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ABSTRACT

In the first part of this thesis we consider particular ordered sets (connected and of 

small height ) and determine the cardinality of the corresponding dual MS - algebra and 

of its set of fixed points.

The remainder of the thesis is devoted to a study of congruences of Ockham algebras 

and a generalised variety of Ockham algebras that contains all of the Berman 

varieties Kp q , In particular we consider the congruences d>i (i = 1, 2,... ) defined on 

an Ockham algebra (L; f) by

(x, y) G Oj <=> f(x) = f(y) 

and show that (L; f) e is subdirectly irreducible if and only if the lattice of 

congruences of L reduces to the chain

co = d>o<<D>i ...

where = Vj>o^i * Finally we obtain a characterisation of the finite simple Ockham

algebras.
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CHAPTER 1

INTRODUCTION

An Ockham algebra is an algebra < L; a , v , f, 0, 1 > of type < 2, 2, 1, 0, 0 > 

such that < L; a , v , 0, 1 > is a bounded distributive lattice and f is a unary operation 

defined on L such that, for all x, y g L,

f (x  A y )  =  f (x )  V f ( y ) ,  f ( x  v y )  =  f (x )  a  f (y )  

f ( l )  =  0 ,  f ( 0 )  =  1.

Thus f is a dual endomorphism on L. The class of Ockham algebras is a variety which 

will be denoted by O.

The study of these algebras has been initiated by J. Berman [2] who gave particular 

attention to certain subvarieties Kp q. The main results in [2] are that the class of 

Ockham algebras satisfies the congruence extension property and that Kp q has only 

finitely many subdirectly irreducible algebras all of which are themselves finite. 

Afterwards, A. Urquhart [27] obtained a description of the dual spaces, based on H. 

A. Priestley's order-topological duality for bounded distributive lattices [23, 24], This 

work was further developed by M. S. Goldberg [20], and by T.S. Blyth and J. C. 

Varlet [7] who introduced the notion of an MH-algebra as a common abstraction of a de



Morgan algebra and a Stone algebra. Blyth and Varlet proved that there are, up to 

isomorphism, nine subdirectly irreducible algebras in the subclass of MS-algebras and 

exhibited their Basse diagrams. The methods employed in [7] were generalised by 

Beazer [5]. Beazer and, independently Sankappanavar [26] showed that there are, up to 

isomorphism, twenty subdirectly irreducible algebras in the class Kj j. Beazer also 

showed that (L; f) e Kj i is subdirectly irreducible if and only if its congruence lattice 

Con L reduces to the chain

co<O l -< I,

where (x, y) <=> f(x) = f(y). As shown by Ramalho and Sequeira [25], this is also 

true for subdirectly iireducible algebras in Kp j.

Blyth and Varlet [10] and Beazer [4] showed the role that duality theory can play in 

the study of MS-algebras. Recently, Blyth and Varlet [11] described the MS-algebras 

dual to some Ockham spaces and basic connections between MS-algebras and MS- 

spaces.

In this thesis, we investigate further aspects. In chapter 2 we establish some results 

that are obtained by specifying the ordered set X and determining both the size of the 

MS-algebra (Lx,°), in which ® is given by I 1° = X \ g'^(I) where g : X -> X is an 

antitone map such that g^ < idx, and the number of its fixed points. In chapter 3 we

obtain properties of the congruence lattices of Ockham algebras, based on the 

congruence relations Oj (i = 1,2,...) which are defined on (L; f) by

(x, y) e Oi <=> f'(x) = f*(y)

where f^(x) = x and f"^^(x) = f(f”(x)) for all n > 0 .

In particular, we prove that if (L; f) is finite and if Kp q is the smallest Berman 

class that contains L then each interval [Oj, ^i+i] is boolean and Con L contains 

the vertical sum

[œ, ^ i l  ë  i ^ h  ^ 2 ] ë  -  0  [ % - h  ë  I].



In chapter 4, a generalised variety Kq  of Ockham algebras that contains all the 

Berman varieties Kp q is introduced. We prove that in K q  an algebra is weakly 

subdirectly irreducible if and only if it is subdirectly irreducible; and that L e K(Q is

subdirectly irreducible if and only if its lattice of congruences reduces to the chain

(D = ®0 < ^ 1  5 ^ 2  <  ... < 0 ( 0  <  I

where, O(o= and, the symbol <  means 'is covered by or is equal to' and

the symbol -< means ’ is covered by'. In chapter 5 we give a description of the 

structure of finite simple Ockham algebras.

We now recall here the main results and notions that we shall need.

The Berman classes Kp q are defined for p ^ 1, q > 0 by the condition H

These classes are related by the property

K pqS K p 'q ' <=> p ip ', q < q ’.

A class V of algebras is said to be locally finite if every finitely generated member

of V is finite. The following result was established by Berman [2].

Theorem 1.1 [2, Theorem 3] Kp q is locally finite. 0

It is easy to see that the class Kj q is the class of de Morgan algebras [22], which

are bounded distributive lattices M together with a unary operation x f(x) such that

(Ml) f(l)=0;

(M2 ) (V X G M) f^(x) = x;

(M3 ) (V X, y G M) f(x Ay) = f(x) v f(y).

The subclass of Ki q given by the condition x a  f(x) ^ y v f(y) is the class of Kleene

algebras [16], which are de Morgan algebras K together with the condition

(V X, y G K) X A f(x) i^y V f(y).



The subclass o f K j q given by the equation x a  f(x) = 0 is the class o f Stone algebras 

[19], which are bounded distributive lattices S together with a unary operation x -> f(x) 

such that

(51) f(0) = l;

(52 ) (V X e  S) X A f(x) = 0;

(53 ) (V X,y eS) f(x A y) = f(x) v f(y).

An M S-algebra [7] is an Ockham algebra < L; a ,  v ,  f, 0 ,1  > in which x < f^(x) for 

every x e  L; equivalently, in which f^ is a closure. It has become the practice to denote 

the unary operation f  by x -> x° when dealing with an MS-algebra, and to denote it by 

X -> x'^ when dealing with a general Ockham algebra. The following results are due to 

Blyth and Varlet [8].

T heorem  1.2 ([8, Theorem 2.1]) For an M S-algebra L, we have:

(1) X = y <=> L e  T, the trivial class;

(2) X V x° = 1 <=> L  e  B, the class of boolean algebras;

(2d) X A x° = 0 <=> L G S, the class of Stone algebras;

(3) X = x°° <=> L  G M, the class of de Morgan algebras;

(4) X A x° = x°° A x° <=> (8 j)  X A y° A y ^  = x°° A y° A y°°;

(4d) X V x° = x°° V x°;

(5) (x A x°) V y V y° = y V y° <=> x A x° ^  y v y°;

(6) (x A x°) V y°° V y° = y°° v y °  <=> G K, the class o f Kleene algebras

<=> X A X® < y°° V y®;

(7) (x A x°) V y V y° = (x°° A x°) v y v y°

<=> (7d) (x V x^) A y A y° = (x°° v x°) A y A y°

<=> (9(j) (x V X®) A y°° A y° =  (x°® v  x°) a  y°° a  y° ;

(8) X V y° V y°° = x°® v y° v y ^  o  x° v x v y° v y ^  = x° v x°° v y° v y^°;



(9) (x A x°) V V y° = (x°° A x°) v y°° v y°. 0

Theorem 1.3 ([8 , Theorem 2.3]) The class of MS-algebras has only twenty 

subvarieties, and these are characterised by the identities indicated in Theorem 1.2, as 

follows:

T : (1); B : (2); S: (2^); K : (3), (5); S v K : (4), (5), (8);

M : (3); S v M : (4), (8 ); K j : (4), (5); K2  v M  : (4); Ki : (4^), (5); 

M V Ki : (4d); S v Kj : (5), (8 ); S v M v Kj : (7), (8 ); Ki v K2  : (5); 

M V K i V K 2  : (7); K 3  : (6 ), (8 ); M v K 3  : (8 ); K2  v K 3  : (6 ); 

M V K2  V K3  : (9); Mj : none. 9

If (L; ~) is an Ockham algebra then the set

S(L) = { x'  ̂I xe L)

is a subalgebra of L. This subalgebra is a de Morgan subalgebra, precisely when x----

= x~ for all X € L, i.e., precisely when L belongs to the Berman class Kj j. When this

is the case, we say that L has a de Morgan skeleton. Note that then we also have

S(L) = { X— I xe L ).

Every Ockham algebra (L; '") contains a subalgebra with a de Morgan skeleton. The 

greatest such subalgebra is

M(L) = { X € LI X = x~ }.

It is clear that an MS-algebra L is a de Morgan algebra if and only if L = = { x°° I

X € L }, and is a Kleene algebra if, moreover, x a x® < y v y® for all x, y e L.

We recall ( see [13, 18, 20, 24, 27]) that if (X, ^) is an ordered set then an (order) 

ideal of X is a subset I of X such that if x e I and y < x then y e I. The principal ideal 

generated by a e X, namely {x e XI x ^ a}, will be denoted by a'̂ . (X, x, <) is an



ordered space if (X, x) is a topological space, and ^  an order on X. An ordered 

topological space X is totally order disconnected if for all x, y e  X with x i: y there 

exists a clopen order ideal I of X with x e I and y g I. A map f: X —> Y, where X, Y 

are ordered sets, is isotone if xj ^ X2  in X implies f(xj) ^ f(x2 > in Y. (X; g) is an 

Ockham space if it is a compact totally order disconnected space endowed with a 

continuous antitone map g: X —> X. If (X; g) is an Ockham space we can define a 

unary operation f on 0(X), the bounded distributive lattice of clopen order ideals on X 

under set-theoretic intersection and union, by setting

f(I) = X\g-l(I)

for each I e 0(X). We thereby obtain an Ockham algebra. Conversely, if (L; f) is an 

Ockham algebra then we can obtain an Ockham space by defining a map on the ordered 

set P(L) of prime ideals of L by setting

g(x) = { a 6  L i f(a) <s X }

for each x e  P(L).

In particular, every finite ordered set (X, <) as a topological space is discrete and 

every (order) ideal of X is clopen, so the antitone map g: X X is continuous. For a 

finite ordered set (X, <) with an antitone map g: X X such that g^ ^ idx, 0(X) is 

an MS-algebra whose ordered set of A-irreducible elements (other than 1) is isomorphic 

to X. Moreover, every finite MS-algebra arises in this way. We replace 0(X) by L%

when dealing with such a MS-space (X; g). Actually, it can often be difficult to 

determine all the antitone maps g on an ordered set X such that g^ < idx, a useful

alternative is the following. As shown in [13, Theorem 1.1], the existence of such an 

antitone map g is equivalent to the existence of a dual closure map f: X ^  X such that 

Imf is self-dual. In fact, given such a map g, the map f = g^ is such a dual closure; 

and given such a dual closure f, for every dual isomorphism x -^ x  on Imf the map 

g: X X defined by g(x) = f(x) is antitone and such that g^ < idx •

The following results will be used in chapter 2.



Theorem 1.4 ([13, Corollary 1.2 of Theorem 1.1]) Let (L; °) be the MS-algebra 

corresponding to (X; g). Then = idx If only if L is a de Morgan algebra. 0

Theorem 1.5 ([13]) Let (L; °) be the MS-algebra corresponding to (X; g). Then the 

fixed points of Lx are the ideals I of X that satisfy

g(I)C X \I  and g (X \I)G l. 0

We shall refer to such ideals as distinguished ideals. Thus I Lx I is the number of 

ideals of X, and I FixLx I is the number of distinguished ideals of X. In the particular 

case where g^ = idx, ^ distinguished ideal I of X satisfies g(I) = X\ I and g(X\ I) = I.

Theorem 1.6 ([13, Theorem 1,9]) (L; °) is fixed point free if and only if (X; g) has a 

fixed point. 0

Theorem 1.7 ([11, Theorem 1]) All subvarieties of the class of MS-algebras are 

characterised by the following formulas of the corresponding dual space:

B:g®  = g; S : g = g ;̂ K :g®  = g^^g; S v K : g° = g^<g or g = g ;̂ 

M : g° = g ;̂ S V M : g° = g  ̂ or g = g ;̂ K2  : g® = g  ̂̂  g or g° > g;

K 2  V M : g° = g^ or g° > g; K j : g° = g^ 2 : g or g° < g;

M V K i : g° = g^ or g° < g; S v : g° = g^ > g or g = g^ or g° < g;

S v M v K i :  g°=g^ or g = g^org®<g; v K2  : g°^g ;

M V Ki V K2  : g° =g  or g°>g; K3  : g° = g^ > g or g^ < g;

M V K3  : g° = or g^ < g; K2  v K3  : g I  g^; M v K2  v K3  : g® = g^

or g ^  g ;̂ Mj : none. 9



8

In dealing with the congruence lattice of an Ockham algebra L it is essential to 

distinguish between the elements of the lattice Conig^L of lattice congruences and those

of the lattice Con L of congruences of L. For this reason we denote elements of the 

former by the subscript ’laf. The letters oo and i stand for the equality relation and the 

universal relation respectively. If L is a lattice and if a, b € L then the principal 

congruence relation generated by a, b is defined to be

®lat(a, b) = A  { <p G ConiatL I (a, b) € (p } 

i.e., the intersection in Coni t̂ L of all the lattice congruences that identify a and b.

For a, b G L we have

8 laA A b, b) = 0 iat(a, a v b).

In a distributive lattice, it is well known [19, Theorem 3] that, for a, b g  L,

(x, y) G 0 iat(a, b) <=> x A a = y A a and xv b = y v b.

Moreover, the intersection of two principal lattice congruences is again a principal 

lattice congruence. Precisely, for a ^ b and c < d, we have

01at(a, b) A 0iat(c, d) =  0iat((a v c) a  b a  d, b A d).

If L is an Ockham algebra and if a, b g  L with a < b then the principal congruence 

generated by a, b is defined to be

0(a, b) = A  { <p G Con LI (a, b) g  <p }

Every Ockham congruence is in particular a lattice congruence. The following two 

important results were given by Berman [2].

Theorem 1.8 [2, Theorem 2] The class O of Ockham algebras enjoys the congruence 

extension property. 9

Theorem 1.9 [2, Theorem 1] Let (L; f) be an Ockham algebra and let a, b g  L with 

a ^ b. Then

e(a,b) = V„<<„01at(f"(a),f"(b)). 0



For a Berman class Kp q, Carvalho [17] has proved the following result:

Theorem 1.10 ([17, Proposition 1.1]). If L sKp o is a finite Ockham algebra of 

height m, then

(1) Con L is a boolean lattice with at most m atoms.

(2) Con L has exactly m atoms if and only if L is a boolean algebra. 0

An algebra L is said to be subdirectly irreducible if it has a smallest non-trivial 

congruence, i.e.. Con L has an atom a  such that if (p e Con L with (p /  O) then (p ^ a. 

Such an atom is called the monolith of L. In particular, if L is subdirectly irreducible 

then 0 ) is A-irreducible in the sense that for Oj, © 2  e Con L if 0i a  0 2  = © then either 

0 j = © or 0 2  = ©.

The following results were shown by Berman [2].

Theorem 1.11 [2, Lemma 1] Let (L; f) be a subdirectly irreducible Ockham algebra. 

If a, b e L are such that f(a) -  b and f(b) = a, then either a = b or {a, b} = {0, 1}. 

Moreover, f has at most two fixed points. 9

Theorem 1.12 [2, Theorem 7] If L e Kp q is subdirectly irreducible then L is finite. 

9

A subset Y of an Ockham space (X; g) is said to be a g-subset [27] if x e Y 

implies g(x) e Y. Let g®(Y) denotes the least g-subset that contains Y, i.e., g®(Y) = 

{g"(x) I n > 0, xe Y}.

Urquhart has proved [27, Theorem 6 ] that if (L; f) is an Ockham algebra with dual 

space P(L) = < X; x, <, g > then L is subdirectly irreducible if and only if there exists



...............

1 0

some clopen subset U of X such that g ({x}) = X for all xe U. Moreover, (L; f) is

simple if and only if g®({x}) = X for all xe X.

,1
Finally, if for an Ockham algebra (L; f) we define |

Ti(L) = ( x e  Llf^(x) = x},

then the following results were determined by Ramalho and Sequeira [25].

Î
Theorem 1.13 [25, Lemma 1] If (L; f) e Kp o is such that T2 (L) = Tj(L) u  {0,1} :|

then L is simple. 0

Theorem 1.14 [25, Lemma 2] If L e Kp q is subdirectly irreducible then f^(L) e Kp o 

is simple. 0

Theorem 1.15 [25, Lemma 3] Let L e Kp j be non-trivial. Then L is subdirectly 

iireducible if and only if Con L is a chain with at most 3 elements. 0
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CHAPTER 2

SOME FINITE MS-ALGEBRAS

In this Chapter we shall discuss some results that are obtained by specifying the 

ordered set X and determining both the size of the MS-algebra L% and the number of 

its fixed points. This was begun by Blyth, Goossens and Varlet [13] where X was a 

fence or a crown. Here we consider similar, though more complicated, ordered sets. It 

turns out that in many cases the MS-algebras which arise from these ordered sets are de 

Morgan and Kleene algebras. All of the results that follow involve intricate 

combinatorial arguments, on the one hand in counting ideals and on the other in 

determining which of these are distinguished.



