
COMPUTING WITH SIMPLE GROUPS : MAXIMAL 
SUBGROUPS AND PRESENTATIONS 

Ali-Reza Jamali 

 
A Thesis Submitted for the Degree of PhD 

at the 
University of St Andrews 

 
 

  

1989 

Full metadata for this item is available in                                                                           
St Andrews Research Repository 

at: 
http://research-repository.st-andrews.ac.uk/ 

 
 
 

Please use this identifier to cite or link to this item: 
http://hdl.handle.net/10023/13692  

 
 
 

This item is protected by original copyright 

 
 

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13692


COMPUTING WITH SIMPLE GROUPS:

MAXIMAL SUBGROUPS AND PRESENTATIONS

BY

ALI-REZA JAMALI

A thesis submitted for the degree of Doctor of 
Philosophy of the University of St. Andrews

Oct. 1988



ProQuest Number: 10167122

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10167122

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway 

P.Q. Box 1346 
Ann Arbor, Ml 48106- 1346





ABSTRACT

For the non-abelian simple groups G of order up to 10 ,̂ excluding the groups PSL(2,q), 
q > 9, the presentations in terms of an involution a and an element b of minimal order 
( with respect to a ) such that G=<a,b> are well known. The presentations are complete 
in the sense that any pair (x,y) of generators of G satisfying x^=y*”=l, with m minimal, 
will satisfy the defining relations of just one presentation in the list. There are 106 such 
presentations.

Using a computer, we give generators for each maximal subgroup of the groups 
G. For each presentation of G, the generators of maximal subgroups are given as words 
in the group generators. Similarly generators for a Sylow p-subgroup of G, for each p, 
are given. For each group G, we give a representative for each conjugacy class of the 
group as a word in the group generators.

Minimal presentations for each Sylow p-subgroup of the groups G, and for most 
of the maximal subgroups of G are constructed. To obtain such presentations, the Schur 
multipliers of the underlying groups are calculated.

The same tasks are carried out for those groups PSL(2,q) of order less than 10̂  
which are included in the "ATLAS of finite groups" ( J H Conway et al., Clarendon 
Press, Oxford, 1985). For these groups we consider a presentation on two generators x, 
y with x^=y^=l.

A finite group G is said to be efficient if it has a presentation on d generators and 
d+rank(M(G)) relations (for some d) where M(G) is the Schur multiplier of G. We show

that the simple groups PSU(3,5) and M^2 are efficient. We also give efficient
A A. A ^

presentations for the direct products A^xAg, A^xAg, A^xA^, A^xA^ where H denotes 

the covering group of H.



DECLARATIONS

(a) I hereby certify that this thesis has been composed by
myself, that it is a record of my own work, and that it has not been accepted in 
any previous application for a higher degree.

Signed ' Date 3 Od \ W

(b) I was admitted to the Faculty of Science of the University of St. Andrews under 
Ordinance General No 12 on \ /\o /E5  and as a candidate for the degree 
of Ph.D. on \/lo/'s6

Signed Date 3 O ct. I3TX

(c) In submitting this thesis to the University of St. Andrews I understand that I am 
giving permission for it to be made available for use in accordance with the 
regulations of the University Library for the time being in force, subject to any 
copyright vested in the work not being affected thereby. I also understand that 
the title and abstract will be published, and that a copy of the work may be 
made supplied to any bona fide library or research worker.



CERTIFICATION

I hereby certify that the candidate has fulfilled the conditions of the Resolutions 
and Regulations appropriate to the degree of Ph.D.

Signature of Supervisor Date

3  O c t



Pr^ace

I am highly indebted to Dr E.F. Robertson, under whose supervison this work 
has been carried out, for his invaluable guidance, and instilling an inspiration for the 
interesting topic of group presentations.

I would like to thank Dr C.M. Campbell for his inspiring and informative 
lectures which I attended during my stay in St. Andrews.

I am extremely grateful to the Teacher Training University, Tehran, and the 
Minstry of Culture and Higher Education of Islamic Republic of IRAN for the 
financial support over the last three years.

This thesis is dedicated to my parents whose constant encouragment and love has 
inspired me in pursuing my studies abroad.



CONTENTS

Declarations
Certification
Preface
Notation

0 INTRODUCTION

1 DEFINITIONS AND PRELIMINARY RESULTS
1.1 Elementary group theory
1.2 Permutation groups
1.3 Product of groups
1.4 Special and projective special linear groups
1.5 Presentations of groups; Schur multiplier

5
5
7
9
10 
11

COSET ENUMERATION ALGORITHM; COMPUTER PROGRAMS 17
2.1 Coset enumeration algorithm
2.2 Computer Programs
2.3 Some computational methods
2.4 CAYLEY

17
25
29
32

3 METHODS
3.1 Conjugacy classes
3.2 Sylow p-subgroups
3.3 Maximal subgroups
3.4 The Schur multiplier
3.4 Efficient presentations

38
38
41
43
50
52

4 THE RESULTS
4.1 The tables
4.2 Notation for group structure
4.3 Notation for generating pairs
4.4 The Results

55
55
57
58 
58



5 EFFICIENT PRESENTATIONS FOR CERTAIN SIMPLE
GROUPS AND DIRECT PRODUCTS 178

5.1 Introduction 178
5.2 Method 179
5.3 Efficiency of PSU(3,5), and M22 181
5.4 Direct Products 183
5.5 The group G 185

REFRENCES 186

APPENDIX
A CAYLEY file of finite simple groups



N o ta tio n

(n,m) Greatest common divisor of integers n, m

<g> Cyclic group generated by element g
1X1 Cardinality of the set X
X\Y Set of elements in X but not in Y ( where Y cX )
H < G H is a subgroup of G
H < G H is a normal subgroup of G
G/K Quotient group of G by K (where K < G)
Hg Right cosets of H in G containing g (where H < <
IG:HI Index of the subgroup H in the group G
Gj = G2 Gi is isomorphic to G2
CoreG(H) Core of H in G
StQ(X) Stabilizer of X in G
fîx(x) Fixed points of x (where x is a permutation)
h g Normal closure of H in G (where H < G)
CcW Centralizer of x in G (where x g  G)
N g (H) Normalizer of H in G (where H < G)
Z(G) Centre of G
AutG Group of automorphisms of G
Kg Conjugate of K by g (where K < G, gG G)
xY yixy  (where x, ye  G)
[x,y] Commutator x’lylxy
G ' Derived group of G
Ker (|) Kernel of homomorphism ({»
0(G) Frattini subgroup of G
M(G) Schur multiplier of G
d(G) Minimal number of generators of G
def G Deficiency of G
rank A Rank of A (where A is a finite abelian group)
<X> Subgroup of G generated by X (Ç G)
^X J jX^yx • < {xj,X2»*x,Xj|}

X'I {x-1 : x g X ) (where X c G  )
<XIR> Group on generators X with relators R
F(X) Free group on X



F(xi,...,Xn) F({xi„x,Xn))
l(w) Length of the word w=w(xi,,..,Xn) in F(xj,x.,x^)
H<S>K Tensor product of H and K

^ 2n Dihedral group of order 2n ( n > 3 )

08 Quaternion group
H: K Semi-direct product of H by K
H x K Direct product of H and K
H o K Central product of H and K



O.Introduction

There are 56 isomorphism classes of non-abelian simple groups of order less than 10 .̂ 
Of the classical groups these include groups PSL(2,q), the projective special linear 
groups of dimension n over GF(q), the unitary groups PSU(3,q) of dimension 3 over 
GF(q2) for q=3, 4, 5, and symplectic groups PSp(4,q) of dimension 4 over GF(q) for 
q=3 and 4, and finally the alternating groups A5, Ag, A7, Ag and A9. Of the 
non-classical groups there is the first Suzuki group Sz(8), three Mathieu groups Mji, 
Mi2 and M22, and two ’Sporadic’ groups, the first Janko group of order 175560 and 
the Hall-Janko group of order 604800.

Twenty eight of them are PSL(2,p), p a prime, p=5,..., 113, and eleven of them 
are PSL(2,p“), p a prime, n > 1. The remaining seventeen groups listed by their orders 
are:

A? 2520=23.32.5.7
PSL(3,3) 5616=24.33.13
PSU(3,3) 6048=25.33.7
Mil 7920=24.32.5.11
Ag = PSL(4,2) 20160=26.32.5.7
PSL(3,4) 20160=26.32.5.7
Sp(4,3) = PSU(4,2) 25920=26.34.5
Sz(8) 29120=26.5.7.13
PSU(3,4) 62400=26.3.52.13
Mi2 95040=26.33.5.11
PSU(3,5) 126000=24.32.53.7
Janko group 175560=23.3.5.7.11.19
A9 181440=26.34.5.7
PSL(3,5) 372000=25.3.53.31
M22 443520=22.32.5.7.11
Hall-Janko group 604800=22.33.52.7
PSp(4,4) 979200=28.32.52.17
non-abelian simple groups, including the following simple
A5 = PSL(2,5)sPSL(2,4) 60=22.3.5
PSL(3,2 )= PSL(2,7) 168=23.3.7
A6s PSL(2,9) 360=23.32.5,

have been investigated from various points of view using a computer. Character tables.



maximal subgroups, and intersections of maximal subgroups are given in [34], [21] and 
[33]. According to an old conjecture all finite simple groups require at most two 
generators. It is shown in [35] that all twenty simple groups G listed above can be 
generated by two generators x, y with x an involution.

A pair (a,b) is said to be a minimal (2,m,n) generating pair for G with respect to
X i f

(i) <a,b>=G,
(ii) a=x0 for some automorphism 0 of G,
(iii) if <a, o = G  then k  c> I > 1 <b> l=m,
(vi) I <ab> l=n.

A minimal generating pair with respect to x is a minimal generating pair with 
respect to any element of xAuiG, There are 106 such minimal generating pairs tabulated 
in [35] as permutations of minimal degree for these G, including conjugacy classes of 
each group and their cycle types and the orders of centralizers of elements.

Presentations satisfied by these permutation generators are given by Cannon, 
McKay and Young [15] for those groups G with IGI < 10  ̂ and by Campbell and 
Robertson [6] in the case 10  ̂< IGI < 10 .̂ In [7] the authors improve the results of [16] 
by determining the redundant relations of the presentations and by giving exactly two 
words in a, b for a subgroup of G of minimal index.

For each prime p, we give generators of a Sylow p-subgroup for each of the 
above groups. For each minimal generating pair the generators of Sylow p-subgroups 
are given as words in the group generators . For each prime p, a minimal presentation 
on these generators is constructed. All Sylow 2-subgroups of the above simple groups 
have order at most 64 with the exception of the Sylow 2-subgroups of M22» 1% 
PSp(4,4) which have orders 128, 128 and 256 respectively. We use the lists given in 
[22] and [39] to identify each of the 2-groups whose orders are less than or equal 64, 
We also, for each prime p, calculate the number of Sylow p-subgroups for each simple 
group G.

Similarly generators of each maximal subgroup are given, as words in the group 
generators, for each minimal generating pair of the groups. In [21] some maximal 
subgroups of the simple groups G, IGI < 10^ , are missing and there are also some 
errors in the structure of certain maximal subgroups of the groups. We use the 
information given in the "ATLAS of finite groups" [17] about the maximal subgroups of 
G in order to find generators for each maximal subgroup. It is seen that all of the 
maximal subgroups can be generated by two generators x, y (mostly with x an 
involution) with the exception of a maximal subgroup of A7 of order 72 which requires 
at least three generators. The Schur multiplier of each maximal subgroup which was not 
already known is calculated. We then give an efficient presentation for each of the 
obtained maximal subgroups with two exceptions.



For each group G, representatives of the conjugacy classes of G are given in the 
group generators a, b with (a,b) the first minimal generating pair for G appearing in 
[35].

The same tasks are carried out for the groups PSL(2,q) of order at most lO  ̂
which appear in the ATLAS. For these groups we take a single generating pair (a,b) of 
minimal degree with a^b^=l. There are twelve of them which are listed below by their 
orders:

PSL(2,8) = SL(2,8) 504=23.32.7
PSL(2,11) 660=22.3.5.11
PSL(2,13) 1092=22.3.7.13
PSL(2,17) 2448=24.32.17
PSL(2,19) 3420=22.32.5.19
PSL(2,16) = SL(2,16) 4080=24.3.5.17
PSL(2,23) 6072=23.3.11.23
PSL(2,25) 7800=23.3.52.13
PSL(2,27) 9828=22.33.7.13
PSL(2,29) 12180=22.3.5.7.29
PSL(2,31) 14880=25.3.5.31
PSL(2,32) = SL(2,32) 32736=25.3.11.31

Presentations for the groups PSL(2,p), p a prime, are well known, see for 
example [2]. Information on presentations of the groups PSL(2,p") is taken from [5], 
[10].

In Chapter 1 we introduce some definitions and results to be used in later chapters. In 
Chapter 2 we describe, concisely, the Todd-Coxeter coset enumeration algorithm and 
some of its applications and include a discussion on computer programs used in 
obtaining our results. The group theory system CAYLEY [15] is briefly described. It 
contributes to the solution of some problems relevant to the last two chapters. Chapter 3 
contains some computational methods that have been used in connection with the results 
of Chapter 4 and Chapter 5.

Chapter 4 contains the results on representatives of the conjugacy classes, Sylow 
p-subgroups, and maximal subgroups of the simple groups G=<a,b> where (a,b) is the 
first minimal generating pair appearing in [35]. We added our results on representatives 
of the conjugacy classes, Sylow p-subgroups and maximal subgroups to the file 
SIMGPS.TLB, a CAYLEY file of finite simple groups [8], which will be introduced in 
the Appendix.

Chapter 5 is concerned with the problem of efficiency of certain finite simple 
groups and direct products. The deficiency of a finite presentation <X I R> is IXI-IRI, 
and the deficiency, defG, of a group G is the maximum of this number taken over all

3



finite presentations of G. A finite group G is said to be efficient if rank M(G)=~defG, 
where M(G) is the Schur multiplier of G . The simple groups of order less than 10  ̂are 
known to be efficient with the exception of PSU(3,5), Jj, PSL(3,5), M22 and PSP(4,4) 
(see 5.1), We show that PSU(3,5), Ji and M22 are efficient. We also give efficient 
presentations for the perfect groups AgxA^, AgxA^, A^xAg and A5XA7 where G 
denotes the covering group of G,

The question concerning the occurence of the non-abelian simple groups as 
composition factors of finite groups of deficiency zero is posed by D. L. Johnson 
and E. F. Robertson in [28]. Those simple groups whose covering groups are efficient 
have this property. We show that the simple group PSU(4,2) of order 25920 can occur 
as a composition factor of a deficiency zero group of order 155520.



l.Defînitions and preliminary results

In this chapter we introduce some terminology and notation from a few areas of group 
theory to be used in later chapters. Results are introduced when they are needed. The last 
section of the chapter contains a brief discussion of presentations of groups and includes 
a deeper result on the Schur multiplier and stem extension of a finite group which is 
needed in trying to find efficient presentations in Chapter 4 and Chapter 5.

1.1 Elementary group theory

If H is a subgroup of a group G by the core of H in 0  we shall mean the subgroup
CoreQ(H)=nHx.

For a subset S of G, the normal closure of S in G is defined to be the intersection 
of all normal subgroups of G which contain S, and is denoted by S^.

1.1.1. Let H ^ G, S a subset of G. Then
(i) CoreQ(H) is the largest normal subgroup of G that is contained in H.
(ii) SG is the unique smallest normal subgroup of G containing S.
(ii) S^=<sg I ge G, sg S>.

The centre of a group G is defined by
Z(G)= {XG G : x8=x for all gG G}.

For every non-empty subset S of a group G, the normalizer of S in G is defined
by

Ng(S)={xgG: Sx=S}.
A subgroup H of a group G is called self-normalizing if Ng(H)=H. We say that a 

subset K of G normalizes a subgroup H if for each kG K we have H^=H.
The centralizer of S in G is defined by

Cg(S)-{xg G: ŝ =s for all sg S}.
When there is no confusion over the group, we shall denote the centralizer and the 

normalizer of S by simply C(S) and N(S) respectively.

1.1.2. Let H < G. Then N(H) is the largest subgroup of G in which H is normal, and 
whenever H < K < G, K < Ng(H).



1.1.3. Let G be a finite group and H ^ G. Then
(i) No(H)={gGG: H ^ Hg)={geG: Hg ^ H}.
(ii) IG: NG(H)l=l{Hg; geG)l.

Let X, y be elements of a group G. By the commutator [x,y] of x and y we shall mean 
the element x'lylxy^x'lxY.

If A, B are subgroups of a group G then we shall use the notation 
[A,B]=<[a,b]:a€ A,bGB}. In particular, we call [G,G] the derived group of G. We 
shall denote it by G*. We extend the notation recursively and define G(")=[G("-l),G("' U] 
for n >1, where GG)=G'. Define G(®)=G. A group G is called perfect if G=G',

1.1.4. Let G be a group and H ^ G. Then
(i) H(n)<G(n).
(ii) G* < H if and only if H <3 G and G/H  is abelian.

Let p be a prime. A group G is called a p-group if every element of G has order p" for 
some n > 1. A p-subgroup P of a finite group G is called a Sylow p-subgroup of G if P 
is not properly contained in any p-subgroup of G.

1.1.5. (Sylow). Let G be a finite group and let P be a Sylow p-subgroup of G. Then
(i) Every Sylow p-subgroup is conjugate to P;
(ii) G has 1+kp Sylow p-subgroups, for some k;
(iii) the number Up(G) of Sylow p-subgroups divides IGI.

1.1,6» Every p-subgroup of a finite group G is contained in a Sylow p-subgroup.

1.1.7. If G is a finite group and if Sp is a Sylow p-subgroup of G of order p"*, then Sp 
is the only subgroup of G of order p"̂  lying in N(Sp).

1.1.8. Let G be a finite p-group of order p” and H be a proper subgroup of G. Then H 
is properly contained in N(H), hence, if H is a subgroup of order p"-l, then H <% G.

By a maximal subgroup of a group G we shall mean a subgroup H such that H^Kj and 
for every subgroup K with H < K < G either K=H or K=G.

The Frattini subgroup of a group G is defined to be the intersection of the 
maximal subgroups of G. 0(G) denotes the Frattini subgroup of G.

1.1.9. If X is a subset of G with G==< X, 0(G) >, then G=< X >



If Nq, Ni, ..., Njj. are subgroups of G such that l=No<i N^< N2...< Ni^=G, then we say 
that the subgroups N̂  form a subnormal series of G. A subnormal series in which each 
of the quotients N^/N^.i is a non-trivial simple group is called a composition series. The 
factors in any composition series are called composition factors of G.

A group is said to be soluble if it has a subnormal series 1=Nq< Nj< N2...< 
N -̂=G in which each of the factors Nj/Ni.j is abelian,

A group is said to be nilpotent if it has a normal series G=Hq > Hj> ... > H^=l 
such that Hi_i /H i is contained in the centre of G/Hj for each i.

Suppose that G is any group. Let T ^=G and define recursively n=:[rj_i,G], i>2. 
Then the series G=Tj > P2 ̂  Fg>... is called the lower central series of G.

1.1.10. A finite p-group is nilpotent.

1.1.11. A group G is nilpotent if and only if rc+i=l for some c > 0.

The integer c of 1.1.11 is called the class of the nilpotent group G.

A subgroup H is said to be invariant under 0e Aut G if 0(H) < H. A subgroup H of G 
is said to be a characteristic subgroup if it is invariant under all elements of Aut G.

A group is said to be characteristically simple if the only characteristic subgroups 
of G are 1 and G.

1.1.12. Let G be a non-trivial finite group. Then G is characteristically simple if and 
only if G is a direct product of finitely many isomoiphic copies of a simple group.

1.2 Permutation groups

A permutation group on A is a subgroup of the symmetric group on A. When 
A={ 1,2,..., n ) we write for and call it the symmetric group of degree n.

If a, be A we say that a -  b if and only if there exists %e G with a7t=b. We see 
easily that -  is an equivalence relation and we call the equivalence classes the orbits of 
G. For ae A, the orbit containing a is called the orbit o f a ; it is the subset aG={a7c:7te G} 
of A. We say that G is transitive if, given any pair of elements a, b of A, there exists a 
permutation 7t in G such that aj[=b. Thus G is transitive if and only if there is exactly one 
orbit, namely A itself. Otherwise the group is called intransitive.

Let m be a positive integer. We say that G is m-transitive if given any two ordered 
subsets {aj, a2,..., a^ ) and [b^, b2,..., b^) of A of size m, then there exists Tce G with 
ai7C=bi (i=l,2,...,m ). If m > 2 then m-transitivity implies (m-l)-transitivity. Note that 
1-transitivity is simply transitivity.



If X is a non-empty subset of A the stabilizer of X in G, St g(X), is the set of 
permutations in G that leave fixed every element of X. Of course St ^(x) stands for 
StG({x}).

