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(v)

SUMMARY

In this thesis somé topics in the field of Infinite Transformation
Semigroups are investigated. |

in 1966 Howie considered the full transformation.semigroup Lf;T;)
on an infinite set X of cardinality m. For each a in (X) he defined
defect 0f o = def o and coflapse 04 o = C(a) to be the sets X \Xa and
€ x: (HAy€ %, y#£%x) %= ya}, respeékively. Later, in 1981

he introduced the set
Sm—--{aE.?(x) : | @Gefa | =] clo |=|rana[=m,|ga-1|<m
( V y €ran o) },

- which is 'a subsemigroup ofgf; (X) provided the cardinal m is kegulax.
Taking m to be a regular cardinal number, Howie proved that Sm is then a
bisimple, idempotent-generated semigroup of depth 4. Next he considered

the congruence defined in SIn by

-~

2 74 MR
o = {(a,B) € 5 x5 : max (| pte,8)a | , | DCa,B)B|) < m}

-~ -~ ~

* 5
where D(a,B) = {x € X : xa # xB} and showed that’ g = Sm/Am is a

bisimple, congruence-free and idempotent-generated semigroup of depth 4.

In this thesis comparable results are obtained for the semigroup Pm

-~

. which is the top principal factor of the semigroup

wfe € T %) s [t a]=]cta) | =nu}.

-

Here it is no longer necessary to restrict to a regular cardinal m.

The set S considered by Howie fails to be a subsemlgroup of ¢ ? (X)

if m is not regular. It is shown that in this case <Sm> = Qm.

-~

In the case where m = &, (a regular cardinal) it is shoﬁn-that By

is the only proper congruence on Sm'




ey

» (vi)

Within the symmetric inverse semigroup ﬁx) . the Baer-Levi

: e
semigroup B of type (m,m) on X is consideredand a dual B found. The products

* * *
BB and B B are investigated and the semigroup Km = <B B> is described.

The top principal factor of Km is denoted by Lm and it is shown that

*
L =BB U {o}. On the set L_ a congruence Sm, closely analogous to

the congruence A-m defined above, is considered, and it is shown that Lm / Gm
is a o-bisimple, inverse and nilpotent-generated semigroup.
Finally, two embedding theorems for inverse semigroups and semigroups

in general are presented. The cardinalities of some of the semigroups

introduced in this thesis are studied.




CHAPTER 1

INTRODUCTION AND BACKGROUND

According to Clifford and Preston [5] 3. A. de Sequier, in 1904 [33]
was probably the first person to use the term "Aemignoup" in a
mathematical conéext. Though this was soon followed by L. E. Dickson [6],
the first fundamental publication on Semigroup Theory was produced by
A. K. Suschkewitsch.[34], almost a guarter of a century later. Since
| then the inéerest in this field of ab§£ract algebra has expanded with
important results obtained by Rees [31], Cliffofd [4], Vagner t4l],
;Prégton [29], Dubreil [7] and others. The first boock on Semigroups was
by Liapin [21]. Clifford and Preston vol I (1961) and vol II (1967)
wrote a book on a much larger scale, collating the material published in
the field up to that point. More gecent books include those by Howie [12],
Petrich [28] and Lallement [17], the last-named being devoted to the many
recent applications of the theory.

Among the most obvious semigtoups occurring in the "real world" is
the semigroup of all mappings of a set into itself under the operation of
composition of.mappings. Thi§ is the semigroup analogue of the symmetric
gfoup on a set X and is indeed sometimes called tlie symmetric semigroup.
More commonly, however, it is called the full transgormation Semigroup on
Zhe set X and is denoted by Lf;?;); It has been studied by manv authors,
including Howie [¥1, 13, 15] ;hd Munn {24]. 1In this thesis, some
.infinite transformation semigroups are studied.

In this introductory chapter a number of basic concepts and results
on the full transformation semigroup are presented. Most of them will
be indispensable ‘for the remainder of this thesis. For elementaéy

concepts and propositions as well as notation on Semigroup Theory see

50 121,




Let X be an infinite set of cardinality m, and let (X} be the
full transformation semigroup on X. In 1966 Howie introduced the sets

S(a), def o= Z(a)) and C(a) as

s{a) {xEx:Xa#x.}. ; def (o) = X\ Xa .

c) = yltalitexa, | Y22},

and refewed to the cardinals ['S(a) I,‘ | '@ef o | and | c(a) | as the shift, the
defect and the collapse 0§ a, respectively. In a more recent paper [15]
some more p;‘écise terminology was introduced. For each infinite

cardinal n not exceeding | x| + a balanced efement of we,cg’u‘ n is defined

to be an element of g? (X) for which
| 8@ | =]|dfa|=]cta) | =n -

In fact from the obvious remark that def a € S(a) we may deduce that in
the case where n = m (the only case we shall be considering here) the

condition |S(a) | '
|gef | = |c(w |

m is a consequence of the conditions

= m. J
The set A
{a € ,9— (x) : | s(a) ] | gef o | = [ cla) | (1.1)
was denoted by Qn. It is a regular subsemigroup of (%) .,

-~

Denoting the set of singular idempotents of . 9 (X) by E, Howie [11]

- showed that the subsemigroup <E> generated in . ? (X) by E is _given by

<E> =F U U{Qn: Rosnsm}.