1 2

2.1 Double fences.

Here we shall be concerned with a particular sequence that is defined recursively by a 

second order difference equation, namely the sequence (Jn)n>0  given by 

Jo = Ji = 1 , (V n > 2) Jn = 2Jn-i + Jn-2 - 

As we shall see, this sequence appears in many of the results. For this purpose, we 

first observe the following property of this sequence.

Theorem 2,1.1 Jq + Ji+ J2  + ... + Jn = |  (Jn + Jn+i).

Proof Let Xn = Jo + Ji + ... + Jn and observe that

3Xn = 2 Xn + Xn

= 2(Jo+Ji+ ... +Jn) + (J0 +J1 + +Jn)

= 2Jq + (2Ji+Jo) + ... + (2Jn+Jn-i) + Jr

= 2Jq +  J2 +  ... + Jr+1 + Jr

=  Xn+ Jr+ i +  Jr (since Jq =  J i=  1).

It follows that Xn = ^  (Jr+1+ Jr). 0

Definition By a double fence we shall mean an ordered set of the form

DF2 R:

ai

. 'v' t-.;! '‘."■.I
'<1



1 3

On DF2 n there is clearly only one dual closure f with a self-dual image, namely f  = 

id. There are two dual isomorphisms on Imf = DF2 n, namely a reflection gj in the 

horizontal, and a rotation g2  through 180®; specifically, for each i,

gl(ai) = bi, gj(bi) = ai;

g2 (ai) — bn-i+l  ̂ g2 (bi) ~ an-i+1 *

Since gj = ^  = id, the corresponding MS-algebras (LDF2 nî §i) (^DP2 nî §2  ̂are de

Morgan algebras. In fact, we can say more: since g^(x) and x are comparable for every 

X, it follows by Theorem 1,7 of Chapter 1 that (LoF2 nî 8 %) is a Kleene algebra.

In what follows, for an ordered set X we shall denote by #(X) the number of ideals 

of X; by #(X; a) the number of ideals of X that contain the element a of X; by #(X; à ) 

the number of ideals that do not contain the element a; and by #(X; a, 5) the number of 

ideals that contain the element a but not the element b.

Theorem 2.1.2 I LoF2 n * = Jn+i-

Proof Consider the element b^ of DF2 n- We have

(1 ) #(DF2 n; bn) = #(DF2 n-2 ; bn-l) + I LdF2 „ 4  ' :

(2 ) #(DF2 n; ̂ n) = #(DF2 n: a„, \ )  + #(DF2 n;in»bn)

= I LDF2 n- 2  * ^(D^2 n-2 ; ̂ n-i )

= I LDF2n-2 * + t ' ^f>P2n-2 ’ “ W F2n-2; bn-l)]

= 2  ILDF2 n- 2  * “ ^(DF2 n-2 ; bn-l).

It follows from (1) and (2) that

I LDF2 n I = #(DF2 n; bn) + #(DF2 n; b^)

= 21LDF2„.2l+ILDi7n^l.

If we let ot„ = lLDF2 nl then we obtain the recurrence relation

«n = 2 0 n-i + an.2 .
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Now we can see immediately that the ideals of DF2  are

0 , {ai), {a ,̂ bi);

and that the ideals of DF4 are

0, {ai), {̂ 2 ), {aj, a2), {â, a2, bj), {aj, a2, b2), {â, a2, b̂, b2) 
So oci = I Ldf2 I = 3 = J2  and 0 .2  = ILDF4 1 -  7 = J3 , and it follows that

I LdF2h  ̂~ “  Jn+1 • ^

Corollary 1  #(DF2n: bn) = ^  (V l + Jn).

Proof By (1) above we have, for each n.

OCn-2 = I LDF2n_4 ' = #(DF2n;b„) - #(DF2n-2 : bn_i); 

«n-3 =  I LDF2n_6 • =  #(DF2n-2: bn-i) - #(D F2n4: bn-2);

« 2  = ILDF4 1 = #(DFg; b4 ) - #(D F 6 ; bg); 

a i  = I L d f 2  I = #(D F6 ; bg) - #(DF4; b2 ).

Consequently,
n-2
^ O i  = #(DF2 „; b„) - #(DF4 ; b2 >. 
i= l

It is easily seen that the ideals of DF4 that contain b2  are

{aj, a2 , b2 ) and {a ,̂ a2 , b^, b2 ), 

and so #(DF^; b2 ) = 2 = Jq + Ji. Thus we see that

n-2
#(DF2 „; bn) = #(DF4 ; bz) + ^ O i

1=1
n-2

= J0 + J l+  X^i+1 
1=1

= ̂  (Jn-1+ Jn). by Theorem 2.1.1. 0 

Corollary 2  #(DF2 n: a„, b„) = I LdF2 h- 2  * ®̂n-l = Jn. 0



By way of illustration, we consider the double fence

15

DFg:

By Theorem 2.1.2 we have

I Ldf6  I = J4  = 17.

The Hasse diagram of Ldf^ is

Y

0

P

The mappings g  ̂and g^ are given by

X : aj a2  a  ̂ b  ̂ b2 bg 

gj(x) : bi b2  bg ai a2  ag 

8 2 #  : bg b2  bi as & 2  â
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Using the fact that I°= X \  g"l(I) = X \  g(I) we obtain the corresponding MS-algebras 

as follows :

O l a b c d e f g h i j  k l  a p y  

(LdF6 *» 8 %) : l O l k j i h g f e d c b a a y P  K 

(Ldf^î 8 %) ' l O k l j i g h e f d c a b a P y  M

Now we turn our attention to the fixed points of the de Morgan algebras on

By Theorem 1.5 in Chapter 1, the fixed points of (L^, ° )  are those ideals of X that are 

distinguished under g, in the sense that g(I) c X \ I  and g(X \I) c  I. In the case under 

consideration, the mapping g is suijective and so we can consider those ideals I such 

that g(I) = X \I  and g(X\I) = I.

Theorem 2.1.3 I FixL(p>F2 „; gj) * “

Proof Let I be an ideal of DF2 n. If there exists some bj e I then sl[ = g^(bi) «ê X \I , 

so gj(I) X \I  which shows I is not a distinguished ideal under g^.Consequently, with 

respect to the mapping g  ̂the only distinguished ideal is 1 = {aj, a2 , a n ) .  0

Theorem2.1.4 I KxL(dF2„; Bz) ' =

Proof (a) Consider first the case where n is even. Since g2  can be regarded as a

rotation through 180®, the fixed points are those ideals of DF2 n that contain half of the 

^  and have a 'skew-symmetric profile'. To be more precise, consider the subset A of

DF2 n described by



17

bi b2

ai an/ 2

Let A* = DF2n\ A and for every ideal I of A let I* = A' \  Then we have I* = 

g2 (A \  I) and g2 (I*) -  A \  I, We now show that, if I is an ideal of A such that aj, / 2  e I 

and bj,^ ̂  I, then I u  I* is a distinguished ideal of DF2 „ under g2 - 

Since bn/2 ̂  I» we see that I is an ideal of DF^n. Suppose now that a e I v  I* and 

X < a. If a G I then clearly x e I u  I*. If a G I*, then since bn/2 + 1  = g2 (an/2 ) ^ \

I) = I* we must have x 3 /̂2 , whence x g  A’ = g2 (A) and so g2 (x) g  A. Since g2 (a) 

G g2 (I*) = A \I , we have g2 (a) I whence it follows from the fact that g2 (x) > g2 (a) 

that g2 (x) G A \I  and that x g  g2 (A \I) = I*. Consequently, Ivl* is an ideal of DF2 n- 

We now show that lu l*  is distinguished. Clearly, g2 (I v  I*) = g2 (I) V  g2 (I*) =  g2 (I) 

u  (A \I). Now let X G g2 (I u  I*). Then we have either x g  g2 (I) or x g  A \  I. For the 

latter, clearly x sé l u  I*; for the former we have x<g I and g2 (x) <é AM so x 0  g2 (A 

\  I) = I*. It follows that X ^ I u  I* and that g2 (I U  I*) c  DF2 n \ (I V I*). Similarly, 

g2 (DF2 n \ (I U I*)) £  I U I*.

We shall now show that every distinguished ideal of DF2 n under g2  is of the form

I u  I* where I is an ideal of A such that an/ 2  ^ 1 and bn/ 2  ^  Por this purpose, 

observe that if K is a distingushed ideal of DF2 n under g2  then necessarily an/ 2  ^ ^  

and bn/ 2  ^ fbr an/ 2  ^ ^  gives bn/2 + 1  = ^  ^  whence the contradiction an/ 2

G K, and bn/ 2  ^ ^  gives an/2 + 1  = g2 (bn/2 ) ^  K which contradicts bn/ 2  ^ Also,

(KnA)* = A'\g2(KnA)

= (A '\g 2 (K ))u (A '\g 2 (A))

= A ' \ g 2 (K).

If now X G K then either x  g  K n  A or x  g  K n  A', the latter giving x  g  A' \  g2 (K), 

and hence x  g  (K n  A) u  (K n  A)*. Conversely, if x  g  (K n  A) u  (K n  A)* then
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either x g (K n  A) or x  e (K n  A)* = A' \  g2 (K). In both cases we have x e K. We 

conclude that

K = ( K n A ) u ( K n A K  

It follows from these observations that the number of fixed points of DF^n (when n 

is even) is precisely the number of ideals of A that contain a„ / 2  but not b„/2 . By the 

Corollary 2 of Theorem 2.1.2 this is 1̂ /2 •

(b) Consider now the case where n is odd. Here we consider the subset B of Dp2n 

described by

B:

Clearly, B is  a distinguished ideal of Dp2 n under . Let B'= g2 (B) and for every 

ideal I of B let I* = B' \  g2 (I). Using a similar argument to that in (a), we can show that 

every distinguished ideal of Dp2n under g^ is of the form I u  I* where I is an ideal 

of B that contains a(n+i)y2 * Thus the number of fixed points of Dp2n (when n is odd) is 

precisely the number of ideals of B that contain \ri+l)l2' Clearly, this is

#(DPn; a(n+i)/2 , b(n+i)/2 ) 

which, by Corollary 2 of Theorem 2.1.2, is J(n+i)/2- ^
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2.2 Extended double fences

D efinition By extended double fences we shall mean ordered sets o f the form

ElDF2 n :

'n-l

hn- 1  bn

Clearly, on X E iDp2 n there is only one dual closure f with a self-dual image, 

namely that given by

f(bo) = ai, f(bn) = an-i,

f(ai) = a,, f(bi) = bi (i = 1,2 ,..., n-l).

Since there are only two dual isomorphisms on Im f, namely a reflection in the

horizontal and a rotation through 180®, there are therefore two antitone mappings gj : 
2

X—>X such that gj < idx, namely that given by

(1 ) gi(ho) = hi, gi(bn) = b„.i,

gl(ai) = bi, gi(bi) = aj (i = 1 , 2 ............ n-l);

(2 ) g2 (bo) = bn-i, g2 (bn> = bj,

g2 (ai) = bn.i, g2 (bi) = an-i (i = 1 , 2 ,..., n-l).
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Since gi, g2  are not surjective, the corresponding MS-algebras are not de Morgan 
algebras. We can say more, g^)e M v K2 v K3. This follows from

Theorem 1.7 of Chapter 1: for all x e  X\{bQ, bn), x = gj(x) and g^(bo) = aj < g(bo) =

t>i. g (̂b„) = a„-i < g(b„) = b„_i.

Theorem 2.2.1 I LeiDF2„  ̂ J + !)•

Proof For each n let (%n = #(E^DF2 n ) and = #(EiDp2 n; 5n)- Then we have

On = #(EiDF2 „; b„) + #(EiDF2 „; 6 „)

= #(EiDF2 „Ma„.i,bn))+

= #(EiDF2 „_2 ) + Pn

which gives

(1) a „ = a „ . i  + p„.

But we have

Pn =#(EiDF2 „;6 „)= #(EiDF2 „\{b„})

= #(DF2 nMail)

= #(DF2 „\(a„)).

Since two dually isomorphic posets have the same number of ideals, so we have 

#(DF2 „\{a„))= #(DF2 „\{b„)),

and so

Pn = #(DF2 n\{bn))==#(DF2 n;b„) 

= lKDF2 ^ - # 0 )E b ;b J  

= Jfl+l “ 2  +fn)

= 2  (2 Jn+l " ln- 1  " n̂)

” 2  ^̂ n+ 1  In)»

whence (1 ) can be written in the form

(Xn = (%n-l 2  ^̂ n+l ^n)‘

%
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We deduce from this that

«n = Ct2 + 2 + J4  + ••• + Jn + 2
Since tt2  = 9 = ^  + Jo + Jj + J2  + 2  J3  » we then have

1 n j 
a„ = 2  ^ J i  + 2  ln+1

i= 0

1 1  1
= 2  + 2  2 ^n+l

= 5  (Jn+2 + !)• ^

Corollary 1 #(Dp2n; bi, b̂ ) = 2 %-! + 1) •

Proof For n = 1,2 ,3 the result follows by direct computation. For n > 4 we have 

#(DF2„; bi, b„) = #( DF2„ \ {ai, a2,b;_ a„.i_ a„_b„))

= #(EiDF2„^)

= 2  % -i + 1 ) • ^

Corollary 2 The number of ideals of an ordered set of the form

a,

is given by

#(M2 n+2 ) = 2  (̂ n+3 + !)•

Proof If two posets are dually isomorphic then they have the same number of ideals. 

The result therefore follows by Theorem 2.2.1. 0

By way of illustration, the Hasse diagram of EjDFg is



'X ...

2 2

The

®2 ^  given by

X : ai a j bo bi b2 bs 

g l(x ) : b i b2 b i a i az bz 

gz(x) : bz b] bz az a , bi 

By Theorem 2.2.1 we see that IfijDPgl = 5  ü s + 1)  = ?  (41+1)  = 21

underlying lattice (the order ideals o f EjDFg) is

x :0 1 a b c  d  e f  g h i j  k l  m n p q r  s a  
^(EiDFg; g  )  : 1 O p r a p a d d l  1 OOr a  d d l  1 

^(EiDF^; g^) : 1 0 rp  a r  a l  1 ddOO
O a MVK2VK3 

p a  1 1 d d O a
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We now consider the number of fixed points of MS-algebras on We have

the following results.

Theorem 2.2.2 I Fix( EiDp2n ; gj I = 1.

Proof Let I be a distinguished ideal of EiDp2n under g. Then by the definition of 

distinguished ideal, gi(I) s  E iDp2n\I and gi(EiDp2n\I) C  L If there was some a, g 

I then bj = gi(aj) e gi(EiDp2n\I) C I  which gives the contradiction aj e I. Hence we 

have

{ aj, a2» aj|} c, I.

If there was some bj e I for i 0, n then aj e I which contradicts â  = g%(b|) e gi(I) c  

EiDp2n \  I. Whence bj «S I for all i 0, n. If now bo I then bi = gi(bo) e 

g l(E iD p2n\I ) S. I which contradicts the fact that b^ ^ I. Whence bo e I, and 

similarly we can argue that b„ e I.

It follows from these observations above that, under the mapping g^, the only 

distinguished ideal is I = {bo, b„, ap a2,..., a^.i}. 0

Theorem 2.2.3 I FixL^E^DF;,; g^) '

Proof Consider first the case where n is even, say n = 2k, Let the subset A of 

EiDP2n described by

A:

^k-l
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Clearly, A is distinguished ideal of EjDF2n under g2. Let A' = g2(A) and for every 

ideal I of A let I* -  A’ \  g2(I). Observe that if K is a distinguished ideal then necessarily

an/2 G ̂  uud either ap bo e K or ap bo «6 K; for a„/2 ^  K gives b„/2 e K whence the 

contradiction a„/2 G K, and a js  K gives bn_i = g2(ai) K and then bo e K, and a%0 K 

gives bo K. Arguing as in the proof of Theorem 2.1.4, we see that the distinguished 

ideals of EiDF2n are of the form I u  I* where I is an ideal of A that contains an/2, and

satisfies the condition that

either ap bo e I or ap bo ^ I.

If denotes the number of such ideals then we have

«k = #(A; a0  - #(A; a ,̂ ap 6o).

Now

#(A; ak) = #(A\{ak}) = #(DF2k+2; bk+i)

= ^  (Ik + Jk+l) (by Corollary 1 of Theorem 2.1.2)

and

#(A; ak, ai, bo) = #(A\{ak, bo); a^)

= #(DF2k-2î a%)

= #(DF2k_2;ak_i)

= #(DF2k_2: bk>i) + (̂DF2k_2: ak-i, bk-i)
= ^  (Jk-2 + Jk-l) + Ik-1 (by Corollaries 1, 2 of Theorem 2.1.2)

= |( J k  +Jk-i).

It follows that

Ctk = I  (Ik + Ik+l) “ I  (Ik + Ik-l)

= Ik

that is

I FixL(EjDF2n; Si) ' (^ben n is even).

(b) Consider the case where n is odd. Let the subset B of EjDF2n described by
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B

ai

Using a similar argument to that in (a), we can show that every distinguished ideal of 
EiDp2n under g2 is of the form I u  I* where I is an ideal of B that contains a(n_i)/2

but not b(„_i)y2 and satisfies the condition that

either a%, bo g I or a ,̂ bg ^ I.
If Piç-, where k = denotes the number of such ideals then we have

«k = #(B; ak, &k ) - #(B; ak, &k, a ,̂ &q).

