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ABSTRACT

Let E, E; denote, respectively, the set of singular idempotents in 7}, (the semi-
group of all full transformations on a finite set X,, = {1,...,n}) and the set of idem-
potents of defect 1. For a singular element « in T}, let k( ), k1 () be defined by the
properties

a € EH9, a ¢ BH-1

ac Efl(a), a ¢ Efl(ﬂf)—l'

In this Thesis, we obtain results analogous to those of Iwahori (1977), Howie (1980),
Saito (1989) and Howie, Lusk and McFadden (1990) concerning the values of k()
and k(o) for the partial transformation semigroup P,. The analogue of Howie and
McFadden’s (1990) result on the rank of the semigroup K(n,7) = {a € T, : |im o] <
r,2 < r < n— 1} is also obtained.

The nilpotent-generated subsemigroup of P, was characterised by Sullivan in
1987. In this work, we have obtained its depth and rank.

Nilpotents in IO, and PO,, (the semigroup of all partial one-one order-preserving
maps, and all partial order-preserving maps) are studied. A characterisation of their
nilpotent-generated subsemigroups is obtained. So also are their depth and rank, We
have also characterised their nilpotent-generated subsemigroup for the infinite set X =
3 e BT

The rank of the semigroup L(n,7) = {¢ € § : |ima| < 1 < r < n—-2}
is investigated for § = O,, PO,,SPO, and I, (where O, is the semigroup of all
order-preserving full transformations, S PO, the semigroup of all strictly partial order-

preserving maps, and [, the semigroup of one-one partial transformation).
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INTRODUCTION

Since the paper by Howie [16] in 1966, establishing that every singular selfmap
of a finite set X, = {1,...,n} is expressible as a product (i. e. a composition) of
idempotent selfmaps, there have been many articles on this topic. We draw attention
in particular to Iwahori [23], Howie [19], Saito [25], Howie, Lusk and McFadden [20]
and Howie and McFadden [21].

All of these papers are concerned with the full transformation semigroup 77, con-
sisting of all maps « : X,, — X,,. Evseev and Podran [8] considered the larger semi-
group P, consisting of all partial maps from X, into itself and showed that there too
all elements other than permutations of X, are expressible as products of idempotents.
However, the considerable developments that have taken place concerning total trans-
formations have not as yet been matched by corresponding progress in the partial case.

In fact it turns out to be relatively easy to prove results of P, corresponding to
those for T7,. By a result of Vagner [29], quoted in Clifford and Preston [3], there is an
isomorphism between P, and a subsemigroup P} of the full transformation semigroup
U, consisting of all maps e : {0,1,...,n} — {0,1,...,n} for which O« = 0. This
isomorphism proves to be a powerful tool in translating results on T, to very similar

results concerning P,.

Let SP, be the semigroup of all strictly partial transformations on the set X,,. An
element « in P, is said to have projection characteristic (k,r) or to belong to [ k, r] if
| dom | = k and |im o] = r. Every element & € [n— 1,n— 1] has domain X, \ {i}
and image X,\{;j} for some %, j in X,,. Hence there is a unique element & in [n, n]

associated with «, defined by

0= J, & = za  otherwise,




and called the completion of ««. In [12] Gomes and Howie proved that if n is even
the subsemigroup SI,, of P, consisting of all strictly partial one-one transformations
is nilpotent generated. For n odd they showed that the nilpotents in SI, generate
SI,\Wy-1 where W,_1 consists of all « € [n— 1,n— 1] whose completions are
odd permutations. They also proved that the depth of (N'), denoted by A ({(N')) (where
N is the set of all nilpotent elements in S1I,,), which is the unique &k for which

(Ny=NUN?U--.UN* and (N)#NUN?U...UN*,

to be equal to 3 or 2 according to n is even or odd.

Simultaneously and independently, Sullivan [26] investigated the corresponding
question for SP,, the subsemigroup of P, consisting of all elements that are stictly
partial, where the answer turns out to be similar: If N is the set of nilpotents in SP,

then
NY = SP, if n is even,

In [13] Gomes and Howie raised the question of the rank of the semigroup Sing,
(the semigroup of all singular selfmap on X,,) and that of SI,,. They showed that both
the rank and the idempotent rank of Sing,, are equal to %n( n— 1). On the other hand
they showed that S I,, has rank n+ 1, and if n s even its nilpotent rank is also n+ 1. For
nodd they showed that both the rank and the nilpotent rank of S I,,\W,,..1 are equal to
n+ 1. Their result for Sing, was later generalised by Howie and McFadden [21], who
showed that the rank and the idempotent rank of K(n,7v) = {a € Sing, : |ima| <
r,1 < r < n— 1} are both equal to S(n, ), the Stirling number of the second kind.

In another paper [14], Gomes and Howie investigated the rank of the semigroup
Oy, PO,, and SPO,, (the semigroup of order-preserving full transformations, order-
preserving partial transformations and order-preserving strictly partial transformations

on X,). They showed that the rank of O, is n, that of PO,, is 2n — 1 and SPO,, has




rank 2 n— 2. The idempotent rank of O,, is 2n— 2 (O,, was proved to be idempotent-
generated by Howie [17]), PO, is idempotent-generated and its idempotent rank is
3n— 2. The semigroup SPQO,, is not idempotent-generated and so the question of its

idempotent rank does not arise.

Let E, E; denote, respectively, the set of singular idempotents in T}, and the set
of idempotents of defect 1. For a singular element o in T7,, let k() , k1 (@) be defined
by the properties

ae BN, o¢ KO,

a € E{cl(a), - ¢ E{GX(OI)—I )

In Chapter 1, we show how the results of Iwahori [23], Howie [19], Saito [25] and
Howie, Lusk and McFadden [20] concerning the values of k(«) and k;(a) can be
modified to deal with the partial case.

For2 <r<n—1,let

K(nr)={a€T,:|ima| <}

Then K (n,r) is a semigroup, whose rank was shown by Howie and McFadden [21]
to be the Stirling number S(n, r) of the second kind. We show a very similar result
about the partial transformation semigroup P,,.

In Chapter 2, we extend the result of Gomes and Howie [13] on the depth, rank and
nilpotent rank of the nilpotent-generated subsemigroup of SI, to the partial transfor-
mation semigroup P,. We have also generalised the idea of a rank in line with Howie
and McFadden to the nilpotent-generated subsemigroup.

Let N be the set of all nilpotent elements in /O, (the semigroup of all partial
one-one order-preserving transformations on X,). In Chapter 3, a description of the
subsemigroup of IO, generated by the set N is given. The set {& € IO, : |im of <
r} is shown to be contained in (N) if and only if r < m/2. The depth of (N) is




shown to be equal to 3 for all n > 3. The rank and the nilpotent rank of {& € IO,, :
|ima| < r and r < n/2} are shown to be both equal to (*) — 1, and for the set
{a € IO, : |ima| < rya € (N) and n/2 < r < n— 2} they are shown to be both
equal to (*) — (*-1) — 1.

In Chapter 4, we give a description of the subsemigroup of PQO,, generated by the
set M of its nilpotent elements. The set {& € PO, : |im «| < 7} is shown to be
contained in (M) if and only if r < n/2 and | X\ dom a| > r. The depth of (M)
is shown to be equal to 3 for all » > 3. The rank of the set {« € PO, : |ima| <
n—2 and a € (M)} is shown to be equal to 6(n — 2), and its nilpotent rank to be
equal to 7n— 15.

The results of Gomes and Howie on the rank of O,,, PO,,, SPO,, and ST, are

generalised in Chapter 5. If we let
Linr)={acS:|ime|<randr < n—2}.

Then we have shown that for § = O, the rank and the idempotent rank of L(n, r) are
both equal to (7). For § = PO, they are shown to be both equal to 33}, (3) (57}).

For § = SPO, they are shown to be both equal to "7} () (¥-1). The rank and the
nilpotent rank of L(n, r) are also shown to be both equal to (7) + 1.

Related questions have been considered in recent years for different types of finite
semigroups of transformations. For example Erdos [7], Dawlings [5, 6] and Ballantine
[1] studied the semigroup of endomorphisms of a finite dimensional vector space over
a field F'. Howie and Schein [22] studied the semigroup of forgetful endomorphisms of
a finite Boolean algebra. Umar [27, 28] considered the semigroup of order-decreasing:

finite transformations for both full and partial one-one transformations on the set X,,.




CHAPTER ONE

IDEMPOTENTS IN PARTIAL TRANSFORMATIBN
SEMIGROUPS

1. Products of idempotents

Let E be the set of all idempotents of P,\[n, n] and E; the set of all idlempotents
of P,\[n,n] with projection characteristic (n,n— 1) or (n— 1,n— 1). It has been
shown in [8] that E, and even E; generates P,\[ n, n]. We denote by U,, the semigroup
of all full transformations of X, where Xp = X,, U {0}.

Now for convenience we record. the result of Vagner [29] (also to be found in [3,
p254] ).

Theorem L.1.1 For each « in P,, define the transformation o* of Xo by

so* = | T ifz € dom a,
0 ifz¢doma.

Then o* belongs to the subsemigroup P} of U, consisting of all those transformations
of Xo leaving 0 fixed. Conversely if B € Py, then its restriction to X,

ﬂ'Xn =BN(Xs x Xyp)

is a partial transformation of X,. The domain of B|X,, is the set of all z in X, for
which 8 # 0. Then the mapping o — o* and 8 — B|X, are mutually inverse

isomorphisms of P, onto P;; and vice—versa. n




Following Howie and McFadden [21], we shall denote |im «f by h(«) and refer
to it as the height of a. Then an idempotent 7 of height n in P} corresponds in this
isomorphism either to an idempotent in [n, n— 1] (if 0! = {0}) or to an idempotent

in[n—1,n— 1] (if |0n~!| = 2). So for example
1 2 13 ay :
(8 7.3 g)=<2 2 3) Gn L3, 20,
0 1 2 2 3Y" ;
(o 0 2 g)‘"‘(z 3) (in[2,2D). o

Since E is the set of idempotents in [n,n— 1] U [n— 1, n— 1], we define Ef}

to be the set of idempotents in P, of height n.

Now let o be an element of P,\[n, n]. Then o* is a singular element of U,, with
the property that 0a® = 0. By the method of Howie [19] o* can be expressed as a
product £; &> - - - £y, of idempotents in U,, and the method ensures that 0¢; = 0 for all 1.
Hence ¢; = €; for some idempotent ¢; in P,\[n, n]. Moreover, if §; is an idempotent
of height nin U, then ¢; has projection characteristic (n, n-1) or (n-1, n-1) as remarked

earlier. So every singular element of Py is a product of idempotents from Ej.

Associated with each « in P, is a digraph I" («) whose verticesl are 1,2,---,n
and where (1, j) is a (directed) edge if and only if s = j. A connected component .
of I' («) has a core k( Q) defined by the property that z( € Q) isin k(Q) if and only if
there exists p > 0 such that za? = z. In the terminology of [19], Q is called standard
if 1 < [k(Q)] < |Q], acyclicif 1 = [k(Q)| < |Q}, eyclicif 1 < |k(Q)] = |2},
and singleton if 1 = |k(Q)| = |Q]. On the other hand it is clear that a connected
component £ of I" («) has no core if and only 1f there exists a positive integerp > 0
such that za® = 0 for all z € Q2. We shall refer to such Q as ferminal. For example if

(1 2 3 45 6 7 8 9 10
%2 3 4 2 6 6 8 7 9 11




then I' (@) is as shown in Figl (see Appendix), and the components, reading from left

to right are respectively standard, acyclic, cyclic, singleton, and terminal.

Definition 1.1.2 For an element « € P, we define the gravity of o, denoted by g(«),
as n+ c(a) — f(a). (Here c(«) is the number of cyclic components of I' («) and
f(a) the number of fixed points of ar). The defect of «, denoted by d( ), is defined as
[X\im af.

The following lemma is obvious:

Lemma 1.1.3 c(a*) = c(a), f(a*) = f(a) + 1. |

As a consequence we have

g(a”) =(n+1) + c(a”) — f(a) =(n+ 1) +c(a) — (f(a) +1)

=n+c(a) — f(a) = g(a).
Lemma 1.1.4 d(a*) = d(a).
Proof.

d(a*) = |Xo\im a*| = [(X U{0})\(im aU {0})]
= |X\im a| = d(a)

We have the following result from [19 & 23].

Theorem 1.1.5 [19, Theorem 3.1] Let Sing,, denote the semigroup of singular map-
pings from X, into X,, and let F' denote the set of idempotents of height n— 1 in




Sing,. For each a in Sing,, the least k for which a € F* is k = g(a), where g(a) is
the gravity of «. ]

Theorem 1.1.6 For all a in P,\[n, 7],

= Ef(“), ad¢ Eg(a)_

Proof. Since a ¢ [n,n], o* is a singular element of P;}. By Theorem 1.1.5 and the
remark made on page 6, o* is expressible as a product €} €} - - - €} of idempotents in P}

of height n, where k = g(«*). Hence by the isomorphism
o= 61 €2 .. ek

and k > g(a).
Suppose by way of contradiction that & = € --- ¢, with ¢;,---,¢ € E; and

l<g(a). Theno* =€} ---€, with €}, - - -, €f € Ef. This is a contradiction. .
) 1 l 1 l 1

Theorem 1.1.7 [25, Theorem9] Let Sing,, be the semigroup of all singular mappings
Jrom X, into X,,, and let F' be the set of idempotents of Sing .. For ain Sing ,, let k( )
be the unique positive integer for which a € F¥9 o ¢ FK9-1 gnd g( ) the gravity
of o and d( ) the defect of a. Then k() = [g( ) /d(a)]or[g(a) /d(a)] + 1, where
[x] for any real number x denotes the least integer m for which m > z. ]

Theorem 1.1.8 Forall « € P,\[7,nl, let k() be defined by the property that
a € EX®) a ¢ BHa-1,

Then k(a) = [g(a)/d(a)] or [g(a)/d(a)] + 1.




Proof. Since o ¢ [n,n], o* is a singular element of P}. By Theorem 1.1.7 and the
remark made on page 6, o* is expressible as a product €} - - - €} of idempotents in E*,
where k = [g(a*) /d(a*)] or [g(a*) /d(a*)] + 1. Hence by the isomorphism

=€ €,
and k = [g(a*) /d(a*)] or [g(a*) /d(a*)] + 1, ie

k= [g(a)/d(a)] or [g(a)/d(a)]+ 1.

Theorem 1.1.9 [20, Theorem 2.1] Let o« € Sing,, andp > 1. If

9(a@) <(p—Dd(a) +1

then a € FP, ||

Theorem 1.1.10 Let o € P,\[n,n] andp > 1. If
g9(a) < (p— Dd(a) + 1

then o € EP.

Proof. The element o* is singular and g(&*) = g(a), d(a*) = d(a). Thusif g(@) <
(p— 1)d(a) + 1, then equivalently we have g(a*) < (p— 1)d(a*) + 1. Hence from
Theorem 1.1.9 o* € (E*)?, and from the isomorphism we have o € EP. B

Theorem 1.1.11 Let o € P,\[n,n] and d(«) = d. If n— d is even, then

o(e) < 3 (30—,
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If n—dis odd, then
1
g(a) < :2-(3n—d— 1).

Proof. Let @ € P,\[n,n] and let d(«) = d. Suppose first that n — d is even. Then
(n+ 1) — d is odd. However, every o must contain at least one fixed point, namely
0, and so, arguing as in the proof of [20, Theorem 2.2], we see that the unique way of
obtaining an element of P, of defect d and maximum gravity is by forming (n— d) /2

2—cycles and mapping the remaining d + 1 elements to 0. This gives
g(a) =g(a) =(n+ 1) +(n—-d)/2 —1=(3n—d)/2.

Suppose now that n — d is odd. Again o* has at least one fixed point. This time,
as in [20], there are several ways of achieving an element of defect d and maximum
gravity. One way is to form (n — d — 1) /2 2—cycles, and to choose z outside these
2—cycles, mapping z to 0 and all other elements to z. No other device will produce an

element of greater gravity. The gravity we obtain in this way is

(n+1)+(n—-d—-1)/2 -1=Bn-d-1)/2. |

Theorem L1.12 Let o € P,\[n,n] and letp > 3. If h( ) is even and
1
h(a) < E:—l((ZP—4)ﬂ+ 2),

then o € EP. If h(«) is odd and

h(a) < ((2p~4)n+3),

1
2p—1
then o € EP.

Proof. If h(a)(= n— d) is even and if

h(a) < ((2p—-4Hn+2),

1
2p—1




RS I

2|

then
2p—1D(n—d) < (2p—-4)n+2

which after rearrangement gives
3n—d<2(p—1)d+2.
Hence by Theorem 1.1.10 and 1.1.11

o(e) < 3(3n—d < (p—Dd+1,

and so o € EP.

The case where h(«) is odd is similar. |

2. Elements having maximum gravity and small gravity

In this section, we shall determine the number of elements in P,\[n, n] that have
maximum gravity and formulae for the number of elements of small gravity.

From Theorem1.1.11 (proof), those elements in P;; having maximum gravity are
to be found in the D-class D, of U,. As in [20], a typical R-class within this D-
class denoted by R({s,/}(0 < 4,5 < n,i ¥ j); it consists of all elements o for
which k(«) is the equivalence whose only non-singleton class is {%,}. A typical C-
class within D, may be denoted by L(1)(0 < i < n); it consists of all « for which
im & = X,\{i}. There are (";') R-classes, and each H-class contains n! elements.
Those elements in P} are to be found in all the (";') R-classes and n of the L-classes
(since L(0) cannot have 0 as a fixed point ). Also from [20], a H-class H({1,/}, k) is
a group H-classif and only if k € {3, j}. It therefore follows that for the group H-class

H({s,7}, k) to contain an element in P}, k must be different from zero. Hence there




12

are n group H-classes with no element from P} and n{n+ 1) — n(= n?) group M-
classes having elements from P;. Similarly, the £-class L(0) contains no non-group
H-class having elements from P;. The number of non-group H-classes in L(0) is

(™) — n(= %2210y Thus the total number of non-group H-classes having elements
from Py is ﬁ—z"—‘l)—

As in the proof of Theorem 1.1.11 we shall find elements of maximum gravity by
having as many cyclic components as possible and as few fixed points as possible. This
will frequently involve constructing a number p of 2-cycles from 2 p elements of X,,,

and it may be useful to note now that the number of ways of doing thisis (2p)! /(p!2P).

Lemma 1.2.1 Let n=2m be even, with m > 2. Then the number of elements of P}

with maximum gravity (equal to 3m — 1 ) in a single group H-class is

2m - 1)!
3.2m-2(m —2)!

and the number in a non-group H-class is

(2m-2)!
2m=1(m -1"

The total number is
(2m+ 1!

3.2m-1(m 11"

Proof. Consider first a typical group H-class H({3,7},1) in P} (where s = 0). Within
this H-class the only configuration that leads to maximum gravity is as shown in figure
2 (see Appendix), so the number of elements of maximum gravity in this class is

(2m-1)!
3.2m2(mpm—-2)1°

Now consider a typical non-group H-class H({1,7}, k) in P}, where k # 1,7.
Within this #-class the only configuration that leads to maximum gravity is as shown

R
B
¥
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in figure 3 (see Appendix). So the number of elements of maximum gravity in this class
is
(2m-2)!
2m=-1(m - NI’

Notice that once 4 is fixed, so is the group H-class H({4,0},1). So there are 2m
group H-classes having elements from P with maximum gravity. On the other hand,
an element o* whose configuration is given by figure 3 belongs to the non-group H-
class H({1,0}, k). So there are 2 m(2m - 1) non-group H-classes having elements
from P; with maximum gravity, arising from the choise of 1 and k. Hence the total
number of elements in P} with maximum gravity is

(2m+ 1!
3.2 (m— 1!

Lemma 1.2.2 Letn = 2m + 1 be odd, withm > 0. Then the elements of P} with
maximum gravity (equal to 3m + 1) are all group elements, and the number in any

group H-class is
(2m)!
2mm!

The total number of elements in P;} with maximum gravity is

(2m+ 1)!
ALY

Proof. Here there is only one configuration giving maximum number of gravity (see
Fig 4 in the Appendix).

All elements having this configuration are group elements. The number of them
in any H-class containing them is

(2m)!
2mm!

¥

e
-
3
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The total number of them in P} is

2m)!(2m+1) (2m+1)!
2mm! T 2mpyl

Theorem 1.2.3 Let o € P,\[n, nl. If n= 2m withm > 2, then the total number of

elements in P,\[n, n] with maximum gravity (equal to 3m — 1) is

(Zm+ 1)!
3.2m=1(m 1"

Ifn=2m+ 1 withm > 0O, then the total number of elements in P,\[n, n] with

maximum gravity (equal to 3m + 1) is

2m+ !
2™mm!

Proof. The results follows from Lemmas 1.2.1 and 1.2.2 by the isomorphism. [

We now look at the singular elements of P and determine those of them with
minimum gravity .
Let N*(n+ 1, h, g) denote the number of elements o* € P} such that h(a*) = h

and g(a*) = g.
Lemma 1.24 Foralln> 1,

N*(n+1,n,1) = n?.

Proof. The only configuration that leads to gravity 1 is as shown in Fig 4 (see Appen-
dix).

P
E
:
=4
3
i
i3
&
1
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The number of elements corresponding to this configuration is

Lemma 1.2.5 Foralln> 2,

N*(n+1,n,2) = n(n—1)?2

Proof. Forg(a*) toequal 2 we require to have f(a*) —c(a*) = (n+1) -2 =n—1.
If there were n fixed points and one cycle the total number of elements in X, would
have to be at least n+ 2, which is not possible. So o* must have n— 1 fixed points
and no cycles. Since h(«*) = n, the only possible configuration is as shown in Fig 6

(see Appendix) . The number of elements corresponding to this configuration is

n—1(n—1) =n(n—1)2.