-

" where F is the subsemigroup of . ?(X) consisting of all elements of finite

'shift and finite non-zero defect. In [15] he showed that F and each O

-

are generated by their idempotents

F =< E(F) >, Qn=<E(Q)>_
n

They are therefore examples of {dampotent-generated semigroups.




7

Let S be an idempotent-generated semigroup with set E of idempotents.

Thus _

E C E2 - E3 C...coco. and S = <E>

\ n=1

Il
c
t
o

If there exists a least k for which gt = g we say that S has depth k;
otherwise, S has {n{inite depth. It is shown in [15] that F has infinite

depth but that each 9 ( By € n € m) has depth 4.

-~

-~

Specialising to the case vhere n = m (= l X | ), Howie [16] describes

" the subset S of Q9 as
m m

-~ -

8 = {a € Q, : | ran a | = m . | Uaul J <m ( Vy € ran &) }.

-~ -~

It is known [16] that Sm is a subsemigroup of Qm provided the cardinal m

_is negulan, i.e., if it has the property that | A | <m and m

<m for all

A € A together imply

Y mo<m. ' (1.2)
xek - : :

. Z
(See [30] for this definition). We shall see this in more detail in

-

Chapter 3.

In [ 16] Howie takes m to be a regular cardinal and shows that Sm is
then a bisimple and idempotent-generated subsemigroup of Qm of depfh 4,

Following Mal'cev [22], Howie considers the set
D (a,B) = {X €EX: xa # x8}.
and the congruence

o, ={a,B) €s x5 : max ( | p(a,8) « |, | Dta,8)8 |) < g} ,

and then shows thaf S*m = S /A is bisimple, idempotent-generated of depth

4, and congruence-free.




.o

N

Since Sm fails even to be a semigroup when m is not regular, the
question of whether or not it is possible to find a similar semigroup
in the case of a general infinite cardinal arose naturally. The answer,

although affirﬁative, was not straightforward. Within the semigroup Qﬁ

~
-~

there is a togyzzzclass consisting of all a in Qm for whiéh [ X a.l = m

and an ideal

= {a € Q * | Xa | < m}

-~

The principal factor

- 9,/%, | - . <

turns out to have properties that to some extent mirror the proverties of Sm.

.
-~

The object of Chapter 2 is to explore these properties. BAlso a o-bisimple,

idempotent~generated and congruence-free semigroup P*m is described (m being

-~

a general infinite cardinal) and related with S*m.
Having found Pm and therefore generalised [16] for the case of a

general infinite cardinal, one question still remained - the problem of

-

describing <S >, the subsemigroup of Qm generated by the stable elements,

~

for the case of a singular (i.e., non—regular) cardinal m. This problem
is solved in the first part of Chapter 3.

In group theory congruences are determined provided one knows the
normal subgroup which is the congruence class containing the identity.
Similarly, in ring theory, congruences are determined if we know the'ideal
which is the congruence clASS containing the zero. Such a situétion does
not occur in semigroup theory and we are therefore forced to study
congruences as such. Our purpose, in the second part of Chapter 3, is to
study the congruences in Sm' where m is a regula; cardinal. The problem

-~

is completely sol@ed for the case in which m = N; ; but the guestion still

remains unsolved for any other infinite regular cardinal.




Still inside the full transformation semigroup on X other semigroups
wefe éonsidered. In their paper (1932), R. Baer and F. Levi construct a
right cancellative, right simple semigroup which is not a group. The
semigroup they gonstruct is the semigroup of all ¢ne-to-one mappings a
of a countable set R into itself, with the property that R\Ra is not
finite. More generally, following Cliffokd and Preston [?], if p,q are
infinite cardinals such that p:aq,_#e shall say that B is @ Bae&»Lgvi
semigroup of fype (p,q) on the set A, if | A | =p and if B is the
semigroup of all Oné—t;—éne mappiﬁgs o (combined under composition) of

A into A, satisfying the property
lavaa ] =q . '

In Chapter 4 we consider the Baer-Levi-. semigroup B of type (@;m)
on the set X and our aim is to dualize such a semigroup. Within the
3 Z >
symmetric inverse semlgroupg,;i;) (that is, the semigroup of all partial

one-to~-one mappings on X) there is a dual B*. The products BB* and B*B are
. i
described. Particular interest is attached to the semigroup

= <B*B>
Kh B*B

-

In a semigroup $§ with zero an element 4 is said to be nilpofent if

n

32 % 0 for sowe n3l. IE 4" =0 but 85T % 0 we say that 4 is nilpoden

0f index n. It is shown that in the symmetric inverse semigroup L,ﬁzk)

the nilpotent elements of index 2 generate Kh. Also, a o-bisimple,

“inverse, congruence-free and nilpotent-generated semigroup is described.

Finally, in Chaoter 5 two erbedding theorems for inverse semigroups
and semigrbupé in general are presented. Also, (section 4) a study of the
cardinalities of some of the different semigroups introduced in-this

thesis is provided.




