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ABSTRACT

The class of metrical semigroups is defined as the set
consisting of those semigroups which can be homomorphically
mapped into the semigroup of natural numbers ( without zero )
under addition.

The finitely generated members of this class are
characterised and the infinitely generated case is discussed.
A semigroup is called locally metrical if every finitely
generated subsemigroup is metrical.

The classical Green’s relations are trivial on any
metrical semigroup. Generalisations H,+,L+ and RY of the
Green’s relations are defined and it is shown thatfor any
cancellative metrical semigroup, S, &L+ is " as big as
possible " if and only if S is isomorphic to a special type
of semidirect product of W and a group.

Lyndon’s characterisation of free groups by
length functions is discussed andalink between length
functions, metrical semigroups and semigroups embeddable into
free semigroups is investigated.

Next the maximal locally metrical ideal of a semigroup
is discussed, and the class of t~compressible semigroups is
defined as the set consisting of those semigroups that have
no locally metrical ideal. The class of t-compressible
semigroups is seen to contain the classes of regular and
simple semigroups.

Finally it is shown that a large class of semigroups
can be decomposed into a chain of locally metrical ideals

together with a t-compressible semigroup.
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NOTATION

The following cammonly used symbols appear in the text

Symbol Description
N The set of Natﬁral numbers
N° The set of Natural numbers with

zero adjoined
Q, Q+, R, R and R"c') The sets of rational, strictly
positive rational,real,strictly
positive real and non-negative real
numbers
( Where the above sets appear as semigroups, the binary

operation of addition is assumed unless stated otherwise )

%t The free semigroup on the set X,
consistingofwords xj...x, inthe
elementsof X and binary operationof

concatination, i.e.

(X)ooeXy) e (Yqeee¥p) = XpeeoX YooYy

X The free monoid on the set X, which is
isomorphicto xtwith an identity

adjoined

¥ The free commutative semigroup on the

set X

(X )1 The free cammtative monoid on the set X



The morphism on xhy X*, xC and (Xc)l

that maps an element z to the number
of occurrences of the letter x in z

l -2 l Z | = Ix
XeX

FG(X) The free group on the set X

The following symbols are either less common than the

above, or are introduced for the first time in the text.

Symbol Description First appearance

c(s) The campressible part

of the semigroup S. 86
D(G) The divisible hull

of the group G. 35
D(S) The divisible hull

of the semigroup S. 36
L(S) The locally metrical part

of the semigroup S. 86
Q(s) The group of quotients of

the camutative semigroup S. 11
s(n) The subset of a commutative

semigroup S given by

sn) = (g0 ; ses }. 12
Sp The subset of a metrical

semigroup (S,f) given by

Sn={seS:f(s)=n}. 4
s The smallest commutative

congruence on the semigroup S. 18
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INTRODUCTION
A study of some of the major texts on algebraic
semigroup theory ( for example Clifford and Preston, [3]_,
Howie, [10], and Petrich, [15] ) reveals a subject dominated

by the notions of regularity, simplicity and the Green’s

relations R.&HO and J. While the theory has made much
progress in this direction, a certain amount of generality
has been lost. This is well illustrated by the fact that for
some of the most natural semigroups, for example (N,+), 4
and X, these notions and relations are either trivial or
uninteresting.

On the other hand it is these kinds of semigroup that
have contributed applications to practical problems,
particularly in the areas of codes and theoretical computer
science. This branch of the theory is known as combinatorial
semigroup theory ( see for example Lallement,[12] ).

Semigroups with length morphisms, and other related
ideas to be introduced in the course of this study, can be
seen as an attempt to bridge the gap between the algebraic
and the combinatorial branches of the theory. Our methods are
mainly algebraic, and some of our results are reminiscent of
more classical results, particularly in the first part of
section 4. The class of semigroups with length morphisms,
however, does not include most of the semigroups normally
associated with classical algebraic semigroup theory, but
instead those usually associated with the combinatorial

branch. More specifically we use the notion of length




morphisms to try and tackle some interesting algebraic
questions that arise out of the problems encountered in
combinatorial semigroup theory, most importantly the problem
of finding a characterisation of F—semi_groups ( those
finitely generated semigroups that can be embedded into a
free semigroup ). This is dealt with in the second part of
section 4.

An important area of semigroup theory that does not
exhibit the above polarity is that of commutative semigroup
theory. Here again the notions of regularity and simplicity,
and the Green’s relations, are less interesting. The result
of this is that commutative semigroup theory has taken a path
that lies closer to that I have taken in this thesis, and as
a result many of our results are adaptations of commutative
results to the generally more interesting non—commutative
case.

The thesis falls into three parts. In sections 1,2 and
3 we introduce the notion of a length morphism on a semigroup
and other related ideas. We then characterise some of the
classes introduced.

In section 4 we investigate semigroups with length
morphisms in more detail, and introduce generalisations of
the Green’s relations, ® L' ¥H' P and 3%, that are non-
trivial on such semigroups. Some links with the well known
generalisations of the Green’s relations due to Fountain are
also discussed. We then give an example of the type of
results that can be obtained by characterising those

cancel lative semigroups with length morphism in which the s




classes are " as large as possible ". The second part of
section 4 investigates links between semigroups with length
morphisms and combinatorial semigroup theory.

Sections 5 and 6 introduce a decomposition of a large
class of semigroups into those semigroups introduced in the
first part. It is hoped that such a decomposition will help
generalise results on semigroups with lenéth morphisms to the
larger class of semigroups.

Thus our first part can be considered as an
introduction to the new notion, the second part as a
justification for introducing it, and the third part as an
insight into the possible potential of the subject to

semigroup theory in general.




Semigroups with length morphisms

1. Definitions and preliminaries.

1.1 Metrical semigroups and metrical monoids.

A semigroup S is said to be a metrical semigroup

if there exists a morphism f: S —> ( N, + ).

Given a metrical semigroup (S,f) we define subsets S,

of S by

Sn={seS:f(s)=n}.

EXAMPLES 1.1.
a) The free semigroup xT on a set X is metrical. The
relevant morphism is the “length’ function, |.|, given by

]XIXZ...an = n'
We shall call this particular morphism the usual length

morphism on X and denote it either by |.| or by u.
b) The free commutative semigroup X° on a set X is

metrical. The usual length morphism is defined in the same

way as for the non-commutative case, and is again denoted by
|.| or by u.

c) Subsemigroups of the above are metrical.

Motivated by the first of these examples we call a

morphism f: S —> ( N,+ ) a length morphism on S and call the

pair ( S,f ) the metrical semigroup S with length morphism £.

Let neN. Then if £ is a length morphism on a semigroup

S, so is the morphism nf: S —> N given by




(nf) (s) = n.f(s).
Thus a metrical semigroup has an infinite number of length
morpﬁisms. We say that two length morphisms f and g are
equivalent if there exist m,n in N such that nf = mg. A
metrical semigroup can have two non-equivalent length
morphisms: for example let X = {a,b}, then the maps
f: X =~> N given by f(a) = f(b) =1
and g: X —> N given by g(a) =1, g(b) = 2
both extend uniquely to length morphisms on X', The resultant

length morphisms are non equivalent.

Clearly if S is a metrical semigroup with length
morphism £, and R is a semigroup such that there exists a
morphism 6: R =—~> S, then R is a metrical semigroup, with

length morphism £ o 8, which we call the length morphism

induced by 8 and f. In particular if 8 is a morphism from R
to either X* or X%, we simply call the length morphism

induced by & and u the length morphism induced by 6.

A monoid M is called a metrical monoid if there exists

a morphism g: M ~> ( N®,+ ) such that g"1(0) = { 1 }. For
convenience we also refer to g as a length morphism, since it
will be clear in context to what type of semigroup we are
referring . A metrical monoid with length morphism g is
denoted by (M,g). If (S,f) is a metrical semigroup, then sl
is a metrical monoid with length morphism the unique
extension £ of f obtained by letting £(1) = 0. For

simplicity’s sake we denote the metrical monoid sl with



length morphism £ by (Sl,f).
Given a metrical semigroup S ( resp. a metrical monoid
M ) we can define a binary operation on mor(S,N) { resp.
mor (M,N°) ) by
(f+g)(s) = £(s) +g(s).
Throughout the thesis we shall treat mor(S,N) as a

semigroup with this operation.

1.2. The free group on a semigroup. The group of

right quotients of a semigroup.

Using the notation of [3] we define a free group on a
semigroup S to be a pair (HQ, where H is a group and X is a
morphism from S to H for which &(S) generates H, such that
for any group G and any morphism 8: S —> G, there exists a

morphism Y: H —>G for which the diagram

S——-—-—-—-?G

1A

Clifford and Preston prove that given any semigroup S,

cammutes.

such a pair exists ( [3] construction 12.3 ), and that it is
unique up to " equivalence ", where (HX) is said to be
equivalent to (H,Q) if there exists an isomorphism-§ from H
to H” such that g =Yeo(. ( [3] lemma 12.1 ).

A semigroup, S, is group embeddable if there exists a

group G and a monomorphism €6: S —=> G. It is an easy

consequence of the universal nature of the free group on a




semigroup ( see for example [3] theorem 12.4 )that S is group
embeddable if and only if the morphism ® in the pair (HX) is
a monomorphism. When this is the case we can assume that S is
a subsemigroup of H and that ( is the canonical injection
morphism.

If a semigroup S can be embedded in a group then it can
be embedded in a group for which S is a set of group
generators. Every element of such a group will be a finite
product of elements of S and of inverses ( in the group ) of
elements of S. For a group embeddable semigroup S we now

construct the group of right quotients, which turns out to be

a free group on S. Results will be stated without proof,
since details can be found in [3] section 12.4.
Let S be a group embeddable semigroup. For a,b in S

such that SansSb # g we define the right quotient

a/b = { (x,y) : xa =yb }.
IEMMA 1.1. ILet S be a group embeddable semiqgroup. Let a,b,c,d

be elements of S. Then
a/b = ¢/d if and only if a/bnc/d # 4.
CONSTRUCTION. Iet S be a group embeddable semigroup. Iet QO be

the set of right quotients of pairs of elements of S:

Q=1{ab:abeS, Sansb#4 }.

Iet © be the congruence on the free semigroup, Q+L on Q

generated by the set

{(xy,z) : x= a/b, yv= b/c, z= a/c for some a/b,b/c,a/c in Q}.

Let G be the semigroup Q+/‘c . Then G is a group and if

we define the mapping ¥ :S—>G by ®(s) = [sx/x], then the pair




(G,x) is a free group on S.

The pair (G,&) will be called the group of right

quotients of S.

By identifying the semigroup S with the subsemigroup
o{S) of G, we can again consider the monomorphism X as the
canonocal injection morphism. Instead of denoting the group
of right quotients by a pair (G#X), we denote it simply by G.
We shall do this without comment througout the thesis.

The next two results will be of use in section 4:

LEMMA 1.2. Let S be a metrical semigroup, and let f be a

length morphism on S. Then f extends uniguely to a morphism

from the group of guotients of S into Z.

Proof. We define a map £, from Q into X by
a/b —> f(a) - f£(b).

f, extends uniquely to a morphism £, from o* into Z.
The resultant morphism f, is invarient under the basic
transitions, and so itself induces a unigque morphism f from
the group of right quotients of S into Z.

It is easily seen that f is an extension of f. It is
unique because the set S is a set of group generators for the
group of right quotients of S.

LEMMA 1.3. Let S be a group embeddable semigroup, and let G

be the group of right quotients of S. Suppose that S” is a

subsemigroup of G that contains S. The group of right

quotients of S” is then equal to G.

Proof. Suppose that H is a group and that & is a
morphism from S° into H. Consider the restriction 6|S of 8 to

S. Since G is a free group on S it follows that there exists




a morphism\Y: G —> H for which the diagram

N A

H canmutes.
S is a set of group generators for G, and so if
8(s) =Y(s) for all s in S it follows that &(s") =VY(s") for
all s” in S°. We deduce that the diagram

s’ &> ¢
N WY
H

and so G is a free group on S°. It follows that G is

commites,

isomorphic to the group of right quotients of S°. Equality
follows from our convention of specifying the canonical
injection morphism when considering free groups on
semigroups.

~ 1.3. Semigroup Presentations.

Given a set X and words Uy ,V; (i€ I ) in xt we follow

1

the usual notation of defining the presentation

P(S)= < X : u.

o Y

to be of the semigroup S = X+,Q, where @ is the smallest

congruence on xt containing { (u;,v;) : i€1I }.

We call an ordered pair {x,y) a basic P(S) transition

if there exist words w,z in X" such that

X =Wwpz , ¥ =WwWqz
where (p,q) = (ui,vi) or (vj,u;) for some i in I. The pair
(u,v) is then ing@ if and only if u = v or there exist words

XQree=rXp such that

Xy =W op Xy V¥




and
(xi'xi+1) i=0,..,n~1 are basic P(S) transitions.

We define the commutative presentation

P(S)I=<X:uj=vy; , ieI> _
to be of the commutative semigroup S = Xc/e_ r where @ is the

smallest congruence on X° containing { (uj,vy) = i€I }.

10

§
P

Cfwd o8



2. Finitely generated metrical semigroups.

2.1. The congruence X and a characterisation of finitely

generated metrical semigroups.

In this section we give a characterisation of finitely
generated metrical semigroups. The characterisation in the
commutative case is particularly simple ( corollary 2.2 ).
The non-commutative case is an adaptation of the commutative
case that is less satisfactory, but nevertheless useful in

later sections of the thesis ( corollary 2.3 ).

The key result of this section is a theorem due to
Grillet, theorem 2.1. The proof of theorem 2.1 requires some

preliminary results, lemmas 2.1 and 2.2 and corcllary 2.1.

DEFINITION 2.1. Let S be a cancellative commutative
semigroup. Define the congruence W on S xS by (a,b)T(c,d) if
and only if ad = bc. Denote the semigroup (S * S)At by Q(S).
Q(S) is then an abelian group, with identity element [(x,x)]n
(= [(y,y) ]“for any y in S ), called the quotient group of S,

and S is embeddable into Q(S).

LEMMA 2.1. Let S be a finitely generated cancellative and

power cancellative commutative semigroup. Then S is

embeddable into a free abelian group.

Proof. Consider the group of quotients Q(S) of S. First
notice that Q(S) is finitely generated, for if X generates S
then the set { [(xa,a)ly : X€X } is a set of group

generators for Q(S).

11l




Suppose that [(a,b) ] = [(x,%) ]y the identity. Then
[(@%bM ] = [(x,%) ] and so a™x = bx. The cancellativity of
S implies that a® = b?, and then the power cancellativity of
S implies that a = b. Therefore [(a,b)ly = [(a,a)ly =
[(X'X)lﬁ We deduce that Q(S) is torsion free.

It is well known ( see for example [6] ) that a
finitely generated torsion free abelian group is isomorphic

to a free abelian group, and so the result follows.

Given a commutative semigroup S we define the

subsemigroup S of S by
sih) = { g . se s ).

Note that when S is a power cancellative commutative

semigroup then s{) is isomorphic to S.

LEMMA 2.2. Let S be a finitely generated subsemigroup of a

free abelian group G not containing the identity element of

G. Then either S is isomorphic to a free commutative

semigroup or else there exists a subsemigroup

S of G and a positive integer k such that

a) The rank of S is less than that of S,
b) S(k) is contained in S,

c) S does not contain the identity element of G.

Proof. Suppose that the rank of S is n, and let Abe a
set of size n that generates S. If S is isomorphic to a free
commutative semigroup then the result follows immediately. If

S is not isomorphic to a free commutative semigroup then

12




there exists a non-trivial relation between elements of A. By
cancellation we may suppose that we have a non-trivial
relation

oy, T Ny et Ber

(*) S Sy ...sp = Ty ...rq

such that the Xy and the s. are all distinct elements of A,

J
and ny,m4 are strictly positive integers. Suppose further

J
that p is minimal over the set of all such non-trivial
relations. We immediately have that p > 0 since S does not
contain the identity. Now define S to be the subsemigroup
of G generated by
m -n -
3. 2

{]’.'1 082 ..Sp np ; Iz,..,rq 'Szpooysp ; tl,oo'tk }
where the t; are the elements in A not appearing in the
relation *. It is clear that S is of rank less than that of
S, and so S satisfies a).

Clearly all the elements of A except for ry and s, are
contained in S. Now

m I B Ry By

ry = (ry -S9 ..sp )s2 ..sp

and
nl ml "‘nz - mz mq
s = (rp <82 «Sp ) Iy Xg -

(myny )
Therefore all the elements of the set A L3 are contained
o (mln )
in S, and thus the subsemigroup S 1 of G is contained in

S, and so letting k = mn; we have that S satisfies b).