1.2.1. Let G be a permutation group on A and H ^ G. Then
(i) IG : St Q(a) l=laGI for all a€ A ;
(ii) If H is transitive then so is HS for all ge G.

1.2.2 Let G be an m-transitive permutation group on A, and suppose that X and Y are 
subsets of A of cardinality m. Then St g(X) and St q(Y) are conjugate in G.

Let G be a permutation group of degree n, we can express every permutation Tte G as a 
product of disjoint cycles in an essentially unique manner, thus

J t  =  Y i ' f e - ' Y i  ( * )
where yj, •••> Yr disjoint cycles involving

mj, m2, m  ̂ (**)
objects. For convenience we retain cycles of unit length so that all n objects are listed in 
the product (*). The integers (**) are called the cycle type of tc. N ow let % contain e  ̂
cycles of length nj, e2 cycles of length n2, ê  cycles of length n̂ , where 

nj < n2, ... < ng, n=m% +m2+..+m^=e%ni+n2e2+...+ngeg.
Then the cycle type of 7t may be displayed by the pattern

n^ei 02^2... iigGs
For example the cycle type of (2,3)(4,5)(7,8,9)(10,11,12)(13,15,17) of degree 17 is
142233,

1.2.3. Conjugate elements in a permutation group have the same cycle type.

Let G be a group and A a non-empty set. Let p  be any homomorphism from G to S^- 
Such a function is called a permutation representation of G on A. Let p  : G -> S/̂  ̂be a 
permutation representation of G on A. The cardinality of A is known as the degree of 
the representation. Next p  is called faithful if Ker p  = 1 ,  so that G is isomorphic to a 
permutation group on A. Also p  is said to be transitive if Im p  is a transitive permutation 
group.

1.2.4. Let H be a subgroup of G and let R be the set of all right cosets of H. For each g 
in G define gp€ Sr by gp : Hx ^  Hxg. Then p : G Sr is a transitive permutation 
representation of G on R with kernel CoreQ(H).



1.3 Product of groups

If Gj, G2, G j ,  are groups then by their direct product GixG2X...xGn we shall mean 
the group whose underlying set is the set of product of Gfs and whose group operation 
is defined by

( gi» •••> gji ) ( Si » Sn SlSl »•••» SnSn )•

1.3.1, Let G=GixG2X.,.xGn be the direct product of the the groups Gj, G„.
Then there are subgroups H j , o f  G such that = Gj for each i and

(i) Hi < G for i=l, n.
(ii) HiH2.xH„=G.
(iii) H in  Hi,..Hi.iHi+i..,Hu=(l) for i - 1, n.

1.3.2 (Basis theorem for abelian groups). Every finitely generated abelian group G can 
be written as a direct product of cyclic groups :

G=Bjx... xB^
where I B[ 1= bj ( i = l , r  ) and bi+i I b| while Bj+j,..., B„ are infinite cyclic.

When n=r, the group G is finite and 1G I=bib2 ... b„ ; in this case the number r is called 
the rank of G and is denoted by rank G.

An abelian group of exponent p, p a prime, is a direct product of cyclic groups. Such 
groups are called elementary abelian groups.

Let H < G. We say that G splits over H if there is a subgroup K of G such that G=HK 
and H n  K=(l). Any such subgroup K is said to be a complement to H in G.

Let H and K be groups and let (p : K-> Aut H, described by k -^ % , be a group 
homomorphism. Then by the semi-direct product of }lby  K with action <p we shall 
mean the set of ordered pairs (k, h), ke K, he H, with operation

( k ,h ) ( k ',h ’)=(kk',(pk'(h) h').
We shall denote this by H x ^ K or H : 9 K (or simply by H : K).

1 .3 .3 .
(i) Suppose that G=H x ̂  K. Then G splits over H, and K is a complement to H in

G.
(ii) Let H < G. Suppose that G splits over H, and let K be a complement to H in G. 

Define (p : K-> Aut H by k-xpj^, where tp̂  (h)=hk. Then G = H x ̂  K.

Let H and K be two groups with common central subgroup C. Formally we have



injections (p : C -4 H and y  : C K of the abstract group C into the centres of H and 
K. The central product of H and K over C is defined to be the quotient of HxK by the 
set of ordered pairs of the form ( (p(c), y(c) ) (ce C). When it is omitted from the 
notation, C is usually understood to take the largest possible value. Central products 
may have more than two factors. We shall denote this group by H o^ K ( or simply by 
HoK).

1 .3 .4 .
(i) Suppose that G= H K. Then there are normal subgroups Gj and G^ of G with 

G% = H and G2 = K such that G=G^G2, [Gj, G2]=l and Gj o  G2=C.
(ii) Suppose that H < G, K <J G, and that G=HK, [H, K]=l, H n  K=C, where C is a 

central subgroup of G . Then G = H K.

A finite p-group G is called extra-special if G' and Z(G) coincide and have order p; for 
example Qg and Dg are extra-special groups.

The structure of extra-special p-groups is provided by the following theorem.

1.3.5. Let G be an extra-special p-group.Then there exists n > 1 such that I G I=p2n+1 

and G is a central product of n non-abelian groups of order p3 over Z(G).

1.3.6. Let G be an extra-special group of order 22n+l Then G is a central product of 
Dg's or a central product of Dg's and a single Qg.

1.4 Special and projective special linear groups

Let GL(n,q) denote the group of all n x n non-singular matrices with entries in the field 
Fq of q elements. The group GL(n,q) is known as the general linear group (in 
dimension n); its subgroup consisting of matrices of determinant 1 is called the special 
linear group and is denoted by SL(n,q). The centre of GL(n,q) consists of the scalar 
matrices and the corresponding factor group PGL(n,q) is called the projective linear 
group. Finally, the image PSL(n,q) of SL(n,q) in PGL(n,q) is called the projective 
special linear group. The centre of SL(n, q) is a cyclic group of order (n,q-l).

1.4.1 (see [25] ).
(i) With the exception of PSL(2,2) and PSL(2,3), aU the groups PSL(n, q) are simple.
(ii) With the exception of SL(2,3) and SL(2,2), all the groups SL(n,q) are perfect.
(iii) The following isomorphisms hold :

(a) PSL(3,2) = SL(3,2) = PSL(2,7),
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(b) PSL(2,4) = SL(2,4) = PSL(2,5) s  A5,
(c) PSL(4,2) = SL(4,2) = Ag,
(d) PSL(2,2) = SL(2,2) s  S3,
(e) PSL(2,3) = A4 and PSL(2,9) = A ^.

(iv) I GL(n,q) l=(q-l)N, I SL(n,q) 1=1 PGL(n,q) l=N, I PSL(n,q) l=N/d, where 
N=q”(”-I)/2(qn_i)(qn-l_i). and d=(q-l,n) .

(v) PSL(2,q), q=p", has q+1 Sylow p-subgroups.
(vi) PSL(2,q), with q > 5, has a subgroup of minimal index d=q+l with the following 

exceptions :
(a) q=5 d=5
(b) q=7 d=7
(c) q=9 d=6
(d) q=ll d=ll.

1.5 Presentations of groups; Schur multiplier

Suppose that 
X is a se t,
F=F(X) is the free group on X,
R is a subset of F,
N=RF is the normal closure of R in F, and G=F/N.
Then, we write G=< X I R > and call this a presentation of G. The elements of X are 
called generators and those of R relators. A group G is called finitely presented if it has 
such a presentation with both X and R finite sets.

We shall only be concerned with finite presentations and assume all our presentations 
will be finite. The importance of presentations is stated in the following theorem

1.5.1. Every group has a presentation, and every finite group is finitely presented.

It is convenient to work with relations rather than relators. A ( defining ) relation is 
obtained from the corresponding relator by setting it equal to 1. Conversely if Wj and W2 
are words in the group generators, the relation wpw 2 yields the relator wi"^W2, for 
example. We then write G as

G=< X 1 rp l ,  i=l, 2 , ..., m >.

1.5.2 (Von Dyck). If R, S are subsets of the free group F on a set X with R ç S , then 
there is an epimorphism 0 : < X I R > - ^ < X I S >  which fixes X elementwise. The 
kernel of 0 is just the normal closure of S\R as a subset of < X IR >.

11



1.5.3 (Substitution Test ). Suppose we are given a presentation G= < X i R >, a group 
H and a mapping 0 : X~> H. Then 0 extends to a homomorphism 0’: G H if and only 
if, for all xe X and re R, the result of substituting x0 for x in r yields the identity of H.

1.5.4 If G=< X 1 R > and H=< Y I S > are two presentations, then the direct product 
GxH has the presentation

< X ,Y IR , S, [X,Y]>, 
where [X, Y] denotes the set of commutators { [x, y] : xe X, ye Y }.

1.5.5. If G=< X I R >, then G /G  ~< X I R, C >, where X= { xj, Xj. },
C={ [xi,Xj] : 1 < i < j < r ),

Given a presentation G=< XI R >, each Tietze transformation Tj ( i=l,2,3,4) transforms 
G into the presentation < X’ IR' > according to the following definitions:

Tj, adding a relator : X'=X, R'=R u  (r), where re RP\R ;
T2, removing a relator : X =X, R'=R\ {r}, where r e R n  (R\ {r})F;
Tg, adding a generator : X’=X u  (y), R'= R u  {ylw }, where y^X  and 

weF(X) ;
T4, removing a generator : X '=X \{y), R '=R\ {y’ iw }, where ye X , 

we F(X\ {y}) and y lw  is the only element of R involving y.

1.5.6 (see [27], p 38). Given any two finite presentations
<XIR(X)=1 >,<YIS(Y)=1> 

for a group G, one can be transformed into the other by means of a finite sequence of 
Tietze transformations.

The deficiency of a finite presentation < XI R > of a group is the number of elements in 
X less the number of elements in R. The deficiency of a finitely presented group G is 
defined by

def G= max {1X I-1R ! : all finite presentations < X IR > of G >.

1.5.7. Any group defined by a finite presentation with positive deficiency is necessairly 
infinite. Therefore, if a finitely presented group G is finite, the deficiency of G is less 
than or equal to zero.

12



The Schur multiplier M(G) of a finite group G=< X IR > is defined by

F 'nR ^

[F .r '’]

where R^ is the normal closure of R in F=F(X).

1.5.8 (Schur) ( see [25] ).
(i) M(G) is a finite abelian group and is independent of the presentation ;
(ii) rank M(G) ^ -def G.

A finite group is said to be efficient if rank M(G)= -def G.

A group is called metacyclic if it has a normal subgroup H such that both H and G /H  are 
cyclic. A group G is said to be split metacyclic if it has a cyclic normal subgroup with a 
cyclic complement.

1.5.9. Every non-abelian split metacyclic group G with a cyclic normal subgroup H of 
prime order p has trivial Schur multiplier. A deficiency zero presentation for G is of the 
form

G=< X, y I y"=xP, [y, x‘*]=x >, 
for some integer t, where n=l G/H I.

1.5.10. Let G be a non-abelian group of order p3, p an odd prime. Then

1 if G is of exponent p2
M(G)= 4

CpxCp if G is of exponent p.
Suppose first that G is of exponent p2. Then G is metacyclic and has the presentation

G=< a, b I aP2=bP, a^=al+P >.
Suppose now that G is of exponent p. Then G has the presentation

G=< a,b I aP=bP=l, [a,b]a=[a,b]=[a,b]t> >.
(Note that G is always extra-special.)

1.5.11 (see [29] ).
(i) (Schur 1911)

' 1 ifn=3
M(An)=« C2 if n^ (6,7) andn>4

Cg if n e [6, 7);
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1 ifn ^ 3

C2 if n > 4 .

1 if n is odd

.C2 if n is even

M(S„)= 4 

(ü )F o ra lln > l

M(D2n)=

(iii) (Steinberg 1961,1967)
The Schur multiplier of SL(n,q) is trivial with the following exceptions :

(a) If G is SL(2,4), SL(3,2), SL(3,3), or SL(4,2), then M(G)=C2;
(b) If G is SL(2,9) then M(G)=C3;
(c) IfG isS L (3,4)thenM(G)=C4xC4.

(iv) If PSL(2,q) is not one of the following groups in (d), (e) below, then 
M(PSL(2,q))=Cm where m=(q-l,2).

(d) M(PSL(2,4))=C2;
(e) M(PSL(2,9))=Cg.

The tensor product of two groups is an abelian group defined as follows. For cyclic 
groups we have

^  C(u= Cq in)*
For finite abelian groups, we use the Basis theorem (1.3.2) and the universal properties 

G 0 H  = H 0 G ,  G 0(H xK )= (G ® H )x(G  0 K ).
Finally, all finite groups are covered by defining

G ® H=G/G' 0  H /H’.

1.5.12 (Schur 1907 ) (see [29], p 37 ). For any finite groups G and H,
M (G xH)= M (G )xM (H )x(G 0H ).

Note. Suppose G=N : 9 K. A theorem of Tahara (1972) asserts that M(K) is a direct 
factor of M(G) (see the theorem 2.2.5 of [29]). In certain cases, one can use this fact to 
determine rank M(G). This would be useful for seeking efficient presentations for 
certain semi-direct products whose multipliers cannot be calculated using a computer.

Suppose that G is a finite group. The group H is called a stem extension of G if there 
is an A ^ H with H /A  = G and A < Z(H) n  H'. A stem extension with A = M(G) is 
called a covering group of G.
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The next important result is taken from a paper by Campbell and Robertson [3].

1.5.13. A stem extension H of a group G is a homomorphic image of some covering 
group of G.

Proof. Since H is a stem extension of G, there is a subgroup A of H with 
A ^ Z(H) n  H' and H /A  = G. We shall prove that A < 0(H). Let D=H'n Z(H) and 
assume D i  0(H). Then there is a maximal subgroup K of H with K. Now K< DK 
and so DK=H, by maximality of K. If he H, h=dk with de D and ke K. Thus

h-lKh=k‘ld-lKdk=k-lKk=K 
since deZ(H). Hence K < H and H /K  has prime order. Therefore, H’ < K by 1.1.4 (ii) 
and D < H’ < K, gives the required contradiction.

Let G= F/R , F=< fj, f^ ,..., f„ >, G=<g%, g^, ..., gn> with gi^fjtp, (p : F ^  G 
the canonical epimorphism. If \|f is the canonical epimorphism from H —> G, then 
3hjeH with hiX|r=gi.Then H=< h^, h^ ,..., h„, A >=< hj, h2, ..., h„ >, since A< 0(H ) 
and 0(H) can be omitted form any generating set, by 1.1.9. This gives rise to an 
epimorphism a  : F—> H with fja=hi such that the following diagram is commutative:

a
F -----> H

We shall now prove that Ra=A. Let re R, then r(p=l. But r(p=roY so 
ra e  Ker\}r=A.That is, R a g  A. If aeA , then a\j/=l. 3 fe  F with fa= a and so 
f<p=fovj/=aY=l. Hence fe R and so ae Ra. That is, A g  R a . Also[R, F]a=[Ra, Fa]= 
[A, H]=l, since A < Z(H). Hence a  induces an epimorphism â  : F/[R, F]*»H. Let 
F=F/[R, F] and R=R/[R,F], so that M=M(G)=F n  R. Now,

Ma=(F'n R)a=F'a=F'a n  Ra=H' n  A=A.
Since Ra=A, we have Râ=M â, so if r e  R, there is an m in M with m a=ra, i.e. 
(rm‘l)a=l giving rm'^ e Ker a. Let N=Ker a, we have r= (rm-l).me NM, so R g  NM. 
But Ker 5=N g  R , F 'n  R=Mg R, which implies that NMg R and hence NM=R. 

Now
N NM R R RF' ^ F

N rM  M FhR F n R  F ' F '

Since F/F ' is free abelian, N / (N n  M) is also free abelian and so NnM  is a direct 
factor of N,

N= (N n  M)xE,
for some E < N. However, R=ExM; since R=NM=((N n  M) xE)M which shows that 
R=EM. Also E n  M g N n  M, E n  M g E so that E n M g ( N n M ) n  E=l.

Now F/E  is a covering group of G.
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'» H44-0
(ü) §  =

F’a R F* -  R F
(iii) M < F' since ■ ^ -= -5? .  SinceR=EMthen — )’.

As [R, F] =1, we have R/E < Z( F /E  ).
Finally, H is a homomorphic image of the covering group F/E. For E< N=Kera, 

â  : F —> H induces an epimorphism â  : F/E  —> H.

1,5.14 (Schur ) ( see [3] ). With the notation in 1.5.13 if ( I G/G*l, I M(G) I )=1, then 
G has a unique covering group.

In the case where G is perfect then G has a unique covering group (by 1.5.14) which we 
denote by G.

1.5.15. ( see [43] ). If G is a finite perfect group, then M(G)=1.

1.5.16. Let Gj, G2 be finite perfect groups. Then G%xG2 = GjxG2.

If G is a group, then d(G) will denote the minimal number of generators of G. The 
minimal number m such that G has a presentation

G—< Xj, X2»..., X|| I rj, r2»..., r ĵ > (*)
will be denoted by r (G).

Suppose that G has a presentation (*) then the presentation is said to be minimal 
if n=d(G) and m=r (G).

1.5.17. Let G be a finite p-group and set d=d(G). Then G/<E>(G) is elementary abelian 
group of order pd.

1.5.18 (Wamsley, Sag) (see [39] ). Let G be a 2-group of order at most 2^. Then G 
has a minimal presentation.
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2. Coset Enumeration Algorithm; Computer Programs

Because of the importance of the coset enumeration algorithm and because of the 
fundamental role it plays in our methods for obtaining generators for subgroups of simple 
groups we shall devote the first section of this chapter to a brief discussion of the coset 
enumeration algorithm and its applications.

We then give some details of a coset enumeration program and list a number of 
programs to be used in the following chapters. These are a Reidemeister-Schreier 
rewriting program, a modified Todd-Coxeter program, a Tietze transformation program, 
and a nilpotent quotient program.

We shall describe two specially written programs which help find generators and 
presentations for subgroups of permutation groups with the aid of a coset enumeration 
and a Tietze transformation program.

The chapter contains some computational methods used in connection with a coset 
enumeration program. We shall describe a method which enables us, in favourable 
circumstances, to obtain generators for a Sylow p-subgroup of a group with generators 
and relations. Some examples will be given to illustrate these methods.

The last section of the chapter contains a brief description of CAYLEY, a group 
theory system [15], to be used in connection with the results of following chapters.

2.1 Coset enumeration algorithm

The Todd-Coxeter coset enumeration is a method for evaluating the index of a subgroup 
H in a finitely presented group G where H is finitely generated by words in the group 
generators. The coset enumeration method is not in fact an algorithm for , given that 
IG:HI is finite, there is no bound on the number of steps needed to find the index, even if 
the index is 1.

We give here a short description of the method; a comprehensive discussion is 
given in [36].

Description of the method

Suppose that G is any finitely presented group given by
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< gl.g2>-Mgn I ri=r2=...=Tni=l> 
where each rj is a word in the g/s. We shall simply write G=<XIR> with 

X={gi,g2>—»gn)» R=( ri»r2»— )• Suppose further that H is a finite index subgroup 

of G generated by hphjC gi,g2,.. ,gn ), i=l, 2 , t.
The Todd-Coxeter method described below attempts to find the index of H in G 

by enumerating the cosets of H in G. The procedure is based on two simple facts :
(i) Hhi=H ( l ^ i i ^ t ) .

(ii) For any coset Hg we have HgrpHg for i=l, 2 , m.

