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ABSTRACT

The class of metrical semigroups is defined as the set 

consisting of those semigroups which can be homomorphically 

mapped into the semigroup of natural numbers ( without zero ) 

under addition.

The finitely generated members of this class are 
characterised and the infinitely generated case is discussed. 

A semigroup is called locally metrical if every finitely 
generated subsemigroup is metrical.

The classical Green's relations are trivial on any 
metrical semigroup. Generalisations ^ a n d  of the 
Green's relations are defined and it is shown thatfor any 
cancellative metrical semigroup, S, ^  is " as big as 
possible " if and only if S is isomorphic to a special type 
of semidirect product of H and a group.

Lyndon's characterisation of free groups by 
length functions is discussed andalink between length 

functions, metrical semigroups and semigroups embeddable into 
free semigroups is investigated.

Next the maximal locally metrical ideal of a semigroup 
is discussed, and the class of t-compressible semigroups is 

defined as the set consisting of those semigroups that have 
no locally metrical ideal. The class of t-compressible 
semigroups is seen to contain the classes of regular and 

simple semigroups.
Finally it is shown that a large class of semigroups 

can be decomposed into a chain of locally metrical ideals 
together with a t-compressible semigroup.
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NOTATION

The following carnmly used symbols appear in the text 

Syirbol Description
N The set of Natural numbers
nP The set of Natural numbers with

zero adjoined
Q, R, R^ and r J The sets of rational, strictly

positive rational,real,strictly 
positive real and non-negative real 

numbers
( Where the above sets appear as semigroups, the binary 
operation of addition is assumed unless stated otherwise )

The free semigroup on the set X, 
consistingofwords inthe
elementsof X and binary operationof 
concatination, i.e.

(xi...Xjj).(yi...yjn) = x^...:^yi...y„,

X* Ihe free monoid on the set X, which is
isomorphic to X"^with an identity 

adjoined

X^ The free commutative semigroup on the
set X

(X̂ )̂  The free canmutative monoid on the set X



1, 1̂  The morphism on X"̂ , X*, X^ and
that maps an element z to the number 
of occurrences of the letter x in z

|.| Il-lx

PG(X) The free group on the set X

Ihe following symbols are either less common than the 

above, or are introduced for the first time in the text.

Symbol Description First appearance

C(S) The compressible part
of the semigroup S. 86

D(G) Hie divisible hull
of the group G. 35

D(S) Hie divisible hull
of the semigroup S. 36

L(S) Hie locally metrical part

of the senigroup S. 86
Q(S) Hie group of quotients of

the connutative semigroup S. 11
Hie subset of a ccxrntutative 
semigroup S given by 
g(n) = { gH . sçg 12

Hie subset of a metrical 
semigroup (S,f ) given by

= { ses : f(s) = n }. 4
"%g Hie smallest canmutative

congruence on the semigroup S. 18
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INTRODUCTION
A study of some of the major texts on algebraic 

semigroup theory { for example Clifford and Preston, [3], 
Howie, [10], and Petrich, [15] ) reveals a subject dominated 
by the notions of regularity, simplicity and the Green's 
relations and y. While the theory has made much
progress in this direction, a certain amount of generality 
has been lœt. This is well illustrated by the fact that for 
some of the most natural semigroups, for example (N,+), X"*" 
and X̂ , these notions and relations are either trivial or 

uninteresting.
On the other hand it is these kinds of semigroup that 

have contributed applications to practical problems, 
particularly in the areas of codes and theoretical computer 
science. This branch of the theory is known as combinatorial 
semigroup theory { see for example Lai lament, [12] ).

Semigroups with length morphisms, and other related 

ideas to be introduced in the course of this study, can be 
seen as an attempt to bridge the gap between the algebraic 

and the combinatorial branches of the theory. Our methods are 
mainly algebraic, and some of our results are reminiscent of 
more classical results, particularly in the first part of 
section 4. The class of semigroups with length morphisms, 

however, does not include most of the semigroups normally 
associated with classical algebraic semigroup theory, but 
instead those usually associated with the combinatorial 
branch. More specifically we use the notion of length

.a
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morphisms to try and tackle some interesting algebraic 
questions that arise out of the problems encountered in 
combinatorial semigroup theory, most importantly the problem 
of finding a characterisation of F-semi groups ( those 
finitely generated semigroups that can be embedded into a 
free semigroup ). This is dealt with in the second part of 

section 4,
An important area of semigroup theory that does not 

exhibit the above polarity is that of commutative semigroup 
theory. Here again the notions of regularity and simplicity, 

and the Green s relations, are less interesting. The result 

of this is that commutative semigroup theory has taken a path 
that lies closer to that I have taken in this thesis, and as 

a result many of our results are adaptations of commutative 
results to the generally more interesting non-commutative 
case.

The thesis falls into three parts. In sections 1,2 and 
3 we introduce the notion of a length morphism on a semigroup 
and other related ideas. We then characterise some of the 
classes introduced.

In section 4 we investigate semigroups with length 
morphisms in more detail, and introduce generalisations of 

the Green's relations, and 3^, that are non­

trivial on such semigroups. Some links with the well known 
generalisations of the Green's relations due to Fountain are 

also discussed. We then give an example of the type of 

results that can be obtained by characterising those 
cancel lative semigroups with length morphism in which the K!"

..i



classes are " as large as possible The second part of 
section 4 investigates links between semigroups with length 

morphisms and combinatorial semigroup theory.
Sections 5 and 6 introduce a decomposition of a large 

class of semigroups into those semigroups introduced in the 
first part. It is hoped that such a decomposition will help 
generalise results on semigroups with length morphisms to the 

larger class of semigroups.
Thus our first part can be considered as an 

introduction to the new notion, the second part as a 

justification for introducing it, and the third part as an 
insight into the possible potential of the subject to 

semigroup theory in general.



Semigroups with length morphisms

1. Definitions and pre 1 iminaries.

1.1 Metrical semigroups and metrical monoids.

A semigroup S is said to be a metrical semigroup 
if there exists a morphism f: S — > ( H, + ).

Given a metrical semigroup (S,f ) we define subsets 

of S by
Sj^= { s6S : f(s) = n }.

EXAMPLES 1.1.
a) The free semigroup X"*" on a set X is metrical. The 

relevant morphism is the 'length' function, |. |, given by

We shall call this particular morphism the usual length 

morphism on X^ and denote it either by | . | or by u.
b) Ihe free commutative semigroup X^ on a set X is 

metrical. The usual length morphism is defined in the same 
way as for the non-commutative case, and is again denoted by 

I, I or by u.
c) Subsemigroups of the above are metrical.
Motivated by the first of these examples we call a

morphism f : S — > ( N,+ ) a length morphism on S and call the 
pair ( S,f ) the metrical semigroup ̂  with length morphism

Let neN. Then if f is a length morphism on a semigroup 
S, so is the morphism nf : S — ^ H given by



(nf)(s) = n.f(s).

Thus a metrical semigroup has an infinite number of length 
morphisms. We say that two length morphisms f and g are 
ecpjivalent if there exist m,n in H such that nf = mg. A 

metrical semigroup can have two non-equivalent length 
morphisms: for example let X = {a,b}, then the maps 

f : X — > N given by f (a) = f(b) =1 
and g: X — > N given by g(a) =1, g(b) = 2

both extend uniquely to length morphisms on X"̂. The resultant 
length morphians are non equivalent.

Clearly if S is a metrical semigroup with length 
morphism f, and R is a semigroup such that there exists a 
morphism 0-: R — > S, then R is a metrical semigroup, with 
length morphism f o 0, which we call the length morphism 
induced by 0 and & In particular if 0 is a morphism from R 
to either X"̂ or X̂ , we simply call the length morphism 
induced by 0 and u the length morphism induced by 0.

A monoid M is called a metrical monoid if there exists 
a morphism g: M — > { N°,+ ) such that g~^(0) = { 1 }. For 
convenience we also refer to g as a length morphism, since it 

will be clear in context to what type of semigroup we are 
referring . A metrical monoid with length morphism g is 

denoted by (M,g). If (S,f) is a metrical semigroup, then 
is a metrical monoid with length morphism the unique 
extension f of f obtained by letting f(l) = 0. For 
simplicity's sake we denote the metrical monoid with



length morphism f by (Ŝ ,f).
Given a metrical semigroup S ( resp. a metrical monoid 

M ) we can define a binary operation on mor(S,N) ( resp. 

mor(M,N°) ) by
(f+g)(s) = f(s) +g(s).

Throughout the thesis we shall treat mor(S,N) as a 

semigroup with this operation.

1.2. The free group on a semigroup. The group of 
right quotients of a semigroup.

Using the notation of [3] we define a free group on a 
semigroup S to be a pair (H/X), where H is a group and OC is a 
morphism from S to H for which 0((S) generates H, such that 
for any group G and any morphism 0: S — > G, there exists a 
morphism 'p: H — M3 for which the diagram

> G

Y
H ̂  commutes.

Clifford and Preston prove that given any semigroup S, 

such a pair exists ( [3] construction 12.3 ), and that it is 

unique up to " equivalence ", where (H/Xv) is said to be 

equivalent to (H',̂  if there exists an isomorphism-iT from H 
to H' such that =YooC. ( [3] lemma 12.1 ).

A semigroup, S, is group embeddable if there exists a 
group G and a monomorphism 9: S —  ̂ G. It is an easy 
consequence of the universal nature of the free group on a
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semigroup ( see for example [3] theorem 12.4 )that S is group 
embeddable if and only if the morphism OC in the pair (H/X.) is 
a monomorphism. When this is the case we can assume that S is 
a subsemigroup of H and that OC is the canonical injection 

morphism.
If a semigroup S can be embedded in a group then it can 

be embedded in a group for which S is a set of group 
generators. Every element of such a group will be a finite 
product of elements of S and of inverses ( in the group ) of 
elements of S. For a group embeddable semigroup S we now 
construct the group of right quotients, which turns out to be 
a free group on S. Results will be stated without proof, ]
since details can be found in [3] section 12.4.

Let S be a group embeddable semigroup. For a,b in S 
such that Sa O Sb we define the right quotient 

a/b = { (x,y) : xa = yb }.
LEMMA 1.1. Let S be a group embeddable semigroup. Let a,b,c,d 

be elements of S. Ohen
a/b = c/d if and only if a/bn c/d #

CONSTRUCTION. Let S be a group embeddable semigroup. Let Q be 

the set of right quotients of pairs of elements of S;
Q = { a/b ; a,b€rS , SaASb }.

Let t : be the congruence on the free semigroup, Q~̂ , on Q 

generated by the set
{(xy,z) ; X- a/b, y= b/c, z= a/c for seme a/b,b/c,a/c in Q}.

Let G be the semigroup O'̂ /c . Then G is a group and if 
we define the mapping ̂ ;S— >G by c((s) == [sx/x], then the pair



(G,oc) is a free group on S.
The pair (G,OC.) will be called the group of right 

quotients of S.
By identifying the semigroup S with the subsemigroup 

0(iS) of G, we can again consider the monomorphism OC as the 
canonocal injection morphism. Instead of denoting the group 
of right (quotients by a pair (G,OC), we denote it simply by G. 
We shall do this without comment througout the thesis.

Ihe next two results will be of use in section 4:
LEMMA 1.2. Let S be a metrical semigroup, and let f be a 
length morphism on S. Then f extends uniquely to a morphism 
from the group of quotients of S into Z.

Proof. We define a map f̂  from Q into % by 
a/b — > f(a) - f(b). 

extends uniquely to a morphism f2 from into 2. 
The resultant morphism f2 is invarient under the basic 
transitions, and so itself induces a unique morphism f from 

the group of right quotients of S into X.
It is easily seen that f is an extension of f. It is 

unique because the set S is a set of group generators for the 
group of right quotients of S.
LEMMA 1.3. Let S be a group embeddable semigroup> and let G 
be the group of right quotients of S. Suppose that is a 
subsemigroup of G that contains S. The group of right 
quotients of S " is then equal to G.

Proof. Suppose that H is a group and that 9 is a 
morphism from S" into H. Consider the restriction 6|g of 9 to 

S. Since G is a free group on S it follows that there exists

■■■<! - Ik.



a morphism v̂ : G — ^ H for which the diagram
S -

%

S — » G
V
t

tl corniutes.
S is a set of group generators for G, and so if 

9(s) ='4'(s) for all s in S it follows that ©•(s") = 1 for
all s" in S % We deduce that the diagram

S' G

i'k'*'H ccranutes,

and so G is a free group on S'. It follows that G is 

isomorphic to the group of right quotients of S'. Equality 
follows from our convention of specifying the canonical 
injection morphism when considering free groups on 

semigroups.
1.3. Senigroup Presentations.

Given a set X and words Uĵ,Vĵ ( ie I ) in X"̂ we follow 
the usual notation of defining the presentation 

P(S)= < X : U£ = Vĵ , i6I > 
to be of the semigroup S = X*̂ ŷ , where ̂  is the smallest 
congruence on X"*" containing { ; iei }.

We call an ordered pair (x,y) a basic P(S) transition 
if there exist words w,z in X^ such that

X = wpz , y = wqz 

where (p,q) = or (̂ î'̂ i) :̂ or some i in I. The pair
(u,v) is then in ç if and only if u = v or there exist words 

Xq,...,Xĵ such that
Xg = U , X^ = V



and
i = 0,..,n-l are basic P{S) transitions.

We define the canïïutative presentation

P(S)^ < X : = V£ , ié-l >

to be of the commutative semigroup S — r where is the

smallest congnjence on X^ containing { : ifê I }.

10



2. Finitely generated metrical semigroups.

2.1. The congruence %  and a characterisation of finitely 

generated metrical semigroups.

In this section we give a characterisation of finitely 

generated metrical semigroups. The characterisation in the 
commutative case is particularly simple ( corollary 2.2 ).
The non-commutative case is an adaptation of the commutative 
case that is less satisfactory, but nevertheless useful in 
later sections of the thesis ( corollary 2.3 ).

The key result of this section is a theorem due to 
Gril let, theorem 2.1. The proof of theorem 2.1 requires some 
preliminary results, lemmas 2.1 and 2.2 and corollary 2.1.

DEFINITION 2.1. Let S be a cancellative commutative 
semigroup. Define the congruence TT on SxS by (a,b)iY(c,d) if 
and only if ad = be. Denote the semigroup (S x S)/tT by Q(S).

Q(S) is then an abelian group, with identity element [(x,x)]̂

{ = [(Y/y)]^for any y in S ), called the quotient group of S, 

and S is embeddable into Q(S).

LEMMA 2.1. Let S be a finitely generated cancellative and 

power cancellative commutative semigroup. Then S is »

embeddable into a free abelian group.
Proof. Consider the group of quotients Q(S) of S. First 

notice that Q(S) is finitely generated, for if X generates S 
then the set { [(xa,a)]^ ; x& X } is a set of group 

generators for Q(S).

11



Suppose that [ (a,b) = [(x,x)]̂ , the identity. Then
[(â ,b̂ )]̂  = [(x,x)]-n and so a ^  = b^. Ihe cancel lativity of 
S implies that a^ = b̂ , and then the power cancel lativity of 
S implies that a = b. Therefore [(a,b)]j|* = [ (a,a) =

[(x,x)]. We deduce that Q(S) is torsion free.it
It is well known ( see for example [6] ) that a 

finitely generated torsion free abelian group is isomorphic 

to a free abelian group, and so the result follows.

Given a commutative semigroup S we define the 

subsemigroup of S by

S ^ ^ ^ = { s ^ : s e S } .

Note that when S is a power cancellative commutative 
semigroup then is isomorphic to S.

LEMMA 2.2. Let S be a finitely generated subsemigroup of a 
free abelian group G not containing the identity element of 
G. Then either S is isomorphic to a free commutative 
semigroup or else there exists a subsemigroup 
S of G and a positive integer k such that

a) Ihe rank of S is less than that of S,
b) is contained in S,

c) S does not contain the identity element of G.

Proof. Suppose that the rank of S is n, and let A be a 

set of size n that generates S. If S is isomorphic to a free 

commutative semigroup then the result follows immediately. If 

S is not isomorphic to a free commutative semigroup then

12



there exists a non-trivial relation between elements of A. By 
cancellation we may suppose that we have a non-trivia 1 

relation

ni n2 n^ ^̂1 nig
(*) Si S2 ...Sp = ri r2 ...rg

such that the rĵ and the Sj are all distinct elements of A, 
and nĵ ,mj are strictly positive integers. Suppose further 

that p is minimal over the set of all such non-trivia 1 
relations. We immediately have that p > 0 since S does not 

contain the identity. Now define S to be the subsemigroup 
of G generated by

mi -ri2 -np  ̂ ,
{̂ 2 *®2 **®p f ^ ' 1̂ **' k

where the tĵ are the elements in A not appearing in the 
relation *. It is clear that S is of rank less than that of 
S, and so S satisfies a).

Clearly all the elements of A except for r̂  and are 
contained in S. Now

%  m^ -n2 -np n2 Up

and

(mini )
Therefore all the elements of the set A are contained

-  (m̂ n̂  )
in S, and thus the subsemigroup S of G is contained in

S, and so letting k == m^n^ we have that S satisfies b).

13
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We now show that S satisfies c). Suppose, by way of 

contradiction, that S contains the identity. Then we have a 
relation

mi -ng -np w Xj Xg Yz Yp ,
*®2 **^p *^2 ' G 2 ***®p *^1 ***^k —

where w, the xĵ, y^ and the are all non-negative integers 
that are not all zero. If w is zero then we have that 1 is 
contained in S, giving us a contradiction, and if w is 
greater than zero we have the non-trivial relation

wn2 wn^ wm^ %2 72 Yp
®2 **®p ~ ^1 *^2 *®2 ""Sp "^1 ***^k

which contradicts the minimality of p. We deduce that S does 
not contain the identity. This completes the proof of the 
lemma.