13




We now show that S satisfies c). Suppose, by way of
contradiction, that S contains the identity. Then we have a
relation

my ety -np w X9 Xq Yo yp Z Zk

(rl -52 .-Sp ) .r2 ...I'q 082 ...Sp -tl o.otk = 1

where w, the x;, y; and the z; are all non-negative integers
that are not all zero. If w is zero then we have that 1 is
contained in S, giving us a contradiction, and if w is
greater than zero we have the non-trivial relation
an wml X2 X Y2 Y, Zl Zk
Sz t-spwrlp = rl .1’.'2 --.rqq .Sz ...Sp potl ooctk
which contradicts the minimality of p. We deduce that S does

not contain the identity. This completes the proof of the

lemma.

COROLIARY 2.1. Iet S be a finitely generated subsemigroup of

a free abelian group G that does not contain the identity

element of G. Then there exists a subsemigroup T of G and a

positive integer k such that

a) S(k) is contained in T,

b) T is iscmorphic to a free commutative semigroup.

Proof. We can now define semigroups S; as follows. Let

So =S, and for all i > 0 let S; = S;_; if S;_; is isomorphic

to a free commutative semigroup, and S_i-l otherwise. Then by
(kj-1)

lemma 2.2 there exist kg, kj,e... > 0 such that Si_ll is

contained in S;.

14
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Since the rank of S finite, and since either the
rank of S;47 is less than the rank of S; or else Sj =8y
for all j » i, we have that the sequence Sj ,S; ... of
semigroups stabilises, and therefore that there exist a
semigroup T ( = Sy for some t) and an integer k ( = kokl...kt5

such that (%) is contained in T and T is isomorphic to a

free commutative semigroup.

It can be shown that if G in corollary 2.1 is generated
by only two elements, then a T can be found for which the
value k = 1 satisfies the given conditions. It is not known

" whether this is the case in general.

The following lemma is almost identical to corollary

2.1 and will be of use in section 3.

LEMMA 2.3. Let G be a direct sum of copies of the group

{Q,+) and let S be a finitely generated subsemigroup of G

that does not contain the identity. Then there exists a

subsemigroup T of G such that T contains S and T is

isomorphic to a free commutative semigroup.

Proof. Let G =&<?1 Q. Then G can be considered asa
vector space over Q. It follows that there is an action of Q
on G that corresponds to scalar multiplication. To avoid
confusion we shall use bold type for elements of G and normal
type for scalars. Let X be a basis for G and let A be a
finite subset of G that generates S. Then for any element s
in A we have
) + N

8 = { /b, 1x + ... +{(a. /b, x
: A |

a,; /b, Ix 8, s
11 11 1 i3 1 1ip n in In

15



where i:€I ; a. ,b. € Z and x. € X.
J lj lj lj

Let bg be the lowest common multiple of the bi .
3

Let b be the lowest common multiple of the bg as s varies
across A. Then we have that A is contained in the subgroup H
of G generated by ¥ = { (%)x : x€X }.

Now X is a basis, and is therefore a linearly
independent set. We deduce that no non-trivial relation can
exist between the elements of Y. Thus Y is a set of free
commutative group generators for H. We therefore deduce that
H is a free cammutative group containing S.

It follows from corollary 2.1 ( using additive notation
instead of multiplicative notation ) that there exist an
integer k and a subsemigroup T of H such that T is isomorphic
to a free commutative semigroup and { ks : s€S } is
contained in T. We deduce that S is contained in the
subsemigroup (1/kK)T ( = { (1/k)t : £t€T } ), which is also
isomorphic to a free commutative semigroup, completing the

proof of the lemma.

THEOREM 2.1. ([8] theorem 2.2. ). A finitely generated

commutative semigroup is embeddable into a free commutative

semigroup if and only if it is cancellative, power

cancellative and does not have an identity element.

Proof. The direct implication is obvious. For the
converse suppose that S is cancellative, power cancellative

and does not contain an identity. From lemma 2.1 S is

16



isomorphic to a subsemigroup of a free abelian group G. Since
S does not contain the identity element it follows from
corollary 2.1 that there exist a number n and a subsemigroup
T of G such that s(n) i5 contained in T and T is isomorphic
to a free commutative semigroup. S, being power cancellative,
is isomorphic to s(") and so we deduce that S is embeddable

into a free commutative semigroup.

We now use theorem 2.1 to give us a characterisation of

finitely generated commutative metrical semigroups.

COROLIARY 2.2. A finitely generated commutative semigroup, T,

is metrical if and only if there do not exist t,r€T such

that tr=t.

Proof. The direct part is obvious since if T has length
morphism £, then tr = t would imply that f(r) = 0, which is
not possible.

Conversely suppose that there do not exist t,r in T
with tr = t. Let T = T/t where T is the congruence given by
atb <= dneN, ceT such that alc = blc.

T’ is then finitely generated, commutative, cancellative and
power cancellative. Furthermore T’ contains no identity

element, since
xe T x

= (xe)’c = x'c for save n in N, ¢ in T
= (xc)e = x'c.
Theorem 2.1 then gives us that T is embeddable into a
free commutative semigroup. Thus T°, and therefore T, is

metrical.
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Given an arbitrary semigroup S define the cangruence Xg
to be that generated by { (sr,rs) : r,s€S }. S/4g is then a
commutative semigroup and is the largest commutative
image of S in the sense that if:S —> T is a morphism, and
T is a commutative semigroup then there exists 5:8/7(5--9 i

such that the diagram

gl s

w/

Where there is no possible ambiguity we write simply X.

camutes.

LEMMA 2.4. Let S be a semigroup, and let T be a commutative

semigroup. Then

mor({S,T) #4 <= mor(S/Y,T) # 4.
Furthermore, when this is the case,

@ : mor(S,T) =—> mar(S/AT)
given by
(A £))s] = £(s)

is a well defined iscmorphism. In particular

mor (S, N) ¥ mor(S/x,N).

Proof. The proof is immediate from the fact that Xis

the smallest commutative congruence on S.

Corollary 2.2 and lemma 2.4 now give us a
characterisation for non-commutative finitely generated

metrical semigroups:

CORCLLARY 2.3. Iet S be a finitely generated semigroup. Then

S is metrical if and only ier,ses such that rs/Sl_:_..
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DEFINITION 2.2. We associate with an arbitrary semigroup S
the commutative, cancellative and power cancellative
semigroup S’= (8/X)/c where the congruence X is defined
above, and the congruence T is that defined in the proof of
corollary 2.2. We define the morphism 8 to be the natural map

from S to S°.

The following lemma will be of use later on:

ILEMMA 2.5. Let S be a semigroup. Then

mor(S,N) # g <= mor(s’,N) # g.

Furthermore when this is the case we have that

mor(S,N) = mor(S’,N).

Proof. The proof is immediate from the fact that the
congruence 97lo 8 is the smallest commutative, cancellative

and power cancellative congruence on S.

2.2.Finitely presented metrical semigroups

In this section we show how a finitely presented
semigroup can be associated with an integer matrix. We then
show how some classical algorithms from the theories of
linear programming and linear diophantine equations enable us
to say things about the existence of length morphisms on the
semigroup concerned. In contrast to the previous section, the
results are equally valid for commutative and non-commutative

semigroups.

Suppose that S is a finitely presented semigroup. ILet

P(S) be the presentation
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P(S)E‘ < al'o.'an : r1=51 '..’rm=sm >

where the r; and the sy are words in the aj - Iet

k.. = Ir.l , hss = Is.l i
1 ia, X ila,
. 5 ) J

Xi- =ki- o hi

;| ) I

Then we define the relational matrix RM(P(S)) of the

presentation P(S) of S to be then m matrix with entries

xij'

A morphism f from the free semigroup {al,...,an}* into
N induces a morphism f: § —> N if and only if f(r;) = f(s;)
for i =1,..,m. Now
fxry) — £lsy)
"ok -
- f(];[ a];lj ) - f(:;fya];lj )

n
Ky f ay) - 52; h; 5f (ay)

M

—
1

M

xijf (aj) -

J:
So f induces a morphism f : S —> W if and only if

RM(P(S)) (£(ay),.-.,E(a))T = 0.
Thus we have

LEMMA 2.6. Let P(S) be a finite presentation for S with

generators A = { aygeegdpn }. Then there is an isomorphism

between mor{S,N) and the semigroup of strictly positive

solutions to the equation RM(P{(S))x = 0 ( with binary

operation of vector addition ) given by

20




RM(P(S)) (my,...m)T =0 <= £ €mor(s,N)

where E‘ is the unique extension to S of the map from A to N

given by

f-(ai) = mi-

Similarly we have

LEMMA 2.7. Let P(S) be a finite presentation for S with

generators A = { a1 re00@ }. Then there is an isomorphism

between mor{S,N°) and the semigroup of non-negative solutions

to the equation RM(P(S))x = 0 given by

RM(P(S))(my,eee,m)T =0 <=> f_€mor(s,N°)

where g_ is the unique extension to S of the map from A to N°

given by

f-(ai) =m,.

DEFINITION 2.3 The general integer linear programming problem

can be expressed as: Find integers
Xy > 0, x2>,0,... xn>,0
that minimise z when
C1X] + CpXp + .« + O X, = 7,
subject to the constraints
aji¥; tapgXg ... tap X, = bl'

ar1¥xy + 822}(2 + e R aznxn = Pz,

an¥1 * Xy +oeee A Xy = by

where the aij'bi and cy are given integer constants.
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The general linear programming problem is written in
terms of equality constraints. We will, however, be wanting
to solve problems with inequality constraints. In these cases
we convert the inequalities to equalities by the addition of
a slack variable, for

ajx) taxXy + ... tax »b
if and only if
ajx) +agkg + ...t ax -x,,1=b
for some X+l >0
and
aijX) +agxy + ... tax Kb
if and only if
ajx) tagxy t ... taX, t Xy = b
for some x,,1 » 0. Allowing ¢ ;1 =0 we obtain a general
integer linear program with the required solution. A

different slack variable is of course used for each

inequality.

A general linear programming problem is always defined
in terms of finding a minimal solution. We can, however, use
a program to find whether any non trivial solution to the
equations exist. This is equivalent to solving a set of
linear diophantine equations. We do this by adding the
constraint

X+ Xyt ool x> 1
to our list of equations, and finding a solution that
minimises

Z=X1+X2+...+}S,l.
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There are various different algorithms for solving the
general integer linear programming problem. Some of these can
be found in [7]. We are not interested here in j:he actual
algorithms, but just in the fact that they exist, and how

they help determine length morphisms on semigroups.

THEOREM 2.2. Let S8 be a semigroup given by a finite

presentation P(S) < XygeerXp 32 R >. Then S is metrical if

11

and only if there exists a solution to the system of

equations

RM(P(S)) x =0
Xl 1
X2 > 1

WV

xn'>/1.

Proof. The integer vector (ml,...,mn) is a solution to
the given system if and only if it is strictly positive, and

if
RM(P(S)) (my,..,m)7T = 0.

By lemma 2.6 this occurs if and only if the map f, from S to

N is a morphism.

COROLLARY 2.4 Suppose that the semigroup S is given by the

finite presentation P(S). Then there exists an algorithm for

determining whether or not S is metrical.

The following well known result due to Redei ensures
that the algorithm refered to in corollary 2.4 can be used

for any finitely generated commutative semigroup.
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LEMMA 2.8. ([17] theorem 72 ). Any finitely generated

commutative semigroup is finitely presented.

Before closing this section we briefly discuss the
special case when a semigroup S is given in terms of a finite
presentation P(S) that consists of a single relation. We
already know that there exist algorithms for determining
whether or not S is metrical. In general these algorithms
will only give us one particular length morphism on S.

Elliott, in his paper " On linear homogeneous
diophantine equations " from 1903 ( reference [4] ),
describes an algorithm for determining a generating set for
the non-negative solutions to a single diophantine equation.
The algorithm is also described by MacMahon in the more
easily.found reference [14] . It is also known that such a

set is always finite ( lemma 2.9 below ). Thus we have

THEOREM 2.3. Let S be a semigroup given by a finite

presentation P(S) consisting of a single defining relation.

Then mor(S,N°) is finitely generated and there exists an

algorithm for determining a finite generating set for

mor (S,N°).
Proof. This is a direct consequence of Elliott’s

algorithm and lemma 2.7.

In the case where P(S) has more than one relation we do
not know of an algorithm for determining a generating set for

mor(S,N°). We do, however, have
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LEMMA 2.9 ( [18] page 5 ). Given an nxm integer matrix A,

the set { x €(N%)" : Ax =0 } is finitely generated.

and therefore

COROLIARY 2.5. Iet S be a finitely generated semigroup. Then

nor(S,N°) is finitely generated.

Proof. By lemma 2.4 mor(S,N°) is isomorphic to
mor(sS/X,N°). s/X is a finitely generated commutative
semigroup, and is therefore finitely presented. Thus by lemma
2.7 there exists an integer matrix A such that mor(S,R°) is
isomorphic to { x : Ax = 0 }, which is finitely generated by

lemma 2.9.

2.3. Length morphisms on semigroups not given in terms of

generators and relations.

In section 2.2 we showed that if a semigroup S is given
in terms of a finite presentation, then the problem of
determining all the length morphisms on S can be reduced to a
problem of linear algebra.

In section 2.1 we gave an algebraic characterisation of
finitely generated metrical semigroups, but the
characterisation did not give us any way of determining what
the length morphisms on the.given semigroup were. Thus we can
determine algebraically whether or not mor(S,N) is empty, but
cannot give any interesting information about the structure
of mor(S,N) or its relationship to S itself.

In this section we begin to compensate for this

deficiency by giving two results. The first tells us that
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length morphisms on finitely generated metrical semigroups
"almost " always arise from an embedding of a commutative

cancellative and power cancellative semigroup into a free

commutative semigroup. The second gives a condition for two

elements of a semigroup to be of equal length under all the

length morphisms of the semigroup.

Given any finitely generated semigroup we have by lemma
2.5 that mor(S,N) is isomorphic to mor(S’,N), where S’ is
given in definition 2.2. Thus any length morphism on a
finitely generated semigroup S is induced by the morphism 6
and a length morphism on an associated commutative,
cancellative and power cancellative finitely generated
semigroup S'Grillet’s theorem gives us that a commutative,
cancellativeand power cancellative finitely generated
semigroup is metrical if and only if it is embeddable into a
free coﬁmutative semigroup. The natural question to ask is
whether or not all length morphisms on such a semigroup are
induced by such an embedding. In more formal terms given any
commutative, cancellative and power cancellative finitely
generated metrical semigroup (S,f) does there necessarily

exist a morphism g: S——> XC such that the diagram

where u is the usual length morphism on X°?

commutes,

The following example shows that this is not the case:
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EXAMPLE 2.1. Let S be the commutative semigroup with
presentation
< a,b,c,d : ab=cd >.
It is easily seen that S is power cancellative and
cancellative and has a length morphism £ given by
f(a)=t(b)=f(c)=£(d)=1.
However this length morphism cannot be the restriction of a
usual length morphism on a free commutative semigroup, since
in such a situation the only elements of length 1 are the
basis elements, between which no non-trivial relation can

exist.

We do have a slightly weaker result:

LEMMA 2.10. Given a finitely generated

commutative,cancellative and power cancellative metrical

semigroup (S,f) there exists an integer k and a monomorphism

g: 8 —> X° such that the diagram

kf
S —> K

s)i/

where u is the usual length morphism on X° and kf is the

canmmutes,

morphism that maps s to k.f(s).

Proof. The proof of this result falls into two parts,
the first corresponding to lemma 2.2, and the second
corresponding to corollary 2.1. Note first that Q(S) is, by
lemma 2.1, a free abelian group. The length morphism f
extends uniguely to a inorphism f: Q(S) —> Z. We now show

that either S is free or else there exists a subsemigroup S
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of Q(S) and a positive integer z such that

a) The rank of § is less than that of S,

b) 5(2) is contained in S,

&) f(§) > 0, and so S is metrical.

If Sis free then the result follows immediately.
Suppose therefore that S is not free, and that A is a minimal
generating set for s. There then exists a non-trivial
relation '

n n m m m
(*)  s; Tsy° P by e 9

2 ...Sp = rl r2 ...rq

such that the ry and the sj are all distinct elements of A,

and nj,my are strictly positive integers. Suppose further
that p is minimal over the set of all such non~trivial

relations. S is metrical and so p # 0. Let h be the integer

) "‘q)

h = f( rl I'2 .u.rq

Now define S to be the subsemigroup of Q(S) generated

by
£(ry) £(rg)
{w rlh,..,w c'[rq ;sz,..,sp;tl,..,tk}
where w = s, see8p
and the t. are the elements of A not appearing in (*).