For each relator r̂ , written as a product of g '̂s with powers ± 1, we draw a 

rectangular table having l(r|)+l columns, where l(w) is the length of w in the free group 

F( gi,g2»—,gn )» aiid at least as many rows as the index of H in G. This table will be 

called the relation table of q and looks like :

Sii Si2 • • * gij

where rj^gii gi2,.. gij with giĵ  eX uX ‘1 (by X’l we mean the set { g rl,g 2’^-»gn"M)- 

We also draw a table with a single row for each subgroup generator hj again 

written out fully as word in the gj's with powers ±1. This table is called the subgroup 

table ofh|.
We now use positive integers to denote right cosets of H in G. The subgroup H 

itself is denoted by 1. We shall fîU our tables by entering the positive integers as follows: 
We first note that the entry

g
k 1 1

will mean that the coset k multiplied by g from the right yields the coset 1, By the above 
remarks (i) and (ii), we begin by entering the integer 1 in the first and last places of the 
first row of each table, the remaining places in the first rows being as yet empty. We 
then consider an empty space next to some 1 and fill it with the integer 2. Suppose the 
situation to be as in the following diagram

gii
1 I 2

We record this definition 2-lgji ( and / or 2gjf 1=1 ) in a table called the coset table. ( A 

coset table is headed by the gj, g^-l, g2, g2’ ,̂-.., gn» gn"  ̂ and has as many rows as
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IG:HI.) Clearly, the integers 1, 2 correspond to cosets H, Hgji. Now we put a 2 in the 

first and last places of the second row of each relation table again using the above remark
(ii). We then try to put this information and its consequences into the tables wherever 
possible. This process is known as scanning. Having made sure that no more spaces 
can be filled in this way, we enter the integer 3 in an empty space that is adjacent to a

filled space. This is a new definition of the form 'ig==3' where geX uX ”̂  We record 
this in our coset table and scan again. Similarly we introduce the integers 4, 3 ,.... We 
continue in this way until our tables are completed. Then the number of rows in each 
relation table is equal to 1G:HI. We note that our definitions of new integers will not % 
suffice to complete the tables. In fact we need more information of the form l=kg than is 
contained in our definitions of new integers and such information is obtainable from the 
fact that the lines in the subgroup tables or relation tables close up. Whenever this 
happens, information of this kind is obtained and is called a deduction. When such a 
deduction is made three possibilities can occur : either

(1) the places of both kg and Ig'  ̂in the coset table are still empty. In this case we fill 
the integer 1 into the place of kg and k into the place of Ig"̂  in the coset table and also put 
this information into aU other relevant places in the other tables. Here we have obtained a 
new information; or

(2) the place kg in the coset table is already filled by the integer 1 ( and hence the place 
Ig'^ by the integer k ). In this case we have no new information; or

(3) at least one of the places in the coset table is filled with an integer different from 
that given by the deduction. In this case we conclude that we have given integers a and 
b with a < b, say, to the same coset. This is called coincidence ( or coset collapse ).
When a coincidence occurs we replace b by a in all our tables. This may lead to further 
coincidences which are dealt with in the same way.

The following theorem is proved in [36].

2.1.1, When a Todd-Coxeter method terminates, it determines the index IG:HI.

Example 1. Find the index of H=<xyz"l,zyx"lz‘l> in
G=<x,y,z 1 xy“lzyzx"lz=zx"lyxz“ly=yz"^xzxylx=l>.

We apply the Todd-Coxeter method in order to determine IG:HI. The subgroup and 
relation tables are

X y z'l z y x"l z'l



(— denotes definition )

(= denotes new information )

X z r-1

2
3

1

4

y  Z 'l  X z X

2 ——5 —'6

And the coset table at present is

x'l y

Now a collapse has occured and we have 3x=l, 3x=4. We conclude that 1=4; and 
hence 6=8, 3=7. we replace 4 by 1, 8 by 6, and 7 by 3 throughout and continue 
scanning. As there are no further collapses, our relation tables now appears as follows:
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z r-1

1 2 2 5 6 1 1 3 2 3 1 6 3
2 3 2 5 2 2 5
3 1 3 6 2 1 3 3 6 5 5 2
5 6 1 3 1 3 2 5 5
6 6 1 6 1 3 6 6 == 1 3 1 2 3 1

1 6 3 1 3 1 3 1
2 3 1 2 5 6 1 2
3 1 6 2 3 2 3
5 5
6 5 6

Defining 7=6y, the third row of the first table gives 7z=2 and completion of the 
new row of the same table gives ly=2. Again we have a coincidence, for ly=6. This 
leads to further collapses: 3=7, and 5=1. Now our relation tables complete with 3 rows 
and the coset table looks like:

r-1 -1

3 3
1 1
2 2

So IG: Hi=3.

Information obtainable from a coset table

Suppose we are given a finite presentation G=<X!R> and a subgroup H=<Y>. Assume 
that X={gi,g2,..,gr}, Y={hi,h2,...,hs) and each ĝ  (or gfl) appears in some member of 
R or Y. Suppose that the Todd-Coxeter process completes consistently and gives 
IG:HI=n. So our coset table contains the information

igk=j ( l < i ^ n ,  l ^ k < r )
for various values of j.

We first make a useful definition to be used in the remainder of this discussion. 
Suppose we have a word in the group generators and their inverses

w=giigi2...gb

where gjje XuX"^. By tracing the word w from coset number k through the coset table
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we shall mean the product of k by the word w by successively looking up the coset 

numbers kgii, (kgii)gi2,....

Now we are ready to look at some basic information obtainable from a coset table 
for G modulo H.

(i) Permutation representation of a group
By consistency of our coset table we have

i i’ => igĵ  i'gjj. for any k ( l < k < r )

and so there is a mapping 0 : X S„, the symmetric group on {l,2,...,n}. Since for

each re R, ir=i ( l < i ^ n ) ,  0 extends to a homomorphism p : G —> S^ (by the 
substitution test (1.5.3 ) ). We now have the following result:

2.1.2 ( see [27], p 103). With the above notation and assumption the mapping p is just 
the permutation representation of G on the right cosets of H ( of degree n).

We note that the kernel of the mapping p defined in this way is Coreo(H), by 1.2.4, and

so p is not necessarily faithful. But if G is a simple group with a subgroup of finite index

d , then pis a faithful permutation representation of degree d. Also by taking H=<1>, we 
always find a faithful representation of degree IGI (when G is a finite group). However, 
this permutation representation is of large degree and is not suitable to deal with. In the 
next section we shall describe a method to help solve this problem.

Referring to example 1, we have the following permutation representation of G on 
the right cosets of H

p : G —> S3 

x —> (1,2,3), y (1,2,3), z —> (1,3,2).

(ii) Determination of coset representatives
Our complete coset table for G modulo H enables us to find a set of coset 

representatives for H in G,
The table consists of n-1 definitions; the of which has the form

ix=j+l, 1 < j :^n-l,

with i ^ j and x e XuX“l. We use these equations to define inductively a set of words

wi,..., w„ e F(X) as follows. We put w%=l and for 1 < j ^ n, Wj+j=WiX. Then
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wi,...,Wn form a set of (Schreier) coset representatives for H in G.
Returning to example 1 we have 2=lx, 3=2x and so {l,x,x^) is a set of coset 

representatives for H in G.
For each coset representative w, it is also possible to determine the least positive 

number q for which lw4=l. Such a number q is called the order of coset l=lw. In 
particular if H=<1>, one can determine all elements of a finite group G as words in the 
group generators and their inverses accompanied by their orders.

(iii) Index of < H,g>, ge G

Suppose ge G is given by a word in the group generators g, and their inverses. 
The coset number k of Hg can be found by tracing the word g from coset number 1 
through the coset table. If in our table we apply the additional coincidence k=l, the coset 
table shrinks and gives the coset table of G modulo <H,g>. The number of rows in the 
new coset table will the determine the index !G:<H,g>l.

(iv) Normalizing cosets o f H and the normalizer of H in G

Suppose ge G\H, we shall say that the coset Hg is a normalizing coset if it is 
contained in the normalizer Nq(H). This is equivalent to HS=H. Now

Hg=H <=» g-lHg < H , H < g-lHg.
These two conditions are satisfied if and only if Hg"lh|=Hg“l and HghpHg,

respectively, for all hje Y. ( We note that one of these conditions is sufficient when G is 
finite, by 1.1.3.) Now suppose that 1 and k are coset numbers of Hg and Hg-l 
respectively. The above two conditions become

lhj=l, kh|=k (1 < i < s )

Now the test for the normalizing cosets of H can be performed by tracing the ĥ 's 

from the coset numbers 1, k through the coset table. If {Hwj,...,Hwj} is a complete set 
of normalizing cosets, then

NQ(H)=<H,wi,...,Wj>.
Now the procedure described in (iii) enables us to determine IG:N(H)I.

Note. Suppose that Hg is a normalizing coset of H of order q. Then !<H,g>:HI=q since

ge N(H) and hence the index IG:<H,g>l is reduced by a factor of q, that is
IG:<H,g>l=IG:HI/q.
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(v) Normal closure 
We have

H^=< gf ̂ hjgi l ^ j < s > .

If we now apply the procedure described in (iii) in turn to all words h=gf Ihjgj we shall 
get the coset table of G modulo The procedure can be used as a test for normality of 
H when G is finite. If IG:H^I=n then Hfi=H and hence H < G.

Example 2. The group G given by <x,y I x2=(xy)4=l, (xy^)^=y^x> has order 36. 
Find the normalizer in G of H=<xy^>.

A coset table of G modulo H looks like:

X y y - l

1 3 4 2
2 5 1 3
3 1 2 4
4 8 3 1
5 2 7 6
6 7 5 11
7 6 11 5
8 4 1 2 9
9 1 2 8 1 0
1 0 11 9 1 2
11 1 0 6 7
1 2 9 1 0 8

We now must look for all cosets k satisfying
k xy^=k ( 2 ^  k ^ 12 )

The only cosets satisfying the above conditions are listed in the following table

coset number coset representative order

3 X 2
6 y - lx y - 1 3
7 y-^xy 2
9 yxy-l 2
12 yxy 3

Adding the above coset representatives to the <xy^>, in turn, and using (iii), we 
get IG:Nq(H)!=2. By eliminating redundant generators of Nq(H) we find

No(H)=<x,y2,xy>.
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2.2 Computer programs 

A Todd-Coxeter Program

Over the past thirty years the Todd-coxeter algoiithim has been implemented in different 
ways. The most important difference between them is in the sequence in which cosets 
are defined.

In a first method, known as HLT method, coset numbers are defined with the 
primary aim to close at least one line of some relation table in order to get at least one 
deduction as soon as possible. This method tends to define more redundant cosets.

In a second method, known as the Felsch method, the vacant places in the coset 
table are filled line by line and after each definition a scan of all relations is made. This 
method makes few redundant definitions, but the many scans tends to be 
time-consuming.

A method that to some extent combines the merits of the two previous ones is the 
so called 'Lookahead* method in which periods of definitions a' la HLT alternates with 
periods of intensive scan à la Felsch.

At the University of St. Andrews we have a modem implementation of the 
Todd-Coxeter algorithm, one by G. Havas and W.A. Alford ( the Canberra version) 
mounted on a Digital VAX-11/785 and more recently on a Micro VAX-II. In this 
implementation cosets may be enumerated both by the 'Lookahead' method and the 
'Felsch' method. The program also provides a package for manipulation of partial and 
complete coset tables. All procedures described in 2.1 are carried out by the program.

This version also contains an implementation of the Reidemeister-Schreier algorithm, 
added by E. F. Robertson, which enables the user to produce defining relations for a 
subgroup H of finite index in favourable circumstances, given defining relations for a 
group G containing H. The Todd-Coxeter algorithm is first applied to obtain a coset 
table of G modulo H, then Reidemeister-Schreier rewriting process , [27] , uses this 
table to rewrite G-relators as H-relators. At this stage we have a presentation for H 
involving a large number of generators and relators so a number heuristics are applied 
so as to reduce the number of generators and simplify the resulting relators whenever 
possible (Havas, [23] ).

Our package contains a program so called the *Tietze Transformation Program' which 
was originally designed to improve the simplification stage of the above 
Reidemeister-Schreier program (see below). The package also contains a program to 
produce a presentation for the subgroup on the original subgroup generators. This is
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based on a modification of the Todd-Coxeter algorithim and has been implemented by
D.G. Arrell and E, F. Robertson ( [1] ). It is worth saying that the Tietze Transformation 
program also forms part of this program.

A Tietze Transformation Program

This program [24], which carries out Tietze transformations (1.5), accepts a group 
presentation as input with the relations arranged into ascending order ( the canonical form 
in [23] ), and then uses the three following principles in simplifying the presentation:

(i) All relators of length 1 and non-involutory relators of length 2 are used to eliminate a 
number of generators.

(ii) A relator is chosen ( either by the user or the program ) and the other relators are 
searched for (sub-)strings of the chosen relator. If the matching (sub-)string has length 
greater than half the length of the relator chosen for the search, the appropraite 
substitution is made. (Substring searching therefore is an attempt to minimise the length 
of the relators of a presentation.)

(iii) Eliminate a generator using a relator with length greater than 2.
The program has a strategy for eliminating generators which allows one to prevent 

certain generators being eliminated. This enables us to direct the Tietze Transformation 
Program more positively towards obtaining a presentation on a selected subset of 
generators.

The program has been improved by E. F. Robertson and now can be directed by 
the user towards finding relators of certain types. This is important because some types 
of relators are of more use in determining group structure than others ( see, [38]).

We note that the program had already been improved by E.F. Robertson by the 
addition of certain subroutines to help find presentations for certain finite simple groups 
in [6]. We shall use a similar method described in 3 of this paper to obtain presentations 
for some permutation groups generated by two elements x and y with x an involution.

A Nilpotent Quotient Program

Given a presentation for a nilpotent group, the program constructs r|=[T|,G] for i=2,..., 

where

G = r ^ ^ r 2 >...
is the lower central series for G. In particular, this provides a method for determining the 
order of p-groups which does not depend very heavily on the value of p.
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From now on we shall use the following abbreviations for the above programs :
TC: Todd-Coxeter program;
RS: Reidemeister-Schreier program;
SUBGP: Modified Todd-Coxeter program;
TTRANS: Tietze Transformation program;
NQ; Nipotent quotient program.

PERM, PERMGP

The program PERM which we shall describe below was originally written, by E.F. 
Robertson, to solve the specific problem concerning the minimal (2,m,n) presentations 
for certain simple groups G, 10  ̂ < IGI < 10 ,̂ see [6]. We improved the program to 
solve, in addition, our particular problem which will be described in 3.3.

Suppose we are given two permutations a, b of degree d with a^=l and b"=l 
(n>2), which generate a finite permutation group G ( < S^). We wish to find relations 
between these permutations to define the group. We may take the following steps:

(1) Generate a set of relations r% (a,b)= 1,... j;^(a,b)=1 which hold in G.
(2) Remove most of the redundant relations. Suppose we are left with the relations 

rii(a,b)=-=rij(a,b)=l.

(3) Take H=<a,b I rii(a,b)=—=rij(a,b)=l > and check that whether or not H = G. If 

this is so, eliminate further redundant relations; otherwise
(4) Find more relations; go to (2).

The important step in this procedure is in fact to produce a set of relations between 
the permutations a, b. Then we may use certain functions of TTRANS to eliminate a 
large number of redundant relations. Then TC can be used to show whether our relations 
are sufficient to define G ( for details see [6]).

Relations between a, b are in the form w(a,b) ,̂ where w(a,b) is a word in the free 
group F(a,b) and 1 is the order of the corresponding permutation in G. Since a^=l, we 
just need to produce all words of the form

ab^^ab^...ab'^ ( l <n . ^ n - l )  (*)
up to a given length 2s. Such words can be generated by writing all non-negative integers 
m ^ (n-l)S-l to base n-1 with the aim to find a set of integers mj with 1 < mj :< n-2 and 

form a word of the type (*) simply by taking ni=m|+l.
We are now ready to describe the major actions of the PERM program. Suppose 

we have input two permutations a, b of degree d with a^=b"=l (n > 2) and a word w in 
a, b to the program. Then PERM is able to

(1) compute the value, as a permutation, of w and its fixed points as well as its cycle
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decomposition and order,
(2) produce a set of words wj,W2,...,Wk in a, b up to a preset length such that each 

wwj has order less than a specific integer chosen by the user;

(3) produce a set of words wi,W2,...,Wk in a, b of a given order, again up to a preset

length, such that either fix(w) n  fixCwj)^ (1 < i ^ k) or fix(w) n  fix(wi)=0 (1̂

(4) produce a set of words wi,W2,...,Wk of a specific order with wwi, [w,Wi] (or/and 

wwj2) having a given order provided the group has such elements.

The PERMGP program which is described below was basically written in connection 
with the following particular problem.

Again suppose that we are given a permutation group G ( ^ ) generated by two

permutations a and b with a2=b"=l ( n > 2 ). Suppose, further, that wi(a,b),..., Wn(a,b) 

are words in the free group F(a,b) whose values as permutations generate a subgroup H 
of G of fairly small size (say, of order less than 10,000 with d < 100 ). We wish to find a 
new set of generators for H as words in a, b having fewer elements possibly of shorter 
lengths than those of the Wj's. The program consists of two main parts: (1) It generates 
all elements of H as permutations, (2) generates all possible words in a,b ( up to a preset 
length ) and checks whether or not their values belong to H.(The program has also some 
other facilities which wül be mentioned below.)

For the first part of the program we implemented an algorithm due to Felsch and 
Neubuser ( [19] ). In this method the elements of H are generated by repeated application

of the algorithm which generates the elements of the subgroup L=<K,x>; K < H, xe H, 
where the elements of subgroup K are already known. The details of this algorithm are as 
follows:

(i) L : = K u  Kx u ... u  Kx” "̂l, where x”  ̂iS the first power of x that lies in K.
(ii) s : = IKlm. Denote the elements of L by I j , ..., Ig. j : = 0.

(iii) j : = j+1. If j > s, finish. Otherwise, yj : = x Ij and if yj€ L, go to (iii). Else

(iv) Suppose yjîtij is the first power of yj that lies in L

L : = L u  Lyi u  ... u  Lyjinj-l ; s : = s+lKI(mj-l). Go to (iii).

Having stored all the elements of H as permutations in the array IHI x d, a similar 
technique to that in PERM produces first all possible words in a, b (up to a preset length) 
of the form

aEb»abP...abW
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where e, e'e {0,1}, a , p,..., y less than n, and then checks their membership in H. We 
now have a list of words in a, b whose values (as permutations) are in H. Some of these 
may form an optimal generating set for H, Having selected a set of random words of 
shorter lenghts, the first part of the program can now be used to check whether they 
generate H.

We shall widely use this program to simplify our generators for subgroups of the 
simple groups G, IGI <10^, in Chapter 4. (For an application of the program, see 
example 2 of 3.2.) We note that some of these generators, particularly for Sylow 
p-subgroups, come originally from the coset enumeration program as coset 
representatives of some subgroups of G and usually are words of fairly long length.

The program also enables the user to find all elements of the intersection of two

subgroups H, K of G and allows generators for HnK to be found (in the original group 
generators ). This might be useful when we wish to find out whether a subgroup K is a 
complement to a normal subgroup H in G by showing that their intersection is trivial.

The program also checks the transitivity of subgroups of G. Since the transitivity 
of a subgroup is preserved by conjugation, this may help us, in certain cases, to show 
that two isomorphic subgroups of a permutation group are not conjugate.

2.3 Some computational methods

We now look at some computational methods in connection with a Todd-Coxeter 
program. We shall apply these methods in the last two chapters. One important method is 
* finding a Sylow p-subgroup' of a finite group with generators and relations. We shall 
basically use this technique in obtaining Sylow p-subgroups of simple groups.

In what follows we suppose that a presentation <X I R> is given for a group G.

(i) Simplifying the coset enumeration
Sometimes, in order to simplify the coset enumeration, we may add some extra 

relations which hold in G to the presentation <XIR>. Such relations may be obtained 
algebraically or computationally. For example, suppose w ,̂ w^ are words in the group 

generators and that lG:<wi>l=n. If on adding the generator W2 to <w%> we still get

IG:<wj,W2>l=n, then W2e<wj> and hence [wi,W2l=l. This relation, in certain cases, 
makes the coset enumeration easier and may save a great deal of time.

(ii) Test for normality
In 2.1 (v) we describe how a coset table of G modulo a subgroup H can be used to test 
whether H is normal. However, there is another way to check the normality of H using a
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coset enumeration program. Suppose H=<hi,h2,..,h,.>, where hj's are words in the 

group generators of G and IG:HI=n. If on adding the relations hi=l,  h2=l.., hj.=l to the 
<X 1 R> we obtain the index m, then !G:H^I=m (by Von Dyck's Theorem (1.5.2) ). 
Now, if m=n then H < G.

(iii) Faithful permutation representation

Referring to 2.1.1, Ker p=n H8, and so p is faithful whenever H is not normal and 
contains no proper normal subgroup of G. Sometimes it is possible to find out a fairly 
large non-normal subgroup containing no proper normal subgroup. When this is not 
possible ( which is most of the time ) we may resort to the following technique;

(1) Take a word w of G of sufficiently large order m
(2) Check the normality of <w>. If <w> <3 G go to (i), else
(3) Suppose di,d2,...,dg are all the distinct proper divisors of m, we test each of the 

subgroups <wdi>, <wd2>,..., <wdn> for normality . If any is normal we return to (i).

(iv) Determination of group structure
The following method is often successful in determining the structure of a group.

Suppose that S is a set words in the group generators and their inverses and that

H=<XIRuS>. Then there is a homomorphism <t> from G H with Ker <j>=<S>fi, the

normal closure of <S>. So G=Ker <}).H, that is, G is an extension of Ker ^  by H.

Sometimes this may be expressed as the direct product or a semi-direct product of Ker <{> 
and a subgroup K of G isomorphic to H when G is finite. In each case one needs to

show that Ker <)) oK=(l). This can be done as follows: Suppose we have two subgroups 
Kj and K2 of G and that the elements of K^, say, can be generated independently. If on 

adding each of the elements of K% (except the identity ) ,  as words in the same group

generators, to the subgroup generators of Kj, the index I G:K2l alters, then KiAK2=(1).