Now

#(B; ak, bk) = #(B\{bk); a^  = #(B\{ak,bk})

-  #(DP2k+2î t>k+i)
= ^ (Jk + Jk+l) (by Corollary 1 of Theorem 2» 1.2)

and

#(B; ak, bk, a ,̂ bg) = #(B\{bg}; ak, bk, a )̂ = #(Dp2k_2; a%)

= #(Dp2k-2î ^k-l)

= #(DP2k; bk)

= |(Jk -l + Jk)-
1 1

It follows that Pk "  2 (^k + Jk+l) " 2 (̂ k-1 + Jk) = Jk- We therefore have 

I FixL(EjDp2n; > = J(n-l)/2 (when n is odd). 0

We now turn our attention to E2Dp2n- There is clearly only one dual closure f with a 

self-dual image on E2Dp2n, namely f = id; and there is only one dual isomorphism g on 

Im f, namely that described geometrically by a rotation through 180°, given by

g(&i) = bn-i, g(bi) = an-i.

The corresponding MS-algebra belongs properly to the class M of de Morgan algebras.
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Theorem 2.2.4 I LE2Dp2n’ = |  (Jn+2 -1 )•

Proof Observe first that

#(E2DF2„) =#(E2DF2„; 3o) + #(E2DF2n; à») 

= #(E2DF2„\ ao) + #(E2DF2„.2)

= #(DF2n+2: b„+l) + #(E2DF2n-2)

= 2 (Jn + Jn+l)+#(E2DF2n-2)- 

the final equality following by Corollary 1 to Theorem 2.1.2. Thus, if we let up 

#(p2Dp2i) and Vi = + Jj+j), we have

Uj = Vi + Uj.l.

Writing this in the form Vi = Ui - Ui_% and summing over i, we obtain

Un - Uo = VI + V2 + ... + v„.

Since clearly Uq = 1 = Vq, this becomes, using Theorem 2.1.1,

Un= Vo+Vj+V2 + ...+Vn

= 2 X ( J i  + Ji+i)
i=0

i n  i n

i=0 i=0

= 5  [(Jn + Jn+l)] + \  [(Jn+I + Jn+2)] - |

= ^  (Jn + 2Jn+i + Jn̂ .2 ) - |

= I  (Jn+2 " 1) • 0

By way of illustration, consider the extended fence E2DF6 :
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ai

By Theorem 2.2.4 we have
1) = 20.

The Hasse diagram of Lg^DFg is

m

and the corresponding de Morgan algebra is

x° : l O k l j  i g h  e f d c a b o p m n a p

As for the fixed points, we have the following result.
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2 (Jn/2 + Jn/2+l) if n is even. 
Theorem 2.2.5 I FixLCEjDFzn; g) I = -j i ,

2 (^(n-l)/2+J(n+l)/2) ' f  "  is odd.

k-1

Proof (a) Consider first the case where n is even, say n = 2k. Let A be the subset of 

E2DF211 described by

A :

Observe that lAI = n, and A is a distinguished of E2Dp2n under g. Arguing as in the 

proof of Theorem 2.1.4, we see that the distinguished ideals of E2Dp2n are of the form 

lu l*  where I is an ideal of A that contains a^, and I* = (p2Dp2n \  A) \  g(I). If 

denotes the number of such ideals then we have

7k = #(A\{ak)).

Considering those ideals of A\{ak} that contain a ,̂ and those that do not, we have

Yk =  #(D F2(k-l)) +  Yk-l

= Jk + Yk-1 ( by Theorem 2.1.2).

Since this holds for each value of ŷ . we deduce that

Yk ■ Yo -  J l  + J 2 + ••* +  Jk- 

Since clearly yj, = 1 = Jq it follows by Theorem 2.1.1 that
k j

Y k= % J i  =
i=0

(b) Consider now the case where n is odd. Let B be the subset of E2Dp2„ described

by

B
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Arguing as in the proof of Theorem 2.1.4, we see that the number of fixed points of

Ais case is the number of ideals of B that contain a(n_i)/2 but not b(n_i)/2. 

Thus, using Theorem 2.2.4, we see that

! Fix L(E2 DF2 n;g) > = #(E2 DFn_i; b(n_i)/2 )

= #(E2DFn_i) - #(E2DF^_j; b^n-l)/2)

= #(E2DFn.i)-#(E2DF„.3)

=  2 (J(n+l)/2 - U  - 2  (J(n-l)/2- 1 )

=  I  (J(n+l)/2 + J(n-l)/2) • ^



2.3 Half tiaras

Definition By a half tiara we shall mean an ordered set of the form

bi

HT2n :

n-l

3 0

bfi-1 bn

On HT2n there is clearly only one dual closure f  with a self-dual image, namely f = 

id. There is only one dual isomorphism g on Im f, namely that described geometrically 

by a rotation 180°, given by

g(ai) = bn-i, g(bi) = an.i.

The corresponding MS-algebra belongs properly to the class M of de Morgan algebras.

Theorem 2.3.1 I LRT2n * “ Jn+1-

Proof We obtain HT2n from E2Dp2n by linking a^ and bn. Consider the effect of 

adding to E2Dp2n the link a  ̂— bn. Clearly, this reduces the number of ideals. More 

precisely, in so doing we suppress all the ideals of E2Dp2n that contain b„ but not a .̂ 

Observe first that

#(E2DP2n; bn, a j  = («o, bi); bn)

= #(E2Dp2n\ {ao, bj, an_i, bn))

= #(E2Dp2n^).

It now follows that

#(HT2n ) = #(E2DP2n) - #(E2DP2n; b„, âg)

= #(E2DP2n)-#(E2DF2n4 )



x y '? ; ■ - - }r ■■■■ 4';

3 1

= 2  %+2 - 1) - 2  (^n - 1) (by Theorem 2.2.4) 

= j ( 2 J „ + , +J „ - D-  5 ( J „ -1)

-  ^n+1* ^

By way of illustration, consider the half tiara

H Tg:

By Theorem 2.3.1, we have I I = J4 = 17. The Hasse diagram of LfïT/;

1

h

n

f

b

m

y

and the corresponding de Morgan algebra is

X : O l a b c d e f g h i j  kl  m n a  

xo; l Oi  k g l h j c  e a f b d n  m a

I
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As for the fixed points, we have the following result.

Theorem 2.3.2 I RxL(hT2„: g) ' = odd.

Proof Observe first that HT2n\ (a^, b^} is isomorphic to DF2n-2 and is closed under 

g'
If I is a distinguished ideal of HT2n under g. Then I must contain a^ but not b„. In 

fact, since g^ = id so we have that g(I) =X \  I and g(X \  I) = X. If a^ «Ë I then it gives 

bn = g(ao) ^  g(I) = X \  I and bn e I whence the contradiction a  ̂e I; if bn e I then it 

gives a  ̂= g(bn) e g(I) = X \ I  and a^^ I which contradicts b„ e I. This shows that if I 

is a distinguished ideal of T2n under g then I must contain a  ̂but not bn. Consequently, 

I \  {ao) is a distinguished ideal of HT2n\ {Uo, b^} under g, equivalently, I \  (ag) is a 

distinguished ideal of DF2n-2 under g.

Conversely, if J is a distinguished ideal of DF2n-2 under g, equivalently, J is a 

distinguished ideal of HT2n\ {ag, bg) under g, then J u  {ag} is a distinguished ideal 

of HT2n under g. This correspondence of distinguished ideals is clearly a bijection. So 

we deduce by Theorem 2.1.4 that

IK>^(HT2„:g)l = I K ’̂ (DF2„.2; g) I
_ f J „/2 if n is even,

U(n-l)/2 if n is odd.



2.4 Tiaras

Definition By a tiara we shall mean an ordered set of the form

hn-1 hn

2n

n-l

33

On the T2n there is clearly one dual closure f with a self-dual image, namely f = id.

There is only one dual isomorphism on Im f = T2n, namely that described geometrically

by a rotation through 180°, given by

g(&i) = bn-i+i, g(bi) = an_i+i.
Since g^ = id, the corresponding MS-algebra (Lt2h’ Morgan algebra.

1
Theorem 2.4.1 I I = 2Jn + 2 (^n-l + 1)-

Proof We obtain T2n from HT2n_2 by adding two elements bj and ag with relations 

Sil < hi, a2< bi and a  ̂< bg.i, a^ < b .̂ As this suggests, we can see that 

#(T2n) = #(HT2n_2 ) + #(T2n; b^) + #(T2n\ (bg, b^.i, bi, an)).

Now

(̂T2n* bi) = #(T2n\ {bj, â  a2))

= #(DF2n\{bi, ai,a2))

= #(DF2„;bi)

-  ^  (ln-1 + Jn ) (by the Corollary 1 to Theorem 2.1.2) 

and #(T2n\ (bn,bn-i, b^, ag}) = #(M2n_4 )•

By Theorem 2.3.1 and the Corollary 2 to Theorem 2.2.1 it follows that



( LT2„ I = I LHT2n-2 ' + ^i) + #(M2n-4 )

“  *̂n ■*■ 2 (̂ n-1 2

= 2Jn + ^ ( V l  + !)♦ ^

By way of illustration, the tiara T5 is

3 4

T6:

By Theorem 2.4.1 we have

ILxgl = 2X3+ 2 (J2 + 1) =16.

The underlying lattice is

and the corresponding de Morgan algebra is

X : O l a b c d e f g h i j k l a p  

x° : l O k l j  i g h e f d c a b a p M
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As for the fixed points, we have the following result.

Theorem 2.4.2 I Fix L (^2^; g) I = ̂
2 (J(n-2)/2 + Jn/2> if  ^ is even, 

(J(n-l)/2 + J(n+l)/2) if » is odd.

Proof Observe first that T2n\ (a^, bn) is isomorphic to E2DF2n-2 and is closed under 

g.
Let I is a distinguished ideal of T2„ then I must contain a% but not b„. In fact, if 

ai ^ I then we have b„ = g(ai) e I whence the contradiction aj e I, and if b„ € I, we 

have aj = g(bn) <é I which contradicts b„ g I. Consequently, I \  {ai) is a distinguished 

ideal of T2„\ (a^, bn).

Conversely, if J is a distinguished ideal of T2n\ (a^, b^}, then J u  {aj} is a 

distinguished ideal of T2n- This correspondence of distinguished ideals is clearly a 

bijection, so we deduce by Theorem 2.2.5 that

Fix L (t2„; g) I = I FixL(E2DF2n-2; g)
ri
2 (f(n-2)/2 + In/2) if  n is even, 

J  (I(n-l)/2 + I(n+l)/2) if  o is odd.
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2.5 Double crowns

Definition By a double crown we shall mean an ordered set of the form

bi b2 bg bn-i bn

H  ^3 ^n-1 a„

On the double crown DC2n there is only one dual closure f  with a self-dual image, 

namely f = id. All antitone maps g on DC2n such that g^ < id are then such that g  ̂=

id, and give rise to de Morgan algebras. For every value of n there are the following:
(a) the horizontal reflection ĝ  given by

gj(ai) = bi, gj(bi) = ai;

(b) the rotation g  ̂given by

§2(^1) “  hn-i+l> &2^ î) ”  ^n-i+1*

For odd n > 5 there are the only possibilities. The case n = 3 is anomalous and will 

be illustrated below. For n even, however, there is also

(c) the slide-refection k given by
k(ai) = b i^ l, k(bj) =

the subscripts being reduced modulo n.
In the case n = 2, the slide-reflection k coincides with the rotation g .̂

Theorem 2.5.1 ILDC2n * = 21̂  + 1.

Proof We obtain DC2n from T2„ by linking a„ with bj. Consider first the effect of 

adding to T2„ the link a„—bj. Clearly, this reduces the number of ideals. More
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precisely, in so doing we suppress all the ideals of T2„ that contain bj but not a .̂ So 

we have

ILDC2J  = I L t 2„ I - #(T2n ; ân, b i) .

Since

#(T2n ; b]) = #(T2„\ (b„.i, b„, a„), bj)

= #(T2„\ {ai, az, a„, bj, b„.i, b„)) 

and since all the ideals of {â  a2, a  ̂ b  ̂ b^.j, b^} are equivalent to all the ideals 

of E2DF2n_6- H follows, from Theorem 2.4.1 and Theorem 2.2.4, therefore, that

ILDC2n' = I ^Tzn ' '  &n, bi)

= ILt 2„I - ILE2DF2n.fi'

= 2J„ + 5 (J n - i+  1) - 5 a „ - l - l )

= 2Jĵ  + 1 . 0

By way of illustration, consider the double crown DC5:

Since, by symmetry, we can independently permute the aj and the b[ to obtain the same 

diagram, there are six antitone mappings g on DC5 such that g^ = id. All of those

produce Kleene algebras that are isomorphic. By Theorem 2.5.1 we have
ILDQl = 2J3 + 1 = 15,

the underlying lattice being
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1

h

f

b

The six (isomorphic) Kleene algebras are described as follows:

O l a b c d e f g h i j  k l a  

l O i k g l h j c e a f b d a  

l O i l  h k g j e c a f d b a  

l O k i  g l j h c f b e a d a  

l O l i  h k j g f c b e d a a  

1 0 k l  j i g h e f d c a b a  

l O l k j  i h g f e d c b a a

Theorem 2.5.2 I I = 1.

Proof Similar to the proof of Theorem 2.1.3 we have that, under the mapping gp the 

only distinguished ideal of is

I={ai, a2, ...» 0

Theorem 2.5.3 I FixL(DC2„; gj) I = { j J . t S  t fV iV J d d .’
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Proof Observe first that DC2n\ {a ,̂ a„, bj, b^} is isomorphic to Dp2n^ and is closed 

under g2-

If I is distinguished ideal of DC2n then I must contain a% and an but neither bi nor bn- 

Consequently, I \  {aj, an) is a distinguished ideal of DC2n\ {ai, an, bj, bn) .

Conversely, if J is a distinguished ideal of DC2n\ (a^, an, bj, bn) then J u  {a ,̂ an) 

is a distinguished ideal of DC2n* Now this correspondence between the distinguished 

ideals of DC2n and those of DC2n\ (a^, an, bj, bn) is clearly a bijection, so we 

deduce by Theorem 2.1.4 that

PixL(DC2„: g2> I = I L  (DC2„ \{a i,a„ ,b i,b „); g2>

=  I P i= ^ (D F 2 („ .2 ) : g 2 ) I

^ fJ(n-2)/2 if n is even, 
lJ(n-l)/2 if  n is odd.

determine the number of fixed points of ; k)»We now

Theorem 2.5.4 For n even, I Fix ; k) I = 2 - 1.

Proof Consider the subsets A, B of DC2n given by
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>n/2+l t>n

B :

Observe that B = k(A) = DC2n\ A. For every ideal I of A let I* = B \  k(I). Note that 

if J is a distinguished ideal of DC2n » then

bi G J => an/2+i = k(bi) ^ J => bn/2 ^

Arguing as in the proof of Theorem 2.1.4 we can show, using the geometric nature of 

k, that a subset J of DC2n is a distinguished ideal under k if and only if it is of the I u

I* where I is an ideal of A that does not contain both b% and bn/2» and I* does not

contain both bn/2+1 and b„. The latter condition is equivalent to a% e I and an/2 ^ k fl 
follows that the number of fixed points of î k) is

t = #(DF„ ) - #(DF„; bi. b„/2) - #(DF„: âj; à„/2).

Using Theorem 2.1.2, the Corollaries 1,2 of Theorem 2.2.1, we deduce that

t = #(DF„ ) - #(DF„; bi, b„/2) - #(DF„; àj;

= #(DFn ) - #(DFn: b ,̂ bn/2) '  #(M2(n/2_3) ^

=  V 2+I " ^  ( Jn/2-1 +  i )  - ^  ( Jn/2-1 +  1)

= fn/2+1 - Jn/2-1 ' 1

= 2 J n/2 " 1 • ^
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2.6 Tall double fences

We shall consider only one X whose height is greater than 1. This will suffice to 

illustrate the increasing complexity of the combinatorial arguments required. The X that 

we choose for this involves another sequence also defined recursively by a second 

order difference equation, namely the sequence (r^)n^ given by 

ro= l , r i  = 2, ( V n > 2) r„ = 3r„.i - rn_2.

Definition By a tall double fence we shall mean an ordered set of the form 

bi b2 bo bn

TDF3n :

a 1

Cn

We first determine the size of I LxDp3n 

Theorem 2,6.1 I L tdp^^ I = 2 rn*

Proof We show first that #(TDp3n; Cn) = #(TDp3n: Cq ).

Observe that

#(TDP3n; Cn) = #( TDP3n_3 ) - #(TDP3n_3; bn_i) + #(TDP3n, bn)

= #(TDF3„.3) - #(TDF3„.3; b„_i) + #(TDF3„.3; c„_i); 

#(TDF3„; c „ )  =  #(TDF3„_3) - #(TDF3„_3; b „_ i) +  # (T D F 3 „_ 3 ; b „ . i ,  5 „_ i)

tS
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= #(TDF3n-3) ~ #(TDF3n_3: b^.i) + #(TDF3n_3; 6n-l).