J
It is routine to show that S satisfies (a) and (c). S

also satisfies (b) with z = njh, the only difficulty being

the proof that hny
5
belongs to S. This is indeed the case, since
" hn hmy  hm
1 1 2
Sy = r ry ...rqhmq )wh
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f(rl)

m f(r.)
= (w ry 1 q

m
1
sionie (W r

hy hy

q

We now define subsemigroups S; of Q(S) in precisely the
same way as we did in the proof of corollary 2.1. Then we
stabilise at a semigroup S; that is isomorphic to a free
commutative semigroup and which contains sk) for some k in
N, and for which f is strictly positive. Let X be a free
generating set for Si.. Then the morphism&iS, -—> X€ given by
X(x) = xE(X) iga monomorphism. Clearly £ |S = uo(X.

LetBbe the morphism from S into S given by f(s) = sX.
The power cancellativity of S ensures thatp is also a
monomorphism. Thus g =0(of§ is a monomorphism. Furthermore

given any s in S,

u(g(s)) = u(@(s))) = u@(sX)) = £(s¥) = kf(s).

We contrast lemma 2.10 with the non-commutative case in
section 4.

The next result gives us a link between mor(S,N) and S.

LEMMA 2.11. Given a finitely generated semigroup S and two

elements r,s€S then f(r)=f(s) for all f€mor( S,N ) if and

only if 8{(r)=6(s).

Proof. Suppose that &(r) is not equal to 8(s). Let g
embed S into X©. Then g(8(r)) is not equal to g(8&(s)), and
so there exists an x in X such that |g(8(r))|, is not equal
to Ig(e(s))lx . If h is any element in mor( S,N ) then either
h(r) # h(s) or else the maph”: S —> N given by

h'(t) = h(t) + |g(e(t)) ]y

is such that h’(r) ¥ h’(s). We therefore do not have that

29




the lengths of r and s are the same for all length morphisms
on S. The converse is easy since any morphism from S to N is

invariant under 6 1o 8.
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3. Infinitely generated metrical semigroups. Rationally

metrical, really metrical and locally metrical semigroups.

Corollaries 2.2 and 2.3 do not hold for infinitely
generated semigroups. For example the semigroup ( Q+,+ ) of
strictly positive rational numbers under addition satisfies
the conditions of corollary 2.2, but if

f: 0" — m,

then
f(l)=n = £(1/2n)=1/2 ,

which is not possible. This prompts us to make some new
definitions.

We say that a semigroup S is rationally metrical, or

Q-metrical if there exists a morphism q: S —> Q+, is

really~metrical, or R-metrical, if there exists a morphism

r: s —> RY, and we say that a semigroup S is locally
metrical if every finitely generated subsemigroup of S is
metrical. In the finitely generated case we shall see that

these concepts are all equivalent. In general we have that
metrical = Q-metrical => R-metrical

We have already seen that the first implication is strict.
The second implication is also strict as the following

example illustrates:

EXAMPIE 3.l. Let S be the semigroup R'n Q[v/2] under addition.
Then S is R-metrical since it is a subsemigroup of rt.
Suppose by way of contradiction that S is Q-metrical, and let

f: S —> Q+ be a morphism. Notice that for all a,b in N and x
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in S that

af(x) = f(ax) = f(bla/b)x) = bf((a/b)x).
Thus for any q in o', we have f(gx) = gf(x). In particular
for all g in @ we have f(q) = gf(1).

Consider f(/2). Now £(/2) ¥ f£(13/2 since f(1l)}/2 is
irrational. Suppose that £(y'2) < £(1}/2. Then £(1)/2 -~ £(y2)
is an element of S. However

£( £(AWV2 - £(v2) ) = £(1)fW2) - £(/2)E(1) =0
which is not possible. Similarly we get a contradiction if

£6/2) > £(1N2.

Notice that S is countable, so although we have that a
finitely generated Q-metrical semigroup is metrical, we do
not necesarily have that a countably generated R-metrical
semigroup is Q-metrical.

We also have the implication

R-metrical => locally metrical

since if f: S — R" is a morphism, and U is a finitely
generated subsemigroup of S, then £(U) is a finitely
generated subsemigroup of R+, which is commutative,
cancellative, power cancellative and without identity. It
follows from corollary 2.2 that £(U) is metrical, and
therefore that U is metrical. Thus every finitely geneﬁ:ated
subsemigroup of S is metrical, and so S is locally metrical.

Since a finitely generated semigroup is metrical if and
only if it is locally metrical, the set of implications

metrical => Q@metrical => R-metrical => locally metrical

implies that these concepts are all equivalent in the
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finitely.. generated case.

The following example shows that the implication
R-metrical => locally metrical

is strict.

EXAMPLE 3.2. Let S be the commutative semigroup with o
presentation < a,b,xj,Xgs.. : alx ) = bx, neW>. Let S
be the subsemigroup of S generated by { arb,XyreerXy } . Let

f;: 8 —> % be given by 8
£5(a)=l, £5(b)=i , £3(xy) = ni - AL 41,

Then f£; is well defined since it is invariant under the basic
transitions of the presentation of §, i.e.
£;(ax,,1) = £5(bx,).

Furthermore £;(S;) > 0 . We deduce that each S; is metrical,
and since any finitely generated subsemigroup of S is
contained in Sj for some j, we deduce that S is locally
metrical., S is however not R-metrical. Suppose by way of
contradiction that r: S —» R isa morphism, then suppose
that r(a)=w, r(b)=y, r(xj)=z. To ensure that r is well
defined we must have that

rixiyq) = elxg) + (b)) —dix(a) focalldi > 8
from which we deduce

r(x,) = z + (n-l)y -M‘w for alln > 0

which is less than 0 for sufficiently large n. Thus S is a

semigroup that is locally metrical but not R~metrical.
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3.1 Locally metrical semigroups.

In section 2 we defined the congruence )X on an
arbitrary semigroup. We then gave a characterisation of
finitely generated metrical semigroups in corollary 2.3. As
mentioned at the beginning of this section, the result does
not hold in the infinitely generated case. We do, however,
have the following weaker result:

THEOREM 3.1. A semigroup S is locally metrical if and only if

there do not exist elements r and s in S such that rs X r.

Proof. Suppose that S is locally metrical but, by way
of contradiction , that there exists r,s€S such that rs X r.

Then there exists Xi7 Yie B30 'Yy (i=l,..,n ) such that:

i
TEIWVIY) §X3VIWYY SKi041Vi41Yie ==l
XnVnndn T 4
Now let U = < x;,y5,94,v;,s ( i=l,..,n ) > . U is finitely
generated, and so since S is locally metrical, U must be
metrical; but this is not possible since if f: U~—> W is a
morphism then f(rs) = f(xyuyvyy;) = £(x;vyuyy) =..=f(r) and

so f(s)=0, which is not possible.

Conversely suppose that there do not exist r and s in S
such that rs L r. Iet U be a finitely generated subsemigroup
of S. Since')LUgXS N (UxU) we have that there do not exist r

and s in U such that rs Xy r, and so U is metrical by

corollary 2.3.

Example 3.2 gave us a locally metrical semigroup that

is not R-metrical, and therefore not Q-metrical. We do,
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however, have a weaker, but very useful , result in lemma
3.3. First we discuss some results in abelian group theory,

details of which can be found in Puchs” book [6].

An abelian group (D,.) is said to be divisible if for
all a in D and n in W there exists x in D such that x = a.

The divisible hull D(G) of an abelian group G is the unique

( up to isomorphism ) divisible group such that G is
embeddable into D(G) in such a way that the image of G is not
contained in any divisible subgroup of D(G). Fuchs shows
that given any abelian group G the divisible group D(G)
exists, and is isomorphic to a direct sum

( & (Q+) )8 C {*)
iel

where C is a periodic group.

LEMMA 3.2. Suppose that G is a torsion free abelian group.

The periodic group C in * is then the trivial group. Thus

D(G) is isomorphic to a direct sum of copies of the group

(Q,+).
Proof. Let f be the required embedding of G into D(G).

Then for any d in D(G)\l there exists n in N such that
d”¢ f(G\l) ( otherwise the subgroup of D(G) éonsisting of all
elements tHat satisfy this condition,together with the
identity element,would be a proper divisible subgroup of D(G)
containing G ). Suppose by way of contradiction that c is an
element of D(G)\l, but that c™ = 1. Now c€ D(G)\1 and so
there exist g ;.n G\l and n in E such that c” = f(g). Thus

£(g)™ =1, and so f(g™) = 1. Now f embeds G into D(G) and so
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g™ = 1. This is a contradiction since G is torsion free. Thus
D(G) contains no non-trivial periodic elements and so the

group C in * must be trivial.

Given a cancellative commutative semigroup S we define the
divisible hull D(S) of S to be the divisible hull of the
quotient group Q(S) of S given in definition 2.1. S is then

embeddable into D(S). The divisible rank of S is the size of

the set I in *, We then have the following corollary to lemma
3

COROLLARY 3.1. A cancellative and power cancellative

commutative semigroup S is embeddable into a direct sum of

copies of the group (Q,+).

Proof. We know that S is embeddable into D(S) =
D(Q(S)). Since S is power cancellative we have that Q(S) is
torsion free ( see the proof of lemma 2.1 ). D(Q(S)) is

therefore isomorphic to a direct sum @ (Q,+) .

LEMMA 3.3. Let S be a locally metrical semigroup. Then if U

is a finitely generated subsemigroup of S there exists a

morphism g: S —> Q such that g(U) € N.

Proof. Suppose that S is locally metrical. Then the
semigroup S° defined in section 2 is commutative,
cancellative and power cancellative and does not contain an
identity element; and there exists a morphism 8 from S onto
B

It follows from corollary 3.1 that S” is contained in a

direct sum of copies of the group (Q,+). Denote this direct
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sum by V. Then V can be considered as a vector space over Q.

Let Ube a finitely generated subsemigroup of S. Then
8(U) is a finitely generated subsemigroup of V, and so it
follows from lemma 2.3 that there exists a subsemigroup T of
V that contains 6(U), and is isomorphic to a free commutative
semigroup. ILet u be the usual length morphism on T.

Let QT be the set { rt : r€Q , teT }. Then QT is a
subspace of V, and u extends to the morphism u’: QT —> Q
given by u’(rt) = r.u(t).

Since u” is a linear functional on a subspace oﬁ Vit
can be extended to a linear functional, g, on the whole of V.

The composition ge 8 is then a morphism from S to @,
and gqe 8(0) = g(T) = u(T), which is contained in N, as

required.

The following lemma, closely related to lemma 3.3, is

due to Hamilton, Nordahl and Tamura:

LEMMA 3.4 ( [9] Theorem 4.1 ) Let S be a cancellative

commutative semigroup of finite divisible rank that does not

contain an identity. Then there exists a non—trivial morphism

from S into the semigroup of non-negative rational numbers.

COROLLARY 3.2. Suppose that S is a locally metrical semigroup
such that S” is of finite divisible rank. Then there exists a

non-trivial morphism from S into the semigroup of non-

negative rational numbers.

Kobayashi gives an example in [11] of a semigroup of
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infinite divisible rank for which there is no such morphism.

-3.2. R-metrical and Q-metrical semigroups

We end this section with a brief discussion of R-

metrical and Q-metrical semigroups.

The following two theorems concern characterisations of

R-metrical cancellative camutative semigroups.

Tamura has shown ( [19], theorem 3.1 and [20] theorem

2.1.) the following:

THEOREM 3.2. A cancellative commutative semigroup is R-

metrical if and only if it is embeddable into a cancellative

comutative archimedean semigroup without idempotent.

The next theorem is due to Kobayashi ([11]).

THEOREM 3.3. A cancellative commutative semigroup S of

finite divisible rank is R-metrical if and only if it

satisfies the condition "B" that for any a and b in S there

nm

exists an n in N such that for all m in N, a™™ is not a

divisor of bW,

Notice that the semigroup of example 3.2 is locally
metrical, cancellative and of finite divisible rank, byt is
not R~metrical, and so condition "B" is less general than the

condition of local metricality.

Theorem 3.3 does not hold for cancellative commutative

semigroups of infinite divisible rank. For example take the
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semigroup

(})Mo.
This semigroup satisfies condition "B" since for any x,y in
(R;)u\b such that x|y we must have that x;  y; for all i in
N. Iet a,b be elements of (R:;)“\o. Then the a; and the b; are
not all zero, and so it is possible to find n,j in N such
that nay > bj, and so mna. > mb:-l for all m in N, and so we do

]

M | pM for any m in N.

not have a

This semigroup is not, however, R-metrical. Suppose, by way
of contradiction that the exists a morphism
£: (RDM\0 —> B,

Let a; = £00,0;5.0,1;0,00:) ( where 1 is in the

ith position ).
Let b,c&N. Then

Cif10: 05000, b/ci04550)

il

£(c.(0,0;0..,0,b/c;0;:.))

f(O'O"-o'O,b'O,--)
biE{0,0; oo s0:)1e055:)

and so for any q in Q+ we have that
£(0,0,..,0,9,0,...) = q.a4
For every i in N choose q; in 0" such that qia; > 1.
Then let

x = ( qirdpree. )

Then for all n in N
( qll"lqnlolol-- ) I x ,
and therefore

f( qll"lqnlololn ) < f(x).
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This is not possible, since for all n in N
f( quo-'qn'O'Op-. ) - f( q1'0,0'o. ) +o.+ f( 0,. -O,qnyo,-..)
>n

and so we would have f£(x) > n for all n in N.
It appears to be difficult to characterise Q-metrical

semigroups,and indeed metrical semigroups, in the infinitely

generated case.
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4, Some results concerning metrical semigroups.

4.1. £*, & and the semigroup ( G,N&X ).

The well known Green’s relations £ and & on a semigroup
S defined by
atb <> sla=sl
aRb <> asl =ps!
are trivial whenever S is metrical. For example suppose that
(S,f) is a metrical semigroup and that a 4 b. Then sla = slp
and so there exist u,v in s! such that ua =b and vb = a. Let
(S1 (f) be the metrical monoid obtained from S by the addition
of an identity element, as described in section 1. Then we
have that f(u) = £(v) = 0, and therefore that u=v =1, and

so a = b.

We can, however, define generalisations of & and R that
are not necessarily trivial on a metrical semigroup. We
define the relations 4,7 and " on a semigroup S by

attb <=>sa=8

a&+ b <= as

it

bS.

First notice that these relations are indeed
generalisations of the Green's relations, since, for example,
if ad b in a semigroup S, then either a = b, in which case
we must have a L"' b, or else there exist u,v in S such that

va =b , vb = a.
Now clearly SagSla. The opposite inclusion also holds, since

a = vua€ Sa. Thus Sa = Sla. Similarly Sb = slb. we deduce
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that Sa = Sb, and so a & b.

Consider the null semigroup S given by rs = 0 for all
r,s in 8. Then L and R are both the identity relation, while
1t and R' are both the univefsal relation. Thus £* and & are

non-trivial generalisations of 1 and R.
We also define € as Lto &, ana 3t by

a8t b <> sas = sbs,
and Pt as the smallest equivalence relation on S that

contains both L' and &".

As in the original Green case we have the Hasse diagram

i

+/D\~ +
L R
S

Unfortunately we need not have that L R = RTe L',
For example take the semigroup S with elements {a,b,c,x,y,z}

and binary operation given by the table

a be xy 2z
alx x y z z =2
blx v x 2 2z 2z
elx 2 x 2 & 2
Xlz 2 2 2 2 =2
Ylz 2 2 z 2 2
2l - % BT B e

S is then indeed a semigroup, since S3 = { z }, and so the
operation is associative. Now aS = bS and Sb = Sc, and so we
have that a (R'oe 2t ) c . Wwe do not, however, have that

a ( f"oq{" ) ¢, since the &t-class of a is { a } and the
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R'-class of ¢ is { ¢ } and these two sets have an empty

intersection.

We shall take this opportunity to discuss another
generalisation of the Green’s relations due to Fountain
( see, for example, [5] ). We define the relation ;t.* by
a L* b in S if and only if there exists a semigroup R and a
monomorphism 8: S —> R such that &(a) £ 8(b) in R. The
relation ® is similarly defined. It is well known ( see, for

example, [5] lemma 1.1 ) that

ad” b if and only if for all x,y in sl, ax ay <=> bx = by.

Similarly

a® b if and only if for all x,y in Sl, xa = ya <=> xb = yb.

Fountain gives an example of a.semigroup in which
1,*0 azt » R.*° L*
( see [5] example 1.11 ).

The two generalisations are distinct. For example in

the semigroup N we have £ =®" =’ N, while 2" =&" = id.

A semigroup S is said to be left reductive if given any

X,y in S
zx = zy for all z in S = x =y.

Right reductive is defined dually, and a semigroup is said

to be reductive if it is both right and left reductive. The
following result links the relations £ and 4" in the class

of left reductive semigroups.
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PROPOSITION 4.1. Let S be a left reductive semigroup. Then

for all a,b in S

atrb = attb.

Proof. Let S be a left reductive semigroup. Then we can
embed S into the full transformation semigroup?§(S) by
mapping the element s of S to the transformation Qgr Where

ey = rs.
The left reducibility of S ensures that this map is 1-1. The
associativity of S ensures that this map is a morphism.