COROLLARY 2.1. Let S be a finitely generated subsemiqroup of 
a free abelian group G that does not contain the identity 
element of G. Then there exists a subsemiqroup T of G and a 
positive integer k such that

a) is contained in T,

b) T is isonorphic to a free caimutative sanigroup.

Proof. We can now define semigroups as follows. Let 

Sq = S, and for all i > 0 let = Ŝ .  ̂if Ŝ _2 is isomorphic 
to a free commutative semigroup, and Sj_-i otherwise. Ihen by 

lemma 2.2 there exist kg, k̂ ,.... > 0 such that is
contained in Sĵ.

14



since the rank of S finite, and since either the 
rank of S^+i is less than the rank of Sĵ or else Sj = Sĵ 

for all j > i , we have that the sequence Sq ,Ŝ  ,... of 
semigroups stabilises, and therefore that there exist a 

semigroup T ( = S^ for some t) and an integer k { = kgk̂ .-.k̂ ) 
such that s(k) ig contained in T and T is isomorphic to a 

free canmutative semigroup.

It can be shown that if G in corollary 2.1 is generated 

by only two elements, then a T can be found for which the 
value k = 1 satisfies the given conditions. It is not known 

whether this is the case in general.

The following lemma is almost identical to corollary

2.1 and will be of use in section 3.

LEMMA 2.3. Let G be a direct sum of copies of the group 
(Qr+) and let S be a finitely generated subsemiqroup of G 
that does not contain the identity. Then there exists a 
subsemiqroup T of G such that T contains S and T is 
isomorphic to a free commutative semigroup.

Proof. Let G =. ® Q. Then G can be considered as a «feX
vector space over Q. It follows that there is an action of Q 
on G that corresponds to scalar multiplication. To avoid 

confusion we shall use bold type for elements of G and normal 

type for scalars. Let X be a basis for G and let A be a 

finite subset of G that generates S. Then for any element s 

in A we have
s = (a . /b. )x. + (a. /b. )x + ... + (a. /b. )xil !]_ !]_ 12 i2 ^n ^n ^n

15



where ; a. ,b. C Z and x. € X.3 Xj ij ij

Let bg be the Icwest comnon multiple of the b. .

Let b be the lowest common multiple of the bg as s varies 
across A. Then we have that A is contained in the subgroup H 
of G generated by Y = { : x 6X }.

Now X is a basis, and is therefore a linearly 
independent set. We deduce that no non-trivial relation can 
exist between the elements of Y. Thus Y is a set of free 

commutative group generators for H. We therefore deduce that 
H is a free carntutative group containing S.

It follows from corollary 2.1 ( using additive notation 
instead of multiplicative notation ) that there exist an 
integer k and a subsemigroup T of H such that T is isomorphic 
to a free commutative semigroup and { ks ; s C S  } is 
contained in T. We deduce that S is contained in the 
subsemigroup (l/k)T ( = { (l/k)t : t€T } ), which is also 
isomorphic to a free commutative semigroup, completing the 
proof of the lemma.

THEOREM 2.1. ([8] theorem 2.2. ). A finitely generated

commutative semigroup is embeddable into a free commutative 
semigroup if and only if it is cancellative, power 
cancel lative and does not have an identity element.

Proof. The direct implication is obvious. For the 
converse suppose that S is cancellative, power cancellative 
and does not contain an identity. From lemma 2.1 S is

16
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isomorphic to a subsemigroup of a free abelian group G. Since 
S does not contain the identity element it follows from 

corollary 2.1 that there exist a number n and a subsemigroup 

T of G such that is contained in T and T is isomorphic 

to a free commutative semigroup. S, being power cancellative, 

is isomorphic to Ŝ ^̂  and so we deduce that S is embeddable 

into a free commutative semigroup.

We now use theorem 2.1 to give us a characterisation of 
finitely generated carorutative metrical semigroups.

COROLLARY 2.2. A finitely generated commutative semigroup, T, 
is metrical if and only if there do not exist t,r€T such 

that tr=t.
Proof. The direct part is obvious since if T has length 

morphism f, then tr = t would imply that f (r) = 0, which is

not possible.
I

Conversely suppose that there do not exist t,r in T |

with tr = t. Let T' = T/c where i: is the congruence given by 
a cb <=> '3n€.H, ceT such that a^c = b̂ c.

T' is then finitely generated, commutative, cancellative and 

power cancellative. Furthermore T' contains no identity 

element, since
xe C X

=> (xe)̂ c = 2̂ c for some n in N, c in T 

=> (x̂ c)e = x̂ c.

Theorem 2.1 then gives us that T' is embeddable into a 
free commutative semigroup. Thus T% and therefore T, is 

metrical.



Given an arbitrary semigroup S define the congruence 

to be that generated by { (sr,rs) : r,s€:S }. S/Xg is then a 
commutative semigroup and is the largest commutative 
image of S in the sense that if#:S — > T is a morphism, and 

T is a commutative semigroup then there exists T
such that the diagram

i
S --

AS/X^ commutes.

Where there is no possible ambiguity we write simply %

LEMMA 2.4. Let S be a semigroup, and let T be a commutative 
sgniqroup. Then

mor(S,T) X ̂  <-> mor(S/X,T) ^ çi.
Furthermore, when this is the case,

P  : mor(S,T) mor(S/X,T)
given by

(^f ) )[s] = f (s) 
is a well defined isomorphism. In particular

mor(S,W) = mor(S/X,N).
Proof. The proof is immediate from the fact that %is 

the smallest commutative congruence on S.

Corollary 2.2 and lemma 2.4 now give us a 
characterisation for non-commutative finitely generated 
metrical semigroups:

COROLLARY 2.3. Let S be a finitely generated semigroup. Then 
S is metrical if and only if 3"r,s€ S such that rs/^r

18



DEFINITION 2.2. We associate with an arbitrary semigroup S 
the commutative, cancellative and power cancellative 

semigroup S'= {S/'X)/tz where the congruence %  is defined 
above, and the congruence T' is that defined in the proof of 

corollary 2.2. We define the morphism 0 to be the natural map f
from S to S%

The following lotma will be of use later on:
2.5. Let S be a sanigroup. Then

mor{S,N) ^ gi <=> mor(S%N) gi.

Furthermore when this is the case we have that
mor(S,N) = mor(S',N).

Proof. The proof is immediate from the fact that the 
congruence 0""̂  0 is the smallest commutative, cancellative 

and power cancellative congruence on S.

2.2.Finitely presented metrical semigroups
In this section we show how a finitely presented 

semigroup can be associated with an integer matrix. We then 
show how some classical algorithms from the theories of 
linear programming and linear diqphantine equations enable us 
to say things about the existence of length morphisms on the 
semigroup ccncerned. In contrast to the previous section, the 
results are equally valid for commutative and non-commutative 

semigroups.

Suppose that S is a finitely presented semigroup. Let 

P{S) be the presentation
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P(s) : r̂=S;|L ^
where the r̂  ̂and the are words in the aj . Let

^ij “ l̂ ila. ' îj "" l̂ ila.'] ]

îj ~ ̂ ij ” îj*

Then we define the relational matrix RM(P(S)) of the 
presentation P(S) of S to be the n m matrix with entries
Xij.

A morphism f from the free semigroup {a^f.ya^}* into 
N induces a morphism f : S — > N if and only if f(r̂ ) = ftŝ ) 
for i = l,..,m. Now

f(rĵ ) - f(Sĵ )

j-' f'
= 2Ikijf(aj)- X^ijfCaj)

J=i
= ̂ Xijf(aj).
J' *

So f induces a morphism f : S — » H if and only if 

RM(P(S))(f(ai),...,f(an))T = 0.

Thus we have

LEMMA 2.6. Let P(S) be a finite presentation for S with 
generators A = { a^f.^a^ }. Then there is an isomorphism 

between mor(S,N) and the semigroup of strictly positive 
solutions to the equation RM(P(S))x = 0 ( with binary

operation of vector addition ) given by

20



RM(P(S ) ) (m|̂ ,... = 0 <=> f^^mor(S,N)

where is the unique extension to S of the map from A to N 

given by
f,(aj) = mj.

Similarly we have

LEMMA 2.7. Let P(S) be a finite presentation for S with |
generators A = { }. Then there is an isomorphism

between mor(S,KP) and the semigroup of non-negative solutions 
to the equation RM(P(S))x = 0 given by

RM(P(S) )(m|̂ ,,..,mjj)'̂  = 0 <=> f^& mor(S,«P)

where f i s  the unique extension to S of the map from A to 

given by
f,(a )̂ = mj.

DEFINITION 2.3 Ihe general integer linear programming problem 

can be expressed as; Find integers

Xjĵ ^ 0, x^ ^ 0 ,... x^ ^ 0
that minimise z when

CiX i + CgXz + . . .  + CjjXn = z , 

subject to the ccnstraints

aiixi + ̂12 2̂ + • • • + ^in^ 1̂'

^21^1 &22%2 + ••• + ̂ 2n^ ̂  ̂ 2'
: : : ’

%1^1 + a ^ 2  + ••• + = V
where the a^jyb^ and Cj are given integer constants.
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The general linear programming problem is written in 
terms of equality constraints. We will, however, be wanting 

to solve problems with inequality constraints. In these cases 
we convert the inequalities to equalities by the addition of 

a slack variable, for

afXf + a2X2 + ... + a^x^ > b
if and only if

aiXi + 32X2 + ... + a^x^ " = b

for seme x^^^ ^ 0 
and

â x^ + a2%2 + ... + a^x^ ̂  b
if and only if

aixi + 32X2 + ... + a„Xn + x^+i =  b

for some ^ 0. Allowing =0 we obtain a general

integer linear program with the required solution. A 
different slack variable is of course used for each 
inequality.

A general linear programming problem is always defined 
in terms of finding a minimal solution. We can, however, use 
a program to find whether any non trivial solution to the 
equations exist. This is equivalent to solving a set of 
linear diophantine equations. We do this by adding the 
constraint

xi + X2 + ... + Xĵ > 1
to our list of equations, and finding a solution that 

minimises
Z = X̂  + Xg + ... +

22



There are various different algorithms for solving the 
general integer linear programming problem. Some of these can 
be found in [7]. We are not interested here in the actual 
algorithms, but just in the fact that they exist, and how

2̂ 1

Proof. The integer vector (mĵ ,...,mĵ ) is a solution to 
the given system if and only if it is strictly positive, and 

if
RM(P(S)) (m^,..,!^)^ = 0.

By lemma 2.6 this occurs if and only if the map fĵ  from S to 

N is a morphism.

COROLLARY 2.4 Suppose that the semigroup S is given by the 
finite presentation P(S). Then there exists an algorithm for 
determining whether or not S is metrical.

The following well known result due to Redei ensures 
that the algorithm refered to in corollary 2.4 can be used 

for any finitely generated commutative semigroup.

23
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they help determine length morphisms on semigroups. |

THEOREM 2.2. Let S be a semigroup given by a finite 

presentation P(S) < ; R >. Then S is metrical if
and only if there exists a solution to the system of 

equations
RM(P(S)) X = 0

Xj> 1



LEMMA 2.8. ( [17] theorem 72 ). Any finitely generated

conirutative sennigroup is finitely presented.

Before closing this section we briefly discuss the 
special case when a semigroup S is given in terms of a finite 
presentation P(S) that consists of a single relation. We 
already know that there exist algorithms for determining 
whether or not S is metrical. In general these algorithms 
will only give us one particular length morphism on S.

Elliott, in his paper " On linear homogeneous 
diophantine equations " from 1903 ( reference [4] ), 
describes an algorithm for determining a generating set for 
the non-negative solutions to a single diophantine equation. 
The algorithm is also described by MacMahon in the more 
easily found reference [14] . It is also known that such a 
set is always finite ( lemma 2.9 below ). Thus we have

THEOREM 2.3. Let S be a semigroup given by a finite 
presentation P(S) consisting of a single defining relation. 

Then mor(S,MP) is finitely generated and there exists an 
algorithm for determining a finite generating set for 
mor(S,NP).

Proof. This is a direct consequence of Elliott's 
algorithm and leirrna 2.7.

In the case where P(S) has more than one relation we do 
not know of an algorithm for determining a generating set for 
mor(S,î^). We do, hcwever, have
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LEMMA 2.9 ( [18] page 5 ). Given an nv:m integer matrix A, 
the set { X ; Ax = 0 } is finitely generated.

and therefore

COROLLARY 2.5. Let S be a finitely generated semigroup. Then 

mor(S,l^) is finitely generated.
Proof. By lemma 2.4 mor(S,H°) is isomorphic to 

mor(S/XfN°). S/X is a finitely generated commutative 
semigroup, and is therefore finitely presented. Thus by lemma 
2.7 there exists an integer matrix A such that mor{S,H°) is 

isomorphic to { x : Ax = 0 }, which is finitely generated by 
lemma 2.9.

2.3. Length morphisms on semigroups not given in terms of 
generators and relations.

In section 2,2 we showed that if a semigroup S is given 
in terms of a finite presentation, then the problem of 
determining all the length morphisms on S can be reduced to a 
problem of linear algebra.

In section 2.1 we gave an algebraic characterisation of 

finitely generated metrical semigroups, but the 
characterisation did not give us any way of determining what 

the length morphisms on the given semigroup were. Thus we can 

determine algebraically whether or not mor{S,N) is empty, but 
cannot give any interesting information about the structure 

of mor(S,N) or its relationship to S itself.
In this section we begin to compensate for this 

deficiency by giving two results. The first tells us that
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length morphisms on finitely generated metrical semigroups 
" almost " always arise from an embedding of a commutative 

cancellative and power cancellative semigroup into a free 
commutative semigroup. The second gives a condition for two 
elements of a semigroup to be of equal length under all the 
length morphisms of the semigroup.

Given any finitely generated semigroup we have by lemma 
2.5 that mor(S,N) is isomorphic to mor(S',N), where S' is 
given in definition 2.2. Thus any length morphism on a 
finitely generated semigroup S is induced by the morphism 0 
and a length morphism on an associated commutative, ^
cancellative and power cancellative finitely generated 
semigroup 8'Grillet's theorem gives us that a commutative 
cancellativeand power cancellative finitely generated 

semigroup is metrical if and only if it is embeddable into a 
free commutative semigroup. The natural question to ask is 

whether or not all length morphisms on such a semigroup are 
induced by such an embedding. In more formal terms given any 

commutative, cancellative and power cancellative finitely 
generated metrical semigroup (S,f ) does there necessarily 
exist a morphism g: S such that the diagram

f
S  > H

xF oonmutes,
where u is the usual length morphism on X̂ ?

The following example shows that this is not the case:
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EXAMPLE 2.1, Let S be the commutative semigroup with 
presentation

< a,b,c,d : ab==cd >.
It is easily seen that S is power cancellative and 

cancellative and has a length morphism f given by
f (a)=f (b)=f (c)=f (d)=l.

However this length morphism cannot be the restriction of a 
usual length morphism on a free commutative semigroup, since 
in such a situation the only elements of length 1 are the 
basis elements, between which no non-trivial relation can 
exist.

We do have a slightly weaker result:

L E M M A  2.10. Given a finitely generated 

commutative, cancel lative and power cancellative metrical 
semigroup (S,f) there exists an integer k and a monomorphism 
g; s — > xF such that the diagram

kf
S --- > H

xF commutes,
where u is the usual length morphism on and kf is the 
morphism that maps s to k.f(s).

Proof. The proof of this result falls into two parts, 
the first corresponding to lemma 2.2, and the second 

corresponding to corollary 2.1. Note first that Q(S) is, by 
lemma 2.1, a free abelian group. The length morphism f 
extends uniquely to a morphism f: Q(S) — > X. We now show 

that either S is free or else there exists a subsemigroup S
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of Q(S) and a positive integer z such that
a) The rank of S is less than that of S,
b) is contained in S,
c) f(S) > 0, and so S is metrical.
If Sis free then the result follows immediately. 

Sufpose therefore that S is not free, and that A is a minimal
generating set for s. There then exists a non-trivial
relation

"1 "2 "p '"1 “2 ”q(*) S2 ...Sp = rĵ rj ...rg
such that the r^ and the Sj are all distinct elements of A,
and nĵ ,mj are strictly positive integers. Suppose further 
that p is minimal over the set of all such non-trivial 
relations. S is metrical and so p ̂  0. Let h be the integer

mi m2

Now define S to be the subsemigroup of Q(S) generated
h = f{ r̂  T2 ...rg )

by

f(ri) f(r )
{ w rg“ ; S2,..,s ; t̂ ,..,tĵ  }

~^2where w = S2 ...Sp
and the tj are the elements of A not appearing in (*).

It is routine to show that "S satisfies (a) and (c). S
also satisfies (b) with z = n^h, the only difficulty being

the proof that hn%
®1

belongs to S. This is indeed the case, since

hhn-̂ hmji hm2
= ( r-, r̂  ...rg ^ )w
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We now define subsemigroups of Q(S) in precisely the 

same way as we did in the proof of corollary 2.1. Then we 
stabilise at a semigroup that is isomorphic to a free 
commutative semigroup and which contains for some k in
N, and for which f is strictly positive. Let X be a free 
generating set for Then the morphism — » xF given by
OC(x) = x̂ (%̂  is a monomorphism. Clearly f |g = uo(X.

