased

for small sampling times and less negatively biased for longer sampling times. Since
IA\I A(2)

incorporates the estimates p;”’, which are much more reasonable estimates of
capture probability over all sampling times, this estimator is able to perform well,

ca
notably in terms of mean, for sampling times both long and short.

Given the above discussion, it is not surprising to observe from the following
tables that the bias of N « 18 usually much smaller than that of No : particularly for the

smaller sampling times considered. As one might also have expected No and I:Ica are
seen to perform in a very similar way for the longer sampling times. This is explained

by the fact that, for each i, the value of p* tends towards that of p\” as sampling time

e ; f
is increased ~ since 1--L—1 as 7,z —> . In terms of root mean square error, due
z

to the fact that ﬁca generally possesses a much more realistic mean, the coverage
adjusted estimator I:Ica is seen on the whole to clearly out perform the Overton-type
estimator No.

The comparison between the first order jackknife estimator IQI,, and the
interpolated jackknife estimator N ; 1s also quite straightforward. As one would expect
ﬁj generally has a better mean than IQI” whilst possessing a larger variance. This
results in N ; being a far better alternative to N 5 for the smaller stopping times - but
that for the longer stopping times N 1> due to its smaller variance, can occasionally

A

improve upon N.

; in terms of mean square error. In terms of overall performance

though the interpolated jackknife estimator N ; 18 seen to be preferable to the first order
jackknife estimator N 14

For the smaller sampling times N « generally possesses a very good mean value
whereas a feature of N j 1s that in this situation it can be extremely negatively biased.
For longer sampling times N ; and Nm, in situations where the level of heterogeneity is

not extreme, have similar bias. However in situations where the coefficient of variation
is very large, the negative bias of ﬁj tends to be slightly less than that of N_ . The

comparison between N; and N in terms of mean square error is confused somewhat

by the way in which mean square error works as a loss function. It has previously been
discussed, see chapter 3, that since mean square error rewards negative bias to quite a
large extent it is not an ideal loss function - and should not be used on its own. That is
in deciding between which of the two estimators N ; and N « 18 performing best overall

one must consider both mean and mean square error - or equivalently both mean and
variance. For this reason the choice between the estimators N; and N is not

straightforward and is particularly difficult due to the fact that these two estimators each
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behave in a very different way. For the smaller stopping times considered in the tables
it is seen that Nca usually has a very good mean but possesses a relatively large

variance whereas N ; tends to be extremely negatively biased whilst possessing a small

variance. For these small stopping times, the estimator N_, in terms of mean squate

error, is generally seen to be a better alternative to N j- In situations of this type where
IQIca has a larger mean square error than N ; it almost always exhibits a much more
realistic mean value. For the longer sampling times, when the coefficient of variation is
very large, N ; generally possesses a slightly better mean than ﬁlm and consequently
can also have a slightly smaller mean square error.

For long stopping times, when the heterogeneity is mild, an important feature of
N, is that it tends to possess a good mean value. This is in contrast to the behaviour of
the other estimators designed for heterogeneous populations. That is the estimators N 14
N ; and I'\\Ica have a tendency to overestimate when the sampling time is long and the
coefficient of variation is less than about 0.4. However, for reasonably large values of
7, when the coefficient of variation is above about 0.4, the negative bias of N, tends to
be greater than that of IQIH, N ; and ﬁca.

The comparison between the coverage adjusted estimator IQICa and the estimator
of Chao and Yang(1993) is quite straightforward. Only when the coefficient of
variation is very small and the sampling time is long does Nl perform better than N’ca ;
in this situation ﬁlcn is positively biased and its variance is larger than that of the almost
unbiased N,. For small to moderate sampling times, the variance of N, is smaller than
that of l\AII and consequently, even though when the heterogeneity is mild Nl can be
less biased, the coverage adjusted I:Icn tends to posses a mean square error smaller than
that of ﬁ]. Finally, for large values of 7, when the coefficient of variation is above
about 0.4, the coverage adjusted estimator Nm is generally less biased and also tends to
have a mean square error smaller than that of N i

Given the above evidence it is clear that the coverage adjusted estimator N,
may at least be considered as a viable alternative to the estimator proposed by Chao, Ma
and Yang(1993) and to the jackknife estimators. Furthermore it is believed that,
particularly due to the performance of the estimators for the smaller stopping times, one
should always use the coverage adjusted estimator N_ in preference to either the

jackknife estimators or the estimator of Chao, Ma and Yang(1993).
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Table 4.4.1a