It is well known ( see for example [10] exercise 2.10 )
that in a full transformation group

oLLB <= Im) = Im(R) .

Let x,y in S be such that x &' y. Then Sx = Sy, and so
Im@,) = Im(Qy), which then implies that {xt‘ Ry~ We deduce
that x & Y.

The above result does not hold in general. For example
let S be the semigroup consisting of elements { a,b,p,z } and

with binary operation given by the table

a b p z

NT O

S is indeed a semigroup, since s3 = { z }. Now Sa = Sb and so
a L' b. We do not, however, have that a . g b, since aa = az,
but ba # bz.

Finally notice that in a cancellative semigroup " and
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R* are universal. This need not be the case for £* and R"
( for example in the semigroup N we have et =@ = ia. ).
Thus 2+ and & are generally more interesting in the class of
cancellative semigroups. For the rest of the section we will

be concentrating on cancellative metrical semigroups.

We now investigate our new relations for the class of

metrical semigroups.

LEMMA 4.1. Let (S,f) be a metrical semigroup. Then for all

a,bins, ad b = fla) = £(b).

Proof. Let a ' b. Suppose by way of contradiction that

f(a) > f(b). Let x be an element of S of minimal length. Then

there exist y,z in S such that xax = ybz, from which we deduce

that 2f(x) + f(a) = £(y) + £(z) + £(b). Since f(a) > £(b)
this implies that f(y) + f(2z) < 2f(x), contradicting the

minimality of the length of x.

COROLLARY 4.1. Let (S,f) be a metrical semigroup. Then for

all a,b in Siai;" boraR borad b = f(a) = f(b).

We call a metrical semigroup, (S,f), special if
it =fleg,

We dedicate the rest of section 4.1 to finding a

characterisation of special cancellative metrical semigroups.

Recall from section 1 that the subset S, of a metrical
semigroup (S,f) is defined by

Sn={s€S:f(s)=n}.
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LEMMA 4.2. Suppose that (S,f) is a cancellative special

metrical semigroup. Then for all s in S and for all n in £(8)

we have
sS_ =8 5 = Sn—l-f(s)'

n n
Proof. Clearly sS, and S;s are contained in Sn+f(s) for
all s in S and all n in £(S). For the converse let s be in S,
nin £(8) and t in S, ¢(g)
Let r be an element of Spe Then f(rs) = £(t) and thus,

by the speciality of (s,£),
rs R t.

Let u be an arbitrary element of S. Then there exists v in S

such that
rsu = tv.

Now f(su) = f{sv) and so
su it sv

and so there exists p in S such that

rsu = psv.
We deduce that
psv = tv
and so by cancellation
t = ps€8§s.

Similarly te&sS,.

Using the terminology of [3], a semigroup S is said to

be left reversible if for any a,b in S

aSNbs # &.

LEMMA 4.3. Let (S,f) be a special metrical semigroup. Then S

is left reversible.

Proof. Let s,r be elements of S. Then there exist p and
g in N such that £(sP) = £(r9). It then follows from the

speciality of (S,f) that s¥% = r9s, and so there exist u and
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v in S such that sPu = r9, and so s(sPly) = r(r3tyv).

The following result is well known ( see for example
[3] pp 300 = 302 ).

LEMMA 4.4, A cancellative left reversible semigroup is

embeddable into a group.

COROLILARY 4.2. Let (S,f) be a cancellative special metrical

semigroup. Then S is group embeddable.

The following technical lemma is necessary later on.

LEMMA 4.5. Let (S,f) be a cancellative special metrical

semigroup. Then there exists a special cancellative metrical

semigroup (S8°,f°) such that £°(8°) = hcf{f(S)}.N and

S = { x€8": £i(x)ef(8) }.

Proof. By corollary 4.2 there exists a group G and a
monomorphism 8: S —> G. For convenience we shall suppose
that & is the inclusion map, by identifying s and &(s).
Consider the subset H of G given by

H= { rs b : r,ses }.
H is then a subgroup of G; for if r,s,u,ve&S then

rs~l (uv-l)"l

1

Ll = remlvx(ux)™t

= rs
where x is an element of S chosen to ensure that
f(vx) = £(s) + k for some k in f(S). It then follows from
lemma 4.2 that there exists w in 8, such that vx = sw. thus
rs” L) = rw(ux) ™!
and so H is a subgroup of G.

Now f extends uniquely to a morphism £1: Hees Z by the
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rule f(rs™}) = £(r) - £(s). Clearly E(H)s hcf{£(S)}.Z . Now
the well known Euler’s algorithm tells us that there exist
Ny peepDy M roee, M € N and xl,...,xn,yl,...,yke.f(s) such that

hef{£(8)} = nyxg + .. + nexe = (my; + oo+ meye ).
f(8) is a subsemigroup of W, and so ( nyx; + .. + nyXy ) and
( myyy + .. + myy; ) are both elements of £(S). We deduce
that hcf{(f(s)}ef(H), and so, since H 1is a group, that
hef{£(S)}. S E(H). Thus £(H) = hcf{£(S)}.Z.

We now define S° by

8° = { ralen : £() ¥ £la) }
and define the length function £° on S° to be the restriction
to 8° of f.
Clearly if s is an element of S then s = s2s”! and so
s¢{ xes” : £ (x)ef(S) }.
Furthermore if x€S” is such that £7(x) = k€ £(S) then
x = rs !
where £(r) = f£(s) + k. It then follows from lemma 4.2 that
there exists w in 8 such that r = ws, and thus
x = wss © = wes.
We deduce that S = { s€8" : £ (s)€£(S) }, as

required.

We now introduce a class of semigroups that arise as a
semidirect product of a group G and N. Ultimately we shall
characterise special cancellative metrical semigroups in
terms of semigroups from this class. First we investigate
some properties of the class, culminating in theorem 4..1,

which tells us when two members of the class are isomorphic.
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DEFINITION 4.1. Iet G be a group, letd be an automorphism of
G. We then define the semigroup ( G,N,oL) to be the
semidirect product of G and Ngiven by ( G,N,X ) = ( GxN,* )
with (g/n)*(h,m) = (o (h),mn).

Note that the semigroup ( G,NX ) is cancellative.

We define ( G,%Z,0{) in the same way, but allowing n and
m to vary across 2.
We denote the subset { (g,n) : g&G } by (G,n). Notice

(G,0) is a group that is isomorphic to G.

LEMMA 4.6. ( G,N,®) is metrical. Furthermore the only length

morphisms on ( G,N,6{) are the projection pro onto N and its

scalar multiples.

Proof. Clearly the projection onto N is a length
morphism. We now show that for any length morphism £ on
({ GN,X ), £f(gm)=£(h,m) if and only if n = m, from which
the result follows. |

Let f:( G,N,06L) -=> N be a morphism. Suppose by way of
contradiction that there exist (g,n) and (h,m) in ( G,N,X)
such that n > m but f£(g,n) = £(h,m). Then

(g:m) = (h,m)*(6Z™(h™1g),n-m)
and so £(™nh Lg),n~m) = 0 , which is not possible.
Conversely suppose by way of contradiction that there exist
. g/hin G and n in N such that f(g,n) =p > g = £(h,n).

Then £((h,n)P) = pg = £({g,n)9). Now there exist h” and
g’ in G such that (h,n)P = (h’,pn) and (g,n)9 = (g, qn), and
so we have h” and g~ such that f£(h’,pn) = £(g",qn), which we

have already shown is not possible.
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LEMMA 4.7. The metrical semiqgroup ( ( G,N&X ),pr, ) is

special.
Proof. Let g,h be elements of G and n be in N. Then
given any (x,m) in ( G,N,& ) we have

(h,n)* (& (h™1g)x,m)

(gln)*(xrm) (g&n(X) ,0Hm)

and

(x,m)*(g,n) = (8(g),ntm) = (x®(gh™1),m)*(h,n).

Thus ( ( G,N,®%),pr;) is special.

LEMMA 4.8. ( G,%,% ) a group and ( G,N,X ) is a set of group

generators for ( G,%,%).

Proof. First notice that ( G,%,0{) is a group, since
for any (g,z) in ( G,%,0L ) we have

(1,0)*(g,2) = (g9,2)*(1,0) = (g,2)

(g,2)*C%g™1) ,=2) = (Z%(g™1),~2)*(g,2) = (1,0).
Next notice that ( G,N,0{ ) generates ( G,%,0X ), since
if n » 0 and g&G, then
(g,~n) = (g,1)*(1,-1-n) = (g,1)*(1,1+n)"L.

LEMMA 4.9. In the group ( G,Z,% ), the subgroup (G,0) is

equal to (G‘n)*(G,n)-1 for any n in Z.

Proof. Given any n in Z and any g,h in G, we have
(gm)*(h,mn)™t = (g,n)*(eT?(h7L), ) = (gh™1,0)
and so (G,n)*(G,n)"1¢ (G,0). Conversely given any g in G we
have that
(g,0) = (g,n)*(1,n)"}
and so (G,0)C (G,n)*(G,n)"L.

50

~\




THEOREM 4.1.( G,N,& ) is isomorphic to ( H,N,/A) if and only

if there exists an isomorphism 8: G ~=> H and an element x in

H such that the diagram

commutes,

where i is the inner automorphism of H defined by

i (h) = x"‘hx.

Proof. Suppose that ¥: ( G,N,ol) --> ( H,N,B) is an
isomorphism. Clearly |((G,1)) = (H,1) since these are the
sets of elements without proper divisors. VY extends uniquely
to an isomorphism ¥ ’: ( G,%,% ) ~=> ( H,%,8 ) by the rule
¥7(g,-n) =‘|"(9,1)*(\H1,1+n))-1 for n in N°.

By lemma 4.9 we have (G,0) = (G, 1)*(G,1)"1 and
(H,0) = (H,l)*(H,l)-l. We deduce that the map
(g,1)%(g° 1)~ —> |7 (g,1)*(g>1)"}) is an isomorphism from
(G,0) to (H,0), and therefore that G and H are isomorphic.
Let & be the isomorphism from G to H given by
8(g) = pry(47(g,0)).

Let x be such that (x,1) = ¥(1,1).

Now given any g in G we have (g,1) = (1,1)*(oCL(g),0).
Thus Y(g,1) =V¥i(g,1)

\J,/(l,l)"’slf'(ocl(g),()) since ¢ is a morphism
(x,1)*(861(g)),0)
(x&8 I (9))),1).
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AgainJ’ is a morphism, and so for any g in G we have
$7((g,0)*(1,1)) = {'(g,0)*(1,1).
Thus ¥7((g,1)) =4 (g,0)*"(1,1),
i, (xpOeCH(9))),1) = (8(g),00%(x,1).
Hence xﬁ(e(oc"l(g) = 8(g)x for all g in G
and so (B¢8 = 1,0 800
Thus the diagram commutes.
Conversely suppose that there exist an element x of H
and an isomorphism 8: G ==> H such that the diagram commutes.
Define a map W fram ( G,N,&) to ( H,N,8) by the rule
Yigm) = (xZx)E2(x).. L1 (x) (8 (0 (g))) m).
It is clear that ¥ is both 1-1 and onto, and it therefore
remains to show that Yis a morphism.
First we show that for allginGandm in N
(%) xfx).. ATLRMO ™)) = 8(g)xAx). . FTL(x).
We show this by induction on m. That the result holds for m=1
follows directly from the fact that the diagram commutes.
Suppose therefore that the result holds for m £ k. Then
x@x).. . &(x)g 8k (g)))
= % [xf(x) . . FT RO T Hg) )]
= %A18 (6 (9))xf(x). . .7 (x)]
(by the induction hypothesis )
= x2l8 (6C(9)) 18R (%) LK (x)
= 8(g)xR(x)8%(x) . .. (x)
( since the result holds form =1 ).
Thus the result holds for m = k+l and so the inductive proof
is camplete.

We now show that the map ¥ defined above is indeed a
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morphism. Let (g,n),(h,m) be elements of ( G,N,& ). Then
¢ (g,n)*{(h,m) = (z,n+m) where
= x8(x) . L7 (xR (0 0™ () B [x&(x) . £ (x)g™(8 e ™(h)))]
*B(x) . L7 (x)8[6 K (g) )xB(x). LT L (x)EN(B (™ (h)))]
2(x) . B (B x8(x) . AL (xBT(B e g)eT™(B)))]
by (*) and the fact that 8 is a morphism

N

i

X A(x) o AL ()TN (g (TN (g (0) )) )
Thus (z,m+n) =((g,n)*(h,m)) as required.

Theorem 4.1 has the following corollaries:

COROLLARY 4.3. ( G,N, ) is isomorphic to GXN if and

only ifo is inner.

Proof. G XN is isomorphic to ( G,N,id ). Thus by
theorem 4.1, ( G,N,iX ) is isomorphic to Gx N if and only if
there exists an automorphism 8 of G and an inner automorphism
i of G such that

ide ¢ ioBbO(,

ie  =07lo i71lo g,
The set of inner automorphisms of a group G forms a normal
subgroup of the group of all automorphism of the group G, and
so we deduce that such i and & exist if and only if & is

inner.

COROLLARY 4.4. ( G,N,K ) is isomorphic to GXN if and only if

there exists z in G such that (z,1) is central ( that is

(z,1) commutes with every element of ( G,N,&().)

Proof. Suppose that ( G,N, () is isomorphic to GxN.

Then by corollary 4.3 there exists z in G such that for all g
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in G
Alg) = z”lgz.
Then for all (g,n) in ( G,N,0L)

(g/m)*(z,1)

il

(gz Pzz", n+l)

(gz,n+l)

(zz—lgz,n+1 )

= (z,1)*(g,n)
Conversely, if z in G is such that (z,1) is central,
then in particular
(g,1)*(z,1) = (2z,1)*(g,1) for all g in G;
that is gl(z) = zol{g) for all g in G.
Taking g = 1 we have that z =®K(z), and then taking g as
arbitrary we have that (g) = z-lgz. Thus ¥ is an inner

automorphism, and so by corollary 4.3 ( G,N,X ) is isomorphic

to GXN.

We now generalise the class of semigroups of type
(G,N, ) to include semidirect products of groups and

subsemigroups of N,

DEFINITION 4.2. Let X be a subsemigroup of N. Then for any
group G and any automorphism ({ of G, we define the semigroup
( G,X,)) to be the subsemigroup of ( G,N, ) consisting of

elements { (g,n) : gin G, nin X }.

We are now in a position to state the main theorem of

this section, which characterises cancellative special
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metrical semigroups. In the statement and proof of the
theorem it is convenient to use the following notation :
given a subset X of N and an element k of N that divides all

the elements of X, we denote by X/k the set { x/k : x&X }.

THEOREM 4.2. Let (S,f) be a cancellative metrical semigroup

and let k = hcf{£f(S)}. Then (S,f) is special if and only if

there exists a group G and an automorphism ¢ of G such that

(S,£) = ( ( G,£(5)/k,%), kupry ).

Proof. The converse is similar to lemma 4.7 adapted
for the case X # N.

For the direct part suppose that (S,f) is a
cancellative special metrical semigroup. By lemma 4.5 there
exists a cancellative special metrical semigroup (S%,£°) such
that S = { x€8" : £(x)€f(S) } and £(S") = kN , where we
recall that k = hcf{£(S)}.

Fix an element t in S§%.

Now in the proof of lemma 4.5 we showed that S° is
contained in a group H such that

H={ rs"! ; L,SE8° )
Iet G be the subgroup of H defined by
G={rs!:rses’ , £(r) = £'(s) }.
Define an automorphismo{ on G by
ors~l) = t7lrs7le,
ol is indeed a map from G to G, since
t7les™ = £ hw(sw) 7t
where w is an element of S° chosen to ensure that

f(rw) = £°(sw) > k = £°(t), and therefore, by lemma 4.2,
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that there exist r”and s”in 8¢ ()~ Such that
rw=tr", sw=ts’
giving us
_ (rs™ly = r*(s”)"lec.
Define a map 8 from ( G,N,{X) to S by
8(rs~1,n) = rs™ltP,
1) The range & does lie inside S°.

E is an element of G then

This follows since if rs
rs R = rw(sw) " HeD
where w is an element of S° chosen to ensure that
f’(sw) > kn = £°(t?). Then, by lemma 4.2, there exists s’ in
S’f’(sw)-kn such that
sw = tPg’
Now f“(rw) = £’(sw) and so, again by lemma 4.2, there exists
y in S, such that rw = ys’. Thus

1

e(rs"l,n) =rws” - = yes’.

2) 8 is 1-1.

This follows since if rs™1t? = pq lth,
where £°(r) = £7(s) and £°(p) = £"(q), then

kn = £°(t%rs™) = £°(f%q 1) = km
and also we then have by cancellation of t" that
rsL = pq-l.