2 - CHAPTER 2

A CONGRUENCE-FREE SEMIGROUP ASSCCIATED WITH AN

INFINITE CARDINAIL NUMBER

1. INTRODUCTION AND BACKGROUND

In this ch%éter the basic concepts.and'results are as presented in’
the:first part of Chapter 1.

A preliminary objective of this section, Theorem 2.9, describes a
o—bisimp;e,iidempétent—generated semigrou§ of depth 4., There is a strong

analogy with Howie's study of the semigroup of the stable,elements [16] .

In section 4 a congruence-free, idempotent~generated semigroup of
depth 4 is obtained. Here again, the results are quite similar to. the

ones cbtained by Howie [16, theorem 3.11].

2. PRELIMINARIES

Let X be a set with infinite cardinality m and let Qm be the semigroup

of thé balanced elements as defined in (1.1).

\

LEMMA 2.1. Theée,t;rk={a€g~m: [ml=k}bsa/¢—e,&wsing
for all x < m. :

- -~

Proof. Let a,B € Q and suppose that [¥a] = [x8]. Then there is a
bijection.f:Xa - XB. Let T be a cross-section of Ker B, that is, a -set such
that |TNA| = 1 for every (Ker 8)-class A. Then we shall show that

| X\T ]=—~ m. To see this, let

>

*¥ | » 43,

R={y € x8 : | yB
giving
c(8) = U{ys'"l : 4y € R}

1£ | R | = m, then writing TN ¢ % = (£ } we have

Y




x\r= U{ys™t\ {Iy}:j € R}

and so lx\?|l 2 | R | =m 1If | R |<m, let

-

R, =1y € x3:25'|y6-1l<m}.
Then, °

E | U{ys"1'=q€Rf}I<m:

. hence, since | C(B) | = m we must have

=

-|. Uy Bnl:yGR\Rfi‘| ~13_1

i.e.,

"L lwm

-~

3 lys
¥ € R\R,

But since | y8™' | is infinite for all y in R\R_, it follows that

| !{8-1 | = | Q{B—l \ {-ty'} I, (y € R\hf"). Hence, since
x\t 2 U{yB'l\{ty} : 4 € R\R.DL,

we obtain | X\T|=m G

Now, define § € (X) as follows: for each (ker a) =-class A define
' -1
AL = AadB n T,

Then, Ker £ = ker a and so | ¢ (§) | = | c(@) | = m; also, ran £ = T and
S0 l defgl = l X\T l = m. So, § belongs to Qm.

Next define n in c.? {(X) by

. '—1
n]x8=96":XB —Xa,

and for all X € def B

xn = 2,



B

.where Z is a fixed element of def a. Then IC(n) [ = ldef B i= i | 18
| Gef n | = | def « \{z} |=m and so n belongs to Oy .

-~

Finally, notice that, for each A in X\ Ker a;
AEBn = (T N Ac6B™)) Bn = Awbn = Aa

and so £EBn =
Similarly we can find ¥ and T in Qm such that B = facﬂ Hence, we have
shown that

| %2 ] = | xsl=>afsingm

-~

Also, if o and S are two elements in Q - such that ad/f7—8 in Qm

then a‘/??.g in ) and so it follows from [12 Ex.II.10] that

IXc.t|=lXB|=gr

for some p < m. Hence o, B € Jp‘

Lemma 2.1 is now proved.
The,top‘yzzrclass in 9 is J_ =o€ Qm | ¢ | = m}, which is not a sub

semigroup of Qm’ for it is p0531b1e to have a, B in Q such that

I xa | = | x ] and | X(aB)| < m. Suppose for instance that

x=yuzluzzisapartitionofxsuchthat[Y[=]zl|=|z2I=x3.

Choose o in Qm'such that ran ¢ = Y. Now choose ané fix a in Zl and let B

map Y onto a ;nd Z1 U 2, onto Zl in a one—to;one manner. Then
franB]=|Zl|=T.'

atso | c(® | =] a8 | =|v|=m and |defp | =m since def 8 2 z,.

" Hence B € Jﬁ and it is obvious that

~

| xtog) |=]ve]=]fk|=1<m.
Qonsider now the ideal

I@={a EQm=| x“|<'f}




.The principal factor Pm = Qm/Im is defined as

- -~ -~

g - {{a}:uEJm}U{Im}

~ ~ ~

and it-is a semigrou?. Because of its own structure (a sémigroup of

congruence-classes) it is certainly not a subsemigroup of Qm, but we may

think of it as

P =, Yo}, o g . (2.2)

-~ ~

a fclass with the zero element adjoined.

3. THE SEMIGROUP Pm

-

In this section we shall explore the properties of Pm.

Since PIn is a principal factor of the regular semigroup Qm’ we have

LEMMA 2.3 B L5 negulax.

LEMMA 2.4 B 48 o-sdimple.

Proof. By [12, Theorem III.1l.9] P is either o-simple or null. To

show that Pm is not null it will certainly be sufficient to show that J

-~ ~

contains an idempotent.

Since Qm is regular, every element ¢ in J_ has an inverse a' in Q .