So

#(TDF3n; Cn) - #(TDF3n; Cn) = #(TDF3n; Cn_i) - #(TDF3n: Cn_i).

Continuing this recursion, we obtain

#(TDF3n; Cn) - #(TDF3n; Cn) = #(TDF3n; 03) - #(TDF3n: C2)•

A direct computation gives that

#(TDFg; C2) = #(TDF6; C2) = 5.

So we obtain

#(TDF3n;Cn) = #(TDF3n;Cn)

Observe now that

#(TDF3n; bn)=#(TDF3n_3; Gn-l)

= #(TDF3n.3; b„.i) +#(TDF3„_3; c„.i,b„_i). 

and #(TDF3 „; b„ ) = #(TDF3 „; b„, c„ ) + #(TDF3 „; c„ )

= [#(TDF3„.3) - #(TDF3„_3; b„.i)] +

[#(TDF3 „.3 ) - #(TDF3 „.3 ; b^.i) + #(TDF3 „; c„_i)]

=  2 #(TDF3„.3) - 2 #(TDF3„_3; b„_i) + #(TDF3„_3;

Then we have

#(TDF3„) = #(TDF3„; b„) + #(TDF3„; b„)

= 2 #(TDF3g_3) - #(TDF3n_3; bn.j) + #(TDF3„_3; c„.i, &n-l) +

#(TDF3„.3; c „ .f

Now

#(TDF3„_3; b„.i) = #(TDF3n.3; c„ .i, b„_i) + #(TDF3„.3; Cn-i),

so

#(TDF3„) = 2 #(TDF3„_3) - #(TDF3„_3; b„.i) + #(TDF3„_3; b„.i)

= 2 #(TDF3„.3) - #(TDF3„.3; b„.i) + [#(TDF3„_3) - #(TDF3„_3; b„.i)] 

= 3 #(TDF3„_3) - 2 #(TDF3„.3; b„.i).
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Since

#(TDF3„; b„) =  #(TDF3„.3; c„ . i ), 

we have I

#(TDF3„.3) = #(TDF3„.3; Cn_i) + #(TDF3„_3; B..;)

= 2#(TDF3n.3;c„.i) |
= 2 #(TDF3„;b„).

We therefore have

#(TDF3„) = 3 #(TDF3n_3) - #(TDF3n_6).

If now we let r^ = ^  #(TDF3^), then we obtain r„ = Sr^.i - r^ . 2  with r^ = 1, ri=

2#(TDF3> = 2 and #(TDF3„) = 2r„. 0

Corollary 1 #(TDF3„; b^) = r^.i. 0 

Corollary 2 #(TDF3ni a„̂  b )̂ = 2(r„ - r^.i). 

Proof Note first that

# ( T D F 3„ ; a„, b^ = # ( T D F 3„ ; c „ , b^ + #(TDF3„; a„, .

Now 

#(TDF3„) = #(TDF3„; b „ )  +  #(TDF3„; b„)

=  # (T D F 3 „ ; b „ )  +  # (T D F 3 „ ; c„ , b„) +  # (T D F 3 „ ; B„),

so

# (T D F 3 „ ; c „ , = # (T D F 3 „ )  - # (T D F 3 „ ; b „ )  - # (T D F 3 „ ; B ^

= #(TDF3„) - #(TDF3„; b„) - #(TDF3„; a„,Bj - #(TDF3„; B„ ),

But

#(TDF3mâ„,B^=#(TDF3„;E„)

=  # ( T D F 3 „ .3 ) - # ( T D F 3 „ .3 ; c„ . i )

= #(TDF3„.3)-#Cn)F3„;b„).
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So

#(TDF3„; c„, y  = #(TDF3„) - #(TDF3„_3) - #(TDF3„; a„, .

It follows that

#(TDF3ĵ ; a  ̂ = #(TDF3^; bjj) + #(TDF3^; a^ c )̂

= #(TDF3n)-#(TDF3n.3)

” 2(r^ - 0

By way of illustration, consider the tall double fence

TDF9  :

a  ̂ ^2 ^3

By Theorem 2.6.1 we have ILTDF9 1 = 2 r3  = 26. The Hasse diagram of L^DFg is

1

m

0
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where a = (a^)'^, b = (a2)'^, c = g = (ci)'*', i = (C3)'*', k = (02)'^, q = (hi)^, 4

s = (b3)' ,̂ u = (b2)' .̂

On TDp3n there is clearly only one dual closure f with a self-dual image, namely f = 

id. It is readily seen by [13, Theorem 1.1] that, all antitone mappings g on Im f with 

g2 < id are such that g^ = id, and so all corresponding MS-algebras are de Morgan 

algebras. There are only two such mappings, namely g and k given by

g(ai) = b„.i+i, g(bi) = an-i+i, gCq) = c„_i+i;

k(aj) = bj, k(bj) = â , k(c;) = c;.

These can be considered as, respectively, a reflection in the horizontal and a rotation 

through 180°.

As far as k is concerned, every Cj is fixed by k, by Theorem 1.6 of Chapter 1, the

corresponding MS-algebra L(XDF3^; k) is fixed point free, and it is a Kleene algebra.

To see this, it suffices to observe that, for every x g X, k^(x) = x and x is comparable 

with k(x) [Chapter 1, Theorem 1.7].

As for g, there are two cases to be considered:

(a) Consider first the case when n is odd. In this case, the element C(n+i)/2 is a fixed

point of g. By Theorem 1.6 of Chapter 1, the corresponding MS-algebra is fixed point 
free. If n 1 then we can see from Theorem 1.7 of Chapter 1, that L(̂ q%)Pĝ . g) is not a

Kleene algebra, since g(cj) = c„ II Ci = g^(c^).

(b) Consider now the case when n is even. In this case g has no fixed points, so 

L(t d F3„; g) has fixed points. In the following result we shall see that L(YDF3n; g)

has more than one fixed point, and therefore belongs properly to M.

Theorem 2.6.2 If n is even, then I Fix l(TDF3„; g) I = 2 (rn/2 - rn/2-l)*
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Proof Since g can be regarded as a rotation through 180°, the fixed points of are

those ideals of X which contain half of the Cj and have a 'skew-symmetric profile'. To 

be more explicit, consider the subset A of TDFĝ y described by

hi b'

A = TDF3n/2 : Cn/2

n/2

Let A' = TDF3n \  A,and for every ideal I of A, let I* = A' \  g(I). Note that if J is a 

distinguished ideal of TDF3„ under g then

an/2 G J and bn/2^ J.

Arguing as in the proof of Theorem 2.1.4 we can show, using the geometric nature of 

g, that a subset J of TDF3H is a distinguished ideal under g if and only if it is of the 

form I u  I* where I is an ideal of A which contains an/2 and does not bn/2. It follows 

that the number of fixed points of TDF3n (when n is even) is precisely the number of 

ideals of A that contain a /̂2 but not bn/2- By Corollary 2 to Theorem 2.6.1, this is 

2(rn/2“ ^n/2-l)- ^

:â.. -1 H k-



CHAPTER 3

CONGRUENCE LATTICES

In this chapter we shall describe some properties of congruence lattices of Ockham 

algebras. Our discussion here is based on the relations 0  ̂ (i = 0, 1, 2,...) on an

Ockham algebra (L; f) which are defined by

(x, y) € Oj <=> f(x) = ^ (y ).

It is clear that, for each 1, 0  ̂e  Con L and Oj ^ Oj+j. Note that d>o = G). Since Con L 

is a complete distributive lattice, V .^  0  ̂e Con L. We denote this congruence by

ĉo*

4 7

V . ' j ' ' : ' / .  :_______________1 ________________   . *  f j r,  . . . .  , .  I - . ,  . ,  , ,  2%



Theorem 3.1 If (L; f) is an Ockham algebra then (x, y) e 0 ,̂ if and only if f^(x) = 

f”(y) for some positive integer n (depending on x and y). Moreover, if L is non-trivial

then 0(0 <t.

Proof If (x, y) € 0 Q) then there exist elements t g, t j ^.  and congruences 0 jj,

0ij^ such that

x = to 0 i j  ti 0 i2  t2 ... tfc.i 0 i^  tk = y. 

Denote the greatest of these 0  ̂by 0 „j i.e., 0 „ = .

Then we have x 0 „ y, i.e., f”(x) = f”(y).

Conversely, if f”(x) = f”(y) then clearly (x, y) E0 (Q. Finally, if L is non-trivial then, 

since f”(0) ^  f”(l), for all n we have 0(Q 0

If an Ockham algebra (L; f) belongs to a Berman class then there is a smallest 

Berman class to which it belongs. We denote this by B(L).

Theorem 3.2 If (L; f) e Kp q with B(L) = Kp q . Then

0Q = o)< 0 j  < 0 2 <  ... < 0q = 0q+j = ... = 0(0

and Con L has length at least q+1.

Proof Observe that

(x,y)eOq+i <=> _ fl+\y)

<=> fQ(x) = fP-l[fq+\x)] = f2p-l[£<l+l(y)] = f<i(y)

<=> (x ,y)e0q:

i
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It follows that 0 q= Oq+i- If now (x, y) e Oq̂ .̂  where r >1 then f̂ '*'̂ (x) = f '̂^ (̂y) 

gives

( f"I(x) , f"^(y)) e Oq+i = 0 q , 

and so f '̂^ "̂I(x) = f̂ "*'̂ "I(y), i.e., (x, y) g 0 q+r.i. Thus we see that 0 q= 0 q+i = ... 

Consequently,

^o>=Vi^O®i = ®q'

Suppose now, by way of obtaining a contradiction, that for some n with 1< n < q 

we have 0n-i = -

For x, y G L, if (x, y) g  Aen f"'^I(x) = f̂ '̂ ^Cy) and so (f(x), f(y)) e ~

Ofl-i. So we have 0n+i “  continuing with this process we obtain

(*) ^n-1 -  = ^ q = ^ q + l =  ••• •

But, L G Kp q_i and so there exists x g  L such that

So (x, fP(x)) e Oq.1- But f‘*(x) = f^P+q (x), i.e., (x, f^P(x)) e  0 q whence 0 q_i < Oq 

which contradicts (*). This then completes the proof of the theorem. 0

Corollary For an Ockham algebra (L; f ), the following statements are equivalent:

(1) (V i >1) 0 i = co;

(2) Oi = 0);

(3) f is injective.

Moreover, if (L; f) belongs to some Berman class Kp q , then each of the above is 

equivalent to (L; f) g  Kp q .

49

1
-1

■

:-s

I
-

Proof The equivalence of (1), (2), (3) is clear. As for the final statement, suppose 

that for every x g  L, we have f̂ P'̂ Q(x) = f^(x). Then, by (3), we have f̂ P'*' "̂l(x) =

 ̂  ̂ .   . .  : 'KSU
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and so on, whence eventually, f^P(x) = x, and then L e Kp q . Conversely, 

suppose that (L; f) e Kp q and that 0  ̂# co. Then there exist x, y e L such that x # y  

and f(x) = f(y). This implies that f^P(x) = f^^(y), and hence the contradiction x = y.

0

Note that the hypothesis that L belongs to a Berman class is necessary in the 

above. As the following example shows, it is possible in general for f to be injective 

with L G Kp 0 for any p.

Example 3.1 Let L be the infinite chain

0  <  Xj <  X3 <  X2n+i< ... <  X2n <  .< X2 <  Xq <  1. M

Definefby

f(0) = 1, f(l) = 0, (i = 0, 1, 2,... ) f(xi) = Xi+i.

Then (L; f ) is an Ockham algebra on which f is injective. For all m ^ n  and all i we 

have f^(x|) f” (x|) and so L does not belong to any Berman class.

For every Ockham algebra (L; f ) it is clear that

{0,1) £ ... g S f*(L) ^  ... ^  f(L) g f®(L) -  L.

Theorem 3.3 If (L; f) e Kp q , then, for n < q, L/0 n e Kp q. .̂ 0

where in this context ^ means ' is a subalgebra of '. It is easy to verify that there are 

Ockham algebra isomorphisms 170  ̂= r(L) when i is even, and L/0 j (f*(L)) when

i is odd. Moreover, the following result is clear.

I
L„ SJ

4



Theorem 3.4 Let (L; f) belong to a Berman class. If B(L) = Kp q then we have

the mutually equivalent chains

(1) L 3  f(L) 3  f(L ) 3  ... 3  f4(L) = f9+^(L) = ... ;

(2) 0 Q < 0 1  < ... < 0 q = 0 q+i = ... .

Conversely, each of these chains implies that B(L) = Kp q for some p > 1.

Proof From fl(x) = f^P’*'̂ (x) = fl+I[f^P"I(x)] g it follows that f^(L) £

fl'^I(L),whence we have

fl(L) = fq+I(L) = ... .

Suppose now, by way of obtaining a contradiction, that for some n < q we have 

f"-I(L) = f(L).Then

f9(L) = m-"[F(L)] = fl-"[f»-l(L)] = m-^(L).

But since B(L) = Kp q we have L G Kp q_i and so there exists x g  L such that f^’l(x) 

f^P+q-i(x). Now f^"I(x) G fi'l(L) = f^(L) gives f^‘l(x) = fl(y) for some y G L,

whence f^(y) = f^‘I(x) ^  and this contradicts the fact that L

G Kp q . This then establishes the chain (1). The other chain is obtained immediately

from Theorem 3.2.

For the converse, suppose that B(L) = Kp „ . If n > q then from the chain (1) we 

have f”(L) = f”‘‘'^(L); and if n < q we have f”“̂ (L) 3  f”(L). Thus we require n = q. 0

Corollary If B(L) = Kp q then B(f (L)) = Kp q_i. 0

We now turn our attention to the congruence lattices of an Ockham algebra (L; f). 

We first establish the following results. In what follows we shall use the symbol -< 

to mean ' is covered by '.

51 #
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Theorem 3.5 Let (L; f) be an Ockham algebra. If a, b g L are such that a < b and 

f(a) = f(b), then 0(a, b) g  Con L has a complement in [co, 0^].
I
i
I

Proof By Theorem 1.9 of Chapter 1 we have

0 (a,b)=  V^^e,at(f”(a). f(b)).

It follows that 0(a, b) = 0iat(a» h) g  Con L and clearly, 0(a, b) ^ 0 p  Let now a  =

0(a, b). Since a  is a principal lattice congruence, it has a complement p in Conj^^L, 

namely p = 0iat(O» a) v 0iat(b, 1). Consider the lattice congruence a ' == p a 0^. f

Since every lattice congruence contained in 0^ is a congruence, we have a ’ g  Con L.

Now

a  V a ’ = 0(a , b) v (P a  0 j)  = (0ia t(a , b)vP) a  (0ia t(a , b) v 0 ^)

=  I  A 0 ) =  0 1 ,

and

a  A a' = 0 (a, b )  a  ( p  a  0 ^ )  = co a  0 i =  co.

It follows that a ' is the complement of a  in [co, 0 i]. 0

Theorem 3.6 Let (L; f) be an Ockham algebra. If a, b g  L are such a •< b and f(a) = 

f(b), then 0(a, b) is an atom of Con L.

Proof It is clear from the proof in Theorem 3.5 that 0(a, b) = 0jat(a, b) < 0 i.

Suppose now that co ^  (()< 0(a, b). Then <|) = <j) a  0(a, b) = (j) a  0iat(a, b). So, if V

(x, y ) G  (|) then (x, y) g  <}> a  0iat(a, b). Thus we have

(*) X A a = y A a, x v b = y v b, (x, y) g <|). j

Writing s = (x V a) A b and t = (y v a) a  b we see that (s, t) g  (j); and, since a ^  b f
'Û,

by the hypothesis, we have {s, t) c  {a, b). Now if s 5̂  t then one of s, t must be a 3
il

I
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and the other b, whence (a, b) e (j). This gives the contradiction 0(a, b) < <{>. Hence #

we must have s = t, i.e. (x v a) a  b = (y v a) a  b. But from (*) we have x v a v b 

= y V a V b; so, by the distributivity of L, x v a = y v a. Again by (♦) and the 

distributivity of L we obtain x = y, and hence <|) = 0). 0

■I

For an Ockham algebra (L; f), let a  e Con L. An a  - class [a]a will be called 4

locally finite if, whenever x, y e [a]a with x < y, the interval [x, y] has only finitely 

many elements in L. We now show the following result.

Theorem 3.7 Let (L; f) be an Ockham algebra. If a, b e L are such that

a-<b, (a,b)G 0 „, (a, b) e 0 ^+1, 

then 0 n  v 0(a, b) is an atom of [0^, ^n+ll- Moreover, if every 0 n + rdass is 

locally finite, then every atom of [0 „, 0 n+il is of this form.

Proof Since f"+^a) = f**+l(b) we have (f(a), f(b)) €0^, so 0(f(a), f(b)) < 0^  and 

consequently

(1) 0 „v 0(a, b) = 0 nV 0jat(a, b) v 0 (f(a), f(b)) = 0 „v 0iat(&, b).