(v) The Commutator subgroup [H,K]
If H=<hj,...,hs>, K=<ki,...,kt> are normal subgroups of G, then the 

commutator subgroup [H,K] can be constructed as the normal closure of the subgroup
<[hj,kj] 11 < i ^ s, 1 <t>.

In particular, this observation provides us a method of computing a set of generators for 
the derived group [G,G].
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(vi) Determination of a generating set for a Sylow p-subgroup
As all the Sylow subgroups belonging to a single prime p are conjugate, it is only 

necessary to find a set of generators for a single Sylow p-subgroup for each prime p 
dividing the order of G. We construct a Sylow p-subgroup by successively extending a 
p-subgroup by elements of order some power of p.

Suppose G is of order p".q, where p does not divide q. Suppose further we have 
found a set of generators for a p-subgroup H of G of order p"i with m < n and that the 
coset enumeration algorithm has successfully enumerated the cosets of H in G. We 
require to find generators in the group generators for a Sylow p-subgroup of G 
containing H. The subgroup H is contained in some Sylow p-subgroup of G, say P. By

1.1.8, there is an he Np(H) which is not in H. Obviously Hh has order p̂  for some 1 
(;âi). We now use 2.1 (iii) to determine the index of <H, h> in G. According to the note 
made in 2.1 (vi), we will have

IG:<H,h>l=p"’*”'lq.
This shows that <H, h> is a p-subgroup of G and that H is a proper subgroup of 

<H, h>. Now if n=m+l, we have obtained generators in the group generators for a 
Sylow p-subgroup of G. Otherwise, by taking H:=<H,h> and continuing this way we 
eventually reach a Sylow p-subgroup Pj of G ( not necessarily P ) containing H. Clearly 

Pj is the only Sylow p-subgroup of G lying inside Nq(Pj).
The method will be more efficient if we can start from a sufficiently large 

p-subroup of G for which the index IG:HI is determined by the machine. In particular, H

can be taken as a cyclic subgroup of order p« (a > 1). These cyclic subgroups can be 
found either by looking directly at the presentation of G or by enumerating cosets of 
random cyclic subgroups <w> of G, where w is a word in the group generators, in the

hope of finding an element of order pP for some p. We also note that, sometimes, we are 
able to take Has a non-cyclic p-subgroup provided we have given a faithful permutation 
representation of G together with a knowledge of maximal subgroups of G. We shall 
describe this method in the next chapter.

We now give a couple of examples to illustrate the above methods.

Eaxmple 3. Let
G=<x,y,z I x^=y^=z^=(xy)^=(yz)^=(xz)^=(xyxz)^=l>.

Then TC shows that !GI=96. By adding the relation xz=l to the presentation of G we get
H=<x,y I x^y^(xy)^=l> 

which is S3, the symmetric group. Also we have
<xz>fi=<xz,yxzy>
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which is isomorphic to C4XC4 because xz and yxzy are each of order 4 and 

[xz,yxzy]=l. Now, we let K=<x,y> then K s  H and the non-trivial elements of K are x, 

y, xy, yx, (xy)^. The method described in 2.3 (iv) shows that Hn<xz>U=(l) and so 

G=(C4xC4):S3.

Example 4. Let G be the group given in example 2. Find generators for a Sylow 
3-subgroup of G.

Using TC, IGI=36 and I<xy2>|=3. Returning to example 2, we observe that Hyxy is a 
normalizing coset of order 3. Therefore a Sylow 3-subgroup may be generated by xy2 
and yxy.

2.4 CAYLEY

CAYLEY is a high level programming language designed to support convenient and 
efficient computation within groups and other structures that arise naturally in the study 
of groups [15].

CAYLEY allows the user to compute with groups of the following types.
(1) Groups whose elements are permutations;
(2) Groups whose elements are matrices over the integers;
(3) Groups whose elements are matrices over finite fields;
(4) Groups given by defining relations.

The kind of computations that can be performed with CAYLEY include :
(1) Calculations with the element of a group;
(2) Calculations with sets of group elements;
(3) The determination of the order, conjugacy classes, normal subgroups, subgroup 

lattices and automorphism group of a finite group;
(4) Calculation with subgroups and quotient groups of a group;
(5) The construction of homomorphisms between pairs of groups.

The language is designed both for batch and interactive use. No previous knowledge of 
computers and programming language is assumed. The computer problems are normally 
stored in the machine together with sufficient information about CAYLEY to solve them.

The following example is a simple CAYLEY program to list the right cosets of the 
subgroup H in the permutation group G generated by the permutation a=(2,3)(4,5) and 
b=(l,4,3,2)(5,6), where H=<a^,b^>.
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> " CAYLEY program to compute the right cosets of subgroup H in group G " ;
>g: perm(6 ) ;
> g. generators: a=(2,3X4,5), b=(l,4,3^)(5,6) ;
>h = <aN), b'Yi> ;
>s = [J ;
>i = 0 ;
>FOR EACH X  IN g DO
> IF X  IN s THEN LOOP ; ELSE
> rt = h'^x ;
> i = M  ;
> PRINT ' coset % i, n ;
> s ~ s  JOIN n ;
> END ;
> END;

( ’ > * is the CAYLEY prompt sign. )
We will not waste space by printing the answer here but proceed to discuss the 

steps in the program. Each statement is terminated by a semicolon. The first statement is 
a comment enclosed within double quotes (”) which is ignored by CAYLEY. The 
statement g : perm (6 ) ; declares that the symbol g is to denote a permutation group of 
degree 6. g. generators : a=(2,3)(4,5), b~(l,4y3,2)(5,6) ; specifies the generating 
permutations for G. We now define H to be the subgroup generated by a^, b^ which is 
introduced by h=<a^, lY\j>; (the up-arrow ('̂ ) denotes exponentiation, while the 
asterisk (*) denotes multiplication ). The remaining statements compute and print the 
cosets of H. The cosets are found by running through the elements of G until one is 
discovered which does not lie in a previously computed coset. A new coset is formed by 
multiplying H on the right by this element. A set S is used to denote those elements of 
G that appear in the already known cosets of H.

Standard functions

The power of CAYLEY as a problem solving tool in group theory derives largely from 
the provision of an extensive library of group theory routines. The library routines 
appear in the language as standard functions . For example, if G is a finite group, and 
H<G, the standard function normalizer when applied to G and H, as in the expression

normalizer (G,H) ;
will find the normalizer in G of H, and return it as the value of the function. The 
programmer may use the expression normalizer (G ,H  ) ; when a group is allowed. 
The contents of the library of standard function in CAYLEY are outlined in [15].
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We shall mainly use the following standard functions in connection with our results in 
Chapter 4 and Chapter 5.

(a) Finitely presented groups
(i) Construction of defining relations from a faithful representation ( the library 

routine is based on Cannon's algorithm [13] ).
(ii) Construction of a covering group of a group.

(b) Permutation groups
Order of a group G; conjugacy classes and centralizers of elements; normalizer

Ng(H), centralizer Cq(H) for given H ̂  G; HnK, test for conjugacy for given H, K.
( The library routines are based on the notions of a base and strong generating set of a 
permutation group on a finite set A, introduced by Sims [42].)

Library files

A programmer using CAYLEY interactively will often find it necessaiy to execute some 
particular sequences of statements many times over. This is made easier by the use of a 
library file which enables the user to store program segments in such a way that they can 
be called up and executed at any time during the run.

A library file is a file provided by the operating system of the host machine and is 
created externally to CAYLEY using a text editor. The file contains text organised into 
blocks known as library blocks, each of which can be called up independently. Since 
CAYLEY provides no facilities for text editing or storage, the library file plays a crucial 
role in that it allows the programmer to use the editor provided by the operating system 
for these tasks. It is recommended to use library files for CAYLEY programs longer than 
than a few lines since it is very easy to make typing errors if these are entered directly.

We conclude this section with a particular CAYLEY program ( taken from [14]) to be 
used in Chapter 4.

A CAYLEY Program : SUBGPTEST

Suppose that it is necessary to determine whether a given finite group G contains a 
subgroup isomorphic to the 2-generator group H. One approach is to look for elements in 
G which satisfy a set of defining relations for H and which generate a group of order IHI. 
Suppose that H=<x,y>, where kx>l=n, ky>l=m. It is sufficient to take a set of
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representatives for the classes of elements of order n of G as the possible images of x 
and the set of all elements of order m of G as possible images of y. We also observe that

if X, y satisfy a given set of defining relations for H then so does (x,y®) for all a e C(x). 
Thus the potential images of the second generator can be further reduced by taking 
representatives for the orbits of elements of order m under the action of the centralizer 
C(x).

Given below is a CAYLEY program which implement these ideas. Assuming that 
H and G are set up ( variables h and g , respectively ), where H is a two generator 
group, the program will set the Boolean variables isom to the variable true , if H is 
isomorphic to a subgroup of G, false otherwise. The following standard functions 
are used in the program : 
order (H): 
relations (H):

class (G,x): 
centralizer (G, x): 
s a t i^  (Q,W):

setrep (R)

order of the group H;
defining relations for the group H which are satisfied by the 
generators of H;
conjugacy class of the element x in the group G;
centralizer of the element x in the group G;
given a sequence Q of n elements belonging to a group G and a
set of words W on the generators of the n-generator group H,
returns the Boolean value irue if every member of W is the

identity of H under the substitution H.i Q[i] ( i=l,2,..,n ); 
an arbitrary element from the set R.

"determine whether the 2 -generator group h is isomorphic to some subgroup of the 
group g"
" it is convenient to define certain variables as follows:

horder
nl
n2

imgsl
imgs2

hrels

the order ofh
the order of the first generator ofh 
the order of the second generator ofh
representatives of those g-classes whose elements have order nl 
the union of those g-classes whose elements have order n2  

a set of d in ing  relations for h"

> isom -false ;
> horder = order (h) ; 
>nl = order (hJ) ;
> n2  -  order (h2 ) ;
> hrels = relations (h) ;
> imgsl = null ;
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> imgs2  = null ;
> FOR EACH xIN  classes (g) DO
> IF order (x) EQ nl
> THEN imgsl = imgsl JOIN [x] ;
> END;
> IF order (x) EQ n2
> THEN imgs2 = imgs2 JOIN class (gpc);
> END;
> END;
> "run through a set of representatives from those classes of order nl"
> FOR EACH X IN imgsl DO
> centzr = centralizer (gpc) ;
> notdone = imgs2  ;
> "run through the classes o f order n2 "
> WHILE notdone NE null DO
> y=setrep (notdone) ;
> "check whether the obvious map is a homomorphism from h onto <x,y>"
> IF satisfy (SEQ(x,y), hrels)
> THEN
> IF order (<x,y>) EQ horder
> THEN
> isom = true ;
> BREAK ;
> END ;
> END ;
> "delete from notdone the orbit o f y under conjugation action by centzr"
> notdone = notdone -  class (centzr, y) ;
> END; " images of second generator"
> IF isom
> THEN BREAK;
> END ;
> END ; " images of first generator" I

> IF isom 1
> THEN ^
> PRINT ' h is isomorphic to the subgroup of g generated by x, y ;
> ELSE
> PRINT ' h is not isomorphic to any subgroup of g' ;
> END ;
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Example 5. We take

G=<a,b> = S5, a=(3,4), b= ( 1,2,3,4,5).

Then SUBGPTEST shows that G has no subgroup isomorphic to Qg; while it gives 

c=(3,4), d=(I,4,5,3) which generate a subgroup isomorphic to Dg showing that the 
Sylow 2-subgroup of S5 is Dg.
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3.Methods

Throughout this chapter, G denotes a finite simple group with a minimal generating pair 
(a,b).

In this chapter we describe a range of methods which can be used to determine 
representatives for the conjugacy classes of G, generators for a Sylow p-subgroup of G, 
and generators for each maximal subgroup of G, all as words in a, b.

In addition, we shall describe some computational techniques for determining the 
Schur multiplier of a small group with generators and relations. Some methods are given 
which can be used to try to find an efficient presentation for a finite group.

3.1 Conjugacy classes

Suppose X is an element of a group K. The conjugacy class containing x, which is 
denoted by (x), consists precisely of all those elements y of K which are conjugate to x;

that is y=k'lxk for some ke K. The number of elements of K in (x) is the index in K of 
the centralizer of x. Clearly all elements in the conjugacy class (x) have the same order. 
Now suppose that (x), (y) are two distinct classes of K containing elements of the same 
order. We say that (x), (y) belong to the same family if <x>, <y> are conjugate in K.

Let ke K, n the order of k, and p a prime divisor of n. Then by the p-power of k 

we mean the element kP. The p*-part of k is defined by k ^ ,  where q is the highest

power of p dividing n, n=qr, and Xq+p,r=l. For example, if k has order 60 then the 
2*-part, 3-part, 5-part of k are kl^, k^l, k25 respectively.

Now the information given in the ATLAS about the conjugacy classes of G enables us to 
give a representative for each conjugacy class of G. This is about the order of the 
centralizer in G of a typical element of each class, the classes into which p-power and 
p'-part of a typical element of each class fall ( see also 4.1).

To obtain such representatives we may resort to the following techniques:

(i) Cycle types
Suppose wj, W2 are words in a, b of order n with the different cycle types in the
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permutation representation of G, Then wj, W2 belong to distinct classes of elements of 
order n of G. Such words are easily produced by PERM.

(ii) Centralizers orders
Suppose G has at least two conjugacy classes Q, Cj of elements of order n with 

the same cycle type in the permutation representation of G, but with the different order of 
centralizer cj, cj. Then the centralizer orders of a number of random words of order n, 
produced by PERM, are examined by the standard function

centralizer (G,x)
of CAYLEY in the hope of finding two elements W |(a ,b ), W j(a ,b) that have centralizer 

orders Cj, Cj.

(iii) Non-conjugate elements
If two distinct classes Cj and Cj of order n have the same length, we may use the 

standard function
conjugate(Gpc,y)

of CAYLEY in an attempt to show that the logical value of the function is false for two 
randomly chosen words W|, wj of order n. If this is so, we have found representatives 

for each of the classes Cj, Cj,

(iv) Representatives of the classes belonging to the same family
Suppose Ci, Ci+i,..., Ci+m,i are classes of elements of order n which belong to 

the same family and that a representative for C| has been found. Let Ci=(w). Then 

representatives for each of Cj+i,..., Ci+^_; may be obtained by raising w to a suitable 
power which is coprime to n. These powers have been specified in the ATLAS for each 
G, see 4.1. ( It is also possible to determine these powers using (iii) above .)

Now suppose that Ci=(w), Ci+i=(w®), ..., Ci+m-i=(w^), and p is a prime 

dividing n. Then the p-powers of w, w“, ..., w^fall into some classes Cj, C'i+i,... , 

again members of the same family, consisting of elements of order n /p  ( clearly, this

family has at most m members). Suppose now wPe C\ for some t. This can now be 

used to determine representatives for the rest of members of {Cj} in a similar way to that 

described for {Cj).

Finally we note that w must be chosen in such a way that its p '-part, for each 
prime p, falls into the correct class which has been specified by the information given in 
the ATLAS about the p'-part of a typical element of each class (see, 4.1).
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A s  a n  i l l u s t r a t i o n  w e  g i v e  b e l o w  a  r e p r e s e n t a t i v e  f o r  e a c h  c o n j u g a c y  c l a s s  o f  
G = P S U ( 3 3 ) ‘ W e  s h a l l  f o l l o w  t h e  n o t a t i o n  g i v e n  i n  4 . 1  f o r  t h e  c l a s s  n a m e s .

Examle 1. We take G to be PSU(3,3) with the presentation given on page 85. 
Invoking the first four columns of table I:

(1) G has a single conjugacy class of involutions and hence the element a can simply 
be chosen as a representative of this class which is shown by 2A.

(2) There are two classes of elements of order 3 denoted by 3A, 3B with different 
lengths, namely IGI/108, IGI/9. In G the element b has order 6. We therefore consider

x=b^ and find IC(x)l=108. This indicates that xe 3A. We now search for an element y of 
order 3 for which IC(y)l=9. It is found that the element y=[a,b] of order 3 has this

property. Therefore, ye 3B. Here x, y have the same cycle type in the permutation 
representation of G.

(3) G has three conjugacy classes of elements of order 4 namely 4A, 4B, and 4C 
where 4A, 4B are members of the same family. Thus it is enough to determine a 
representative for each of 4A, 4C. To do this, we look at the conjugacy classes of order 
8. G has two such classes, namely 8A, 8B ( again members of the same family ), and 
note that elements in 8A are not conjugate to their inverses. By the information given 
about 2-powers of elements in 8 A, 8B, we have

x^€ 4A if xe 8A,

x^e 4B if xe 8B.
By PERM, we find that u=abab'^ has order 8, and so this is taken as a representative for 
the class 8A. Now v=b^ab"^a determines a representative for the class 8B. Therefore, u^ 
and v2 are representatives for the classes 4A, 4B respectively.

It remains to find a representative for the class 4C. Using PERM, we observe that 
ab^ is an element of order 4 with the cycle type 2^4^ and hence can be regarded as a 
representative for the class 4C because its cycle type is different from those of 4AB.

(4) G has a single class of elements of order 6 and b clearly belongs to this class.
(5) There are two classes of elements of order 7 belonging to the same family. Since ab

is of order 7 in G, we have abe 7A, and thus b'^ae 7B by table I.
(6) Finally we give representatives for each of the classes 12A, 12B ( same family ).

Again using PERM we observe that z-ab^ is an element of order 12. So either ze 12 A or 

z€ 12B. But the 3-power of an element in 12A must lie in 4B. A simple calculation with 

CAYLEY shows that z  ̂is, in fact, conjugate to u^ in G confirming that ze 12B.

40



1

Now we have b'^a e 12A.
Now, these representatives have been found consistently in the sense that for each 

representative x of order n the p-power and p-part of x ( p, a prime dividing n) fall 
exactly into the classes specified in our table I. For example the 2'-part, 3'-part of ab^, 
namely (ab^)^, (ab^)^ are in 3A, 4B respectively.

Note. In the above example we were able to start with a representative x for the class 
12A and by the information given in the table about p-powers of x determine 
representatives for each of the classes 6A, 4B just by taking x^, x^. Likewise, the 
information about the p-part of x could have been used to determine representatives for 
the classes 3A, 4A by taking x^, x .̂ Although this technique is often useful, it usually 
increases the length of the resulting representatives ( as words in a, b). Having found 
such kinds of words we are still able to use (iii) in the hope of finding shorter words for 
the desired classes.

3.2 Sylow p~subgroups

In 2.3 (vi) we explained how a coset enumeration program can be used to determine a 
generating set for a Sylow p-subgroup of a finite group K with generators and relations. 
The efficiency of the method is heavily based on the order of K and also the amenability 
of the presentation of K to computation with implementations of the coset enumeration 
algorithm. For instance, if K is a moderately large group with a small Sylow p-subgroup 
P, the method often fails to find a generating set for P.

To overcome this problem we may resort to the following technique:

(1) Look for a small subgroup H of K containing a Sylow p-subgroup of K for
which the method described in 2.3 (vi) is applicable. Suppose
K=<ki,k2,...,kniri=r2=...=rm=l>, H=<hi,h2,...,hg>, where 

hi=hi(ki,k2,... Jcn) (1 < i < s) (*)

(2) Find a presentation for H on the generators h ,̂ h2, h ^ ;
(3) Apply the method desribed in 2.3 (vi) in order to find a set of generators

Xx=Xi(hi,h2,...,hs),..., Xt=Xi(hi,h2,...,hs) (**)

for a Sylow p-subgroup of H;
(4) Substitute (*) for hj, h2, ..., hg in (**).

The resulting generators xj's are now words in the original group generators 

kx,k2,...,k„ and obviously generate a Sylow p-subgroup of G.
The technique works quite well for the finite simple groups G as we have a
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considerable knowledge about their subgroups as well as a faithful permutation 
representation of sufficiently small degree for each G which allows one to compute with 
G using Sims' powerful methods [41], [42].

The information about the subgroups of G enables us to determine generators in a, 
b for a relatively small subgroup H of G having a Sylow p-subgroup of G. We are now 
able to use either Cannon's algorithm [13] or the method described in 3 of [6] ,  due to
E. F. Robertson, to construct a presentation for H on its generators.

We note that the only problem with implementing this method for the simple 
groups G is that the resulting generators xj’s at the stage (4) for a Sylow p-subgroup 
usually become very long. To overcome this problem, one may use the PERMGP 
program to simplify these generators. We are also able, in certain cases, to simplify the 
generators algebraically using the relations of G. The simplification techniques will be 
explained in chapter 4 as and when they are needed to be applied.

Notes.
(1) For a simple group G for which generators of a Sylow p-subgroup are sought, we 

may find various subgroups containing a Sylow p-subgroup of G. The appropriate ones 
among them as our starting point are normally those with smaller orders and possibly 
shorter generators as words in a, b. Also for such subgroups one may find various sets 
of generators for a Sylow p-subgroup. Again those with generators of shorter lengths are 
eligible to be taken for our second stage.