N=100| t=41 [B(p)=033]| t=69 [E({p=05] {t=139 [B@)=075]|t=230 [E(p)=09]
| | | | { | | I
average D =34 average D = 50 average D =75 average D =90
method | mean | rmse | method | mean | rmse | method { mean | rmse method | mean | rmse
Casel | mle 115 | 59.74 | mle 103 | 20.90 | mle 100 8.25 | mile 100 3.87
const | chao 125 | 70.68 | chao 108 | 26.78 | chao 103 | 10.49 | chao 101 4,79
=000 | njl 60 40.87 { nj1 84 18.19 | njl 110 | 12.56 | njl 113 | 14.29
bov 80 30.01 | bov 100 | 22.80 | bov 111 15.98 | bov 113 | 14.32
O 50 50.31 | O 72 29.11 | O 100 631 |O 109 9.78
ca 125 | 64.89 | ca 115 | 26.78 | ca 115 | 18.00 | ca - 113 | 14.05
average D = 32 average D = 46 average D = 66 average D =78
wmethod | mean | rmse | method | mean | rmse | method | mean | rmse methed | mean | rmse
Case2 | mle 82 35.85 | mle 79 25.38 | mle 80 20.66 | mle 83 17.15
a=1.0 | chao g2 42.76 | chao 86 23.52 | chao 87 15.92 | chao 90 11.98
b=1.0 | njl 55 45.63 | njl 75 26.63 | njl 94 9.57 | njl 99 6.49
o058 hoy 70 | 35.82 | bov 85 24.94 | bov 96 12.19 | bov 100 | 9.40
) 47 5391 |0 65 36.14 | O 86 1541 | O 94 7.79
ca 92 34.31 | ca 91 18.38 | ca 95 945 |ca 97 6.53
average D = 33 average D = 48 average D =72 average D = 85
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 101 | 48.70 | mle 92 18.96 | mle 92 11.47 | mle 92 8.69
a=1.0 | chao 110 | 58.04 | chao 98 21.99 | chao 95 10.87 | chao 95 7.13
b=0.25] njl 58 42.64 | njl 80 21.34 | njl 103 8.33 | njl 106 8.77
ev=033 | hoy 76 31.94 | bov 93 22.04 | bov 104 | 11.35 | bov 107 9.28
O 49 51.63 | O 69 3179 1 O 94 882 |O 102 5.18
ca 111 | 51.88 | ca 105 | 19.66 | ca 106 | 11.25 | ca 106 7.93
average D = 33 average D = 47 average D = 69 average D = 82
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 93 42,90 | mle 87 20.58 | mle 86 15.36 | mle 88 12.36
a=1.0 | chao 103 | 51.34 | chao 93 21.68 | chao 91 12.79 | chao 93 9.25
b=0.5 | njl 57 43.84 | njl 78 23.27 | njl 99 7.67 | njl 103 6.74
ov=045 | hoy 74 | 33.61 | bov 90 | 22.77 | bov 101 | 11.33 | bov 103 | 8.73
O 48 52.56 | O 67 3342 | O 90 11.57 | O 99 5.02
ca 103 | 44.40 | ca 99 17.63 | ca 101 8.74 |ca 102 5.85
average D = 32 average D =47 average D = 67 average D = 80
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 86 37.00 | mle 83 22.97 | mle 33 18.59 | mle 85 15.26
a=1.0 | chao 95 40.25 | chao 89 22.22 | chao 88 14,92 { chao 91 11.02
b=0.751 njl 56 44,96 | njl1 76 25.05 | nji 96 8.80 | njl 100 6.34
=032 | hov 71 | 35.13 | boy 86 | 24.02 | bov 97 | 11.00 | bov 101 | 8.19
8] 47 534010 66 3487 | O 87 13.98 | O 96 6.55
ca 95 35.86 | ca 95 17.55 f ca 97 9.01 |ca 99 5.95
average D =31 average D =43 average D = 62 average D = 74
method | mean | rmse | method | mcan | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 70 39.45 | mle 69 33.43 | mle 72 28.34 | mle 71 23.06
a=1.0 | chao 80 | 41.08 | chao 78 27.64 | chao 83 19.72 | chao 88 13.83
b=3.0 | njl 52 A48.35 | njl 70 31.42 | njl 87 14,78 | njl 95 8.55
ev=077 | oy 65 39.60 | bov 77 28.36 | bov 90 16.34 | bov 96 10.04
O 44 56.06 | O 60 40.13 | O 80 21.14 | O 89 12.15
ca 80 3423 | ca 81 23.30 | ca 87 15.12 | ca 92 10.03