3) 8 is onto.

Let s be an element of S°. Then £°(s) = kn for some n
in N. Then

s = st " = (st " n).

4) 8 is a morphism.
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Let (rs'l,n),(pq"l,m) be elements of ( G,N,0L).
Then 8( (rs"l,n)*(pq_l,m) )
= 8( rs”tPpg 1™, ntm )
= rs” tfipg Iy nentm
= (rs™ D) (pg~ i)
= 8(rs™1,n)8(pq L m).
Thus 8: ( G,N,o() °~> S’ is an iscmorphism.
It is clear that 8 is a metrical isomorphism from
( ( GN,X)kpry ) to (87,£7).
Finally
8( G,£(S)/k,X) = { xe8" : £'(x)€f(S) } =5
and so the restriction of & to ( G,£(S)/k,X ) is a metrical

isomorphism between ( ( G,£(8)/k,X )k.pry, ) and {s,f) .
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4.2. Length cancellative metricalsemigroups,F~semigroups

and F-metrical semigroups.

One of the cornerstones of infinite group theory is the
theorem of Nielsen and Schreier to the effect that any
subgroup of a free group is itself free ( see for example
[13] theorem 7.3 ). In the category of semigroups there is no
Nielsen-Schreier type result, as the following well known

example illustrates:

EXAMPLE 4.1. Consider the subsemigroup S of the infinite
monogenic semigroup < X > consisting of elements
{ xz,x3,x4,... }« The unique minimal generating set for S is

the set { x2,x3 }. However,

X . = a0

2

is a non=trivial relation between x* and x3, and so S is not

free.

This suggests two questions. The first asks when the
subsemigroup of a free semigroup %t generated by a set A x
is isomorphic to the free semigroup on A. When this happens A
is said to be a code. There exists an extensive theory of
codes; see for example {12].

The second question asks what semigroups can arise as
subsemigroups of free semigroups. This second question is

that which we refer to as the free semigroup embeddability

problem.

Budkina and Markov ( [2] ) define a semigroup to be an
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F-semigroup if it is isomorphic to a finitely generated
subsemigroup of a free semigroup. They then characterise
those F-semigroups generated by three elements. Their results
do not easily generalise to the general case. Notice that an
F-semigroup is necessarily embeddable into a group, since it
is embeddable into a free semigroup, which is in turn
embeddable into a group. The problem of free semigroup
embeddability is therefore closely related to that of group
embeddability. Group embeddability has interested semigroup
theorists since the very early days of the subject. For a
discussion of the problem see either [3] chapter 12 or [1]

chapter 2.

A good illustration of the role that length morphisms
can play in this area of semigroup theory is given by the
well known Levi’s lemma. A semigroup, S, is said to be

equidivisible if for all a,b,c,d in S, ab = cd => 3 ues! st

either a=cu, d=ub

ud.

Il

or c=au, b

LEMMA 4.10. { Levi’s Lemma, see for example [12] corollary

5.1.6 ). A metrical semigroup is free if and only if it is

equidivisible.

Motivated by ILevi’s lemma we now use length morphisms

to investigate the problem of free semigroup embeddability.

In section 4.2.1 we define the notions of metrical morphism
and length cancellativity. In section 4.2.2 we introduce the

notions of gauges and length functions in groups and state
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some technical lemmas to be used later. Finally in section
4.2.3 we see how the ideas of sections 4.2.1 and 4.2.2 link

with each other and the free semigroup embeddability problem.

4.2.1 Metrical morphisms and length cancellativity.

A metrical morphism from a metrical semigroup (S,f) to

a metrical semigroup (R,g) is a morphism 8: S —> R such that
f = gef®. We define metrical epimorphism/ monomorphism/
isomorphism in the obvious way, and say that a metrical
semigroup (S,f) is metrically embeddable into a metrical
semigroup (R,g) if there is a metrical monomorphism from

(S,f) into (R,q).

A metrical semigroup (S,f) is said to be left length

cancellative if for all a and b in S,

f(a)=f(b) and aSnbsS # g => a=b.

We define right length cancellativity dually, and say that a

metrical semigroup (S,f) is length cancellative if it is both

left and right length cancellative.

Notice that a cancellative metrical semigroup is length
cancellative if and only if it is either left or right length
cancellative. For example, suppose that (S,f) is a
cancellative left length cancellative semigroup. Iet a,b in S
be such that f(a) = £(b) and there exists u,v in S such that
ua = vb. Then f(u) = f(v), and so by left length
cancellativity we have u = v. Thus ua = ub, and so a = b by

cancellativity. We deduce that (S,f) is also right length
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cancel lative.

A length cancellative metrical semigroup is in a sense
the opposite of a special metrical semigroup, for if (S,f) is
special then

f(a) = f(b) => as =Dbs , Sa = Sb
while if (S,f) is length cancellative then ( if a #¥ b )

f(a) = £(b) => asnbS =g , SanSb = &.

4.2.2 Semigauges, gauges and length functions on groups.

The notion of a length function on a group was first
introduced by Lyndon in 1963 ( [13] ), and used to prove the
Nielsen~-Schreier theorem. The idea was generalised to the

notion of a semigauge on a group by Promislov in 1985

( [16] ).

DEFINITION 4.3. Let G be a group. A Z-semigauge, Or

semigauge, on G is a mapping p: G —> N°® such that for all

X,¥ in G
p(xy) £ p(x) + ply)
13

p(x *) = p(x)

p(l) = 0.

p is said to be a Z-gauge, or gauge, if in addition

p(x) = 0 <=> x = 1.

DEFINITION 4.4. Let G be a group. Then a Z~gauge p on G is

said to be a length function on G if it satisfies

Al) p(x%) > p(x) for all x in G\l

A2) p(x) +ply) = plxy) < p(x) + p(z) - p(xz)
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= ply) + pl(z2) - p(y"lz) = p(x) + ply) = p(xy)

THEOREM 4.3 ( [13] Corollary 7.2 ).A group G is free if and

only if there exists a len function p on G.

The Nielsen-Schreier theorem is a corollary to the
above theorem, since if G is a group with length function p,
and if H is a subgroup of G, then the restriction of p to H

is a length function on H.

ILyndon also introduces the map from GXG to NC given by
d(x,y) = 1/2(p(x) + ply) - p(xy'l)). Notice that d(x,y) =
d(y,x).

With the new notation we can restate condition (A2) as

A27) d(x,y) < d(x,z) = dly,z) = d(x,y).

Lemmas 4.11 and 4.12 are also from [13], and so we

state them without proof.

LEMMA 4.11. ( [13] proposition 2.2 ) Suppose that p is a

length function on a group G. Then for all x,v,z in G

a(x,y 1) + dly,z"1) > ply)

=> plxyz) € p(x) = ply) + p(z).

LEMMA 4.12. ( [13] proposition 2.4 and condition (Al) )

Suppose that p is a length function on a group G. Then p also

satisfies

A3) plxy) + plyx) £ 2p(x) = 2p{y) => xy = 1.
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Suppose now that (S,f) is a group embeddable metrical
semigroup. Let G be the free group on S. We say that a

semigauge p on G is a semigauge extension of £ if p|s = f. We

call a gauge on G that is a semigauge extension of £ a gauge
extension of £, and a length function on G that is a

semigauge extension of f a length function extension of S.

4.2.3 F-metrical semigroups.

Recall that a semigroup is called an F-semigroup if it
is finitely generated and is embeddable into a free
semigroup. As mentioned above, a general characterisation of
F~semigroups appears to be difficult. In this section we
introduce the notion of an F-metrical semigroup. Although a
characterisation of F-metrical semigroups is also difficult
some promising progress is made, in which we link up the
ideas F-semigroups, length cancellative metrical semigroups

and gauges on groups.

We say that a metrical semigroup (S,f) is F-metrical if
it is finitely generated and is metrically embeddable into a
free semigroup with its usual length function. Clearly for
(S,f) to be F-metrical we must have that S is an F-semigroup.
We see in Example 4.2 that a metrical F-semigroup need not be
F-metrical.

Let £ be any length morphism on a free semigroup X
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Then the metrical semigroup (X+,f) is F-metrical, with the
required embedding map being the unique extension to ¥ aE
the map from X to x* given by x —> xf(X). It follows that
for a metrical semigroup (S,f) to be F-metrical, it is
sufficient for it to be metrically embeddable into a free

semigroup with arbitrary length function f.

LEMMA 4.13. An F-metrical semigroup (S,f) is length

cancellative.

Proof. Iet (S,f) be F-metrical. Then there exists a set
X and a metrical monomorphism ©: (S,f) —> (X+,u), where u is

the usual length morphism on b,

Suppose that a,b in S are such that
f(a) = £(b) and aSnbsS # &.
Then there exist x,y in S such that ax = by, and so
8(ax) = 8(by)

i.e. 8(a)d(x) = 8(b)8(y),
Equidivisibility in X' ( lemma 4.10 ) then implies that there
exists w in X* such that
either g8(a) = 8(b)w (%)
or 8(b)= 6(a)w (AR,

8 is a metrical morphism, and so
u{8(a)) = f(a) = £(b) = u(8(b)).
Thus in either case (*) or (**) we have u(w) = 0 , which
implies that w = 1.
We deduce that 6(a) = 8(b), and since € is monomorphic

this implies that a = b. Thus (S,f) is left length
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cancel lative.
In a similar way, (S,f) is right cancellative, and we

therefore deduce that (S,f) is length cancellative.

Example 4.2 gives us a metrical semigroup (S, f) which
is an F-semigroup ( i.e. S is embeddable into a free
semigroup ), but which is not length cancellative, and

therefore , from lemma 4.13, not F-metrical.

EXAMPLE 4.2. Let G be the free group on { a,b,c } and let
(S,£) be the metrical subsemigroup of G generated by
{ a,b,ac”l,cb }
with £(a)=f(b)=£f(ac™1)=£(cb) = 1.

f is well defined since it is the restriction to S of the
morphism g from G to Z given by g(a)=g(b)=l, g(c)=0. Thus
(s,f) is a metrical semigroup. In fact it is a metrical F-
semigroup since S is contained in the subsemigroup of G
generated by { ac-l,c,b } which is free.

(s,£), however, is not length cancellative, since
ab = (ac-l)(cb) and fla) = f(ac-l) . Lemma 4.13 then gives us
that (S,f) it is not F-metrical. Thus there exists a metrical

F-semigroup (S,f) that is not F-metrical.

Example 4.2 contrasts with the commutative case. In
lemma 2.10 we showed that if T is embeddable into a free
commutative semigroup, and if f is a length morphism on T,
then there exists a positive integer k such that (T,kf) is

metrically embeddable into a free commutative semigroup.
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Given an arbitrary metrical semigroup (R,g), and any positive
integer t, it is easy to see that (R,g) is length
cancellative if and only if (R,tg) is length cancellative. We
deduce that the metrical semigroup (S,f) of example 4.2 is
such that (S,tf) is never metrically embeddable into a free
semigroup with usual length morphism, and therefore the above
statement of lemma 2.10 does not hold in the non-commutative

case.

We represent our findings so far by a diagram of
implications. Given a finitely generated semigroup S and a

length morphism £ on S we have

(S,f) is F-metrical

() / \ ()

S is an F-semigroup =7/ (S,f)is length cancellative

Example 4.2 shows that the implication (a) is strict.
We shall show in example 4.3 that the implication (b) is
strict. It is helpful first to prove two straightforward

lemmas:

LEMMA 4.14. Let w,X,v,z be elements of a free semigroup xt

such that w2x? = yzzz, |w] = 2 and |y| = 3. Then wy = yw.

Proof. Equidivisibility in X* ( lemma 4.10 ) and the

fact that |y| > |w| imply that there exists u in X' such

> 5 P

that y = wu. Purthermore |u| = 1. The identity w*x* = y“z

then becomes
w2x2 nL (wu)z 2.

Cancellation then gives
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WX2 = UWU22 .

Equidivisibility in free semigroups and the fact that

|w| > |u| then imply that there exists v in X' such that

w = uv. Furthermore |v| = 1. The identity wx? = uwuz? then
becaomes
ux? = udwuz?.
Cancellation then gives
vx? = uvuz?.

Equidivisibility in free semigroups and the fact that
[u| = |v| then imply that u = w.

2 3

Thus w = u“ and y = u”, and so wy = yw as required.

‘Suppose that a metrical semigroup (S,f) is given in
terms of a presentation P(S) = < X | R >. The length
morphism £ on S then induces a length morphism £° on x* given

by the rule £ (u) = f£{u).

LEMMA 4.15. Let (S,f) be a metrical semigroup where S has

presentation

I

P(S) <Xlui=v- y 3 Ty

1

Then, for any a,be& X' with

f'(a) = £7(b) < min{ flu;) : iel },

a=binS = a=binX'.

Proof. Suppose that a = b in S. Then there exist words
Xqgreer¥Xp in X* such that
a=Xg > ¥y =P uss =P R =D
is a sequence of basic P(S) transitions from a to b.
It follows that for any 1 ¢ i ¢ n either
Xs = x; in X+

i~1 i
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; : *
or else there exist w,z in X such that

either Xj=-1 = Wus

Z , X;: =wv:z for same j in I
3 3

J

or Xj<] = WV4Z s X = Wu4Z for same j in I.
Since £°(x;) = f£7(a) < min{ f(uj) : J€I }, we deduce that

Xi-1

=x; for 1 < i ¢ n, and soa =b in X" as required.
EXAMPLE 4.3. ILet (S,f) be the metrical semigroup with
presentation

S = < a,b,c,d : ab?=c?a? >
and with £ defined by

f(a)=2,f(b)=4, f(c)=3 and £(d)=3.
It can be shown ( see,for example,[17] chapter 2 corollary 1)
that any semigroup given by a presentation with a single
reduced relation ( that is, an identity u = v in the
generators in which u and v have no common left or right
factor ) is group embeddable. S is therefore group
embeddable, and so S is definitely cancellative.

We now show that S is length cancellative. First notice
that since the last letter of a?b? is not the first letter of
either a?b? or czdz, and the last letter of c?d? is not the
first letter of either a2b2 or c2d2, we must have that for

any words u,v in {a,b,c,d}+ such that u = v in S there exist

WOrds XqseserX, in {a,b,c,d}* such that

N = X0P] s« X1 Pr¥n
V = XqQ) -+« - Xp-1%%n
where (pj,qj) = (a2b2,c2d2) or (c2d2,a2b2) for 1 £ j ¢ n.
Suppose, then, that there exist x,y,w,z in S such that

XW = YZ.
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Fram the above, letting u = xw and v = yz, we must have that

X = XDPpee-Xj-1X’ for some 0 1 ¢ n

y = xoql...xj_ly' for some 0  j & n
where x° | p'ixi and y’| q4x4 in {a,b,c,d}T, and where
(p;,q;) are as above.
It then follows that if f(x) = £(y) then i = j and so

£(x’) = f(y") and x” | p;x; and y’ | g;x; in {a,b,c,d}?.
With the given f this is only possible when
X" =pix{ o+ ¥ =gy
for some x{ | x;. We deduce that x"=y“in s, and sox =y
in S. Thus S is left length cancellative, and therefore,
being a cancellative semigroup, is length cancellative.
Suppose now, by way of contradiction, that (S,f) is F-

metrical. Then S is contained in a free semigroup x* in such
a way that f(s) = |s| for all s in S, where |.| is, as
always, the usual length morphism on x*. Then the identity
a?b? = c2d2 and the fact that |a| = 2 and |c| = 3 imply, by
lemma 4.14, that ac = ca in S. This is a contradiction, since

f(ac) =5, and so such a relation cannot exist by lemma 4.15.

We now try to link the notions of F-metricality and
length cancellativity with the notion of gauges and length
functions in groups. The first result is theorem 4.4, which
illustrates the close link between F-metricality and length
functions on free groups. To prove theorem 4.4 we need lemmas

4,16 and 4.17.
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In lemmas 4.16 and 4.17 suppose that G is a free group
and that p is a gauge on G satisfying conditions Al and A2 of
definition 4.4. Suppose further that S is a finitely
generated subsemigroup of G such that the restriction of p to
S is a length morphism on S. Let X be the unique minimal

generating set for S.

LEMMA 4.16.(S,Q|S) is length cancellative.

Proof. Suppose that there exist elements x,y, of S and
s,r of S such that p(x) = ply) and xs = yr. Then
p(xs(ys)™) + p((ys) lxs)
= plxy 1) + pls”ly yr)
= plxyh) + p(s71r)
RS p(x) + ply) + p{r) + p(s) since p is a gauge

= p(xs) + p(yr) since p is a morphism on S

2p(xs) = 2p(ys).
(A3) now gives us that xs = ys; and therefore x = y as

required.

LEMMA 4.17. Suppose that there exist elements X,y in X and

r,s in S such that p(x) > p(y) and xs = yr. Let S” be the

subsemigroup of G generated by X\x U {Y-lx}. Then p

restricted to S” is a morphism into N.