: -
By [12, Theorem II.3.5] we have that a'@a - and so, since @;/

it follows that a' € Jm. Since aa' % we have that ca' € Jm' Hence

aa' is an idempotent in Jm as required.

LEMMA 2,5 P, 45 o-bisimple.

-

Proof. S:‘c’ncegm is a regular subsemigroup of , ?(X), it follows
[12, Proposition IT.4.5] that if a,B € 3, then a% in Q if and only

if a% in (X), i.e., if and only if ker. a = ker B[12, Ex. II.lO] .
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Similarly, o =52?§ in Qm if and onlyif ran a = xan B. Since every

element in a regular semigroup is e..z'ja‘—equivalent: to an idempotent

[12 Proportion II.3.2] the o-bisimplicity of P will follow if we show that

for every pair of idempotents €,1n in Jm there exists o Gsz sﬁch that

-~

e:gigi and acSZ%z Suppose that e, nare idempotents in J . Then

m
|S(e).|=_|defe |=|(_2(e) I=[rane|=m,
and : 1
|S(n)|=|defn|=-_~lc(n) ]=|§annl=m.
Since.e is an iaempotent we also have ] X [/ ker e l = m for lran € [= m

f 2 : : :
,and ae ) (ag)e gives a one-~to-one map from ran e into X/ Ker .
Then, let 6 be a bijection from X /Ker & onto ran 1 and define a in (%)

by
Xo =[ x (Ker €) ]6.

It is obvious that ran o = ran n and that Ker a = Ker.e and so e@a

and acg. Notice nhow that a € J since | def « [ = l def n I = n,

|-‘c (u; | = I C (g) ! - m and I ran a|~= | ran n | = m. Hence Pm is

o-bisimple. ) .
LEMMA 2.6 i 45 an Ldempotent-generated semighoup of depth nok

-~

exceeding 4.
Proof. Since Qm is idemootent-generated of depth 4, it follows tha£ -
for each o in Jm there exist idempotents €17 €pr Egs

a =eleze3a 4 From the general result that in any semigroup

E4 in Qm such that

£ J £ J, .
ny £ Ay J g

[12 Proposition II. 1.10], we deduce that

Jm =J £ J (3 =1;2,3,4) ;

e



S <

oy
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and so ei (] Jm' since Jm is the top djzzclass. Hence the lemma follows.
A To show that the depth AkPm)'of Pm is éiactly.4 entéiis.findihg an

-

element of Pm that cannot be expressed as a product of three idempotents.

To do this we need a preliminary lemma.

LEMMA 2.7, Let @ € J . iﬁ’ o= éleée—s;- a pfcoduc,t 06 three Ldempotents

dn 3 then there exist fwo idempotents n-and ny n 3 = such that Ker ny =

-~ -~

Ker o, ran n, = ran o and o = nyEpNye
" Proof. By [15, Lemma 3.8] and its dual, we can find two idempotents

in‘Jm such that a = N € N5, n S;ZZ and nBGSQ?Z. Hence, by

n, and n 1

1 3
[12, Ex.IT.10], it follows that Ker n, = Ker a and ran ny = ran a.
For reasons that will be apparent later, we shall find a whole

collection of elements that cannot be expressed as a’product of three

" idempotents.

LEMMA 2.8. Let R be the subset of p_ defined by the rule that o €R
X

44 and oy L4 the sefs v = Cc(a) -.and v = X\U have Zhe properties

(R,) | yyran ¢ | <m 7 (K2T lvave]|<n ,

(R3)|Uanv!=T

Then no element of R 45 expressible as a product of three {dempotents.
Proof. We show first that R # ¢§. Since ] X |“= m we may consider

apartition of X into a disjoint union Xl v x2~u XB'U X, such that

]
L]

Iz l=1x%1=1z%]

Let 9 : Xl U X2 -— X3LJX4 , 0 x3 -—?ga and Y : X3 > Xl

be bijections.

Definea:X —> X by
Xa = X0 (X € X, U Xy)

Xa = (X9) a = XY (x € x3)

= = U = U X.. : = . .
Then, U Cla) x3 x4 and V xl Yz Since ran.a - X1 U,X3lJ 34 it is

clear that o € J - Furthermore, since U\ ran a = B, VN Va=¢ and

-~
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" Ua nv=xl,

Thus R # @.

conditions (Rl)'(R2) and (R3) are satisfied and so a € R,

Now, take o in R and suppose, by way of contradiction, that

@ = €88y, where €., €., €

152 3 are idempotents in Jm; by lemma 2.7 we

Gl

may assume that Ker g = Ker a and that ran 83 = ran oa. Take V in
Ba NV and let U, = Ua-l, i.e., Do =V, Then Uv is a (Ker el) -class’

since Ker a = Ker €, and so maps by €

1 to an element of itself, say Uua =

1 P
au . Consider now the glement Z = u.we2 = Uaﬁlélsz. Either (i) z € V or

(i) z € u.,

In case (i) we have that z & C(a) and so {z} is a singleton (Ker e':l)-

“class. Hence, ze, = z and so we have
zecks  woze. wlhEr = =u €, ;
€152 2 7 W2 T W2 T N5 B2

thus, applying €, to both sides, we get

3

Za=2Ze€e,eq = Uv€152e3 = Uvu s,

i.e., Za =V € V¥V N Va.