151




Table 4.4.1b

N=100| t=41 [E(p)=033]] t=69 [E{(p)=05] |t=139 [E(p)=075]]|t=230 [E()=0.9]
| | | | | | | |
average D = 29 average D =41 average D = 57 average D = 66
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
CaseZ | mle 61 43.84 | mle 61 40.46 | mle 64 36.61 | mle 68 31.90
a=0.5 | chao 69 41.35 | chao 68 34.96 | chao 72 28.94 | chao 77 23.76
b=1.0 | njl 49 51.01 | njl 64 36.38 | njl 78 23.46 | njl 83 17.91
ov=089 | hoy 59 | 44.45 | bov 69 | 33.79 | bov 80 | 23.30 | bov 85 | 18.20
] 42 58.13 | O 56 4399 | O 72 2894 | O 79 21.79
ca 70 36.86 | ca 72 30.43 | ca 77 24.41 ) ca 81 20.10
average D = 31 average D = 44 average D = 63 average D = 74
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 75 39.84 | mle 72 30.63 | mie 74 27.04 | mle 78 22.67
a=0.75 | chao 84 | 40.32 | chao 79 | 26.97 | chao 81 20.99 | chao 85 16.02
b=1.0 | njl 53 47.42 | njl 1 30.05 { njl 88 14.64 | nj1 93 9.30
v=0.70 1 bov 67 38.06 | bov 78 27.53 | bov 89 15.74 | bov 95 11.51
O 45 553210 62 3890 | O 80 20.61 | O 89 12.58
ca 84 35.81 | ca 84 21.39 | ca 88 14.74 | ca 91 10.64
average D = 33 average D = 48 average D =70 average D =83
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 94 40.71 | mle 88 21.42 | mle 88 14.25 | mle 90 11.04
a=1.5 | chao 104 | 52.74 | chao 95 24.59 | chao 93 11.95 ] chao 95 7.91
b=1.0 | njl 57 43.69 | njl 79 22.86 | njl 100 7.70 | njl 105 8.07
ov=044 | hoy 75 32.84 | bov 90 22,19 | bov 102 | 11.96 | bov 106 | 10.49
0 48 524510 68 33.10 1 O 91 10.74 | O 100 4,89
ca 104 | 42.85 | ca 101 | 19.92 | ca 103 9.25 |ca 104 6.95
average D = 33 average D =49 average D =73 average D = 88
method | mean | rmse | method | mean | rmse [ method | mean | rmse method | mean | rmse
Case2 | mle 106 | 59.40 | mle 97 18.67 | mle 95 9.28 | mle 96 5.68
a=3.0 | chao 116 | 69.68 | chao 103 | 23.72 | chao 99 10.19 | chao 99 5.42
b=1.0 | njl 59 42.04 | njl 82 19.93 | njl 107 | 10.37 | njl 111 | 12.08
ov=0.26 | hgy 78 31.00 | bov 97 22.88 | bov 108 13.34 | bov 111 12.75
O 49 51201 O 70 30.58 | O 97 7.36 | O 106 7.42
ca 117 { 63.46 | ca 109 | 22.09 | ca 111 14.44 | ca 110 | 11.32
average D = 33 average D = 47 average D =70 average D =84
method | mean | rmse | method | mean | rmse | method | mean | rmse | method | mean | rmse
Case2 | mle 93 44.56 | mle 87 20.79 | mle 88 14.13 | mle 90 10.46
a=2.0 | chao 103 { 49.59 | chao 94 | 20.77 | chao 94 11.96 | chao 96 7.13
b=2.0 | njl 57 43.73 | njl 78 23.43 | njl 101 7.88 | njl 106 8.60
ev=044 | hoy 74 33.44 | bov 90 21.95 | bov 102 | 11.50 | bov 107 9.72
8] 48 524710 67 335910 92 10.55 | O 101 4.83
ca 103 | 45.56 | ca 99 1749 | ca 103 9.64 |ca 105 7.37
average D =33 average D = 49 average D = 73 average D = 87
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 103 | 41.82 | mle 94 18.84 | mle 95 9.43 { mle 95 6.11
a=5.0 | chao 112 | 49.36 | chao 101 | 22.83 | chao 99 9.88 | chao 99 5.62
b=5.0 | njl 59 41.70 | njl 81 20.54 | njl 106 9.68 | njl 111 | 12.15
ev=030 | hov 79 30.87 | bov 95 22.37 | bov 108 14.33 | bov 111 | 13.01
O 50 5090 { O 70 31.15} 0O 96 7.16 | O 106 7.26
ca 113 | 45.06 1 ca 107 | 20.61 | ca 110 | 13.64 | ca 110 | 11.23
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Table 4.4.2a