Lemma 1.2.6 Foralln> 3,
N*(n+1,n,3) =nn—1)*(n-2).
Foralln> 4,

N*(n+1,m4) = %—n(n—- D(n—2)(2n% —Tn+4).

Proof. Let h(a*) = nand g(a*) = 3, sothat f(o*) — c(a*) = n— 2. If we suppose

there are n— 1 fixed points and one cycle, then this would mean that all n+ 1 elements
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of X lie inim (a*), and this cannot occur. There must therefore be n— 2 fixed points
and no cycles. The configurations which give this are shown in Fig 7 (see Appendix).

The number of elements with these configuration is
mn—1)(n—2) +n(n—1)(n—-2)(n-2) = n(n— 1)?(n-2).

Now let A(a*) = nand g(a*) = 4, so that f(a*) — c(a*) = n— 3. Here we
have n—3 fixed points and no cycles or n— 2 fixed points and one cycle. The possible
configurations are shown in Fig 8 (see Appendix).

The total number of elements with these configurations is

Mn—1)(n—2)(n—3) +n(n— 1)(n—2)(n—3)
+n(n—1)(n—2)(n—3)(n—3) + n(n—1)(n—2)(n—2)/2
= -;—n(n— D(n—2)(2n* —Tn+ 4).

Note that an element o* € P} of height r+ 1 corresponds to anelement « € [ k, 7]
wherer< k< n . ]

Theorem 1.2.7 Let o € P,\[n,n] and let N(p,r,g) be the number of elements in
P, \[n,n] for which o € [p,r] and g(«) = g. Also let T(r, g) be the total number of
elements in P,\[n, n] for which g(a) = g and h(a) = r. Then:

(@) Foralln> 1,

N(nn—1,1) =n(n—1); N(n—1,n—1,1) =n and T(n—1,1) = n?.
(b) Foralin>?2,

Nnnn—-1,2) =n({n—1(n—-2); N(n—1,n—-1,2) =n(n—1)
and T(n—1,2) = n({n—1)2.

L A AR P e & TSI L ey B
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(c) () Foralln> 3,

N(nn—1,3) =n(n—1)(n-2)% N(n-1,n—1,3) = n(n— 1)(n—2)
and T(n—1,3) = n(n—1)2(n—2).

(ii) Foralln > 4,

N(n,n—1,4) =n(n—1)(n—2)(n—3)(2n—3)/2;
N(n—1,n—1,4) =n(n— 1)(n—2)(2n-5)/2
and T(n—1,4) = n(n—1)(n—2)(2n* —Tn+4)/2.

Proof. The result (a), (b) and (c) follows from Lemma 1.2.4, 1.2.5 and 1.2.6 respec-

tively, and the configurations given in the Lemmas as well as the isomorphism. L]

Let us now look at the bottom end of P rather than at the top. If A(a*) = 1 then

o* is necessarily idempotent. There is one fixed point 0 and there are no cycles; hence

ga®) =(n+1) —1=nand N*(n+1,1,n) =1. (1.2.8)

Lemma 1.2.9 Leto* € P} with h(a*) =2. Then g(a*) =norn— 1.

Proof. Since 0 € im o* and is a fixed point, there cannot be any cycle, for every cycle
contributes two elements to the image and this will mean A(a*) = 3. Henceg(a*) = n
(one fixed point 0) or n — 1 (two fixed points, 0 and another element). We conclude
that N*(n+ 1,2,9) = 0 except wheng = norn— 1. |

Lemma 1.2.10 Letn> 2. Then

N¥(n+1,2,m)=Q2" —)m N*(n+1,2,n—1)=2"1n

¥
;
.
%
3
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Proof. Suppose first that A(a*) = 2, g(a@*) = n There cannot be more than one
component of a*, since two acyclic or singleton components would imply that there
were two fixed points, and the existence of a standard or acyclic component in addition
to the component containing the fixed point 0 would immediately give A(a*) > 3. So
there is just one component, containing a fixed point 0 and exactly one other element
p in im o* as shown in Fig 9 (see Appendix). The choice of p can be made in n ways.
The remaining n — 1 elements map either to p or to 0, but cannot all map to 0, since
that would give h(a*) = 1. So the total number is n(2"1 — 1).

Next, suppose that h(a*) = 2, g(«*) = n— 1. There are two fixed points 0 and
p (another element different from 0), the remaining elements map directly to one or
other of them. There are n ways in which we can choose the element p and 2! ways

of assigning the other elements, making 2" ! n ways in all. |

Theorem 1.2.11 Let o € P,\[n, n] and define N(p,,g) andT(r,g) as in Theorem
1.2.7. Then:
(@) Foralln>1,
N(0,0,m) =1 and T(0,n) =1,

i.e. the empty transformation is expressible as a product of n idempotents.
(b) Foralln>2,
N(k,1,n) = n("; 1); A e
and T(1,n) = n(2%% —1).

(c) Foralln>?2,

n—1
|
and T(1,n—1) =2"2p,

N(k,l,n—-l)=n< >; k=1,2,---,n—-1
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Proof. The results (a), (b) and (c) follow from Lemmas 1.2.8, 1.2.9 and 1.2.10 respec-
tively, and by the isomorphism. |

3. The idempotent rank

If § is a semigroup, we say that a subset T of S is a generating set for S, and write

(T') = 8, if every element of S is expressible as a product of elements of T'. Then we
define

rank (§) = min{|{T’| : (T") = S}. |

Lemma 1.3.1 Py is a regular subsemigroup of U,,.

Proof. If & € Py, define £ to be any element of U, mapping each element of im «
to one of its inverse images and in particular mapping 0 to 0, and every element in
Xo\im « to some arbitrary fixed element of Xo. Then £ € P} and oo = «; thus 2y
is regular. |

By [18, Proposition 2.4.5] we have
L(P;) = L(Us) N(Py x P}) and R(PY) = R(Un) N (P} x PY).
If a, B € Py are of the same height, then there exists y € U, such that
ima=im+, ker+y = ker S.

Now Oa = 0 andso 0 € im o = im . We may have y ¢ P?, but we now show
that we can choose § € P} withim« = im 6, ker § = ker 8. Let 06~! = 08!,
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There remain r — 1 members of X/ ker 8, and r — 1 non-zero members of im a.
Arrange for § to map the non-zero (ker §)-classes to the non-zero members of im a.

Then ker § = ker 3, im & = im 8. So in fact
(P2 = J(Uy) NP % F)- {1:3.2)

A typical J-class of U, (consisting of elements of height 7(1 < r < n+ 1))
has S(n+ 1,r) R-classes (where S(n+ 1,7) is the Stirling number of the second
kind), (”’;1) L-classes, and each L-class corresponds to a subset of U, of cardinality
r. Not every L-class intersects P,. In fact an L-class intersects P if and only if its
corresponding subset contains 0. So there are (") L-classes containing 0, and (*)

L-classes not containing 0. (Observe as a check that

(22 ()-(7)

By contrast, every R-class intersects Py, since for a given equivalence p on U, with
r classes, we can choose an « such that (0p)a = 0 and all other classes map in an
arbitrary way. If we choose an H-class H = (p, A) (where p is an equivalence on U,
with r classes and A a subset of U, of cardinality r ) we have H N P} = §if0 ¢ A
and |[HNP;|=(r—1!if0 € A

For1<r<n+1,let

K*(n+1,r)={a€P;:|ima| < r}. |

Each K*(n + 1,7) is a two-sided ideal of P}, and from (1.3.2), we have that
K*(n+1,r)/K*(n+1,r—1) is a principal factor of P}, which we denote by PF}. It
is a completely 0 -simple semigroup whose non-zero elements may be thought of as the
elements of P of height r precisely. The product of two elements of PF} is 0 when-
ever their product in P} is of height strictly less than r. Thus the number of non-zero

L-classes in PF} is ,21) and the number of non-zero R-classes is S(n+ 1,7).
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The next two Lemmas are from [21].

Lemma 1.3.3 [21 Lemma 1] Let z, y be non-zero elements in a completely 0-simple
semigroup. Then zy # 0 if and only if L, N R, contains an idempotent, and in this
case xy € R, N Ly. B

Lemma 1.3.4 [21 Lemma 2] In the principal factor PF consider the H-class (p, A)
determined by an equivalence p on Xo and a subset A of Xo such that | Xy /p| =
|A| = r. Then (p, A) contains an idempotent if and only if the elements of A form a

transversal of the p-classes. |

Lemma 1.3.5 For all n, and for all r suchthat2 < r < n,

rank (PF¥) > S(n+ 1,7).

Proof. This is a consequence of Lemma 1.3.3. If T = {ay,-- -, ax} is a generating
set for PF;" and € is a non-zero element of P F* then for ¢ to be a product of elements
in T" it is necessarily that at least one element of T° be R-equivalent to £. Thus 7" must
cover the R-classes of PF;* and so |T'| > S(n+ 1,7). [ |

Note that T must cover the L-classes of PF}* also; but (™') < S(n+1,7) when

r > 2 and so this gives a weaker conclusion.

Lemma 1.3.6 Let o be an element in P} of height r, where r < n — 1. Then there

exists 3, in P! of height v + 1 such that o = Bry.

Proof. Let

_ (A A1 ... A
““(0 b ... b,_1>'

We shall consider the two cases Ao = {0} and Ao # {0} separately.

;
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If Ap = {0}, then § = a|X is a full transformation of X of height r — 1, and
therefore expressible as a product 8§ = 618, of two full transformations of X of height
r by [21, Lemma 4]. Define 8 and 4 by

_Jxh fzre X, - _ [ xzb6 if_(I?EXa
m5"{0 ifz=0, ‘“’d‘”“{o ifz=0.

Then 8, € Py and each is of height r + 1. Moreover, o = (1.
If Ao # {0}, suppose thatag € Ap\{O}andleta; € A;(+=1,..-,7—1). Since
[{0,a0,01,++,a,-1} = v+ 1 < n, we may choose c in Xo\{0,a0,01,-,a,1}.

Define
= (Ao \{ao} A1 ... A1 ao >
0 .

A1 0 Qp1 Cc

Let Z = Xo\{0,c,a1, --,a,1}; since ag € Z, we have Z # 0. Let
" {06} @1 ws Qesp 2
L 0 b o ben 22
whered € Xo\{0,b1,"--,b,_1}. (The element d exists since |{0, b1, bz, -+, b,_1}| =
r < n—1.) Then it is easy to verify that 8,y € Py, are of heightr + 1 and « = Sy.1

As a consequence of this Lemma, a set of elements of height r generates PF* if

and only if it generates K*(n+ 1,7).

Lemma 1.3.7 Every element o in P} of height r is expressible as a product of idem-

potents of height r. That is, PF}} is generated by its own idempotents.

Proof. Let o be an element in P} of height r. Then « is expressible as a product of
idempotents &1,&2,---,&m in Py, where each §;(1 = 1,...,m) is of height greater
than or equal to r. By the method in [8], each idempotent &; can be replaced by an
idempotent ¢; in U, of height r (where ¢; = £; if &; is of height r) to give a = €1 - - - €.
But the method ensures that each fixed point of §; remains fixed by ¢;. Thus € € P} for
alli=1,2,... m. |




23

Theorem 1.3.8 The semigroup K*(n+ 1,r) is of rank S(n+ 1,7) forr > 2.

The proof depends on the following Lemma, which is the P version of Lemma
6 in [21]:

Lemma 1.3.9 LetAy,---, Am(wherem = (")) andr > 3) be a list of the 0 -subsets
of Xo with cardinality r (where ‘0 -subset’ means a subset of X containing 0). Sup-
pose that there exist distinct equivalences Ty, - - - , T, Of weight r with the property that
Ai_1,A; are both transversals of m; (i = 2,.-.,m) and A,,, A1 are both transversals
of m. Then each H-class (m;, Ai) in Py contains an idempotent €; in P}, and there
exist idempotents €ms1,- -, €p (Where p = S(n+ 1,7) ) in P} such that {e1,---, €}
is a set of generators for K*(n+ 1,7). [ |

Proof. Notice first that the product €;_;¢; (¢ = 2,-..,m) is an element of height 7,
since we have a configuration
€1 *
[e] €
in which the H-class labelled o contains an idempotent. Moreover, the element €;_1 ¢;
is in the position * by Lemma 1.3.3. By the same token the product €€ is of height
r,and e, Ren€1 Ley.
Choose the idempotents €my1, -« -, €p from PF so that €1, - - -, €, covers all the
R-classes in PF). Then if 1 is an arbitrary idempotent in PF)* there exists a unique

i € {1,---,p} such that 7Re; and a unique j € {1,--.,m} such that nL¢;.

€k
O €k+1

o
€ cae N

Moreover, there is a unique k € {1, .., m} such that ¢;Cex. If k = j then n = ¢; and
there is nothing to prove. If k¥ < j then

€i€k+1€k+2 " " €f




is of height r and belongs to the same group H-class as 1. Hence for some ¢ > 1
N = (&€k+1 -+ - €)7.

If k > j then

Ei€k+1 *** EmEL * - €

is of height r and is in the same group H-class as 7. Hence again for some ¢ > 1

N = (€e€rs1 - EmeL - €))7,

We have shown that every idempotent in PF* can be expressed as a product of

the p = S(n+1,7) idempotents €1, - - -, €p. Since PF}* is generated by its idempotents
(Lemma 1.3.7) we conclude that P F}* is generated by the idempotents e;, - - - , €,. Then
by Lemma 1.3.6 it follows that (€, --,€,) = K*(n+ 1,7). [ |

To prove that the listing of images and kemel equivalences postulated in the state-
ment of Lemma 1.3.9 can be carried out, let n > 3 and 2 < r < n— 1, and consider

the following Proposition which is the P version of the equivalent Proposition in [21]:

Proposition1.3.10 There is a way of listing the 0-subsets of Xo of cardinality r as
Ar, - Ap (Withm = (rfl),Al ={0,1,---,r -1}, An={0,n—r+2,... ,n})
S0 that there exist equivalences my, - - - , Ty of weight r with the property that A;_1, A;

are transversals of m; (1 =2, -+, m) and A, A; are transversals of w1 .

All we have to do here is to consider {0 } as a singleton class for each m; (i =
1,.-+,m) and the rest of the m;-classes as in [21]. To exemplify the process, we now
consider the following example from [21].

Letn = 5 and consider the set {1,2,3,4,5} first. The list given in [21] of all

the subsets of cardinality 2 with the equivalences is as follows:

Ay={1,2} m=24/135,

=

By ks o S
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b={1,3} m=1/2345,
Ay ={2,3} m,=1245/3,
A, ={1,4} #,=12/345,
As={2,4} wb=123/45,
Ay ={3,4} @, =145/23,
t={1,5} m=14/235,
Ay={2,5} m=124/35,
L={3,5} w=15/234,
Alg=1{4,5} wp=134/25.

For the set {0,1,2,3,4,5}, we have the 0-subsets of cardinality 3 and the equiva-

lences as follows:

A ={0,1,2} m=0/24/135,
Ay ={0,1,3} m=0/1/2345,
A3={0,2,3} m=0/1245/3,
Ai={0,1,4} m=0/12/345,
As=1{0,2,4} ms=0/123/45,
As={0,3,4} mg=0/145/23,
A7={0,1,5} m =0/14/235,
As={0,2,5} mg=0/124/35,
Ag ={0,3,5} m=0/15/234,
A ={0,4,5} mo=0/134/25.

Theorem 1.3.11 Let K(n,7) = {a € P, : |im a| < r}. Then the rank of K(n,7) is
equal to its idempotent rank, and is S(n+ 1,7+ 1), for1 <r <n-—1.
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Proof. In the isomorphism between P, and P}, elements of height r in P, correspond
to elements of height r + 1 in P}, It therefore follows that the image of K (n, ) under

this isomorphism is K*(n+ 1,r + 1), and the result follows from Theorem 1.3.8. W
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CHAPTER TWO

NILPOTENTS IN PARTIAL TRANSFORMATION
SEMIGROUPS

1. The depth of the nilpotent-generated subsemigroups

An element « of P, is called nilpotent if o = 0 for some positive integer k > 1.
Let « be an element in P,, and suppose that it is expressible as a product of nilpotents.
It can be deduced from Lemma 3 in [26] and Theorem 4.2 in [12] that « is expressible
as a product of at least four or five nilpotents according as n is odd or even. We now
show that for all n > 4 (odd or even) the number of nilpotents required is at least three,
and that this number is best possible.

The following Lemma follows from Remark 3.16 and Lemma 4.1 in [12]

Lemma 2.1.1 Every element o of height r (r < n— 2)in SI, is expressible as a
product of two nilpotents in S1I, of the same height. |

However, elements of height n— 1 in SI,, prove more difficult to handle. The key
result in [12] is:

Theorem 2.1.2 [12 Theorem 4.2] For n > 3 let SI,, be the inverse semigroup of all
proper subpermutations of X, = {1,---,n}, and let N be the set of all nilpotents in
SIn. Let A((N)) be the unique k such that

(Ny=NUN?U...UN*#NUN?U...UN*
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Then A({N)) = 2 or 3 according as nis odd or even. |

For the more general semigroup P, we now prove the following result:

Theorem 2.1.3 Let SP, be the semigroup of all strictly partial maps on the set X, =
{1,---,n}, and let N be the set of all nilpotents in SP,. Let A({N)) be the unique k
such that

(Ny=NUN?U...UN*# NUN?U...UN*1,

Then A((N)) =3 foralin> 4.

Proof. Suppose first that o = (‘gll jbl: ?’) €lkr],r<n—2andr <

;.
k < n— 1. Then there exists an element z € X,,\ dom « such that

a=f,

with

8= (Al Ay ... A A,>' e (az B3 s O z),
G2 Qa3 ..o O T b b2 ... be_1 b,
where a; € A; for all i. Clearly g is nilpotent in SP,, and by Lemma 2.1.1 4 can be
expressed as a product of two nilpotents. Thus « is expressible as a product of three
nilpotents.

Suppose now that « € [, r]. Then it follows from Theorem 2.1.2 that & can be
expressed as a product of 2 or 3 nilpotents according as n is odd or even.

It now remains to show that three is best possible in all cases. It is clear from
Theorem 2.1.2 that three is best possible when n is even. To show that three is also
best possible when » is odd, we consider a particular element in (N) and show that
it cannot be expressed as a product of two nilpotents. Incidentally, for this particular

element the result is true irrespective of whether nis odd or even.

Let
B T B
a"( % 3 A e el ) SO LE=E,
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and suppose that « is expressible as a product of two nilpotents, say
C¥=>ﬂl)‘2- (2.1.4)

Then we must have A\j or A2 € [n—1,n—2]. If \; ¢ [n— 1, n— 2] then necessarily
A1 € [n—1,n~1]. So suppose first that \; € [n— 1,n— 1]; then the only possible

configurations of \; are as shown in Fig 10 (sece Appendix), where
{xl,...)wS!y!)'.')yt)zl)“'izu}= {31"')'"'_ 1}

Note thatif u = 0 then 2)\; = nor 1)\, = n, and since {1,2 }a = n we must have
nA2 = n. Thus X3 is non-nilpotent. So we will suppose that v > 0. But then since
zia = z; for 1 < 1 < u we must have )\, equal to
({y;,z1} B e B W R sew e X B e A 2)
n 21 e Zy—1 2By Tl oo Tal Ty Y1 ves Y1 W

by considering configuration (a) (which is sufficient). From this it follows that z;)\% 0
for all k, again resulting in )\, being non-nilpotent. Hence in the expression (2.1.4)
MéE[n—1,2-1].

Suppose now that \; € [n— 1,n — 2] then we may assume without loss of
generality that A2 € [n—2,n—2]. The only possible configuration of \; is as shown

in Fig 11 (see Appendix), where as in the earlier case

{wly'")ma)yl:'":yt:zly"',zu}= {3,"':"'_ 1}

We note here too if u = 0 then {1,2})\; = n, and since {1,2 }a = n we must have
nhy = n, forcing A, to be non-nilpotent. So we will suppose that 4 > 0. But then

since z;a = z; we must have

Np= (B 2 o WM T2 .. T 1 y2 .. 2)
N 2 e Zacy Zo B e Bt X W s Y Wy

S i RAY oo
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from which it follows that 2,05 # O for all k. Again we conclude that ), is not

nilpotent.
The conclusion is that in all cases )\, cannot be nilpotent, and hence « is not
expressible as a product of two nilpotents. This completes the proof of the Theorem.l

2. The nilpotent rank

In this section we shall show that S P, has rank n+ 2, and if nis even its nilpotent
rank is also n+ 2. The rank and the nilpotent rank of SP,\W,_; are also shown to
be both equal to n+ 2. We have also generalised the idea of a rank in line with Howie
and McFadden [21] to the nilpotent-generated subsemigroup.

Lemma 2.2.1 SP, is a regular subsemigroup of P,.

Proof. If @ € SP,, define 7 to be any element of P, mapping each element of im «

to one of its inverse image. Then n € SP, and ana = «; thus S, is regular. |
By [18, Proposition 2.4.5], we have

L(SP;) = L(P,) N(SP, x SP,) and R(SP,) = R(FP,) N(SP, x SP,).

If &, B € SP, are of the same height, then there exists 4y € P, such that im o = im 7,
ker «y = ker 8. We may have vy ¢ SP,, but we can choose 6§ € SP, withim « = im §,
ker & = ker (3 by arranging for § to map (ker 3)-classes to im «. So in fact

T(SP,) = J(P,) N(SP, x SF,).

The subsemigroup SP, has n J-classes, namely J,_1,Jp-2,--+,Jo (Where Jy
consists of the empty map). For each rin {1,2,.-.,n— 1},

n—-1
Jr = U[k;"']
k=1
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Lemma 2.2.2 For each J-class J, in SP,, where r < n— 2, we have

Jr g (Jr+l)2-

ﬁwﬂ%wmﬁmmma=(ﬁ ﬁ "'f»e[hﬂmegkgn~L
S

Then e
A1 A2 cesa Af T 1 G2 ... Qr ¥
a= ]
@1 G2 ... G X by by ... b 2
a product of two elements in J,41, where 7,y € X,\dom e, z € X,\ima withz # y
and a; € A; for all 1.