Clearly, we have 0^  < 0nV 0(a, b) ^  0n+i- Suppose that a  € Con L is such that 

0„  < a  < 0jiV 0(a, b). Then by an argument as in Theorem 3.6 we have

(2) a  A 0iat(a, b) = 0),

It now follows from (1) and (2) that

a  = a  A (0 „v 0(a, b) ) = a  a  ( 0 „ v  0 |at(a, b) ) = a  a  0 „ 

and therefore a  < 0„, whence a  = 0^. Hence 0„v0(a, b) is an atom of [On, On+il- 

Finally, let <{) be an atom of [On, 0n+i]. Then there exists a, b eL  such that a < b,

(a, b) G On, and (a, b) e (j) ^ ^n+1- If every On+i-class is locally finite, there exist



p, q e [a, b] such that p -< q, (p, q) ^  (p, q) e <|). For such p, q we have 0^  -<

0 n 8 (P, q) ^ <1> whence (j) = v 0 (p, q). 0

Example 3.2 [ The sink ] Consider the ordered set L given by
1

xio

#
0

5 4

1V



and made into an Ockham algebra by defining f(0) = 1, f(l) = 0, and f(xi) = xj.j, 

f(xo) =  Xq, f(zi) = yi, f(yi) =  f(xo) =  x q , f(y2> = % 3) ,  f(ys) =  # 7 ) ,  ... , and 

extending to the whole of L.

Observe that the O ĵj-classes are {0}, {1}, L\{0,1}, and are locally finite. It is easy

to see that Con L is as follows:

I

CO

« 4

CO

w h e r e  0 %  =  0 ( x i ,  x q ) ,  0 3  =  9 ( x i ,  X 2) =  0 ( x q ,  X 2), 0 3  =  0 ( x i  a  X 3 , X 2) =  

0 ( X 3 ,  X q), 0 4  =  0 ( x i  A X 3 , X2 V X 4) =  0 ( x q ,  X 4), . ..  ; a i  =  0( x i ,  y i ) ,  «2  =  

8(yi,xo), a3 = 0(zi,X2), a4 = 0(yi, zi) = 0(xo,zi), ag = 0(xi,zi).

Note that [co, 0%] and [0^, 0 2 ] are boolean lattices, and every interval [0^, 0i+i] 

(i = 2, 3,...) is a 2-element chain.
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CO

Pi

where pj = 6 a ( x i ,  yi), P2 = 6A(yi- xg). Oj  = O i l ^  = 0 a (x i ,  xq), ^ 2  -  Ci'A^

6a(x i, X2) = 0a(xo. X2), %  = $ 3!^ = 0a(x i a  X3 , X2) = 0a(X3, Xq) 0

®»'a-

(0

5 6

Note, by way of illustrating Theorem 3.5, that f(yi) = f(xo) with y  ̂< xq. So  

6 (yi, Xq) has a complement in [co, Oi], namely 0(xi, yi). Also since y% -< xq. 

Theorem 3.7 shown that 0(yi, xq) is an atom of Con L.

Example 3.3 Let (L; f) be the Ockham algebra in Example 3.2, and let A = f(L).

'f(L)‘Then A =L\{zi; i >1}, and the classes are : {0}, {1}, A\{0,1 }= f(L)\{0,l}

= L\({0,1 }u{zj[; i> l}), and are locally finite. It is easy to see that Con A = Con f(L) 

~ Con L/€>i ~ [Oj, i] in Con L, and is as follows:

t

CO

-L  ' _____ ________ .JL.' .  . . .............. ' .............. .1.



Example 3.4 Let (L; f) be the Ockham algebra in Example 3.2, and let B = f^(L). 
Then B = f2(L) = L \({ y i; i > i >1}), and are {0}, {1},

L \  ({yi; i ^ l}u{zi; i >1 )), and are locally finite. It is readily seen that Con B = 

Con f2(L) = Con IVO2 = [ O2, i ], and that Con B is as follows;

• O

4

CO

. . i

j

** ** ** 
where Oj = 8b (x 3, Xq) , 0^ = ®2lf2(L = ®B(xq. X4), = <̂ (olf2(L)-

We now recall [6]

(1) the infinite distributive law (ID) : x a  N/. yj = \ / .  (x a  yj);

(2) that a lattice is atomistic if every non-zero element is the join of a family 

of atoms.



Theorem 3.8 Let L be a complete distributive lattice satisfying the infinite 

distributive law (ID). If an interval [a, PJ of L is atomistic then it is boolean.

Proof Let { xj I i e 1} be the set of atoms of [a, p]. Then for a  < y < p we have

Y = Ya P = y a V.  ,*i = V . .(YAXj).IG 1 IE i
Let I^) = { i E 11 Xi < Y ) and I^^ = { i e 11 xj y )• Then (I^ \ I^}  is a partition

of I with y== V . j(y) ^i • Moreover,

(*) (v  i G I^)) (v  j G I^)) Xi A Xj = xj A y A Xj = xj A a  = a.

Now let 0=  V . (y) Xj. Then clearly y v ô = p. Also, by (*) and (ID),

y ^ ^ = V . ^ l(Y)’‘i  ̂ v . ^ X j  = v.^j(Y)(xiA Vj(Y)Xj) = a.

Hence Ô is the complement of y in [a, p], 0

We now establish the following result.

Theorem 3.9 Let L be an Ockham algebra in which the O^^-classes are locally finite. 

Then every non-trivial interval [<!>„, 0^+^] of Con L is a complete atomic boolean 

lattice.

0 = 0n V \ /(0 (a , b )  ; (a, b )  ^ 0^, (a, b )  G 0 ) ,

58

Proof For every 0 g  Con L we have 0 = \ / {  0(a, b) ; (a, b) g  0} .Thus, if 0^  < 0 

then we have

___________________ i  , V ^



Now for such p, q we have, by Theorem 3,7, that 0„  v 0(p, q) is an atom of [O^, 

0n+l]* Consequently, [0„, 0n+ll is atomistic and the result follows by Theorem 

3,8, 0

Corollary 1 Let L be finite. Then Con L contains the vertical sum 

[CO, 0 i l  © [01, 02l © ... © [0q_l, 0q] © [0 q , U 

where q is such that B(L) = Kp q and each summand is boolean.

Proof Observe first that [0q, i] c: Con L/0q =  Con f^(L) and that f^(L) g  Kp q, s o  

it follows from Theorem 1,10 in Chapter 1 that [0q, i] is a boolean lattice. It is also 

readily seen from Theorem 3,9 that, for each n, [0n-i> 0nl is a boolean lattice, 9

Corollary 2 Let (L; f) be a finite Ockham algebra. If f is injective, then Con L is 

boolean.

Proof Since, if f is injective then

co = 0 i= ... = 0 q = 0 o).

The result follows immediately by Corollary 1, 9

Example 3.5 Consider the chain C given by

0 < xi < %2 < ... < a <  ... < yg < yz< yi < 1 

and made into an Ockham algebra by defining

f(0) = 1, f(l) = 0 , (V i)  f(xi) = f(yj) = f(a) = a.

59

I
If now 0 e [0JJ, 0n+il then, since the 0n+i-dasses are locally finite, we have

0 = 0 n  V  V{0(p> q) ; (p, q) <é0„, (p, q) g0, p •< q), : |

 " ....  V, ' .......  .



Example 3.6 Let the ordered set L be given by

d

0

1
6 0  t 

!
Here = Oj and has classes {0}, {1}, C \{ 0,1}. The O^a-class C \{ 0,1} is not s

locally finite.

Consider now the partition

{0 }, {xj; i > l ) ,  {a), {yj; i>l},  {!}.

This defines a congruence in [co, which has no complement in [co, 0^]. So in

this case
Con L =  [CO, Oil ©  {i} 

with [CO, O J  is not a boolean lattice. 0

I

?

'1 >
'?

I
■?

I
= 
1
5
1:

and made into an Ockham algebra by defining ■

x :  O l a b c d e f  S

x'“ : 1 0 d d d c 0 0 -%
It is readily seen that Le MS and that 0^ = 0 2  = — = 0(o. Con L is as follows: ;

.'-'Ï



6 ]

0(0,a)

0(0,d)

where = 0 (a, c), 0 (0 , d) v 0 (a, b) = 0 (a, f), 0 (0 , d) v 0 (b, c) = 0 (b, 1),

0(0, d) V 0(a, b) V 0(b, c) = 0(a, 1), 0(0, a) = 0(0, c). Clearly, [0, and [# i, i]

are boolean lattices, and Con L contains the vertical sum [0,0%] 0  [^ i, i ] .

Example 3.7 Consider the lattice L given by
1

»x

c

» a

»e

►y

0

I

J

«



and made into an Ockham algebra by defining

f(0) = 1, f(l) = 0 , f(x) = y, f(y) = x; 

f(a) = f(b) = f(c) = f(d) = e, f(e) == f(a) = a.

It is clear that B(L) = Kj 2 and 0 2  = The congruence lattice of L is as follows:

I

0 (a,b) e(a,c0 (e,a)

CO

6 2 I

I

Î
:

I

where A = 0(e, a) = 0(a, a), B -  0(e, b) -  9(a, b), C = 0(e, c) = 0(a, c), 0 2  ~ ^co 

= 0 (e, d) = 0 (a, d), 0 (a, b) v 0 (a, c) = 0 (a, d).

Here [co, <I>i] = 23, [O j, ©2=0 J  = 2, [©o,,l] = 22.
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CHAPTER 4

SUBDIRECTLY IRREDUCIBLE 

OCKHAM ALGEBRAS

63

In this chapter, a generalised variety Kg» of Ockham algebras that contains all 

varieties Kp q is introduced. We shall show that L s Kq) is subdirectly irreducible if

and only if its lattice of congruences reduces to the chain

œ = Oo<®i < 0 2 <  ... < 0 (0<  I.

Here the symbol < means ’is covered by or is equal to*.

■■■
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f2“(2nN + 1) = 2nN + 1, f2k(2nN + 1) 5t 2nN + 1 (for k  < n).

4.1 Weakly subdirectly irreducible Ockham algebras

An algebra is said to be weakly subdirectly irreducible if the intersection of two 

non-trivial principal congruences is non-trivial. More precisely, for a weakly 

subdirectly irreducible algebra L, if 0(a, b), 0(c, d) e Con L with a < b and c < d, and 

if 0(a, b) A 0(c, d) = m then either 0(a, b) = co or 0(c, d) -  co. Every subdirectly 

irreducible algebra is therefore clearly weakly subdirectly irreducible.

For an Ockham algebra (L; f ), we consider the subset T(L) of L consisting of those 

elements x of L for which there is a smallest even positive integer m^ == 2n^ such that 

f*"*(x) =  X. Clearly, T(L) ^  0  since it contains 0 and 1. If now x, y e  T(L) let t =  

l.c.m.[nx, ny]. Then we have f^t(x v y) = f̂ K%) v f^Ky) = x v y, and similarly 

f2t(x A y) =  X A y. Since x e  T(L) clearly implies f(x) e  T(L), it follows that T(L) is a 

subalgebra of L,

For i > 1 define

Ti(L) = {x € LI fi(x) = x).

Then Ti(L) is the set of fixed points (possible empty) and we have the chain

C(L) = {0,1} V Ti(L) C  T2(L) s  T4<L) £  ... £  T2n(L) c  ... £  T(L).

Note that T2n(L) is the largest K„ o - subalgebra in L.

Example 4.1.1 Let G = (2^ ; f) where f is given by

f(X) = {m€ Nlm+1«É X).

Then G is an Ockham algebra. U sing the fact that j

f^(X) = {x - 2 1X e X} i
-j

we have, for n > 1, i

■J
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It follows that 2nN + 1 belongs to T2n(G) but does not to T2k(G) for any k < n. 

Consequently, we have the chain

C(G) = {0, N, 2N, 2N + 1) = T2(G) c  T4(G) c  ... c  T2n(G) c  ... c  T(G).

The following result is obtained by adapting a proof of Theorem 1.13 of Chapter 1 

(see [24]), for the class K„ q-

Theorem 4.1.1 Let an Ockham algebra (L; f) be such that T2(L) = C(L). If a, b 

e T(L) with a < b, then 0(a, b) = i .

Proof For every x e T(L) let m^ be the least even positive integer such that f*”^(x) = x 

and let n^ = ̂  m^. Consider the elements

a  (x) = f^\x), p(x) = f \ x ) .

Observe that f^(a(x)) = a(x) and f^(p(x)) =p(x), so that a(x), p(x) e T2(L) = C(L). 

Now let a, b e  T(L) be such that a < b. Consider the sublattice M that is generated

by

(f% ), fj(b) lOSiSna-l ,  0 < j< n b - l ) .

Clearly, M is finite with smallest element a(a) and greatest element P(b). Let p be an 

atom of M and consider the interval B = [a(a), p(p)] in M. Since every atom of M is of

the form A  i^jf^^(a) for some j, it follows that f^(p) is also an atom of M.

Consequently, B is boolean; for it is a finite distributive lattice whose greatest element 

is a join of atoms.

Observe that a(a) < p(p) and so, since both belong to C(L), we have that a(a) is 

either 0 or a fixed point, and p(p) is either 1 or a fixed point.

Clearly, a a  p(p) and b a  P(p) belong to B, and

(a A p(p), b A P(p)) e  0(a, b).

4 1
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a A P(p) < b A P(p), let c be an atom of B with c ^ a a  P(p) and c < b a  P(p). 

Then we have

(a(a), c) = (a A p(p) a  c, b a  P(p) a  c) e 0(a, b).

It follows that (a(a), p(c)) e 0(a, b). Since a(a), P(c) e C(L) with a(a) < P(c) we 

deduce that (0 , 1) e 0(a, b) and therefore 0(a, b) = i.

If now a A p(p) =  b A p(p) let a% =  a v  P(p) < b v  p(p) =  b%. Then clearly we have 

(aj, hi) e 0(a, b). Moreover, we cannot have p(p) = 1, so p(p) must be a fixed point. It 

then follows that p(b) = 1; for otherwise p(b) = p(p) gives the contradiction 

a = a A p(b) = a A p(p) = b A p(p) = b A P(b) = b.

Considering therefore the interval [p(p), 1] in M and a coatom q such that q > a v P(p) 

and q i  b  V P(p), we see in dual manner that again 0(a, b) = i . 0

From Theorem 4.1.1 we can obtain the following an important result.

Theorem 4.1.2 For an Ockham algebra L the following statements are equivalent:

(1) The subalgebra T(L) is simple;

(2) Every subalgebra T2i(L) is simple;

(3) T2(L) = C(L);

(4) All de Morgan subalgebras of L are simple.

Proof (1) => (2): This is clear since, by the congruence extension property [Chapter 1,

Theorem 1.8], every subalgebra of a simple algebra is simple.

(2) => (3): If (2) holds then particularly T2(L) is simple. But T2(L) e Kj q = M, and

since there are only three non-isomorphic simple de Morgan algebras we see 

immediately that we must have T2(L) = C(L).

___ i ‘ ....... .............. . . . .



(3) => (1): If (3) holds then by Theorem 4.1.1 every non-trivial principal congruence

on T(L) coincides with i. Since every congruence is the supremum of the principal

congmences that it contains, it follows that T(L) is simple.

(3)<=> (4): This follows from the fact that T2(L) is the largest de Morgan subalgebra

ofL. 0

Corollary Let (L; f) be an Ockham algebra. If there exists some i e N such that

T2i_i(L) -  {0, 1} u  T2i.i(L) = T2i(L) then T(L) is simple.

Proof It suffices to show that C(L) = T2(L). Let x e T2(L) then clearly we have

6 7 %

I

f^\x) = X and x eT 2 i(L) = T2i-i(L). If x e {0, 1 ) clearly x e C(L). If x 0  {0, 1} then

f̂ "̂̂ (x) = X and then f(x) = f(f^''\x)) = f^\x) = x in this case x is a fixed point. Hence 

T2 (L) c  C(L) and therefore C(L) = T2(L). 0

Theorem 4.1.3 If an Ockham algebra (L; f) is weakly subdirectly irreducible, then 

T2 (L) = C(L). Moreover, f has at most two fixed points.

Proof Let x e T2 (L) and let y = f(x). Then f(y) = f2(x) = x.

Suppose now that {x, y} {0, 1}. Then 0 < x < 1 and 0 < y < l . I f x A y  = 0 then 

X V y = f(y) V f(x) = f(y a  x) = f(0) = 1 and then we have, by Theorem 1.9 in Chapter 

1 , that

0(0, x) = 0iat(O, x) V 0iat(y, 1) and 0(0, y) = 0iat(O, y) v 0iat(x, 1).

So we have

0(0, x) A 0(0, y) = [0iat(0, x) a  0(ai(O, y)] v [0iat(O, x) a  0M(x, 1)]

V [Oiat(y, 1) A 0 iat(O, y)] v [0 iat(y. 1) a  0 iat(x, 1)]

=  CO

a contradiction. Hence we must have x a  y > 0. Then we have

. . , c ' i
  _  _   _    . .. .   .  , .,
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*1
I

0(0, X A y) A  8(x A  y,x v y) = [0iat(O, x A  y) v 0igt(x v  y, 1)] a  0iat(x a  y, x v y)

= [01at(O> X Ay) A 0iat(x a  y, x v y)]

V  [0jat(x V  y, 1) A  0iat(x a  y, x v y)]

=  0).

By the definition of weakly subdirectly irreducible, we deduce from this that x a  y =
Î

X V y whence x = y, i.e., x e C(L).

Now if f(x) = X and f(y) = y with x y, then f(x a  y) = x v y and f(x v y) = x a  y .
?