Proof. First we will show that given uj,..,u, in Sl,
p(uly"lxuz. A .un_ly-lxun)
= p(uj..u,) + (n=1)( p(x)-ply) ) .
To prove this we use induction on n.

Clearly the result holds for n=l.
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Suppose now that the result holds for all n < k.
Given elements vj,..,V) of sl 1et

vV=vy 2= sz_lxv3...vk_1y"lka.

pi{xz) = p(xvzy_lxv3. ..vk_ly_lka)
= p(xvyv3...vy) + (k=2)( p(x) = ply) )
by the induction hypothesis
= p(x) + p(vyvz...vy) + (k=2)( p(x) - ply) )
since the restriction of p to S is a morphism

= p(x) + p(z) again by the induction hypothesis.

2a(vy™L, (xs)71) = pluy™) + p(xs) - plvylxs)
= plvy1) + p(xs) - p(vr)
= plvy 1) + p(xs) = p(v) - p(xs) + ply)
( since p is a morphism on S and so
pl{vr) = p(v) + p(r)
= p(v) + p(yr) - ply)
= p(v) + p(xs) - ply) )

p(vyl) = p(v) + ply)
< plv) + ply) - p(v) + ply) = 2ply)
and
2a((x2)7L, (x)71) = p(xz) + p(xs) ~ p(z's)
= 2p(x) + d(z,s)
( since p(xz) = p(x) + p(z), as shown earlier )

> 2p(x).

Next p(x) > p(y), and it therefore follows that
al(xz)"L, (xs)™h) > atwy™, (xs)™h)
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and so from A2” we have that
d(vy_l,(xz)—l) = d(Vy-l,(xs)-l)
which expanded gives
p(vy 1) + p(xz) = plvy ¥xz) = p(vy 1) + plxs) = p(vy lxs).
Thus p(z) - plvy Ixz) = p(s) = p(v) - p(r)
and so p(vy-lxz) = p(v) + p(z) + pl(r) = p(s)
which implies p(vy lxz) = p(v) + p(z) + p(x) - ply).
Recall that
p(z) = plvy..vy) + (k=2)( p(x) = ply) )

and so 1 -1
P(V]Y "XVo. VY XV )

= plvyixz) = p(vy...) + (k=1)( p(x) = ply) )
as required. The induction is camplete.
The result now follows, since if w,z are elements of S°

then there exist elements ajreesdy and bl'"'bm of S1

such that
w = aly"lxazy"'lx. . .y-lxan
and z = bly—lxbzyl'lx. ..y-lxbm
and so
p(wz)
= p(aly"lxazy”lx. X .y-lxanbly"lxbzy'lx. s .y"lxbrn)

= plaj...agby...by) + (otm-2)( p(x) - ply) )
= plaj..a,) + (n=1}(p(x)-ply)) + p(by..by) + {m=1) (p(x)=p(y))
= p(w) + p(z). Thus p|g- is a morphism as required.

THEOREM 4.4. Suppose that G is a free group and that p is a

gauge on G satisfying (Al) and (A2) of definition 4.4.

Suppose that S is a finitely generated subsemigroup of G such
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that p restricted to S is a morphism into N. Then (S, plg )

is F-metrical.

Proof. Let X be the unique minimal finite generating
set for S.

If there do not exist distinct elements x and y in X
and elements r and s in S such that xs = yr then § is free
and the result follows trivially.

If there do exist such elements then we have from lemma
4.16 that either p(x) > ply) or else p(y) > p(x), since p(x)
= p(y) would imply, by length cancellativity, that x = y.

Suppose without loss of generality that p(x) > p(y).
ﬁ‘hen from lemma 4.17 the subsemigroup S° of G generated by
X’ = X\XU{Y—lx} is such that p restricted to S is a
morphism into N. Furthermore S is contained in S°.

Finally notice that

p(X)= Z p(x) > Z_ p(x’) = p(X’)
XeX xex!
and so repetitions of the above procedure must, by the
finiteness of p(X), eventually terminate with a set Y such
that Y generates a free semigroup containing S. Furthermore
the restriction of p to < Y > is a length morphism, and so
the inclusion

is a metrical embedding of (S,p|S) into a free semigroup.

COROLLARY 4.5. A finitely generated metrical semigroup (S,f)

is F-metrical if and only if S is group embeddable, and f has

a length function extension on some group containing S.
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Proof. Suppose that (S,f) is F-~metrical. Then there

exists a set X such that the inclusion
i: (8,8) — xt,[.])
is a metrical monomorphism, i.e. f(s) = |s| for all s in S.

xt is contained in the free group, FG(X), on the set X.
Thus FG(X) is a group containing S.

Let p be the usual length function on FG(X) ( that is,
the map from FG(X) to N° that maps an element g of FG(X) to
the length of the shortest word on the alphabet XUX 1u {1}
that " represents " g ). The restriction of p to X' is then
equal to |.|. In particular, the restriction of p to S is
equal to £.

Conversely suppose that S is group embeddable and that
H is a group that contains S. If f has a length function
extension on H then H is, by theorem 4.3, a free group. It

follows from theorem 4.4 that (S,f) is F-metrical.

In practice it may be difficult to find a length
function extension for a length morphism on a metrical
semigroup. Theorem 4.5 which follows is less tidy than
corollary 4.5, but does give us a procedure for determining
whether or not a finitely generated metrical semigroup (S,f)
is F-metrical. It may be possible to develop the procedure
into an algorithm. The theorem is, at any rate, interesting
in so far as it gives us a better link between the notions of
F-metricality and length cancellativity than that given in

lemma 4.13.
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First we introduce same specific semigauge extensions.

Iet S be a group embeddable semigroup and let H be
the group of right quotients of S ( see section 1 ). As usual
we identify S with its image under X. Thus any element h of H
can be written in the form

h = xlyil. . .xny;1
where the x; and the y; are elements of S such that

Sx; N Sy; # d.

DEFINITIONS 4.5. Let S be a group embeddable semigroup and
let H be the group of right quotients of S. Let f be a
morphism from S into N°. ( Ultimately we shall only be
interested in metrical semigroups and morphisms £ into M. For
the moment it is convenient to define the following for any
morphism into N°. )
We define the morphism f: B ~—> Z by
E(xly'l'l...xny;ll) = £(xq.00%,) = £{y7...¥,)

f is a well defined morphism. ( It is in fact the unique

morphism f: H —> % the makes the diagram

f
————
/ comute. )

Notice that £(s) = £(s) for all s in S.

v

o e—W0

We define the map pg from H into N° by
pf(h)
n n _1
= mln{Z]f(xl)'-f(yl)I:h ——:“xiyi H xi,yieS;SxinSyi #d }.
1 L=

V=

B



It is an immediate consequence of the triangle
inequality that
pg(h) 3 [£(h)|

for all h in H.

(48
We say that h = 1[ xiyzl is a good representation of h
L=\

with respect to S and pr , or simply a good representation of

h if
1) XilYie S
2) Sx;N Sy, # 8
and 3) pe(h) =2 | £(x;)=£(y;)].

=1t

LEMMA 4.18. Let S be a group embeddable semigroup and let £

be a morphism from S into N°. The map pe from the group of

right gquotients, H, of S into % is then is a semigauge and

the restriction of pr to S is equal to f.
Proof. First we show that pg(h) = pf(h"l).
Let h be an element of H. Then there exist x50 ¥i€ 8

such that

= =] =1
h = X1y77. « X ¥y

is a good representation of h.

Now

nl= ynx;;l. ..ylx'l'1
and so
pf(h-l)
s -1 =1
= min{i_Z‘lf(wi) - £(z;) | *=lwyzl"; wi,2£8,8wNSz; # & ).
n ¥ [l '
< _ZIf(Yi) - f(xi)l
=0
= Pf(h).

Similarly pg(h) pf(h-l), and so pf(hﬁl) = pg(h) as
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required.

Next we show that for any h,g in H
pelhg) € pe(h) + pe(g).

h and g are elements of H and so there exist
elements KyreerXpy ¢ Y1reer¥p 7 WireerWy 7 277002 in S such
that

h = xlyil. 5 'Xnyr_11

and g = wlzil. ..wn.lz;['l1

are good representations of h and g respectively.

- =1 - =], =1
Now hg = x1y1".. °ann1wlzl .o VW20
and so p¢ (hg)

]

' < v
min{ Z|£(a;)-£(b;)|:hg =Jaib'i'1; a;/bses,Sa;nsb; # & }.
z‘l f(Xi) = f(yi) | + )zl f(wj) & f(zj) I

pe(h) + pelg)  as required.

IN

Finally ps is an extension of f, since for all s in §
5 = (ss)s_l and Ss?n Ss # @, from which we deduce that
pe(s)  |£(s?) = £(s)] = £(s).
Furthermore, since for every s in S we have that
f(s) = |f(s)|, and since for every h in H we have
|£(n)}  pe(h), we deduce that pg(s) = £(s).

Thus pg is a semigauge extension of f.
ILemma 4.19 deals specifically with metrical semigroups.

LEMMA 4.19. Let (S,f) be a group embeddable metrical

semigroup and let H be the group of right quotients of S.

Then the semigauge pe is a gauge if and only if (S,f) is

length cancellative.
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Proof. Suppose that pg is a gauge.

ILet a,bes be such that £(a) = £(b) and San Sb # gd. Let
g = ab-l; then pgl(g) = £(a) = £(b) = 0. Thus g = 1, and so
a = b, Thus (S,f) is right length cancellative, and, being

cancellative, is therefore alsco left length cancellative.

Conversely suppose that (S,f) is length cancellative.
Let g be an element of H such that pg(g) = 0. Now there exist
Xir¥Y; 1= 1l,..,k such that

w
el
is a good representation of g. It follows that
i If(xi) - f(yi)] =0 (%)
and o Sx; N Sy; # @. (%)

(*) is only possible if f(x;) = f(y;) i = l,..,k and so
(**) and length cancellativity imply x; =y; i =1,..,k. We
deduce that g =1,

Thus pe(g) =0 => g =1, and so pg is a gauge.

DEFINITION 4.6

Let S be a group embeddable semigroup without identity,
let H be the group of right quotients of S and let f be a
morphism from S into N°. We define semigauges p;r semigroups
S(;) and morphisms f; from S:;, into N° recursively as
follows: |

Let Sigy =S and let £4 = £ and let p; = pg.

For any k in N let p, be the semigauge on H given by

t— p .
Pk f-1
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Then define the subsemigroup S(y) of H by
S(x) = { heB\L : p(h) = £(n) }

( remark: Sy, is a subsemigroup of H containing 8, and so
we deduce from lemma 1.3 that H is also the group
of right quotients of Sy )

Let fy be the restriction to S (k) of £.

Notice that f) is indeed a morphism since it is a
restriction of the morphism £, and f) does indeed map into N°
since it is a restriction of the map py.

Notice also that S, contains S(k~1) and that the
restriction of £y to S(k-l) is equal to fj_,. It follows that
the f remains the same each time we apply the rules of

definitions 4.5.

We are now in a position to state the final result of

this section:

THEOREM 4.5. Iet (S,f) be a metrical semigroup. Then (S,f) is

F-metrical if and only if

a) S is group embeddable

and for all n in N

b) £,>0

( i.e. f, is a length morphism on S,y )

and c¢) (S(n)'fn) is length cancellative.
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Proof. Suppose that (S,f) is F-metrical. Then for some
set X there exists a metrical monomorphism

8: (s,f) ~=> (x1,].

). For convenience we shall suppose that
8 is the inclusion map. Thus S is a subsemigroup of x*, and
for all s in S f£(s) = |s].

First notice that S is contained in the free group on
the set X, and so S is certainly group embeddable.

Let H be the group of right quotients of S. From
definitions 4.5 we have a morphism f: H—> % given by

f(rlsil. e m5;11)
= f(ry..1p) = £(s7..5y)
= |ry..54] = |51.-8p]-

We now prove that S(n) is contained in X*, and that for
all x in S(;) we have £, (x) = |x|. It will then follow that
£, > 0, and lemma 4.13 will ensure that (S,),f,) is length
cancellative, thus completing the direct part of the proof of
the theorem.

We prove the result by induction on n. Since S(O) =S,
and fO = f, we clearly have that the result holds for n = 0.

Suppose now that the result holds for n ¢ k.

Consider an element z of the semigroup S(j4j)-

Notice first that lemma 1.3 implies that H is equal to
the group of right quotients of Sy, since S(y) contains S.

Now z is an element of H and so there exists a good
representation of z with respect to S(k) and Pypyir

z = xlyil. G .xtyzl.
It follows from the definition of a good representation that

80



a) Xj, ¥; €Sy fori=1,..,t
b) S(k)xiNS(xyy; ## for i =1,..,t

and
o

) Pz = 2 | Elx) = Eelyy) |
] =
Now the induction hypothesis holds for n = k, and so
£ .(x;) = |x;] and £f3(y;) = |yj| for i = 1,..,t. It follows

therefore that

e
Pi+1 (2) =Z.:' |5} = lyil

Now z is an element of S(k+1)' and so from definition 4.6,

. . Per(®) = £(z),
e L Il =Zlvil = Z 1 Il - Il |
which is only possible if

) = lyil = | lxgl = lyz] | for i = L,..t.
Thus

I%;] > lys] for i=1,..,t.

If for any j we have Ixj| = |yj|, then by the induction
hypothesis fk(xj) = fk(yj). The induction hypothesis also
tells us that (S(k),fk) is length cancellative, and so (b)
gives us that Xy = ¥y If this is the case then we can
simply miss the pair xjy'j‘l from the good representation of
z. Furthermore we cannot have Xi = ¥3 for all i = 1,..,t
since S(k+1) is defined in such a way as to exclude the
identity element.

Thus the element z is of the form

z = xly'i'l.. .xtyzl
where Xis Yies(k)

S()¥iNS(k)Yi # 8
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Now by the induction hypothesis again, S (k) is
contained in X'. It therefore follows from equidivisibility

in X* ( lemma 4.10 ) that there exist elements wy,..,w; such

that
*i = Wi¥i
Thus z = wj...we X'.
Finally
frer1(2)
= Pgs1(2)

bl
= Z 1 Ixgl = Iyl |
=7 Iwl
2]

=
This holds for all z in S(k+1)' and so we have S(k+1),C_X+ and

.

P .|, completing the inductive proof, and therefore

canpleting the direct part of the thoerem.

Conversely suppose that S is group embeddable, that
f, > 0 for all n and that (S(n)'fn) is length cancellative
for all n. Again we let H be the group of right quotients of
S.

Iet R be the subsemigroup of H given by

oo

R = ng)o S(n)*
Let r be an element of R. Then there exists k in N such that
resg). We deduce that £(r) = fy(r) , which is strictly
positive. Thus £ induces a length morphism on R.

We now show that R is equidivisible. It will then

follow from Levi’s lemma ( lemma 4.10) that R is a free

semigroup.
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let a,b,c,d be elements of R such that
ab = cd.
We can suppose without loss of generality that £(b) > £(d).

Now for sufficiently large m we have that

a,b,c,d€ S(m)'

If £(b) = £(d), then £,(b) = £.(d), and so length
cancellativity in (S(m),fm) implies that b = d. It follows
from cancellativity that a =c, and so the conditions of
equidivisibility are satisfied.

Suppose therefore that £(b) > ().

Now consider the element h = bd™} of H.

Now b,des(m),
and S(m)bn S(m)d # d.
Also | £,(b) = £.(d) | = | £(b) = £(@) | = £(ba™})
SO
Py (R)

= min{g‘lf(xi)-f(yi)|:h=:§:xiyzl; X3 rY1€S ;)7
Sm)%ifSx)Yi # ¢ 1
< Emdl) = £(n).
The opposite inequality always holds, and so we deduce that
By (h) = £(h) ,
and so hes(ml-l)'

Thus bd™} is an element of R. Since b = (bd"1)d , and
so ¢ = a(bd™l), we deduce that the conditions for
equidivisibility are satisfied.

Both cases f(b) = £(d) and £(b) > £(d) having been
considered, we deduce that R is equidivisible, and is

therefore a free semigroup by lLevi’s lemma ( lemma 4.10 ).
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Finally notice that Els = f, and so (S,f) is metrically

embedded into (R,f|g). Thus (S,f) is F-metrical.

REMARK. Notice that theorem 4.5 holds for infinitely

generated metrical semigroups.
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5. Metrical and locally metrical ideals.

5.1 The relation X .

We start by introducing same convenient notation.

Recall that the congruence ¥g on a semigroup S is

defined to be the smallest congruence containing
{ (xs,sr) : r,s S }.
( See page 18 ).