Suppose now that o € [n— 1,7]. We may suppose that A; contains more than

one element. If a;,a} € Aj, then

a;—.(A‘\{a'l} a:, Az A,) ({a;,a’l} a2 ... Gy m)

ag 8 B oo e b b ... b g

a product of two elements in J,,1, where z € X,\dom a, y € X,\im « and a; € A;
for all 1. |

Lemma 2.2.3 Forallr <n-2,

[r,7] C([r+1,r+1])2

Proof. Suppose thata = (:: Z: Z:) € [r,r]. Then
a=(9 - 8 T\ a1 ... a y
8] wsv Gy X bi ven b 2

where 7,y € X,\dom ¢, 2z € X, \im & with z  y. n

Lemma 2.2.4 Every element o € SP, of height r (r < n ~— 2) is expressible as a
product of nilpotents of the same height in SP,.
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Proof. We first note that any idempotent in SP, of height r is expressible as a product
of nilpotents of the same height in SP,. If a; € A;fori=1,---,r,and b ¢ (J{4; :

i=1,... r}, where 4, - -, A, are pairwise disjoint subsets of X,,, then

A ... A, - A ... A A, a2 ... QG b
81 s By @2 s O b Q1 s Gef G

Now suppose that « € SP,, then

[ E— A _ Ay ... A, BY v iy
TRy e e @1 sae G By cie Bp )"

The result now follows from Lemma 2.1.1. ||

Before considering the next result, we would like to clarify the notion of rank in
an inverse semigroup and in a semigroup that is not necessarily inverse. By the rank
of an inverse semigroup S we shall mean the cardinality of any subset A of minimal
order in S such that (AU V(A)) = S, where V(A) is the set of inverses of elements
in A. On the other hand, the rank of the semigroup S is simply the cardinality of any
subset B of minimal order in S such that (B) = S. If the subset A (or B) consists of
nilpotents, the rank is called nilpotent rank. We shall sometimes want to distinguish

between the rank of an inverse semigroup S as an inverse semigroup and its rank as a

semigroup.
The next result is from [13].

Theorem 2.2.5 [13 Theorem 3.3] Let B = B(G,{1,---,n}) be a Brandt semigroup,
where G is a group of rank r, (The trivial group is deemed to have rank 0.) andr > 1.

Then the rank of B (as an inverse semigroup) isr+ n— 1. [ |

Remark 2.2.6 It is remarked in the proof of Theorem 3.3 in [13] that the generating
set
A={(1,01,1),...,(1,9-,1),(1,¢,2),(2,¢,3),...,(n—1,¢,m)}
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(where e is the identity of G' and {g1,..., 9.} is a generating set of G) of the Brandt
semigroup B(G,{1,...,n}) is notunique. For in the first place, the set {g1,...,9,}
may be replaced by any generating set of G with cardinality r. Also, the elements

(1,e,2),...,(n—1,e,m)

cover n— 1 H-classes and may be replaced by other elements from these same H-
classes, or by their inverses. In fact this is far from being the limit of the variability of

A, as shown in the second part of the proof. |

Proposition 2.2.7 Let B = B(@G,{1,--,n}) be a Brandt semigroup, where G is a
finite group of rank r(r > 1) and n > 1. Then the rank of B(as a semigroup) is
r+n—1. ’
Proof. By Theorem 2.2.5 the rank of B as an inverse semigroup is r + n— 1. But the
rank of B as a semigroup is potentially greater than its rank as an inverse semigroup.
For if A is a generating set for B as a semigroup and | 4| = s, then certainly A together
with its inverses generates B,andso s > r+ n— 1.

It now remains to show that we can select a generating set for B consisting of

r + n— 1 elements. Let A be the set

{(lsgls1)1"'1(1’gr—ls1):(1:91‘)2)’(2)6:3))'")(n_’ l)eyn))(n;e, 1)}

where e is the identity of G and {g1,---,g,} is a generating set for G. We first show
that (1,g,,1) and (1, e,2) belong to (A). First,

(ligf! 1) = (l’griz)(2v813) "'(n_ lyevn)(n:e) 1) € (A)
Observe now that

(1,93,2) = (1791”2)(296:3) "'(n— l,e,n)(n,e,l)(l,g,,Z)

S e Ve 3w b
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and

(1,92,2) = (1,92,2)(2,¢,3) ---(n—1,e,m)(n e, 1)(1,gr,2).

Continuing in this way, we see that (1,¢2,2) € (A)fors =0,1,2, ... Iftis the least

integer for which g; = e then
(1,e,2) = (1,6%,2) € (A).
Now let (1, g, ) be an arbitrary element in B. Then
(1,9,7) =(d,e,s+ 1) .- (n—1,e,m)(n,e,1)(1,g,)(1,e,2) ---(j—1,e,))

and it is clear that (1,g, 1) can be expressed as a product of the elements (1,93, 1),
-+ (1,9,,1). Hence
(A) = B.

Since JA| = r + n— 1 the proof is complete. ®

As remarked in [13], the principal factor PF,, 1 = SP,/(Jp2 U:--U Jp) isa
Brandt semigroup, where PF,,_; may be thought of in the usual way as J,_; U {0},
and the product in PF,_; of two elements of J,; is the product in SP, if this lies
in J,-1 and is 0 otherwise. The Brandt semigroup PF,_; has the structure B(G, I),
where G = S,_1, the symmetric group on n— 1 symbols, and I = {1,...,n}. (See
[24], section I1.3.)

Let A be an irredundant set of generators of SI,,. Since SI,, is generated by the
elements in J,,_;, we may choose to regard A as a subset of PF,,_;. The conclusion
(as in [13]) is that A generates SI, if and only if it generates PF,,_.

The following Proposition now follows:

Proposition 2.2.8 Let SI, be the inverse semigroup of all strictly partial one-one

maps on X, where n > 3. Then the rank of SI,(as a semigroup) isn+ 1. [ |
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Proposition 2.2.9 Letn > 4 be even. Then the nilpotent rank of SI,(as a semigroup)
isn+ 1.
Proof. Define H; ; to consist of all elements « for which dom a = X,\{i} and ima =

Xa\{/}. Fori=4,... n— 1 define a mapping {; € H,, by

1 2 . i-1 i1 . o—i+] 0—i+2 n—i+3 n—i+4 .. n ifi<2
i+l 0262 2i-1 . n-1 2 1 3 .-l =720
£ = 1 2 (-1 (0/2) (/242 (/243 .. n ifi=24+1
i (0/2)+1 (W/2)+2 .. n-1 2 1 3 (/2 -
1 2 .91 n—i+1 5442 n—i+3 .. -1 §+1 .. = . n
fislinl 2 1 3 o 2i-n-l2im. .'-1) ifi> 3 +2,

and

a=(1 37 e

4

4
6_124...n—2n—1n E_123...n—1
ks 4 5 ... m=l B 140954 1 8 . w1 d?

Then it is easy to verify that the mapping

]
G
Pk i
w W

$: B(Sﬂ—l :{17"‘:"}) — Qn-1
defined by
Gm )¢ =&~
is an isomorphism, where S,,_; is the symmetric group on X,,_;, and Q,_; is the prin-

cipal factor SI,/(Jp-2 U---U Jp).
From Proposition 2.2.7, the set

A= {(1191!1)1(1:9212)1(213’3)""’(n— lye"n):(n:e)l)};

where g1 = (12 3...1—1),92 = (1 2) and e the identity permutation in S,_;
generates B(S,-1,{1,---,n}). Thus A¢ generates Qn-; and hence SI,. From [12]
we borrow the notation ||a; a2 - - - a,|| for the nilpotent o with domain X,\{a,} and

image X ,\{a1} for which a;a = @441 (i = 1,--+,n— 1). Then it is easy to verify that

A¢= {ﬂ’alya2)"')an}
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where
ﬁ=(2 3 ... n—-1 n> an=(l 2 B e n-—l)
2 5 ... » 3 32 4 ... =n )
ar=|2nn-1..-31]], @p1 =|nn—-2---1n—1|
and
ap=|li+1i—-14-2...1nn—1-.-4+24|| fori=2,...,n—2,

G118 = B, 6192651 = a1, ©265" = a, and .67 = a, are straightforward to
verify. If 4 < i< £ — 1 we have £;¢;) tobe

1 s §3—1 i+1 ... s+1 s+2 s+3 s+4 ... n
§ ... 21—-2 2i—1 ... n—-1 2 1 3 P |
5 i+1 ... 29 24+1 ... n—1 2 1 3 I |
1 N 2 e s s+1 s+2 s+3 ... n

=|li+1i—1...4321nn—1--i+3i+2i||=o4

where s = n—i. If i = 2 then £33}, is

1 2 3—1 2+1 $+2 #+3 2+4 n
2 8+1 n—2 n-—1 2 1 3 e -1
o g+1 242 .o -1 2 1 3 2
1 2 h_ % -g-+2 g—+3 n
n n n n n
=||§-+1-i-—1§-—2-21nn—12—+2-2—|]=a9
If 5 + 1 then {34183, 18
1 2 $—-1 2 2+2 2+3 2+4 n
41 2+2 n—1 2 1 3 3
F+2 2+3 .. 81 2 1 3 4 7+1
1 2 2-2 2-1 2 2+1 2+3 n
nn n n
= —_—— - Py s 1=
”2 222 1..-21nn-1 2+32+ l|=agn
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Ifi > 2 + 1 then ££7) is

(1 s s+1 8+2 s+3 .a i—1 21 e = )o

£ ... n—1 2 1 3 vin ¥l 2828 ees §—1
t1+1 ... n—1 2 1 3 vee 29—m+1 2i—n+2 ... 1
1 oo 8—1 s s+1 s+2 ... 3 1+ 2 oo M

=|li+1i—-1...4321nn-1...0+2i|

where s = n— 1.

Now, let
61 =|146...n—2n35...0—-12||,62=|2n-10n—-2n—-3...31q
then
a1b) =B and §8; = ay,.

Hence the n+ 1 nilpotents

ah"'aan—laalsGZ

generate ST,,. E

The next two Lemmas are from [12].

Lemma 2.2.10 [12, Lemma 3.10] Let nbeodd and let o be an element in S I,, of height
n—1. Then « is expressible as a product of nilpotents in S I, if and only ifits completion

& is an even permutation of X,,. |

Lemma 2.2.11 [12, Lemma 3.15] Every element o of height n—2 in SI,, is expressible
as a product of two nilpotents of height n— 1 in S1,,. |

Proposition 2.2.12 Let N’ be the set of all nilpotents in SI,, where n > 5 is odd.
Then the rank of (N')(as a semigroup) is equal to its nilpotent rank and is n+ 1.

R TRy e s Y
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Proof. Letk = (n+1)/2. Fori=4,... n— 1 define a mapping X\; € H;, by

’(1'"2‘:—12 et 2 LY :.'31) if4 <i<k,
k=1 k+1 k42 k43 k+d . s
y ] Gl on) ifi=k,
Sa 2 k=2 k-1 k k+2 k+3 . -
(klk+2 ‘a1t 281 . k) ifi=k+1,
1 (1 R Sl Stk A Vo il ;1'1) ifi>k+2,
and
A_1234...n-—-1 )\_134...n—1n
STZ 3 L 4 s w0 TNS 1 A L w20
N & 2 n % & 1 2 4 n—2 n—1 n
L=t 2 =1 A"kt 4 & n-1 2 3
Then the mapping
¢:B(An—l7{1""fn})_'Qﬂ—'l\Wﬂ—]
defined by

(h“‘,])d) = Al"">‘)'_1

is an isomorphism, where A,,_; is the alternating group on X,,_; . For if we let
Xi=X\U(,n),

then the total number of inversions in X; is

n-1 ifi=1,
2n-4 ifi=2,
3n-11  ifi=3,
i(n-)+2 if1 > 4.

(2.2.13)

(See for example [2] pp 60— 61.)
To exemplify how (2.2.13) can be obtained we consider the following example:
Let

_f1 2 3 45
=5 34 2 1)°




39

Then,

the number of inversionsin5 3 4 2 1is 4,
the number of inversionsin3 4 2 1is 2,
the number of inversionsin4 2 1is 2,

the number of inversions in 2 1is 1.

Hence the total number of inversionsin a¢is4+ 2+ 2+ 1 = 9. (From [2], the number
of inversions in ¢; ¢ ¢3 ¢4 cs say, is the number of those ¢;’s that are less than ¢).
All the numbers given by (2.2.13) are clearly even. Thus }; is an even permutation
for all 5. Hence )\; € Qu-1 \Wy-1 and so the mapping v is well defined. It is easy to
verify that 1 is a bijective homomorphism.
From Coxeter and Moser ([4], section 6.3) we find that A,,_; is of rank 2 (provided
n > 5 and is odd), being generated by

(12)(3:-:n—1) and (12 3).
From Proposition 2.2.7 the set
A'_‘ {(1191,1)1(1)92,2)!(2:313)7'"v(n'— l,e,n),(n,e, 1)}

where g = (12)(3..-n— 1), g2 = (1 2 3) and e the identity permutation in A,_;
generates B(A,-1,{1,---,n}). Thus A4y generates Q-1 \W,-1 and hence (N').
It is easy to verify that

A¢= {ﬂ:alr"'raﬂ}

(2 3 4 ... n—-1 n
B=l3 25 ... un 4)

ar=|2an-1.-.31}], an=1[13245---7|,

where

g d e B
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and

ai=|li+li—1.-.1nn—1---4+24|| for i=2,...,n—1.

B=Mgh e = Mg ae =7 s = M and @, = AaA1 7 are

straightforward to verify. If 4 < i < %L — 1 then A\ )3}, is

1 ..o @1 i+1 ... s+1 s+2 s8s+3 s+4 s+5 ... n 5
£ we 28=2 2¥—1 v Tt 2 3 1 4 v 8= 1

1 2 3 4 oo % 3+l 342 ... 24 2141 ... mn—1
s+3 s+1 s+2 s+4 ... n 1 2 ces 2 342 ... m—13

={li+14—-15i—2.-.21an-1.-.i+2i||=o

where s = n— 4. If i = 251 — 1 then putting 21 = k we have \;_1\;! tobe

1 vee k=2 k k+1 k+2 k+3 k+4 k+5 ... n
k—1 n—3 n—-2 n-1 2 3 1 4 s k=2
o k k+1 ... n—1 2 3 1 4 SR - |
1 2 oo k=1 k+1 k+2 k+3 k+4 ... n

=|lkk—2---4321nn—1..k+1k—1||=ap.

If i = 21 (= k) we have A\i)z41 to be

1 2 vee k—1 k+1 k+2 k+3 k+4 ... n

k k+1 ... n—1 2 3 1 4 W - |
B k+1 k+2 ... n-1 2 3 1 4 ik
1 2 ee. k=2 k=1 k k+2 k+3 ... n

=||k+1k;1-»‘321nn—-1...k+2k”=ak_

If§ = %L 4+ 1(= k+ 1) then Mgt dps2 is

1 2 .. k=2 k-1 k k+2 k+3 ... n 5
k+1 k+2 ... n—-1 2 3 1 4 R
k+2 ... n-—1 2 3 1 4 5 e k+1

1 oo k=3 k-2 k-1 k k+1 k+3 ... n

=|lk+2k---21nn—1---k+3 k+ 1|| = azgs1.
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If i > 2L + 2 then M\ is

141

i [ s s+1 s8+2 s+3 s+4 ... 1 —1 t+1 ... n
i ... n—1 2 3 1 4 oo 28—m—~1 24—m ... 1—1
i+1 ... n—-1 2 3 1 4 vee 29—n+1 2i—n+2
% 1 e =1 & a%l 842 %3 i )

=[li+1i-1i-2...432lan—1.i+2i||=

where s = n—1i.

Now,leté; = ||n1345...n—12||; then
B =16 ay.

Hence the n+ 1 nilpotents

01,0.’2,”',0,.,81

generate (N'). n

Theorem 2.2.14 The rank of SP, isn+ 2.

Proof. We begin by showing that every generating set G of S P, must contain at least
n+ 2 elements. The top J-class is [n— 1,n— 1], and since this consists entirely of

one-one maps it does not generate S P,. From Lemmas 2.2.2 and 2.2.3 we have
SP,={([n—1,n—1]U[n-1,n-2]).

Itis clear that in generating the elements of [ n—1, n—1] only elements of [ n— 1, n—1]
may be used, and by Proposition 2.2.8 at least n+ 1 elements are needed to generate
[n—1,n— 1]. Thus

IGNin—1,n—1]] > n+ 1.

In generating the elements of [ n— 1, n— 2] at least one of the elements must be from
[n—1,n—2]. Thatis
G| > (n+ 1) +1=n+2.
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To generate [n— 1, n— 2] we now show that only one element from [n— 1,n— 2]
is needed. Let @ € [n— 1, n— 2] be given by

P {a1,02} a3 ... a,,_1>
b by ... bp1 )

Then
a=N77,

where

_ (a1 62 ... ap1 _({1,2} 3 ... n-1
Fn—(l SR n—-l)’%—( 3 4 ... n )’

3 & . B 1

L VI S M
and by € X, \im «. Itis clear thaty;,7y3 € [n— 1,n— 1] and , is a fixed element
in [n— 1,n— 2]. This completes the proof of the Theorem. m

Theorem 2.2.15 Let n > 4 be even. Then the nilpotent rank of SP, isn+ 2.

Proof. From Proposition 2.2.9 and the proof of Theorem 2.2.14, the n+ 2 nilpotents

al:"'vaﬁvlyahaz"n

generate SP,, where o , - - -, a1, 81, 62 are as defined in Proposition 2.2.9 and +y, as
in Theorem 2.2.14. |

Let
( 1 2 3 ... =n )
a =
Ct €2 ¢C3 ves Cqp
be a permutation on X, and define another permutation 8 on X, by

18=2a, 23 = 1a and z8 = za otherwise.
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Thus
ﬂ:(l 2 3 c’i):(lz)a.

2 € ¢C3

So «a is even if and only if 8 is odd and vice versa.

Theorem 2.2.16 Letn > 5 be odd. Thenthe rank and the nilpotent rank of S P,\Why,_1

are both equal ton+ 2.

Proof. [n — 1,n — 1]\W,-1 consists of one-one maps, so it does not generate
SPy\W,_1, as remarked in the proof of Theorem 2.2.14. From Lemmas 2.2.2 and
2.2.11

SPi\Wp-1 ={([n—1,n— 1\W,_1) U[n—1,n—2]).

From Proposition 2.2.12, at least n+ 1 elements are needed to generate [n— 1,n—
1]\W,.—1 . Moreover the n+ 1 elements may as well be all nilpotents.

As remarked in the proof of Theorem 2.2.15, to generate [n — 1,n— 2], at least
one of the elements must be from [n— 1,n — 2]. Thus if G is a set of generators of
SP\Wy-1, then

|Gl >n+2.

It now remains to prove that every elementa € [n— 1, n— 2] is expressible as a
product of nilpotents in [n — 1,n— 1] and a fixed nilpotent from [n— 1,n— 2}. So
letace[n—1,n—2] be

{a1,a2} @3 ... apa
b by .. bp1 /°

Then « can be expressed as ; 86, or alternatively as ~y, 86, where
_ (% 062 a3 ... Gn1 _{oa 6 63 ... an
AEXT 2 3 .. n=17'B%L 2 1 3 .. »w=1)"

({1,2} 3 4 .. n=1\ . (3 4 5 .. =n
PEL™a" A 8 o o 2N h B B o B )

P




Here 3 is a fixed nilpotent in [n— 1,n- 2], § is.-an element in [n— 2, n— 2] and by

Lemma 2.2.11 is expressible as a product of two nilpotents in [n— 1,n— 1]. By the
argument preceding the statement of the Theorem either the completion of ~; or that
of n, is even, and hence by Lemma 2.2.10 either ; or «y; is expressible in terms of

nilpotents in [n — 1, n— 1]. Hence the result. |

The following result is of independent interest. Here {e} denotes the trivial group.

Proposition 2.2.17 The rank of B({e},{1,:--,n}) (as a semigroup) is n.
Proof. The set of nelements

A= {(lrelz))(218:3)s"';(n"' l,e,n),('n,e,l)}

generates B({e},{1,---,n}). Forif (3, e, f) is an arbitrary elementin B({e}, {1, -,
n}) then

(i,e,7) =(i,e,i+ 1) ---(n—1,e,m(n,e,1)(1,e,2)---(J—1,e,7).

Since any generating set must cover the R-classes(as well as the £-classes) by Lemma
1.3.5, and since the number of R-classes in B({e},{1,---,n}) is n, no set of fewer

than nelements can generate B({e},{1,---,n}). Hence the result follows. [ ]

We remark here that the rank of B({e}, {1,--,n}) as an inverse semigroup is
n— 1. This follows from Theorem 2.2.5 and the fact that {e} has rank 0.

Let
K(nr)={a €SP, :|ima|Lrand2 <r<n~2}.
By Lemmas 2.2.2 and 2.2.4, K(n, r) is generated by the nilpotents in SP, of height r.

The number of L-classes in the J-class J, of K(n,r) is the number of image
sets in X, of cardinality r, namely (7). The number of R-classes in the J-class J, of
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K (n, ) is the number of equivalence relations p on each of the subsets A of cardinality
k (where n— 1 > k > r ) for which |A/p| = r, and this number is

n—1 n
v (:) Stk =3 (Z)S(k,r) ~ S(n,7)

k=r k=r

=8S(n+1,r+1) —S(n,7)
=(r+DS(n,r+1).

where S(k, ) is the Stirling number of the second kind.
K(n,r) has r + 1 J-classes, namely J,, Jy41, -+, Jo (Where Jo consists of the

empty map). Foreacht, 1 <t < r

n—1
Te= 1k, 1.
k=t

If we define
rank (K (n,7)) = min{|T| : (T) = K(n,7)},
then we have:
Lemma 2.2.18 For all n, and for all r suchthat2 <r<n-—2,

rank (K(n,7)) > (r+ 1)S(n,r+ 1).