(2) The Felsch method using our Todd-Coxeter program usually gives shorter 
normalizing coset representatives than the Lookahead method.

Example 2. The simple group G=SL(2,32) has order 25.3.11.31 and presentation
<a,b I a2=b^=(ab)3^=((ab)3(ab"l)^)^l>.

Find generators for a Sylow 2-subgroup of G.

Although TC can be used here to construct a Sylow 2-subgroup of G by successively 
extending <a> by 2-elements, we proceed to apply the above method in order to illustrate 
how it works in practice.

By 1.4.1 (vi), G has a subgroup of minimal index 33 - of order 25.31- which 
obviously contains a Sylow 2-subgroup of G. Suppose we have constructed the 
following permutations a, b of degree 33 which generate G and satisfy the presentation of 
G :

a=(l,2)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(ll,24)(12,25)
(13,26)(14,27)(15,28)(29,33)(30,32),

b=(l,3,2)(4,14,27)(5,24,10)(6,8,23)(7,33,32)(9,13,31)(ll,20,18)
(12,17,22)(15,26,16)(19,29,28)(21,30,25).
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Now PERM enables us to find the generators
x=a, y=bab-l(ab)3ab-l (*) 

for the stabilizer of a point in the permutation representation of G which is a subgroup 
of index 33 ( see (i) of 3.3). A presentation for H=<x,y> on x, y is

H=<x,y I x2=y31=l, xy2(xy)5=y5x>.
Now using TC we can easily find the generators

X, y^xy, yxy-l, y^xy^, y^xy-2 (**) 
for a Sylow 2-subgroup of H which is an elementary abelian group of order 32. 
Substituting (*) into (**) gives the generators

w%=a, W2=a ,̂ W3=rS, W4=a^ wg=a9, 
where r=bab"Hab)^ab’^ s=b(ab-l)^abab"\ t=(bab"^(ab)^ab"^)2, q=(b(ab"^)^abab-l)^ for 
a Sylow p-subgroup P of G. The words wj,..., W5 have length 1, 23, 23, 45, 45 in the 
free group F(a,b) respectively and the total length of the words is 135. We now input 
these words to PERMGP with a, b the above permutations and obtain the new 
generators ;

wi'=a

W2*-bab" 1 (ab)^ab- ̂  ab 

W3=b(ab’l)3(ab)^(ab’l)^ab 

W4=b(ab-l)3(abab-l)2(ab)^ab-l 

W5'=b(ab’lab)^(ab)4(ab’lab)2 

for P. Here the words wi',...,W5' have length 1, 21, 21, 23, 25 respectively and the 
total length is now 91. A further simplification is possible by conjugating by b the 
words wx',...,w$ which reduces the total length of the newly obtained words to 87.

3.3 Maximal subgroups

The following will be repeatedly used in obtaining generators for a maximal subgroup of 
G.

3.3.1 ( Finkelstein [20] ). Any maximal subgroup of a simple group S is the normalizer 
in S of a characteristically simple group L ( i.e. a direct product of isomorphic simple 
groups (1.4.2)).

A maximal subgroup M of S is called a p-local subgroup if L is an elementary abelian 
p-group.
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3.3.2. If S is a simple group, and M is a maximal subgroup of S, and L is a normal 
subgroup of M, then M=N§(L).

Proof. By 1.1.2, M < Ng(L) < S. Since M is maximal in S, either M=Ng(L) or 

S=Ng(L). But Ns(L)?6S for S is simple. Hence M=Ng(L).

Let K be a finite 2-generator group and x, y e K. We call (x,y) a generating pair for K 
if K is generated by x and y. We say that (x,y) is of type (l,m,n;q) if l<x>(=l, ky>l=m, 
kxy>l=n and l<[x,y]>l=q.

Now suppose that H is a 2-generator subgroup of a simple group G with a 
generating pair (x,y) of type (l,m,n;q). Then x, y, xy, and [x,y] fall into some classes

Ca» Cp. Cy, C§ of elements of order 1, m, n, q of G. Following the ATLAS, let us denote

these classes by 1X, mY, nZ, qU respectively , where X, Y, Z, U are the letter-names of 
the classes introduced in 4.1. With this notation and assumption, we call (x,y) a 
generating pair of type (1 X,mY,nZ;qU).

We are now ready to describe some methods which help us to find generators in a, 
b for each maximal subgroup of G. We first note that a complete list of maximal 
subgroups of G has been given in the ATLAS together with some information about them 
such as their orders, indices, structures, and specifications. The specification of a 
maximal subgroup M of G gives information about the conjugacy classes of a normal 
subgroup N of M whose normalizer in G is M (by 3.3.2 ).

Throughout this discussion we assume that the group G is given by generators a, b, 
which may either be abstract generators with a set of defining relations or elements from a 
faithful permutation representation on the cosets of a subgroup of minimal index d. Let G 
act on A=(l,2,...,d}.

(i) The stabilizer of a point
By 1.2.4, G is a transitive permutation group of degree d and thus the stabilizer of 

a point has index d in G using 1.2.1. That is, Sto(x) is a subgroup of minimal index d 
for each x. Providing St(x) is a 2-generator group, we may use PERM in order to find

the words wi(a,b) and W2(a,b) with the property that wj, W2 fix only the point xe A with 

wj, W2, w%W2 having specified orders 1, m, n. If 1, m, n are correctly chosen such words 
almost always generate St(x). The integers 1, m, n are usually obtained from the 
information given about the structure of the subgroup.
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(ii) 2 -generator maximal subgroups with presentation
Suppose M is a maximal subgroup of G for which a 2-generator presentation is 

known. Let
M=<x,y I rx=r2=...=rg=l> (*)

Suppose that x, y, xy, [x,y] have order 1, m, n, q respectively. Then M is a factor group 
of the group

<x, y I x^=y"*=(xy)"=:[x,y]q= 1> (**)
It is now constructed by picking elements x, y from the appropriate conjugacy classes

Ca, Cp of order 1, m of G such that xy, [x,y] lie in the appropriate classes Cy, C§ of 

order n, q.
The type of (x,y) is usually obtainable from the specification of the maxinaml 

subgroup. To find such a generating pair for M we may begin with a random element x

of G lying in and use PERM in the hope of finding small random sets of words y 

with (x,y) of type (l,m,n;q). Using the representatives of the conjugacy classes of G we

are now able to obtain a set of generating pairs (x,y) with ye Cp, xye Cy, [x,y]e C§.

As often happens, x and y generate M and satisfy the presentation (*).
We note that if the classes into which x, y, xy, [x,y] fall are unspecified we then 

try to find a generating pair (x,y) for a subgroup isomorphic to M with x, y satisfying 
the presentation (**). We emphasise that the obtained subgroup need not be maximal, 
that is it may happen that G has two non-conjugate subgroups Hj, H2 isomorphic to M 

with maximal in G but H2 not.
We also note that, sometimes, the obtained generators x, y for M with (x,y) of 

type (l,m,n;q) are words in a, b of fairly long lengths. To find neater generators for M 
we may use the presentation (*) in order to obtain a new generating pair for M which we 
hope to lead to shorter generators for M.

(iii) Maximal subgroups with a 2-generator normal subgroup
Suppose M is a maximal subgroup of G having a non-trivial normal subgroup N 

with a known 2-generator presentation. By 3.3.2, M =N g (N). N ow  a similar method to 
that in (ii) is used to obtain a generating pair for N. Then TC enables us to determine 
N g (N).

Note that for a given maximal subgroup M we may have more than one 
non-trivial normal subgroup which is generated by two elements. In practice those with 
larger orders are prefered to be taken as our starting point. This clearly facilitates the 
enumeration of cosets N for the determination of Ng (N).

If the generators of N are in unspecified classes of G, we then examine a set of
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random subgroups of G isomorphic to N in the hope of finding a subgroup whose 
normalizer in G is isomorphic to M.

(iv) p4ocal subgroups
Suppose M is a p-local subgroup of G. Then M=Ng(E) where E is an elementary 

abelian group of order p*̂  ( p, a prime dividing the order of G ). Now suppose we have 
found generators for a Sylow p-subgroup P of G. Employing the presentation of P we 
are able to obtain a set of elementary abelian subgroups of order p*̂ . These subgroups are 
now examined by TC to determine a subgroup K isomorphic to E with Ng(K) of order

IMI. The hope is that Ng(K) = M. We note that in certain cases the information given 
about the classes into which the elements of E fall usually helps us to choose an 
elementary abelian subgroup whose normalizer in G leads to a maximal subgroup of G 
isomorphic to M.

(v) Non-local subgroups
Suppose M is a non-local subgroup of G. Then M=Ng(K), where K is a direct 

product of isomorphic non-abelian simple groups S. Using a known presentation of S, 
we may find a presentation for K. Now if K is a 2-generator group ( which is the case for 
our simple groups G, IGI <10^ ), then a similar method to that of in (ii) can be used to 
determine generators for M.

(vi) structure constants technique
A further source of information about the subgroups of G which are generated by 

two elements x and y with x an involution is the structure constants for the classes of 
involutions of G.

Suppose Cj, Cj, Cfc are conjugacy classes of G. Then structure constants [34], 

combinatorially, are the number ayk of ordered pairs (x,y) such that

xy=z ( xe Cj, ye Cj, ze C^ )
for fixed z.

The tables of [34] give the ay^ for all classes Q  of involutions. We observe that

the number of solutions (x,y)e GxG to xy=z for x, y belonging to fixed classes of G and 
z a fixed element cannot be less than the number of solutions in HxH of the same 
equation. If there is no contradiction we try to find a pair of elements of G which satisfy a 
known presentation of H.
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(vii) Non-conjugate isomorphic maximal subgroups
In certain cases G has more than one conjugacy class of isomorphic subgroups. 

The following might help us to obtain generators in a, b for each of them using the 
methods (i)-(vi).

(1) Suppose that G has two non-conjugate subgroups of minimal index d. Suppose 

further that Hi=StG(r), where, re A. Then for each s in A, is conjugate to StQ(s), by

1.2.2. We therefore look for a subgroup H2 of index d with lfix(x)nfix(y)l=0, for each 
X, y in G , Xi*y.

(2) Suppose that G has two non-conjugate isomorphic subgroups T, S whose elements 
of order 1, say, lie in two distinct classes of G, If T is a 2-generator group with a known 
presentation, then using (ii) we may obtain a generating pair for each of T, S. Sometimes 
Ng(T), Nq(S) remain non-conjugate in G giving two non-conjugate maximal subgroups 
of G.

(3) Finally, if G has two non-conjugate isomorphic subgroups T, S with elements lying 
in the same classes of G, then pairs of random subgroups S isomorphic to T are 
examined by the standard function

conjugate (G, T,S)
of CAYLEY in the hope of finding two non-conjugate subgroups T, S of G.

Suppose now we have found generators xj(a,b), X2(a,b), ..., x^(a,b) for a maximal 

subgroup M of G. We then try to combine Xi's differently in order to reduce the number 
of generators of M. If M is a 2-generator group, an attempt is made to show that M can 
be generated by two of its elements x, y with x an involution.

Having found two generators w%(xx,...Xn), W2(x%,...,Xn) for M, we are now able 
to determine the classes into which these generators and their product, commutator, etc. 
fall. We then use PERM again to find new generators in a and b, possibly of shorter 
lengths, for a conjugate of M. It has been found experimentally that if the orders of w%, 

W2 are sufficiently small, then almost always PERM will produce a generating set for a 
conjugate of M.

In addition, if wj is an involution, a presentation for M on Wj, W2 can be found 
using the efficient method of [6].

Tests for maximality of subgroups

Suppose that Mj, M2, .., M„ are maximal subgroups of G, arranged in order of 
decreasing order. Suppose further that we have found a generating set for each of the
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maximal subgroups Mj, M2, ..., M^.x ( l < k < n ) o f G  and a generating set for a 

subgroup H of G of order IM̂ I. If none of the M '̂s have subgroups isomorphic to H, 
then H is clearly maximal. We now suppose that the only maximal subgroups among the 

Mi's which have a subgroup isomorphic to H are Mix, ^ i 2» —»Mij. If for each t=l,...,j. 

Mit and H contain elements of a specific order from distinct classes of G, then H cannot 

be a subgroup of any conjugate in G of Mit atid thus is maximal in G.

Note. Various techniques can be used to show whether a finite group K has a subgroup 
isomorphic to a given group H. These will be explained in chapter 4 as and when they are 
needed to be applied. Alternatively, the CAYLEY program SUBGPTEST ( 2.4) can 
always be used to check whether or not a certain finite group ( of small order ) has any 
subgroup isomorphic to a given 2-generator group H.

Example 3. Determine generators for each maximal subgroup of the group G=Ag with 
presentation

<a,b I a^=b^=(ab)l5=(ab^)4_(ab)5ab^ab(ab'^)^(ab)^ab'^(ab)7ab'^=l> 
where (a,b) is a minimal generating pair of the group with

a = ( l , 4 )  { 2 , 1 ) ( 3 , 5 )  ( 6 , 8 ) ,  

b=(3,4)(5,6,7,8).

In order to be able to give generators for each of the maximal subgroups of G we invoke 
the table II given on page 105 which lists the six conjugacy classes of maximal subgroups 
Hj (i=l,...,6) of G. We proceed as follows:

(i) Hj structure: A j
This is the stabilizer of a point in the permutation representation of G and can be 

constructed using 3.3 (i). The simple group A7 has presentation 

<x,y I x^=y^=(xy)7=[x,y]5=(xyxy^xy-^)^=1 > 
and thus is generated by two elements x, y of G of order 2 ,4  whose product has order 7. 
The group G has two conjugacy classes of involutions with representatives a, b .̂ Since 
the element a moves all eight points of A={ 1,2,...,8), we take x=b^ which fixes 4 points 
of A, namely 1, 2, 3, 4. Using PERM, we find the word y=(bab)^^^ of order 4 which 
fixes the points 1,7 and its product with x has order 7. In fact Hx=<x,y>=St(x(l) with x, 

y satisfying the above presentation for A7.
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(ii)-(iii) H2  structure: 2^:PSL(2,7) (2-local subgroup)
G has two non-conjugate maximal subgroups of structure 23:PSL(2,7) both being 

the normalizer in G of an elementary abelian subgroup of order 8 whose involutions are 
in 2A. Suppose we have found the generators

x=a, y=a^, z=b^ab^ (*) 
for a Sylow 2-subgroup P of G with presentation

<x,y,z I x2=y2=z2=(xz)2=(xy)^=(yz)^=(xyz)4=l> 
on the generators x, y, z. Using this presentation we may obtain the elementaiy abelian 
subgroup E ( < P ) generated by x, xY, xŶ  of order 8 whose generators when written in 
terms of a, b using (♦) generate an elementary abelian subgroup of G with involutions 
in 2A. Let us call this subgroup, also, by E. Then

E=<a, a(, a®>
where t=a^, s=(b-^a)^b^. Now TC enables us to determine Ng (E). We find 
N(E)=<u,v>, where u=a^, v=b(ab'l)5(ab)2(ba)2(b"la)2b“i, with ku,v>!=1344. Since 
1344 does not divide the order of Hj, <u,v> is maximal in G. Now an easy calculation

with CAYLEY using the class information of G shows that ve7A, uve 4B, [u,v]e4A. 
Thus (u, uv) is a generating pair of type (2A,4B,7A; 4A) for a maximal subgroup of G 
of order 1344. This helps us to seek a neater generating pair for a subgroup of this 
order. PERM easily gives the generating pair (a^, b^) for a maximal subgroup H2 of G 
isomorphic to <u,v>. Similarly we find the generating pair (bab'^b^) of the above type

for a maximal subgroup Hg ( = H2) which is not conjugate to H2.

(iy) H4  structure:S^ ( non-local)

Sg has presentation
<x, y I x2=y6=(xy)5=[x,y]3=[x,y2]2=l> 

and thus is generated by two elements x and y with (x,y) of type (2,6,5;3). We start

with x=a which is in 2A and find, by PERM, y=(ba)2b in 6A with xye 5A, [x,y]e 3B. 
Now X and y generate a subgroup H4 of order 720 and satisfy the above presentation for 

Sg. We note that H4=Ng(N), where N=<[x,y2], xy^xy>. Letting r=[x,y2], s=xy3xy, 

we see that (r,s) is a generating pair of type (2B,4B,5A;4B) for an Ag subgroup of G, 

Again H4 is maximal in G for its order does not divide the order of Ĥ  ( i=l, 2, 3 ).

(v)Hs structure: 2 " :̂(SsxS3 ) (2 -local)
This is the normalizer in G of an elementary abelian subgroup of G of order 16.

Returning to the Sylow 2-subgroup P of G, it is found that P has only one elementary
abelian subgroup of order 16 which is generated by
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g=xyzyxyz, h=xzyxyzy, k=xyzyxzy, l=xyxyzyz.
Substitution of (*) for x, y, z in these generators, gives an elementary abelian subgroup 
K of G of order 16 whose fifteen cyclic subgroups number 9 containing the class 2A 
and 6 containing the class 2B. A coset enumeration using TC verifies that N g (K )=<u,v> 

where u=(b>2a)2, v= b2ab'lab(ab‘l)5abab"^ with (G:<u,v>l=35. Since IG:Hil'[^35 ( i= 1,

2,4), <u,v> is maximal in G. Again it is easy to check that ue 2B, ve 6B, uve 6B and

[u,v]e 6A. We may now use PERM to obtain the neater generators x=(ab2)2, 
y=(ab)^ab'l with (x,y) of type (2B,6B,6B;6A) for a maximal subgroup of Hg of index 
35.

(vi)H^ structure: (A^xS):!

The structure of Hg shows that Hg=Ng(H), where H is a subgroup of G 

isomorphic to Agx3. The group Agx3 has presentation
< R, S, T 1 R2=S3=(RS)5=T3=[R,T]=:[S,T]=1>, 

and can be generated by R and ST with (R, ST) of type (2,3,15;5). Now the information 
given in [34] about the structure constants for the class 2A shows that the equation xy=z

with xe 2A, ye 3AB, ze 15AB has no solution in G. Also such an equation cannot have

any solution with xe 2B, ye 3A, ze 15AB. Therefore, a generating pair for a subgroup 
isomorphic to 3xAg must be of type (2B,3B,15AB). Armed with this knowledge, we 

find by PERM x=b2, y=b" 1 ab(ab" 1 )3(ab)2b which generate a 3xAg subgroup of G. 

Now using TC, we get NG(<x,y>)=<b,y>=<b, ab(ab~l)3aba> which has order 360. Let 

z=ab(ab-l)^aba, Hg=<b,z>. Then Hg is a maximal subgroup of G since IHgl does not 

divide IHjl for i=l, 2, 3, 5, and that Hg, having an element of order 15, cannot be a 

subgroup of H4.

We note that bz'2 has order 2 and thus Hg can be generated by two elements 
x'and y' with x' an involution. This can be used to find the new generators x’=b2, 
y’=(ab)2ab2ab for a maximal subgroup of G of order 360.

3.4 The Schur multiplier

Suppose that G is a finite group given by
G—< xx,X2,...»Xj| I rj= ...=T|xx~l ^ 

where each q is a word in x/s. The standard function darstellungsgruppe of CAYLEY 
when applied to G, as in the expression
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%

darsîellungsgruppe(G) 
will find a covering group C of G. The group C is created as a finitely presented group 
of the form

<xi, ..., x„, zi, ... , Zt I ri= ri' % =ri„\ [x|,Zj]=l, [Zk,z%]=l
( l : ^ i < n , l < j < t , l ^ k < l < t ) >

where each r̂ ' is a word in the zj’s.
Now the Schur multiplier M(G) of G may be computed using the following facts:

(i) C/M(G) = G,

(ii) M (G )<Z (C )nC .
By (i) we first try to determine IM(G)I. Then (ii) will enable us to find a 

generating set for M(G). As often happens these generators for M(G) are among the zj’s 
which are central in C. After determining their orders, it is an easy task to write M(G) as 
a direct product of cyclic subgroups.

We note that the presentation found for C is often unpleasant so that the function 
"darstellungsgruppe” is limited in its usefulness.

We also note that if the presentation for G is badly chosen, the function results in 
a complicated presentation for C. It has been experimentally found that for a fixed 
number of generators for G, the number of generators for C increases by increasing the 
number of relations of G. This means that if we choose a presentation for G with a small 
number of relations, we will almost always arrive at a somewhat simpler presentation for 
C,

Example 4. We begin with a group where the answer is known in advance, and find 
the Schur multiplier of the group D12XA4.