N=400| t=289 [EP)=02] | t=143 [E(p)=03] ]| t=277 [E(p)=05]| t=644 [E(p)=0.8]
1 | 1 | | | | |
average D = 80 average D = 120 average D = 200 average D = 320
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
Casel | mie 447 | 192,1 | mle 413 | 87.28 | mle 402 | 37.49 | mle 400 | 12.86
const | chao 468 | 208.3 | chao 430 | 102.3 | chao 412 | 44.87 | chao 403 | 15.49
oo 1 njl 150 | 250.4 | njl 219 | 181.6 | njl 338 | 64.32 | njl 449 | 51.01
bov 168 | 236.1 | bov 284 | 138.4 | bov 439 | 73.25 | bov 450 | 52.75
O 122 | 278.1 | O 181 | 219.5]| 0O 288 11125]10 415 | 18.39
ca 470 | 2004 | ca 444 | 99.36 | ca 449 | 63.07 | ca 458 | 60.53
average D = 77 average D =114 average D =184 average D = 281
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 327 | 1326 | mle 314 | 101.7 | mle 312 | 92.01 | mle 325 | 75.56
a=1.0 | chao 350 | 137.8 | chao 333 | 95.03 | chao 331 | 77.60 | chao 348 | 54.02
b=1.0 |njl 143 | 257.4 | njl 203 | 197.4 | njl 300 | 101.7 | njl 384 | 21.70
=058 | hoy 179 | 226.2 | bov 284 | 131.4 | bov 361 | 69.29 | bov 387 | 23.05
O 117 §283.0}10 170 | 230.8 | O 259 | 1415| 0O 356 | 45.56
ca 351 | 1243 | ca 345 | 79.66 | ca 358 | 51.55 | ca 382 | 23.05
average D =79 ayerage D = 118 average D =194 average D = 305
method | mean | rinse | method | mean | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 399 | 156.4 | mle 376 | 74.90 | mle 365 | 47.01 | mle 368 | 34.37
a=1.0 | chao 423 | 173.5 | chao 394 | 86.28 | chao 377 | 44.57 | chao 377 | 27.97
=0.25 | nj1 148 § 252.4 | njl 214 | 186.8 | njl 324 | 78.02 | njl 421 | 25.61
=033 | hoy 169 | 2347 { bov 292 | 129.9 | bov 408 | 61.68 | bov 422 | 28.37
O 121 | 279.510 177 | 223210 278 | 1231 | 0O 390 | 15.40
ca 423 1 160.5 {ca 407 | 74.63 | ca 411 | 36.08 | ca 425 | 29.94
average D =78 average D =116 average D = 189 average D = 294
method | mean | rmse | method | mean | rmse | method { mean | rmse method | mean | rmse
Case2 | mle 360 | 134.6 | mle 345 | 83.76 | mle 340 | 66.71 | mle 349 | 52.77
a=1.0 | chao 380 | 144.3 { chao 362 | 82.84 | chao 354 | 59.34 | chao 363 | 40.39
b=0.5 | njl 146 | 254.9 | njl 209 | 191.7 | njl 313 | 88.75 | njl 404 | 15.08
=045 | hoy 173 | 231.5 | bov 287 | 131.1 | bov 385 | 61.82 | bov 405 | 18.08
0] 119 1281210 174 | 226.7 | O 269 | 1313 | O 375 | 27.88
ca 382 | 1322 {ca 376 | 70.20 | ca 386 | 36.21 | ca 405 | 16.45
average D =78 average D = 115 average D = 186 average D = 286
method | mean | rmse | method | mean | rmse | method { mean | rmse method | mean | rmse
Case2 | mle 346 | 148.0 | mle 325 | 94.74 | mle 324 | 81.01 | mle 335 | 66.36
a=1.0 | chao 368 | 150.7 | chao 342 | 90.73 | chao 340 | 69.47 | chao 354 | 48.75
b=0.75| nj1 144 | 256.1 | njl 205 | 195.3 | njl 305 | 96.10 | njl 392 | 17.22
=052 | hoy 176 | 229.3 { bov 283 | 132.9 | bov 369 | 64.80 | bov 395 | 22.35
) 118 | 282.0] 0 171 | 2293 | O 264 | 1371 | O 364 | 38.34
ca 369 | 143.0 | ca 356 | 75.59 | ca 369 | 42,96 | ca 392 | 17.83
average D= 75 average D =110 average D = 174 average D = 263
method | mean | rmse | method | mean {rmse | method | mean | rmse method | mean | rmse
Case2 | mle 273 | 151.1 | mle 267 | 139.8 | mle 272 | 130.0 | mle 296 | 104.7
a=1.0 | chao 295 | 141.2 | chao 290 | 122.8 { chao 304 | 101.5 | chao 337 | 66.05
b=3.0 | njl 138 | 262.7 | njl 193 | 207.5 | njl 279 1 121.8 | njl 360 | 42.89
V07T I'hov 182 | 223.7 | bov 268 | 143.0 | bov 332 | 86.26 | bov 368 | 41.73
O 114 | 286.7 | O 162 | 2382 |0 243 | 1578 | O 332 | 68.76
ca 296 | 1335 |ca 299 | 110.9 | ca 320 | 84.49 | ca 355 | 47.50
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Table 4.4.2b