In. case (ii) we have z ¢ ran o, for if z € rana= ran €30 then

Z€3 = Z. But
Ze3z = u,v e.2 3=Uv eleze3=Uvu =V,
and so V = 283 = Z, which cannot happen since V N U = @. Thus ZE€U

implies that z € U \ran a.

Now define ¥ : Ua N V
for each v € U N VvV,

> (v 0 Vo) U (U\ran a) as follows:

= i = 2 v
. vy v if z Vo 6182 G '

vy Z otherwise.

Notice that ¥ is one-to-one. For suppose that v,v' € Ua N V are such that

V¥ = v'Y. Hence, either both V¥ and V'Yare in V or both v¥ andv'Y aré in U.
L] -— 3
In the former case V = V¥ =v'¥ = v.,vhile in the latter case va lalsz =
-1 5 -1 .=
v'a €. e, from which it follows that va "e,e.e, = V'a "e.e.€ i.e.

172 17273 17273,
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that V = v'. Hence Y is one-to-one and we have

J]va n v]igs]| v n va) U (ﬁ\rana)l

s]lvnvel|l+|u\rane | <m,

by (Rl) and (RZ) . Since this contradicts (R'3) we conclude that o cannot
be expressed as .a product of three idempotents in Jm. We have proved

THEOREM 2.9. P 44 a o-bisimple Ldempotent-generated semighoup

of depth 4.

- 4. A CONGRUENCE~FREE SEMIGROUP ASSOCIATED WITH m

-

We shall now recall that a semigroup S is called conﬁ!uzence~&‘1ae if

the only congruences on it are the identical congruence ls and the

universal congruence S x S. The semigroup Pxn is not congruence—free' since

Mal'cev's congruences [22] induce congruences on it. In more detail, if’

we define for o,B € Qm

-~

D(a,B) = {x € X:xa # %8},

then for each n such that h‘o.é n < m, we obtain a congruence on Qm

A = {(a,B) €Q_xQ :max(|D(x,8)a|, D(a,8)B]) < n}.

-~

o
Notice that if Im is the Rees congruence on Qm whose quotient semigroup

~

is B, = Q. /I, (I, being the ideal {a € Q:|ran o] <) then

~

I C A

t8 0

s
Hence it follows from [12, Theorem I.5.6] that

Am=A/1

o n = {(a,8) €2 xP :(a,8) €4}

~ -~ -~

B 0

-~

is a congruence on P.m, where a denotes the congruence class containing a.

~

It is not difficult to see t.ha_t

A= {(a,8) € 3_x3 :(a,8) €4 }U {(0,00}. . (2.10)
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In fact, if ao,B € Pm are such that Iran al =m and (o,B) € Am then

[p(a,B)a| < m; |D(a,B)B] < m.
Hence, since [ran al =m and

ran o = [D(a,B)a] U fx\ D(a,B) ]a,
it follows that |[X\D(a,8)Ja| =m. Hence
rang= [D(a,B)a] U [X\ D(e,8) 18
= [D(e,B)B] U [X\D(a,B)]a

gives |[ran Bl =m, i.e., B € I So if «,B in P

-~

then either both o,B8 are in Jm or they are both i

-~ -

The theorem we now state shows that Em (as

unique maximum non-trivial congruence on Pm.

-~

m

cc;ngnu;.nce defined 4in p_ by (2.10) and denote
; * - : . " N

“congruence-ree, o-bisimple, Ldempotent-generated semigroup of depth 4:-

P = g v {o} be the semigtoup degined 4in (2.2). Let

o e such that (a,B8) € Am

~ ~

nl.
2

defined in 2.10) is the

THEOREM 2.11. Let x be a set with infinite cardinal m and Let

fed

be the
m

Then *
. IQYLPm&a

-~

P /A by p

-~ -~

1B O*

- 1
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Proof. Since Pm is o-bisimple (Lemma 2.5) and idempotent-generated

(Lemma 2.6) and since these properties are inherited by non-~trivial homomorphic
*
images, it follows that Pm is a o-bisimple and idempotent-generated

= *
semigroup. From Lemma 2.6 it follows also that A(Pm) <£4. We have to

-
-~

* . *
show now that Pm is congruence-free and that A(Pm) = 4,

-~

| It is known.[39, 32] that a regular O-simple semigroup S is

. congruence-free i:f and only if the congruence

e

o=1{(@b € sxs: (Vsztesh sat =0 « sbt =0}
+*

is trivial. Applying this to .Pm , we see that what we are required to

>

.show is that if o,B8 € Pm are such that

-~

( Vl,vEPm) T - dav=0<='XBvV=0,

- then (a,B) € Am.

Accordingly, let us suppose that a,B in J_ are such that (a,B8) & b

B

We shall find XA,v in Jm such that I;:an Aa v m, i ran X 8 v I < m .