Then x a  y = 0 and x v  y = 1. Hence fixed points of f  are complementary. So by ?

distributivity there are at most two such. 0
$

Theorem 4.1,4 If an Ockham algebra (L; f) is weakly subdirectly irreducible, then 

every Oj-class contains at most two elements. Moreover, if a, b e L are such that 

a < b and (a, b) € Oj then 0(a, b) is an atom of Con L.

Proof Suppose that a Oj-class contains at least three elements. Then it contains a 

three-element chain a < b < c with f(a) = f(b) = f(c). Then 0(a, b) = 0iat(a, b) and 

0(b, c) = 0iat(b, c), whence we have the contradiction

0(a, b) A  0(b, c) = 0iat(a, b) a  0iat(b, c) = CD .

If now (a, b) e d>i with a < b then, by the above, we have a -< b. It follows that 

01at(a, b) is an atom of ConjatL, whence 0(a, b) is an atom of Con L. 0

I
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Theorem 4.2.1 Let (L; f) be an Ockham algebra and let xi, X2 e L be such that there 

are natural numbers m\ > 1 , m2  -  1 and n ̂  > 0 , n2  ̂  0  with

fmi+ni(xi) = f^1(xi) and m + " 2 (x2) = m (x 2 ).

Then there are natural numbers m > 1, n > 0 such that

f™+"(x,) = f"(X|) and P ’̂ "(X2 ) = f"(x2 ).

Proof Let m = l.c.m.(m%, m2 } and n = l.c.m.(ni, n2 ). Then m = m^r > 1, n = iijs > 

0  and so

4.2 The generalised variety Kq)

It is well known that every finite Ockham algebra belongs to some Berman class. 

This is no longer true for an infinite Ockham algebra, so it is natural to consider classes 

that contain all the Berman classes Kp q. In the following we introduce such a subclass 

of O denoted by K(q.

Definition 4.2.1 The subclass K^) of Ockham algebra is defined by

(L;f)eKco <=> (V x g L) (3 ra > 1, n > 0) fm+n(x) = fn(x).

By its very definition, Kq  is closed under the formation of subalgebras, and

homomorphic images. However, it is not closed under the formation of arbitrary direct 

products, as can be seen by taking an algebra Lq g Kp q for each q > 0  and considering

the algebra

Lq X L j X 1̂ 2 X ... .

Nevertheless, the following result enables us to claim that Kq  is closed under finite 

direct products.
%

%
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_ £mi(r-2)+ni(s-l)|-^i+ni^^^^j

„  1 (r-2)+n l (s-1 i

Similarly, f"'*'"(x2) = f"(x2). 0

As shown by Berman [Chapter 1, Theorem 1,1], each Kp q is locally finite in 

sense that every finitely generated algebra in Kp q is finite. Using Theorem 4.2.1, we 

can show that Kq enjoys the same property.

Theorem 4.2.2 Kq  is locally finite. Moreover, if L e K q  then every finitely 

generated subalgebra of L belongs to some Berman class.

Proof Suppose that L e Kq is O-generated by (x%,X}^].  Then there are natural 

numbers mj > 1 , nj > 0  such that

(i = 1, k) f^i'^"i(xi) = f"Kxi) .

By Theorem 4.2.1 and induction, there exist m > 1, n ^ 0 such that

(i = 1, k) f"+"(xi) = f"(xi) [= f2"'+"(xi)] .

It follows that L belongs to K,̂ i n* The result now follows by Theorem 1.1 of Chapter 

1. 0

If (L; f) e Kq and (L; f) ^ Kp q for any p,q then we shall say that (L; f) belongs 

properly to Kq . Here are examples of such algebras.
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Example 4.2.1 Consider the infinite chain L

0 < ... < a_n < a_(n_i) < ... < a_i < ag < a% < ... < an_i< a  ̂< ... < 1

made into an Ockham algebra by defining

f(0) = 1, f(l) = 0, f(ao) = ag, (Vk ̂  1) f(ak) = a.k+i, f(a_k) = .

Clearly, (L; f) belongs properly to Kq , and T(L) = C(L) = {0, 1, ag).

Example 4.2.2 The sink (see Example 3.2 in Chapter 3) belongs properly to Kq  and 

T(L) = C(L) = {0, 1, xq}.

Theorem 4.2.3 If L e Kq , then the following statements are equivalent.

(1) L is weakly subdirectly irreducible;

(2) L is subdirectly irreducible.

Proof (1) => (2): Since L e K q ,  for every x e L we have f*"'*'”(x) = f”(x) for |

some m > 1, n > 0. If Oj = CO then f is injective and we obtain x = f"(x) whence x e

T(L). Thus L = T(L) and it follows by Theorem 4.1.3 and Theorem 4.1.2 that L is 

simple, hence subdirectly irreducible. If, on the other hand, Oj co then by Theorem

4.1.4 the interval [co, of Con L contains an atom 6 (a, b). If now (p e Con L is

such that cp CO then, since (p is the supremum of the non-trivial principal congruences

which it contains, that is

< P = V { 6 (x.y) l(x,y)sq>, x < y }

I

J
and since Con L satisfies the infinite distributive law |3 a  i  ®i ~ V jg  i  (P a  oq ), 

it follows by the hypothesis that L is weakly subdirectly irreducible that 0(a, b) A  ( p ? ^  I

’Ï
CO. Since 0(a, b) is an atom in Con L it follows that 0(a, b) < (p, whence 0(a& b) is the |

smallest non-trivial congruence on L and so L is subdirectly irreducible.

(2) => (1): This is clear. 0
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Corollary If an Ockhan algebra L is weakly subdirectly irreducible but not subdirectly 
irreducible then necessarily L «é K^) and f is injective.

Proof That L g K^) follows from Theorem 4.2.3. Suppose that f were not injective. 

Then by Theorem 4.1.4 the interval [co, <E>i] would contain an atom 0(a, b). As shown 

above, this implies that L is subdirectly irreducible, a contradiction. 0

Example 4.2.3 [The pineapple] Consider the ordered set L given by

i+2

.xi+i i +3

f(a)

0

and made into an Ockham algebra by defining f(0) = 1, f(l) = 0, and f(xi) = X|̂ .i for

each i, and extending to the whole of L.
Observe that f is injective and that (L; f) <£ Kç^ . It can readily be verified that the

classes modulo the congruence 6(x^+i, Xj) are as in the diagram

:
Ï

"I

I
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7 3  ;

1
#

X i

0

Since every congruence is union of principal congruences, it is readily seen that Con L 

is the chain

CO 0(x j+ 2» X j+ i)  -<  6 ( x i+ i ,  Xi) -<  ... •<  'F  <  I .

where T  has classes {0}, {1}, L\{0,1}. Thus L is weakly subdirectly irreducible but 

not subdirectly irreducible. Here also we have T(L) = C(L) = {0,1}.

Example 4.2.4 Let (B; f) be the Ockham algebra in Example 3.4 in Chapter 3. We

see that B g K ç̂ and Con B is the chain
** ** **

C0 -<  0 . - < 0 « -<  ... < 0  -<  I
1 Z  CO

** **
where 0^ = ^ilf2(L) a n d 0 ^  = ô)!£2(Ly Hence B is subdirectly irreducible. Here we 

have T(B) = C(B) = {0, 1, xg).

1
I
I
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We shall now proceed to charcterise the (weakly) subdirectly irreducible algebras in #
Kq) . For this purpose we require the following results.

Theorem 4,2.4 Let A be an algebra that belongs to a class that has the congruence 

extension property. If A is subdirectly irreducible with monolith a  then every 

subalgebra B of A for which alg ^  co is also subdirectly irreducible, with monolith

alfi.

Proof Let a* = alg. Every congruence q>* on B with 9 * 9̂  co extend to a congruence 

9  on A such that 9  56 co, and therefore 9  ^ a. It follows that 9 * ^ a* 9̂  co, and hence 

that B is subdirectly irreducible with monolith a*. 0

Theorem 4.2.5 If an Ockham algebra (L; f) is subdirectly irreducible. Then co <  0 j .  

Moreover, if Oj co then Oj is the monolith of L.

Proof Suppose that co 96 0 .̂ Since every subdirectly irreducible Ockham algebra is 

weakly subdirectly irreducible, by Theorem 4.1.4, every 0 1 -class has at most two

elements. By the definition of subdirectly irreducible that L has monolith a. Then co <  

a  :< 0 1  and so a  has a two-element class, say {a, b) with a < b. Since every lattice 

congruence contained in 0 1  is a congruence, it follows that

(X = 0(a, b) = 0iat(^» b).

Since a  is a principal lattice congruence it has a complement p = 0iat(0» a) v 0iat(b, 1) 

in Coniat L. Now p A 0 1  is a lattice congruence contained in 0 1  and so p A 0 1  is a 

congruence. Since L is subdirectly irreducible it follows that either p A 0 1  > a  or 

p A  0 1  = CO. The former is excluded since it gives a  = p A 0 i A a = P A a ,  whence 

the contradiction a  p. Thus p A 01  = co. But i  = p v a  and 0 1 > a  give 

1 = P V 0 1 . Hence p is the complement of 0 1  in Conig^L and therefore 0 1  = a. 0
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We now establish a characterisation of the (weakly) subdirectly irreducible algebras 
in Kq). We have the following result.

Theorem 4,2.6 If L e K(j), then L is subdirectly irreducible if and only if Con L |

reduces to the chain

co = Oo<<E>i ... < 0 (0 ^ 1.

More precisely

(1) If L belongs to a Berman class and B(L) = Kpq then L is subdirectly irreducible ^

if and only if Con L reduces to the finite chain

co = 0 o-<0 i -<0 2 ^  ... -<0 q = 0 o)<l .

(2) If L belongs properly to Kq) then L is subdirectly irreducible if and only if

Con L reduces to the infinite chain

CO =  0 Q -<  0 1 -<  0 2  ■< ... -<  0(0 -<  I .

Proof =»: Suppose that L is subdirectly irreducible. We show first that 0(o -< i. For 

this purpose, we note that if a, b e L are such that a < b and (a, b) g 0(g then 

0(a, b) = I. To see this, observe that if (a, b) «é 0(o then f"(a) ^  f”(b) for all n e N. 

Now since L e Kq) we see by Theorem 4.2.1 that there exist m > 1, n ^ 0 such that

jp+«(a) = f"(a) a n d P + »  = f"(b).

If n = 0 then a, b e T(L) and it follows by Theorem 4.1.3 and Theorem 4.1.1 that 

0(a, b) = I. Let now n > 0 and let c = f”(a) and d = f”(b) so that c, d e T(L). We 

have also that 0(c, d) = i. Consequently,

e(a, b) = eiat(f^(a), f(b)) v 0(c, d) = l.
%

Suppose then that <p e Con L is such that (p # i. Since 9 = y)e 9 Y)

follows from the above observation that i|%
(x, y) E (p => 0 (x, y) 961 => (x, y) e 005 . |

i

 . . . . . . . . . . . . . . . . . . . . . . . . . . : ; j
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'1
Thus 9 <#o) so 0(,) "< and Con L = io), 0  {i}.

We now show that the subalgebra f(L) is also subdirectly irreducible. In fact, 

suppose first that 0^ = O). Then we have

Con f(L) ~ Con L /0j = Con L 
whence f(L) is subdirectly irreducible. Suppose now that 0% 96 o) and let 0^  be the

restriction of 0% to f(L). Since
(f(x), f(y)) e 0  ̂ <=> f^(x) = f^(y) <=> (x, y) g 0 2

it follows that 0 j  = co <=> 0  j = 0 2  = ... = 0^) < i.
*

Thus, if 0 j  = CO then Con L reduces to the three-element chain

CO 0 1 — 02 ~ ••• ” ^̂ 0) ^ t.

It follows by the congruence extension property that f(L) is also subdirectly irreducible.
*

I f , on the other hand, 0^ 9̂  co then the same conclusion follows by Theorem 4.2.4, 

and by Con f(L) = Con L/0%, the monolith of f(L) is 0^.

In conclusion, f(L) is subdirectly irreducible, whence so are all f”(L) since for every 

i we have that f(L) = f(f‘’ (̂L)). We thus have

Con L = (co) 0  [01,11 with [0 1 , 1  ] ~ Con L/ 0 1  ~ Con f(L).

Similarly, Con L = (co) 0  [0 1 } 0  [0 2 , i ] with [0 2 , 11 Con L/02= Con f^(L).

We conclude from this that if L belongs to a Berman class and B(L) = Kp q then, by 

Theorem 3.2 of Chapter 3, Con L is the finite chain

CO = 0 Q-< 0 j -< 0 2 -< ... -<0 q-<i. J
‘•j

If, on the other hand, L belongs properly to K(o then since there are infinitely many 0^,
.1

with 01̂ .1 covering 0 1  and 0^  ̂= \ / ^ ^ 0 i , we conclude that Con L is the infinite 

chain

CO =  0 Q  - < 0 1  <  0 2  <  . . .  “ <  0 ( j )  1 .  ,;i

<=: This is clear. 0 1
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Corollary 1 If L e Kq  is subdirectly irreducible, so is every subalgebra of L, 0

Corollary 2 Let L e O be subdirectly irreducible. If 0^^ ̂  0 „  , for every n. Then, 

for every positive integer m, f*̂ (L) is subdirectly irreducible.

Proof This is precisely as in Theorem 4.2.6. 0

Corollary 3 Let L e O be subdirectly irreducible. If f is injective, then f"(L) is 

subdirectly irreducible, for every n.

Proof This is precisely as in Theorem 4.2.6. 0

Corollary 4 If L g Kp q then the following statements are equivalent:

(1) L is simple:

(2) L is subdirectly irreducible and f is a bijection.

Proof Subdirectly irreducibles in Kp q are finite [Chapter 1, Theorem 1.12]. 0 

Corollary 5 If L g  Kp q is simple then L g  Kp q.

Proof By Corollary 4, L = f^(L) g  Kp q. 0

In seeking to extend Theorem 4.2.6 to a general subdirectly irreducible Ockham 

algebra, it is natural to consider the congruence 0 q). However, here we have a

difficulty : this congruence is not in general maximal. We illustrate this in the following 

example (adapted fi-om an example of Goldberg [21] )
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Example 4.2.5 Let 2N+1 denote the set of odd positive integers and let Bj = P(2N+1) 

be its power set. Let B2 = {2N+1 u  X I X e P(2N)) and define G = Bj ®B2-

Pictorially, this is as in Figure 1, in which 2n means 2N+1 u  {2n}.
N

N\{0)

40 2

2N+1

2N+{1}

B2

Bi

0

Figure 1

For every X e G define

f(X) = {ke N I k+W  X).

Then (G; f) is an Ockham algebra. The effect of f can be seen in the following table. 

_ X _______ fQO________ f^(X) A x)

0

{ 1}

{3}

N

N\{0}

N\{2)

0

0

{ 1}

N

N

N\{0}

1
I

(2n+l)

{1,3}

N\(2n} 

N\(0, 2}

{2n-l}

{ 1 }

N\(2n-2 }

N\(0)



7 9

f2fFX = J if ^  3,
\ { x2-2,X3-2,...,Xjj-2} i f x j  = 1

and so on. It follows that for some k we have f^^(F) = 0 .  Consequently, if Fj, F2 are 

finite subsets of G then (F ,̂ F2) e 0 3̂.

Since B^,B2 are complete atomic boolean lattices it is readily seen that every non

trivial congruence on G identifies N\{0} and N. Consequently, G is subdirectly 

irreducible with smallest non-trivial congruence

0(N\{O},N) = Oi.

The other congruences 0^ are described by

<E>2 = e(0 ,{l}), O3 = e(N\{0 ,2 },N), 0 4 = 0(0 , {1,3}), ... .

Let us now describe the congruence 0 q) on G. For this purpose, we shall say that |

X, Y e G differ finitely if (X u  Y) \  (X n  Y) is finite. Then we have that

(A, B) e 0Q <=> A, B differ finitely.

To see this, suppose first that (A, B) e 0^3. There are three case to consider

(1) A ,B e  Bj.

If A = {ai I i > 1} and B = (b  ̂ I i > 1} with ai < ai+j and bi < bi+% for every i, then 

for some i and j we have

(a; - 2k, ai+i - 2k , ... } = f \ A )  = f2*̂ (B) = (b, - 2k, bj+i - 2k , ... ).

It follows that ai = bj and ai+ĵ j = bj+333 for all m ^ 1. Thus A, B differ finitely.

(2) A ,B e  B2.

This is similar to (1).

(3) A e  Bi, B e  B2.

Here (A, B) e 0(o implies that (A, 2N+1) e 0(Q and (B, 2N+1) e 0^3 whence, by f  

(1) and (2), A and B differ finitely. |

For the converse,we observe first that if F is a finite subset of G then necessarily 

F c  2N+1. If F = (xi,..., Xn} with Xi < Xi+i for each i then

f(F) = N\(xi-1,X2- 1, .., Xn-1}, I

Ï
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Suppose now that A, B e Bj differ finitely. Then we have

A = F) (A Pi B), B = F2  V (A p  B) 

where F%,F2  e G are differ finitely. Since (F%,F2 ) e it follows that (A, B) e 

If A, B e B2 differ finitely let 2k be the biggest even integer in (A u  B) \  (A P  B).