N=400} t=89 [E)=02] | t=143 [E(P)=03]| t=277 [E()=05]]t=0644 [E(p)=038]
[ [ | 1 | [ | 1
average D =74 average D = 107 average D = 164 average D = 239
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 238 | 175.3 | mle 235 | 168.5 | mle 240 | 160.7 | mle 261 | 139.5
a=0.5 | chao 257 | 161.8 | chao 254 | 152.6 | chao 264 | 138.5 | chao 293 | 108.1
b=1.0 | njl 133 | 267.0 | nji 184 | 216.5 | njl 257 | 143.5 | njl 318 | 83.28
=089 | oy 181 | 223.9 | bov 249 | 158.2 | bov 289 | 119.1 | bov 325 | 79.19
0 111 ] 289.7 |0 156 | 2448 | O 226 | 17421 0O 296 | 104.3
ca 260 | 155.8 | ca 265 | 140.2 | ca 283 | 119.2 | ca 311 | 90.05
average D = 76 average D = 112 average D =177 average D = 266
method | mean | rmse | method | mean | rmse | method | mean | rmse | method | mean | rmse
Case2 | mle 295 | 152.0 | mle 282 | 126.6 | mle 284 | 118.9 [ mle 301 | 99.80
a=0.75 | chao 318 | 149.4 | chao 300 | 115.2 | chao 305 | 100.1 | chao 328 | 73.92
b=1.0 | njl 140 | 260.5 | nj1 196 | 204.1 | njl 284 | 116.7 | njl 359 | 40.02
ev=070 | hoy 181 | 224.4 | bov 274 | 138.1 | bov 333 | 84.40 | bov 364 | 42.07
8) 115 | 285.1 ] 0O 165 | 235.6 | O 247 | 153210 334 | 66.91
ca 318 | 139.1 | ca 313 | 100.2 {ca 329 | 76.24 | ca 356 | 46.68
average D =79 average D=117 average D = 190 average D = 297
method § mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 370 { 135.4 | mle 348 | 83.46 | mle 345 | 62.85 | mle | 354 | 47.59
a=1.5 | chao 392 | 146.2 | chao 364 | 82.85 | chao 361 | 54.67 | chao 371 | 33.70
b=1.0 | njl 146 | 254.3 | njl 209 | 191.3 | nj1 316 | 86.21 | njl 410 | 17.95
cv=044 | hoy 174 | 231.3 | bov 289 | 128.9 | bov 394 | 59.45 | bov 413 | 24.22
O 120 1 280.7 | O 174 | 226.4 | O 271 129.6 | O 380 | 23.25
ca 393 | 134.6 | ca 379 | 70.86 | ca 392 | 34.32 | ca 413 | 20.13
average D =79 average D =119 average D = 197 average D = 312
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean { rmse
Case2 | mle 413 | 158.4 | mle 390 | 74.41 | mle 380 | 39.40 | mle 383 | 21.39
a=3.0 | chao 436 | 174.0 | chao 407 | 84.39 | chao 393 | 42.21 | chao 392 | 18.39
b=1.0 | njl 149 | 251.5 | nj1 216 | 184.7 | njl1 330 | 72.00 | njl 435 | 38.27
=026 | hov 167 | 237.0 | bov 289 | 133.2 | boy 425 | 68.52 | bov 437 | 41.51
O 121 | 2789 | O 179 | 221.7| O 282 | 118510 402 | 11.59
ca 437 | 164.1 | ca 421 | 79.32 | ca 427 | 45.90 | ca 442 | 44.96
average D =79 average D =117 average D =191 average D = 298
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 369 | 153.7 | mle 345 | 85.44 | mle 347 | 61.22 | mle 355 | 46.55
a=2.0 | chao 393 | 161.6 | chao 363 | 83.02 | chao 365 | 52.16 | chao 375 | 30.02
b=2.0 | njl 146 | 254.3 | njl 210 | 191.2 | njl 317 | 85.35 | njl 413 | 19.58
=045 | hoy 175 | 230.1 { bov 287 | 131.2 | bov 397 | 58.57 | bov 416 | 25.05
o) 120 | 280.7 10O 174 | 226.2 | O 272 |1 129.0]1 0 382 | 21.89
ca 393 | 152.7 | ca 376 | 71.18 | ca 395 | 34.72 | ca 415 | 21.90
average D =79 average D =118 average D = 196 average D =310
method | mean | rmse | method | mean | rmse | method | mean | rmse method | mean | rmse
Case2 | mle 415 | 168.8 | mle 377 | 76.07 | mle 377 | 41.42 | mle 380 | 24.23
a=5.0 | chao 443 1 199.0 | chao 395 | 84.30 | chao 391 43.29 | chao 392 | 18.91
b=5.0 | njl 148 | 252.7 | njl 214 | 186.6 | njl 329 | 73.47 | njl 434 | 36.81
=030} hoy 166 | 237.2 | bov 291 | 130.5 | bov 420 | 66.15 | bov 436 | 40.10
O 120 | 279.8 | O 177 12231 |0 281 1196 | O 400 | 11.92
ca 440 | 177.6 | ca 408 | 75.55 | ca 424 | 44.46 | ca 440 | 42.90

154



Chapter 5 : Conclusions

§ 5.1 : Initial Objectives and Results Obtained

The initial aim of this thesis was to begin a systematic investigation into the
method of plant-capture when applied to populations behaving according to the closed
capture-recapture models of Otis et al. (1978) and their continuous time analogues.