Proof. The result follows from the fact that every generating set of K (n, r) must cover
both the R-classes and the L-classes in J,. L1

Letr € {1,---,n— 1} and let a1, - -, a1 be distinct elements of X,. The

ar a2 ... Gy
G2 Q3 ... Q41

clement

9]
&
b2
i

G O 3 ) 2.t
LR s et AR A R T
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(mapping a; to agyq (3 = 1, .-, 7)) is clearly nilpotent of index r + 1. Let us write it as
[la1 a2 - - - ays1]| and call it a primitive nilpotent in SI,,. Then we have the following
result from [12]:

Theorem 2.2.19 [12 Theorem 2.8] Every non-zero nilpotent « in S1I, is a disjoint

union

apUay U Uy

of primitive nilpotents.

Proof. Certainly dom o # (doma)a = ima« by [12 Lemma 2.1]. Leta; €

dom o\ im « and consider the sequence
61,82 = G1Q,G3 = G2Q, "+ -.

The sequence terminates when we reach an a,;; = a,« such that a,4; ¢ dom a.
There can be no repetitions in the sequence: if a; = a4 = a;a/(j > 0) then the non-
empty set {a;,-- -, ai+j—1} is invariant under &, which is impossible by [12 Lemma
2.1]. Hence the sequence must terminate in the way described.
If r = h(a) then « is the primitive nilpotent ||a1 a2 - - - ar+1]|]- Otherwise « is a
disjoint union
a = ||a; az -~-a,+1|| ug.

Since

o™ = |lay az - arat || U BT

form = 1,2,... it follows that 8 is nilpotent. But h(8) < h(a) and so we may
suppose inductively that 3 is a disjoint union of primitive nilpotents. Hence we may

express « as o1 U - - - U oy as required. B

Theorem 2.2.20 The rank of the semigroup K (n,r) is equal to its nilpotent rank and
is(r+1)S(n,r+1).
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The proof depends on the following Lemma:

Lemma 2.2.21 Suppose that we can arrange the subseis Ay, - - -, Am (Wherem = (7)
andn—2 > r > 2)of X, of cardinality r in such a way that |A; N A;1| =7 — 1 for

i=1,...,m—1and|AnNA1| = r—1. Thenthere exists nilpotents o , - - - , &tp, (Where

p=(r+ 1)S(n,r+ 1)) suchthat {en,-- -, 0} is a set of generators for K(n,r). W

Proof. Notice first that every element « € [k, 7], r < k < n— 1 is expressible as a

product of a nilpotent in its own R-class and an element in [, 7]. For

s (A; A o A A,> (ag az ... G x>
@2 s e 8 T by by ov by b

where o = (ngl ‘::), a; € A; foralliand z € X,,\ dom a.

In the arrangement of our subsets Ay, - - - , Ap, we shall assume that A; = {n—7r+
1, n—r+2,..-,n}, Ay = {n—r,---,n—1}and A, = {1,n—r+2,..-,n}. Weshall
also represent any two adjacent subsets A;, A;;1 by the two subsets {z1, -, z,_1, 9}
and {z1,--,%,-1,2}, where z,y # x; for any ¢ and z # y. Define Hy, 4, 1O consist
of all elements « € [, r] for which dom o = A; andim o = A;. Fori=1,-.-,m

define a mapping §; € Hy; 4, as follows:

n—r+1 n—r+2 ... n
slz 1 H

n—r+2 ... n
k= n—rw n—r+1 na—r+2 ... n-—1
27 \n—r+2 1 n—r+3 ... =n 2

andfori=3,.-.,mif

= (® T o Ty R
s B B oea B & :

E'= T x2 sse :E,-._l ¥4
. s A5 wee iy EF

define
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Then it is easy to see that the mapping

¢:B(S’n{1s"';m}) —’Q'r

defined by (1,7,/) ¢ = fmf;‘l is an isomorphism. Here S, is the symmetric group on
{1,n—7+2,--.,n}, Q, is the principal factor [r,r] /([r—1,r—1]U.-.U[0,0]).
From Proposition 2.2.7, the set

T= {(1,91,1),(1,92,2);(2,3;3)s"‘,(m“ lve:m))(m,eil)}!

where g1 =(1n—r+2-...m), g2 = (1 n— r+ 2) and e the identity permutation in

S, generates B(S,, {1, .-, m}). Thus T'¢ generates Q, and hence [, r]. If we now
define

o = 619285, =65, fori=2,... . m—1
and

B=tnfl', 8=6aff!

we obtain a generating set {3, 8, a1, -+, @pm_1} Of [, 7], where

a1 =|jnn—1---n—r+1n—r

& =|lyTr_y -3 2)|fori=2,... m—1
are all nilpotents.
Fi n—r+1 n—-7r+2 ... n-—1 n
"\n—r+2 n-r+3 ... n n-r+l

which is clearly non-nilpotent. However if r is odd we have
8= a1\ (2.2.22)
where

M=|np-rn—r+2.-.cn—1ln—r+ln—r+3...0—-2 1]
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If r is even, and is of the form 4¢ + 2(¢ > 0), then
d=aimm {(2.2.23)
where

m=ln—r+ln—r+5. . n—1ln—r+3n—r+7 .- .n—3n—r

n—r+4...0-21||Ulln-r+2n—-r+6-..0
and
m=|n-rn-1n-3...n—r+3n-r+1||U|[lan—2n—4...n—r+2|
If r is even and of the form 4¢(¢ > 1) then
8 = a9z (2.2.24)
where
Vi=|ln—r+ln—rn—r+3n—r+2n—r+S5n—r+4...0-1n-21|
and
P=lln—ra—r+3n—r+2n—r+5...0—2n—r+1jU||11].

Next, § may or may not be nilpotent. However if 8 is non-nilpotent, then by

Lemma 2.1.1 it is expressible as a product of two nilpotents in [ r, r], say

B=G¢. (2.2.25)

It is clear that 8 R {1 and BL(z, thatis B¢, = Ay, and L¢, = A;.
We now define A}, 77,13, 91, 95 and ¢} as follows:

A= U(l,m),

3 ¥
i
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Mm=mU(nl), m=mnU(-r+l,n),
Yi=hU(nn=2), =% U(mn-r+1).
Before we define ¢} , we note that from Theorem 2.2.19 {, can be expressed as a disjoint
union of k primitive nilpotents, say
G=pmUp2U---Upy.

If k > 2, then assume

p1 = ||z zsf] and  p2 =|lyr -]

and define ¢ as
2 =3l if ze€dom{y
and
msCﬁ = Yt
On the other hand if £k = 1 then [dom {; Uim (| = r + 1, and since r < n— 2 we
have X,\(dom ¢ Uim ¢3) to be non-empty. Then define ¢} as

¢G=GU(z,n—r+1)

where z € X,;\(dom ¢, Uim {3).

Note that A}, n{, 75,4}, 95 and {} are distinct, and belong to [r + 1,7r]. If we
now replace A1, 71,712,141 and 92 by My, ni,n5, ) and ) respectively in equations
2.2.22 - 2.2.24, then is easy to that the equations remain unaltered. Since 8, (;,(z are

all one-one and of the same height, we must have
dom 8 = dom ¢;, im ¢; = dom {3,
and since z,,z ¢ dom ¢, = im ¢; we conclude that

G =06,
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Now, if 8 is nilpotent then K (n, r) is generated by

{ﬁak{lvala"'rap—z}: {ﬂ’nian’Z;aly"':ap—:“}

or
{ﬂ»'/’i;‘!blz,ah“':ap—?l}

according to whether r is odd, even and of the form 4 ¢ + 2 (¢ > 0) oreven and of the
form4gq (g > 1), and am, - -, ap—k (k = 2,3) are chosen arbitrarily to cover all the
‘R-classes in J,.

If B is non-nilpotent, then K (n, r) is generated by

{glycésk’l)aly""ap—3}’ {Cla(é)‘ni’né,alg"':ap—4}

or
{4114.5’1/);91/)'2:“1:’ S ':ap~4}
according to whether r is odd, even and of the form 4 ¢ + 2 (¢ > 0) or even and of the

form4q (¢ > 1), and am, -+, ap—k (k = 3,4) are chosen arbitrarily to cover all the
R-classes in J,. |

Itremains to prove that the listing of the subsets of X, of cardinality r as postulated
in the statement of Lemma 2.2.21 can actually be carried out. Letn > 4 and 2 < r <

n — 2, and consider the following Proposition:

P(n,r) : Thereis a way of listing the subsets of X, of cardinality r as Ay, Az, ---,
Ap (Withm = (:),Al ={n—r+1,-.. 0}, A2 ={n-—r,-n—-1}, A, =
{l,n—r+2,---,n}) such that |AsN Ayl =r—1fori=1,--.,m—1 and
|[AmNA|=r—1.

'We shall prove this by a double induction on n and 7, the key step being a kind of

Pascal’s Triangle implication.

P(n—1,r—1)andP(n—1,r) = P(n,r).
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First, however, we anchor the induction with two Lemmas:

Lemma 2.2.26 P(n,2) holds for everyn > 4.

Proof. Consider the following arrangement of the subsets of X,, of cardinality 2.

{12 {13}, &= {I,n—1}, {1,n}
{2,3}; a5 {2,n-1}, {2,n}

{n—2,'n— 1}, {n—b.,n}
{n—1,n}

If we denote the first row by R;, second row by Rz, etc., then we note that the first
entry in Ry is {3,1 + 1} and the last entry is {1, n}. Thus the number of elements in R;

is n— 1, and the total number of subsets in all the rows is
n—1 " %
;(n— ) =z(n—1) = (2>
Hence above is a complete list of the subsets of X, of cardinality 2.
Note that for any two subsets A,, A, in R;, A, N A, = {1}, and the intersection

of the last entry in Ry with the first entry in R; is {1 + 1}. Hence the following

arrangement satisfies P(n,2):

Rn—l1Rn—2:""-Rl'+l:Ri""sR21Rl-

That is, the list begins with all the subsets in R,,_1, followed by the subsets in R,, 5,
followed by the subsets in B,,_3, and so on , until R; is reached. |

Lemma 2.2.27 P(n,n — 2) holds for everyn > 4.

Proof. Note that P(4,2) follows from Lemma 2.2.26. So we will assume thatn > 5.
Let R; be the list of the complements of the subsets in R; arranged in the same order
asin R;. Let (R})~! be R} arranged in the reverse order. For example

Rn2 ={n—-2,n—1}, {n—2,n},
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:»—2 = {11"',"—3:"}) {11"',‘"’— 3"”'—’ 1})
(R:»—Z)_l = {1:' G 31""" l}: {1: sty 37"’}
Let T = {1,3},{1,4},---,{1,n — 1} and 7' be its complement, ie. T' =
1\({1,2} U {1,n}). Itis clear that for any two subsets A}, A/ in R} we have
|A5 N ALl = n— 3, and the intersection of the last subset in R}, and the first subset in
R; also contains n — 3 elements. We also have n — 3 elements in the intersection of
the last subset in B} with the first subset in ( R,’,,)‘l , and the same number of elements

in the intersection of the last subset in 7" with the subset in R/, ;. We now have the

following arrangement satisfying P(n,n — 2):

’!>A/2)TlsRln—l 7R~’»-2s"‘:R’3y(R'2)—l,

where A} = {1,2} and 4} = {1,n}. n

Lemma 2.2.28 Letn > 6 and3 < r < n—3. ThenP(n-1,r —1) and
P(n — 1,r) together imply P(n,r).

Proof. From the assumption P(n — 1,r) we have a list A;,---,A,, (where m =
(*7')) of the subsets of X, ; with cardinality r such that |4; N Ag1| = r — 1 for

t=1,.--,m—1,and
Ar={n—-r,---,n—-1}, Aa={n—-r—-1,... . n-2},

Ap={l,n—r+1,.-- n—1}.

From the assumption P (n — 1,r — 1) wehavealist By, - -, By (where t = ("_}) ) of
subsets of X,,_; of cardinality r — 1 such that |B;NBj1|=r—2 fori=1,..-,r—1,
and

Bi={n—r+1,---,n—1}, By={n—rn,---,n—2},

Bi={l,n—r+2,-..,n—1}.

o e T ST e
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Let B; = B; U {n}. Then
A1, Am, By, -+, By

is a complete list of the subsets of X, of cardinality r. (Notice thatt+ m = (’r‘) .) Now,

arrange the above subsets as follows:
BiiAlsAm" "sAZ:Bé,"':BgI‘,'

Then it is easy to verify that this arrangement satisfies P (n,r). Hence the induction

is complete and we may deduce that P(n,r) is true for all n > 4 and all » such that

2<r<n—2. =
The pattern of deduction is
P(4,2)
P(5,3) P(5,2)
P(s, 4) '(6 3) P(6 2)
P(7,5) P(7 4) \%(7 3) P(7 2)

\P(S 5) \)3(8 4$/ \ﬂv(s 3y
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CHAPTER THREE

NILPOTENTS IN SEMIGROUPS OF PARTIAL ONE-ONE
ORDER-PRESERVING MAPPINGS

If a transformation semigroup S contains zero, then it contains nilpotents, and
so it is natural to ask for a description of the subsemigroup of S generated by all the
nilpotents of .S. Gomes and Howie [12], and Sullivan [26] independently initiated this
study by considering I,,, the symmetric inverse semigroup and P,, the semigroup of all

partial maps on X, respectively. In this chapter we shall consider the inverse semigroup
I0, = {a € I, : z < y implies za < ya}

consisting of all partial one-one order-preserving maps. We shall investigate its

nilpotent-generated subsemigroup, and its depth and rank properties.

1. The nilpotent generated subsemigroup
By [18 Proposition 2.4.5] we have
LIO0.) = L(I,) N (IO, x I0,) and R(IO,) = R(IL) N (IO, x IO,).

If we let o, 8 € IO, be of height r, and suppose that

i & R _fa @ « &
“‘“(bl B s b,)’ # (d1 b d,)’
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wherea1 < a2 < < ap i < by < - <bhya1 <2< - < &, <dp <

+++ < dy, then we have im « = im «, dom @ = dom «, where
e C1 € ... Cy
"“(b, by ... b,)
is clearly an element in JO,,. Thus
T(I0) = T(Is) N(I0, x IO,).

The semigroup IO, has n+ 1 J-classes Jo,J1,...,J, where J, (r =0,...,n)

consists of all elements of height r, that is, of all elements « for which
|dom @| = |im o = 1.

Each H-class consists of only one element. Thus

n\ 2
[Jv| = (,,,)

10, = Zo (’:)2 = (Zn").

The first step in our investigation is to give a characterization of nilpotent elements,

and

However it is convenient at this stage to prove the more general result concerning PO,,.

Lemma 3.1.1 An element o in PO, is nilpotent if and only if for all z € dom o,
T # .

Proof. If o = 0 (the empty map) the result is trivial. We may therefore suppose that
dom « # §. It is clear that if z« = = for some x € dom «, then & cannot be nilpotent.

For we will have
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Conversely, suppose that xze ¥ z for all x € dom . We first show that if
dom o* % @ (k > 2) then za* 1 for all z € dom o*. (Note that if dom of = 0
for some k then « is nilpotent.) Let z € dom o* then z € dom o for all ¢ such that
1 <t < k. In particular z € dom «, and thus za # 2. We therefore have zax < 2
or za > . By the order-preserving property we have zaf < z or za* > z. Thus
zak o x.

Denote an element o € PO, by

A A ... A
b] bz ves br
where r = |im «|. Now, if b, € dom « then b, < z, (the min{z : z € A,}), and by

the order-preserving property we must have im o N A, = @. Thus b, ¢ im o2, and so

im &? C im « (properly). If b, ¢ dom « then A, ¢ dom &?, and since the blocks in

dom o are union of blocks in dom o, we can again conclude that im o C im a.

If we now denote by s the cardinality of im o, then o can be written as

A A ... &L
B B e )

Since za? + z for all x € dom o?, repeating the same argument as above to a? we

obtain im o C im 2. If this process is to continue we will obtain a strict descent
. : 2 p 3
meaeDOime” Dmao D«

and since |im «/ is finite there exists m (2 < m < |im ) such that im o™ = @, that

is such that o™ = 0. |

Let
o ai a2 can Qr
a—(bl B .. br) (3.1.2)
be an element in /O,,, and suppose that

o=mmny - N, (3.1.3)




58

is a product of k nilpotents. Each n; must be of height at least r. If any n; is of height
greater than » we can replace it by one of height exactly » simply by removing the
redundant elements. Accordingly, we may assume that in the product (3.1.5) each »;
has height precisely . Thus dom « = dom ny. If

Sk
we must have ¢; 5 a; for all 5. Hence in expressing « as a product of nilpotents, we
shall first seek a set {c1,¢2,..., ¢} for which ¢; < c;41 and a; # ¢;. Such a set may or
may not exist. For example, if n = 5 and dom « = {1,3, 5} then no such set exists.
(One can verify this by looking at all the 10 subsets of cardinality 3.)
We shall say that o has an upper jump of length k [a lower jump of length k] if
there exists an 7 such that

a.-+1=a,-+k+1 [b,'+1 =b¢+k+1].

Ifa; = k+1[b = k+ 1] and & > 1 we shall also say that & has an upper jump of
length & [a lower jump of length k]. For example,

! ( 1.8 5 7 )
z2 5 06 B
has upper jumps of length 1 and 2 (between 1& 3, and between 3& 6 respectively),
lower jumps of length 1, 2 and 1 (before 2, between 2& 5 and between 6& 8 respec-
tively). We shall refer to the sum of the lengths of upper jumps of « as the total upper
Jump of «, and denote it by 7*( «) . Likewise, the sum of lengths of lower jumps of « is

the total lower jump of «, and we denote it by j.(«). In the example above j*(a) = 3
and j.(«) = 4. Itis easy to verify that if « is given by (3.1.4), then

Lemma 3.14 j*(a) =a, -1, Jula@) =b, —1.

Theorem 3.1.5 Forn> 2. Let

_faL a2 o Gy
a—<bl by ... br)

R P e I N S T AT 0 P S a o Wt 2ty (S ¥ ol
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be an element of J, where r < n. Then « is not a product of nilpotents if and only if o
satisfies one or both of the following:

(i) a1 =1, a, = nand all upper jumps are of length 1,

(i) b =1, b, = nand all lower jumps are of length 1.
Proof. Suppose that « satisfies neither (i) nor (ii). We shall consider four cases sepa-
rately.

Case 1. a; # 1, by # 1. For this case we have a;, b; > i for all 7, and so

. FeE 8% e OF 1 2 ... r
XL B e F bi b2 ... b/’

a product of two nilpotents.
Case 2. a1 = 1, b; # 1. We must look for a set A = {c1,...,¢,} where ¢; < ci41
fori=1,...,7r—1 and a; # c; for all 4. It is clear that if such a set exists then we have

¢; > 1 for all 4, and so

o ar G2 .. Gy €1 €2 ... Cy L 2 s W
€1 €2 ... OCr 1 2 ... T b b ... b

= mmm € N>.
To find the required set A, consider first the case where a, ¥ n, when we may define
a=ai+1 (s=1,...,7).

In the case where a, = n, we have by assumption that « has at least one upper jump
of length greater than one. Suppose that the first upper jump of length greater than one
occurs between ax and ag+1. Then define
_Jat 1 ifi <k,
a;—1 ifi> k.
Note that cg41 = age1 — 1 > (ag+3) — 1 = ax+ 2 > c;. Hence ¢; < ¢;4q forall s

and so m is a nilpotent element in IO,,.
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Case 3. a; # 1,b; = 1. Here we have that o is as in Case 2. So we shall choose
the set

A={ca,c2,...,6}
as in Case 2 to obtain
1 bi b2 ... b c1 € ... Cy I 2. wew B
a —
€T €2 ... G 1, 2 s o ay a2 ... Qy
=mmn3,

from which a = n; n; !, a product of three nilpotents.

Case 4. a1 = 1, by = 1. We choose two sets A = {c1,¢2,...,¢} and B =
{d1,dz,...,d,} such that a; # ¢; and b; # d; forall 7. If » > 1 we also have ¢; < cj41
and d; < dyyq foralli € {1,...,r — 1}. Then

a=mmmny,

ar a2 ... G Ct €y ive ©
m = g y M= " y
€1 €3 e B 1. 2 e #

Lk 2 e ¥ fdy dg . &
m"(dl d ... d,)’m_(bl by ... b,)'

The details are similar to those of Case 2.

where

Conversely, suppose that « satisfies condition (i) and that « is expressible as a
product

o=mm

ar a2 ... Gy
n = .
€1 € . O

We first show by induction that ¢; > a; + 1 for all 4. The result is clearly true fors = 1.

of k nilpotents with

So suppose that it is true for ¢ < k and that cg41 < a1 — 1. Then since all the upper

jumps of « are of length 1, we have ax+1 < ax + 2. Thus

Ckt1 < agr1 — 1 <apt 1< .

:
;
¥
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This is impossible, so ¢; > a; + 1 for all 5. In particular we have ¢, > a, + 1 = n+ 1, ‘¢
and so ¢, does not exist. Hence « is not a product of nilpotents.

A similar argument holds if « satisfies (ii). [ |

Corollary 3.1.6 Let abe asin Theorem 3.1.5. Then « is a product of nilpotents if and

only if it satisfies any of the following:
@) a1 #1,b1#1; 3
Gi) a1 =1,by # 1 anda, # y
(iii)) a1 = 1, b5 # 1 and a, = n with a having at least one upper jump of length
greater than 1;
(iv) a1 #1,b1 = 1 and b, # n;
(v) a1 # 1,b1 = 1 and b, = nwith o« having at least one lower jump of length greater
than 1;
(vi) a1 = 1,b1 = 1 and a, # n,b, # n;
(vii) a1 = 1,b1 = 1 and a, = n, b, ¥ nwith « having at least one upper jump of length

greater than 1; N

(viii) a; = 1,b; = 1 and a, # n, b, = nwith « having at least one lower jump of length
greater than 1;

(ix) a1 = 1,b1 = 1 and a, = n, b, = nwith a having an upper jump and a lower jump

of length greater than 1. |

If « satisfies condition (j)(j = i,...,1x) we shall say that « is of type (j).