We have that max (‘ D ; ] i I D B l) =Dy, where D~= D(a,B), and so either

t Do '|= m or . | DB ’ = m (or both). Suppose, without loss
of generality, that I D a | = m and consider the follow:‘:ng Lemma, analogous

te Lemma 2 in Lindsey and Madison [20] and to Lemma 3.12 in Howie [16]:

LEMMA 2.12. If a,B € J, e such that (a,B) & Am and

| Do | =m, then there exisis a uo;z-emp/tg subset Y of D such that

Yanygd=¢@andmax ( | ya |, | ¥'8 [)= m.
. Proof. We have to consider two cases (i) | D B | < m and (ii)
‘ b B | = m. In case (i) we must have l Da\D B I = m. Consider then the

set

Y= [(Da\D B Y] ND

]

and notice that Y a

Yo C (Dx\DB) o tu
<1 : | — 1 :
Xt "N D E Y and so (Xo N D) a C Ya; but (Xa "N D)a=X and so

Da\ DB. For it is obvious on one hand that

»

Da\ DB. On the other hand, if X € ba\ DB, then
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X € Yo. Therefore, Da \ DB CYa and we have Ya =: Da \ DB." Thus
| Y o l = m. Since YB C DB, it follows also that Ya W YB = @. Hence

the Lemma follows.

In case (i:i:) where [ DB l = m, consider the set of all subsets
Zof D sx‘xch that 2a N 2ZB = @. Then %# @ since it contains all
_singleton subsets of D. Al-.so, i {C}. : A € Alis atower in & and
C = U{Ck : X € A} it is easily verified that C € % and so, by Zorn's
..I__.emma there exists a maximal subset Z of D such that Za 0O ZB = ¢g. If
one or other of ] Z o I ' lZ 8 [ is equal tom tl';én Z is the set we r'equire.
So suppose that | Z a I <., 128 [ < m. Then D\2Z ¥ @ for otherwise

-~

D=2 and so |z2a | = | pa |.=mn. also, for al1 d in D\ 2 the maximality

of Z implies that
z u{d) an (z U {d) B8 # 4.

Hence, since 2a N Z8- =@ and da # dB, either da€z8 or - dBEZx. Let

o
i

{d € p\z : dpgezal,

{d '€ p\z2 : da€ZBl;

o}
f

fl

Thus, D\2 D1 9] D2 (not necessarily disjoint) and D18 C Za,

Dzaf:_ ZB . We have D =D, U D, U 2 and so Do = D.a UD_a U Za, But

3 G2 1 2
!D2a|s|28l<m,lZa[< mandIDa]=m. Hence,!Dla|=m.
We now have l Dla | =m ana | Dls ] < ] Zo ! < m. So, !Dlu\DlS = m

and we can use the case (i) argument to find

2 I -1
LY = [(Dlu\DlB)a ] nop

such that Ya N YR = @ and |va| = m. The lemma follows. Notice that the

-

existence of Y does not contradict the maximality of 2 since Y C Dl and
so YNz =g,
Let us now go back tc the proof of Theorem 2.ll. We were supposing

that | Da |= m. Consider then Y C D such that Yo N YB= @ and
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max (|val,[¥B|) = Suppose that [Yo| = m;

m.
then certainly I Y I = m. Let V and 2 be two subsets of Y such that

|v|.—_|z|'=m,vnz=¢andvuz"'=Y. Then Ya = Va U Za and
since | Ya |= m we have either I Vo I =m or [ Za |= m (or both).
Suppose that IYa‘I = m; let 0:2 >V be a T

bijection, let vc be an arbitrarily fixed element in V, and define X : X —> X

as follows:

VA = v | VvV EV
zZA = 20 zZ € 2
WA, = v, we ws=3x\y,
Thén, ran A = V and so l ran A’ [ = m, Also, def X = S(A) = Z U W giving
) . a -1 ot 1 s =1
lgefr | = [ s(0) |=m . Finallyv i "~ =wu {v,,v, o }andaw" =
{v, 'Vehl} (VvEV and Vv # Vo). Therefore, C(A) = U Ul_l = X and so
- vVEYV
4 le ) | =m. Thus A EJm. Since ran A =V C Y and since Yo O ¥B = @,
= 2 =
it follows that ' “ 9y
ran Ao N ran AB = & - o . S
We certainly have [ ran Aa ['= I Va I =m. If I ran AB |<m then our-
argument is complete, for we then have
el # 0  and A81 = O,
in the semigroup Pm' Suppose therefore that | ran AB ] = m.

, WL by

o

Now let xo be a fixed element in ran A8 and dafine Vv

Xv = X { X €& ranlu)‘

XV =X ( X€ ran AB) .

if ran da U ran AB = X, this defines v completely; otherwise cﬁoose-zl in

X\ (ran Xa U ran ABR) and define

Xv = X {(x € X\ (ran AaUran AB8) ).

lo



| et
o

"fThen ran V = ran Aa U {xo, Xl} and so
'_['ran Y |= l def v l= m .

Also, C(v) DO ran AB and so l c(v) I =

t 8

too. Thus v € Jm' It is now

-

clear that

Il
ot

B ran .lavl-—- m, | ran ABv |-

-

. and so in Pm we have -

kow £0,; N69 =10,

*
. It follows that Pm is congruence-free.