Chapter 1 considers the addition of plants to target populations which behave
according to the most basic Otis et al. (1978) model M,. A plant-capture generalisation
of the standard maximum likelihood estimator, that was discussed by Otis et al. (1978),
is derived. Other new estimators are also introduced. A near-unbiased estimator,
described as a conditionally unbiased estimator (CUE), which was originally considered
in a rather simpler urn theory context, is shown to be more satisfactory than the
maximum likelihood estimator and the Peterson-type estimator. This latter conclusion
holds either in the presence or absence of planted individuals, and hence for the
standard capture-recapture model it is recommended that the CUE be preferred to the
usual maximum likelihood estimator of Otis et al. (1978).

In chapter 2 consideration is given to the use of plants in connection with a
continuous time analogue of the Otis et al. (1978) model M,. In the absence of plants
this model is equivalent to the recapture debugging model of Nayak(1988). The
maximum likelihood estimator of Nayak(1988), which was designed for situations in
which no plants are used, is generalised and other new estimators are introduced. As
well as estimators corresponding to those of chapter 1, harmonic mean estimators are
considered. Again, however, in situations where plants are deployed and in those which
no plants are used, it is the near-unbiased estimator, described as a conditionally
unbiased estimator, which is seen to give the best results.

Difficulties arose when investigating the usefulness of plants when used in
connection with populations behaving according to the important heterogeneity model
M, . The main problem was that the most commonly preferred estimators, which for the
model M, have been the jackknife estimators of Burnham and Overton(1978, 1979)
and the estimators of Chao, Lee and Jeng(1992), cannot easily be generalised in a way
which allows them to use the extra information gained from the plants. The approach
taken to overcome this problem was to seek new estimators for the standard capture-
recapture problem with a view to finding an estimator that could be generalised for use
in a plant-capture scenario. This approach proved fruitful and led to a number of new
estimators and estimation procedures for the standard capture-recapture model M, . Of

the new estimators that were obtained, the most satisfactory were found to be the
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coverage adjusted estimators, which are presented in chapter 3. Also within chapter 3 it
is shown how these coverage adjusted estimators can be modified in a way which
allows them to utilize the information gained from the planted individuals. In the
absence of plants, the coverage adjusted estimators are shown, through simulation and
real data, to compare favourably with other estimators.

It was recognised that the approach taken in chapter 3 could be modified to
produce a new estimator for the continuous time analogue of the Otis et al. (1978)
model M, . Within chapter 4, this new coverage adjusted estimator was shown using a
simulation study to perform more satisfactorily than other estimators that have been
proposed for this model.

The emphasis throughout this thesis has been on point estimation. Most
practitioners, however, would also require reasonable variance estimates. An
appropriate extension of the work contained in this thesis would, therefore, be to
develop estimators of variance. This could be done analytically or using computer-
intensive methods.

Throughout this thesis it has been concluded that the use of plants is beneficial.
It is important to keep in mind that this conclusion has been reached under the
assumption that the planted individuals behave in an identical manner to those of the
target population. Further work should, therefore, investigate the robustness of the
conclusions reached in the case where the behaviour of the planted individuals is
different to those of the target population. The development of procedures to test
whether this central assumption does indeed hold would also be appropriate. Some
work has already been done in this area : in a personal communication K. Pollock
showed that in the component P, of the probability function 3.11 of section 3.7.3
chapter 3, we have a multiple hypergeometric distribution which gives rise to a
contingency table test of the assumption that the planted individuals behave in an

identical manner to those of the target population. This test could be used in connection
with target populations behaving according to the Otis et al. (1978) models M, and

M, . Similar contingency table tests would be appropriate for the models M, and M,,,
K. Pollock( pers. com. ).

Within each of chapters 1, 2 and 3 a Peterson-type estimator was derived. In
each chapter it has exactly the same functional form, and is based only on the number
of distinct individuals seen from the planted and target populations. An important
feature of this estimator is that, when the plants do behave as members of the target
population, it is on the whole unbiased. Within chapters 1 and 2, however, the Peterson-
type estimator did not perform well in comparison to the other estimators : although its
bias tended to be low, its variance, particularly when the number of plants used was
small relative to the size of the target population, was relatively large. In chapter 3 the
performance of the Peterson-type estimator improved in relation to that of the other
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estimators; the consistent near unbiasedness of the Peterson-type estimator becoming
more useful in the presence of heterogeneity. Within chapters 1 and 2 each of the
models considered had considerable structure which benefited the other estimators and
enabled them to perform better than the Peterson-type estimator. This Peterson-type
estimator is in fact suitable for use in plant-capture scenarios when the target population
behaves according to any of the eight closed capture-recapture models of Otis et al.
(1978) or their continuous time analogues. In each of these situations, so long as the
planted individuals do behave in an identical manner to those of the target population,
the Peterson-type estimator would remain nearly unbiased. Hence for the more
complicated, less structured, models the Peterson-type estimator should prove to be a
much stronger candidate.
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Appendix 1 : The Classical Occupancy Distribution