Theorem 3.1.7 The set {o: € IO, : |im & < 7} is contained in {N) if and only if
r< nf2. ;
Proof. Let « be as in Theorem 3.1.5 with |im | = ». Suppose that « is not in (N).
Then by Theorem 3.1.7 we have either

(i) a1 = 1,a, = n, and all upper jumps of « are of length 1; or

s : "
R S P, 1 3 e Sy ¢ 18

>
3
~
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(i) b1 = 1, b, = n, and all lower jumps of « are of length 1.

It will be sufficient to consider the case (i). Here we have j*(«) < r — 1 and
n=ar=r1+7"(a),

from which it follows that

7 (a)=n—r.

This gives a contradiction if and only if r < n/2. Thus if & ¢ (N), then |im «| >
nf2+ 1. Soif r < n/2, then |im | < r implies & € (N).

To complete the proof of the theorem, we now show that if r > n/2, then there
exists o« € IO, such that o ¢ (N).

Consider the element « for which |ima} = » > n/2 + 1 and X,\dom o =
X \ima = {2,4,...,2s}, where s = n— r. Then dom « = im o, and since r >

n/2 + 1 we have
2s=2(n—7r)<2n—(n+2)=n—2.

From which we can conclude that n € dom « = im @, and thus a, = b, = n. Itis clear
that ;1 = b1 = 1 and that all upper and lower jumps of « are of length 1. Hence o

satisfies the conditions in Theorem 3.1.5. So « is not a product of nilpotents. ]

2. The depth of the nilpotent-generated subsemigroup

Let o be as in Theorem 3.1.5 and suppose that it is expressible as a product of
nilpotents. By the proof of Theorem 3.1.5 we can express « as a product of at most four
nilpotents, with elements having a; = 1, b; = 1 expressible as a product of exactly four

nilpotents. We now show that even such elements can be expressed as a product of two
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or three nilpotents. In other words the depth of the nilpotent-generated subsemigroup
of IO, is at most three.

Proposition 3.2.1 Let « be as in Theorem 3.1.5, withay = 1, b = 1. Then o is

expressible as a product of two or three nilpotents.

Proof. By Corollary 3.1.6, « is of type (vi), (vii), (viii) or (ix). If « is of (vi), define
¢; = max{a;, b} + 1 (t1=1,...,1).

Then ¢; < ;41 for all § with ¢, < nand ¢; # a4, b;. Thus

s a Qaz ... Qp C1 € ... Cp
1 C2 ... Cp b] bz e br !
a product of two nilpotents.
If « is of type (vii), then suppose that the first upper jump of length greater than 1
occurs between ay and ag.1. Define

Ci

_Jatl if1<i<k,
a;—1 ifi>k,

and
d; = max{c;,b;} + 1.

Note that cg+1 = ag+1 — 1 > ap+3 — 1 > ar+ 1 = ¢ and thus ¢; < ¢4 for
alli = 1,...,7r — 1 with ¢, = n— 1. Also max{c;, b} < max{ci+1,bi+1}, and so
di < diyy foralli=1,...,r — 1, with d, = n Itis clear that a; # ¢;, ¢; # di, di # by
for all ¢ and thus

o= a1 a2 cee Ay C1 c2 ) Cyr dl da “en dr
1 €2 ... Cy d1 dz cae d.,. b] bz ) b, !
a product of three nilpotents.

If « is of type (viii), then a! is of type (vii) and thus « is a product of three

nilpotents.




If a is of type (ix), let t; = a; — 1, s; = b; — ¢ and suppose that « has its first upper
jump of length greater than one between ag and a+1, and its first lower jump of length
greater than one between b; and b;,.1 . We shall consider three cases separately, namely
tr = 81, tp < spand t > s;.

Casel. tx = s;. Without loss of generality we will suppose that k£ < [. We then

define

e max{a;, b} +1 ifl1 <i<k,
: i+t + 1 ifi > k.

Observe that agy; > ax + j+ 2 and that cgyy = ap +j+ 1forj=1,...,r—k,
thath; < i+ s+ 1 =cifork+ 1 < ¢ < [, thatby; > b+ j + 2 and that ¢y =
(1+ j) + s+ 1. It therefore follows that c; # ay, b; for all 5. Also, if max {a, bx} = ax,
then cgs1 = ap + 2 > ap + 1 = max{ag, b} + 1 = ¢k, and if max {ag, by} = by, then
Ck+1 2> bry1 + 1 > b + 1 = max{ag, bx} + 1 = ¢x. In conclusion we have ¢; < ci41
foralli=2,...,r— 1 and

a= (% 9 ... o 6 € v O
€1 € ... Cf bi by ... b/’
a product of two nilpotents.
Case2. t; < s;. Define

= i+ti+1l F1<i<k,
- s+t 41 Hidvk,

and

4o {max{eb}+1 if1<i<y
by —1 e i

Note thatby; > b+ j+2 =g +1l+j+2 >4+ 1+ j+2=cu;+ 1. Thus
diuj=bu;j—1>cyjforj=1,2,...,r—1andsod; # c; forall i. It is clear that
d; # b; for all 5. Now,

A1 =bu1 —12>20+2 >h+1=max{g,b}+1=d
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(since ¢ = {+1x+1 < L+ 8 = by). We therefore have d; < dgy1 fori=1,2,..,,r—1,
Also since a; = 1+ ¢; forall i, we have a; < ¢;for 1 <§ < k,thatag; > ap+j+2
and that cg4; = ag + j + 1. Thus a; # ¢; for all 4. It is clear from the definition of ¢;

that ¢; < c¢iy1 for all 4. Hence

a= {01 82 ... O €l CF wow Ci di dp ... d,
C1 €2 ..o Cy d dp ... dy hh B e b3
a product of three nilpotents.
Case3. t; > s;. Here ! falls into Case 2 and so is expressible as a product of

three nilpotents. Hence « is also expressible as a product of three nilpotent elements.

This completes the proof of the theorem. L]
Lemma 3.2.2 Forn > 4, the element

1 2 3 ... n-3 n

1 2 3 ... n—-3 a-1
cannot be expressed as a product of fewer than three nilpotents.

Proof. The only image set for which
( 1 2 ... n=-3 n
€1 € .. Cp3 Cp2
is nilpotent is the set {2,...,n— 2,n— 1}, and the only domain for which

dy dp o dis dus
1 2 ... n—=3 n-1

is nilpotent are the sets {2,...,n—2,n},{2,4,5,...,n—1,n}and {3,...,n~1,n}.
Since neither of the domains is equal to the image set {2,...,n—2,n— 1}, it follows

that o cannot be expressed as a product of two nilpotents. |

The following Theorem now follows from Proposition 3.2.1 and Lemma 3.2.2:
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Theorem 3.2.3 Let N be the set of all nilpotents in 10, (N) the subsemigroup of
IO, generated by the nilpotent elements, and A ({N)) the unique k for which

(Ny=NUN?U..-UN*, (N)$NUN?U...UN*T,

Then A((N)) =3 foralln > 4. L]

3. The nilpotent rank

For a subset A of an inverse semigroup S, the inverse subsemigroup (A) generated
by A is the smallest inverse subsemigroup of S containing A. It consists of all finite
products of elements of A and their inverses. By the rarnk of S we shall mean the
cardinality of any subset A of minimal order in § such that (A) = S. The cardinality of
the smallest subset A consisting of nilpotents for which (A) = S is called the nilpotent
rank of S. In this section we show that if r < n/2 then the rank and the nilpotent rank
of

Linr) ={a€ IO, : |ima| <}

(0)-

If n/2 < r < n— 2 then the rank and the nilpotent rank of

are both equal to

M(nr)={a€lI0,:|ima|<randa € (N)}

()= G2 ) =

Proposition 3.3.1 Forn> 4 andr < n—3,eacha € (N)N J, can be written as a

are both equal to

product of elements in (N) N Jys1.

§ AT AL
PR O

EP X P P
ot g A e SEY S et A S
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Proof. If « is of type (i), then let ¢ = max{z : z € X,,\dom a} and d = max{z :
x € X,\im o}. Suppose also that c is between a; and a4.1, and d is between b; and
bj+1. We then distinguish three cases.

Casel. 1 = j. Let

ﬁ — a1 a2 ... G c Qi+1 R Qr
1 2 ... & i+1 243 ... r+2)?

5= 1 2 ... 1 4+2 ++3 ... r+2
T\ by ... B d Beer s b, #

Then a = B6.
Case2. 1 < j. Let

ﬂ= a1 v g c [+ 708 | . aj aj+1 Qy
1 oo ¢ $+1 42 0 j+1 j+3 .. r+2 )°
6=(1 vee 4342 0 J4+1 j4+2 j+3 ... r+2
b1 ... by by ... b; d T . b, :
Then o = B86.
Case3. 1 > j. Let
ﬂ - a1 ces Gy Qi1 cae Qg C Qi1 cae Qy
1 oo F FH42 oo 2¢L 4942 43 ... #4247
5= L wwe § Jg#l J£2 v %1 %83 s 42
b o by d bjiv1 ... b bivi ... b, ]
Then « = 386.

Note that r + 2 < nby assumption; hence g is of type (iv) and § is of type (ii) in
all cases.

If « is of type (ii), then let ¢ = min{z : ¢ € X\doma} and d = max{z : 7 €
X\im a}. If we distinguish the three cases ¢ = 7,4 < jand s > 7, with 8 and § as
above, then a = 36, where 8 is now of type (vi) and § is of type (ii).

If « is of type (iii), choose c in such a way that the property of having at least

one upper jump of length greater than 1 is maintained. (Notice that, since r < n— 3




, o must have at least one jump of length 3 or two jumps of length 2 each.) Let d =
max{z : x € X\im a}. Distinguishing the three cases i = j,i < j and 1 > 7, with 8
and é as above, we have o = 86 where g is of type (vii) and § is of type (ii).

If « is of type (iv), ar~! is of type (ii) and so the result follows.

If « is of type (v), a~! is of type (iii) and so the result follows also.

If o is of type (vi), letc = min{z : x € X\doma} andd = min{z : z € X\ima}
Distinguishing the three cases 1 = 7,1 < jand ¢ > j, with 8, 6§ as above, we have
« = 36, where 3 is now of type (vi) and & is of type (vi) also.

If v is of type (vii), choose ¢ in such a way that the property of having at least one
upper jump of length greater th@ 1 is maintained, and d = min{z : z € X\im a}.
Again distinguishing the three cases 1 = j,1 < j and ¢ > j, with 8, § as above, we
have o = B8, where 8 is of type (vii) and § is of type (vi).

If « is of type (viii), @~ is of type (vii) and the result follows.

If « is of type (ix), choose ¢ and d in such a way that the property of having at
least one upper jump of length greater than 1, and that of having one lower jump of
length greater than 1 are maintained. Distinguishing the three cases ¢ = j, 1 < j and
i > 7, with 8, § as above, we have o = 36, where 3 is now of type (vii) and § is of

type (viii). ]

ar @2 ... QOp

by by ... by
(NﬂJn_1)={a€IO,,:a,-+1=a,~+1,b,-+1=b,~+1foralli}.

Proposition 3.3.2 Leta = ( ) Then

Proof. Let

A={(Z: w z:)GIOn:af+1=a.-+1,b,~+1=b,-+1fora11i}U¢.

Then A is a subsemigroup of I0,,. For if

41 G2 ... Oy ¢t €2 ... Cs
(bl by ... b,) i <d1 Qo ... d,)
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are any two elements in A, then

a1 Q2 .. Qr C1 2 ses  Cg - a; Qi+l eos Qi+t
bl bz cae br dl dQ cee d_, dj dj+1 e dj—;-t L
whichisanelementin A,where1 < i< r,1<j<sand0 <t < min{r—1,s-1}.
By Theorem 3.1.5, the only elements in (N') N J,,—; are the following:

I 2. s Bl s i -
n = (2 g & LT ), 77, m, and g7y,
It is clear that all these elements are in A. Thus

(INTVIet) T A,

since A is a subsemigroup.
Now, if r,s € {1,2,...,n}, then

e 1 2 vee M—T
WS lewl w8 ... =0 .

ey § PEL el ... n R
(ﬂ )"‘( 1 2 LN __,r)—("'l)

n
and
i 1 2 ive M1 i
r—s8+1 r—s+2 ... n—s 8 % ¥
—r+ = e .
(M= (87T emrE2 :H’s“) ifs > 1,
L 2. vs B—7F g
LR B Lo e SR

We now show that A C (N N Jn-1). For this purpose we express an element o in A

LR 2 L Ak
E=d+1 51+2 ., Jak
where 0 <4,/ < n—1and k = |im «|. Then
i+l i+2 L itk 1 2 ... k
=L B o B F41 342 oo T4 K

= [™ " F ) 1™ ()R

as follows:
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Note that rank (A) = nilrank (A4) = 1, since 4 = (n).

Let
L(n7) ={a € I0, : h(a) < r}

and
P, =L(n,7)/L(nr—1).

P, may be thought of in the usual way as J, U {0}, where the product in P, of two
elements of J,. is the product in L(n,r) if this lies in J, and is O otherwise. It has
(™) R-classes corresponding to the (™) possible domains of cardinality r, and (%) £-
classes corresponding to the () possible images. It is a Brandt semigroup isomorphic
to B({e},{1,...,($)}), where {e} is a group consisting of the identity element only.
By Theorem 2.2.5 it has rank equal to (¥) — 1 (since the group {e} has rank 0).

Theorem 3.3.3 Forr < n/2 andn> 3,

rank (L(n,r)) = nilrank (L(n, 7)) = (:) it

Proof. All that is required is to select a generating set of L(n, ) consisting of (%) —
1 nilpotents. Let A1,Az,...,Am (with m = (7)) be a list of the subsets of X, =
{1,2,...,n} of cardinality r. Let c;; be the single element in the H-class H4; 4;
whose domain is A; and image is A;. Arrange tohave A1, 4z,..., A (withk = (*7]))
to be the subsets of cardinality r containing 1. In particular let A; = {1,2,...,r}. Let

Arv1 ={2,3,...,7+ 1}. Then it is clear that the elements

ak+1,1 7ak+2,1 geeey am,l

oAl YRRk
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are all nilpotents. By Remark 2.2.5, the elements
Q1,1 Xk+2,19+ 0 ) ¥m,1, Ck+12, Xp+1,3, -0+ Xt 1.k

generate P,. But

ak+1,27 At ak+1,k

may not necessarily be all nilpotents. However, if we suppose that

2 3 4 e ¥l ;
Olk+1,i=(1 b2 b3 - Tbr) (1=2,3,...,k),

then if b, # n we have

Qa1 = O] aj_,ll Bi,
. — bz b3 s br n
“h‘"(l 8w B=1 @

i b, b3 ... b m
5"(1 b o Bea b,)

withjin{k+1,k+2,...,m}. If b, = nthen oy, ; must have a lower jump of length

where

and

greater than 1. If this jump occurs between b; and by, then
Okl = k11051 B,

where

= {58 R b bh+1 by+2 by ... b
PEENY s b=t O A%l 842 . ¥

and

1 b ... b1 b b1 b2 ... by
with pin {k + 1,k + 2,...,m}. Note that foreach i = 2,...,k, the element g; is

_‘<b2 ' b b+ 1 bl+2 bier ... b,-...l)
Bi =

nilpotent and is distinct from all of the nilpotents ax+1,1,...,0m,1. Thus the (:) =]
nilpotents

ak+1,1,"';am,lsBZ,“')ﬂk
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generate P, and hence L(n,r). i

Lemma 3.3.4 Let s, k be two positive integers with s < k/2. Then the number of

ways of choosing s numbers from {1,2,...,k} so that no two consecutive numbers
k—s+1
. :

Proof. Let us represent a given choice of numbers by a sequence of length k£ of 0’s

are chosen is

and 1’s in which 1 occurs precisely s times, with 0 indicating that a number is not
chosen and 1 indicating that it is. The condition that consecutive numbers not be chosen
translates to a ban on consecutive 1’s. We place the k — s 0’s first. Then the s 1’s can
be placed into the ¥ — s — 1 places between 0’s or at the end or beginning, making
k — s + 1 possible locations in all. There are (*~2*1) ways to select s places to receive
1’s, and so there are (¥~**') different sequences in which no two 1’s are consecutive.

Hence the proof. L

Letn/2 <r < n-—2 andlet
AI;A2;“- aAs;Aa+1;“‘ yAa+tyAs+t+l IR ;As+t+u:Aa+t+u+1:--~ yAm

be a list of the subsets of X, = {1,2,...,n} of cardinality r, where

)
m= (r)
s = the number of 1-subsets not containing n,
t = the number of 1-subsets containing n with at least

two consecutive numbers missing,

u = the number of subsets not containing 1.
The number of subsets containing 1 and »n with no two consecutive numbers missing
is

m—(s+t+u).




%
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Consider the complements, which are subsets of {2,...,n— 1} of cardinality n — r

and containing no two consecutive numbers. By Lemma 3.3.4 this number is

((n—~2)-(n——r)+1)__ (r——l)
n—r T \n—r/

From Theorem 3.1.5, the subsets Agit+u+1,-- -, Ay characterise those R-classes
and L-classes in J, that do not contain nilpotents or elements that are expressible as
products of nilpotents. On the other hand, the subsets Aj,..., As+t+y Characterise all
the R-classes and L-classes in J, containing nilpotents or elements that are expressible

as products of nilpotents.

Let
M(n,7) ={a €10, : |ima| < rand a € (N)}.
We have , for r < n/2,
M(n,1r) = L(n7).

Call B afull subsetof X, = {1,2,...,n}if1 € B, n€ B and B hasno ‘gap’ of size
more than 1, in the sense that no two consecutive numbersin {2,...,n— 1} belong to
X”\Bl

A subset B of cardinality r is full if and only if its complement B’ is a subset of

{2,...,n— 1} of cardinality n — r containing no two consecutive numbers. So the

number of full subsets of X, is equal to
(n-2)—(n—r)+1\ _(r—1
n—r “\n—r)"
_{a1 a2 ... QO
“‘(b, b s b,)
belongs to M (n, ) if and only if neither of {a1,a2,...,a,}, {b1,b2,...,b,} is full.

’ ot =S[(7) - (G20

r=()

An element
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with

(T"l) =0 ifr < n/2.

n-—r

Let W, be the inverse subsemigroup of P, generated by the nilpotents. Then for
r<n—2,
Wy = M(n,7) [M(n,7—1).

It is a Brandt semigroup isomorphic to B({e},{1,2,...,1}) where
o
“\r n—r)’
By Theorem 2.2.5 its rank is [ — 1.

Theorem 3.3.5 Fornf2 <r<n-—1

rank (M(n,7)) = nilrank (M (n,7)) = (:‘) - (T N 1) 4,

n—7r

Proof. Let A; = {1,2,...,7} and A1 = {2,3,...,7+ 1}. Asin Theorem 3.3.3,

the elements

Cgttt1,1yee 0y Xatttu,ly) Xstt+1,2y -+ ) Ngit+1,34¢

generate W,. But

Cgite12, "7y Hstt+l,a+8

may not necessarily be all nilpotents. However if we suppose that
2 3 ... r+1l 5
aa+t+1,i=(1 b2 . br > (1=2,...,S+t),

then ogepe14 = a,,+t+1,1a;11ﬂ,- where j € {s+t+1,8+t+2,-.-,s+t+u}andg;is
as in Theorem 3.3.3. |

P
x
i

™~

e

‘s,

;

3
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CHAPTER FOUR

NILPOTENTS IN SEMIGROUPS OF PARTIAL
ORDER-PRESERVING TRANSFORMATIONS

In the last chapter we considered the semigroup IO, of all partial one-one order-
preserving maps on the set X, = {1,...,n}. In this chapter we shall consider the
larger semigroup PO, of all partial order-preserving transformations on the set X,, =
{1,...,n}. We shall investigate its nilpotent-generated subsemigroup, and its depth
and rank properties. We shall also characterise the nilpotent-generated subsemigroup
for PO,, the semigroup of all partial order-preserving transformations of the infinite
set X = {1,2,...}.

1. The nilpotent-generated subsemigroup
Recall the following result from Chapter 3.

Lemma4.1.1 Anelement ain PO,, is nilpotent ifand only if for all x € im aNdom q,
To F . |

We will denote an element « in PO,, by

(A A ... A
“"(bl by ... b,)

where for each a; € Aj, a; < a1 (6 = 1,...,7) and by <.bz < sevo by, Lot
zi=min{z:2€ A}andy; = max{z : z € A;}. Fori=1,...,n,1letS; = {z €

:
x
2

~
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Xa:zi<z<ylandfori=1,...,.r—1,Ti={z€ X,y <z < zi41} Let
To={z€Xp:z<m}andTy={z2 € Xp:2> yr}.

Theorem 4.1.2 An element o in PO,, is not a product of nilpotents if and only if «
satisfies one or both of the following:
(i) 1€ Ai,n€ A, andforalli A;=S;and |T}] < 1,
(i) b1 = 1, b, = nand all lower jumps of « are of length 1.
Proof. Suppose that a does not satisfy condition (i) and (ii). We distinguish four cases.
Case 1.1 ¢ Ay,b # 1. Here

_ (A Ary o Ay 1 2
i - 2 e ¥ by by ... b
a product of two nilpotents.