3 * . A *
It remains to show that A(Pm Y = 4, TE A(Pm) € 3 then for all a in

* 1 ‘4 * ~ % *x *~ z * * *
Pm there exist -idempotents El ’ €2 ’ 53 in Pm such that a = el 52 53

Hence, by Lallement's lemma [12, Lemma II. 4.6] , for each a in Pm there

exists ao in P and idempotents €. ,€,,€, in P such that (a,ao) € A and
: m 3 =203 m m

o]

o = 515223' That this is not the case wil). follow from Lemma 2.8 and

from Lemma 2.19. First we have

-

"LEMMA 2.13. Let R be the subset 0§ L dedined in Lemma 2.8 and Lef

a €R., If 8" € P £is such that (o, «°) € -_Am then

~ -

(i) I Ua n % [ =m , (ii) I Ua \ Uoul < m-

(1ii) | v\ va | <

’

t g

where u = c(a) and v° = c(a®).

Proof. If o € R then ] U\ ran a!<m r [ vV n Vo |<m a_l;ud
‘Ua nvy [ =m, where U = C(a) and V = X\ U. Since (a,ao) € Am.we'have
that l Da |<m and l pa © ]<m, where D = D (a,ao). We then };av; the Venn

diagrams:

[See overleaf for diagram.]

~

*
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'diagx:am (1)

To prove the lemma we require to investigate the cardinalities of

; w
Certai“n of the sets Bi’ First, since | Da l < m, it follows that

] By E s | B, | » |AB3 I« I8, | < m. o209
Turning now to the set

B5 = Ua \ (an U Dua),

we notice that for each X in B5 there exists u-in U\ (Uo U D) such that

X =Ua . Since U & D we have Uua = uao. Also, since W € U, there

exists Vv # W in U such that va = e = X . Now, Vv & D, since
va = X & Da, and hence va® = va. It follows that
o

ue® = ua = va = va® , (u # V)
and hence u € U°. This contradicts u € U\ (Uo U D) and so we must have

Bs = ¢- - (2.15) A
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Since I Ua l = l Bl u By, u B4 U B5 ! =m it now follows by (2.14) and

(2.15) that
I8, | = m _. . _ (2.16)
and so certainly that

|Uaﬂuoa[

m.

Also, since Ua \ola = B, §] BS" we have

| b \v®a [ <m .

To prove the remaining assertion of the lemma we must consider 86.

Iet X € BG- = Uoct \ (Ua UDa). Then, arguing as for B5 we see that there

must exist u® in U°\ (U U D) such that x = «Ca. Since u.o is in t° =vC(a°)

N le] o s
there exists vo # W in U° such that voa © = uo L Since-uo € D we must

have %« = t© o°. If we had v° & D then it would follow that

and hence that u.o € C(a) = U, contrary to hypothesis. Hence uo € D and so

o
x =’ = «® o =12 € D’
o ' e s 7
Thus B6 C Do and so, from the assumption in the statement in the "lemma

that (a,ao) € Am it follows that

| Bg | <m . : ‘ ‘ . (2.27)

It is now clear that

U86]<111,

| % \ Ua [ = | By

and the lemma is proved.
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LEMMA 2.18. Llet o €R (as defined 4n Lemna 2.8) and Let o in p_
be such that (a,0°) € A . Then lAi | =m (i=4, 8 and[Ajl <m
(G = 2,3,5,6,7) where A, (i =1,2,3,4,5,6,7,8) are the subsets of x
defined in the diagham (1). B

Proof. We show first that ]Ae | =m. since @efa € B, and

7 8
‘o € Jm we certainly have that | 88 [ =m. It is easy to see that Bsa—l SAB;
hence-
-1 -
|2g 1> I 3™ > ||
@dso ] A8 [ = 111
To show that | A4 [ =m is a little harder. Certainly I B4 | = m by

It is, however,

(2.16) but it is not entirely obvious that B4a~1 - A,.

" true, and this is what we shall now show. Let

x € B4a"1 = [(ua N %) \DaJa L.

Then .

xa € (e N U°a) \ Da "

and so X ¢ D. Also, since Xa €Ua there.exists ueU such that Xa = ua.
Hence either X = 4 € U, or X # ¢ in which case XE€C(a) = U. Finafly,
o (e} o )
since Xd € U a there exists U~ € U such that Xa = U a . As before,
fe) o) O s ; g, o ;
either X = € U or X # u, in which case both X and 4 are in U.
We have already observed that X & D. 1In fact, we also have u.qu, since

u® € p would give Xa = v € Da contrary to hypothesis. Hence,

o
xa® = xa = o = u%°

and so X € C(ao) = Uo. Thus

x €(U nu°)\D=A4,

=1,

o C A

‘giving B, 4+ It now follows easily that I A, | = m.
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In considering Aj {(j = 2,3,5,6,7), notice first that u]'v is one-to-one

since V = X\ C(a). Hence the subset Ay U A, =V N D maps by o in a

one-to-one manner into Da. Since |Da| < m by ((2,0°) € Am) it

follows that [ A3 u A.7 [ < m and hence that

|A3I<T ’ IA—}[(‘E'

2 7

o . : ) . o .
maps by a in a one-to-one manner' into Do . Since [ Da~ | < m it thus

0 e .
Next, since ao l V is one-to-one, the set A, U A, = V° N D

- follows.that
~ I A2 l < Ex.