Then clearly f^^(A) = f^^(B) and so (A, B) e .I f  A g Bj, and B g  B2 differ

finitely then A, 2N+1 differ finitely and B, 2N+1 differ finitely, whence (A, 2N+1) g  

0(0 and (B, 2N+1) g  0(^ , so that (A, B) g  0^  ̂.

It follows from the above description of 0(0 that G/0(0 is of the form Aj <§ A2  

where Aj and A2 are atomless boolean lattices. We shall now show that G/0(0 is not

subdirectly irreducible.

Suppose, by way of obtaining of a contradiction, that the quotient algebra (G/Oqj; f  ),

where f[X] = [f(X)], is subdirectly irreducible. Then there exists a  g  Con G/0(0 such | |

that m a  <  8 for all 0 g  Con G/0(0 with 0 co. Suppose that A, B g  B j  are such 

([A], [B]) G a  with [A] < [B], (Note that we can restrict attention to A, B g  Bj since, 

from the way that f is defined, f  is injective and so if X, Y g  B2  are such that #

([X], [Y]) G a with [X] <  [Y] then ( f  [Yj, f  [X]) g  a  with f  [Y] <  f  [X].) Then A,

A p  B differ finitely whereas A, B do not; in other words, A' denoting the complement 

of A in Bj, we have that A' p  B is infinite. Since ([0], [A]a[B]) g a  we see that 

([0], [Y]) G a  for every Y with [0] < [Y] < [A'] P  [B]; and since a  is an atom,

8([0 ], [Y]) = a.
Now choose Y such that its elements are 'far enough apart'. More precisely, if

A' p  B = {x ], X2, ..., Xq, ...} 

with Xj < Xj ĵ for each i, let Y = (yj I i ^ 1 ) be the subset of A' p  B formed as 

follows: let y% = x%, y2  = X2 and f

yg = min ( xj g  A' p  B I xj - y2 ^ y2  “ y i} ; 

y4  = min{xiG A ' p B  I Xj - y3 > yg - yi);

;
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Yk = min(Xi e A' n  B lx| -  yk_i > yk-i - Yi};

Thus, for every yj e  Y we have yj+i - yi ̂  yi - yi- In other words, the distance from 

Yi to Yi+1 is at least the distance from y% to y^.

Suppose now that n < m. Then z € f^'^(Y) n  f^"(Y) if and only if, for some i and j, 

z = yi - 2m = yj - 2n. Consider the equation

Yi - Yj = 2(m - n).

If j 56 1 then there is at most one pair y j, yj that satisfy this equation; and if j = 1 there 

are at most two pairs (namely when the situation yi - yj = 2 (m - n) = - yj occurs).

It follows that f^”̂ (Y) n  f^"(Y) is finite, and hence that

(m Ü n) A [#”(Y)] = [0],

Thus the subalgebra <[Y]> of 0 /0 ,̂ has atoms [Y], [f^(Y)], [f^(Y)],... and, since J

f  is injective, coatoms [f(Y)j, [f3(Y)j, [f^(Y)j,... Observe that

V„<k [f^”(Y)] # [2 N+1] A„<kCf^"'"HY)],

SO that the fixed point [2N+1] of does not belong to <[Y]>. Also, every element 

in the 'lower part ’ of <[Y]> can be expressed uniquely as a join of atoms, and every 

element in the 'upper part ' of <[Y]> can be expressed uniquely as a meet of coatoms.

Denoting principal congruences in the subalgebra <[Y]> by 0*([H], [K]), consider 

0*([0], [Y]). This identifies all the atoms of <[Y]>, and likewise all the coatoms.

Thus 0*([0], [Y]) has two classes (namely, the upper and lower parts of <[Y]> and 

so is maximal in Con<[Y]>. Since, for any [X] G <[Y]>, the congmence 0*([0], [Y]) 

identifies [0], [f^(X)] we have the chain

0*([0], [Y]) > 0*([0], [f(Y)]) > 0*([0], [f^(Y)]) > ... .

In fact, each of these inequalities is strict. For example, that 0*([0 ], [Y]) >

0*([0], [f^(Y)]) follows from the observation that 0*([0], [f^(Y)]) has four classes; 

those in the lower part of <[Y]> are
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I
(a) the lower part of <[f^(Y)J>; |

(b) (XG<[Y]> l[Y ]<[X ]<[2N + l]}, 1
1

(so that (b) is the complement of (a) in lower part of <[Y]> ). For the next inequality, g

consider in a similar way the restrictions of 0'*'([0], [f^(Y)]) and 6*([0], [f^(Y)]) to |

the subalgebra <[f^(Y)]>. %
•j;

It follows from the above observations that Con<[Y]> contains the infinite 

descending chain

e*([0], [Y]) > e*([0i, [f(Y)]) > 0*([0], [f^(Y)]) >... .
By the congruence extension property [Chapter 1 .Theorem 1.8], it follows that

Con G/0(d contains the infinite descending chain |

e([0], [Y ]) > 0([0], [ f V ) D  > e([0], [f^(Y)D >  ... .

This contradicts the fact that a  = 0([0], [Y]) is an atom in Con G/O^j. Hence GAI>co is |

not subdirectly irreducible.

It follows from these observations that is not maximal in Con L. For a subdirectly 

irreducible algebra L that does not belong to K(0 the description of the interval i] is 

still an open question.

!

    \   ........
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4.3 Totally ordered subdirectly irreducible Ockham algebras

We now turn our attention to infinite totally ordered subdirectly irreducible Ockham 

algebras.

Theorem 4.3.1 Let L be a totally ordered Ockham algebra. If L is weakly subdirectly 

irreducible but not simple then one 0 j-class has two elements and all other Oj-classes

are singletons.

Proof Bearing Theorem 4.1.4, suppose that L has Oj-classes {a, b} and {c, d} with 

a < b and c < d. Since L is totally ordered by the hypothesis, we can assume without 

loss of generality that a < c. So we have that

(*) a < b < c < d.

In fact, since [a]Oi ^  [c]<E>i, so b c. If b > c, then a < c < b and then f(a) > f(c) > f(b) 

whence a contradiction f(a) = f(b) = f(c) = f(d), thus (*) holds. So we have 

0(a, b) A 0(c, d) = 0iat(a, b) a  0iat(c, d) = co 

which contradicts the fact that L is weakly subdirectly irreducible. 0

Theorem 4.3.2 The only simple Ockham algebras that are totally ordered are the 

two-element boolean algebra and the three-element Kleene algebra..

Proof If (L; f) is simple then 0% = co and f is injective. If L had at least four elements 

then the equivalence relation of which the classes are {0}, {1} and L\{0,1} is a non

trivial congruence on L, and L would not be simple. 0
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(3) if X < f(x) and X > f^(x) then Sis the chain dual to (1);

%

Theorem 4.3.3 Let L be a totally ordered subdirectly irreducible Ockham algebra. ii

Then, for every x g L there is a positive integer n such that f”(x) g C(L).

Proof If X G C(L) then f”(x) g C(L) for every n. So suppose that x «É C(L). Then, 

by Theorem 4.3.2 , L is not simple; and by Theorem 4.3.1, precisely one <!> j-class has 

two elements and all other ^-classes are singletons. The subalgebra generated by x is

S = {0, 1, X, f(x), f(x ), ... }. I
Since x G C(L) we have x ^  f^(x). There are then four possibilities for S:

(1) if X > f(x) and x < f^(x) then S is the subchain

0 < ... < f^(x) < f^(x) < f(x) < X < f^(x) < f^(x) < ... < 1;

(2) if X > f(x) and x > f^(x) then S is the subchain

0 < f(x) ^ f^(x) < ... < f^(x) ^ f^(x) < X <1;
fi

(4) if X < f(x) and x < f^(x) then S is the chain dual to (2). |

Suppose that S is the chain (1). If the only two-element Oj-class is {y, z} with y -< z

then there are five possibilities:

(a) ... < f^^'^(x) ^ y <  z < f^^(x) < ... ;

(b) ... < f^^'"'\x) < y -< z < f^^"\x) < ... ; i
i''

(c) ... < f(x) < y -< z < X  < ...; |

(d) 0 < y -< z <  ... < ^  ... for all k; | |

(e) ... ̂  f^^(x) < ... < y -< z < 1 for all k. |

In case (a), if f^^(x) ^  f^"^^(x) then a  = 0(f^(x), f^^^(x)) separates y and z, whence

we have the contradiction a  a  d>i = co. Thus f^^(x) = f^^‘*'̂ (x) and therefore f^^(x) g 

C(L). Similar argument hold if S is the chain (b) or the chain (c). If S is the chain (d) 

the equivalence relation (3 whose classes are {0}, {y}, {z}, {1}, L\{0, y, z, 1} is a 

non-trivial congruence such that p A 0 % = co, which is not possible; and a similar ^

■ I
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situation obtains if S is the chain (e). Similar arguments hold when S is any of the 

subchains (2), (3), (4). 0

Corollary 1 If L is a totally ordered subdirectly irreducible Ockham algebra then L
€ Kq). 0

Corollary 2 If L is a totally ordered Ockham algebra then L is subdirectly irreducible 

if and only if its congruence lattice Con L reduces to the chain

(0 = Oo<<I>l < 0 2  <  ... <0(0 < 1 .

Proof =»: If L is subdirectly irreducible, then the result follows from Corollary 1
and Theorem 4.2.6.

<=: This is clear. 0

Example 4.3.1 [The see-saw] Let L be the infinite chain

0 < ... < X3 < Xj < X q  < X2 < X4 < ... < 1.

Define f by

f(0) = 1, f(l) = 0 , (i = 0 , 1, 2 ,...) f(xj) = Xi+i.

Then (L; f) is an Ockham algebra on which f is injective. For all m, n (m n) we have 
f”̂ (xi) ^  f”(xj) and so L G K(Q. It is readily seen that Con L is the lattice

I

8 (xo,}q) 8 (X(). 1)

CD

-I
■fi

•J
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Thus L is weakly subdirectly irreducible but not subdirectly irreducible. Clearly, 0(0 = 

CO is not maximal, and T(L) = C(L) = {0, 1}.

Example 4,3.2 Add to the see-saw a coatom a  to obtain the chain 

0 < ... < X3 < Xj < X q  < X2 < X4 < ... < a  <1, 

and define f(a) = 0. Then Con L becomes

I

e(X(>X2) 0(O,Xj)

0(xi,X3> 0 (% 1)

^ 1=0 (0- 0 (0 , 1)

Here L is not weakly subdirectly irreducible, and T(L) = C(L) = {0, 1}.

-

I

I

. Ars

I

I

%
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4.4 Ockham algebras generated by finite subdirectly irreducible 
algebras

As shown by Goldberg [20], in every Berman class Kp q there is a greatest 

subdirectly irreducible algebra. Specifically, for m > n 5:0 let m„ be the Ockham space 

consisting of the discretely ordered set = (0 , 1, m-1) together with the

mapping g: —>2 ^  defined by

(0 < k < m-1) g(k) = k + 1 and g(m - 1) = n.

Then any order on m„ with respect to which g is antitone gives rise to the dual space of

a subdirectly irreducible Ockham algebra; and conversely all dual spaces of finite 

subdirectly irreducible Ockham algebras arise in this way. If  ̂denotes the dual 

algebra obtained by using the discrete order then in the Berman class Kp q the algebra 

1̂ 2p+q,q is the greatest subdirectly irreducible algebra; in particular, in Kp q the algebra 

L2p 0 is the greatest simple algebra.

Theorem 4.4.1 If A e Kp  ̂ q̂  and B e Kp^ q̂  are subdirectly irreducible then the 

Ockham algebra [A, B] generated by A and B is in Kp^ q^v Kp^ q  ̂ and is also

subdirectly irreducible.

Proof Let Kp q = Kp^ q^v Kp^ q̂ . Then clearly A, B belong to Kp q and so are 

subalgebras of L2p+q̂ q . It follows that [A, B] is a subalgebra of L2p+q q whence 

[A, B] is also subdirectly irreducible. 0

Corollary If A, B are simple then so is [A, B].

Proof Take q = qj = Q2 == 0 in the above. 0

V
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In what follows we shall generalise Theorem 4.4.1 to an arbitrary family of finite 

subdirectly irreducible Ockham algebras. 4

Given an ascending chain

(L i;fi)^(L 2;f2)^(L 3;f3)^ ...

of Ockham algebras (in which < means 'is a subalgebra of '), it is clear that under the 
following operations Lj ; f) is an Ockham algebra: given x, y e there is

a smallest j such that x = xj e Lj and y = yj e Lj so take x a  y = xj a  yj, x v y -  xj v 

yj; likewise, given x e Lj there is a smallest i such that x = xj g L| so take f(x) =

fi(xi). Moreover, this is the Ockham algebra generated by the chain. f
,;v.

Theorem 4.4.2 Let (Aj)|^ j be a family of finite subdirectly irreducible Ockham f

algebras. Then the Ockham algebra L generated by this family belongs to Kq, and is 

also subdirectly irreducible. If each Â  is simple then so is L. |

Proof Being finite and subdirectly irreducible, every Aj belongs to a Berman class.

Since there are countably many Berman classes, each containing finitely many J

subdirectly irreducible algebras, I is necessarily countable. Define recursively

Lj = Aj and (i ^ 2) I4 = [L|_i, AJ.

By Theorem 4.4.1, every Lj is subdirectly irreducible. Clearly, we have the chain

Li <L 2 ^ L3 < ... ,
and L = vj.^jLi is the subalgebra generated by (Aj).^j. ;

For every x g L we have x g Lj for some i. Then = f?‘(x) where pj, q{ are

such that B(L|) = Kp. q.. It follows that L g K^j.

Suppose now that every Aj is simple. Then, by the Corollary to Theorem 4.4.1,

every Lj is simple. If now a  g Con L is such that co < a  < i, let a, b g L be such that 
(a, b) G a. We have a, b g L; for some i. Now we cannot have aU = ilj ; for
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0 , le  Lj and (0 , 1) e ilj ,̂ would give (0 , 1) e a l^  and then (0 , 1) e a  whence the 

contradiction a = i. Since L| is simple we must therefore have alj^. = whence 

(a, b) e colĵ . and a = b. Hence a  = co and L is simple.

Suppose now that not every Ajis simple. Then there is a smallest k such that

L2, ..., Lk are simple and Ljj+2, ... are subdirectly irreducible but not simple. 
The congruence 0% on L is then such that 011^. = co for i < k and 0ilj^. co for

i > k+1. Now let 0 e Con L be such that 0 co. Let j be the smallest index such that 
01 .̂ ̂  CO. Then necessarily j < k + 1. In fact, if j > k + 1 then we have, since 0 iIl^  is

the monolith of Lj for t > k + 1,
(1) co- < 0 i 1t . 0It .

J J

and, by the definition of j,
(2 )  C0 =  e iL . j ^ O i l L .  J .

By (2) there exist x, y e Lj.^ with x < y such that (x, y) e 0^. Since x, y e Lj we 

then have by (1) that (x, y) e 0 whence, by (2), the contradiction x = y.

Now if j < k we have, since L^, L2, ..., L^ are simple,
c o = 0 i ! l .  = if  i < j - 1 ,

CO = 0 iI t  . -< i!t . = 0It . if  j ^ i < k ,L j-« i Xj j

whereas if j = k + 1 we have
CO = 0  = 01^, i f  i  < j - l =  k ,

CO -< 0 <  01^. if i = j = k+1.

It follows from this that for 1 < i < k + 1 we have 0 i Il . ^ 01 .̂. Since this clearly

holds for all i > k + 1, it therefore holds for all values of i. Consequently, if x, y e L 
are such that (x, y) e 0 j then, since x, y e L̂  for some i, we have (x, y) e 01̂ .

whence (x, y) e 0. Thus 0^ <0 and so L is subdirectly irreducible. 0

Example 4.4.1 Consider the infinite chain L

0 < ... < a_n < a.(n.i) < ... < a_i < ao < ai < ... < an-i< a„ < ... < 1

I
I

3.

I

i
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Example 4.4.2 Let G = (2^; f) be the Ockham algebra in Example 4.1.1. Let Aj =

[2^N+1]. Since, for n > 1, f^”(2nN+l) = 2nN+l, f^^(2nN+l) ^  2nN+l(for k < n), we 

see that A% c  A2 c  ... c  Â  c  .... Here we have Aj = [2*N+1] 2* © 2̂ . So Aj e

K2i,0 is simple, and so Ai is simple.

made into an Ockham algebra by defining

f(0) = 1, f(l) = 0, f(ao) = ao, (Vk > 1) f(a^) = a.^+i, f(a_k) = a^.

Now, for n = 1, 2,... consider the finite chain L„ as follows |

0 < a.n < a_(n_i) < ... < a_% < ag < â  <... < a^.i < a^ < 1 

Clearly, (L ;̂ f) is a subalgebra of (L; f) satisfying

Lj £ L2 C ... S  Ljj ̂ ... and L = L i.

Observe that L„ e Kj 2n-i and that 0(ao, aj) is the smallest non-trivial congruence of 

Con Lji for all n ^ 2. Hence every L^ is subdirectly irreducible and then so is L.