Case2. 1 € Ay, b # 1.
(a)if n ¢ A,, then

'i
Mo

x=nmn

a product of three nilpotents, where

Al e Ar_l Ar
m=
d n—r+1 ... n—1 =n }’

_(n—=7r+1 ... n—-1 n il {1 ... =1 r

i 1 oo =1 7 WS o B, Bel”

(b) n € A, and A; # S; for some i. Then there exists ¢ € S;\A; such that
z; < c< y; and

a=nmmn,
where
iy 5 Ar ... Az A A A A ... A
T2 ... Tl Ty € Y Ykl e Y1 )]

_ T2 see Ty C Vi ser Yral
“2‘(1 e 81 § ikl aw 'r)
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and :
me (Ll e i-1 d sl r) i
bl sae bi_...l b" b.’+1 e b,- ) :

(c)n € A, and |T;| > 2 for some 3. Then there exists ¢, d € T; with ¢ < d, and

a=mmnm, {‘,
where l
” (Al voe Al A A A2 ... A
n = , ;
e oo W € 4 Pur sii Ypa ;
a8 e W€ d Y1 .. U
1 ... ¢—=1 ¢ +1 42 ... r
and

=(1 e Bl B OB us r)
MUY o B B Bag e B
Case3.1¢ A;,by = 1. ;
(a) by # n. Define

c=b;+1,

g A Az oo A I 2 s @ er € wie G
1 2 ... r e 6 s B by b2 ... b

a product of three nilpotents.

then

(b) b, = n. Then o must have at least one lower jump of length greater than 1.
We may suppose that the first lower jump of length greater than 1 occurs between by

and by, 1. Define

bi—1 ifs> k.

Note that g1 = bge1 — 1 > (b +3) — 1 = b+ 2 > ¢,. Hence ¢; < ¢4 forall 4, and

s A Ay ... A, 1 2 ... r c1 € ... G
- 1 2 T 1 € ... € bl bz b,
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a product of three nilpotents.
Cased.1 € A, = 1. 2
(a)n ¢ A, b, # n Define

C = max{y;,b;} +1

for all 1, then

- (A1 Ay ... A,) <c1 c2 ... c,)
€1 ©2 ... G by by ... b
a product of two nilpotents.
(b) n ¢ A,,b, = n. Then o must have at least one lower jump of length greater
than 1. We may suppose that the first lower jump of length greater than 1 occurs be-
tween by and bg+1. Define

q={M+1 if1.€5<k,

bh—1 ifi>k.
Then
=< A A,)(n—rn n)(c; c,)
n—r+1 ... n cl PO 3 by ... b,
a product of three nilpotents.
©ne Ay, b #n

(i) A; # S; for some 1. Then there exists ¢ in S;\ A; such that z; < ¢ < y;, and

ax=mmm

a product of three nilpotents, where

m= Al e A""l Al. AlH-l e Ar
T2 .. T c /3 i Pead’

T2 ... T c Ui ver Yra = c1T €2 ... C¢>
Cl  vos Ci1 C Cipl oo Cy ! bl bz b.,

8
1
2B




and
max{zj:1,b;}+1 ifl<j<i—-1,
cj = 4 max{c, b} +1 ifj=1,
max{y,-._l,b,-} +1 ifj>i.
(ii) |Ti] > 2 for some 1. Then there exists ¢, d € T; with ¢ < d and
a=mmn
where
_(Al cos Apr Ar A Anz ... Ar>
n = )
Tz e Tx € A Yur e B
m=(m‘2 T c d Yi+l - y,._l)
€1 see C-1 € Cial Ci42 oo G )’
m=(C1 ser Gl G Ci41 ... Cy
by ... b b,‘ b.‘+1 s e
and

max{zj1,b;}+1 fl<j<i-1,
max {c, b;} + 1 ifj =1,

max {d, b} + 1 ifj=4+1,
max {yj_1,b;}+1 ifj>i+ 1.
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(d) n € A,, b, = n. Then « has at least one lower jump of length greater than 1.

We may assume that the first lower jump of length greater than 1 occurs between by

and by . Define
[h+1 f1<5<k,
GE1b—1 ifj>k.

Then

a=Mmmn3ng

where

T2 ... X € d Yl eer Yred

mp= (%2 v W€ d Y1 .. P
1 ... 1—1 ¢ ¢+1 442 .., T ’

Y 2 e T ~fer € s G
"’3“<c1 B s c,)’ “4‘(1;1 by ... b,)’

__(Ax voo Ailr Ai A Aiz .. Ar).
m = ’
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c € Si\A;and d = y; if A; # S; for some 1, or d € T; if |T;| > 2 for some i (with
c < d).

Conversely, suppose that « satisfies condition (i) and that « is expressible as a

product
a -— n-l m .o nk
of k nilpotents with
(A; Ay ... A, )
m = :
B ©F swx G

We must first show by induction that ¢; > y; for all . The resultis clearly true fors = 1.
So suppose that it is true for all § < k and that ¢cx+1 < yg+1. Then since Agi1 = S+t

we must have cpy1 < Tge1. Thus

Ve < Ck < Cis1 < Tkl

But this will mean |T%| > 2, which is a contradiction. So ¢; > y; for all 4. In particular
we have ¢, > y, = n, and so ¢, does not exist. Hence « is not a product of nilpotents.

Suppose that « satisfies (ii) and « is expressible as a product
o= n] "‘2 v nk

of k nilpotents. We may then assume that

we(h o R
where {ci,...,c,} = im n_;. We will begin by showing inductively that ¢; > b; + 1
for all 5. The result is clearly true for ¢ = 1. So suppose that it is true for all s < k and
that cg4+1 < bg+1 — 1. Then since all the lower jumps of « are of length 1, we have

br+1 < b + 2. Thus
Cre1 Kb — 1 < b+ 1< .

This is impossible. So ¢; > b; + 1 for all 1. In particular we have ¢, > b, + 1 = n+ 1,

and so ¢, does not exist. Hence « is not a product of nilpotents. |
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Note that Theorem 4.1.2 is analogous to Theorem 3.1.5. To make this point clear,

we now restate Theorem 3.1.5.

Theorem 3.1.5 Forn> 2. Let

- a1 G2 ... Gy

& ( by by ... b )

be an element of J, where r < n. Then « is not a product of nilpotents if and only if o
satisfies one or both of the following:

(i) a1 =1, a, = nand all upper jumps are of length 1,
(i) & =1, b, = nand all lower jumps are of length 1. |

By analogy with Theorem 3.1.7, we have:
Theorem 4.1.3 The set
A={a € PO, :|ima| < rand |X,\dom o| > 7}

is contained in (N') if and only if r < ¥ m.
Proof. Let a € A, and suppose that r < 1n. Then by Theorem 4.1.2, to show that
a € (N) we are required to prove the following:

@) If1 € A1,n € A,, then for some § it is the case that A; # S; or [T;| > 2.

@) If by = 1, b, = n, then o has a lower jump of length greater than 1.
So suppose by way of contradiction that 1 € A;,n € A, and that there exiéts no 1 for
which A; # S; or |T3| > 2. Then

r-1

Xn\dom a = U Tis

i=1

and
r—1

r< | Xa\doma| = | J|T| <7 - 1.

i-1

A

2 - . » s w2y " ¢ "«,f)""‘

o
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This is a contradiction; thus « satisfies (i).

Again suppose that by = 1, b, = n and that all lower jumps of « are of length 1.
Then

Jula) <r—1.

Also

n=b, =7+ j(a)

and so

ey =n—r>r

(since r < %n). This is also a contradiction; thus « satisfies (ii).

To complete the proof of the theorem, we now show (as in Theorem 3,1.7) that if
r > n/2, then there exists & € A such thata ¢ (N).

Consider the element o for which |ima| = r > n/2+ 1 and X,\ima =

{2,4,...,25}, where s = n— r. Then we have
28=2(n—-1) < 2n—(n+2)=n—2.

From which we can conclude that n € im «, and thus b, = n. Itisclear thatb; = 1 and
that all lower jumps of « are of length 1. Hence « satisfies condition (ii) in Theorem

4.1.2. So « is not a product of nilpotents. |

2. The depth of the nilpotent-generated subsemigroup

By the proof of Theorem 4.1.2 we can express « in (N) as a product of at most
four nilpotents, with elements having 1 € A;,n € A,,b = 1,b, = nexpressible as
a product of exactly four nilpotents. As in Section 3.2 we now show that even such

elements can be expressed as a product of two or three nilpotents.
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Proposition 4.2.1 Letain (N) besuchthat1 € A, n€ A, by = landb, = n.

Then « is expressible as a product of at most three nilpotents.

Proof. By Theorem 4.1.2 there exists ¢ for which A; ¥ S; or |T3| > 2, and « has a
lower jump of length greater than 1. We will assume that the first lower jump of length
greater than 1 occurs between b and by, .

Letc € S;\A;orc = min{z : 2 € T3}, and d € T; with d # c. We first show
inductively that

c—i+j>y; if 1<j<i—1
and
c—i+j<z; if j>i.
The results are true respectively forj =1 — 1 and j = ¢ + 1, since

Vi-1 <z;<c—1 and ¢+ 1 < (g 0ord) < T4

Suppose that they are true (respectively) for j = s <1 — 1 andj = ¢ > ¢ + 1; that is,

ys <c—t+sandz; > c— i+t Then
Y1 S Ys—1<c—t+s—1and c—t+t+1 <3+ 1< 2441,
as required. Next we show that
bi—k+j+1>08 if 1<j<k

and

b —k+j+1<b;if j>k.

For j = k and k + 1 we have

be+1>b and by + 2 < bgs1.

;g
4

SRk

.
b
&
:
:x;‘
3
|
2
b
1|

G, YT
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So suppose that the results are true for j = s < kandj =t > k+ 1, thatis by — &k +
s+1>b,andby —k+t+ 1< b. Then

bp—k+8>bs—12>0b,1 and by —k+t+2 < b+ 1 < byyy.

We now distinguish two cases.
Casel.c—i+k=0b+1. Thenc—i+j=by—k+j+1forallj=1,... rand

o= nng,
a product of two nilpotents, where
A e A Apn
be—k+2 ... b+l b+2 ... bk—k+r—~1
and
m=<bk-—k+2 eee b+l B+2 ... bk—k+‘r-1
bl 4iale bk bl:+1

Case2. c—i+k#by+1. Thenc—i+j #bk—k+]+1fora11; =1,...,rand

aO=MMmmn
where
" = Ay Ax Akt A,
1o e—i+1 ... c—i+k c—i+k+1 ... c—i+r
_f{ec—i+1 ... c—i+k c—i+k+1 ... c—i+r
=N b=k d . Bt by#2 N Ty S |
and
i i by —k+2 ... bp+1 bi+2 ... bi—k+7r+1
by b b1 ... b, '

The following Theorem now follows from Proposition 4.2.1 and Theorem 3.2.3:
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Theorem 4.2.2 Let N be the set of all nilpotents in PO,,, (N) the subsemigroup of
PO,, generated by the nilpotent elements, and A ((N )) the unique k for which

(Ny=NUN?U...UN* (NY#NUN?U...UN*T

Then A ((N)) =3 foralln> 3. El

3. The nilpotent rank

Before considering the next result, we remark that if « is a total map, then « is
not expressible as a product of nilpotents. This follows from the fact that « satisfies
condition (i) in Theorem 4.1.2.

Lemma 4.3.1 Every element o € (N) N J,, r < n— 3 is expressible as a product of
elements in (N) N Jy41.

Proof. Let
e Ay A2 ... A
= bl bz cee br
be an element in (N) N J,, » < n— 3. From Proposition 3.3.1if & € (N) N [, 7]
then « can be expressed as a product of two elements in (N) N [r+ 1,7 + 1]. We will

therefore assume that € (N) N [k, 7], 7+ 1 <k <n—1.
Now, if |T3| > 2 forsome s = 1,...,7 — 1 (or |To| > 1 or [T} > 1) then

&= 917N,

where

_ Al e A oy A,'\{Ij} Ajsr .o A
m 1 §1 § $ET FE2 e vH1)7

B A o B e it LTy
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- 1 . j=1 {,j+1} j+2 ... r+l1 =42
BE=RY o A i+2 j+3 ... r+2 r+3)° ‘
___(2 i § FH2 §43 .. 'r+2)
B=\b .. bia b bpr ... b )

and is assumed that |A;| > 2, z; = min{z : x € A;}. Observe that y, and 3 belong
to (N} by Theorem 3.1.5, and since |[T;| > 2 for some i, we have 1 to be an element
in (N} also, by Theorem 4.1.2.

If A; # S; for some i and k& < n— 1, then we may assume that there exists

z € X,\dom « such that y; < & < yj4+1 for some j, where y; = max{z : z € A;}.
Here we have

o= ﬂlﬂZ,

where

g (M A B A 4
! 1 . § j+1 §+3 ... r+2)'

AL v § IR e FaD
52“‘(1;1 o By W e B )

Observe here too, that B, belongs to (N), and since A; # S; for some 1, we have S; to

be an element in {N') also, by Theorem 4.1.2.
If A; # S; for some i and k = n— 1, then it is clear that [4;] > 2. If |A;] = 2
then there exists another block, say A, such that [Ax| > 2 (since r < n— 3), and

e et Ao g e Gl ik ke Y g

a=518263,
where
& Ar .. Apa oz A\{zk} Ak ... A,
_ 1 ... k=1 k k+1 k+2 ... r+1)’
5 = 1 o k=1 {kk+1} k+2 ... r+2
5Tk2 ... & k+2  k+3 ... r+3
and

8=(2 oo  k k+2 k+3 ... 'r+2)
3 by ... b b et oo by )
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If | A;] > 2 then there exists a; € A; and s; € S; such that either z; < a; < 8; < y; or
T < 8 < a; < y;. If 25 < a; < 85 < y; then

a=A1)\2A3,
where
o= (A1 e A m ANz} A . A
: 1 ... =1 4§ §+1 §+2 ... r+1)’
Ny = {1 e i1 {id41} 42 L 142
TS L g i+2  i+3 ... r+3
and

Sk s 7 H 1+2 143 ... r+2
2 by ... b b; /775 b, :

If z; < s; < a; < y; then

a=MNnN73,
where
= (A1 o A ANw} v A ... A
1 e 94="1 3 t+1 142 ... r+1)’
1 e -1 {Eael} §42 w0 74P
B\ ... @ i+2  i+3 ... r+3
and

=<2 cee 3 1+2 i+3 ... T+2
= bi  wve Dt b; bis1 ... b, ‘

Note that by the same argument as in the other cases, A1, 2,23 and i1, 72, 73 are all
elements in (N). ]

Let N; and N, be the set of all nilpotent elements in PO,, of height n— 1 and

n— 2 respectively. Then, since all the elements in N; are one-one maps, we have by

& s
EPRIG 1 -5 § LN A X
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Proposition 3.3.2 that N7 does not generate (N ). However, by Lemma 4.3.1 above we
do have
(N2) = (N)\Jn-1.

Our aim here is to determine the rank and the nilpotent rank of (N3 ).

Recall from Chapter 3 Section 3 that the number of R-classes and that of £-classes
containing nilpotents, or elements that are expressible as products of nilpotents ina 7' -

class, J, of I0,, where n/2 < r < n— 2, are both equal to

n r—1\
r)] \m—r/
It therefore follows that the number of R-classes in (N2) N[n— 2,n— 2] is equal to

the number of L-classes in (N2) N J,—2 and is

(20)-(7)-sn

By Theorem 4.1.2 any convex equivalence of weight n—2 on the subset {1,...,n—1}
or{2,...,n} determines an R-class in (N2 ) N[n— 1, n— 2}. Thus the number of R-
classes in (N2) N[n— 1, n— 2] determined by these convex equivalences is 2(n—2).
On the other hand any convex equivalence of weight n — 2 on a subset containing 1
and nrepresents an R-class in (N2) N [n— 1,n— 2] if and only if 5 and ¢ + 2 belong
to the same equivalence class for some i in {1,...,n— 2}. Thus the number of such
convex equivalences is n— 2 . Hence the number of R-classes in (N2)N[n—1,n—2]
is 3(n— 2). We therefore have 6(n— 2) as the number of R-classes in (N2) N J,—2 .

We now show that every element @ € (N2) N [n— 1,n— 2] is expressible in
terms of a fixed element in its own R-class and an elementin (N2) N [n—2,n— 2].

More generally we shall show:

Lemma 4.3.2 Every element o« € (N2) N[k,7r], v < k < n— 1 is expressible as a
product of a fixed nilpotent in (N2) N [ k,r] and an element in (N2) N [r, 7].

2 Ll e TR Ik T
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Proof. Let o € (N2) N[k, r], and suppose that

o= A A ... A,
h b ... b )"
We shall distinguish four cases.
Case 1. 1 ¢ A;. Then

_— Ay A i A I 2 sax #
W 2 e T b1 b2 ... b/

Case 2. n¢ A,. Then

a=py
where
,B= Al A2 S Ar—l A,.
n—r+1 n—r+2 ... n—-1 n /!
- n—r+1 n—r+2 ... n—-1 =n
i by by s Bae Bk’

Case 3. 1 € Aj,n € A, and A; # S; for some 1. Let ¢ be a fixed element in
S{\A". Then
a= Ay

where

>‘=<A1 coe A,'._l A,' A,'.,.l A,.
T2 ... T c P e e 7

p= Ty .. T C Ui N /|
br ... bi-1 b b1 ... by '
Cased. 1 € A;,n€ A,, A; = S;forall s and |T;| > 2 for some 3. Let c,d be
two fixed elements in T; with ¢ < d. Then

a=({

where
- (Al oo A A A A2 ... A )
v2 ... ¥ ¢ d Y ... Y1)’

R
BT (¥ Y

g
b

%
P
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£w (yz e Yoo d g .. yr_1>
by ... b1 b b b2 ... b )

Theorem 4.3.3 rank ((N32)) = 6(n—2).

Proof. Since (N2) N J,—2 has 6(n— 2) R-classes we have
rank ({N2)) > 6(n~—2).

By Proposition 2.2.7, [n—2,n— 2] N (N ) is generated by a set of 3(n— 2) elements.
If we now choose a set of 3(n— 2) elements to cover the R-classes in [n— 1, n—2] as
in Lemma 4.3.2, we obtain a generating set of (N, ) consisting of 6(n — 2) elements.

Hence the proof. L]

Lemma 4.3.4 Every L-class in J,, 5 represented by the set
1,2, ong =189 2 0e it}

fori =2,...,n— 2 contains a single nilpotent. Thus there are n — 3 L-classes in
Jn-2 containing only one nilpotent.
Proof. Let o be an element whose L-class is {1,...,i — 1,4+ 2,...,n}. Then the

only domain for which « is nilpotent is that represented by the set {2,...,n—1}. &

Theorem 4.3.5 nilrank ((N2)) = 7n— 15.

Proof. Since any generating set of {N; ) must cover the £-classes in (N2) N J,—2 , the
n— 3 nilpotents whose image setis {1,...,5—1,i+2,...,n}fori=2,...,n—2

must be contained in a generating set consisting of only nilpotent elements (see Lemima
4,3.4). By the same Lemma 4.3.4 (proof) all the n — 3 nilpotents belong to the same
R-class, determined by the set {2,...,n— 1}. For the generating set to cover all the
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R-classes we must now choose 6(n—2) — 1 nilpotents from the remaining R-classes,
making a total of 7n— 16 nilpotents. However the 7n— 16 nilpotents cannot generate
(N2). For if « is an element in the same R-class as the n — 3 nilpotents (that is the

‘R-class represented by the set {2,...,n— 1}) and suppose that
Q= nlm " nk

is the decomposition of « in terms of nilpotents from the chosen 7n — 16 nilpotents,

then we must have

(2 3 ... i i+l .. n-1
M=ATL 2 s =1 42 oo o 2°

{1 2 .. i=1 §+2 ... = i

W2 8 oo ¥ Iwl g W1 :

and ,.
2 3 ... §  f*l .. weld 2

WERL 2 e Fl P . & i

forsome,j = 2,...,n— 2. But then n;n, is a left identity for n3, and so

Q=1MmNg - N

By the same reasoning we must also have
Ll 2 s F~1 FE2Z e B
MENe & .. T ) . med

o 2 B8 e d U#l e el
MERL 2 L bl e .. w4

But again n3 ng is then a left identity for ns, and

and

a - m . m.
Continuing this way we obtain

% if k is odd, 3
o= (g g :::i) if k is even. 5
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Thus if « is not any of the n — 3 nilpotents in its R-class, the left identity in the R-
class, then o cannot be expressed as a product of nilpotents from the chosen 7n — 16
nilpotents. We therefore have

nilrank ((N2)) > 7n—15.

We now show that we can choose 7 n— 15 nilpotents in N that can generate (N ).
Denote by A; ; the subset X, \{i, 7} of cardinality n—2, and by a';’,’; the element whose
domain is A;; and image A, . Then arrange the 3(n— 2) subsets of X, of cardipality
n— 2, representing the £- and the R-classes in (N2) N [n— 2, n— 2] as follows:

A2 A13, A3y Ar iy Ainy oo ALjp1, Ant
A1g, 423,438, 0;A-20-1,412.

By Proposition 2.2.7, (N2) N [n— 2,n— 2] is generated by the set

- 2n 13 3m 14 _in 1n-1 n-1pn
B= {0‘1,’3’a3,m°‘1,’4:"'7°‘i,mal,s‘+l:"' 1 ¥ 1001
in 23 n—3 n—2 n—-2,n—1 1,2
Q3,03 4503, 20 1:%2 1 1

1

It is easy to see that o,

10;’;-0-1 (fOl'i — 39-“9”‘“ 1)’ a%.’;’a;'; and a;"i ATE Al

nilpotents. It is also not difficult to see that

2,3 n—3 n-2 n—2,n—1
a3:4,...,a,,_2’,,,_1 ,011’2 ? (436)

are all non-nilpotent. In fact n is fixed by all of these elements. Let us denote by B’
the set of all nilpotent elements in B. Let T be the set of 4(n— 2) — 1 elements given
by

=By {a;::, ey C";l»fz,n-l . a::;',af”:, o a;"_nz’”_l )
It is easy here too, to see that all the elements in T" are nilpotents. Next we observe
that the non-nilpotent elements in B, given by (4.3.6) are expressible as products of

clements in 7°. In fact we have

541 _ g4l _1n .
Qfi1i2 = Ol Ol1 44 fOr i1=2,...,,n—3

g o ov
AR LT AT i s

Sl

Beays

o L
e R

%

3
g
3
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and
a?’_zz,»-l = a;v:-:,n—l a{:;'.
Thus
(B) = (T).