Let^be the morphism from S into given by ̂ (s) - s\ 
The power cancellativity of S ensures thatyS is also a 
monomorphism. Thus g =(X<ĵ  is a monomorphism. Furthermore 

given any s in S,
u(g{s)) = u(X(j&(s) ) ) = u (OCj(s )̂) = f(ŝ ) = kf(s).

We contrast lemma 2.10 with the non-commutative case in 

section 4.
The next result gives us a link between mor(S,N) and S.

LEMMA 2.11. Given a finitely generated semigroup S and two 
elements r,sGS then f(r)=f(s) for all f€mor( S,N ) if and 
only if 0(r)=0(s).

Proof. Suppose that 0(r) is not equal to 0(s). Let g 
embed S' into X̂ . Then g(0(r)) is not equal to g(0(s)), and 
so there exists an x in X such that |g{0(r))|^ is not equal 
to |g(0(s))|x . If h is any element in mor( S,N ) then either 

h(r) ^ h(s) or else the map h': S — N given by 
h'(t) = h{t) + |g(0(t))|% 

is such that h'(r) h'(s). We therefore do not have that
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the lengths of r and s are the same for all length morphisms 
on S. The converse is easy since any morphism from S to H is 
invariant under 6.

30



3. Infinitely generated metrical semigroups. Rationally 

metrical, really metrical and locally metrical semigroups.

Corollaries 2.2 and 2.3 do not hold for infinitely 
generated semigroups. For example the semigroup ( 0"*’,+ ) of 

strictly positive rational numbers under addition satisfies 

the conditions of corollary 2.2, but if
f ; Q+ — > W,

then
f(l)=n => f(l/2n)=l/2 , 

which is not possible. This prompts us to make some new 
definitions.

We say that a semigroup S is rationally metrical, or 
Q-metrical if there exists a morphism q: S — > , is
really-metrical, or R-metrical, if there exists a morphism 
r: S — y R^, and we say that a semigroup S is locally 
metrical if every finitely generated subsemigroup of S is 

metrical. In the finitely generated case we shall see that 

these concepts are all equivalent. In general we have that

metrical => Q-metrical => R-metrical

We have alrea(%r seen that the first implication is strict. 

The second implication is also strict as the following 

example illustrates:

EXAMPLE 3,1. Let S be the semigroup Q[/2] under addition. 
Then S is R-metrical since it is a subsemigroup of R*̂ . 
Suppose by way of contradiction that S is Q-metrical, and let
f : S — > Q"*” be a morphism. Notice that for all a,b in N and x i

31 j



■-,

in S that

af(x) = f(ax) = f(b(a/b)x) = bf((a/b)x).
Thus for any q in we have f(qx) = qf(x). In particular 
for all q in we have f (q) = qf(1).

Consider f(/2). Now f(\/2) ^ f(l)\/2 since f( 1 )/2 is 
irrational. Suppose that f (/2) < f (l)/2. Then f(lX/2 - f(>/2) 
is an element of S. However

f{ f d V 2  - f(/2) ) = f(l)f(v/2) - f(/2)f(l) = 0
which is not possible. Similarly we get a contradiction if 

fis/2) > f{l)v/2.

Notice that S is countable, so although we have that a 
finitely generated Q-metrical semigroup is metrical, we do 
not necesarily have that a countably generated R-metrical 
semigroup is Q-metrical.

We also have the implication
R-metrical => locally metrical 

since if f: S — > R^ is a morphism, and U is a finitely 
generated subsemigroup of S, then f(U) is a finitely 
generated subsemigroup of R"*", which is commutative, 
cancellative, power cancellative and without identity. It 
follows from corollary 2.2 that f(U) is metrical, and 
therefore that U is metrical. Thus every finitely generated 
subsemigroup of S is metrical, and so S is locally metrical.

Since a finitely generated semigroup is metrical if and 
only if it is locally metrical, the set of implications 
metrical => Q-metrical => R-metrical => locally metrical 

implies that these concepts are all equivalent in the
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finitely., generated case.

The following example shows that the implication 

R-metrical => locally metrical

is strict.

EXAMPLE 3.2. Let S be the commutative semigroup with |

presentation < a,b,X]̂ ,X2f.. : - bx^ ;n€H >. Let Sĵ
be the subsemigroup of S generated by { a,b,X|,..,Xĵ  } . Let 
f S — > Z be given by

fĵ (a)=l, f^{b)=i , fĵ (x̂ ) = ni - Hfcll + i.

Then fĵ is well defined since it is invariant under the basic 
transitions of the presentation of S, i.e.

Furthermore f̂ (Ŝ ) > 0 . We deduce that each is metrical, 
and since any finitely generated subsemigroup of S is 
contained in Sj for some j, we deduce that S is locally 

metrical. S is however not R-metrical. Suppose by way of 

contradiction that r: S — > is a morphism, then suppose 

that r(a)=w, r{b)=y, r{X]̂ )=z. To ensure that r is well 

defined we must have that

r(Xi_|.i) = r(xĵ ) + r(b) - ir(a) for all i > 0 

from which we deduce
r(x̂ ) = z + (n-l)y - for all n > 0

which is less than 0 for sufficiently large n. Thus S is a 
semigroup that is locally metrical but not R-metrical.
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3.1 Locally metrical semigroups.

In section 2 we defined the congruence % on an 
arbitrary semigroup. We then gave a characterisation of 
finitely generated metrical semigroups in corollary 2.3. As 

mentioned at the beginning of this section, the result does 
not hold in the infinitely generated case. We do, however, 
have the following weaker result:

THEOREM 3.1. A semigroup S is locally metrical if and only if 
there do not exist elements r and s in S such that rsXr.

Proof. Suppose that S is locally metrical but, by way 
of contradiction , that there exists r,sGS such that rs X  r.
Then there exists Xĵ, ŷ ,̂ Uĵ , Vĵ ( i=l,..,n ) such that:

V n W n  =
Now let U = < Xĵ ,Yĵ ,û ,Vĵ ,s ( i=l,..,n ) > . U is finitely 
generated, and so since S is locally metrical, U must be 

metrical; but this is not possible since if f : U — » M is a 
morphism then f(rs) = f (xĵU]̂V]̂y;ĵ) = f (x̂ Vĵ û ŷ  ) =...=f(r) and 
so f(s)=0, which is not possible.

Conversely suppose that there do not exist r and s in S 
such that rs %. r. Let U be a finitely generated subsemigroup 
of S. S i n c e ( U x U )  we have that there do not exist r 

and s in U such that rs Xj r, and so Ü is metrical by 

corollary 2.3.

Example 3.2 gave us a locally metrical semigroup that |
Î

is not R-metrical, and therefore not Q-metrical. We do.
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however, have a weaker, but very useful , result in lemma

3.3. First we discuss some results in abelian group theory, 
details of which can be found in Fuchs' book [6].

An abelian group (D,.) is said to be divisible if for 
all a in D and n in M there exists x in D such that x^ = a. 
The divisible hull D(G) of an abelian group G is the unique 
( up to isomorphism ) divisible group such that G is 

embeddable into D(G) in such a way that the image of G is not 
contained in any divisible subgroup of D(G). Fuchs shows 
that given any abelian group G the divisible group D(G) 

exists, and is isomorphic to a direct sum

( 0 (Q,+) ) 0 C (*)
iei

where C is a periodic group.

LEMMA 3.2. Suppose that G is a torsion free abelian group. 
The periodic group C in * is then the trivial group. Thus 
D(G) is isomorphic to a direct sum of copies of the group

Proof. Let f be the required embedding of G into D(G). 
Then for any d in D(G)\1 there exists n in H such that 
d^G f((?\l) ( otherwise the subgroup of D{G) consisting of all 
elements that satisfy this condition, together with the 
identity element,would be a proper divisible subgroup of D(G) 
containing G ). Suppose by way of contradiction that c is an 
element of D(G)\1, but that c^ = 1. Now c6 D(G)\1 and so 
there exist g in G\1 and n in M such that c^ = f(g). Thus 
f (g)̂  = 1, and so f (ĝ ) = 1. Now f embeds G into D(G) and so
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= 1. This is a contradiction since G is torsion free. Thus 
D(G) contains no non-trivial periodic elements and so the 

group C in * must be trivial.

Given a cancel lative commutative semigroup S we define the 

divisible hull D(S) of S to be the divisible hull of the 

quotient group Q(S) of S given in definition 2.1. S is then 
embeddable into D(S). The divisible rank of S is the size of 

the set I in *, We then have the following corollary to lemma
3.2.

COROLLARY 3.1. A cancellative and power cancellative 
commutative semigroup S is embeddable into a direct sum of 
copies of the group (Q,+).

Proof. We know that S is embeddable into D(S) = 
D(Q(S)). Since S is power cancellative we have that Q(S) is 
torsion free ( see the proof of lemma 2.1 ). D(Q(S)) is 
therefore isomorphic to a direct sum © (Q,+) .

LEMMA 3.3. Let S be a locally metrical semigroup. Then if U 
is a finitely generated subsemigroup of S there exists a 

morphism g; S — > Q such that g(U) ^ W.

Proof. Suppose that S is locally metrical. Then the 

semigroup S' defined in section 2 is commutative, 

cancellative and power cancellative and does not contain an 

identity element; and there exists a morphism 6 from S onto 
S'.

It follows from corollary 3.1 that S' is contained in a 
direct sum of copies of the group (Q,+). Denote this direct
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sum by V. Then V can be considered as a vector space over Q.
Let U be a finitely generated subsemigroup of S. Then 

0(U) is a finitely generated subsemigroup of V, and so it 
follows from lemma 2.3 that there exists a subsemigroup T of 
V that contains 0(U), and is isomorphic to a free commutative 
semigroup. Let u be the usual length morphism on T.

Let QT be the set { rt : r€:Q, teT }. Then QT is a 
subspace of V, and u extends to the morphism u': QT — > Q 

given by u "(rt) = r.u(t).
Since u ' is a linear functional on a subspace of V it 

can be extended to a linear functional, q, on the whole of V.
The composition qo 0 is then a morphism from S to Q, 

and q » 0(U) = q(T) = u(T), which is contained in N, as 
required.

The following lemma, closely related to lemma 3.3, is 
due to Hamilton, Nbrdahl and T^mura:

LEMMA 3.4 ( [9] Theorem 4.1 ) Let S be a cancellative 
commutative semigroup of finite divisible rank that does not 
contain an identity. Then there exists a non-trivial morphism 
from S into the semigroup of non-negative rational numbers.

COROLLARY 3.2, Suppose that S is a locally metrical semigroup 
such that s' is of finite divisible rank. Then there exists a 
non-trivial morphism from S into the semigroup of non­
negative rational numbers.

Kobayashi gives an example in [11] of a semigroup of
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infinite divisible rank for which there is no such morphism.

3.2. R-metrical and Q-metrical semigroups

We end this section with a brief discussion of R- 
metrical and Q-metrical sonigroups.

The following two theorems concern characterisations of 
R-metrical cancellative caimutative semigroups.

Tamura has shown ( [19], theorem 3.1 and [20] theorem 
2.1.) the following;

THEOREM 3.2. A cancellative commutative semigroup is R- 
metrical if and only if it is embeddable into a cancellative 
commutative archimedean semigroup without idempotent.

The next theorem is due to Kobayashi ([11]).

THEOREM 3.3. A cancellative commutative semigroup S of 
finite divisible rank is R-metrical if and only if it 
satisfies the condition "B” that for any a and b in S there 
exists an n in M such that for all m in W, a^^ is not a 
divisor of b’̂.

Notice that the semigroup of example 3.2 is locally 

metrical, cancellative and of finite divisible rank, btct- is 
not R-metrical, and so condition "B" is less general than the 
condition of local metricality.

Theorem 3.3 does not hold for cancellative commutative 
semigroups of infinite divisible rank. For example take the
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semigroup

This semigroup satisfies condition "B" since for any x,y in 

(Rq)®’̂\0 such that x|y we must have that for all i in
N. Let a,b be elements of (Rq )*\0, Then the aĵ and the bĵ are 
not all zero, and so it is possible to find n,j in H such 
that naj > bj, and so mnaj > mbj for all m in M, and so we do 
not have | for any m in N.

This semigroup is not, however, R-metrical. Suppose, by way 
of contradiction that the exists a morphism

f: (rJ)"\0 — > R*.
Let a^ = f(0,0,..,0,1,0,....) { where 1 is in the

i^^ position ).

Let b,ceN. Then 
c.f (0 ,0 ,..,0 ,b/c,0 ,...) = f (c.(0 ,0 ,...,0 ,b/c,0 ,.,) )

= f(0 ,0,...,0 ,b,0,..)
= b.f(0 ,0,..,0,1,0,..) 

and so for any q in we have that
f(0 ,0,..,0 ,q,0 ,...) = q.aj_

For every i in N choose qĵ in such that q^a^ > 1. 

Then let
X = ( qi,q2f". )

Then for all n in N
( q̂ ,̂.. ,qĵ, 0,0,) I X ,

and therefore
f( qjL,..,qĵ ,0,0,.. ) < f(x).

39



This is not possible, since for all n in H
f( q^,.. ,q̂ ,0,0,.. ) = f( q^fO/O,.. ) +..+ f( 0,. .0,qĵ ,0,.. )

> n

and so we would have f (x) > n for all n in N.

It appears to be difficult to characterise Q-metrical 
semigroups,and indeed metrical semigroups, in the infinitely 
generated case.
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4. Some results concerning metrical semigroups.

4.1. ^  and the semigroup X G,NXX ).

The well known Greens relations £ and Æt on a semigroup 
S defined by

a JL b <=> S^a = S^b 
a R b <-> aŜ  = bŜ  

are trivial whenever S is metrical. For example suppose that 
(S,f ) is a metrical semigroup and that a jL b. Then S^a = S^b 
and so there exist u,v in S^ such that ua = b and vb = a. Let 
(Ŝ ,f ) be the metrical monoid obtained from S by the addition 

of an identity element, as described in section 1. Then we 
have that f (u) = f(v) = 0 , and therefore that u = v = 1 , and 
so a == b.

We can, however, define generalisations of Î» and R. that 
are not necessarily trivial on a metrical semigroup. We 
define the relations I»"*" and on a semigroup S by

a b <=> Sa = Sb 

a b <=> aS = bS.

First notice that these relations are indeed 

generalisations of the Green s relations, since, for example, 
if a î> b in a semigroup S, then either a =b, in which case 

we must have a b, or else there exist u,v in S such that
ua = b , vb = a.

Now clearly Saçs^a. The opposite inclusion also holds, since 

a = vua€-Sa. Thus Sa = Ŝ a. Similarly Sb = Ŝ b. We deduce
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that Sa = Sb, and so a b.

Consider the null semigroup S given by rs = 0 for all 
r,s in S. Then L and Rare both the identity relation, while

and are both the universal relation. Thus 1,̂  and <R̂  are
non'-trivial generalisations of JL and R,

We also define nf as and 3"̂  by

a 3'̂' b <=> SaS = SbS,

and as the smallest equivalence relation on S that 
contains both and

As in the original Green case we have the Basse diagram

tit

Unfortunately we need not have that xt.
For example take the semigroup S with elements {a,b,c,x,y,z} 
and binary operation given by the table

a b c X y z
X X y z z 2
X y X z z z
X X X z z 2
z z z z z z
z z z z z z
z z z z z z

S is then indeed a semigroup, since S^ = { z }, and so the 
operation is associative. Now aS = bS and Sb == Sc, and so we 
have that a ( o xX ) c . We do not, however, have that 
a ( ) c, since the X^-class of a is { a } and the
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JR'*’-class of c is { c } and these two sets have an empty 

intersection.

We shall take this opportunity to discuss another 
generalisation of the Green's relations due to Fountain 
( see, for example, [5] ). We define the relation X* by 
a X* b in S if and only if there exists a semigroup R and a 
monomorphism S-: S R such that 6-(a) i* 6’(b) in R. The 
relation is similarly defined. It is well known ( see, for 

example, [5] lemma 1.1 ) that
ic 1a X b if and only if for all x,y in Ŝ , ax = ay <=> bx = by. 

Similarly
a r T b if and only if for all x,y in Ŝ , xa = ya <=> xb = yb.

Fountain gives an example of semigroup in which 

( see [5] example 1.11 ).

The two generalisations are distinct. For example in 
the semigroup H we have X* = M N, while = id.

A semigroup S is said to be left reductive if given any

x,y in S
zx = zy for all z in S => x = y.

Right reductive is defined dually, and a semigroup is said
to be reductive if it is both right and left reductive. The 

following result links the relations and X* in the class 

of left reductive semigroups.
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PROPOSITION 4.1. Let S be a left reductive semigroup. Then 
for all a,b in S

a Xj" b => a X* b.

Proof. Let S be a left reductive semigroup. Then we can 

embed S into the full transformation semigroup*3(S) by 

mapping the element s of S to the transformation Çg, where

%  =
The left reducibility of S ensures that this map is 1-1. The 
associativity of S ensures that this map is a morphism.

It is well known ( see for example [10] exercise 2.10 ) 
that in a full transformation group

0 6 X/S <=> Im(oO = Im(̂ ).
Let x,y in S be such that x y. Then Sx = Sy, and so 

Im(ç^) = Im(^), which then implies that ̂  X  We deduce 
that X X* y.

The above result does not hold in general. For example 
let S be the semigroup consisting of elements { a,b,p,z } and 
with binary operation given by the table

a b p z

z p z z
p z z z
z z z z
z z z z

S is indeed a semigroup, since S^ = { z }. Now Sa - Sb and so 
a b. We do not, however, have that a X* b, since aa = az, 

but ba 7̂ bz.
Finally notice that in a cancellative semigroup X* and
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R* are universal. This need not be the case for and 
( for example in the semigroup N we have X"*" = = id, ).
Thus and r J are generally more interesting in the class of 
cancel lative semigroups. Bor the rest of the section we will 

be concentrating on cancellative metrical semigroups.