We start with the presentation
<r,s,t,u I r2=s6=(rs)2=t2=u3=(tu)^=[r,t]=[r,u]=[s,t]=[s,u]=l> 

and construct the following new presentation
<x, y I x2=y^(xy)6=(xy3)2=((xy)2(xy-I)2)2= 

for G on x=rt, y=su using SUBGP. Now a covering group C for G using this 
presentation is found to have presentation

<x,y,z,u,v I x2=ybzu=(xy)bu=(xy3)2=((xy)2(xy-l)2)2y-l-i^ [x,z]=[x,u]=[x,v]=

[y»z]=[y»u3=[y,v]=[z,u]=[z,v]=[u,v]=i>.
Eliminating z, u, and v gives

C=<x,ylx2=(xy3)2=[x,y6]=[x,(xy)b]=[y,(xy)6]=[x,((xy)2(xy-1)2)2]=
[y,((xy)2(xy-l)2)2]=l>.

By enumerating cosets of <x> using TC, we find that IC1=576 and thus IM(G)I=4. It is
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now easy to check that C =<[x,y],[x,y2],[x,y3]> and that X=(xy)b, Y = ( ( x y ) 2 ( x y - 1 ) 2 ) 2  

are each central elements of C of order 2 belonging to C\ That is, M(G)=C2xC2 as 
expected.

3.5 Efficient presentations

Suppose G is a finite group and rank M(G)=d. In order to be able to obtain an efficient 
presentation for G one needs to show that G has a presentation on n generators and n+d 
relations. We describe here a method similar to that used by Campbell and Robertson in
[4] which attempts to reduce a given presentation of a group K to an efficient one.

We start with a presentation of K having as small a number of generators and 
relations as possible. Suppose

K=<X I R>,

X=(xx,...,Xg}, R={rini,...,ri;iit} where ri=ri(xi,...,Xg) and nfs are positive integers. 

We now try to reduce the number t of relations by considering a stem extension H of K 
which we hope to be isomorphic to K. To do this, we take two words r^ ^  and rj^j from 

the set R in such a way that r^ and rj generate the group H defined by
% -H; % n.

H = < X l r ; r . ' , R \ { r ^ ‘, r , ' ) > .

Then the element r̂ î k is in Z(H) because it commutes both with r^ and rj. Now if, in 

addition, r^^e H' then

r~ e Z(H) n  H'

and thus H will be a stem extension of K, that is, a finite group of order at most IM(K)IIKI

having K as a homomorphic image. It may happen that IHI=IK1, i.e. H = K. If this is so, 
we have found a new presentation of K on d generators and t-1 relations. This process of 
reduction is continued until an efficient presentation for K is obtained.

We note that in constructing a stem extension H of K the condition that r^ and rj 

generate H is a self-imposed condition to guarantee that the element r^ ^  is central in H. 
In certain situations, it is possible to combine two arbitrary elements of R and yet obtain a 
stem extension of K.

Suppose now we have constructed a stem extension H of K. Then the following 
lemma taken from [4] allows us to determine when H is actually K itself using a coset 
enumeration program to determine the indices of certain cyclic subgroups of H rather than 
enumerating the cosets of the trivial subgroup which, in certain cases, exceeds the storage 
capacity of the machine.
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3.5.1 Suppose H is a stem extension of K, he H, and (p the homomorphism from H to

K. Let r=l<h(p>l, m=!M(K)l. If (m,r)=l. Then
(i) IHI=rlH:<hm>l;

(ii) if IH:<hP>t=IH:<h>l=IK:<h<p>l for each prime p dividing m, then H = K.

Proof, (i) Let N=Ker(p, s=l<h>l. Then s~rq where q | INI. But INI divides m, by
1.5.13, so q I m. Now l<h"*>l=s/(s,m)=r for (m,r)=I.

(Ü) It follows that l<hP>l=l<h>l=s, for each prime p dividing m. Hence (s,m)=land so

q=l. That is, h and hç have the same order. Therefore, H = K.

Let us carry out the foregoing technique for the group S7, the symmetric group. 

Example 5. Prove that S7 is efficient.

The symmetric group S7 has order 5040 and Schur multiplier the cyclic group of order 2 

by 1.5.11 (i). To prove S7 efficient we look for a 2-generator 3-relation presentation. 

We begin with the following presentation of S7 given in [18] :
K=<X,y I x2=y7=(xy)6=:(xy2xy-2)2=:(xy3xy-3)2=l>.

Let Hi be the group obtained by combining two relations as follows:
Hi=<x,y I x2=y7 =(xy^xy-3)2=l, (xy)6=(xy2xy-2)2>

It is easy to check that Hi is generated by xy and xy^xy^ so (xy)b is a central element

of Hi. Next we see that H i’=<[x,y],[x,y-l],[x,y2],[x,y3],[x,y3]> and that (xy)6eH i'.

Therefore (xy)^ is in Z(Hi)nHi' showing that Hi is a stem extension of K so Hi is

either S7 or its covering group by 1.5.13. TC verifies that !Hi:<y>l=720, i.e. H15S7. 
Now we define

H2=<x,y I x2=y7, (xy5xy^)2=l, (xy)^=(xy2xy2)2>.

A similar verification shows that H2 is a stem extension of Hi ( =87), Using TC we 

have IH2:<y^>l=720. It follows that H2= S7 by 3.5.1 (i).

Unfortunately, the aim of our reduction method cannot always be acheived. As often 
happens, on combining the realtions of a given presentation of a group K using the 
above method we arrive at larger groups -even infinite groups- having K as a
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homomorphic image. We therefore need to examine several presentations of K in the 
hope of finding a suitable one to start with.

Since an exhaustive search for such presentations is not practicable, a step forward 
might be to try to find a small set of presentations for K to be examined by the reduction 
method. For 2-generator groups of small orders this could be done using a method 
suggested by Kenne [31]. In this method a small set of generating paris (x,y) for K are 
chosen and a presentation on x and y is constructed using Cannon's algorithim [13]. 
Then those presentaions with fewer relations are taken to be modified.

In chapter 4 where we examine the efficiency of maximal subgroups of simple 
groups G, IGklQh, we will employ this technique. We note that since we will be dealing 
with permutation groups of small order, the method will work successfully.

We conclude this section with a CAYLEY program, similar to that in [31], which 
attemps to find generating pairs for A4XA5
> g :perm(9);
> g.generators: a=(i;2}(3,4h b^(l,2,4), c~(5,7X8,9)4M5,8,6) ;
> cl=classes (g);
> FOR i=2 TO length (cl) DO
> FOR TO length (cl) DO
> h=< cl[i], clUJ >;
> IF order (h) EQ order (g)
> THEN print i j ,  relations (h) ;
> END;
> END;
> END;

It is found that class representatives x=(2,4,3)(5,9,7,8,6) and y=(l,2,4)(5,6,7) generate 
A4XA5 and yield a presentation

<X,y I xl5=y3=(xy)2=(x3y-l)3=l>^ 

which is an efficient presentation for A4XA5 since M(A4xAg)=C2xC2 by 1.5.12.

Note. Suppose H is a subgroup of G generated by two words x=x(a,b), y=y(a,b). By
considering the permutation representation of G, we may use a similar program to find a

set P of presentations for H. Suppose that Pe P reduces to an efficient presentation for
H. Now we require words Wj(a,b), W2(a,b) which generate H and satisfy the 
presentation P for H. To do so, we first determine the classes of G into which the new 
generators of H (as permutations) fall ; then PERM can be used to produce two words in 
X, y having the desired property.
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4.The Results

In this chapter we shall make use of the methods described in chapter 3 in order to give 
generators in a, b for each maximal subgroup of the twenty non-abelian simple groups G 
listed on page 1, where (a,b) is the first minimal generating pair of G appearing in [35]. 
For each group G, generators in a, b of a Sylow p-subgroup, for each prime p, are also 
given. Similarly we give generators in a, b for Sylow p-subgroups and maximal 
subgroups of the family of PSL(2,q) listed on page 3, where (a,b) is a minimal 
generating pair of the groups satisfying the relations a2=b3=l. We also give a 
representative for each conjugacy class of the groups as a word in a, b.

More details about Sylow p-subgroups and maximal subgroups including their 
defining relations, multipliers, etc. are given. We note that a complete list of generators 
for Sylow p-subgroups and maximal subgroups for each distinct minimal generating pair 
of each group G is given in the CAYLEY file SIMGPS.TLB ( see Appendix ).

Throughout this chapter, G denotes a non-abelian simple group with a minimal 
generating pair (a,b) mentioned above.

4.1 The tables

For each of the 32 simple groups G, we record its name, order, minimal degree d as a 
permutation group, multiplier, and a presentation on a, b. ( Presentations for the twenty 
non-abelian simple groups are taken from [16], [6],) When G is a PSL(2,q), q > 9, these 
are followed by two permutations of degree d satisfying the presentation. We then record 
two tables under 'conjugacy classes of elements of G' and 'conjugacy classes of maximal 
subgroups of G ', mainly taken from the ATLAS, to be used in obtaining our results on 
subgroups of G.

The first table contains the following information :
(1) Class name

The first column gives the class names of conjugacy classes of G. The conjugacy 
classes that contain elements of order n are named nA, nB, nC,... e.g., class 15D is the 
fourth class of order 15. For the first class C of each family we give the name of the class 
(order followed by letter-name) in full. Each succeeding class of the same family is 
identified by its class name by applying the algebraic conjugacy operator *k ( or **k,
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**, *). The algebraic conjugacy operators are defined on classes as follows:
(nX)*k contains the kth powers of elements of nX;
(nX)**k contains the (-k)th powers of elements of nX;
(nX)** contains the inverses of elements of nX;
(nX)* is the class other than nX containing elements of order n that are

powers of elements of nX, when this class is unique.
( It is to be understood that k is prime to n. )

(2) Centralizer orders
The second column gives the order of the centralizer in G of a typical element of 

each class.
(3) p^power

The third column gives the letter-names of the classes that contain the powers gP, 
gQ, g ,̂... of g, where p < q < r <... are the distinct prime divisors of the order of g. Thus

if g has order 60, an entry ABC means that g^e 30A, g^e 20B, g^e 12C.
(4)p'-part

The fourth column gives the letter-names of the classes containing the p'-part of 
g, also in increasing order of the primes p dividing n. For example, if g has order 60, an

entry BAB means that g^^e 15B, g^^e 20A, g25e 12B.
(5) Representatives of classes

The fifth column gives a representative as a word in a, b for each of the classes.
(6 ) Cycle type

The sixth column indicates the cycle type of each of the representatives in the 
permutation representation of G.

The second table contains information about the order, index, structure, specification, 
and the multiplier of each maximal subgroup Hj of G. The specification of maximal 

subgroups gives information which might help us to locate a copy of inside G. A 

specification expresses as the normalizer in G of some element or subgroup ( see 3.3 
for details ). This is indicated by writing N(...), where the parentheses contain 
information about the conjugacy classes of the group being normalized.

The class of a cyclic subgroup is indicated by its order, followed by the 
letter-names of its generators, subscripts are used to count cyclic subgroups in a larger 
group, and superscripts indicate direct powers of groups. Thus the symbols below would 
be used for the normalizers in G of elements or groups of the indicated forms :
N(2A): an involution in G, of class 2A.
N(3A): a group of order 3, with each generator in class 3A.
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N(5AB): a group of order 5, containing both classes 5A and 5B.
N(2A2): a four-group, whose involutions are in class 2A.
N(33)=N(3AB4CgD6) an elementary abelian group of order 27, whose 13 cyclic

subgroups number 4 containing both classes 3A and 3B, 3 
containing 3C only, 6 containing 3D only.

N(2^): an elementary abelian group of order 2^, unspecified class.
N(2A,3B,5CD): an Ag, containing elements of classes 2A, 3B, 5C, 5D.

N(2A,3B,5CD)2: the direct product of two such Ag groups.
N(2A,2C,3A,3B,.,.): a group containing elements of the indicated classes, among

others.
The type of the group being normalized, when not obvious, can usually be 

deduced from the structure information about H|.

4.2 Notation for group structure

We follow the ATLAS' notation to indicate the structure of maximal subgroups 
excepting linear groups which will be denoted by GL(n,q), PGL(n,q), etc. (after Van 
der Waerden ). The notations (cyclic), D„ (dihedral), Q„ (quaternion ) are often used 

for groups of order n with the indicated structures. The notations S^, A^ will denote the 
symmetric and alternating groups of degree n respectively. We also use the following 
notation :
AxB denotes the direct product of A and B.
A.B ( or AB) denotes any group having a normal subgroup of structure A, for which

the corresponding factor group has structure B.
A:B indicates a case of A.B which is a semi-direct product (or split extension).
A-B indicates any case of A.B which is not a split extension.

In our structure symbols for complicated groups, we used the abbreviations: 
n indicating a cyclic group of order n.
A" for the direct product of n groups of structure A .
pn where p is prime, indicates the elementary abelian group of that order. Thus the

two types of groups of order four become 4 (the cyclic group), and 2^ (the J
four-group). j

4
pn+m indicates a case of p”.p"*, and so on. j
pl+2n 01* p^l+2n or p.l+2n jg used for the particular case of an extra-special group. For j

each prime p and positive n, there are just two types of extra-special groups, j
which are central products of n non-abelian groups of order p3 (see, 1.3.5). j

For odd p, the subscript is + or -  according as the group has exponent p or p2. |i



For p=2, it is + or -  according as the central product has an even or odd number 
of quatemionic factors.

4.3 Notation for generating pairs

We use the following notation in conjunction with generating pairs for a group 
(subgroup) defined in 3.3 :
(l,m,n) indicates type of a generating pair (x,y) for a group ( subgroup ):

l<x>|l=l<y>|n^=l<xy>l"=l , x, y in unspecified classes.
(l,m,n;k) indicates a case of (l,m,n) in which the commutator [x,y] has order k.

(l,m,n/k) indicates a case of (l,m,n) in which the element xy2 has order k.
(l,m,n;k,q) indicates a case of (l,m,n;k) in which xy2 has order q.
(2A,3B,10B;5E) indicates type of a generating pair (x,y) for a subgroup H of a group

K with xe 2A, ye 3B, etc.( 2A, 3B,... are classes of K). 
(2A,3B,10;5E) indicates type of a generating pair for H where K has only one 

family of conjugacy classes of elements of order 10.
(2A,3B,10ABC) indicates type of a generating pair (x,y) for H where xy is either in 

lOA, lOB, or IOC ( same family ).
#(2A,3B,5D) denotes the number of distinct generating pairs (x,y) for A5

subgroups with xe 2A, ye 3B, xye 5D.

4.4 The Results

As was mentioned earlier, each maximal subgroup of G can be , generated by two 
elements of G with the exception of a maximal subgroup of A7 of order 72. For 
purposes of finding such generating pairs for each maximal subgroup M of G in its 
generators the conjugacy classes of G matter. For this reason we shall determine not only 
a generating pair (x,y) for M but its type indicating the classes into which x, y, xy, and 
[x,y] ( and /or a specific element of G ) belong. This would be useful when we are given 
an arbitrary generating pair (u,v) for G ( not necessarily minimal ) and wish to find two 
generators in u,v for a maximal subgroup of G. We therefore obtain representatives of 
conjugacy classes of G in a, b and include in table I (as stated in 4.2) followed by their 
cycle types when a, b are regarded as permutations. One word of warning- for certain 
simple groups G, some of the class names in [35] are slightly different from those in the 
ATLAS. Accordingly, the cycle types given in table I, in a few cases, may differ from 
those in [35].

For each group G, we shall fully indicate how the methods described in chapter 3
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are used in obtaining generators of Sylow p-subgroups, maximal subgroups of G and 
their minimal presentations. To obtain a minimal presentation for each maximal subgroup 
we shall first compute its Schur multiplier and record this in the sixth column of our 
second table.

For the rest of the chapter, H| will denote a maximal subgroup of G and Pp, p 

prime, a Sylow p-subgroup of G. The notation np(G) will be used to denote the number 
of Sylow p-subgroups of G. All Sylow 2-subgroups whose order are at most 64 will be 
identified using the lists given in [22], [39] for groups of order 2", n 6. In [39] an 
individual group P is given a designation such as 64,30, (122,122 ) where 64 is the order 
of the group, 30 means it is number 30 of the groups of order 64 in [22], 122 jg the 
terminology used in [22] to designate the abelian group C2XC4XC4. The first 122 means

that P /P ’=C2xC2xC4 and the second 122 means that the multiplier of P is C2XC4XC4. 
We shall use both the notations used in [22] and [39] in identifying our Sylow 
2-subgroups.

We note that the stabilizer of a point in the permutation representation of G, is 
taken from [7], [6] unless otherwise stated. We shall also determine intersections of all 
pairs of non-conjugate isomorphic maximal subgroups in G.

Data concerning the minimal generating pairs for the twenty simple groups are 
taken from the CAYLEY library of finite simple groups [8]. For the ten PSL groups we 
shall consider a presentation of the form G=<a,b I a2=b3=(ab)*^=((ab)i(ab-1 )i)2=l> and 
construct a permutation representation for G of minimal degree.

Finally we note that the permutation representation and the presentation of G will 
alternatively be used in this chapter. A use of the program PERM will mean that we deal 
with the permutation representation of G while that of the TC will indicate that the 
abstract group G ( with generators and relations ) is under our consideration.
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AssPSL(2,5)=PSL(2,4)

order=60=22.3.5 d=5 mult-2

G=< a,b 1 a2=b3=(ab)5=l>

conjugacy classes of elements of G

class ic(x)l p-power p'-part representative cycle type

lA 60 1 15
2A 4 A A a 1122
3A 3 A A b 1231
5A 5 A A ab 51
B* 5 A A (ab)2 51

conjugacy classes of maximal subgroups of G

specification

N(2A2) 
N(5AB) 
N(3A)

group order index structure

Hi 12 5 A4
H2 10 6 Dio
H3 6 10 S3

LSylow p-subgroups

mult

2
1
1

(i) Sylow 2-subgroup order~4
The Sylow 2-subgroup of G is the Klein 4-group since G has no element of order 

4. Using this fact we look for, by PERM, a generating pair (x,y) of type (2,2,2; 1). We 
find the generators x=a and y=[b,a]2b*l for a Sylow 2-subgroup P2 of G.

U2(G)=I G:N(P2) 1=5.

( ii) Sylow 3-subgroup order=3
Pg=<b>=C(b), ng(G)=l G: N(Pg) 1=10.

( iii) Sylow 5-subgroup order=5
P5=<ab>=C(ab), U5(G)=I G: N(Pg) 1=6.

II.Maximal subgroups

(i) structure: A4

Hj=< a^, b^>.
Taking x=â > and y=b^ we see that x and y satisfy the presentation
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<x,y I x2=y3=(xy)3=l >

The multiplier of A4 is €% and the above presentation shows that A4 is efficient.

(ii) structure: D jq

We use PERM to find the generators x=a^^ and y= bab of type (2,5,2). Then x, y 
generate a subgroup H2 of G of order 10 and satisfy

<X ,y 1 x 2 = y 5 = (x y ) 2 = l  >

H2 is maximal in G since lo f  12.

(iii) structure S3

A  generating pair for S3 is of type (2,3,2). PERM now gives x=a and 

y = b a b 'l ( a b ) 2  with x, y, and xy having order 2, 3, and 2 respectively. Hg=<x, y> is a

maximal subgroup of G for ( = A4 ) has no subgroup isomorphic to S3 and 6 
does not divide 10.

M(S3)=1 and we have

S3=<x,y I x 2 y 3 = (x y ) 2 = l> .
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1

PSL(2,7) = PSL(3,2)

order=168=23.3.7 d=7 mult=2

G=< a,b 1 a2=b^=(ab)2=[a,b]^=l >

conjugacy classes of elements of G

class lc(x)l p-power p’-part representative cycle type

lA 168 1 17
2A 8 A A a 1322
3A 3 A A b 1132
4A 4 A A [a,b] 112141
7A 7 A A ab 71
B** 7 A A b’la 71

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 24 7 S4 N(2A2) 2
H2 24 7 S4 N(2A2) 2
H3 21 8 7:3 N(7AB) 1

I.Sylow p-subgroups

(i) Sylow 2-subgroup order^S
Since PSL(2,7) has a S4 subgroup, its Sylow 2-subgroup is Dg. Taking x=a of 

order 2 PERM finds y=a^ with xy of order 4 and hence x, y generate a Sylow
2-subgroup P2 of G.

n2(G)=l G:N(P2) 1=21.

(ii) Sylow 3-subgroup 
Pg=<b>=C(b),

order-3 
U2(G)=I G:N(P3> 1=28.

(iii) Sylow 7-subgroup 
P7=<ab>=C(ab),

order-7
U7(G)=I G:N(P7> 1=8.
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ILMaximai subgroups

(iy(ii) structure: S4

G has two conjugacy classes of maximal subgroups of the structure S4. A 

generating pair for S4 is of type (2,3,4). Starting from x=a of order 2 we look for, by

PERM, generating pairs (x, y%) and (x, y2) of the above type with Ifix(x) n  fix(yx)l=l

and Ifix(x) n  fix(y2)l=0 respectively. We find yj=b^^ and y2=bl where t=ab"l. For 

i=l,2, the elements x and ŷ  generate a subgroup Hj of minimal index 7 and satisfy
$4=<x,y I x2=y3=(xy)4=l>.