If we now choose a set H of 3(n— 2) nilpotents to cover the R-classes in (N2) N
[n—1,n—2] asin Lemma 4.3.2 we obtain a generating set H UT" of (N3 ) consisting
of nilpotent elements. Since |H UT'| = 7n— 15 the proof is complete. =

4. The infinite case

Let X = {1,2,...} be the set of all natural numbers. Denote by PO,, the set of

all partial order-preserving maps on X, and an element « in PO,, by

where 1 belongs to some index set I, b; < b; foralli < j and if a; € A; then a; < a;
for all i < j. Observe that im « is finite if and only if dom « is finite or |[ya™| < oo

(y € im &) except for at most one y in im «, namely max{y : y € im a}. We will

bl A1 A ... A
A B oae Bf?
where r = |im «|. Asusual, letz; =min{z : z € A;}fori=1,...,r,y; = max{z :

z € A;}fori=1,...,r — 1. (Note that y, does notexist.) Let S; = {z € X : 2; <
mgy;}fori=1,...,r—-1,S,={:1:€X::z_>_:r,,},fl}={a:EX:y.-<z<x.-+1}

write such an element o as

fori=1,...,r—landTp={z€X:z <}

D L S R )

i
s
P53
i
@
5
~4
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Let N be the set of all nilpotents in PO, and (N) the subsemigroup of PO,
generated by N. Define the gap and the defect of an element « in PO,, by

gapa = X\dom e, def a=X\im q,
and

U = {« € PO, :3y € im « for which |[ya™!| = | X|,
1< |gapal < |imal,1 € A;,S; = A; and |T3| < 1 for all 4}

Then

Lemmad.4.1 (N)NU = 0.

Proof. Let o € U. Then « can be written as

_— (A1 A ... A, )
b B e B )Y
where |A,| = | X|. Suppose that « is a product of k nilpotents, say

a=mn - N,

with

75 Ar Ay ... A,
? cq € ... ¢ )’

where ¢y < ¢ < - -+ < ¢r. We first show by induction that ¢; > y; for all L1LiIg
r — 1. The result is clearly true for ¢ = 1. So suppose that it is true for all ¢ < k and

that cg+1 < yk+1. Then, since Ags1 = Sk+1 we must have cge1 < Tgs+1. Thus

Uk < Gk < Ckt1 < Tg+1,

which means that |T%| > 2. This is a contradiction. Soc; > y; foralls, 1 <s < r—1.
But since A, = S, we must have ¢, < 2z, and 0 yy—1 < €1 < ¢ < %, that is
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|T7-1| > 2. This again is a contradiction. Hence a cannot be a product of nilpotents.
|

Observe that if | gap «| > |im « then |[T;] > 2 for some 1.

Lemma 44.2 Leta € PO, and y € im « be such that |[ya~"| = |X|. Then « is
nilpotent if and only if za # = for all z € dom a.

Proof. An element « satisfying this Lemma can be written as
(A; Az A,)
b B e b
where b, = y, |A,| = |X| and r = |im «|. The proof of Lemma 3.1.1 applies to this
case also. |

The following Lemma is from [26].

Lemma 4.4.4 [26, Lemma 12] If « € (N) then |def a| = | X| and either | gap o =
| X | or there exists y € im « such that lya™!| = | X|. n

It is clear that if dom a N im a = @, then « is nilpotent (of index 2).

Theorem 4.4.5 o € (N) if and only if
() gapa # 6,

(ii) |def | = |X| and
(iii) either | gap a| = | X| or there exists y € im « such that |ya~!| = | X|anda ¢ U.
Proof. Suppose that | def «| = | gap «| = | X|. We shall consider two cases separately,
namely [X\(im o Udom )| = [ X| and | X \(im & U dom o) | < |X].

If | X\(im @ Udom «)| = |X|, then choose ¢; in X \(im a U dom «) such that
[{ci}| = |im of with ¢; < ¢; for all § < j. Then

«= (&) (5):
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a product of two nilpotents in PO,,.
If | X\(im ¢ Udom &) | < | X]|, then |im & = |im a N (X\ dom &)| = | X| and
so there exists ¢; € im a N (X\ dom &) and d; € X\ im « with ¢; < ¢;, d; < dj for

«= () (2) (%)

a product of three nilpotents in PO,,.

all ¢ < j, such that

Now, suppose 1 < | gap a| < |X| and there exists y € im « with |ya™| = | X]|
and o ¢ U. Here we shall distinguish three cases.

Casel. 1 ¢ A;. It is clear that in this case i ¢ A; for all i. Choose
ci € X\({1,...,7r}Uim a) with¢; < ¢j41 fori=1,...,r. Then

o Ay A ... A, | SRS T Ci £3 ire G
1 25 Bie W 0w B i b o b )?
a product of three nilpotents.

Case2. S; # A; for some 4. Then there exists ¢ € S;\A;. Choose ¢; €
X\{=z2,...,Ti, Yiy o, Yr1,c} Uim @) with ¢; < ¢j41 fori = 1,...,r. Then

x=mmn,

a product of three nilpotents, where

B 5 At A2 .. A A A A2 ... A
Tz T3 ... T € Y Yl eer Y1)’

nz=($2 I eee T € W YiEl een yr_1>
Ci € ... CG-1 & GC+1 G2 .. Cr
and
(o n D5
Case3. |Ti|] > 2 for some i. Then there exist c,d € T;. Choose ¢; €
X\({y2,-++,¥r—1,¢,d} Uim a) with ¢; < ¢ci41 fori=1,...,r. Then

a=mmn,

4
X

%
RN
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a product of three nilpotents, where

_— At Ar ... Al A A Az ... A,
2 B ... Y ¢ d Y1 e Y1)’
m={¥2 B - U C & Yl o0 Y1
€l € o Gl G Cil Cia2 -+« Cr

and

8
n

1 € ... ¢
bl b2 cen br ’

The following result is now immediate:

Corollary 4.4.6 Let IO, be the semigroup of all one-one partial order-preserving
maps on X . Then an element « in 10, is a product of nilpotents in 10, if and only if

|[X\dom o = | X\ im o} = | X].

Moreover, o can be expressed as a product of three or fewer nilpotents, each with index
2 |

Lemma 4.4.7 Formn > 4, the element
{1 2 .. n-3 A
R 2 o %3 w2 )P

where A = {n,n+ 1,...} cannot be expressed as a product of fewer than three nilpo-

tents.

Proof. The only image set for which

1 2 ... n=3 A)
g1 € ... Cup3 Cp2




is nilpotent is {2,3,...,n—1}. But
2 3 ... n-2
1 2 ... n=-3
is not nilpotent, whence the result.
We now have the following result:
Theorem 4.4.8 Ifwe let A ({(N)) be the least k for which
(N)=NUN?U.-.-UN*, (N)¥NUN?U

Then A ((N)) = 3.

seeld NEL,
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CHAPTER FIVE

RANK PROPERTIES

The questions of the ranks of O,, PO, and SPO,, and the idempotent ranks of
O, and PO, were considered by Gomes and Howie in [14]. In another paper [13],
Gomes and Howie considered the rank and the nilpotent rank of the subsemigroup of
I,, generated by the nilpotent elements. We now generalise these questions (in line with
Howie and McFadden [21]) by asking for the rank, idempotent rank and the nilpotent
rank of the semigroup

Knr)={aeS:|imaj<randr<n-1}

as the case may be, where S is O,, PO,,, SPO,, or the subsemigroup of I,, generated
by the nilpotents.

1. Order-preserving full transformations
We begin this section with the result of Howie [17].

Theorem 5.1.1 [17, Theorem 1.1] If X, is a finite totally ordered set, then every ele-
ment of the semigroup O,, of order-preserving mappings of X, into itself is expressible
as a product of idempotents in O, |

Lemma 5.1.2 Every element « in J, (r < n— 2) is expressible as a product of

elements in Jy41.
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Proof. Let
s Ar A2 ... A,
bi. B e Bt
Then at least one block, say A;, contains more than one element. Let ¢ = min {a; :
a; € A;}. Suppose that {b1, b2,...,b,} has a gap in position 7, and let y be such that
bj—1 < y < b;. We distinguish three cases.
Casel.1=j—1, Let

ﬂ=(A1 o Ain ¢ AN A ... A,)

1 ... +1—=1 ¢+ s1+1 1+3 ... r+2
and
s=(1 - i-1 {ii+1} i+2 i+3 ... r+1 A
b e B b; y 77 (RO« S

where A’ = X,\{1,2,...,7+ 1}. Then 3,8 € Jy+1 and a = B6.
Case 2. 1 < j — 1. Suppose here that 8 and § are given by

A ... A ¢ A\{c} A ... Aj Ay o A
1 ... -1 ¢ 4$+1 s+2 ... § F7+2 ... r+2

and

(1 o =1 Y §4+2 ... § j+1 j+2 ... r+l A)
hh oo biar B b e By y b; viw: gy B

respectively, where Y = {i,1+ 1}. Then 3,8 € J,41 and a = 6.
Case 3.1 =j. Let

_(A1 von B c A\{c} Ain ... A,-)
g | SR j

t1—1 1+1 142 43 ... r+2
and

s (1 - i=1 & {i+1,i+2} i+3 ... r+1 A)
b ... by b; bis1  wos by by )?

where A’ = X, \{1,...,7+ 1}, Then 8,8 € J,4+1 and a = B6.
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Case 4. 1 > j. Suppose 8 and § are given by

A .o Aj A e A c B A1 ... A,
I e =1 41 ..o % 4%1 442 43 ... ¥+2

and

1 .. j~1 j §+1 ... & Z §+3 ... r+1 A’)
b] bj_.l v bj b,'_l b,' b,‘...] br-—l b,.

respectively, where B = Aj\{c}and Z = {i+1,i+2}. Then 8,8 € Jy+1 and o = B6.
Hence the proof. n

The following Lemma is from [15]:

Lemma5.1.3 [15, Lemma 1] Let S be a regular semigroup with set E of idempotents,
and let

a=¢€1€ € € E"

Then there exist idempotents fi, fa, ..., fa in the J-class containing a such that

a= f1f2 AL 'fn~

Forr<n—2,let
K(n,r) ={a €0, :|imaof L r}.

Then by Lemma 5.1.2
K(n,r) = (Jy).

If we let E, be the set of idempotents in J,, then by Lemma 5.1.3, and Theorem 5.1.1,

Jr C(E,).
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Thus
K(n,1) = (E,).

By [18, Proposition 2.4.5 and Exercise 2.10] we have that in O,

o L Bif and only if im & = im S, »
a R B if and only if ker a = ker §3, »«
« T B if and only if | im o = | im g|. |

Thus O, is the union of J-classes
J13J2)"'1Jﬂ—1 ’

where

Jr={a€O0,:|ima|=1}.

The semigroup O, is aperiodic (i.e., has trivial H-classes); for once we fix im « and
ker « there is precisely one order-preserving map having the given image and kernel.

It is easy to see that the (ker «)-classes are convex subsets C of X, in the sense that
z,yeECandz<2<y=>2€C.

In this section, as well as the next, we shall refer to an equivalence p on the set X, *
as convex if its classes are convex subsets of X, and we shall say that p is of weight
r if | X,/p| = r. A convex equivalence of weight r is determined by the insertion of '
r — 1 ‘boundaries’in the n — 1 spaces between 1,2,...,n (Thus, for example, the ,
convex equivalence of weight 3 on X¢ whose classes are {1,2,3},{4} and {5,6} is
determined by inserting two boundaries, between 3 and 4 and between 4 and 5.) We

deduce that the number of convex equivalences of weight r on X, is

(1)
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Thus J, has (':j) ‘R-classes corresponding to the ':j) convex equivalences of weight

r on Xy, and (7) L-classes corresponding to the (*) subsets of X,, of cardinality r.

From Lemma 1.3.3 we deduce that the rank of K(n,r) must be at least as large

as the number of L-classes in J,. Thus we have:

Lemma 5.1.4 rank (K(n,1)) > (%). |

We now show:
Theorem 5.1.5 For2 < r < n—2, we have

rank (K (n, 7)) = idrank (K (n,7)) = (’:)

The proof depends on a Lemma very similar to Lemma 6 in [21].

Lemma 5.1.6 Let m,%2,...,Ty (Where m = ’:j),r > 3) be a list of the
convex equivalences of weight r on X,. Suppose that there exist distinct subsets
Ai,Az,...,An of cardinality r of X, with the property that A; is a transversal of
M1, T (1 =2,...,m)and Ay is a transversal of my, my,. Then each H-class (m;, A;)
consists of an idempotent ¢;, and there exist idempotents €m41, . .., €, (Where p = (7))

such that {€1,€2,...,¢€p} is a set of generators for K(n,r).

Notice that the product €;¢;_1 § = 2,...,m) is an element of height r, since we
have a configuration
€1 o]

* €
in which the H-class labelled o consists of an idempotent. Moreover, the element €;¢;_;
is in the position * by Lemma 1.3.3. By the same token the product €; €., is of height

r,and €, L €16 R €.

e
W e
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Choose the idempotents €m41, ... ,€p SO thate , €2,. .., €, covers all the C-classes
in J,. Then if n is an arbitrary idempotent in J, there exists a unique i € {1,...,p}
such that n £ ¢;, and a unique j € {1,...,m} such that R ¢;.

€k vee €

e,-_l o ..
€ o M

Moreover, there is a unique k € {1,...,m} such that¢; R ¢;. (If s € {1,...,m}
then of course k = 1.) If k = j then 1 = ¢; and there is nothing to prove. If k < j then

= €5€—1 €416

If k > j then

n'.': ej"'elem"'elﬂ-lei-

We have shown that every idempotent in J, can be expressed as a product of the

p= (’,‘) idempotents, €1,. .., €p. Hence
K(n,r) = {€1,€2,...,6p).

It remains to prove that the listing of convex equivalences and images postulated
in the statement of Lemma 5.1.6 can actually be carried out. Letn >4 and2 < r <

n — 2, and consider the Proposition:

P(n,r): There is a way of listing the convex equivalences of weight r as
MLy T2yere, T (With m = 'r’:’l and m having {r,r + 1,...,n} as the only non-
singleton class, wy having {r — 1,7} and {r + 1,...,n} as the only non-singleton
classes, Ty having {r—1,...,n— 1} as the only non-singleton class) so that there ex-
ist subsets Ay, ..., Am of X, of cardinality r with the property that A; is a transversal

of mi—1,m (i=2,...,m)and A is a transversal of Ty, Tp,.
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The approach to the proof is similar to that of Chapter 2 Section 2, i.e., we show
P(n—-1,r—-1) and P(n—-1,r) = P(n,r).
First, however, we anchor the induction with two Lemmas.

Lemma 5.1.7 P(n,2) holds for everyn > 4.

Proof. Consider the list my,...,m,—1 of convex equivalences of weight 2 on X,,,

where
m=123...i/i+1...n
Let
Ar={l,n}, A2 ={1,3} and A;={i—1,n}
for 1+ = 3,...,n — 1. Then it is easy to verify that m,m,...,m,—1 and’
A1, A2,...,A,1 have the required property. |

Lemma 5.1.8 P(n,n — 2) holds for everyn > 4.
Proof. The proof is by induction. We shall show that for k > 4,

P(k,k —2) =P(k +2,k).

For k = 4 the result follows from Lemma 5.1.7, and for £k = 5 we have the list of the

six convex cﬁuivalences and the six subsets as follows:
1/2/345 {1,2.5%

1/23/45 {1,2,4},
12/3/45 {1,3,4},

12/34/5  {1,3,5)},
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123/4/5 {2,4,5},
1/234/5 {1,4,5}.
Suppose inductively that P(k,k —2) holds (k¢ > 4). Thus we have a list
Ty T2yene, My (Withm = (L‘:;)) of convex equivalences of weight k — 2 on X, and

alist Ay, Az,..., An of subsets of X of cardinality k£ — 2 such that A; is a transversal

of mi_1,m (1 =2,...,m) and A, is a transversal of m; , 7,,. We may also assume that

m has {k — 2,k — 1, k} as the only non-singleton class,
mz has {k — 3,k —2} and {k — 1, k} as the only non-singleton class,
mm has {k — 3,k — 2,k — 1} as the only non-singleton class,

Az = X \{k—-2,k}.
Let o1,..., 0% be the list of convex equivalences of weight k on Xj,1, where
o; has {k — i+ 1,k — i + 2} as the only non-singleton class.

(Thus in particular o, 03 and oy have {k, k+1}, {k—1, k} and {1, 2 } as the only non-
singleton classes respectively.) Let n,7,..., k-1 be the list of convex equivalences

of weight k — 1 on X, where
7 has {k — 1,k — i + 1} as the only non-singleton class.

(In particular each of n, 7 and i) has {k—1,k},{k—2,k— 1} and {1,2 } as the

only non-singleton class respectively.) Define the convex equivalences

m=mU{(k+1,k+D}U{(k+2,k+2)},fori=1,...,m,
ol= o; with k + 2 adjoined to the class containing k + 1,5 =1,...,k,
7{ = 1; with k + 1 adjoined to the class containing k, and k + 2

as a singleton class, fors = 1,...,k — 1.
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Then arrange them as follows:

! ! / ! !
O'l,...,O'k,'fi_],...,’é,'lfz,...,‘ﬂ'm,'ﬂ'l,‘f{. . (519)

Notice that these convex equivalences are all distinct, and (5.1.9) is a complete list of

the convex equivalences of weight k on X1, since

m+k+k—1= (::;)+2k+1
=—;-(k-1)(k~2)+2k-—1
=-1—k(k+1)

2
_(k+1
Nl
We now define the subsets

Ai=AU{k+1,k+2} for i=1,...,m,
Bi=Xuo\{k—i+2,k+2} for i=2,...,k,
Ci=Xg2\{k—s+1,k+1} for i=1,3,...,k,
D Xpca\tk = LK.

It follows from the hypothesis that A; is a transversal of n;_;,n} fori = 3,..., m and
that Aj is a transversal of 7/, 7} . Itis also not difficult to verify that, fori = 2,...,k,
B; is a transversal of o_;,07; fori = 3,...,k — 1, C; is a transversal of 7/_;,7/; C
is a transversal of o7, 71; Cy is a transversal of o}, 7._,; A} is a transversal of 73, 75;

and finally D is a transversal of 7}, 7{. It therefore remains to show that the subsets
C1,Ba,...,Bi,Ck,Cr-a,...,C3, A5, A, ..., AL AL D (5.1.10)

are all distinct. It is clear that the A”’s B’s and C’s are all distinct. (Since the A'’s

contain k + 1 and k + 2, the B’s contain k + 1 but not k + 2, while the C’s contain
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k + 2 butnot k + 1.) Also D is distinct from the B’s and the C’s (since the later must
not contain k+ lor k+ 2). Note that the L-classes characterised by D\{k+ 1,k+2} =
Xi\{k — 1, k} contain only one idempotent namely

i B e Bad B0 k20K
1o 8w B3 k—2 '

Hence D\{k+ 1,k + 2} is not one of the A’s, and consequently D is distinct from the
A"’s. So all the subsets in (5.1.10) are distinct. [

Lemma 5111 Letn > 6 and3 < r < n—3. ThenP(n—-1,r —1) and
P(n — 1,r) together imply P(n,r).

Proof. From the éssumption P(n —1,r) we have a list 07,03,...,0y, (Where m =
(':j)) of convex equivalences of weight r on X,,_; and a list A;,..., A,, of distinct
subsets of X,,_; of cardinality r such that A; is a transversalof 0;_1,0; i=2,...,m)

and A; is a transversal of o,,, 1. We may also assume that

o1 has {r,...,n— 1} as the only non-singleton class,

oz has {r — 1,7} and {r + 1,...,n— 1} as the only non-singleton classes,

om has {r — 1,...,n— 2} as the only non-singleton class,

Ay ={1,2,...,7r—1,r+1}.

From the assumptionP(n — 1,r — 1) wehavealistn,...,n (wheret = ’:_‘_i))
of convex equivalences of weightr—1 on X,,_; and alist By,..., B, of distinct subsets
of cardinality r — 1 on X,,_; such that B; is a transversalof ;1,3 (1 = 2,...,t) and
B is a transversal of 7, 71. We may also assume that

7 has {r — 1,...,n— 1} as the only non-singleton class,

7 has {r —2,r — 1} and {r,...,n— 1} as the only non-singleton classes,

7 has {r —2,...,n— 2} as the only non-singleton class,

By={1,2,...,r—2,r}.
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Now, fors=1,...,mlet
o; = o; with n adjoined to the class containing n— 1,

forj=1,...,tet
T=7nU{(nn}

Then arrange the convex equivalences as follows:
Fyeney Oy Ty, . (5.1.12)

Notethat m+1t = ('r':} ) . Hence above is a complete list of all the convex equivalences

of weight r on X,,. Next we define

A={1,2,...,r—1,n},
Bi=BiU{n}fori=1,...,t

and arrange the subsets as follows:
A Az, As,...,An,B),..., B}, B]. (5.1.13)

Then A; is a transversal of 0{_,,0; ¢ = 2,...,m); B} is a transversal of 7/_,,7/
(6 = 3,...,t); Bj is a transversal of 7/, 7{; A is a transversal of o{,7{ and B} is a
transversal of o/, 75 .

Ttisclear that Az ..., Am, B}, ..., B} are all distinct subsets of X,, of cardinality
r, and A is distinct from Az,...,An. If A= B forsome s = 1,...,t then

A\{n}=B;={1,2,...,r—1}.

But the £-class characterised by {1,2,...,r — 1} has only one idempotent, namely

1 2 3 ... r-2 A
1 2 3 ... r—2 r—-1
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where A’ = X,\{1,2,...,r — 2}. This is contrary to the hypothesis that the C-class
characterised by B; must contain at least two idempotents. Hence all the subsets are
distinct. Thus the induction step is complete, and we may deduce that P(n,r) is true
foralln> 4 and all r such that2 < r < n— 2.