We now investigate our new relations for the class of 

metrical semigroups.

LEMMA 4.1. Let (S,f ) be a metrical semigroup. Then for all

a,b in S, a ̂  b => f (a) = f (b).
Proof. Let a ÎĴ b. Suppose by way of contradiction that 

f (a) > f (b). Let x be an element of S of minimal length. Then 
there exist y,z in S such that xax = ybz, from which we deduce
that 2f(x) + f(a) = f(y) + f(z) + f(b). Since f(a) > f(b)
this implies that f(y) + f(z) < 2f(x), contradicting the 
minimality of the length of x.

COROLLARY 4.1. Let (S,f) be a metrical semigroup. Then for 
all a,b in S, a b or a b or a b => f(a) = f(b).

We call a metrical semigroup, (S,f), special if

ad" = f.

We dedicate the rest of section 4.1 to finding a 
characterisation of special cancellative metrical semigroups.

Recall frcxn section 1 that the subset S^ of a metrical 

semigroup (S,f ) is defined by
S^ = { ses : f(s) = n }.
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LEMMA 4.2. Suppose that (S,f) is a cancel lative special
metrical semigroup. Then for all s in S and for all n in f(S)

we have *
sSn - Sĵ s - Ŷi+fis)'

Proof. Clearly sS^ and S^s are contained in for I
all s in S and all n in f (S). For the converse let s be in S, 

n in f (S) and t in Sn+f(s)*
Let r be an element of Ŝ . Then f (rs) = f (t) and thus, 

by the speciality of (S,f),
rs R** t.

Let u be an arbitrary element of S. Then there exists v in S 
such that

rsu = tv. 4

Now f (su) = f(sv) and so
su Xj" sv

and so there exists p in S such that
rsu = psv.

We deduce that
psv = tv

and so by cancellation
t = ps G. S^s.

Similarly t€:sŜ .

Using the terminology of [3], a semigroup S is said to 
be left reversible if for any a,b in S

aSAbS ^ ç6,

LEMMA 4.3. Let (S,f ) be a special metrical semigroup. Then S 
is left reversible.

Proof. Let s,r be elements of S. Then there exist p and 
q in N such that f(sP) = f(r̂ ). It then follows from the 

speciality of (S,f ) that s% = r%, and so there exist u and
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V in S such that sRi = r̂ v, and so s(sP” û) = r(r^V). ;|

The following result is well known ( see for example 

[3] pp 300 - 302 ).
LEMMA 4.4. A cancel lative left reversible semigroup is 

embeddable into a group.

COROLLARY 4.2. Let (S,f ) be a cancel lative special metrical 
sanigroup. Then S is group embeddable.

The following technical lemma is neœssary later on.
LEMMA 4.5. Let (S,f) be a cancel lative special metrical 
semigroup. Then there exists a special cancellative metrical 
semigroup such that f'(S') = hcf{f(S)}.H and

S = { x€.S': f (x)^f(S) }.
Proof. By corollary 4.2 there exists a group G and a 

monomorphism 0: S —->• G. For convenience we shall suppose 
that 0 is the inclusion map, by identifying s and 0 (s).
Consider the subset H of G given by

H = { rs~^ : r,s es }.
H is then a subgroup of G? for if r,s,u,v(^S then 

rs^l(uv"l)^^
== rs^^vu”  ̂ = rs“ v̂x(ux)”'̂ 

where x is an element of S chosen to ensure that 
f(vx) = f(s) + k for some k in f(S). It then follows from 
lemma 4.2 that there exists w in Sĵ such that vx == sw. thus 

rs~^(uv”^ = rw(ux)”  ̂
and so H is a subgroup of G.

Now f extends uniquely to a morphism f ; H Z by the
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rule f (rs"̂ ) = f(r) - f(s). Clearly f (H)c. hcf (f (S) }.X . Now 

the well known Euler's algorithm tells us that there exist 
n2,..,n̂ ,̂m]̂ ,...,m̂ e. N and x;ĵ ,...,Xĵ ,y]̂ ,...,yĵ ef (S) such that 

hcf{f(S)} = n^Xi + .. + nĵxj, - { m̂ ŷ̂  + .. + m|.ŷ  ). 

f(S) is a subsemigroup of M, and so { n̂ x̂̂  + .. + nĵ Xĵ  ) and 
{ m^y^ + .. + m^y^ ) are both elements of f(S). We deduce 
that hcf{ (f (S) }€ f (H), and so, since H is a group, that 
hcf {f (S) }.ZÇf (H). Thus f(H) = hcf{f(S)}.X.

We new define S' by

s' = { rs"^€H : f(r) > f(s) } 
and define the length function f  on S' to be the restriction 
to s' of f.

Clearly if s is an element of S then s = ŝ s**̂  and so
S C { xes' : f'(x)ef(s) }.

Furthermore if x€_S' is such that f'(x) = k € f (S) then
“1X = rs ^

where f(r) = f(s) + k. It then follows from lemma 4.2 that 
there exists w in such that r = ws, and thus

X = wss~l = w e.s.
We deduce that S = { s GS' : f'(s)<£f(S) }, as 

required.

We now introduce a class of semigroups that arise as a 
semidirect product of a group G and H. Ultimately we shall 
characterise special cancellative metrical semigroups in 

terms of semigroups from this class. First we investigate 
some properties of the class, culminating in theorem^̂ .1, 

which tells us when two members of the class are isomorphic.
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DEFINITION 4.1. Let G be a group, letOC be an automorphism of 
G. We then define the semigroup ( G,N,oC ) to be the 
semidirect product of G and N given by ( G,N,OC ) = ( G k N,* ) 

with (g,n)*{h,m) = (gcif̂ (h) ,mtn).
Note that the sonigroup ( G,N,oC ) is cancel lative.

We define ( G,Z,0C) in the same way, but allowing n and 
m to vary across Z.

We denote the subset { (g,n) : gGG } by (G,n). Notice 
(G,0) is a group that is isomorphic to G.

LEMMA 4.6. ( G,N,QC) is metrical. Furthermore the only length 
morphisms on ( G,N,(̂ ) are the projection pro onto N and its 
scalar multiples.

Proof. Clearly the projection onto H is a length 
morphism. We now show that for any length morphism f on 

{ G,N,bC), f(g,n) = f (h,m) if and only if n = m, from which 

the result follows.
Let f :( G,N,ô̂ -) — > H be a morphism. Suppose by way of 

contradiction that there exist (g,n) and (h,m) in ( G,N,OC) 
such that n > m but f (g,n) = f (h,m). Then

(g,n) = (h,m)*(DC^(h^^g),n-m) 

and so f (oĈ (h” ĝ),rrm) = 0 , which is not possible.
Conversely suppose by way of contradiction that there exist 

g,h in G and n in M such that f (g,n) = p > q = f(h,n).
Then f((h,n)P) = pq = f({g,n)̂ ). Now there exist h' and |

g' in G such that (h,n)P = (h',pn) and (g,n)9 = (g",qn), and 
so we have h' and g' such that f (h',pn) = f{g',qn), which we 

have already shown is not possible.



4

LEMMA 4.7. The metrical semigroup ( ( G,N,QL ),pr2 ) is 

special.
Proof. Let g,h be elements of G and n be in H. Then 

given any (x,m) in ( G,N,K ) we have

(g,n)*(x,m) = (g<xP(x) ,n+m) = (h,n)*(oT̂ (h” ĝ)x,m)

and
(x,m)*(g,n) = (xDf̂ (g),n+m) = (xâ (̂gh”^),m)*(h,n).

Thus ( { G,N,<^),pr2 ) is special.

LEMMA 4.8. ( G,Z,^) a group and ( G,N,K ) is a set of group 
generators for ( G,Z,^).

Proof. First notice that ( G,S,OC ) is a group, since 
for any (g,z) in ( G,Z,oC ) we have

(l,0 )*(g,z) = (g,z)*(l,0) = (g,z)
and

(gfZ)*(oĈ (g~̂ ) f"z) = (ôĉ {g“ )̂r~z)*(g,z) = (i,o).
Next notice that ( G,K,OC) generates ( G,X,lX), since 

if n > 0 and gEG, then

(g,-n) = (g,l)*(l,-l-n) = (g,l)*(l,l+n)*"̂ .
LEMMA 4.9. In the group ( G,Z,b4 ), the subgroup (G,0) is 
equal to (G,n)*(G,n)~^ for any n in Z.

Proof. Given any n in X and any g,h in G, we have 

(g,n)*(h,n)"l = (g,n)*(oC^(h“ )̂ ,-n) = (gh“^,0 ) 

and so (G,n)*(G,n)"^C (G,0). Conversely given any g in G we 

have that
(g,0 ) = (g,n)*(l,n)"l 

and so (G,0)C (G,n)*(G,n)” .̂
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THEDREM 4.1.( G,N,OÇ ) is isomorphic to ( H,N, if and only 
if there exists an isomorphism Q; G — H and an element x in 

H such that the diagram

connûtes.

where i_ is the inner automorphism of H defined by

i„(h) = x"̂ hx.
Proof. Suppose that 'p: ( G,H/OC ) — > ( ) is an

isomorphism. Clearly |((G,1)) = (H,l) since these are the 
sets of elements without proper divisors, vp extends uniquely 
to an isomorphism^': ( G,*,^) ) by the rule
4/'(g,-n) = 4̂ (g,l)*(vf (1,1+n) )”  ̂for n in «P.

By lemma 4.9 we have (G,0) = (G, 1 ) *(G, 1 and 
(H,0) = (H, 1 ) * {H, 1 ^. We deduce that the map

{g,l)*(g',l)*̂  ̂ — > 1 '((g,l)*(g',l)~̂ ) is an isomorphism from

(G,0) to (H,0), and therefore that G and H are isomorphic. 
Let 0 be the isomorphism from G to H given by 
0 (g) = pr]̂ (v|̂ '(g,0 ) ).

Let X be such that (x,l) = ̂ -'(1,1).

Now given any g in G we have (g,l) = (l/l)*(oC (̂g)fO). 

Thus 4'̂ g/l) = ̂ '(g,l)
= v|/(l,l)*4''(oĉ (g)/0) since'4" is a morphism

= (x,l)*(0(oT^(g)),O)

= (x^0 (üT̂ (g))),l).
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Again is a morphism, and so for any g in G we have 
4/((g,0 )*(l,l)) = 'P'(g,0 )*f(l,l).

Thus = 4
i.e. (x^e(oC^(g)} ),1) = (e{g),0 )*(x,l).
Hence x^(6 (oĈ (g) ~ 6 (g-)x for all g in G 

and so 6 = i^o 9oOL 

Thus the diagram cccrmutes.
Conversely suppose that there exist an element x of H 

and an isomorphism 6 : G — > H such that the diagram commutes. 

Define a map v|/ from ( G,N,(X̂ ) to ( H,N,/& ) by the rule 
vĵ (g,n) = (x/S(x)y!?>̂ (x).. .|â̂ ~̂ (x)ĵ (6 (0C^{g) ) ) ,n).

It is clear that 'I' is both 1-1 and onto, and it therefore 
remains to show that 4 îs a morphism.

First we shew that for all g in G and m in H 
(*) x^x).. .|^^(x)^^(e(or^(g) ) ) = 6 (g)xyS(x).. .^^^(x).

We show this by induction on m. That the result holds for m=l 
follows directly from the fact that the diagram commutes. 
Suppose therefore that the result holds for m k. Then 

X|S(x).. - ^ ( x ) ^ ^ ‘̂ ^{0(cC^’’ ^(g) ) )

= 2̂ [x^x).. .j2>̂“’̂(x)̂ ^(0 {o<L̂ (oL ̂ (g) )))]

= 3̂ [0(oC^(g) )3̂ (x).. .^"^(x)]

(by the induction hypothesis )
= x^[0 (oĈ (g) )]^(x)^(x).. ./Ŝ (x)

= 6 {g)x (̂x) 2̂ (x). ..̂ (̂x)

( since the result holds for m = 1 ). 

Thus the result holds for m = k+1 and so the inductive proof 

is complete.

We now show that the map ̂  defined above is indeed a
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morphism. Let (g,n),(h,m) be elements of { ). Then
4'(g,n)*vp(h,m) = (z,n-hm) where

z = x^(x)..^“ (̂x)/&̂ (9 (or^{g)))^[3̂ x)..^“’̂(x;̂ {̂e(oc.'’”̂ (h)))] 

= x ^ x ) .  ^ (X [ 6 (oC^(g ) )x̂ix), ^ " ^ ^ ( x ) ^ {0 (o c ^ (h )  ) )]

= xj^(x). .^^~^(x]^^[3^x). (x^"^(0 (oC"~^(g )oC"^(h) ) )]

by (*) and the fact that 0 is a morphism 
= x^(x)... (x)^”'’̂ ^{0 (oc’̂ (̂gDt̂ (h) ) ) )
Thus (z,m+n) = 4̂( (g,n)*{h,m) ) as required.

Theorem 4.1 has the following corollaries:

COROLLARY 4.3. ( G,N,Oi) is isomorphic to G x N if and 
only ifc/_is inner.

Proof. G X N  is isomorphic to { G,M,id ). Thus by 
theorem 4.1, ( G,N,oC ) is isomorphic to Gx N if and only if 
there exists an automorphism 0 of G and an inner automorphism 
i of G such that

id o 0 = i o 0PQC, 
i.e 0( = 0” ô i” ô 0.

The set of inner automorphisms of a group G forms a normal 

subgroup of the group of all automorphism of the group G, and 
so we deduce that such i and 0 exist if and only if 0( is 
inner.

COROLLARY 4,4. ( G,N,OL) is isomorphic to Gxn if and only if 

there exists z in G such that (z,l) is central ( that is 

(z,l) commutes with every element of ( G,N,(̂ ).)
Proof. Suppose that ( G,H, OC) is isomorphic to GxN. 

Then by corollary 4.3 there exists z in G such that for all g
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in G
0 (̂g) = z~̂ gz.

Then for all (g,n) in ( G,N,oC)
(g,n)*(z,l)

= (gz'’̂ zz^,n+l)
= (gz,n+l)
= (zz"̂ gz,n+l)
= (z,l)*(g,n)

Conversely, if z in G is such that (z,l) is central, 

then in particular
(g,l)*(z,l) = (z,l)*(g,l) for all g in G? 

that is goKz) = zOdg) for all g in G.

Taking g = 1 we have that z =oC(z), and then taking g as 

arbitrary we have that ôC(g) - z” ĝz. Thus OC is an inner 
automorphism, and so by corollary 4.3 ( G,N,Ç>(. ) is isomorphic 

to G X N.

We now generalise the class of semigroups of type 

(G,N,0{) to include semidirect products of groups and 
subsemigroups of N.

DEFINITION 4.2. Let X be a subsemigroup of H. Then for any 
group G and any automorphism «of G, we define the semigroup 
( G,X,«) to be the subsemigroup of ( G,N,« ) consisting of 

elements { (g,n) : g in G, n in X }.

We are now in a position to state the main theorem of 
this section, which characterises cancellative special
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metrical semigroups. In the statement and proof of the 

theorem it is convenient to use the following notation : 
given a subset X of H and an element k of H that divides all 
the elements of X, we denote by X/k the set { x/k : x€:X }.

THEOREM 4.2. Let (S,f ) be a cancel lative metrical semigroup 

and let k = hcf{f(S)}. Then (S,f) is special if and only if 
there exists a group G and an automorphism pC of G such that 

(S,f) = ( ( G,f(S)/k,«), k.pro ).
Proof. The converse is similar to lemma 4.7 adapted 

for the case X 7̂ H.

For the direct part suppose that {S,f) is a 
cancel lative special metrical semigroup. By lemma 4.5 there 
exists a cancel lative special metrical semigroup {S',f") such 

that S = { x 6 S' : f'{x)€f(S) } and f'{S') = kN , where we 
recall that k = hcf{f(S)}.

Fix an element t in S'̂ .
Now in the proof of lemma 4.5 we showed that S' is 

contained in a group H such that

H = { rs~l : r,s€s' } .
Let G be the subgroup of H defined by

G = { rs"l : r,ses' , f'(r) - f'(s) }.
Define an automorphism oC on G by 

OC(rs” )̂ = t"'̂ rs” t̂. 

oL is indeed a map from G to G, since
t^^rs'^t = t’"̂ rw(sw)“"̂ t 

where w is an element of S' chosen to ensure that 
f'{rw) = f'(sw) > k = f'(t), and therefore, by lemma 4.2,
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that there exist r' and s' in S'g"(rw)-k that
rw = tr ' , sw = ts '

giving us
(rs” )̂ = r'(s')” £̂: G.

Define a map 6 from ( G,H,OC.) to S' by 
@(rs"l,n) = rs”^^.

1) The range 6 does lie inside S'.
This follows since if rs”  ̂is an element of G then 

rs”^t^ = rw(sw)*"̂ t̂  

where w is an element of S' chosen to ensure that 

f'(sw) > kn = f'(t̂ ). Then, by lemma 4.2, there exists s' in 

S'f'(sw)-kn such that
sw = t̂ s'.

Now f'(rw) = f'(sw) and so, again by lemma 4.2, there exists 

y in S such that rw = ys'. Thus
6 (rs"*̂ ,n) = rws'”  ̂= y &S'.