Suppose Z balls are dropped independently into N urns in such a way that the
probability of any one ball being allocated to any one urn is 1/N. Let X denote the
number of occupied urns after the Z balls have been dropped, i.e. X denotes the number
of urns containing at least one ball after the Z balls have been dropped. The distribution
of X given the value of Z is known as the Classical Occupancy distribution, see Johnson
and Kotz(1977) p.110. The conditional probability function of X given Z can be

N
written as P(X =x|Z = Z) = N“‘[ Jx!S(x, Z) s x=1,2,3.....,min(N,z),
X

where S(x,z) is a Stirling number of the second kind defined by

S(x,2) = xi!i(:)(—l)“(x ~k)".

Proof :
As a first step in this proof consider the following formula :

Boole's Formula : The Inclusion Exclusion Principle

PI:UAi]= (_l)k_lsk ’
i=l k=1

where S, = Y P(Aj:A0Ap Ay )-
all subsets
of size k

Now define the events B and A, in the following way
B = aparticular N-x urns remain empty
(i.e. z balls are restricted to the other x urns )
Ai

a particular N-x urns remain empty but urn i of the remaining x urns

also remains empty.

P[ B, all x urns are occupied ] = P[B] - P[ B, at least one of the x urns is empty ]

= P[B] - P[OAi]

i=1

=P[B] - 2(—1)HSk, using Boole's formula.
k=1

y (%] —2(—1)"“["1;1‘)1[;], (AL1D)

since S, = Y, P(AisAip A Ay ) = (X;k) (l’j

all subsets

of size k



From (A1.1) it follows that

P[ B, all x urns are occupied ] = [—;T)z[xz + i(z)(—l)k(x - k)z]
k=1

N3 (;)(—1>k(x—k)z

k=0

= N7%x!S(x,z).

N
But a particular subset of size x can be chosen in ( ] ways. Hence
X

N
P(X=xZ=2)=N ’(X]x!S(x,z), x= 1, 2, ..., min(N, z).
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Suppose that X, has a Poisson distribution with mean A. Then the random

variable Y = ZXJXi >0 is said to have the Stirling distribution of the second kind,
i=l

see Patil et al(1984). That is a random variable is said to have the Stirling distribution of
the second kind if it can be represented as the sum of a number of zero truncated
Poisson random variables.

_ Atexp(=21)

The probability function of X, is given by P(X; =x;) f
x,!

x;=0,1,2.....

Atexp(—1)

It follows that P(X; =x,[x, > 0) = x(1-exp(-A))’

x,=1,2,3,..

The probability generating function of X;|X; > 0 is given by

Gx.lx,.>o(t) = E(txilxpo)
= C X, AXICXP(_l)
= ME:’]t 'Xi!(l_exp(—)‘,))
_exp(-1) | ()"
“l—eip(—ﬂ.)'li,gh x| *1]
) %-[exmﬂt) -1]
= M
B CXP(/I)_l .

The probability generating function of Y is then

Gy(t)=G, (t)=E[t§x"x'>°}=I”IGX.,x,w(t)

ZX.IX.>O i=l1
i=1

NEOR

exp(4)—1

’ —(—;—w(;)—_l)nkio(zJ(—l)“"kexp(kﬂ,t)

geam e

(=]
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The probability of Y taking the value r is equal to the coefficient of t* in the expansion
of Gy(t). Hence
)’l‘ n n g
P(Y=1r)=——— -1) k"
( ) ri{exp(A)-1) é(k)( )
_n! A'S(n,r)
r!’ (exp()-1)° ’

where S(n,r) is a Stirling number of the second kind.

r=n, n+1, n+2, ....
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Appendix 3 : The Distribution Function of A Sum of Zero Truncated Binomial
Random Variables

Suppose that Y;, forj =1, 2, ..., x, are independently and identically distributed

Binomial random variables, each having parameters t and p. Here consideration is given

to the distribution of Q = ZYjIYj > 0. This distribution was first derived by
j=1