The pattern of deduction is
P(4,2)

P(5,2) P(5,3)
\
P(6,2) %(6,3)/ P(6,4)

P(7,2) ) / \P(7,4)'/

P(1,3)

2. The order-preserving partial transformation semigroup

The T-class
Jy={a € PO, : |ima|=r}

is the union of the sets [k, 7], where r < k < n The number of L-classes in J, is
the number of image sets in X, of cardinality r, namely (:) . The number of R-classes
in J, is the number of convex equivalences of weight » on all the subsets of X, of
cardinality k, where r < k& < n. This number is

G

Next we have the following result from [14]:
Lemma 5.2.1 Forr=1,2,...,n—-2,

[r,7]1 C (Ir+ 1,7+ 1])°.
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Lemma5.2.2 J, C (J,+1)2for 1<r<a—3.

Proof. Letain J, bein[k,7],2 < r < k < = If k = r, the result follows from
Lemma 5.2.1. If k > r, then the proof of Lemma 5.1.2 applies equally to this case by
adjusting A’ to {r + 2} in é. |

Let
K'(n,7) = {a € PO, : |ima| < 7},

then from Lemma 1.3.3 we deduce that the rank of K'(n, r) must be at least as large

as the number of R-classes in J,.. Thus we have:

Lemma$5.23 For1 <r<n-2,

w2 £ ()20

k=r

Theorem 5.24 For1 <r<n-2,

rank (K'(n,)) = idrank (K'(n,7)) = z": (:) (k - 1)

k=r r—1

The proof follows the same basic strategy as that of Theorem 5.1.5. It depends on

the following Lemma.

Lemma 5.2.5 Let Ay,...,An (where m = (¥) and v > 2) be a list of sub-
sets of X, with cardinality r. Suppose that there exist distinct convex equivalences

| M,...,Tm Of weight r on X, with the property that A;_y, A; are both transversals
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of mi (4 = 2,...,m) and Anm, A1 are both transversals of wy. Then each H-class
(m;, A;) consists of an idempotent €;, and there exist idempotents €p.1, . . ., €, (Where

p=b, () (*7])) such that {e,... &)} is a set of generators for K'(n,r).

r—1

Notice that ¢;_1¢; ¢ = 2,...,m) is an element of rank r, so also is ¢,,¢;, and
€m R eme1 L e1.

Choose the idempotents €m41,...,€p SO that ey, ..., €, covers all the R-classes in
Jr. Then if 7 is an arbitrary idempotent in J, there exists a unique ¢ € {1,...,p} such
that n R €;, and a unique j € {1,..., m} such that 5 £ ¢;. Moreover, there is a unique
ke {l,...,m}suchthate; L e (ifi € {1,...,m} thenof course k =1.) Ifk = j
then 7 = ¢; and there is nothing to prove. If k£ < j then

M= €€ke1€k+2 * €5

If k > j then

1= €i€k+1 ' EmEL * * €.

Note that in O,, the number of L-classes in any J-class exceeds the number of
R-classes, in PO,, the number of L-classes in a J-class is smaller than the number of

‘R-classes. This accounts for the difference of the strategies in Lemmas 5.1.6 and 5.2.5.

It remains to prove that the listing of images and convex equivalences postulated
in the statement of Lemma 5.2.5 can actually be carried out. Letn >4 and2 < r <

n — 2, and consider the Proposition.

P(n,r): There is a way of listing the subsets of X,, of cardinality r as Ai,...,An
(withm = (7), A1 ={1,2,...,7},A2 = {1,2,...,r—1,r+1}, An = {1,2,...,7—

1, n}) so that there exist distinct convex equivalences m, ..., Tp of weight r with the

s
;
i
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property that A;_1, A; are both transversals of m; (1 = 2,...,m) and A,,, A, are both
transversals of m;.

The proof is by double induction on n and r, the key step being a kind of Pascal’s

triangular implication.
P(n—-1,r—1) and P(n—-1,r) = P(n,r).
First, however, we anchor the induction with two Lemmas.

Lemma 5.2.6 P(n,2) holds for everyn > 4.

Proof. The proof is by induction. For n = 4 we have the list of 6 subsets and 6

equivalences as follows:

{12y 1/24,
(1,3} 1/23,
{2,3} 12/3,
{2,4} 2/34,
{3,4} 23/4,
{1,4} 13/4.

Suppose inductively that P(n — 1,2) holds (n > 5). Thus we have a list
Ai,..., Ay (wheret = (";')) of subsets of X,y of cardinality 2, and a list my, ..., m
of distinct convex equivalences of weight 2 such that fors = 2,...,1 the sets A;_1, A;
are both transversals of n; and A;, A; are both transversals of 1. Suppose moreover
that Ay = {1,2}, A2 ={1,3}and 4; = {1,n—1}. Let

B; = {i,n}
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fori=1,...,n— 1, and define

my = m with n— 1 being replaced by n,
or=12/n—1n,
oi=ti+1/nfor i=2,...,n—2,

On-1 =1n—1/n
Arrange the subsets and the convex equivalences as follows:

Al,Az,...,A;,Bz,B;;,...,B,,_],B]

!
T2 50043, M4,01,02,..4,03-2 ,0n-1.

Then, it is easy to verify that the subsets and the convex equivalences as arranged above
satisfy P(n,2). Notice that these subsets are all the subsets of X, of cardinality 2, and

the convex equivalences are all distinct. L4

Lemma 5.2.7 P(n,n — 2) holds for everyn > 4.

Proof. We shall show that for k > 4, P(k,k —2) = P(k + 2,k). But first we
show that P(4,2) and P(5,3) are true.
For n = 4, the result follows from Lemma 5.2.6. For n = 5, we have the list of

10 subsets and 10 equivalences as follows:
{1,2,3} 1/2/3 85,
{1,2,4} 1/2/34,
{1,3,4} 1/23/4,
{2,3,4} 12/3/4,

{2,3,5} 2/3/45,

e
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{2,4,5} 2/34/5,
{3,4,5} 23/4/5,
{1,4,5} 13/4/5,
{1,3,5} 1/34/5,
{1:2:5% 1/23/5.

Suppose inductively that P(k,k —2) holds (¢ > 4). Thus we have a list
At,...,An (where m = (X)) of subsets of X of cardinality k — 2, and a list
M, ..., Ty Of distinct convex equivalences of weight k — 2 such thatfori =2,...,m
the sets A;_1, A; are both transversals of n; and A,,, A; are both transversals of ;.

We may also assume that
A={1,2,...,k=2}, A2={1,2,...,k-3,k-1}

and
Ap={1,2,...,k—3,k}.

Let By,..., Bgs+1 be the list of subsets of X;.; of cardinality k, where B; =
Xge1\{k+ 2 —i}. (Thus in particular By = {1,2,...,k} and Bgy1 = {2,3,...,k+
1}.) Let Ci,...,Ci be the list of subsets of X; of cardinality & — 1, where C; =
Xe\{k + 1 —1}. (Inparticular C; = {1,2,...,k—1}and C; = {2,3,...,k}.)
Define

Al=AUu{k+1,k+2} fori=1,...,m,
Ci=CiU{k+2} fof 5= Liso B

Notice that the subsets 4} ,..., A}, B1,..., B, Cy, .. ., C; are all distinct, and form
a complete list of subsets of X,z of cardinality &, since

k

m+k+(k+1)= (kmz

)+2k+1

1 EIN
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k(k—1)+2k+1

il
e

-2—(k+ 2)(k+1)

(3)

Denote by |1, /| the convex equivalence of weight n— 1 on a set T" of nelements,

where {1, j} is the only non-singleton class. Then define

o;=|k+2 —4,k+3 1] on X fori=2,...,k+1,
w=lk+1—4,k+2 -4 on Xp U{k+2} fori=2,4,...,k~1,
m=mU{(k+1,k+D}U{(k+2,k+2)} fori=1,3,...,m,
81 =|k,k+2| on Xz U{k+2},

82 =|k+1,k+2| on Xg.2\{1},

83 = |k, k+ 1| on Xp2\{k—2},

84 = |k,k+ 1| on Xg2\{k—1}.

Now, arrange the subsets and the convex equivalences as follows:

Blszi"°:Bk+1ycisci—la"',Cé’A'27A’37'“aA'm» ll)C:,Z)C;

! ! !
61 102 4oy Okl ’62 1T 3074 ’83 13 geeey Ty M a84 172,

With this arrangement it is easy to verify that the subsets and the convex equivalences
satisfy P(k + 2,k).

Since an R-class characterised by a convex equivalence of weight n—-1 on a set of
n elements contains only two idempotents, the convex equivalences above are unique,

and therefore distinct. ||

Lemma 5.28 Letn > Sand3 < r < n—3. Then P(n—1,r —1) and
P(n — 1,r) together imply P(n,r).
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Proof. From the assumption P(n — 1,r) we have a list A;,...,A,, (where m =
(1)) of the subsets of X,,_; with cardinality r andalisto, ... , oy, of distinct convex
equivalences of weight r such that A;_;, 4; (i = 2,..., m) are transversals of o;, and

Ay, A,, are transversals of 0. We may also assume that
Ar={1,2,..,7r}, Ao={1,...,7r—1,r+1}, A,={1,...,7—1,n—1}

and o3 has {r,r + 1} as the only non-singleton class.
From the assumption P(n — 1,r — 1) we have a list By,..., B; (where t =
':_“_11)) of subsets of X, _; of cardinality r — 1, and a list 3,...,% of distinct con-
vex equivalences of weight r — 1 such that B;_1, Bj (j = 2,...,1) are transversals of

75, and By, B; are transversals of 1. We may also assume that
Bi={1,2,...,7r—=1}, Bo={1,...,7r=2,7}, Be={1,...,7r—2,n—1}

and that 7 has {r — 1, 7} as the only non-singleton class.
Let

B; = B; U {n}.

Then Ai,...,Am, Bi,..., B} is a complete list of the subsets of X,, of cardinality .
(Notice that m + ¢ = (").) Define

gy = o1 with n— 1 replaced by n,

T=nU{(n,n} for i=1,3,...,8,

nn=nU{(n-1,n}
Then o3,...,0m,7,..., 7 are all distinct (since the o’s do not contain n, while the
7'’s contain n). Also o} is distinct from all of them, since o} contains r and n in the

same equivalence class.

Arrange the subsets and the convex equivalences as follows:

AlyAZs"')A'nhBas“':Bé’B;

!
g1,02 ""7°'m:7é:'”:7§')'r{'
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With this arrangement it is easy to verify that the convex equivalences and the subsets

satisfy P(n,r). |

The pattern of deduction here is

P(6,2)°

(
P(7,2/ \pt”/,s')/ ¥E7,4)/ P(1.5)

Remark 5.2.9 Observe that in Lemmas 5.2.6, 5.2.7, and 5.2.8 (proof) all the convex

equivalences used have only one non-singleton class, except for 75 in Lemma 5.2.8

which has two. In all cases the non-singleton class (or classes) contained only two
elements, and sincen > 4,r = 2in526,n> 4, r=n—2in527andn > §,
r < n— 3 in 5.2.8 the convex equivalences are all partial. Thus in the generating set
{€1,...,6p} of Lemma 5.2.5, ¢1,. .., €, need not be full idempotents.

We shall find this useful in the next section.

3. Strictly partial order-preserving transformations

The J-class
Jr = {a € SPO, : |im a| = r}

is the union of [k, 7], where r < k < m— 1. The number of L-classes in J, is (7),

SO

while that of R-classes is
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Lemma 5.3.1 Forl <r < n-— 3, we have

T € (B>

Proof. The proof of Lemma 5.1.2 applies to this case also, by adjusting A’ to {r +2}
in 6. |

Lemma 5.3.2 Let E; be the set of all idempotents in J,,_ . Then

Proof. Notice that J, 2 = [n— 1,n—2] U [n— 2,n— 2]. We shall first consider
anelement « € [n— 2,n— 2]. Letdom @ = X,\{4,;} and assume that i < j,
and im o = X,\{k, [} with k¥ < L. Let ¢ be the partial identity on dom o. We now
distinguish several cases.

Casel.i=k. (@j<lLIletA=domaU{j}. Fors=1,...,] ~ j define the
idempotents €, on A by

{J+s—1,j+s}e=7+s8-1

and

T€ =T

forallz € A\{j + s— 1,7 + s}. Then
Q= EE1€ - €.

(b)y > l. If an element « satisfies this subcase, then its inverse satisfies (a), and

the result follows.
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(c) j = l. Here « is an idempotent.
Case2.j=1l.(a)i < k. Let A=dom aU {5}. Fors = 1,...,k — 1, define ¢, by

{i+s—1,i+s}e=i+s—1

and

T€ =1

forallz € A\{i+ s— 1,1+ s}. Then
O = €€L - Ep—i.

(b) i > k. Here o~ satisfies (a) above, and therefore the result follows.
Case 3. @i < k<j<l LetA=domaU{i}, B = X,\{k}. Fors =

1,...,k—tandt=1,...,l — j define ¢, and 7, as follows:
{i+s—1,i+s}e=1+s5—1

and

TEy =1

forallz € A\{i+s—1,i+s}.
{J+t—1,7+tIp=7+t-1

and

I =T

forallz € B\{j +t— 1,5 + t}. Then
Q= eel ...Ek_’-nl ...nz___j_

(b) k < i< < j. Here a! is of type (a) above.
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Case 4 ()i < k< l< j. LetA=domaU{i}, B = X,\{k}. Fors =

1,...,k—1andt=1,...,5 — | define ¢, and 7 as follows:
{i+t+s—1,i+s}e=1+5—1

and

T€ =T
forallz € A\{i+s—1,i+s},
TR N e, Y

and

TR =%
forallz € B\{{+t—1,l+t}. Then
o = €€l *+ €giM * - - Nj—L-

(b) k < i< j <l Herea™! is of type (a) above.

CaseS. @i<j<k<l letA=domaU{i}. Frs=1,...,j—i—1,

t=1,...,k—jandu=1,...,l — k— 1 define ¢,, ¢ and §, as follows:
{i+s—1,i+s}e=1+s5—1

and

T€ =1
forallz € A\{i + s —1,i+ s},
{i—tif+1}e =41

and

TE =T
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forallz € A\{j — 1,7+ 1}.
{+t—=1,j+t+1}pyy=j+t—1

and

IMM=T

forallz € B\{j +t—1,j +t+ 1}, where By = X, \{j + t}.
{k+u,bk+u+1}6,=k+u

and

forall z € By_;. Then
Q= €€ - €M+ Mh—gOy -+ Ep1.

(b) k < l < i< j. Here o satisfies (a) above.
Case6. i< j=k <l LetA=domaU{i}. Fors=1,...,j—i—1and
t=2,...,l — j define €,,n; and n; as follows:

{its—1,i+s}e,=8+s—1

and

TE =T
forallz € A\{i+s—1,i+s},
{J-Li+1}m=j-1

and

I =2

E
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forallz € A\{j — 1, + 1},
{+rt-1,j+tp=75+1-1

and

TN =2

forallz € A\{j+t—1,j +t}. Then
a = 661 ...cj_'-_lnl . ..Tn__j_

Now, if o € [n— 1, n— 2] then it can be expressed as follows:

(al v 0ic1 {04,061} G2 ... Gn—l)

h ... b,'...1 b; bis1 ... b2
But then
a=€f,
where
e= (O o G {a5,i41} Gis2z ..o Qa1
A1 e Qi Qas [ 7% BN ¢ S |
and

ﬁ i Q1 v Gi1 G G2 o0 Qp-
bh ... b1 b b1 ... ba2 )
Note that € is an idempotent, and that 8 € [n — 2,n — 2]. Hence « is expressible in

terms of idempotents in E;. |

Let
K"(n,r) = {a € SPO, : |im a| < 7}.

By Lemmas 5.3.1 and 5.1.3, every element in J, (r < n— 2) is expressible in terms

of idempotents in J,. Hence K"(n,r) is generated by the idempotents in J,.
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Theorem 5.3.3 For1 < r < n— 2 we have

rank (K"(n,r)) = idrank (K" (n,7)) = ;V:l <2> (k - 1)1

-1
k=r ¥

Proof. The reason for choosing €1,...,€n in the generating set {e1,...,¢} for
K'(n, ) to be non-full idempotents (see Remark 5.2.9) is to make the corresponding
result for K"'(n, r) much easier to deduce, since we may choose the same idempotents
€15+ oy o A0 Enrty o o0, €0 (Where g = Y01 (%) (’::})) from the remaining R-classes

to obtain the generating set {ey,... ,€q} of K"(m, 7). |

4. One-one partial transformations

The rank and the nilpotent rank of the subsemigroup of I,, generated by the nilpo-
tent elements were considered by Gomes and Howie [13], where they showed that both
the rank and the nilpotent rank of this subsemigroup (as an inverse ééniigfoup), are equal
to n+ 1. We now generalise this problem by'considt_:ring the':r,énk"an(?l the nilpotent
rank of

L(n,r) ={a€l,:|ima|<randr<n-2}.

Lemma 5.4.1 Forallr < n— 2, we have |

J. LN I

Proof. The result follows from Remark 3.16 in [12] that

Jn—z g (Nn-]fb—z)z
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and Lemma 4.1 in the same paper, that if
Jr C(NNJTY* then J,y C(NNJ—1)

for2 <r<n—-1. |

Denote by P, the principal factor L(n,r)/L(n,r — 1). Then P, has (%) R-
classes corresponding to the (}) possible domains of cardinality r, and (*) L-classes
corresponding to the (’:) possible images. It is a Brandt semigroup isomorphic to
B(S:,{1,...,m}), where S, is the symmetric group on r-symbol and m = ("), and

so by Theorem 2.2.4 it has rank (as an inverse semigroup) equal to
gprank ( S,) + (:) =1
where gprank (.S,) is the group rank of S,.
Theorem 5.4.2
rank (L(n, 7)) = nilrank (L(n, 7)) = gprank (S,) + (:) =1

Proof. All that is required is to select a generating set of L(n,r) consisting of
gprank (S,) + (*) — 1 nilpotents.

Let A;, Az, ..., Ay be a list of the subsets of X, of cardinality r. Let Hy, 4,
denote the H-class in J, consisting of all the elements whose domain is A; and image
. Al g e 1,2, M)

Suppose Ay = {1,2,...,7}. Then the H-class H,, 4, is the symmetric group on

{1,2,...,7}, and if r > 3 then it is generated by the elements ¢, T where
o=(12), T=(12..-7).

We now show that each of o, T can be expressed as a product of nilpotents. For
this purpose, we will suppose that A = {2,...,r,r+ 1}, A3 ={1,...,r—1,r+ 1}
and Aq ={2,...,r—1,r+1,r+2}.
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The proof depends on whether r is odd or even. For r odd we have

c=0a;'Ba; and T=15'ay

where
az=||r+lrr—l~-2 IHEHAz,An
B=llrr—2r—-4...3r4+17r—-1..-421|| € Hy, 45,
az=|lr+112...r|| € Hg, 4,
m=llr+1r—1.-.2rr—2...31|| € Hygy 4-

If for this case we now choose a nilpotent o; € Hy, 4, fori = 4,..., m in an arbitrary

way, we see that

O, Ty Q2,...,0m € (a2p'°°saﬂhﬁ!72)‘

By Remark 2.2.5 the elements o, T, 2, ..., ap generate P,. It follows that P, and
hence also L(n, r) is generated by the m + 1 nilpotents «, ..., an, 8,72 provided r
is odd.

For r even we have
1 BN |
o=a; Pas and T= a4
where

a3=||}+123---r-2r_1IrneHAs,An
B=|1r—2r+13254...r—Sr—6r—3r—4r—1r+2||€ Hyu,

g =|lr+224..r||Ullr+17—1---31|| € Ha, 4,
y=|lr+lr—1r—4r—-3r—6r—5...96745237||U|jr+21||€ Hayn,.

In this case P, and hence L(n, r) is generated by the m+ 1 nilpotents oz, ... , &y, B, V4 »

where a; € Hy, 4, are chosen arbitrarily fori =2,5,6,...,m.
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It now remains to show that the result is true for r = 2 and 1.

If r = 2, Sy is cyclic and thus has only one generator. For this case we will
suppose that Ay = {1,2} and A, = {n— 1,n}. The H-class Hy, 4, is the symmetric
group on A; and is generated by

c=(12).
Now,
o= fy;l Oy
where
am = |ln—12||U||n1|| € Han,a,
m = |ln—11{|U|[n2]| € Hap,a-
So if we choose nilpotents a3,...,am-1 as in the above cases we see that

Q2,...,0m, Ym generate L(n,r). Thus L(n,r) hastank 1 + m — 1 = m.
If r = 1, the symmetric group S; has zero generators, and it is easy to verify that

the following n — 1 nilpotents generate L{(n,r):

12 il 113 I, 114 1., lIn1]].
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APPENDIX
(5]
7 (19)

(6)
Y ¥ g

3 s 4

Fig 1. Components of ¢¢.

m-2

Fig 2. Configuration of group elements of maximwn gravity and height n (n even)

@@ ...................... ) §

Fig 3. Configuration of non-group elements of maximum gravity and height n (n odd)
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86 0l

Fig 4 Configuration of group elements of maximum gravity and heightn (n odd)

Fig 6. Configuration of elements with gravity 2 and heightn in BY.
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Fig 7. Configuration of elements with gravity 3 and heightn in PI': ;

oG

Fig 9. One fixed point 0.
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Fig 8. Configuration of elements with gravity 4 and heightn in B,




O"‘">‘—O'" .................... 09—0.9_0 ........................... H_OH ......................... o—>—0
(e)

ot Xs 2 N o1 % %u

(o e © L 1O e ® o O LT OO rremmeemsmsiressssassasnns OoO——
(b)

;
xs yt
1 2

Fig 11. Configuration of A with A, in [o-1, n-2].
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