Suppose that S is a semigroup, and distinct elements u
and v in S. Then u’g v if and only if there exists a family
of elements { xy,y;,94,v; 3 1 =1,..,n } in sl such that

WEMmviY |
XViULYS = XU VielYiel 1= 1eeomml g

XnVnn¥n = V-

We call such a family an ordered ¥-linking family or an QLF

from u to v in S. We refer to the parameter n as the order of
the OLF.

LEMMA 5.1. Let { %;,v;,u4,v4 2 1 =1,..,n } be an OLF from u

tovin$ of minimal order. Then we have wu;,v; #1 for all

1£ign
Proof. Suppose that u = 1. Suppose that k = 1, then
B = mpvVidy S RMVara
and so { Xir¥Yirly,vy 2 1 =200 } is an OLF from u to v of
order less than n, giving us a contradiction. Suppose
therefore that k > 1. Then

Xe-1Vk-1%-1Yk-1 = XkVk¥k = RerlUk+1 VeVl ( OF v 1 k=)

and sO { xi'yi'Ui'Vi H i - 1,..,k‘1,k+1,..,n } iS an OLF
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from u to v of order less than n, which again gives us a
contradiction. We deduce that u; # 1, i =1,..,n. Similarly

Vi # 1' i = 1,..,1’1.

We say that an OLF is heavy if it is completely

contained in 8, i.e. if no XjrYjeuy OF Vi is equal to 1.

LEMMA 5.2. let u be an element of S\Sz. Then v Xu => v = u.

Proof. Suppose that v X_u but that v # u. Then there
exists a minimal OLF from u to v. Thus there exist elements
X1,y7 in s! and up,vy in S such that u = xyu;vyy;. This is a

contradiction since u is an element of S\Sz.

5.2. The locally metrical and compressible parts of a

.

SEMigroup.

DEFINITION 5.1. Suppose that S is an arbitrary semigroup.

Define the locally metrical part, L(S) of S by:

L(S) = { s€8S : Ar,te S such that rst X r }.

Define the campressible part, C(S) of S by C(S) = S\L(S).

LEMMA 5.3. If S is an arbitrary semigroup then C(S) is a

subsemigroup of S and L(S) is a locally metrical ideal of S.

Proof. First, C(S) is a subsemigroup of S since if r,s
are elements of C(S) then there exists w,x,y,2 in S such that
wrx X w and ysz ¥ y. Thus wyrsxz X wrxysz A wy, and so rs is
contained in C(S). Next L{S) is an ideal of 5; for suppose
that r,s in S are such that rs is contained in C(S); then

there exist x,y in S such that xrsy X x, and so r and s are
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both contained in C(S). Theorem 3.1 now completes the proof.

The following lemma will be of use later on:

LEMMA 5.4. Suppose that I is an ideal of a semigroup S, that

(G,+) is an abelian group, and that f: I —> G is a morphism.

Then f is uniquely extendable to a morphism f: S ==> G.

Furthermore, if G = % and im(f) € N then im(f)< N°.

Proof.Let x be an arbitrary element of I. Define
f(s) = f(xs) = £(x) ( ses )
Note first that for all i in I, f(i) = f(xi) - f(x) = £(1i)
( by the morphism property of f:I -=> G ), and so f is an
extension of f.

Now f(xs) = f(xsx) - £(x) = f(sx). It follows that f
is independent of the choice of x; for if y is another
element of I then

f(ys) - £{y)
= f(ysx) = f(y) = £(x)

f(sx) = £(x)
f(xs) - £(x).

We also have that f is a morphism, since if s and r are

elements of S then

f(sr) = f(srx) = £(x)
= f(xsrx) - 2f(x)
= f(xs) - £(x) + f(rx) - £(x).
= f(s) + £(r).

f is the unique extension of f since if g is an
extension of £ then for all s in S g(xs) = g(x) + g(s)

implies that g(s) = g(xs) - g(x) = f(xs) = £(x) = £(s).
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Suppose now that G = 2 and that im(£f)< N. Suppose by
way of contradiction that there exists an element s€S\I for
which f(s) < 0. Now for any element x in I we have that

£(s) = f(xs) = £(x),
and so we have that
) f(xs) = £(s) + £(x) for all x in I.

Let i be a specific element of I. Now for any n 2 2 we
have that is®™! is an element of I. It follows from (*) that
£(is?) = £(s) + £(is™1),

We deduce that
£(ish) = £(i) + n.f(s).
This is the required contradiction, for we would then have

that £(is") < 0 for sufficiently large n.

LEMMA 5.5. If L is a locally metrical ideal of a semigroup S,

then L& L(S).

Proof. Suppose by way of contradiction that there
exists uin LNC(S). Then there exists r,s in S such that
rus ‘XS r.Now I: is an ideal,and so us is in L. Thus there
exists r in Sand v ( =us ) in L such that rv Xg r. Now for
any morphism f: S —> Q we have that f(v) = 0, since
f(rv) = f£(r). However L is locally metrical, and < v > is a
finitely generated subsemigroup of L. Therefore by lemma 3.3
there exists a morphism g: L —> Q such that g(v) > 0. We now
have a contradiction since, by lemma 5.4, g extends uniquely

to a morphism & : S —> Qwith &(v) >0,

LEMMA 5.6. If S is a finitely generated semigroup of rank
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n, then either L(S) is empty, or L(S) is metrical and C(S) is

of rank less than n.

Proof. Let A be a finite generating set for S of
minimal size. Let A“ =AM C(S) and A" = AN L(S). Then
C(S) =< A”> and L(s) = s1a"sl. It follows that if L(S) is
non eméty then the rank of C(S) is less than the rank of S.
It remains to show that L(S) is metrical.

Define a relation Ton < A" >byuzT v if and only if
there exist c,d in C(S) such that uc X vd. Then Tis a
congruence and < A” >/t is a finitely generated commutative
semigroup. Now suppose that there exist u,v in < A" > such
that uv T u. Then there exist ¢,d in C(S) such that uvc Aud.
Now since d is in C(S) we have that there exist r,s in S such
that rds X r, and so ruves X ruds ¥ urds X urX_ru , and so v
is in C{S); but this is a contradiction. We deduce that there
do not exist u,v in < A”” > such that uv © u, and so, by
corollary 2.2,< A” >/C is metrical.

Let £: < A" >/t —> N be a morphism. Define
f: L(S) ~> N as follows:

If u is in L(8) then u = ajby...a b,a,4) wheren > 0,
age< A>! and b;€< a5, Let £(u) = £( [by.byle ). £ is
then well defined, since if u = afbf...qr'lbn"alﬁ_‘_l ; then

by..b, T b{.hy . It is clear that f is a morphism.

THEOREM 5.1. Let S be a finitely generated semigroup, and

suppose that L is a locally metrical ideal of S. Then L is

metrical.
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Proof. By lemma 5.5 L is contained in L(S). By lemma

5.6 L(S) is metrical. We deduce that L is metrical.

The following result will be of use in section 6.

LEMMA 5.7. Let S be a semigroup and suppose that x,v in C(S)

are such that xy Xex. Then xy ZC(S)-X—' :

Proof. xyX-x and so there exists an OLF {xi,yi,ui,vi}
from xy to x in S. Now if for any j we have X4r Y4r U4y OF Vy

in L(S) then x is also in L(S), L(S) being an ideal of

3V3%3Y3
sl. since c(s)! is a subsemigroup of Sl, and since X4v4ugyy =
X3419541V 941541 in S we have that either X441r Y5+1r Uy41 OF
V41 is in L(S). Repeating the argument we deduce that x is
in L(S), which is a contradiction. Thus xj, yi, u; and v; are

in C(S)l for all i=l,..,n, and so our OLF is in C(S) and so

Xy /C(S)x as required.

Iemma 5.8 gives an alternative definition of C(S) which
is sometimes more useful for calculating C(S) for specific

semigroups.

LEMMA 5.8. Let S be a semigroup. Then an element t of S

belongs to the compressible part of S if and only if there

exist aj,a9,...a, in S and r in S and a permutation ¢ of n

elements such that (—aa‘(l)éd(Z"“ao’(n‘)tr = ajag..dn.

Proof. Since X is a commutative congruence we have that
the condition is sufficient. Conversely suppose that t is
in the compressible part of S. Then there exist sand r in S

such that str % s. Thus there exists an OLF { X1eU3rV50Y3 }
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from str to s in S. Notice that some but not all of the
X{rYirUq/Vy mAy be 1. We then have
( Xpe1Vn-1Un-1¥p-1° « - X VU Y1 X Vnlnyp Jtr
= ( Xp1Vp-1Un-1Yn-1-- -XIVIUIY] SEE
= ( X U VY. - <XoUogVoYp )X U VY »
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6. Height, t-compressible semigroups and Ultimately Locally

Metrical Semigroups.

In section 5 we defined the compressible and locally
metrical parts of a semigroup. Clearly given a semigrbup S we
have that C(L(S)) = ¢ and that L(L(S)) = L(S). In general,
however, we do not have that L(C(S)) =¢g. For example
consider the commutative semigroup T with presentation
< a,b,¢c : ab=a , bc = b > Then L(T) = < a > and
C(T) = < b,c >, but L(C(T)) =< b >.

We follow the convention of defining C®(S) for n in
N° by '

cOs)=s anmd CAUs) = c(c™1(s)) when n > 0.

Given a semigroup S if we have *  for some k(S) > 0
that cK(8Ml(g) = ck(8)(g) ( # XE)-1(s) if k(5) > 0 ) we

say S is of finite height and that the height of S is k(S).

If no such k(S) exists then we say that S is of infinite
height and define k(S) to be equal tod®.

Lemma 5.6 ensures that any finitely generated semigroup
is of finite height, and that the height of such a semigroup

is less than or equal to its rank.

In section 6.1 we consider some basic properties of
semigroups whose locally metrical part is empty.

In section 6.2 we consider ultimately locally metrical

semigroups. Such semigroups are unions of locally metrical
Semigroups.

In section 6.3 we investigate ideals of semigroups with
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the properties described in sections 6.1 and 6.2.
Finally, in section 6.4, we investigate cartesian
products of semigroups with the properties described in

sections 6.1 and 6.2.

6.1 t-campressible semigroups.

If a semigroup is of height zero, that is if C(S)=S,

then we say that S is totally campressible or t-ccmpressiblé.

LEMMA 6.1. Let S be a semigroup, and let C be a t-

campressible subsemigroup of S. Then Cc C(S).

Proof. If ¢ is in C then there exist b,d in C such that

bcr]){C b. Hence bcd')éS b and so ¢ is in C(S).

LEMMA 6.2. Let S be a finitely generated semigroup. If S is

t-campressible, then there exists an x in S such that x2 N,

Proof. We define a relation T on S by the rule that
atb if and only if there exists ¢ such that bac) b. Note
that if anb then atbb” for all b” in S, and that if we also
have that a%b, then aawb. Let sy,...,8;, generate S. Then
if S is t-compressible we have that there exist Xjy,...,x,
such that sjnx; for i=l,..,n. Let x = X]+XgeeoXy « It follows
from the above remarks that STX for i=l,..,n, and since the
s: generate S it follows that smx for all s in S. In

1

particular xTx, and so there exists y such that xyx X x, from
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which we deduce that (xy)zx XYe

Lemma 6.2 fails in the infinitely generated case, as

the following example illustrates:

EXAMPLEG6.1l. Consider the commutative semigroup, S, with
presentation < Xj;Xpjeeese  X{Xj417 Xi4] 71 in N >. This
semigroup is t-compressible, since x; is contained in C(S)
for all i, and therefore S = C(S). The elements of S are

simply powers of the x;, none of which are idempotent.

LEMMA 6.3. Any homomorphic image of a t—compressible

semigroup is itself t—compressible.

Proof. Iet S be t~compressible and let £: S ~> R be a
surjective morphism. Since S is t~compressible then for every
s in S there exist u and v such that usvXgu. Hence for any

r = £(s) in R we have f(u)rf(v) Yzf(u), and so r is in C(R).

LEMMA 6.4. Any ideal of a t—compressible semigroup is t-

campressible.

Proof. Iet S be t~compressible and let I be an ideal of
S. We show later ( lemma 6.8 ) that L(I) = INL(S). We deduce

that L(I) is empty, and so I is t=-compressible.

LEMMA 6.5. Iet S be a semigroup with a right/left/two-sided

ideal I such that I is t-compressible. Then S is

t-compressible.

Proof. Iet r be an element of S and let j be an element

of I. Then either jr or rj is in I, so either jr or rj is in
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C(S). Thus r is in C(S).

EXAMPLES 6.2. The following are examples of t-compressible
semigroups.

a) A regular semigroup S is t—compressible, since for all
elements a there exists an element x such that axa=a, from

which we have a € C(S).

b) A simple semigroup, S, is t—-compressible, since S has no
proper non-trivial ideal and so we deduce that L(S) = S or
L(S) = ¢. If L(S)=S then S would be locally metrical. This is
not the case since there exist elements a,u,v in S such that

uav=a.

c) The subsemigroup S of Mat,,,(%) under matrix

multiplication consisting of elements

$(39) (35) smcacn

is neither regular nor simple.

First S is not simple, for if we consider the element
(2 0
2 0
then it is routine to show that
L 12 Byl
' (2 5)s

B g(ﬁ;’; 8): a,beuzu{(g %ab) : a,benz

which does not contain the element (% 83 x

Second S is not regular, for if we consider again the
= 2 0
8 = 2 0
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then it is routine to show that the set

{ sxs : x€8 }

4a 0
= %(42 0 S a&ui 7

which does not contain s.
S is, however, t—compressible. To show that this is the
case let s be an arbitrary element of S.

Suppose first that s is of the form(gg). Then rs A r
with r =(g 8 (8 g)si.nce
(aO 0 ex{® o\ _
b oo a/lo a/)°
aO\OcOl 0 c\/a 0\{0 1\ _
b oo a)lo a/X\o a)lb oo a) =
Oca001> a 0\/O c\y0 1\ _
0 aAb oAo 1/ Xlp oflo aflo 1) =
a 0\f/0 c
b 0/l0 4

similarly if s is of the forn(§ §) then we can £ind r
such that rs X_r. Thus we have for all s in S that there

exists an r such that rss rs A s, and so s&C(S). We deduce

that S is t-~compressible.

REMARK. We see from the examples above that the class of
t-compressible semigroups is a non~trivial extension of the
class of regular or simple semigroups. It is worth noting
that Fountain’s generalisation of regular semigroups,
abundant semigroups ( see for example [5] ), are not
contained in the class of t-compressible semigroups. For
example the semigroup ( N,.) is abundant, but not

t~compressible.

96




6.2 Ultimately locally metrical and ultimately metrical

Semigroups.

We say that a semigroup S is ultimately locally

metrical, or ULM if for all x in S there exists n in N° such

o
that x is contained in L(C™(S)), that is if S = ) L(C®(S)).

neo

We say that S is ultimately metrical ( respectively

ultimately R-metrical, ultimately Q-metrical ), or UM, if it

is ultimately locally metrical and in addition L(C™(S)) is
metrical ( R-metrical, Q-metrical ) for every n < k(S).
Notice that theorem 5.1 and lemma 5.6 ensure that a finitely
generated semigroup is ultimately metrical whenever it is

ultimately locally metrical.

LEMMA 6.6. If a semigroup S is ULM, then it contains no t-

compressible subsemigroup. Furthermore if S is of finite

height then it is ULM if and only if it contains no t=-

compressible subsemigroup.

Proof. Suppose that S is ULM. If S contains a
t-compressible subsemigroup U then by repeated applications
of lemma 6.1 we have that USCC®(S) for all n in M; but then
for any u in U we have that there does not exist m such that
u is contained in L(C™(S)) , contrary to assumption.
Furthermore if S is of finite height then we have that
Ck(SHl(S) = Ck(S)(S), and so cK(8)(s) is either empty, in
which case S is ULM, or is a non-empty t~compressible

subsemigroup of S.
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COROLLARY 6.1. A finitely generated semigroup is UM if and

only if it contains no element X such that x2 ZS X In

particular a finitely generated commutative semigroup is UM

if and only if it is idempotent free.

Proof. Suppose that S contains an element x such that
x2 Xg x. Clearly x is contained in C(S), and so by lemma 5.7
x2 XC(S) X. Repeating this argument k(S)-1 times we deduce
that x is contained in c5)(s) and so c*(S)(s) is non—-empty,
and hence S is not ULM.

Conversely suppose that S does not contain an element x
such that x2 Xgx. Now ck(S)(s) is either a finitely generated
t-compressible subsemigroup or is empty. The former is not
possible since then by lemma 6.2 we have that there exists x
in C = Ck(s)(s) such that x2 Xc %r and so S contains an
element x such that x? ’XS X, contrary to assumption. Thus
Ck(s)(s) is empty and so S is a finitely generated ULM

semigroup, and is therefore UM.