Ahuja(1970) and, more recently, was inspected via a power series approach by
Charalambides and Singh(1988). The approach taken here is to obtain the distribution

of Q using probability generating functions :
Firstly, given that Y, ~ Bin(t,p),

t
Prob(Y,; =y,)= (y )py‘ (1-p)™, ¥=01%. .t
j
(y-)p Hi—p)
s A =
Prob(Y; =y,|Y;>0) = e ¥, =12,
The probability generating function of Yj]Y ; >0 is then given by
Gyjlvj>0 (m) ] E(ijIYPO)
t -
: [ ]py’ (1-p)™
— Zmy‘ . yj t
y;=t | (1 g p)
(e ) GO
l_(l_p)t }’j=1 yJ
1= (1 ki p)t y;=0 y-i
1
=m[(1—p+mp)'-(l—-p)t]. (A3.1)

The probability generating function of Q = ZleYj >0 may now be obtained as
=1

follows :
% gvj|yj>o A Y,]Y,>0
Go(m)=E(m®)=E| m =E{ [[m

i=1

- H ]3,(1-11\"”’>0 ) by independence

=1

=HGY,|Y,.>o(m)

=1
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X

=

1
1 1-(1-p)

|(1-p+mp) - (1-p)], from (A3.1)

= W[a—pmp)‘ -(-p)
= mzo[j)u ~p+mp)" (1) (1-p)"™"
g DY oA W Sl
It then follows that
) A ) S

:fl’_%g(l][ )(_ yor Q=% x+1, X42, ..o, IR,
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Appendix 4 : Estimation of Sample Coverage : Model M, : Discrete Time Sampling
Procedure

This appendix describes how one may estimate the quantity referred to as
'sample coverage' within chapter 3. For notation and relevant background please refer to
chapter 3. The three estimators of sample coverage that are described below were
considered by Chao, Lee and Jeng(1992).

Sample Coverage (C), is defined as follows :

N
O g‘pil(xi >0) ‘ _ |1 w.p 1-(1-p,)
e where  I(X;>0) = -
S, 0 wp (1-p;)
i=1

As a first step to estimating this quantity, consider its expectation :

3 pa(X, > 0)
E(C) = E| 5
Z,Pi

N

Z:Pi(l‘l’i)l
s det (A4.1)
Zpi
i=1

An estimate of C may be obtained from equation (A4.1) by substituting in estimates of

N : N
zpi(l“Pi) and Zpi'
=1 i=]

N i
As in section 3.3 , using equation (3.8), an estimate of zpi is given by 2.
i=1 t

N
To obtain an estimate of Y. p;(1-p;) consider the expansion :

i=1
N

Ypi(l-p) = Zp,lp,” Z (1-p,)"

i=1 i=1

ZP, ,’+Zp. 1-p;)

z

!

E(f,)—ﬁa(fmgpﬁa-pi)”»—:zlp;'(l-
2
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That is

N i t (_1)j+l
=>  anestimate of ¥ p,(1-p;)’ is givenby Y, f

A

Now returning to equation (A4.1) it is seen that an estimate of sample coverage C is

given by

t j+1
> ) f.. (A4.2)

Computation has shown that, in almost all situations, only the first few terms in the
above summation are significant. For this reason we take the approach of Chao, Lee and
Jeng(1992) and truncate the summation in (A4.2) in order to obtain the following three
estimators of sample coverage :

é,:]—f—‘,
Z
z (t-1)z
and éq=1—5 2 5 T TN
: z (t-1)z (t-1)(t-2)z

Using the whole summation of equation (A4.2) is not recommended. This is mainly due
to the fact that the higher frequencies tend to posses large variability : elements in the
summation which incorporate these quantities can occasionally distort the resulting
estimate of sample coverage.
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Appendix 5 : Estimation of Sample Coverage : Model M, : Continuous Time Sampling
Procedure

This appendix describes how one may estimate the quantity referred to as
'sample coverage' within chapter 4. For notation and relevent background please refer to
chapter 4. The following derivation appeared in Chao, Ma and Yang(1993).

1 w.p. l—exp(-A;t
Firstly note that (X;>0)= 8 o )
0 w.p.  exp(~A;t)

= E[I(X, >0)|=1-exp(-At). (AS5.1)
The expectation of sample coverage C may now be written as
N
Y AL(X; > 0)
E(C)=E|=+t—p——
M

=1
N

> AE[I(X, >0)]

e i1

N

PP
i=1
N
Z?ui[l - exp(—/lit)]
= A=l ; from AS.1.

N
24

=1

s,

N

Y Aexp(=At)

=1- i=]

S Q= — : (A5.2)

N N N
=z=»X, = P(tz}ti] = zisagood estimate of tY 4.

i=1

N
Consider the quantity f, = I(X, =1),

i=1

where I(X; =1)= 1 w.p. Ait'eXP(“ﬂ'it)_
0 w.p. 1-Atexp(-A;t)
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It follows that
N
E[fl] o ZE[I(Xi = 1)]
i=1
N
= ¥ Mtexp(-At).
i=1

N
= f, may be used as an estimator of » A;t.exp(—2;t).
i=l
Now using equation AS5.2 it follows that the value of C may be estimated by
C=1-—.
z
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