Hi is not conjugate to H2, and has intersection S3 with H2 in G.

M(S4)=C2, by 1.5.11(ii), and the above presentation provides an efficient 
presentation for S4.

(iii) structure: 7:3
This is the normalizer in G of a cyclic subgroup of G whose generator lies in 

7AB. Taking u=ab, TC finds N g (<u>)=< u ,v> where v=b^ with s=abab"l. The pair (u,v) 
has type (7,3,3) and is a generating pair for a split metacyclic group of order 21. PERM 
now enables us to give neater generators x=b^ and y=b t̂> of type (3,3,7) for a maximal 
subgroup H2 of G of order 21. The generators x and y satisfy the deficiency zero 
presentation :

<x,y I x3=l, (yx)2=xy >.
It is easy to show that xy generates a cyclic normal subgroup of <x, y> of order 7

with <xy> n  <x>=(l), i.e. H2 = 7:3.
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Ag = PSL(2,9)

order=360=23.32.5 d=6 mult=6

G=< a,b 1 a2=b"^=(ab)5=(ab2)5=l>

conjugacy classes of elements of G

class lc(x)l p-power p’-part representative cycle type

lA 360 1 16
2A 8 A A a 1222
3A 9 A A ab^ab'lab 1331
3B 9 A A abab'lab^ 32
4A 4 A A b 2I4I
5A 5 A A at>2 II5I
B* 5 A A ab II5I

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 60 6 As N(2A,3A,5A) 2
Hz 60 6 As N(2A,3B,5A) 2

H3 36 10 32:4 N(32)s N(3A2B2) 3
Ht 24 15 S4 N(2A2) 2
H; 24 15 S4 N(2A2) 2

I. Sylow p-subgroups

(i) Sylow 2-subgroup order= 8

By PERM, we find the generators x=a and y=a^ for a Sylow 2-subgroup P2 of 
G isomorphic to Dg.

iî2(G)=IG:N(P2)I=45.

(ii) Sylow 3-subgroup order-9
G has no element of order 9 and so the Sylow 3-subgroup of G is C3XC3. A 

generating pair for such a group is (3,3,3; 1). PERM can now be used to give the 
generators x=ab"labab2 and y=bab-l(ab)2 for a Sylow 3-subgroup P3 of G. 

n3(G)=IG:N(P3)l=10.

(iii) Sylow 5-subgroup or der=5
P5=<ab>=c(ab), 05(G)=36.
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ILMaximal subgroups

(i)-(ii) structure:

By table H, G has two non-conjugate A5 subgroups with generating pairs (xi,y|) 

and (X2,y2) of types (2A,3A,5A) and (2A,3B,5A) respectively. We take x i“ X2=a and

find, by PERM, y%=ab^ab lab and y2=abab-lab^ with yj€ 3A and y2S 3B where xyj

has order 5 ( i=l, 2), Taking Hi=<xi,yi> and H2~<X2,y2> we observe that HjS H2 = 
A5 and that is not conjugate to H2 because Hj is the stabilizer of a point in the 

permutation representation of G while y2  being an element of H2 fixes no points ( see 

the cycle type of y2 as a representative for the class 3B).

Hi has intersection Dio with H2 in G .

(a) structure: 3^:4
This is the normalizer in G of a Sylow 3-subgroup. We take the generators x and 

y of ?3 given in (I) and find , by TC, that NQ(<x,y>)=<y,b> with l<y,b>l=36 where 

y=bab'^(ab)2. This leads to the generators r=a^ and s=b& for a maximal subgroup H3 of

G of order 36 since ô f  10. A presentation for H3 on r and s may be given by

H=cr,s I r^=s'*=(rs )̂3=(rs)'*=: 1 >.
Taking N=<rs^, srs> and M=<s> we see that N is normal in H with the structure

C3XC3 and that N n  M=(l). This shows that His a soluble group of structure 3^:4.

We now show that M(H)=C3. A covering group C for H is given by

<ai,a2,a3,a4l ai2a3=a2"̂ -(aia22)̂ a3=(aia2)̂ a4-i=[ai,a3]=[ai,a4]=[a2,a3]=
[a2,a4]=[a3,a4]=l>.

Next, TC verifies that 101=108 and hence M(H)=C3. We have M(H) =< a4>=C3. 
An efficient presentation for H is now obtained form the above presentation for H3:

<r,s I r^=(rs)^=(rs^)^s"^=1 >

(iv)-(v) structure: S4

G has two non-conjugate S4 subgroups H4 and H5. The symmetric group S4 is 
generated by two of its elements of order 2 and 3 whose product has order 4. By the 
information given in [34] about the structure constants for 2A we see that both 
#(2A,3A,4A) and #(2A,3B,4A) are non-zero and therefore H4 and H5 have generating
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pairs (X4,y4) and (xg,y^) of types (2A,3A,4A) and (2A,3B,4A) respectively (notice that 

S4 has only one conjugacy class of elements of order 3). PERM now gives X4=a,

y4=bab(ab^)^ and xg=a, yg=(b^a)^bab. H4 and H5 are maximal in G because IGrHjlf 15 
(i=l,2,3 ); and their intersection in G is a cyclic group of order 2.
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PSL(2,8)=SL(2,8)

order=504=2^.3^.7 d=9 mult=l

G=< a,b Ia^=b3=(ab)^=((ab)^(ab“̂ )'^)2=l> 

a= /1,3,2,5,4,7,6,9,87, b = /8,l,4,7,6,9,3,2,57

conjugacy classes of elements of G

class lc(x)l p-power p’-part representative cycle type

lA 504 1 19
2A 8 A A a 1124
3A 9 A A b 33
7A 7 A A [a,b] 1271
B*2 7 A A [a,b]2 1271
C*4 7 A A [a,b]4 1271
9A 9 A A ab 91
B*2 9 A A (ab)2 91
C*4 9 A A (ab)4 91

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 56 9 23:7 N(2A3) 1
H2 18 28 Hi8 N(3A) 1
H3 14 36 Di4 N(7ABC) 1

LSylow p-subgroups

{i) Sylow 2 -subgroup order= 8

The Sylow 2-subgroup of G is an elementary abelian group of order 8. Thus G 
has the Klein 4-group as a subgroup. By PERM we find the generators x=al, y=a^, 
where t=b‘lab'l and s=(ba)^b for such a subgroup. Now TC can be used to extend 
<x,y> to a Sylow 2-subgroup P2 of G. We obtain P2=<x,y,z>, where z=(ab)3(ab'l)'^. 

n2(G)=IG:N(P2)l=9.

( ii) Sylow 3-subgroup order-3
Pg=<b>=C(b), n3(G)=IG:N(P3)l=28.

(Hi) Sylow 7-subgroup order=7
P7=<[a,b]>=C([a,b]), n7(G)=IG:N(P7)l=36.
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II.Maximal subgroups

(i) structure: 2^:7
This is the stabilizer of a point in the permutation representation of G. Using this 

fact PERM finds x=a, y=bab"l(ab)^ for a subgroup of minimal index 9.
A presentation for on x, y is

<x, y I x2=y7=xyxy"3xy2=l >

Let N=<x,xy, y2xy^>. Then <x,y> is a split extension of N ( s  2  ̂) by <y>, that is

-  23:7. By combining the relations in this presentation we are able to give the following 
deficiency zero presentation for the soluble group

<x,y I x y = l ,  xy^xy=y3x>.
This shows that M(Hj)=l, by 1.5.8 (ii).

(ii) structure: Djg
We simply find, by PERM, the generators x=a, y=al)^t) for a dihedral subgroup 

H2 of G of order 18. Here (x,y ) is of type (2,2,9).

( Hi) structure: D1 4

Similarly PERM produces the elements x=a, y= for a dihedral subgroup H3 of 

G of order 14. Now the maximality of H3 follows from the fact that Hj has no dihedral 

subgroups of order 14 since IH3'I=7, IHj’l^S.
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PSL(2,11)

order=660=22.3.5.11 d= ll mult=2

G=<a,b I a^==b3s=(ab)l l=((ab)3(ab'1)3)2= i>

a=/2,1,4,3,5,6,8,7,941,10/, b= /1,7,2,6,4,5,3,10,8,9,11/

conjugacy classes of elements of G

class lc(x)l p-power p-part representative cycle type

lA 660 1 IH
2A 12 A A a 1324
3A 6 A A b 1233
5A 5 A A [a,b] 1152
B* 5 A A [a,b]2 1152
6A 6 A A (ab)3ab“i 2I3I6I
llA 11 A A ab 111
B** 11 A A b-^a 111

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 60 11 As N(2A,3A,5AB) 2
Hi 60 11 As N(2A,3A,5AB) 2
H3 55 12 11:5 N(llAB) 1
H4 12 55 Hi2 N(2A),N(3A) 2

I.Sylow p-subgroups

(i) Sylow 2-subgroup order-4
Clearly the Sylow 2-subgroup of G is C2XC2. PERM now gives x=a, y= â , 

where t= (ba)^b, for a Sylow 2-subgroup P2 of G.

U2(G)=I G: N(P2)I=55,

(ii) Sylow 3 -subgroup order=3
P3=<b>, U3(G)=! G: N(P3)I=55.

(Hi) Sylow 5-subgroup order=5
P5=<[a,b]>=C([a,b]), ng(G)=l G: N(P5)I=66.

(iv) Sylow 11-subgroup 
Pii=<ab>=C(ab),

order- 1 1

nn(G)=l G: N(Pn)l=12.
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II. Maximal subgroups

( i)-( ii) structure:

G has two conjugacy classes of maximal subgroups of the structure A5. We 

therefore seek two generating pairs (x%,yi), (X2,y2) of type (2,3,5) with

lfix(xi)nfix(yi)l=0, Ifix(x2)nfix(y2)l=l. PERM simply gives xi=X2=a, yi=b^^, y2=bt, 

where t=ab“l. Clearly Hi=<xi,yi>, H2=<X2,yi> remain non-conjugate in G. Moreover 
Hi has intersection Djo with H2.

( Hi) structure: 11:5
By table H, this is the normalizer in G of a cyclic subgroup of G whose generator 

lies in 11 AB. Take x-ab. Then TC verifies that NQ(<x>)=<x,y> where y=bab(abab"^)2. 

The subgroup Hg= <x,y> of order 55 is obviously maximal in G. A deficiency zero 

presentation for H3 on x, y may now be given by
<x,y I xH=y3, y"lx3y=x4>

( Note that H3 is a split metacyclic group of structure 11:5, by 1.5.9 ).

(iv) structure: D j2

Using PERM we find the generators x=a, y= a^^^ for a dihedral subgroup H4 of 

G with (x,y ) of type (2,2,6). That H4 is maximal in G follows immediately from the fact 

A5 cannot have D12 as a subgroup.
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PSL(2,13)

order=1092=22.3.7.13 d=14 mult=2

G=<a,b I a2=b3=(ab)13=((ab)3(ab'l)-5)2=l>

a=/2,l,4,3,6,5,13,8,10,9,ll,14,7,12/, b=/3,l,2,9,4,8,6,7,5,12,10,11,13,14/

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA
2A

1092
12 A A a

114
1226

3A 6 A A b 1234
6A 6 AA AA (ab)2ab'l 1262
7A 7 A A [a,b] 72
B*2 7 A A [a,b]2 72
C*4 7 A A [a,b]4 72
13A 13 A A ab III3I
B* 13 A A (ab)2 II I3I

group order

conjugacy classes of maximal subgroups of G

index structure specification mult

Hi 78 14 13:6 N(13AB) 1
H2 14 78 Hi4 N(17ABC) 1
H3 12 91 ^12 N(2A),N(3A) 2
H4 12 91 A4 N(2A2) 2

I.Sylow p-subgroups

Sylow 2-subgroup order-4
Using PERM, we obtain the generators x=a, y=b[a,b]3 for a Sylow 2-subgroup 

P2 ofG.

n2(G)=IG:N(P2)i=9L

( ii) Sylow 3-subgroup order=3
P3=<b>, n3(G)=IG:N(P3)l=91,

(Hi) Sylow 7-subgroup order=7
P7=<[a,b]>=C([a,b]), n7(G)=lG:N(P7)l=78.

(iv) Sylow 13-subgroup order-13 
P i3=<ab>=C(ab), ni3(G)=IG:N(Pi3)l=14.
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IL Maximal subgroups

(i) structure: 13:6
By PERM we find that S t G ( l l ) = < a ,  bab>. L e t  y=bab u=[a,y], v=ay. Then u,v 

generate Hj=Sî<3(l 1) and satisfy the deficiency zero presentation
<u, V I ul3=vb, v'^u3v=u4>.

This is a split metacyclic group of structure 13:6, by 1.5.9.

(ii) structure: Dj4

PERM simply gives the generators x=a, y=ab for a dihedral subgroup H2 of G of 

order 14 with (x,y) is of type (2,2,7). The subgroup H2 is maximal in G for IHjI is not 
divisible by 14.

(Hi) structure: Dj2

Similarly we obtain the elements x=a, y = b a b ( a b a b " l ) 2  which generate a maximal 
subgroup H3 of G isomorphic to D12.

(iv) structure: A4

That an A4 subgroup has a generating pair of type (2,3,3) helps us to find the 

generators x=a, y= b(ab)3(ab'^)3 for a maximal subgroup H4 of this structure.
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PSL(2,17)

order=2448=24.32.17 d=18 mult=2

G=<a,b I a2=b3=(ab)l7=((ab)3(ab"^)5)2=:l> 

a=/2,1,43,6,5,8,7,9,11,10,13,12,15,14,16,18,17/, 

b=/3,1,2,5,13,7,14,9,10,8,18,11,4,6,16,17,15,12/

conjugacy classes of elements of G

class lc(x)l p-power p’-part representative cycle type

lA 2448 1 118
2A 16 A A a 122»
3A 9 A A b 36
4A 8 A A (ab)2(ab"l)2 1244
8A 8 A A (ab)^ab“̂ I2g2
B* 8 A A ((ab)3ab’l)3 I2g2
9A 9 A A [a,b] 92
B*2 9 A A [a,b]2 92
C*4 9 A A [a.b]4 92
17A 17 A A ab III7I
B* 17 A A (ab)3 III7I

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 136 18 17:8 N(17AB) 1
H2 24 102 S4 N(2A2) 2 .
H3 24 102 S4 N(2A2) 2
H4 18 136 Dig N(3A) 1
H5 16 153 Di6 N(2A) 2

I.Sylow p-subgroups

(i) Sylow 2-subgroup order=16
By table II, the Sylow 2-subgroup of G is D15. Using PERM we may obtain the 

generators x=a, y=a% where t=bab-i(ab)2, for a Sylow 2-subgroup P2 of G. The 
elements x, y satisfy the presentation <x, y I x2=y2=(xy)8=l>. 

n2(G)=IG:N(P2)l=153.

(ii) Sylow 3-subgroup order-9
P3=<[a,b]>=C([a,b]), n3(G)=IG:N(P3)l=136.
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(ni) Sylow 17-subgroup order=17
Pl7=<ab>=C(ab), ni7(G)=IG:N(Pn)l=18.

ILMaxitnal subgroups

(i) Structure 17:8
This is the stabilizer of a point in the permutation representation of G. Starting 

with x=a which fixes the points 9, 16 PERM finds y = b a a b a b  with fix(y)={4,9 } and 
kx,y>i=136, that is St(;(9)=<x,y>. Let z=[x,y].Then Hi=<x,y> splits over <z> and 

<y> is a complement to <z> in Hi. Now using 1.5.9 we are able to give the following 

deficiency zero presentation for the split metacyclic group Hj
<y,z I y^=zH, y-lz6y=z^>.

( ii )-( Hi ) structure: S4

G has two conjugacy classes of maximal subgroups of the structure S4 with 

representatives H% and H3. As we remarked earlier S4 has a generating pair of type 

(2,3,4). Using this fact we obtain the generators X2=a, y2=(ab)3(abab"l)2 for H2 and 

X3=a, y3=(ab)2ab-l(ab)^ab-^ for H3.

The subgroup H2 has intersection S3 with H3 in G.

(iv) structure: Djg

It is easily found that the elements x=a and y=a^ generate a maximal subgroup H4 

of G isomorphic to Djg using PERM.

(v) structure: Dj^

This is simply a Sylow 2-subgroup of G. Thus we may take Hg=p2.
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A?

order=2520=2^.32.5,7 d=7 mult=6

G=< a,b 1 a2=b4=(ab)2=[a,b]5=(abab2ab"l)3=l>

conjugacy classes of elements of G

class (c(x)l p-power p'-part representative cycle type

lA 2520 1 17
2A 24 A A a 1322
3A 36 A A (ab2)2 1431
3B 9 A A abab^ab1 1132
4A 4 A A b U2I4I
5A 5 A A [a,b] 1251
6A 12 AA AA ab^ 2231
7A 7 A A ab 71
B** 7 A A b'^a 7I

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 360 7 A6 N(2A,3A,3B,4A,5A) 6
H2 168 15 PSL(2,7) N(2A,3B,4A,7AB) 2
H3 168 15 PSL(2,7) N(2A,3B,4A,7AB) 2
H4 120 21 S5 N(2A,3A,5A) 2
H5 72 35 (A4x3):2 N(3A),N(2A2) 6

LSylow p-subgroups

(i) Sylow 2-subgroup order- 8

Since A7 has A5 as a subgroup of odd index, the Sylow 2-subgroup of G is 

isomorphic to Dg. Using PERM we obtain the generators x=b2ab2 and y=ab& for a 

Sylow 2-subgroup P2 of G. 

n2(G)=IG:N(P2)l=315.

(ii) Slow 3-subgroup order-9
It is easy to see that the Sylow 3-subgroup of G is C3XC3. Again we use PERM 

to find the generators x=(ab2)2 and y=(bab)2 with (x,y) of type (3,3,3; 1) for a Sylow
3-subgroup P3 of G. We note that P3=C(x), 

n3(G)=IG:N(P3)l=70.
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( ni) Sylow 5 -subgroup order=5
P5=<[a,b]>=C([a,b]), n5(G)=IG:N(P5)l=126.

(iv) Sylow 7-subgroup order-7
P7=<ab>=C(ab), n7(G)=iG:N(P7)l=120.

II. Maximal subgroups

(i) structure: A6
Hi=<aba babab"l> in 3.1 of [16].

(ii)-(iii) structure: PSL(2,7)
G has two conjugacy classes of maximal subgroups with representatives H2 and 

H3 of the structure PSL(2,7). The information given in table II about these maximal 

subgroups of G shows that both H2 and H3 are constructed by picking elements x and y 
from the classes 2A and 3B such that the product xy and the commutator [x,y] lie in the 
classes 7AB and 4A respectively. We find, by PERM, the generators X2=a^, y2=(ba)2 

for H2 and X3=bab l, y3=(ab)2 for H3 with (xi,Xjyi) of type (2A,3B,7AB;4) ( i=2,3 ) and 

H2, H3 remaining non-conjugate in G.

H2 and H3 are maximal in G because 7 f  15; and that H2nH 3 = S4.

(iv) structure:
S5 has presentation

<R,T I R5=T6=(RT)2=(R2t2)2=1>, 
and is generated by elements of order 5 and 6 whose product has order 2. We take x=a of 
order 2 and obtain, by PERM, y=(bab)^ , where s=ab2, of order 6 such that kx>l=5 and 
kx, y>l=120. Taking R=xy and T =yl we see that R, T satisfy the above presentation 
for S5.

Hg=<x, y> is a maximal subgroup of G since S5, having an element of order 6, is 

not embeddable in A ;̂ and also IH5I does not divide IHjI ( i=2,3 ).

S5 has multiplier C2 with the following efficient presentation 
<R,T I R5=(RT)2, T6=(R2t2)2=i >

(v) structure: (A ^ ):2
The maximal subgroup of G of the above structure is the normalizer in G of a
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subgroup K (< G) isomorphic to A^xS. K has the following presentation :
<A,B,C I A3=B2=C3=(BC)3=[A,B]=[A,C]=1 >, 

and can be generated by AB and C with (AB, C) of type (6,3,3;2).Starting from x=ab2 
of order 6 PERM finds y=abab2ab"^ of order 3 such that kxy>l=3 and k[x,y]>l=2. 
Now X and y generate a subgroup of order 36 with No(<x,y>)=<x,y,a>, using TC, 

This leads to the generators r=b2, s=ab, and t=ab^a for a subgroup H5 of order 72. A 
specially written CAYLEY program shows that <r,s,t> cannot be generated by two of 
its elements and thus d(H^)=3. A presentation for H5 on r, s, and t is :

L=<r,s,t I r2=s2=t2=(rt)3=(st)3=(rtsrs)2=:(rtrs)3=1 >.

Taking N=<rt, rs> we observe that N< L, N n  <r>=(l) and

N=<x,y Ix3=(xy)3=(xy-l)3=[x,y2]=l > This shows that H5 = N:C2- On the other hand

N is the direct product of <y3,x> ( = A4) and <y2> ( = C3) proving that H5 = (A4x3):2.