Consider now the restriction of o to the set A = UO V(U U D). Since

6

AB CV=Xx\U=Xx\C(a),

thé ‘map a!AG is one-to-one. We now show that its image is contained in

B, = ¢\ (Ve U Da). Let x € Ag. Then X € y° and so xa E v°«. oOn the

other hand, if we had Xa €U then there would exist ¢ in U such that

i& =” tta, and it would then follow either tﬁat X =uU €U or that x # u,

in which case x € C{a) = U. In any event X €U, an!d since O;Jr assumption

is that x € A, C X\U we thus have a contradict;ion. Hence Xaf Ua.
Equal-ly, xa € Do leads to a contradictio_n, for if xo = dc'x. with d in

D, then either x = d €D, which is contrary to assumption, or x # d in

which case x € Cla) = U, again contrary to assumption. Hence

% & 0% \ (e U Dy) = B,

and so, by (2.17),

| agl=laglslzlem,

Finally, we must consider AS = U\ (wCup). 1f X € AS then

certainly Xa € Ua. Also there exists y €U such that w # x and ua = X«

In fact u € D, for if w ¢D then
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o] (o]
X = Xoo = Qo = U,

giving X € U°, contrary to assumption. Hence Xo = Uo € Da, giving

A5a E Uax O Da.

Moreover, o fA is one-to-one, since if X,y €A_ are such that Xo = YHa

5 5

thep X,Y ¢D and so

xa® = xo = ya = ya°,

which, if x‘# Yy , gives X,Y ec®) = Uo, contrary to assumption. It now

follows that
Iagl=1ngls | vanna|eclon|<n.

Lemma 2.18 is now proved.
We can now prove a lemma which together with Lemma 2.8 will establish
: *
that A(P_ )> 3.
mn
LEMMA 2.19. 1§ o € R (a8 degined in Lenma 2.8) and o° € P48 such

thwt (_a,uo) € Aﬁx’ then «© € R.

Proof. Suppose that a belongs to R so that

| unran al<m, |V nva | <m and | UanV | =m, - (2.20) .

-

where U = C(a) and V = X\ U. We must show that
(o} =
| v\ ran o® | <m, | v n v%° | Em and | t%° A v° | = m.
Using a simplified notation in which Aij' Aijk' etc stand for

Ai U Aj' Ai U Aj U Ak' etc, we can write

‘U\ran o = A o4g\ Tan a = (A"M\ran o) U (Azs\ ran a).

Hence

'|A14\ranu]<m. _ - (2.21)
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Also

o o _ o
U \ran a = A1346\ ran o

o o
= (A14 \ran o ) U (A36\ ran o ). . (2.22)
By Lemma 2.18,
. o . -
- | agg \eam o7} < | A5 |<x5. B . .(2.23)
Also
: o _ o )
Al_4\ ran @” =B\ (A 00 a0 U Ay 0 a)
o
=B\ (Byog; @0 U Pygeg )
CRyg VPg5es * (2.24)
Now,
Biglran @ =2, \ (A0, @ U By @)
i ' = By \Ajoa0m0) N (B \A o al.
Since l?y Lemma 2.18 we have | Ay | = o and since ]A1237 al=]p&]< m,
v.ve must have -

. | 2 \8 53, 0 l=m
This together with (2.21) implies that

\ Bygeg o < m

| 214 |
It thus follows from (2.24) that | Ala \ ran o° | < m and hence by (2.22)
and (2.23) that
=l v°\ ran o° | < m.

From the assumption (2.20) that | V N Va | < m and from the

observation that V = we deduce that

Ai678

N A, N Aaa | <m,
1,5=3678 + 9 .
and hence that

a0 aa | <m  (1,3=3678) © o (2.25)




Observe now that .

O O O
¥ 0V =dhegg O Aygng @
(o]
Boggg N (Byy @ U Agga)
(]
"(A2578 N Ay, ) U (B N Ay o). (2.26)
Now %
A Nn A a = U [(A, n AL @) U (A, n A, a)].
2578 58 " s oy i 5 i 8

since | Ag | < m by Lemma 2.18 we certainly have | A, N A« [< m

" for i =2,5,7,8. By the same lemma we have I Ai N AB o |<m for

i =2,5,7 and so the cardinality of A n a a hangs on the cardina--

2578 58

lity of AS n A8 a. By formula (2.25) this too is less than m, and so

we conclude that

Ay 0 Bgga | <m

We turn now to the other component in the expression (2.26) for

o o o . : .
V N Va . This is easier, since

o
A25780A27a SA27a =A,a U A, o .

Hence by Lemma 2.18,

o« |

| 3,576 N 2y

It now fql‘l_pys from (2.26) that

It remains to show that ] t%° N v® | =m. From the assunption
(2.20) that | Ua N Vv | = m we deduce that
| Ajp452 0 Bygog | = =
Now if we express the set A1245u A3678 as a union of sixteen sgts of

the form A