2 ) 0 is 1-1 .
This follows since if rs“^t̂  = pq“ t̂̂ , 

where f'(r) = f'(s) and f'(p) = f'(q), then
kn = f'(tPrs"l) = f '(tf^"^) = km

and also we then have by cancellation of t^ that
“ 1 — 1rs J- = pq J-.

3) 0 is onto.

Let s be an element of S'. Then f'(s) = kn for some n 

in N. Then
s = st“*^^ = 0 (st~̂ ,n).

4) 0 is a morphism.
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Let (rs“^,n), (pq” ,̂m) be elements of { G,li,oC).

Then 6{ (rs~^,n)*(pg~^,m) )
= 6( r s"'  ̂t" ̂, n+m )

= rs-:^t"pq-^t"V+"'

= (rs"^t )̂(pq"^t^)
= @(rs~l,n)0 (pq"l,m).

Thus 0: ( G,N,oC) S' is an isomorphism.

It is clear that 0 is a metrical isomorphism from 

( ( G,N,OC ),k.pr2 ) to (S',f 
Finally

0{ G,f(S)A/^) = { xeS' : f'(x)ef(S) } = S 
and so the restriction of 0 to ( G,f (S) A  A  ) is a metrical 
isomorphism between ( ( G, f (S) A  A  )fk.pr2 ) and (S,f) .
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4.2. Length cancel lative metricaIsemigroups,F-semigroups 
and F-metrical semigroups.

One of the cornerstones of infinite group theory is the 

theorem of Nielsen and Schreier to the effect that any 

subgroup of a free group is itself free ( see for example 
[13] theorem 7.3 ). In the category of semigroups there is no 

Nielsen-Schreier type result, as the following well known 

example illustrates:

EXAMPLE 4.1. Consider the subsemigroup S of the infinite 
monogenic semigroup < x > consisting of elements 
{ x̂ ,x̂ ,x̂ ,... }. The unique minimal generating set for S is 
the set { x̂ ,x  ̂}. However,

x̂  .x̂ .x̂  = x^.x^ 
is a non-trivial relation between x̂  and x̂ , and so S is not 

free.

This suggests two questions. The first asks when the 
subsemigroup of a free semigroup X^ generated by a set A X"̂ 

is isomorphic to the free semigroup on A. When this happens A 

is said to be a code. There exists an extensive theory of 

codes; see far example [12].

The second question asks what semigroups can arise as 

subsemigroups of free semigroups. This second question is 

that which we refer to as the free semigroup embeddability 
problem.

Budkina and Markov ( [2] ) define a semigroup to be an
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F-semi group if it is isomorphic to a finitely generated 
subsemigroup of a free semigroup. They then characterise 
those F-semigroups generated by three elements. Their results 
do not easily generalise to the general case. Notice that an 
F-semigroup is necessarily embeddable into a group, since it 

is embeddable into a free semigroup, which is in turn 
embeddable into a group. The problem of free semigroup 
embeddability is therefore closely related to that of group 

embeddability. Group embeddability has interested semigroup 
theorists since the very early days of the subject. For a 

discussion of the problem see either [3] chapter 12 or [1] 
chapter 2 .

A good illustration of the role that length morphisms 
can play in this area of semigroup theory is given by the 
well known Levi's lemma. A semigroup, S, is said to be 
equidivisible if for all a,b,c,d in S, ab = cd => 3 u&S^ st 
either a = cu , d = ub

or c = au , b = ud.

LEMMA 4.10. ( Levi's Lemma, see for example [12] corollary

5.1.6 ). A metrical semigroup is free if and only if it is 

equidivisible.

Motivated by Levi's lemma we now use length morphisms 
to investigate the problem of free semigroup embeddability.
In section 4.2.1 we define the notions of metrical morphism 

and length cancellatiyity. In section 4.2.2 we introduce the 
notions of gauges and length functions in groups and state
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some technical lemmas to be used later. Finally in section 

4.2.3 we see how the ideas of sections 4.2.1 and 4.2.2 link 

with each other and the free semigroup embeddability problem.

4.2.1 Metrical morphisms and length cancellativity.

A metrical morphism from a metrical semigroup (S,f) to 
a metrical semigroup (R,g) is a morphism 0: S — > R such that 
f = go0. We define metrical epimorphism/ monomorphism/ 
isomorphism in the obvious way, and say that a metrical 
semigroup (S,f) is metrically embeddable into a metrical 
semigroup (R,g) if there is a metrical monomorphism from 

(S,f) into (R,g).

A metrical semigroup (S,f) is said to be left length 
cancel lative if for all a and b in S,

f(a)=f(b) and aSn bS çi => a=b.
We define right length cancel lativi ty dually, and say that a 

metrical semigroup (S,f) is length cancel lative if it is both 
left and right length cancellative.

Notice that a cancel lative metrical semigroup is length 
cancel lative if and only if it is either left or right length 

cancel lative. For example , suppose that (S,f) is a 
cancel lative left length cancellative semigroup. Let a,b in S 
be such that f(a) = f (b) and there exists u,v in S such that 

ua = vb. Then f(u) = f(v), and so by left length 
cancell at ivity we have u = v. Thus ua = ub, and so a = b by 

cancel lativi ty. We deduce that (S,f ) is also right length
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cancellative.
A length cancel lative metrical semigroup is in a sense 

the opposite of a special metrical semigroup, for if (S,f) is 

special then
f(a) = f(b) => aS = bS , Sa = Sb 

while if (S,f ) is length cancellative then ( if a 7̂ b ) 

f(a) = f(b) => aSnbS = ̂  , San Sb =

4.2.2 Semiqauqes, gauges and length functions on groups.

The notion of a length function on a group was first 
introduced by Lyndon in 1963 ( [13] ), and used to prove the 
Niel sen-Schreier theorem. The idea was generalised to the 
notion of a semigauge on a group by Promislov in 1985 

( [16] ).

DEFINITION 4.3. Let G be a group. A Z-semigauge, or 
semigauge, on G is a mapping p; G — > 19° such that for all 

x,y in G
p(xy) ^ p(x) + p(y) 

p{x” )̂ = p(x) 

p(l) = 0 .
p is said to be a Z-gauge, or gauge, if in addition 

p(x) = 0 <=> X = 1.

DEFINITION 4.4. Let G be a group. Then a Z-gauge p on G is

said to be a length function on G if it satisfies
Al) p(x̂ ) > p(x) for all X in G\1
A2) p(x) +p(y) - p(xy) < p(x) + p(z) - p(xz)
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=> p(y) + p{z) - p(y“ ẑ) = p(x) + p(y) - p(xy)

THEOREM 4.3 ( [13] Corollary 7.2 )A  group G is free if and 

only if there exists a length function p on G.

The Niel sen-Schreier theorem is a corollary to the 

above theorem, since if G is a group with length function p, 
and if H is a subgroup of G, then the restriction of p to H 
is a length function on H.

Lyndon also introduces the map from GXG to H° given by 
d(x,y) = 1/2(p(x) + p(y) - p{xy"^)). Notice that d(x,y) = 
d(y,x).

With the new notation we can restate condition (A2) as 

A2') d(x,y) < d(x,z) => d(y,z) = d(x,y).

Lemmas 4.11 and 4.12 are also from [13], and so we 

state them without proof.

LEMMA 4.11. ( [13] proposition 2.2 ) Suppose that p is a 
length function on a group G. Then for all x,y,z in G 

d(x,y"^) + d(y,z"^) :̂ p(y)
=> p(xyz) ^ p(x) - p(y) + p(z).

LEMMA 4.12. { [13] proposition 2.4 and condition (Al) )
Suppose that p is a length function on a group G. Then p also 

satisfies
A3) p(xy) + p(yx) ^ 2p(x) = 2p(y) => xy = 1.
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Suppose now that (S,f) is a group embeddable metrical 
semigroup. Let G be the free group on S. We say that a 
semigauge p on G is a semigauge extension of f if p|g = f. We 
call a gauge on G that is a semigauge extension of f a gauge 
extension of f, and a length function on G that is a 
semigauge extension of f a length function extension of S.

4.2,3 F-metrical semigroups.

Recall that a semigroup is called an P-semigroup if it 
is finitely generated and is embeddable into a free 
semigroup. As mentioned above, a general characterisation of 
F-semigroups appears to be difficult. In this section we 

introduce the notion of an F-metrical semigroup. Although a 
characterisation of F-metrical semigroups is also difficult 

some promising progress is made, in which we link up the 
ideas F-semigroups, length cancellative metrical semigroups 

and gauges on groups.

We say that a metrical semigroup (S,f) is F-metrical if 
it is finitely generated and is metrically embeddable into a 
free semigroup with its usual length function. Clearly for 
(S,f) to be F-metrical we must have that S is an F-semigroup. 

We see in Example 4.2 that a metrical F-semigroup need not be 

F-metrical.
Let f be any length morphism on a free semigroup X"*".
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Then the metrical semigroup (X̂ ,f) is F-metrical, with the 
required embedding map being the unique extension to of 
the map from X to X"*" given by x — ^ It follows that
for a metrical semigroup (S,f) to be F-metrical, it is 
sufficient for it to be metrically embeddable into a free 

semigroup with arbitrary length function f.

LEMMA 4.13. An F-metrical semigroup (S,f) is length 
cancellative.

Proof. Let (S,f) be F-metrical. Then there exists a set 
X and a metrical monomorphism 0: (S,f) — > (x\u)y where u is 

the usual length morphism on X"*".

Suppose that a,b in S are such that
f(a) = f (b) and aSr^bS çi.

Then there exist x,y in S such that ax = by, and so

0 {ax) = 0 (by) 
i.e. 0 (a)0 (x) = 0 (b)0 (y),

Equidivisibility in X^ ( lemma 4.10 ) then implies that there 
exists w in X* such that
either 0 (a) = 0 (b)w (*)

or 0 (b)= 0 (a)w (**).

0 is a metrical morphism, and so
u(0 (a)) = f(a) = f(b) = u(0 (b)).

Thus in either case (*) or (**) we have u(w) = 0 , which
implies that w = 1.

We deduce that 0(a) = 0(b), and since 0 is monomorphic

this implies that a = b. Thus (S,f) is left length
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cancellative.
In a similar way, (S,f) is right cancel lative, and we 

therefore deduce that (S,f) is length cancellative.

Example 4,2 gives us a metrical semigroup (S,f) which 

is an F-semigroup ( i.e. S is embeddable into a free 
semigroup ), but which is not length cancel lative, and 

therefore , from lemma 4.13, not F-metrical.

EXAMPLE 4.2. Let G be the free group on { a,b,c } and let 

(S,f ) be the metrical subsemigroup of G generated by
{ a,b,ac~^,cb } 

with f (a)=f(b)=f (ac“^)=f (cb) = 1. 
f is well defined since it is the restriction to S of the 
morphism g from G to Z given by g(a)=g(b)=l, g(c)=0. Thus 
(S,f) is a metrical semigroup. In fact it is a metrical F- 
semigroup since S is contained in the subsemigroup of G 
generated by { ac" ,̂c,b } which is free.

(S,f), however, is not length cancel lative, since 

ab = (ac“’̂ ){cb) and f (a) = f(ac” )̂ . Lemma 4.13 then gives us 
that (S,f) it is not F-metrical. Thus there exists a metrical 
F-semigroup (S,f) that is not F-metrical.

Example 4.2 contrasts with the commutative case. In 
lemma 2.10 we showed that if T is embeddable into a free 

commutative semigroup, and if f is a length morphism on T, 

then there exists a positive integer k such that (T,kf ) is 

metrically embeddable into a free commutative semigroup.
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Given an arbitrary metrical semigroup (R,g), and any positive 

integer t, it is easy to see that (R,g) is length 
cancel lative if and only if (R,tg) is length cancel lative. We 

deduce that the metrical semigroup (S,f ) of example 4.2 is 
such that (S,tf ) is never metrically embeddable into a free 

semigroup with usual length morphism, and therefore the above 
statement of lemma 2.10 does not hold in the non-commutative 

case.

We represent our findings so far by a diagram of 
implications. Given a finitely generated semigroup S and a 

length morphism f on S we have

(S,f) is F-metrical 

S is an F-semigroup -=■■/-=> (S,f )is length cancel lative

Example 4.2 shows that the implication (a) is strict. 
We shall show in example 4.3 that the implication (b) is 

strict. It is helpful first to prove two straightforward 

lemnnas:

LEMMA 4.14. Let w,x,y,z be elements of a free semigroup 

such that w^x^ = y^z^, |wl ~ 2 and lvl =3. Then wy = yw.

Proof. Equidivisibility in X"*" ( lemma 4.10 ) and the

fact that I y I > |w| imply that there exists u in X"*" such 
that y = wu. Furthermore |u| = 1. The identity w^x^ = y^z^ 

then, becomes
w^x^ = (wu)̂ ẑ .

Cancellation then gives
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2 2 wx = uwuz .
Equidivisibility in free semigroups and the fact that 
I w I > I u I then imply that there exists v in such that 
w = uv. Furthermore |v| =1. The identity wx^ = uwuz^ then 

becanes 2 2 2 uvx = u'̂ vuẑ .
Cancellation then gives

2 2 vx = uvuẑ .
Equidivisibility in free semigroups and the fact that 

|u| = |v| then imply that u = v.
Thus w = u^ and y = û , and so wy = yw as required.

Suppose that a metrical semigroup (S,f) is given in 
terms of a presentation P(S) = < X | R >. The length 
morphism f on S then induces a length morphism f " on X"̂ given 

by the rule f"(u) = f(u).

LEMMA 4.15. Let (S,f ) be a metrical semigroup where S has 
presentation

P(S) = < X I Uĵ = Vĵ ; i I >.
Then, for any a,b€X"^ with

f "(a) = f "(b) < min{ f(Uĵ ) ; iei }, 
a = b in S => a = b in X̂ .

Proof. Suppose that a = b in S. Then there exist words 
X q ,..,x ^ in X"̂ such that

a = xq X]̂ — > ... — > x^ = b 
is a sequence of basic P(S) transitions from a to b.

It follows that for any 1 ^ i  ̂n either 

^i-1 “ X

67



or else there exist w,z in X* such that

either î-l ~ wUjZ , Xĵ = wVjZ for seme j in I 
or Xĵ.,2 - wVjZ , x^ = wUjZ for sane j in I.

Since f "(x̂ ) = f'(a) < min{ f(Uj) ; j€I }, we deduce that 

^i-1 ~ ̂ i 1 C i ^ n, and so a = b in X"̂ as required.

EXAMPLE 4.3. Let (S,f) be the metrical semigroup with 

presentation

S = < a,b,c,d : a^b^=c%^ > 

and with f defined by
f(a)=2,f(b)=4, f(c)=3 and f(d)=3.

It can be shown ( see^for example, [17] chapter 2 corollary 1) 
that any semigroup given by a presentation with a single 
reduced relation ( that is, an identity u = v in the 
generators in which u and v have no common left or right 
factor ) is group embeddable. S is therefore group 
embeddable, and so S is definitely cancel lative.

We now show that S is length cancel lative. First notice 
that since the last letter of a^b^ is not the first letter of 
either a^b^ or c^d^, and the last letter of c^d^ is not the 

first letter of either a^b^ or c^d^, we must have that for 

any words u,v in {a,b,c,d}*̂  such that u = v in S there exist 

words XQ,...,x̂  in {a,b,c,d}* such that

u = xqPi. . .Xn-iPh n̂
V =

where (pj,qj) = (â b̂ ,ĉ d̂ ) or (c^d^,aV) for 1 4 j 4 n.
Suppose, then, that there exist x,y,w,z in S such that 

xw = yz.
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Fran the above, letting u = xw and v = yz, we must have that 
X = XQPj.. .Xĵ _2̂ x̂  for some 0 < i < n

y = Xgq^.. for seme 0 < j < n
where x' | p^x^ and y'| qyxj in {a,b,c,d}'̂ , and where 

(Pi,qĵ ) are as above.
It then follows that if f(x) = f (y) then i = j and so
f(x3  = f(y3  and x' | PĵXĵ and y' | q̂ Xĵ  in {a,b,c,d}"̂ .

With the given f this is only possible when
x' = p x̂[ , y" = q^x/ 

for some x^ | Xĵ. We deduce that x' = y" in S, and so x == y 
in S. Thus S is left length cancellative, and therefore, 
being a cancel lative senigroup, is length cancel lative.

Suppose now, by way of contradiction, that (S,f) is F- 
metrical. Then S is contained in a free semigroup X"*" in such 

a way that f(s) = |s| for all s in S, where |.| is, as 
always, the usual length morphism on X"*". Then the identity 
a^b^ = c^d^ and the fact that |a| = 2 and |c| = 3  imply, by 

lemma 4.14, that ac = ca in S. This is a contradiction, since 
f (ac) =5, and so such a relation cannot exist by lemma 4.15.

We now try to link the notions of F-metricality and 

length cancel lativity with the notion of gauges and length 
functions in groups. The first result is theorem 4.4, which 

illustrates the close link between F-metricality and length 
functions on free group®. To prove theorem 4.4 we need lemmas
4.16 and 4.17.
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In lemmas 4.16 and 4.17 suppose that G is a free group 
and that p is a gauge on G satisfying conditions Al and A2 of 

definition 4.4. Suppose further that S is a finitely 
generated subsemigroup of G such that the restriction of p to 
S is a length morphism on S. Let X be the unique minimal 

generating set for S.

LEMMA 4.16.(8,p I o) is length cancel lative.
Proof. Suppose that there exist elements x,y, of S and 

s,r of S such that p(x) = p(y) and xs = yr. Then 
p(xs(ys)“’̂) + p( (ys)” x̂s) 

p(xy" )̂ + p(s” ŷ"’Vr)
= p(xy“ )̂ + p(s"’̂r)
^ p(x) + p(y) + p(r) + p(s) since p is a gauge
= p(xs) + p(yr) since p is a morphism on S

= 2p(xs) = 2p(ys).
(A3) now gives us that xs = ys; and therefore x = y as

required.