EXAMPLE 6.3. Let S be the commutative semigroup with

presentation < z,Xj,;Xpse.. 1ZX;=

Xi ,xixi+1 = Xi H iEN >.
Notice first that

L(S) - <X1 >

and

C(S) o~ < Z'x2'x3’ooc >o
Repeating this observation n times we see that
L(CY(S)) = < xp4q >

and i
Cn (s) =< Z,xn+2,xn+3,... > 8
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S is not ULM since there does not exist k in N° such
that z is contained in L(Ck(s)).

Finally notice that S does not contain a t-compressible
subsemigroup. Suppose by way of contradiction that C is a
t-compressible subsemigroup of S. Then repeated applications
of lemma 6.1 imply that C¢C®(S) for all n in N. We deduce
that C¢< z >, This is a contradiction, since < z > is
isomorphic to the infinite monogenic semigroup, which is
metrical, and so caontains no t-compressible subsemigroup.

Thus the second part of lemma 6.6 does not hold in the

infinite height case.

LEMMA 6.7. Let S be an ULM semigroup. Then every subsemigroup

R of S is also ULM. Furthermore if S is of finite height then

R is also of finite height and k(R) &£ k(S).

Proof. Suppose that R is a subsemigroup of S. Then if x
is contained in C(R) we have that there exist u,v in R such
that uxv Az u. Hence uxv Xg u and so x €C(S). Repeated
applications of this argument give us that *(R)c C*(S)NR
for all n in N. From this we deduce that R is ultimately
locally metrical and that if S is of finite height then so is

R, with k(R) ¢ k(S).

The following example shows that a subsemigroup of a UM

semigroup need not be UM.

EXAMPLE 6.4. Consider the commutative semigroup T with

camutative presentation
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]
Iet S be the subsemigroup of T generated by

P(T)E < a1’a2'--- ; X,Z 1 X2 =X 'l as = aj+1z ;j - 1,2,.- >o

X = { z ; aj( j=1’2"-o)}o
First notice that S is isomorphic to the semigroup S” with
commutative presentation
P’(S’)E < Z, a]_,az,... : aj = aj+lz >-
This follows for if u and v are elements of X' such that

u =v in T then there exist uy,...,u, in ({x}v X)+ such that

n
US Uy ™2 Uy ™D see ™2 Uy =YV
is a sequence of elementary P(T) transitions. Since u is a
word in X, and therefore does not contain an occurrence of
the element x, and since the only P(T) transition that
involves the element x is the transition xz <—> x, which
does not alter the number of occurrences of the element x in
a word, we deduce that none of the uy contain an occurrence
of the element x. Thus all transitions u; —=> uj4; must be of
the form uy = ajw, Uigq = aj+lzw ( or the reverse }, and so
we have a sequence of elementary P’(S”) transitions from u to
v. Clearly if u is connected to v by a sequence of P’(S”)
transitions, then u is connected to v by a sequence of P(T)
transitions.We deduce that S is isomorphic to S°, thus S has

commutative presentation

P’(S) =< g, ajs@press 1 A4 = B44172 >

let £: X' ~> % be given by

fw) = Zilwly - |wl,
(=t 1

and let g: Xt —> Z be given by

glw) = Z(i—l)lwta = jwig
=
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i
Both f and g are well defined morphisms on S, since

f(aj) = f(aj+lz) and g(aj) = g(aj+1z).

Suppose by way of contradiction that C(S) # 4. Iet s be
an element of C(S). Then there exist r,t in S such that
rst Xg T-.
Now the morphisms f and g are invariant under the
congruence XS, and so we deduce that
f(rst) = £(r) amnd g(rst) = g(r),

and so
f(st) = g(st) = 0.

This gives us the required contradiction since if w is an

element of X' then

f(w) = g(w)
o0 =]
= 7 ilwly = Iwl, =2 G-D|w|, - |v],
(=¢ 1 €= i
ob
=> Z lea,= 0
=1 1
= w=zt for sane n in N

and so f(w) = g(w) = 0 implies that w =1, which is not an
element of X'. We therefore deduce that there is no element s
of S such that f(s) = g{(s) = 0.

Thus C(S) is empty, and so S is locally metrical.

S is not, however, metrical, since if h: S —> N is a
morphism then for h to be well defined we must have that
h(an+1) = h(ay) = nh(z), which is less than zero for
sufficiently large n, giving us a contradiction.

Finally we show that T is UM. To show this first notice
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that
L(T) = < { alzk : keNW U { x, aj,ags.. } >.

This is metrical, for if we let £: T —> X be the morphism
given by f(z) = 0, f(x) = 1, f(ai) =1 for i€ N, which is
well defined, then the restriction of £ to L(T) is a length
morphism on L(T). Next notice that C(T) = < z >, which.is
isomorphic to (N,+), and is therefore metrical.

S is therefore a subsemigroup of a UM semigroup that is

not itself UM.

EXAMPLES 6.5. We now give some examples of ultimately

locally metrical semigroups.

a) Any finitely generated commutative idempotent free
semigroup is ultimately metrical and of finite height

(corollary 6.1 ).

L)

b) Consider the semigroup S of 2X2 matrices over R
consisting of elements {(g (1) y a%l, >0 L

'i’he gset L = {(g ]9) a>1l, b>0} is then an ideal of
S that is R-metrical, with the morphism f into R given by

£C(89)) = logg(a)

In fact L = L(S), since given an element s =- % ?) of S\L we
have that sr = rs? where r = (f ?\ » and so s&C(S).

We have C(S) = {(% 0): b > 0 }, which is R-metrical,
with the morphism g into R given by

gl (% ?) ) = b.
We therefore have that S is an ultimately R-metrical

semigroup of height 2.
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6.3 More results concerning ideals.

In most of the following, results for metricality will

also hold for Q and R-metricality.

LEMMA 6.8. Let S be a semigroup and I be an ideal of S. Then

for all n in W°, L(AN(I)) = L(C*(8))NI and C*(I) = C*(S)N 1.

Proof. First note that L(S)NI is a locally metrical
ideal of I and so is contained in L(I) by lemma 5.5. To show
the reverse inclusion we show that L(I) is an ideal of S. Iet
x be in L(I) and let s be in S. Then sx is contained in I,
since I is an ideal. In fact sx is contained in'L(I), for if
sx were in C(I) we would have that there exist i,j in I such
that i(sx)j Xy i . Now i(sx)j Ayi => ij(sx) Xi =>
i(js)x Ay i => x&C(I), contrary to assumption. We deduce
that sx is in L(I),and it can be shown similarly that xs is
in L(I). Thus L(I) is a locally metrical ideal of S, and is
therefore contained in L(S). It also follows that
C(I) = C(S)NI. Thus C(I) is an ideal of C(S) and we can
repeat the above argument indefinitely to deduce that
L(C™(I)) = LICS))NT and C(I) = C™(S)NI for all n.

We saw above ( Example 6.4 ) that a subsemigroup of an
ultimately metrical semigroup, while it must be ultimately
locally metrical, need not be ultimately metrical. By

contrast we have

COROLIARY 6.2. Iet S be an ultimately metrical semigroup, and

let I be an ideal of S. Then I is ultimately metrical.
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Proof. That I is ultimately locally metrical follows
from lemma 6.7, Furthermore L(C*I)) = L(C*S))N I, and so

L(C™1I)) is either empty or metrical for all n.

The next result is a slightly stronger version of

corollary 6.2.

COROLLARY 6.3. Let S be a semigroup with ideal I. If I is not

ultimately locally metrical, then neither is S and the height

of S is equal to the height of I. Furthermore, if this is the

case then for all n in N , L{C™(S)) is metrical if and only

if L(C™((I)) is metrical.

Proof. Suppose that I is not ULM. It follows from lemma
6.7 that S is not ULM. Suppose that I is of infinite height.
Then by lemma 6.7 we have that S is of infinite height.

Suppose that I is of finite height. Notice first that
(*) c¥s) = { sec™L(s) : (Fiec® (1)) siec™(1) }
since if sec® 1(s) and if i is an element of c® (1) ( and

therefore, by lemma 6.8, an element of c™1(s) ), then

sieC™1)
implies that si€e d(s) by lemma 6.8
and so seCc™(s),

and conversely if s is an element of C™(S) then taking any
element j in C™(I) we have that sj€C™S)NI, and so by lemma
6.8 again, sj€C®(I). ( The fact that I is not ULM ensures

that C®(I) is not empty, and so j can always be found .)
We deduce that if Ck(I) = Ck+1(I), then Ck(S) =
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ck*l(s), and therefore that k(3) £ k(I). since we always
have k(I) < k(S), we deduce that k(S) = k(I), completing the

proof of the first part of the carollary.

Now suppose that L(C?(I)) is metrical for some n in
N

Let f: L(C™(I)) =—> N be a morphism.

Now (*) gives us that

L(C™(s)) = { sec™(s) : (Vied™(I) ) sieL(C™(I)}.

L(C™(I)) is an ideal of C®(S), by lemma 6.8, and so we can
extend f to a morphism £: CYS) —> WC in the usual way ( see
lemma 5.4 ).

Next notice that given any ie Cm'l(I) there exist r,s

in C®(8) such that ris XC“( r, and so we must have that

~ S)
¢ 3 £) =0,

Now for any s in L(C™(S)) and any i in c™*1(1) we have
that sig CP(I): since cB(1) is an ideal of cB(s).
Furthermore, we must have that si€ L(C™(I)), since were si in
c™*1(1) we would have, by (*), that sec?*l(s), which is not
the case.

Finally notice that

£(s)
f(si) - £(1)

f (si)
= f(si) > 0.
We deduce that the restriction of £ to L(C™S)) is

strictly positive, and therefore that L(C™(8)) is metrical,

as required.
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Conversely if L(CMS)) is metrical, then so is L(CNI)),

since it is contained in L{(CT{(S)).

Clearly a semigroup with an ultimately metrical ideal
need not be ultimately metrical nor even ultimately locally
metrical; for given any semigroup S disjoint from N we can
have a multiplication * on S U N given by the multiplication
on S, addition on N, and the rule s*n = n*s = n for all
ninNand s in S. Then N is a metrical ideal of SU N, but

C(SUV N) = S is entirely arbitrary.

LEMMA 6.9. Let S be a semigroup with ideal I. Then xe€C(S) if
and only if there exists z in S and w in I such that wxz $I

We

Proof. The "if " part is obvious from the
definition of C(S) and the fact that Yy Q'Xs.

For the other part suppose that x is in C(S). Then
there exist y and z in S such that yxz Xg y, and so there
exists an OLF { x;,u;,vj,y; i=l,..,n } from yxz toy in 8.
Now let j be an arbitrary element of I We show that

(j4y)xz 7(I j4y, completing the proof of the lemma.

First notice that

(j4y)xz = j4x1u1v1y1

X Iupviyyi®

since jz r jzxiuiviyi €I,
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Similarly

e RATRUS L O

Then note that for i =1,...,n
Px5u5viv3 3% Ap Fxui3Vivi3

( since j,jxjuy,v;v;J€TI )

Ky Ixpivyugdyid
( since u;j and jv; €I )

Xp 3%xgviusyiit
( since j,jx;,y;j€l )

= 321410541 Vi41Y141 3
( since { X300, V515 } is ah OLF ).

The required result now follows.

6.4. Products of semigroups.

In this section we give some basic lemmas concerning
metricality and cartesian products. Our results concern
products of two semigroups, but can be extended to the case

of a finite cartesian product.

only if a)¥p ¢ and b Xy 4.

Proof. Suppose that (a,b) ¥Yp.p (c.,d). Notice that

(A\tB)1 is a submonoid of Alel, and so there exists an OLF
from (a,b) to (¢,d) in Alel, i.e. there exist
(xi'xi)' (y]‘_:yj't)l(ui'ujt)l(virvj‘_) in AIXB]' i = 1,.. 2t

such that
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(xq,x7) (ug,u7) (v, v{ ) y1,y]) = (a,b) ;
(%5,%) (vq i) (ug0) (y4,74)
= (X341 X 41) W41 09542) (Vi3 902 ) (Y347 0¥ 1)
1 = 1peesyii=L 3
and (X Xp) (Ve Vi) (U, un) (vpevy) = (c,d)
It follows that

~e

e U B
XiViU3Y5 = Rj W4 Vie1Yiel L= Leeomml g
XnVnn¥n = € ¢
and
b = xjujviy ;
X{Viujy! = X{ Ui Vi ¥iy 1 =1,..mm1
XnVntnYp = 4 -
Thus we have an OLF from a to ¢ in A and an OLF from b to d

in B, and so a YA c and b')(B d as required.

The converse of lemma 6.10 does not hold, as the

following example illustrates:

EXAMPLE 6.6. Let A be the free semigroup {a}' and let B be
the free semigroup {c,d}". Then clearly a Xp @ » and
cd Kg dc. Now (a,cd) and (a,dc) have no proper divisors in

A XB, and therefore by lemma 5.2 are not XAXB related.

IFMMA 6.11. Iet A and B be semigroups. Then C{AxB)=C(A)xC(B).

Proof. Suppose that (a,b)& C(A B). Then there exist
{c,d) and (e,f) in AxB such that (c,d}(a,b)(e,f) 'XAKB (c,d).
We deduce from lemma 6.10 that cae XA ¢ and dbf 7(B d. Thus

(a,b)e C(A)XC(B).
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For the converse suppose that ae€C(A) and b&C(B). Thus
there exist c¢,e in A and 4,f in B such that cae‘)(ﬂ c and
dbf 7(B d. Let { XieYir94rVy ¢ l1=1,..,m } be an OLF from cae
to c in A of minimal order. Then the OLF

{ szj_rYicluier_ }

3aec to C4

is a heavy OLF from c in A ( recall from page 86
that an OLF in a semigroup S is heavy if it is completely
contained in S ). Thus we have a heavy OLF

{ xi,yi,ui’,vi g 4 w1 e

from c3aec to o, Similarly we have a heavy OLF
{ Pyrd4sT4rS4 * j=1,e0m }
from a3bfd to d. we can suppose that m =n, since if, for
example, m is less than n then we extend our OLF from a3bfa
to d to one of order n by the addition of the OLF
{4,4,4,d : k =m+l,.,n }. We then have the ( heavy ) OLF
{ (x{py)rlyirg;)e(ufr; ), (vis;) i = 1,000 }
from (cBaec,defd) to (c4,a%) in axB.
Since
(c3aec,d3bfd)
= (c3ae,d3bf)(c,d)
’)(A x B (c,d)(c3ae,d3bf)
= (ctae,a%bs)
= (c*,a%) (a,b) (e, £)
we deduce that (c4,d4)(a,b)(e,f)>‘)(AXB (c4,d4), and so {(a,b)

is in C(AX B).



COROLIARY 6.4. Let A,B be semigroups. Then AxB is locally

metrical if and only if A or B is locally metrical.

Proof. AxB is locally metrical if and only if C(AXB)
is empty; that is, if and only if either C(A) or C(B) is

empty .

We also have

LEMMA 6.12. Let A,B be semigroups. Then AXB is metrical if

and only if A or B is metrical.

Proof. The "if" part isobvious.
For the other part suppose that there exists a morphism

f: AxB —> N. Notice first that for all a,c in A and b,d in B

(a,b%) (c,b) = (a,b) (c,b?)
and
(a%,b)(a,d) = (a,b)(a?,d)
and therefore
£(a,b%) - £la,b) = £(c,b%) - £lcb)
and (*)
£(a%,b) - £(a,b) = £(a%,d) - £(a,d) :
Now for any a in A and b in B and n > 1 we have
(a,b™) (asb) = (a,b°71) (a,b?)
and so

£(a,b?) = f(a,b" 1) + £(a,b?) - £(a,b)
which gives us that
£(a,b") = fa,b) + (n-1)( £(a,b?) - £(a,b) ).
Since f > 0 we deduce that f(a,b?) 3 f(a,b).

Similarly
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£(a%,b) 3 f(a,b) (*%)

for all aeA, beB.

Suppose that there exists a in A such that for all b in
B,
£(a,b%) > f(a,b).
We then define f: B —> N by
£(b) = £(a,b?) - £(a,b).
This is a morphism since
f(bc) = f£(a,bcbe) - £(a,be)
= f(at,bobe) - £a,be)  from (%)
= £(a?,b%) - £(a%,b) + £(a%,c?) - £(a%,c)
= £(b) + £(c)

and so B is metrical. Similarly if for a given b in B we have
for all a in A that

£(a%,b) > £(a,b) ()
then A is metrical.

Finally suppose that B is not metrical. Then far all a

in A there exists b in B such that

£(a,b%) = £(a,b).
Then by (*) we have that for all x in 3,

£(x,b%) = £(x,b).
Now if A is not metrical then from (**) and (***) there must
exist x in A such that

£(x2,b%) = £(x,b%)

and we therefore deduce that
f((x,b) (x,b)) = £(x,b}
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which is not possible.
Thus if AXB is metrical we must have that either A or B

is metrical.
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