I
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CHAPTER 5

FINITE SIMPLE OCKHAM ALGEBRAS

An algebra L is called simple if Con L reduces to the 2-element chain {co, i}. It is 

known [Theorem 1.12 in Chapter 1 and Corollary 5 of Theorem 4.2.6 in Chapter 4] 

that if L E Kp q is simple, then L is finite and L e Kp q . In this chapter we shall

describe the structure of finite simple Ockham algebras.

- I

■f
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The investigations of this chapter are based on the following results.

P roof We show first that a v f(a) C(L). Suppose, by way of obtaining a 

contradiction, that a v f(a) e C(L). We consider the following two cases:

(a) If a V f(a) = 1.

Consider the principal congruence 0iat(O, a). For (x, y) e 0iat(O, a) we have x v a = 

y V  a. Then f(x) a  f(a) = f(y) a  f(a) and (f(x) a  f(a)) v a = (f(y) a  f(a)) v a. Since

%

Theorem 5.1 Let L be a simple Ockham algebra. If a e L is such that a and f^(a) 

are comparable, then a e C(L).

' I
Proof We assume that f^(a) > a. Consider the relation 0^ defined by “

(x, y) e 0a <=> x a  a = y a  a and x v f(a) = y v f(a).

Let (x, y) E 0a ; then f(x) a  f^(a) =  f(y) a  f^(a). Since f^(a) ^  a, it follows that f(x) a  a 

= f(y) A a, and so we can see that 0a e Con L with

6a = 6jat(a, 1) a  0iat(O, f(a)) = 0iat(a a  f(a), f(a)).

Since L is simple by the hypothesis, it follows that either 0a = i or 0a = co. Now 

when 0 a  =  i, then (0, 1) e  0 a  and then 0 a  a =  1 a  a whence a =  0 e  C(L). When 

0a = CO, we have a a  f(a) = f(a) whence f(a) ^  a. So f(a) < a ^  f^(a), f^(a) > f(a) >

f^(a) and so on, and we have the subalgebra chain

0 < ... < f^"+\a) <... < f(a) < a < f^(a) ... < f"(a) ^ ... < I.

Since every subalgebra of a simple Ockham algebra is also simple, it follows, by 

Theorem 4.3.2 in Chapter 4, that a e  C(L).

A similar argument holds if f^(a) < a. 0

Theorem 5.2 Let L be a simple Ockham algebra. If a g C(L), then a a  f(a), a v f(a)

«É C(L).
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s

a V f(a) = 1, we have that f(x) v a = f(y) v a. Consequently, (f(x), f(y)) e 6jat(0, a).

Hence 8iat(0, a) € Con L. Since L is simple and a 0, it follows that 9iàt(0» a) = i, 

and so (0, 1) e 0iat(O» a). We therefore have that 0 v a = 1 v a, whence the 

contradiction a = 1. |

(b) If a V f(a) is a fixed point.

In this case, we have f(a) a  f^(a) = a v f(a). So f(a) > a and f^(a) ^ f(a), and so 

f^(a) = f(a). Since L is simple then f  is injective, it follows that we must have f(a) -  a, 

a contradiction.

Finally , by the above observations we have f(a) v f^(a) 0 C(L), for f(a) «é C(L). It 

follows a A f(a) «£ C(L). 0

Theorem 5.3 Let (L; f) € Kp q be finite. Then f takes atoms to coatoms, and 

conversely.

Proof Let a be an atom of L and let f(a) ^ y < 1. Since L is finite and f injective, 

hence f is suijective, there exists z e L such that y = f(z) and so f(a) < f(z) <1. Since f 

is a dual automorphism we deduce that a > z > 0. Since a is an atom, it follows that 

a = z whence y = f(a) and so f(a) is a coatom. Dually, if b is a coatom then f(b) is an 

atom. 0

Corollary Let (L; f) e Kp q be finite. If a e L is an atom then so is f^(a), 0

Every finite simple Ockham algebra belongs to Kj q for some i [Corollary 5 of 

Theorem 4.2.6 in Chapter 4 ]. The following example is of considerable interest.

Example 5.1 Consider the Ockham algebra (G; f) of Example 4.2.3 of Chapter 4.
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: |

Since G is subdirectly irreducible, it follows, by Theorem 1.11 of Chapter 1 and 

Theorem 4.1.2 of Chapter 4, that T(G) is a simple subalgebra. For each i > 1 consider ;

Ei = 2i N 4-1. It is readily seen that f\E ^) = Ej and so each Ej e  T(G). Since T(G) is '

= A  f(ai), thereby obtaining a dual endomorphism. Consider in this way the dual 
iel

I
simple, so is each <E^>. We thus see that T(G) is an infinite simple algebra. Moreover, 

by Corollary 5 of Theorem 4.2.6 of Chapter 4, we can see that <Ei> e Kj q which 

shows that the infinite simple algebra T(G) contains finite simple subalgebras in every 

permissible Berman class.

We now shall be concerned with finite simple Ockham algebras. The following ' ̂

examples, as we shall see, are of fundamental importance. |

I
Example 5.2 Let L be the boolean lattice 2” with atoms a%,..., a .̂ In order to make f

L into an Ockham algebra, it suffices to define f(0) = 1 and to specify f(a|) for each aj ;

for, every x 0 can be expressed uniquely in the form x = V .^  j^i where I is a non

empty subset of {1, 2 , ..., n) and we can extend the definition of f by defining f(x) |
I

endomorphism f obtained by defining

f(«i)=4+1
where àj+j is the complement of % in 2", the subscripts being reduces modulo n 

where necessary. In particular, we have

f^(ai) = f(aj+i) = 9j) = A  f(&j) = A  4+1 = &i+2 •

It follows that if n is odd then f^ induces the atom cycle

ai —̂ a  ̂—̂ a^ —̂ ••• — ^ ajj —̂ ^ 4̂ —̂ •”  — > ^n-l —4 •

whereas if n is even then f^ induces the two atom cycles

aj —̂ a  ̂—̂ a^ —̂ ... —̂ ^n-1 —4 1̂ * ^2 —̂ ^4 —4 ^6 —̂ ••• —̂  ̂^2 •
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:

(a) If n is odd.

Suppose that 0 e Con (2“; f) is such that 0 9̂ 0); and let (x, y) e 0 with x < y. |

Then there is an atom aĵ  < y and ajĵ  ̂  x. Consequently
Si

(0, ajj.) = (ajc A X, a^ A y) e 0 "

and therefore ë

(0 »ak+2 ) = (0»f^(ak))e 0 .

Since the atoms form a single cycle under f  it follows that (0, aj) e 0 for every atom 

&[. Hence

(0, 1) = (0, V|Ljai)e 0

and so 0 = i. Thus (2”; f) is simple. Note that in this case there are no fixed points; for 

if a  were a fixed point and aj is an atom with aj < a  then a^+2 = f̂ (&i) ^ a, so all the

atoms would be contained in a, which is not possible.

(b) If n is even.

In this case let a  = ajv ag v...v a^.i and P = a2 v a  ̂v ... v a^. Then a  a  P = 0 

and av  p = 1, and so

a  = p '=  A  a2i = A  f(a2i_i) = f(V . ,a2i.i)=:f(a).
iel iel

Thus a  is a fixed point; and similarly so is p. Arguing as in case (a), and using the 

fact that in this case there are two atom cycles under f ,̂ we see that

either (0 , a) = (0 , V j & 2i ) e 0 , or (0 , p) = (0 , V^^^&2i+l) e 0 .

In either case we deduce that (0,1) e 0, whence 0 = i and again (2"; f) is simple.

Example 5.3 Let L = 2” 0  2” be the vertical sum of two copies of 2”. Let the 

atoms be a%, a2, ..., a^ and let the coatoms of L be b^, b2, ..., b„. Then we can make é

L into an Ockham algebra by defining f(0) = 1, f(l) = 0 and, with reduction modulo n 

where appropriate,

I
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f(ai) = bi, f(bi) = ai+i.

We extend f to a dual endomorphism by defining

f(Vi^I«i) = A . bi, f(A. bi) = Vi ĵai+i.
IE I IE I

Observe that (2" 0  2" ; f) has a single fixed point, namely ||

}

. n

rÉ

Suppose that 0  e Con (2 " 0  2 " ; f) is such that 0  9=̂ co; and let (x, y) e 0  with x < y. I
We consider the following three cases:

(1) X, y e  [0, a]. il

In this case there exists an atom a  ̂such that ajç < y and aĵ  Ê x. Consequently,

(0 , a 0  =  (a^  A X, a^  A y ) G 0

and then

(0, = (0, f^(a0) E 0,

Since the atoms form a single cycle under f  ̂it follows that (0, aj) e 0 for every atom 

ap We therefore have

(0, a) = (0, V |L ,a i ) E 9.

IIt follows that (0, 1) G 0 and so 0 = t.

(2) X < a  < y. I 
This case as same as (1 ), there is an atom a  ̂Ê x and y > a .̂ Whence again 0 = i.

(3) X , y G [a, 1].

In this case there exists a coatom b  ̂with bĵ  > x and bĵ  Ï: y. Consequently,

(bk, 1) = (bk V X, bk V y) G 0

and therefore

(b k + i, 1) =  (f^(bk), 1) e  0.

Since the coatoms form a single cycle under f', we have that (b [ , 1) g  0 for every

coatom bp Hence ,
"1

1

__
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i

il

(a,l) = (A|Ljbi,l)s 0.

I
It follows again that (0,1) g 6 and so 8 = t.

We therefore have from those observations above that (2” © 2"; f) is simple.

Definition 5.1 If L is a finite Ockham algebra then a subalgebra A of L will be called 

a full subalgebra if A contains all the atoms of L.

We now establish the following result.

Theorem 5.4 Let L be a finite Ockham algebra. If L contains (2” © 2“; f) as a full 

subalgebra then L is simple.

Proof Clearly, L has unique fixed point a; and if a is any atom of L then we have 

from Theorem 5.3 that every f^‘(a) is atom and every f^ '̂^^(a) is coatom. 

Consequently,

a  = a V f^(a)v ... v  f^”'^(a) = f(a) a  f^(a) a  .. .  a  f^”“̂ (a).

Let A = 2" © 2". Then we observe that, for x g  L\{0,1 },

(*) x+ka => X G A.

In fact, if X < a  then

x  = x A a  = ( x A a ) v ( x A  f^(a)) v  .. .  v  ( x  a  f^”“̂ (a)) 

where, for each i, x  a  f^\a) is either 0 or an atom (and not all are 0 since x  0). Since 

A is a full subalgebra it follows that x  g  A. A similar argument holds when x  > a.

Suppose now that 0 g  Con L with 0 m. Then there exist x, y g  L with x < y and 

(x, y) G 0. Since x < y, we have that either x A a  < y A a  or x v a < y v a ;  and by 

(*), X A  a, y A a , x v a, y v a  G A. Then (x a  a, y a  a) g  0, (xv a, y v a) g  0

I
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give 61^ ^  0) and so, since A is simple, 01^ = il^. Then (0, 1) e 0l^ and so (0, l)e 8 . 

Consequently, 8 = i  and L is simple. 0

Example 5.4 Consider the Ockham space consisting of the crown X = Cg :

and the antitone mapping g given as follows:

X : a b c d e f 

g(x): d e f b c a

It is easy to see that, for every x e X, g®({x}) = {x, g(x), g2(x), g^(x), g^(x), g^(x) ) 

= X. By [20, Corollary 2.4], the corresponding Ockham algebra is simple, its lattice 

reduct being the free distributive lattice on 3 generators (see [6], Page 33, Figure 8.):

1

y

0

t :  O l a b c d e f p a p y S e Ç x y z  

t®: l O a P y Ô e Ç p b  c a f d e y  z x



It is clear that this simple algebra contains 2  ̂0  2 as a full subalgebra.

Our objective now is to show that the above types describe all finite simple Ockham |

algebras. We have the following result. |

I

Theorem 5.5 Let (L ; f) be a finite simple Ockham algebra with n atoms. Then the 

structure of L is as follows:

(1) if L has no fixed points then n is odd and L ~ 2";

(2) if L has two fixed points then n is even and L = 2";

(3) if L has a unique fixed point then L contains 2” 0  2” as a full subalgebra.

Proof Let a e L be an atom and let m be the smallest positive integer such that f̂ ™(a) 

= a. By Theorem 5.1, if a is neither 1 nor a fixed point then m > 1. By the corollary to 

Theorem 5.3 the elements a, f^(a),..., f^'^’̂ (a) are all atoms; and , by the hypothesis 

on m and the fact that f  is injective, these atoms are all distinct Consider the element

a  = a V f^(a) v ... v f^"*" (̂a).

We have f^(a) = a  and so a  e T2<L) = C(L) [by Theorem 1.11 in Chapter 1]. 

Consequently, either a  = 1 or a  is a fixed point. Since L has at most two fixed points 

[by Theorem 1.11 in Chapter 1], we consider the following cases:

(1) Lhas no fixed points.

In this case necessarily a  = 1 and so 1 is a join of the atoms a, f^(a),..., f̂ *”"^(a). 

It follows that m = n and L = 2”. By Theorem 5.3 we therefore have the situation of

Example 5.2 with n odd (no fixed points).

(2) L has two fixed points.

If L has two fixed points then, by Theorem 1.11 in Chapter 1, these are 

complementary in L. There must therefore exist an atom b that does not belong to the



100

sequence a, f^(a),..., f^”*' (̂a). If p is the smallest positive integer such that f^P(b) = b. 

Then the set of atoms of L is

{a, f2(a),..., f2“ -2(a), b, f^(b),..., f^P“̂ (b)) 

and the fixed points are a  = f^\a) and p = f^\b). Since a , P are

complementary in L and since f is a dual automorphism it follows that

[0, a] -  [P. 1] £ [0, p] 

and hence that p = m. Consequently, n = 2m. Since 1 = a  v P is the join of all the 

atoms we have L = 2". By Theorem 5.3 we therefore have the situation of Example 

5.2 with n even (two fixed points).

(3) L has unique fixed point.

If L has precisely one fixed point a  then a, f^(a),..., f̂ *”‘̂ (a) must be all the atoms 

of L, with a  = for if b were an atom not in this cycle then for some

k, d = V^^Jf^^b) would also be a fixed point, which is not possible.

Thus the join of all the atoms is the fixed point a. It follows that [0, a] ~ 2”. B y

Theorem 5.3 and the fact that f  is a dual automorphism, it follows that L contains the 

algebra 2” 0  2” of Example 5.3 as a full subalgebra. 0

The 'usual crown' C2n,2» every vertex of which is of degree 2, is as follows:

ai &2

with the antitone mapping g given as follows
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g(aj) = bi, g(bj) = ai+i(mod n) (i = 1, 2...... n).

In the following examples of finite simple Ockham algebras we shall use ordered sets 

^ 2n,k which are particular extensions of C^n,! which the degree of every vertex is k

< n. Since

g®({ai}) = {ai, g ( a i ) , g 2 ("-0(ai), g^("'i)+ l(ai),..., g2n-2(a.), g2n-l(ai)}

— (ai, bi, ai^i, b i ^ i , a ^ *  bjj, aj, bj, ai.j, bi_j}

— ^ 2n,k
g®({bi)) = (bi, g(bi), ..., g2(n-i)(bi), g2(n-i)+l(y.)^ g2n-2(y.)^ g2n-l(ij.))

— {b|, aj^i, bi^i, ai+2» •••» b^, aj, bj, a2> * W-1» ^i)

= Qtn,k

it follows from [20, Corollary 2.4] that the corresponding Ockham algebras are indeed 

simple.

%

r

Example 5.5 Consider the Ockham space C^o g :

bi b2 bg b4

aj a2 ag &4

The corresponding Ockham algebra is as in Figure 1.



102

0
Figure 1.

where f(xj) = yj and f(yj) = xj+i (mod 5).

Example 5.6 Consider the Ockham space Cio,4 :

hi b2 b] b4 bg

^2 dg ^4 dg
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The corresponding Ockham algebra is as in Figure 2. Note that it contains the algebra 

of Example 5.5 as a full subalgebra.

Figure 2

where f(xj) = , f(y|) = Xi+i(mod 5), f(zi) = zj+i (mod 5) and f(a) = a.

Example 5.7 Consider the Ockham space C103 :

I

T,

"  ' I
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a

I
bj k  b3 b4 bg

a j ag 84 85

The corresponding Ockham algebra is as in Figure 3. It also contains the algebra of 

Example 5.5 as a full subalgebra.

Figure 3

where f(xj) = ŷ , f(yi) = Xi+i(mod 5), f(ai) -  aj+j (mod 10) and f(bi) = bi+i (mod 10), and 

f(a) = a.

i

!
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Example 5.8 Consider the Ockham space Cio,2 :

?l b2 bg b4 bs

ai a2 ag a4 a^

The corresponding Ockham algebra is as in Figure 4. Again it contains the algebra of 

Example 5.5 as a full subalgebra.

Figure 4

*Ï

a
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w h e r e  f ( x i )  =  y j,  f ( y i )  =  x j+ i  (mod 5), f (a i)  = a i+ i  (mod 10), f ( b j )  =  b i+ i  (mod 10), 

f(C i) =  Ci4.i(m o d  10), f (d i)  =  d i+ i(m o d  10), f (e i)  =  e i+ i(m o d  10), f (u i)  =  U i+ i, f (v j)  =  V j+ i 

(mod 5) a n d  f ( a )  =  a .

I
• aa

,.'L .V;
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