LEMMA 4.17. Suppose that there exist elements x,y in X and 
r,s in S such that p(x) > p(y) and xs = yr. Let S" be the
subsemigroup of G generated by X\x 0 {v” x̂}. Then p
restricted to Ŝ  is a morphism into N.

Proof. First we will show that given û ,..,û  ̂in Ŝ ,

p(uiy"^2- •
= p(u2..û ) + (n-1 ) ( p(x)-p(y) ) .

To prove this we use induction on n.

Clearly the result holds for n=l.
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Suppose now that the result holds for all n < k. 
Given elonents of S^ let

■"1 ” *  1V = v^, z = V2Y -̂ xvg...V]̂ _2y xvĵ .

Now

Now

p(xz) = p(xv2y"^xv2..
= p(xv2V3.. .Vjç) + (k-2){ p(x) - p(y) )

by the induction hypothesis 

= p(x) + p(v2V3.. .Vjç.) + {k“2)( p(x) - p(y) )
since the restriction of p to S is a morphism 

- p(x) + p(z) again by the induction hypothesis.

2d(vy"”̂ , (xs)"̂ ) = p(vy“ )̂ + p(xs) - p(vy"’̂ xs)
= p(vy" )̂ + p(xs) - p(vr)
= p(vy” )̂ + p(xs) - p(v) - p(xs) + p(y)

( since p is a morphism on S and so
p(vr) = p(v) + p(r)
= p(v) + p(yr) - p(y)
= p(v) + p(xs) - p{y) )

= p(vy"^j - p(v) + p(y)
^ p(v) + p(y) - p(v) + p(y) = 2p(y)

and
2d( (xz)” ,̂ (xs)” )̂ = p(xz) + p(xs) *• p(z” ŝ)

= 2p(x) + d{z,s)
( since p(xz) = p(x) + p(z), as shown earlier ) 

2p(x).
Next p(x) > p(y), and it therefore follows that 

d( (xz)"*̂ , (xs)“ )̂ > d{vy“ ,̂ {xs)~̂ )
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and so from K2' we have that
d(vy“ ,̂ (xz)"̂ ) = d(vy" ,̂ (xs)~̂ )

which expanded gives
p(vy~ )̂ + p(xz) - p(vy*”̂ xz) = p(vy“ )̂ + p(xs) - p(vy"^xs).

Thus p(z) - p(vy""̂ xz) = p(s) - p(v) - p(r)

and so p(vy"^xz) = p(v) + p(z) + p(r) - p(s)
which implies p(vy"^xz) = p(v) + p(z) + p(x) - p(y).

Recall that
p(z) = p(v2 ..Vĵ ) + (k-2 )( p(x) - p(y) )

and so _ _
P(viy"^xv2.. xvjç)

= p(vy“ x̂z) = p(V]̂ ...jç) + (k-l)( p(x) - p(y) )

as required. The induction is complete.
The result now follows, since if w,z are elements of S"

then there exist elements â ,..,aĵ  and ..yb̂  of

such that
“I “'I "”1w = a-jj xa2y x.. .y "̂ xâ

and z = b]̂ y""̂ xb2y^^x.. .y"̂ xk^
and so

p(wz)
= p(a|y'̂ x̂a2y~^x.. .y” x̂aĵ b]̂ y“^xb2y“^x.. .y'̂ xt̂ )
= p(a]̂ .. . .b̂ ) + (n+m-2) ( p(x) - p(y) )

= p(a2' .â ) + (n-1 ) (p(x)-p(y) ) + p(b̂ . .b̂ ) + (m-1 ) (p(x)-p(y) )
= p(w) + p(z). Thus p|g" is a morphism as required.

THEOREM 4.4. Suppose that G is a free group and that p is a 
gauge on G satisfying (Al) and (A2) of definition 4.4. 

Suppose that S is a finitely generated subsemigroup of G such
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that p restricted to S is a morphism into N. Then (S, p|g 

is F-metrical.
Proof. Let X be the unique minimal finite generating 

set for S.
If there do not exist distinct elements x and y in X 

and elements r and s in S such that xs = yr then S is free 
and the result follows trivially.

If there do exist such elements then we have from lemma

4.16 that either p(x) > p{y) or else p(y) > p(x), since p(x) 
= p(y) would imply, by length cancel lativity, that x = y.

Suppose without loss of generality that p(x) > p(y). 

Then from lemma 4.17 the subsemigroup S' of G generated by 
X' = X\x V {y” x̂} is such that p restricted to S' is a 
morphism into N. Furthermore S is contained in S' .

Finally notice that
p(X)= T  p(x) > = p(X')

and so repetitions of the above procedure must, by the 
finiteness of p(X), eventually terminate with a set Y such 

that Y generates a free semigroup containing S. Furthermore 
the restriction of p to < Y > is a length morphism, and so 

the inclusion
i : (S,p|g) — » { < Y >, p|<Y> ) 

is a metrical anbedding of (S,p|g) into a free semigroup.

COROLLARY 4.5. A finitely generated metrical semigroup (S,f) 
is F-metrical if and only if S is group embeddable, and f has 
a length function extension on some group containing S.
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Proof. Suppose that (S,f) is F-metrical. Then there 
exists a set X such that the inclusion 

i: (S,f) — > (X"̂ ,].!) 
is a metrical monomorphism, i.e. f{s) = |s| for all s in S.

X^ is contained in the free group, FG(X), on the set X. 
Thus PG(X) is a group containing S.

Let p be the usual length function on FG(X) { that is, 
the map from FG(X) to that maps an element g of FG(X) to 
the length of the shortest word on the alphabet XUX^^U {1 } 
that " represents " g ). The restriction of p to X"*" is then 
equal to |. |. In particular, the restriction of p to S is 
equal to f.

Conversely suppose that S is group embeddable and that 
H is a group that contains S. If f has a length function 

extension on H then H is, by theorem 4.3, a free group. It 
follows from theorem 4.4 that (S,f) is F-metrical.

In practice it may be difficult to find a length 
function extension for a length morphism on a metrical 
semigroup. Theorem 4.5 which follows is less tidy than 
corollary 4.5, but does give us a procedure for determining 
whether or not a finitely generated metrical semigroup (S,f) 
is F-metrical. It may be possible to develop the procedure 
into an algorithm. The theorem is, at any rate, interesting 
in so far as it gives us a better link between the notions of 
F-metricality and length cancel lativity than that given in 
lemma 4.13.
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First we introduce sane specific semigauge extensions.

Let S be a group embeddable semigroup and let H be 

the group of right quotients of S ( see section 1 ). As usual 

we identify S with its image underot. Thus any element h of H 
can be written in the form

h =
where the Xĵ and the y^ are elements of S such that

Sx̂  r\ Syĵ 7̂

DEFINITIONS 4.5. Let S be a group embeddable semigroup and 
let H be the group of right quotients of S. Let f be a 
morphism from S into N°. ( Ultimately we shall only be 
interested in metrical semigroups and morphisms f into H. For 
the moment it is convenient to define the following for any 
morphism into fP, )

We define the morphism f; H — » Z by
f(xiyĴ ...Xĵ y“ )̂ = f(x2...x̂ ) - f(y]̂ ...ŷ ). 

f is a well defined morphism. { It is in fact the unique 

morphism f: H — > Z the makes the diagram

f
S ----- > Z

commute. )

Notice that f(s) = f(s) for all s in S.

We define the mqp p£ from H into ISP by
Pf (h)
= min{2 l| f (Xĵ )-f (yĵ ) I :h =fHxĵ yT̂ ; K̂ ,Ŷ S*,Sx̂ rtSYi }•

I
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It is an immediate consequence of the triangle 

inequality that
Pf(h) > Jf(h)I

for all h in H.
We say that h == TT x.-yT is a good representation of h r= \

with respect to S and pf , or simply a good representation of 

h if
1 ) Xf,yf6  S
2 ) SXfn Syf ^ ̂

and 3) pf (h) = 2T 1 f (Xf )-f (y^) |.
I

LEMMA 4.18. Let S be a group embeddable semigroup and let f 

be a morphism from S into The map Pf from the group of 
right quotients, H, of S into % is then is a semigauge and 

the restriction of Pf to S is equal to f.
Proof. First we show that Pf{h) = pf(h"”̂ ).

Let h be an element of H. Then there exist Xf, y^^ S 

such that
h = xiYÏ^..

is a good representation of h.

,-1 -1 -1 h - ..-ym
and so
Pf(h” )̂
= min{Z I f (Wf ) - f (Zf ) |;h“-̂ =llwfZf ; Wf ,ZjGS,SWfnSZf 7̂ }.

T  |f(yi) - f(xf) I
— Pf(h).

Similarly pf(h) ^ pf(h” ^), and so pf(h*"^) = Pf(h) as
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required.
Next we show that for any h,g in H 

Pf(hg) < Pf(h) + Pf(g).
h and g are elements of H and so there exist 

elements ; Y i ^ ? ^l'” '^m ' ^l'“ '^m ^ such
that

h = XiYÏ^...XnYn̂  

and 9 =
are good r^resentations of h and g respectively.

Now hg = x^YÏ^..
and so Pf (hg)

K- V-
= min{%|f (af )-f (bf ) I :hg =J%afbf ; a^,bf€S,Saj_nSbf ^ çi }•

<: T.I f(xf) - f(yf) I + f  I f(wj) - f(zj) IC=\
= pf(h) + pf(g) as required.

Finally pf is an extension of f, since for all s in S 
s = (ss)s""̂  and Ss^n Ss 0, fran which we deduce that 

Pf(s) ^ |f(ŝ ) - f(s)I = f(s).
Furthermore, since for every s in S we have that
f(s) = I f (s ) I , and since for every h in H we have
I f (h) I ^ Pf (h), we deduce that Pf(s) = f(s).

Thus Pf is a senigauge extension of f.

Leanna 4.19 deals specifically with metrical semigroups.

LEMMA 4.19. Let (S,f) be a group embeddable metrical 

semigroup and let H be the group of right quotients of S. 

Then the semigauge Pf is a gauge if and only if (S,f) is 

length cancellative.
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Proof. Suppose that pf is a gauge.
Let a,bGS be such that f (a) = f (b) and Sa A Sb ̂  jzî. Let 

g - ab“ ;̂ then Pf(g) = f(a) - f(b) = 0. Thus g = 1, and so 
a = b. Thus (S,f ) is right length cancellative, and, being 
cancellative, is therefore also left length cancellative.

Conversely suppose that (S,f ) is length cancellative. 

Let g be an element of H such that Pf (g) = 0. Now there exist
Xf,yf i = l,..,k such that

g =TTxfyf^
is a good representation of g. It follows that

kr2 | f ( x f )  -  f  ( Y f  )  I =  0 ( * )C- I
and SXfOSyf ^ (**)

(*) is only possible if f(Xf) = f(y^) i = l,..,k and so
(**) and length cancel lativity imply Xf == y^ i = l,..,k. We

deduce that g = 1.

Thus Pf(g) = 0  => g = 1, and so pf is a gauge.

DEFINITION 4.6
Let S be a group embeddable semigroup without identity, 

let H be the group of right quotients of S and let f be a 
morphism from S into H°. We define semigauges Pf, semigroups 

and morphisms f^ from into N° recursively as
follows;

Let = S and let fg = f and let p^ = Pf.
For any k in N let pĵ be the semigauge on H given by

^  = V r
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Then define the subsemigroup of H by
S(ĵ ) = { h€:H\l ; P]ç(h) = f(h) }

( remark; is a subsemigroup of H containing S, and so
we deduce from lemma 1.3 that H is also the group 

of right quotients of )
Let fĵ be the restriction to of f,
Notice that f^ is indeed a morphism since it is a 

restriction of the morphism f, and fĵ does indeed map into vP 
since it is a restriction of the map pĵ.

Notice also that contains and that the

restriction of f-̂ to j is equal to It follows that

the f remains the same each time we apply the rules of 

definitions 4.5.

We are now in a position to state the final result of 
this section;

THEOREM 4.5. Let (S,f) be a metrical semigroup. Then (S,f) is 

F-metrical if and only if
a) S is group embeddable 

and for all n in N
b) f^ > 0

( i.e. f^ is a length morphism on )

and c) is length cancellative.

79



Proof. Suppose that (S,f) is F-metrical. Then for some 
set X there exists a metrical monomorphism 

0: (S,f) — > (X"̂, I. I ). For convenience we shall suppose that 

0 is the inclusion map. Thus S is a subsemigroup of X"*", and 

for all s in S f(s) = |s|.
First notice that S is contained in the free group on 

the set X, and so S is certainly group embeddable.

Let H be the group of right quotients of S. From 
definitions 4.5 we have a morphism f; H — > % given by

= f(rf..r^) - f(Sf..S^)

= 1̂ 1-
We now prove that is contained in X'*', and that for 

all X in Ŝ ĵ j we have f̂ (x) == |x|. It will then follow that 
fĵ  > 0, and lemma 4.13 will ensure that is length
cancellative, thus completing the direct part of the proof of 
the theorem.

We prove the result by induction on n. Since = S, 

and fQ = f, we clearly have that the result holds for n = 0.
Suppose now that the result holds for n  ̂k. 

consider an element z of the semigroup
Notice first that lemma 1.3 implies that H is equal to 

the group of right quotients of S^^^, since contains S.

Now z is an element of H and so there exists a good

representation of z with respect to Ŝ ĵj and Pĵ +ff
z =

It follows from the definition of a good representation that
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a) Xf, Yi ̂  for i =
b) S(ĵ jXf fori = l,..,t

and
t r

c) Pk+i(z) = %  I f)c(Xi) - fk(Yi) |.
Now the induction hypothesis holds for n = k, and so 

fĵ (Xf) = |xf I and f]̂ (yf) = jŷ | for i = l,..,t. It follows 

therefore that

Pk+l(z) =  %  I | x i l  -  l Y i l  I -
New 2 is an elenrent of , and so from definition 4.6,

t  ̂ Pk+i(z) = i(z),
i.e. ^  |xi| - ^ l Y i l  = Zl\ l^il - IVil I». - ( i-v
which is only possible if

Ixfl - |yf| = I |xf| - |yf| I for i = l,..,t.
Thus

|xfI > |yf| for i = l,..,t.
If for any j we have | x j | = | y j |, then by the induction 

hypothesis fĵ (xj) = fĵ (yj). The induction hypothesis also 
tells us that (S(ĵ )ffĵ ) is length cancellative, and so (b) 
gives us that Xj = yj. If this is the case then we can 
simply miss the pair x^yj^ from the good representation of 
z. Furthermore we cannot have Xf = y^ for all i = 1 ,..,t 
since j is defined in such a way as to exclude the

identity elenent.
Thus the element z is of the form

where Xf,

and |xf| > |yf|.
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Now by the induction hypothesis again, is
contained in X"̂. It therefore follows from equidivisibility 
in X**" ( lemma 4.10 ) that there exist elements Wf,..,Wf such 
that

Xf = Wfyf
Thus 2 =Wf...Wf X"̂.

Finally

^ = Pk+l<z)
=  , Z  I l ^ i l  -  l Y i l  1 

t. I«il

This holds for all z in and so we have and

^k+1 ” 1*1' completing the inductive proof, and therefore 
ccnpleting the direct part of the thoerem.

Conversely suppose that S is group embeddable, that 
f^ > 0 for all n and that (S^^yf^) is length cancellative 
for all n. Again we let H be the group of right quotients of 

S.
Let R be the subsemigroup of H given by

®(n)-
Let r be an element of R. Then there exists k in H such that 

r Ê We deduce that f(r) = f̂ (r) , which is strictly

positive. Thus f induces a length morphism on R.
We now show that R is equidivisible. It will then 

follow from Levi's lemma ( lemma 4.10) that R is a free 

semigroup.
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Let a,b,c,d be elements of R such that

ab = cd.

We can suppose without loss of generality that f(b) f(d). 

Now for sufficiently large m we have that 
a,b,c,deS(^).

If f(b) = f{d), then f^(b) = f^(d), and so length

cancel lativity in implies that b = d. It follows
from cancel lativity that a = c, and so the conditions of 
equidivisibility are satisfied.

SuppoQ̂ , therefore that f{b) > f(d).

Now consider the element h = bd“  ̂of H.
Now b,dG
and S{j„)bnS(^)d 5̂ 0 .
Also I fn,(b) - fj„(d) I = I f(b) - f(d) | = f{bd~^)
SO

Pfp4.l(h)
K ur

= min{_Ç|f(Xi)-f(yi)|:h=jrx^yp;
C—v

{̂m)̂ î (̂k)̂ i ^ ^
^ f(bd” )̂ = f(h).

The opposite inequality always holds, and so we deduce that

= f(h) ,

and so hes^^^)'
Thus bd”  ̂is an element of R. Since b = (bd”^)d , and 

so c = a(bd"^ ), we deduce that the conditions for 
equidivisibility are satisfied.

Both cases f(b) = f{d) and f(b) > f(d) having been 
considered, we deduce that R is equidivisible, and is 
therefore a free semigroup by Levi's lama ( lama 4.10 ).
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Finally notice that f |g = f, and so (S,f) is metrically 
embedded into (R,f |̂ ). Thus (S,f) is F-mnetrical.

REMARK. Notice that theorem 4.5 holds for infinitely 

generated metrical semigroups.
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5. Metrical and locally metrical ideals.

5.1 The relation 
Vie start by introducing seme convenient notation.

Recall that the congruence on a semigroup S is 

defined to be the smallest congruence containing
{ (rs,sr) : r,s S }.

( See page 18 ). 

Suppose that S is a semigroup, and distinct elements u 
and V in S. Then u%g v if and only if there exists a family 
of elements { Xf,yf,Uf,Vf : i = l,..,n } in S^ such that

u = XfUfViyi ;

XiV^u^Yi = Xi+iUi+iVi+iYi+i i = ;

We call such a family an orderedlinking family or an OLF 
from u to V in S. We refer to the parameter n as the order of 

the OLF.
LEMMA 5.1. Let { Xf,y^,Uf,Vf ; i = l,..,n } be an OLF from u 
to V in S of minimal order. Then we have Uf ,Vf ¥ 1 for all 
1 i < n.

Proof. Suppose that Uĵ = 1. Suppose that k = 1, then 
u = XfVfYf =

and so { Xf,yf,Uf,v^ : i = 2,..,n } is an OLF from u to v of 

order less than n, giving us a contradiction. Suppose 

therefore that k > 1. Then

k̂-l'̂ k-l̂ k-l̂ k-1 V k ^ k  ^ ̂ k+A+l^k+l^k+l ( or v if k=n ) 
and so { xifYi'^i'^i *  ̂ l,..,k-l,k+l,..,n } is an OLF
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from u to V of order less than n, which again gives us a 
contradiction. We deduce that Uf 7̂ 1, i = l,..,n. Similarly 
Vf 7  ̂1, i = l,..,n.

We say that an OLF is heavy if it is completely 
contained in S, i.e. if no Xf,yf,u^ or Vf is equal to 1.

LEMMA 5.2. Let u be an element of S\S^. Ihen v % u => v = u.
Proof. Suppose that v %.u but that v 7  ̂u. Then there 

exists a minimal OLF from u to v. Thus there exist elements 
Xf,y^ in and UffV̂  ̂in S such that u = x̂ û v̂ ŷ .̂ This is a 
contradiction since u is an element of S\Ŝ .

5.2. The locally metrical and compressible parts of a
semigroup.

DEFINITION 5.1. Suppose that S is an arbitrary semigroup. 
Define the locally metrical part, L(S) of S by;

L(S) = { ses ;^r,teS such that rst X  r }.

Define the compressible part, C(S) of S by C(S) = S\L(S).

LEMMA 5.3. If S is an arbitrary semigroup then C(S) is a 
subsemigroup of S and L(S) is a locally metrical ideal of S.

Proof. Firstv C(S) is a subsemigroup of S since if r,s 
are elements of C{S) then there exists w,x,y,z in S such that 
wrx X  w and ysz X  Y- Thus wyrsxz X  wrxysz X  wy, and so rs is 
contained in C(S). Next L(S) is an ideal of S; for suppose 
that r,s in S are such that rs is contained in C(S); then 
there exist x,y in S such that xrsyX x, and so r and s are
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both contained in C(S). Theorem 3.1 now completes the proof.

The following lemma will be of use later on;

LEMMA 5.4, Suppose that I is an ideal of a semigroup S, that 
(G,+) is an abelian group, and that f : I — > G is a morphism. 
Then f is uniquely extendable to a morphism f ; S > G. 
Furthermore, if G ~ Z and im(f ) G M then im(f )Ç.lsP.

Proof.Let x be an arbitrary element of I. Define 
f(s) = f(xs) - f(x) ( ses )

Note first that for all i in I, f (i) = f(xi) - f(x) = f(i) 
( by the morphism property of f :I — ^ G ), and so f is an 

extension of f.
Now f(xs) = f(xsx) - f(x) = f(sx). It follows that f 

is independent of the choice of x; for if y is another 

element of I then
f(ys) - f(y)

= f(ysx) - f(y) - f(x)

= f(sx) - f(x)

= f(xs) - f(x).
We also have that f is a morphism, since if s and r are 

elements of S then
f(sr) = f(srx) - f(x)
= f (xsrx) - 2f (x)

= f(xs) - f(x) + f(rx) - f(x).
= f (s) + f (r).

f is the unique extension of f since if g is an 
extension of f then for all s in S g(xs) = g(x) + g(s) 
implies that g(s) = g(xs) - g(x) = f (xs) - f(x) = f(s).
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Suppose now that G = Z and that im(f)4'H. Suppose by 
way of contradiction that there exists an element s € S\I for 
which f(s) < 0. Now for any element x in I we have that

f(s) = f(xs) - f(x),

and so we have that
(*) f(xs) = f(s) + f(x) for all x in I.

Let i be a specific element of I. Now for any n > 2 we 

have that is^”  ̂is an element of I. It follows from (*) that 

f(iŝ ) = f(s) + f(is^"^).

We deduce that

f(is*̂ ) = f(i) + n.f(s).
This is the required contradiction, for we would then have 

that f(iŝ ) < 0 for sufficiently large n.

LEMMA 5.5. If L is a locally metrical ideal of a semigroup Ŝ  
then L£ L(S).

Proof. Suppose by way of contradiction that there 
exists u in LnC(S). Then there exists r,s in S such that 
rus "%g r.Now L is an ideal,and so us is in L. Thus there 
exists r in S and v ( = us ) in L such that rv Xg r. Now for 

any morphism f; S — > Q we have that f(v) = 0, since 
f (rv) = f(r). However L is locally metrical, and < v > is a 

finitely generated subsemigroup of L. "Therefore by lemma 3.3 

there exists a morphism q: L — > Q such that q(v) > 0. We now 
have a contradiction since, by lemma 5.4, q extends uniquely 
to a morphism q : S — > Q with q(v) > 0.

LEMMA 5.6. If S is a finitely generated semigroup of rank
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n, then either L(S) is empty, or L(S) is metrical and C(S) is 

of rank less than n.
Proof. Let A be a finite generating set for S of 

minimal size. Let A' — A C(S) and A" = A A  L(S). Then 
C(S) = <A/> and L(S) = Ŝ Â 'Ŝ . It follows that if L(S) is 
non empty then the rank of C{S) is less than the rank of S. 

It remains to show that L(S) is metrical.
Define a relation %: on < A" > by u z: v if and only if 

there exist c,d in C(S) such that uc %  vd. Then H i s  a 
congruence and < A" >/c is a finitely generated commutative 
semigroup. Now suppose that there exist u,v in < A" > such 
that uv *C u. Then there exist c,d in C(S) such that uvc TLud. 
Now since d is in C(S) we have that there exist r,s in S such 
that rdsXr, and so ruvcs XrudsX_urds%urlCru , and so v 

is in C(S); but this is a contradiction. We deduce that there 
do not exist u,v in < A" > such that uv“ti u, and so, by 

corollary 2.2, < A" >/C is metrical.
Let f: < a" >/x_ — > N be a morphism. Define 

f : L(S) — N as follows:
If u is in L(S) then u = â b̂ .-.â b̂ â ]̂̂  where n > 0, 

a^^G< A'>̂  and bj: € < A">, Let f(u) = f{ [b̂ .'b̂ ]-;̂  ). f is 

then well defined, since if u = f then

b̂ .'b̂  H  b|̂ ..l̂  . It is clear that f is a morphism.

THEOREM 5.1. Let S be a finitely generated semigroup, and 

suppose that L is a locally metrical ideal of S. Then L is 

metrical.
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Proof. By lemma 5.5 L is contained in L(S). By lemma
5.6 L(S) is metrical. We deduce that L is metrical.

The following result will be of use in section 6.

LEMMA 5.7. Let S be a semigroup and suppose that x,y in C(S) 

are such that xy 9^x. Then xy Xg(g)X. •

Proof, xy%x and so there exists an OLE }

from xy to x in S. Now if for any j we have Xj, yj, Uj or Vj 
in L(S) then XjVjUjyy is also in L{S), L(S) being an ideal of 
Ŝ . Since C{S)̂  is a subsemigroup of and since xyvyu^yj = 

Xj+^^i+l^i+lYi+l S we have that either Xj+]̂ , Yj+l̂  ^j+i or 
Vj+2 is in L(S). Repeating the argument we deduce that x is 
in L(S), which is a contradiction. Thus x̂ , ŷ ,̂ Uĵ and v^ are 
in C(S)1 for all i=l,..,n, and so our OLE is in C(S) and so 

xy /c(s)X as required.

Lemma 5.8 gives an alternative definition of C(S) which 

is sometimes more useful for calculating C(S) for specific 

semigroups.

LEMMA 5.8. Let S be a semigroup. Then an element t of S 
belongs to the compressible part of S if and only if there 
exist in S and r in S and a permutation <Tof n

elements such that (a^ )̂la*(2 ))tr = a^ao-a^.

Proof. Since %  is a commutative congruence we have that 
the condition is sufficient. Conversely suppose that t is 
in the compressible part of S. Then there exist s and r in S 

such that strXs. Thus there exists an OLE { }
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from str to s in S. Notice that some but not all of the 

Xi,Yi,Ui,Vi may be 1. We then have

= < )̂ tr

= ( - - : ^ 2 " 2 V 2 y 2 -
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6. Height, t~compressible semigroups and Ultimately Locally
Metrical Semigroups.

In section 5 we defined the compressible and locally 

metrical parts of a semigroijç). Clearly given a semigroup S we 

have that C(L(S)) = and that L(L(S)) = L(S). In general, 
however, we do not have that L(C(S)) For example
consider the commutative semigroup T with presentation 

< a,b,c : ab = a , be = b >. Then L(T) = < a > and
C(T) = < b,c >, but L(C(T)) = < b >.

We follow the convention of defining C^{S) for n in
IsP by

Ĉ (S) = S and CP(S) = C(C^“*̂ (S)) when n > 0.

Given a semigroup S if we have for some k(S) ^0 
that c^(S)tl(g) = c^(S)(s) { ^ if k(S) > 0 ) we

say S is of finite height and that the height of S is k(S). 
If no such k(S) exists then we say that S is of infinite 
height and define k(S) to be equal to<3D,

Lemma 5.6 ensures that any finitely generated semigroup 
is of finite height, and that the height of such a semigroup
is less than or equal to its rank.

In section 6.1 we consider some basic properties of 

semigroiÇ)s whose locally metrical part is empty.
In section 6.2 we consider ultimately locally metrical 

semigroups. Such semigroups are unions of locally metrical 
sanigroups.

In section 6.3 we investigate ideals of semigroups with
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the properties described in sections 6.1 and 6.2.

Finally, in section 6.4, we investigate cartesian 
products of semigroups with the properties described in 
sections 6.1 and 6.2.

6.1 t-ccmpressible semigroups.

If a semigroup is of height zero, that is if C(S)=S, 
then we say that S is totally ccnpressible or t-ccmpressible.

LEMMA 6.1. Let S be a semigroup, and let C be a t- 

compressible subsanigroup of S. Then CçC(S).

Proof. If c is in C then there exist b,d in C such that 

bed Xq b. Hence bod 'Xg b and so c is in C(S).

LEMMA 6.2. Let S be a finitely generated semigroup. If S is 
t-conpressible, then there exists an x in S such that x̂  %  x.

Proof, We define a relation %  on S by the rule that 
aKb if and only if there exists c such that bac'Xb. Note 
that if aïïb then aKbb^ for all b" in S, and that if we also 
have that a Tib, then aairb. Let ŝ ,...,ŝ  generate S. Then 
if S is t-compressible we have that there exist 
such that SjTTx̂  for i=l,..,n. Let x = x-ĵ.X2-..Xĵ . It follows 
from the above remarks that SjTTx for i=l,..,n, and since the 
S£ generate S it follows that si\x for all s in S. In 
particular xTTx, and so there exists y such that %yx%x, from
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which we deduce that (xy)̂ X xy.

Lemma 6.2 fails in the infinitely generated case, as 

the following example illustrates:

EXAMPLE6.1. Consider the commutative semigroup, S, with

presentation < x^,X2f  : ^i+1 * >• This
semigroup is t-compressible, since x^ is contained in C(S) 

for all i, and therefore S = C(S). The elements of S are 

simply powers of the x̂ , none of which are idempotent.

LEMMA 6.3. Any homomorphic image of a t-compressible 

semigroup is itself t-ccnpressible.

Proof. Let S be t-compressible and let f : S — > R be a 
surjective morphism. Since S is t-compressible then for every 
s in S there exist u and v such that usv Hence for any
r = f(s) in R we have f (u)rf (v) X^f (u), and so r is in C(R).

LEMMA 6.4. Any ideal of a t-compressible semigroup is t- 

compressible.

Proof. Let S be t-oompressible and let I be an ideal of 

S. We show later ( lemma 6.8 ) that L(I) = IAL(S). We deduce 
that L(I) is empty, and so I is t-oompressible.

LEMMA 6.5. Let S be a semigroup with a right/left/two-sided 

ideal I such that I is t-compressible. Then S is 

t-compressible.
Proof. Let r be an element of S and let j be an element 

of I. Then either jr or r j is in I, so either jr or rj is in
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C(S). Thus r is in C(S).

EXAMPLES 6.2. The following are examples of t-compressible 

semigroups.
a) A regular semigroup S is t-compressible, since for all 
elements a there exists an element x such that axa=a, from 

which we have a C(S).

b) A simple semigroup, S, is t-compressible, since S has no 

proper non-trivial ideal and so we deduce that L(S) = S or 
L(S) = If L(S)=S then S would be locally metrical. This is 
not the case since there exist elements a,u,v in S such that 
uav=e.

c) The subsemigroup S of M a t 2 x 2 ) under matrix 
multiplication consisting of elerænts

[ ( b  o) , ( o  a'^ a , b , c , d é H  ]

is neither regular nor simple.
First S is not simple, for if we consider the element

(i S')
then it is routine to show that 

S' (I
2̂b o) * 2b) ' a,b̂ H ̂

which does not contain the element ̂  .

Second S is not regular, for if we consider again the 
element

s • (I s)
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f

then it is routine to show that the set
{ sxs : x£S }

= o) : a e m  ^  ,

which does not contain s.
S is, however, t'-oompressible. To show that this is the 

case let s be an arbitrary element of S.
Suppose first that s is of the form Then rs

with r = (g g^since
(a 0\( 0 â\(0 c\_
Vb o \ o  d/lj) d y -

(.s sXs * (s t)ii sis s) -
fO c V  a O V  0 iN . fa 0\/0 c V O  l\(̂0 d / ^ b  o \ o  ly X  \^b o y L p  à ) \ o  i )  ~

(a 0\(0 c \
\̂ b o J [ o  d y.

Similarly if s is of the form^ then we can find r 
such that rs %_r. Thus we have for all s in S that there 
exists an r such that rss%rsXs, and so s^(S). We deduce 
that S is t-compressible.

REMARK. We see from the examples above that the class of 
t-oompressible semigroups is a non-trivial extension of the 

class of regular or simple semigroups. It is worth noting 
that Fountain's generalisation of regular semigroups, 

abundant semigroups { see for example [5] ), are not 
contained in the class of t-compressible semigroups. For 
example the semigroup ( N,.) is abundant, but not 
t-ccnipressible.
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6.2 Ultimately locally metrical and ultimately metrical
semigroups.

We say that a semigroup S is ultimately locally 
metrical, or ULM if for all x in S there exists n in such 

that X is contained in L(Ĉ (S)), that is if S = Ü L(C (̂S))./y=o
We say that S is ultimately metrical ( respectively 

ultimately R-metrical, ultimately Q-metrical ), or UM, if it 
is ultimately locally metrical and in addition L(C^(S)) is 

metrical ( R-metrical, Q-metrical ) for every n < k(S). 
Notice that theorem 5.1 and lemma 5,6 ensure that a finitely 
generated semigroup is ultimately metrical whenever it is 
ultimately locally metrical.

LEMMA 6.6. If a semigroup S is ULM, then it contains no t- 

compressible subsemigroup. Furthermore if S is of finite 
height then it is ULM if and only if it contains no t- 
compressible subsemigroup.

Proof. Suppose that S is ULM. If S contains a 
t-oompressible subsemigroup U then by repeated applications 
of lemma 6.1 we have that U c c^(s) for all n in M; but then 

for any u in U we have that there does not exist m such that 

u is contained in L(C^(S)) , contrary to assumption. 
Furthermore if S is of finite height then we have that 
ck(S)'̂ l(S) = C (̂ )̂(S), and so is either empty, in

which case S is ULM, or is a non-empty t-^compressible 
subsemigroup of S.
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COROLLARY 6.1. A finitely generated semigroup is UM if and 
only if it contains no element x such that ^  x. In 
particular a finitely generated commutative semigroup is UM 
if and only if it is idempotent free.

Proof. Suppose that S contains an element x such that 
y? Xg X. Clearly x is contained in C(S), and so by lemma 5,7 

x^ Xçi(S) X. Repeating this argument k(S)-l times we deduce 
that X is contained in Ĉ ^̂ (̂S) and so Ĉ ^̂ (̂S) is non-empty, 

and hence S is not ULM.
Conversely suppose that S does not contain an element x 

such that x̂  Xgx. Now Ĉ ^̂ (̂S) is either a finitely generated 
t-compressible subsemigroup or is empty. The former is not 
possible since then by lemma 6.2 we have that there exists x 

in C = C (̂^)(S) such that x^ x, and so S contains an 
element x such that x^ TCg x, contrary to assumption. Thus 
ck(S)(g) empty and so S is a finitely generated ULM 

semigroup, and is therefore UM.

EXAMPLE 6.3. Let S be the commutative semigroup with 

presentation < z,X]̂ ,X2,... :zx^= Xj_ f = Xy_ ; iérH >.
Notice first that

L(S) = < x^ >
and

C(S) = < z,X2fXg,... >.

Repeating this observation n times we see that 

L(C?(S)) = < >

and
Ĉ '̂ (̂S) = < Z,Xĵ .̂2fX̂ +3r ... >.
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s is not ULM since there does not exist k in such 

that z is contained in L(C (̂S)).
Finally notice that S does not contain a t-oompressible 

subsemigroup. Suppose by way of contradiction that C is a 
t-oompressible subsemigroup of S. Then repeated applications 
of lemma 6.1 imply that CÇC^{S) for all n in H. We deduce 
that C c <  z >. This is a contradiction, since < z > is 

isomorphic to the infinite monogenic semigroup, which is 
metrical, and so contains no t-oompressible subsonriigroup.

Thus the second part of lemma 6.6 does not hold in the 

infinite height case.

LEMMA 6.7. Let S be an ULM semigroup. Ihen every subsemigroup 
R of S is also ULM. Furthermore if 8 is of finite height then 

R is also of finite height and k(R) v< k(S).

Proof. Suppose that R is a subsemigroup of S. Then if x 
is contained in C(R) we have that there exist u,v in R such 

that uxv u. Hence uxv Xg u and so x GC(S). Repeated 
applications of this argument give us that (P(R) C. cP(S)nR 
for all n in N. From this we deduce that R is ultimately 
locally metrical and that if S is of finite height then so is 

R, with k(R) ^ k(S).

The following example shows that a subsemigroup of a UM 

semigroup need not be UM.

EXAMPLE 6.4. Consider the commutative semigroup T with 

coTinutative presentation
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P(T) =  < 3^,32,". ; x,z : xz = X , 3j = aj^^z ; j - 1,2,., >.
Let S be the subsemigroup of T generated by 

X = { z ; a j ( j=l,2.,.. )}.
First notice that S is isomorphic to the semigroup S' with 

commutative presentation

P'{S') =  < z, ai,a2,". : aj = >•
This follows for if u and v are elements of X"̂  such that 
u = V in T then there exist U]̂ ,...,û  in ( {x} V X)"̂  such that

u = û  U2 ... u^ = V 
is a sequence of elementary P(T) transitions. Since u is a 

word in X, and therefore does not contain an occurrence of 
the element x, and since the only P(T) transition that 
involves the element x is the transition xz > x, which 
does not alter the number of occurrences of the element x in 
a word, we deduce that none of the Uĵ contain an occurrence 

of the element x. Thus all transitions u^ ^i+l inust be of 
the form u^ = ajW, û ^̂  ̂“ ̂ j+1^^ ( or the reverse ), and so 
we have a sequence of elementary P'(S') transitions from u to 
V, Clearly if u is connected to v by a sequence of P'(S') 
transitions, then u is connected to v by a sequence of P(T) 
transitions.We deduce that S is isomorphic to S', thus S has 

commutative presentation

P (S) s. < z, a^,a2r*.. • ~ ^ j+1^

Let f: X"̂ — > 2 be given by

f(w) = ^i|w|a - |w|j. 
i = f i

and let g: X"*” — > Z be given by

g(w) = {i-l)|w|g - Iwlg.
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i
Both f and g are well defined morphisms on S, since 

f(aj) = f(aj^2.2) and g(aj) =g(aj+]^z).

Suppose by way of contradiction that C(S) 0. Let s be 

an element of C(S). Then there exist r,t in S such that

rst Xg r.
Now the morphisms f and g are invariant under the 

congruence and so we deduce that
f(rst) = f(r) and g(rst) = g(r),

and so
f(st) = g(st) = 0.

This gives us the required contradiction since if w is an 
elenent of X"̂ then 
f(w) = g(w)

oo
=> Z  i|w|a - klz = Z  - |w|i (-1 i

=> Z  Iwla,“ 0151 1

=> w = ẑ  for sane n in M
and so f (w) = g(w) = 0 implies that w = 1, which is not an 
element of X"̂. We therefore deduce that there is no element s 
of S such that f(s) = g(s) = 0.

Thus C(S) is eirpty, and so S is locally metrical.

S is not, however, metrical, since if h; S — » N is a 
morphism then for h to be well defined we must have that 

h(an+l) = h(a-ĵ ) - nh(z), which is less than zero for 
sufficiently large n, giving us a contradiction.

Finally we show that T is UM. To show this first notice
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that

L(T) = < { a^z^ : ke #  }U { x, a^,a2f. 1 >.
This is metrical, for if we let f : T — > % be the morphism 
given by f(z) = 0, f(x) = 1, f (aj, ) = 1 for ie H, which is 
well defined, then the restriction of f to L(T) is a length 

morphism on L(T). Next notice that C(T) = < z >, which is 

iscraorphic to (H,+), and is therefore metrical.
S is therefore a subsemigroup of a UM semigroup that is 

not itself UM.

EXAMPLES 6.5. We now give some examples of ultimately 

locally metrical semigroups.

a) Any finitely generated commutative idempotent free 
semigroup is ultimately metrical and of finite height

(corollary 6.1 ).

b) Consider the semigroup S of 2x2 matrices over R 

consisting of elements a^l, b > 0 } .
The set L = {(g a > 1, b > 0 } is then an ideal of 

S that is Rrmetrical, with the morphism f into R given by

(b = loge(a).
In fact L = L(S), since given an element s = (b l)°^ S\L we 

have that sr = rs^ where t l) ' and so s^C(S).
We have C(S) ~ b > 0 }, which is R-metrical,

with the morfMsm g into R given by

g( (è i) ) = b-
We therefore have that S is an ultimately R-metrical 

semigroup of height 2.
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6.3 Mure results concerning ideals.

In most of the following, results for metricality will 
also hold for Q and R-netricality.

LEMMA 6.8. Let S be a semigroup and I be an ideal of S. Then 

for all n in if, L(cP(I)) = L(C*^(S))m and cP(I) = C^(S)OI.

Proof. First note that L(S)nl is a locally metrical 

ideal of I and so is contained in L(I) by lemma 5.5. To show 

the reverse inclusion we show that L(I) is an ideal of S. Let 

X be in L(I) and let s be in S. Then sx is contained in I, 

since 1 is an ideal. In fact sx is contained in L(I), for if 
sx were in C(I) we would have that there exist i, j in I such 

that i(sx)j X% i . Now i(sx)j Xji ~> ij(sx) "X̂ i => 
i(js)xXi i => xec(l), contrary to assumption. We deduce 
that sx is in L(I),and it can be shown similarly that xs is 
in L(I). Thus L(I) is a locally metrical ideal of S , and is 
therefore contained in L(S). It also follows that 

C(I) = C(S)n I. Thus C(I) is an ideal of C{S) and we can 
repeat the above argument indefinitely to deduce that 

L(C^(D) = L(C^{S))0I and C^(I) = C^(S)OI for all n.

We saw above { Example 6.4 ) that a subsemigroup of an 

ultimately metrical semigroup, while it must be ultimately 
locally metrical, need not be ultimately metrical. By 

contrast we have

CCROLLARY 6.2. Let S be an ultimately metrical semigroup, and 

let I be an ideal of S. Then I is ultimately metrical.
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Proof. That I is ultimately locally metrical follows 
from lemma 6.7. Furthermore L(cP(I)) = L(C? (̂S))ni, and so 

L(Ĉ (I)) is either empty or metrical for all n.

The next result is a slightly stronger version of 
corollary 6.2.

COROLLARY 6.3. Let S be a semigroup with ideal I. If I is not 
ultimately locally metrical, then neither is S and the height 

of S is equal to the height of I. Furthermore, if this is the 
case then for all n in R , L(C^(S)) is metrical if and only 
if L(C^((D) is metrical.

Proof. Suppose that I is not ULM. It follows from lemma
6.7 that S is not ULM. Suppose that I is of infinite height.
Then by lemma 6.7 we have that S is of infinite height.

Suppose that I is of finite height. Notice first that 

(*) Ĉ (S) = { sec^‘“ (̂S) : (3i6C^"^(I) ) siec^(l) } 
since if s€:C^”'̂ (S) and if i is an element of C^“ (̂I) ( and 

therefore, by lanma 6.8, an element of C^~^(S) ), then
siGC^(I)

implies that siS Ĉ (S) by lemma 6.8

and so s(:c"^S),
and conversely if s is an element of C^(S) then taking any 

element j in CP(I) we have that sj tC^(S)ni, and so by lemma

6.8 again, sj€:C^(I). { The fact that I is not ULM ensures 
that Ĉ (I) is not empty, and so j can always be found .)

We deduce that if C^(I) = C^^^(I), then C^(S) =
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ck+l^S), and therefore that k(S) ^ k(I). Since we always 

have k(I) ̂  k(S), we deduce that k(S) = k(I), completing the 
proof of the first part of the corollary.

Now suppose that L(C^(I)) is metrical for some n in

Let f: L(C^(D) — > N be a morphism.

Now (*) gives us that 
L(C^(S)) = { seC^(S) ; (VieC^(I) ) si€L(C^(I))}. 

L(C^(I)) is an ideal of C^(S), by lemma 6.8, and so we can 
extend f to a morphism f: Ĉ (S) — > hP in the usual way { see 

lemma 5.4 ).
Next notice that given any i&CP'*'̂ (I) there exist r,s 

in C^(S) such that and so we must have that

L . f(i) = 0.
Now for any s in L(CP(S)) and any i in we have

that si^ (I), since C^(I) is an ideal of C^(S).
Furthermore, we must have that si€̂ L((f̂ (I)), since were si in 

we would have, by (*), that s^C^'*’̂ (S), which is not 

the case.
Finally notice that

f (s)
- f(si) - f(i)

= f(si)
= f (si ) > 0.

We deduce that the restriction of f to L(C (̂S)) is 

strictly positive, and therefore that L(CP(S)) is metrical, 

as required.
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Conversely if L(CP(S)) is metrical, then so is L(cP(I)), 
since it is contained in L(CP(S)).

Clearly a semigroup with an ultimately metrical ideal 
need not be ultimately metrical nor even ultimately locally 

metrical; for given any semigroup S disjoint from N we can 

have a multiplication * on S u  H given by the multiplication 
on S, addition on H, and the rule s*n = n*s = n for all 
n in M and s in S. Then M is a metrical ideal of S U H, but 

C(S V  H) = S is entirely arbitrary.

LEMMA 6.9. Let S be a semigroup with ideal I. Then xeC(S) if 
and only if there exists z in S and w in I such that wxz X j 
w.

Proof. The *‘if " part is obvious from the
definition of C{S) and the fact that

For the other part suppose that x is in C(S). Then 
there exist y and z in S such that yxz "Xg Yf and so there 
exists an OLF { Xĵ ,U£,Vĵ ,y£ i=l,..,n } from yxz to y in S.
Now let j be an arbitrary element of I. We show that 

( j^)xz Xj completing the proof of the lemma.

First notice that

(ĵ y)xz = j&^u^Vĵ ŷ

•Xi j^x^u^v^y^j^ ,
since ĵ , ĵ Xĵ Uĵ v̂ yĵ  €1.
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Similarly

i^Vn"nyni^ '%!

Then note that for i = 1,... ,n
j^XiUiViYij^ jXiU^jjv^Yij

( since j, jxĵ Uĵ ,Vĵ yĵ j ei )
Xj jXijViU^jy^j

{ since Uĵ j and jv^G I )

( since j,ix^,y^j SI )

= 3^xi+i"i+i'^i+iyi+i3^
( since { Xj,Uj,Vj,yj } is an OLF ). 

The required result now follows.

6.4. Products of semigroups.

In this section we give some basic lemmas concerning 
metricality and cartesian products. Our results concern 
products of two semigroups, but can be extended to the case 
of a finite cartesian product.

LEMMA 6.10. Let A and B ̂  semigroups. Then (a,b) XArB iEiÉl 
only if a c and bXg d.

Proof. Suppose that (a,b) (Cfd). Notice that
(AXB)̂  is a submonoid of A^xB^, and so there exists an OLF 
from (a,b) to (c,d) in A^xB^, i.e. there exist

(x^,x^), (yĵ fyp f (u^,u^), (V̂ ,v̂ ) in A^XB^ i = l,...,n 

such that
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(Xĵ ,x{) (Uĵ ,u{) (V]̂ ,v{) = (a,b) ;

(Xi,x£)(Vi,vî)(Ui,u-)(yi,yî)

= (Xi+l/Xi'+l) (Ui+l'bi'+l> (Yi+l'Yi+l)
i = 1,...,n-l ;

and (Uĵ,Uĵ) (yĵ ,ŷ ) = (c,d) .

It follows that
a = xpu^v^yi ;

XiViUiyi = Xi+iUi+iVi+iYi+i i =  ;

Vn"nYn = ̂  '
and

b = x£u{v{y{ ;

x£v£uiy£ =  Xi'+iUi+iVi+iyiVi i = ;

 ̂•
Thus we have an OLF from a to c in A and an OLF from b to d 

in B, and so a c and b *)̂  d as required.

The converse of lemma 6.10 does not hold, as the
following example illustrates;

EXAMPLE 6.6, Let A be the free semigroup {a}"*" and let B be 
the free semigroup {c,d}’̂. Then clearly a a , and 

cdXg dc. Now (a,cd) and (a,dc) have no proper divisors in 
A XB, and therefore by lemma 5.2 are not related.

LEMMA 6.11. Let A and B be semigroups. Then C(AXB)=C(A)xC(B).
Proof. Suppose that (a,b)GC{A B). Then there exist 

(c,d) and (e,f) in AkB such that (c,d)(a,b)(e,f )'XaxB 
We deduce from lemma 6.10 that cae c and dbf /(g d. Thus 

(a,b)G C(A)KC{B).
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For the converse suppose that acC(A) and b€:C(B). Thus
there exist c,e in A and d,f in B such that cae"X^ c and
dbf 7^ d. Let { x̂ ,yĵ ,Uĵ ,v̂  : 1 = } be an OLF from cae
to c in A of minimal order. Then the OLF

{ c2xi,yiC,Ui,Vi )
is a heavy OLF from c^aec to c^ in A { recall from page 86 

that an OLF in a semigroup S is heavy if it is completely 
contained in S ). Thus we have a heavy OLF

{ x£,y£,u£,v£ : i = l,..,n } 
from c^aec to ĉ . Similarly we have a heavy OLF

{ Pj,qj,rj,Sj : j = l,..,m }
from d^bfd to d̂ . We can suppose that m = n, since if, for 
example, m is less than n then we extend our OLF from d^bfd 
to d^ to one of order n by the addition of the OLF 
{ d,d,d,d : k = m+l,.,n }. We then have the ( heavy ) OLF 

{ (x£,pĵ ),(y£,qĵ ),(u£,r^),(v£,s^) i = l,..,n } 
frcm (c^aec,d^bfd) to (ĉ ,d̂ ) in AXB.

Since
(c âec,d̂ bfd)

== (c^ae,d^bf ) (c,d)

"^AxB (c,d)(c^ae,d^bf)
= (c^ae,d^bf)

= (c^,d^)(a,b)(e,f) 
we deduce that (c^,d^)(a,b)(e,f) and so (a,b) 
is in C(AX B).
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COROLLARY 6.4. Let A,B be semigroups. Then As-B is locally 
metrical if and only if A or B is locally metrical.

Proof. A xB is locally metrical if and only if C(AXB) 

is empty; that is, if and only if either C(A) or C(B) is 

anpty.

We also have

LEMMA 6.12. Let A,B be semigroups. Then AXB is metrical if 
and only if A or B is metrical.

Proof. The "if" part isobvious.
For the other part suppose that there exists a morphism 

f : AxB — ^ N. Notice first that for all a,c in A and b,d in B 
(a,b̂ )(c,b) = (a,b)(c,b̂ )

and
(â ,b)(a,d) = (a,b)(â ,d)

and therefore
f(a,b )̂ - f(a,b) = f(c,b̂ ) - f(c,b) 

and > (*)
f(a^,b) - f(a,b) = f(â ,d) - f(a,d) y  

New for any a in A and b in B and n > 1 we have 
(a,b̂ ) (a,b) = (a,kP^) (a,b̂ )

and so

f(a,b^) = f(a,b*̂ "̂ ) + f(a,b̂ ) - f(a,b) 

which gives us that
f(a,b") = f(a,b) + (n-l)( f(a,b^) - f(a,b) ).

Since f > 0 we deduce that f{a,b̂ ) ^ f(a,b).

Similarly
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f (â ,b) f (a,b) (**)
for ail a€.A, b€B.

Suppose that there exists a in A such that for all b in

B,
f(a,b2) > f{a,b).

We then define f : B — > R by

f(b) = f(a,b̂ ) - f(a,b).
This is a morphism since

f(be) = f(a,bcbc) - f(a,bc)
= f(a^fbcbc) - f(â ,bc) from (*)
= f(â ,b̂ ) - f(â rb) + f(a ,̂ĉ ) - f(â ,c)

= f(b) + f(c)
and so B is metrical. Similarly if for a given b in B we have 
for all a in A that

f(a2,b) > f(a,b) (***)
then A is metrical.

Finally siç>pose that B is not metrical. Then for all a 
in A there exists b in B such that

f(a,b2) = f(a,b).

Then by (*) we have that for all x in A,

f(x,b̂ ) = f(x,b).
Now if A is not metrical then from (**) and (***) there must 

exist X in A such that
f (x̂ ,b̂ ) = f(x,b̂ )

and we therefore deduce that
f ( (x,b) (x,b) ) = f(x,b)
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which is not possible.
Thus if AXB is metrical we must have that either A or B 

is metrical.
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