The maximality of H5 is now assured on noting that lG:Hii'f35 ( i=2,3,4 ) and

that Hi ( = Ag) has no element of order 6 whereas ts is an element of order 6 in H5.

A covering group C for H5 is given by 

< a i , a 2 , a 3 , a 4 , a 5 , a 6 , a 7  1 a i 2 a 4 = a 2 2 a g = a 3 2 = ( a i a 3 ) 3 a 4 =  ( a 2 a 3 ) 3 a $ = ( a i a 3 a 2 a i a 2 ) 2 a ^ - l

=(aia3aia2)3a7-l=l, [a|,aj]=l ( l ^ i < 7 , 4 < j < 7 ,  i < j ) > .  

Then ICI=432 showing that the multiplier of H5 is C .̂

Unfortunately we failed to determine whether H5 is efficient.
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PSL(2,19)

order=3420=22.32.5.19 d=20 mult=2

G=< a,b 1 a2=b3=(ab)i9=((ab)3(ab"^)"7)2=i > 

a=/2,1,4,3,6,5,15,9,8,11,10,13,12,20,7,17,16,19,18,14/ 

b=/3,l,2,10,4,8,6,7,9,5,14,11,13,12,19,15,20,17,16,18/

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA
2A

3420
20 A A

1
a

l20
210

3A 9 A A b 1236
5A 10 A A (ab)3ab'l 54
B* 10 A A (ab)2ab-^ 54
9A 9 A A [a,b] 1292
B*2 9 A A [a,b]2 1292
C*4 9 A A [a,b]4 1292
lOA 10 AA BA (ab)2(ab'i)2 102
B* 10 BA AA ((ab)2(ab-l)2)3 102
19A 19 A A ab III9I
B** 19 A A b'^a III9I

group order

conjugacy classes of maximal subgroups of G

index structure specification mult

Hi 171 20 19:9 N(19AB) 1
H2 60 57 As N(2A,3A,5AB) 2
H3 60 57 As N(2A,3A,5AB) 2
H4 20 171 D20 N(2A),N(5AB) 2
H5 18 190 Dig N(3A) 1

I.Sylow p-subgroup

(i) Sylow 2 -subgroup order=4
The Sylow 2-subgroup of G is C2XC2 and thus is generated by two elements x, 

y of G with (x,y) of type (2,2,2; 1). It is now found, by PERM, that x=a, y=a^, where 
t=b(ab'l)2ab. Put P2=<x,y>.

U2(G)=IG: N(P2)I=285.

(ii) Sylow 3-subgroup order-9
P3=<[a,b]>=C([a,b]), n3(G)=IG:N(P3)l=190.
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(Hi) Sylow 5-subgroup order=5
P5=<(ab)3ab-l>=C((ab)3ab-i), n5(G)=IG:N(Pg)l=171.

(iv) Sylow 19-subgroup order-19
Pl9=<ab>=C(ab), ni9(G)=IG:N(Pi9)l=20.

II.Maximal subgroups

(i) structure: 19:9
By table II, this is the normalizer in G of a cyclic subgroup of G whose generator 

lies in 19AB. Taking x=ab, TC gives NQ(<x>)=<x,y>, where y=bab((ab)2ab"l)2. The 

elements x, y generate a split metacyclic group of order 171 and satisfy the deficiency 
zero presentation

<x, y I xl^=y9, ylx4y=x5>.

(ii)-(Hi) structure: Aj

G has two non-conjugate A5 subgroups H2 and H3 which are maximal in G by 

table n . We now seek generating pairs (x2,y2>, (X3,y3> of type (2,3,5) for H2, H3. 
PERM enables us to find X2=X3=a, y2=b^b  ̂y3=bi, where t=ab"l.

H2 has intersection C2 with H3 in G.

(iv) structure: D2 0

Using PERM we simply find the generators x=a, y= â , where t=(ab)2, for a 
subgroup H4 of G isomoiphic to D2Q.This subgroup is indeed maximal in G since A5 has 
no elements of order 10.

(v) structure: Djg

Similarly we obtain the generators x=a, y=ab for a maximal subgroup H5 of G 

isomorphic to Dig.
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PSL(2,16)=SL(2,16)

order=4080=24.3.5.17 d=17 mult=l

G=<a,b I a2=b3=(ab)l5=((ab)3(ab'l)5)2=l> 

a=/2,1,4,3,6,5,8,7,10,9,12,11,14,13,15,17,16/ 

b=/3,l,2,5,7,6,4,9,15,16,10,14,12,13,8,11,17/

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA 4080 1 117
2A 16 A A a II28
3A 15 A A b 1235
5A 15 A A (ab)6 1253
B* 15 A A (ab)3 1253
15A 15 BA AA ab 12151
B*4 15 BA AA (ab)4 12151
C*2 15 AA BA (ab)2 12151
D*8 15 AA BA (ab)8 12151
17A 17 A A [a,b] 171
B*4 17 A A [a,b]4 I7I
C*2 17 A A [a,b]2 I7I
D*8 17 A A [a,b]8 I7I
E*6 17 A A [a,b]6 171
F*7 17 A A [a,b]7 I7I
G*5 17 A A [a,b]5 171
H*3 17 A A [a,b]3 I7I

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 240 17 24:15 N(2A4) 1
H2 60 68 As N(2A,3A,5AB) 2
H3 34 120 H34 N(17A-H) 1
H4 30 136 D30 N(3A),N(5AB) 1

I.Sylow p-subgroups

(i) Sylow 2 -subgroup order = 16
The Sylow 2-subgroup of G is clearly C2XC2XC2XC2 by table I. Using PERM we 

first find that x=a^, y= ab'l(ab)^(ab'l)2 generate a subgroup of order 4. Then on 
successively extending <x,y> by 2-elements we obtain, by TC, z= ba(b(ab"l)2aba)2, 
u=(ab)4(ab‘l)4(ab)3a with x,y,z and u generating a subgroup P2 of order 16 as required.
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n2(G)=IG:N(P2)l=17.

(ii) Sylow 3-subgroup order=3
P3=<b>, n3(G)=IG:N(P3)l=136.

( Hi ) Sylow 5-subroup order=5
P5=<(ab)3>, n5(G)=IG:N(P5)l=136.

(iv) Sylow 17-subgroup order-17
Pn=<[a,b]>=C([a,b]), nn(G)=IG:N(Pn)l=120.

II.Maximal subgroups

(i) Structure: 24:15
Starting with x=a we find y=(bab)i, where t=(ab)2, with x, y generating a 

subgroup Hj of minimal index 17. In fact Hi=StQ(15). A presentation for on x, y is
<x,y I x2=yl5=i^ xy3xy=y4x>.

Let N=<x,xy,yxyl, y2xy2>. Then N is a normal subgroup of <x,y> isomorphic to 2^

and thus <x,y> is a split extension of N by <y>, that is Hj = 24:15. By combining the 
relations x2=yl5=i into the single relation x2yl5=i^ we get a deficiency zero 
presentation for the soluble group % .

(ii) structure:

We look for a generating pair (x,y) of type (2,3,5) for an A5 subgroup. PERM 

finds x=a, y=bl, where t=(ab)2. Now Hi can not have A5 as a subgroup since A5 is not 

soluble. This shows that H2=<x,y> is actually maximal in G.

( in) structure: D34
PERM gives the generators x=a, y= ab , with (x,y) of type (2,2,17), for a 

subgroup H3 of G isomorphic to D34.

(iv) structure: Dgg

Similarly we find x=a, y= â , where t=b‘l(ab)2 for a dihedral subgroup D30 of G 

which is maximal in G since IH4'I =15, IHi'l=16 and hence H4 is not embeddable in Hi,

also H2 (=Ag) cannot have H4 (= D30 ) as a subgroup.
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PSL(3,3)

order=5616=24.33.13 d=13 mult=l

G=< a,b I a2=b3=(ab)13= ((ab)4ab"l)2(ab)2(ab"^)2ab(ab’l)2(ab)2ab’^=l>

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA 5616 1 113
2A 48 A A a 1%4
3A 54 A A ((ab)2(ab"i)2)2 1433
3B 9 A A b II34
4A 8 A A [a,b] 112242
6A 6 A A (ab)2(ab‘i)2 I22I3I6I
8A 8 A A (ab)2ab"l lU ig i
B** 8 A A b(ab'l)2a II4I8I
13A 13 A A ab 131
B** 13 A A b’^a 131
C*5 13 A A (ab)5 131
D*8 13 A A (b'la)5 131

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 432 13 32;2S4 N(3A2) 1
H2 432 13 32;2S4 N(3A2) 1
H3 39 144 13:3 N(13ABCD) 1
H4 24 234 S4 N(2A2) 2

LSylow p-subgroups

( i ) Sylow 2 -subgroup order-16
We take x=(ab)2ab‘l of order 8 and use TC to find an element y in N g (< x> ) of

order 2 such that y«É <x>. We obtain y=(b‘lababa)2b. Conjugation of x and y by b'^a 
leads to the generators r=(ab)4a and s=(ba)2b'l(ab)2 for a Sylow 2-subgroup ?2 of G 
which satisfy the presentation

<r,s I s2=l, [s,r]r2=l>.

This is the semi-dihedral group of order 16 and isomorphic to 16,13(12,0) = rga2. 

We shall denote this group by <-2,4 I 2> after Coxeter and Moser ( [18], p 134 ). 
n2(G)=l G:N(P2)I=351.
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(ii) Sylow 3-subgroup order~27
Starting with x=((ab)2(ab‘1)2)2 of order 3 TC finds z=ab((ab)2ab‘l)2 in N g (< x>) 

with <x,z> of order 9. Again we use TC to extend <x, z> by a 3-element. We obtain 
y=abab"l(ab)3ab“lab in N g (< x ,z>) of order 3 with l<x,y,z>l=27. Now z can be omitted 
from the generating set (x,y,z) and we have the generators x and y for a Sylow 
3-subgroup P3 of G Next x and y satisfy the presentation :

<x,y I x3=y3=(xy)3=:(xy”l)3=l>, 
which is an extra-special group of order 27 of exponent 3 ( i.e. 3+1+2 ). 

n3(G)=lG:N(P3)l=52.

( Hi) Sylow 13 -subgroup order-13
Px3=<ab>=C(ab), ni3(G)=IG:N(Pi3)l=144.

II.Maximal subgroups

( /)-( ii ) structure: 3^ :2 S4

Hj=<ab, b^>.

Taking xj=ab and y%=b  ̂we see that (x .̂y^) is a generating pair of type (2,3B,8) 

for a subgroup of minimal index 13 with the property that xj and yj fix one, and only 
one, point in the permutation representation of G.

We now use PERM to look for a generating pair (x2, y2> of the same type with

Ifix(x2 )nfix(y2 )l=0 . (We note that #(2,3A,8)=0.) Starting from X2 =a PERM finds 

y2 =b‘l(ab) 2  and TC shows that H2 =<X2 , y2 > has minimal index 13 in G.

Hi and H2 are not conjugate in G; and their intersection is a group of order 48 
with structure GL(2,3).

The pair (X2,y2"l) satisfies the following presentation, given in [7], for Hj on the 

generators x%, yi
H=<x,y I x 2 = y 3 = (x y ) 8 = ( ( x y ) 2 x y - l )2 ( x y (x y  1)2)2= 1>.

Taking N=<(xyxyxyl)2, (ylxyxyx)2> and M=<yl(xy)3, (xyxyl)2> we see that

N is a normal subgroup of H isomorphic to C3 XC3  and that NnM=(l). This shows that

H = N:M. We now show that M = 2S4. A presentation for M on its generators is 
< r ,s ls 3 = ( r s )2 = ( r3 s " l)2 = l> .  The subgroup <r4> of order 2 is normal in <r,s> and we have

<r,s>/<r4> = S4. So H = 32:284.

As has been remarked in [7], H is the Hessian group of order 216 extended by
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C2. To see this we take T=y and S=(xyxyl)2 and observe that T and S generate a 
subgroup of H of index 2 and satisfy the following presentation for the Hessian group 
given in [18]

<T,S I T3=S3=(TS)4=1, (TST)2S=S(TST)^>.
Next we shall see that M(H)=1. A covering group C for H is 

<x,y,z,u I x2==y3z-l=(xy)8z“3=((xy)2xyl)2(xy(xyl)2)2u“l=[x,z]=[x,u]=[y,z]=
[y,u]=[z,u]=l>.

TC shows that ICI=432 proving that M(H)=1. A deficiency zero presentation for H 
can now be obtained from the above presentation for H :

<x,y I x2y3=(xy)3(xylxy)2x'lyxylx‘ly(x'lyl)3x"ly=l>.

(Hi) structure 13:3
This is the normalizer in G of a cyclic subgroup <x> of G with x in 13ABC. 

Taking x=ab we find, by TC, NQ(<x>)=<x,y> where y=b(ab‘l)^ab(ab’l)2abab'l. The 
elements x and y generate a split metacyclic group of order 39 as required. That (x,y) has 
type (13,3B,3B) enables PERM to give the neater generators u=b^ba and v=bf, where 
t=r(ab’l)2, for a maximal subgroup Hg of G of order 39 since 39 does not divide 432. 

We note that all elements of order 3 in Hg lie in 3B and hence G has no maximal 
subgroups of order 39 having 3-elements in 3A.

By 1.5.9, it is easy to see that u and w=uv satisfy the deficiency zero presentation;
<u,w I u3=wl3, [u,w"^]=w>.

(iv) structure: S4

A generating pair for S4 is of type (2,3,4). The information given in [34] about 
structure constants for the class 2A shows that #(2,3A,4)=0. So a generating pair for a 
S4 subgroup in G would be of type (2,3B,4). PERM now is able to give the generators 

x=a and y = b ' i ( a b ' l ( a b ) 4 ) 2  for a subgroup H4 isomorphic to S4. For maximality of H4 we

may use SUBGPTEST in order to show that Hj of structure 3^:284 has no 84 
subgroups.
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PSU(3,3)

order=6048=23.33.7 d=28 mult=l

G=< a,b 1 a2=bb=(ab)7=(ab2)3(ab-2)3=(abab"2)3ab(ab"l)2=l >

conjugacy classes of elements of G

class

lA

lc(x)l

6048

p-power p'-part representative

1

cycle type 

128
2A 96 A A a 14212
3A 108 A A b2 1139
3B 9 A A [a,b] 1139
4A 96 A A (abab’2)2 1446
B** 96 A A (b2ab"la)2 1446
4C 16 A A ab3 2246
6A 12 AA AA b II3I64
7A 7 A A ab 74
B** 7 A A b'la 74
8A 8 A A abab”2 122183
B** 8 B A b2ab“la 122183
12A 12 AB AA b'2a II3I122
B** 12 AA AB ab2 1131122

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 216 28 3+1+2;8 N(3A) 1
H2 168 36 PSL(2,7) N(2A,3B,4C,7AB) 2
H3 96 63 4*84 N(2A) 1
H4 96 63 42:83 N(2A2) 2

LSylow p-subgroups

(i) Sylow 2  -subgroup order-32
We take z=(ab)2ab"2 of order 8 and apply our method 2.3 (vi) to extend <z> to a 

Sylow 2-subgroup of G. TC finds u=b2abab" 1 ab^ab"lab in Ng(z) with kz, u>l=16 and 

v=b2ab“2a in N g ( < z , u > )  with kz, u, v>l=32. Now it is easy to see that kz,v>l=32. 
Conjugating zv and v 'l by ab leads to the generators x=a and y=bab“2ab for a Sylow 
2-subgroup ?2 of G.

A presentation for ?2 on the generators x,y is
<x,y I x2=y4=[y,x,y]=l >,

which is isomorphic to 32,31,(12,1)= FgC. 

n2(G)=IG:N(P2)l=189.
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(ii) Sylow 3-subroups order-2 7
The information given in table I about the conjugacy classes of G shows that the 

Sylow 3-subgroup of G is a 3-group of exponent 3. So it is an extra-special group of 
structure 3+1+2. Using this fact we seek, by PERM, a generating pair (x,y) of type 

(3,3,3;3). We find the generators x=[a, b] and y=abab3ab'l for a Sylow 3-subgroup P3 
of G which satisfy <x,y I x3=y3=(xy)3=(xy-I)3>. 

n3(G)=IG:N(P3)l=28.

(Hi) Sylow 7-subgroup order-7
P7=<ab>=C(ab), n7(G)=IG:N(P7)l=288.

n.Maximal subgroups

(i) structure 3^l+^:S
Hi=< ab, (ab)3b3 >

Putting x = a b  and y=(ab)3b3, a presentation for on x and y is given by 
H=<x,y I x 2 = y 8 = (x y 4 ) 3 = [x ,y - l ] [ x ,y 2 ]= l> ,

(see [7]). On taking N = < x y 4 ,  [y 2 ,x ]>  we see that N  is normal in H, N  = 3 + 1 + 2 , and

Nn<y>=(l). This shows that H is a semi-direct product of 3+1+2 by Cg.
As was remarked in [7], H is not isomorphic to the Hessian group as stated in

[21].
A covering group C for H is 

<ai,a2,a3,a41 ai2a3=a28=(aia24)3a3=[ai,a2-l][ai,a22]a4-l=[ai,a3]= [ai,a4]=[a2,a3] 

=[a2»a4]=[a3,a4]=l>.
Using TC we have that ICI=216 giving M(H)=1. Applying the method described 

in 3.5, we find that r=y and s = (x y )2 x  generate Hj and satisfy the following deficiency 

zero presentation for Hj
< r ,s  I r3 = s rs2 , s2 r2 s= rs ‘ l r > .

(ii) structre PSL(2,7)
By table II, the maximal subgroup of G with structure PSL(2,7) has a generating 

pair (x,y) of type (2,3B,7;4). Starting with x=a of order 2 PERM finds y^ab^abab'l in 
3B such that l<xy>l=7 and k[x,y]>l=4. Now x and y generate a subgroup H2 of order 
168 which is isomorphic to PSL(2,7). We note that #(2,3A,7AB)=0 and therefore G has 
no PSL(2,7) subgroups whose 3-elements lie in the class 3A of G.
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H2 is maximal in G since PSL(2,7) is not embeddable in H%.

(Hi) structure 4 ^ 8 4

By table II, this is the normalizer in G of an involution, TC finds NQ(a)=<u,v> 
where u=bab'lab and v=(b2a)2(ba)2b'l. Conjugation by b”2 of u"l and (vu)’i leads to the 
generators x=[a,b2] and y=(ba)2b3 for a maximal subgroup H3 of G of order 96.

A presentation for H3 on the generators x and y is
K=<x,y I x4=y8=(xy)3=[x,y2]=l>.

Next, it is easy to check that <y2> is normal in K and that the factor K/<y2>~S4. 

This proves that K is an extension of C4 by S4. Notice that K cannot split over C4

because it has no S4 subgroup, by SUBGPTEST. So K = 4 S4

The group K has trivial multiplier. To see this we first construct the following 
covering group CforK
<ai,a2,a3,a4lai4a4-l=(aia2)3a4-l=[ai,a22]a3'l=a28a4-l=[ai,a3]=[ai,a4]=[a2,a3]

=[a2,a4]=[a3,a4]=l>,
then ICI=96 and so M(K)=1.

A deficiency zero presentation for H3 can now be obtained from the above 

presentation for H3 by modifying its relations as follows :

<x,y Ix4=(xy)3, x4[x,y2]=y8 >

(iv) structure 4^:Sg

This is the normalizer in G of a C4XC4 subgroup, by 3.3.2. We take u=ab3 of

order 4  and, by PERM, find v=(bab2a)2ba with <u,v> = C4XC4. By TC, we then have 

No(<u,v>)=<a,u,w>, where w=(ba)2(b-la)2, and ka,u,w>i=l<a,wu>l=96. This gives 

the generators x=a and y=(ba)2b"lab2 for a maximal subgroup H4 of order 96 which has 

the structure 42:83 and is not isomorphic to H3. To see this we first construct the 

following presentation for H4 on its generators x and y
L=<x,y I x2=y3=(xy)8=[x, y]3-l>.

Next, L is a semi-direct product of N = < (x y )2 ,(y x )2 >  and M=<x,xY> with N = 4 2  and

M= S3. That H3 and H4 are not isomorphic follows from the fact that H3 has elements 

of order 6 and 12 while H4 has no such elements.

It is also worth mentioning that each of H3 and H4 has a single conjugacy class
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of elements of order 3 and that such elements in Hg are all in 3 A whereas those df H4 are 
in3B.
Note. We may now use PERM to find the neater generators x=a^ and y=[a, b'^J, with x 
and y satisfing the above presentation, for a maximal subgroup of G isomorphic to H4.

Finally a covering group C for L is 
<ai,a2,a3,a4lai2=a23a4-l=(aia2aia2-l)3a3-l=(aia2)%4-3=[ai,a3]=[ai,a4]=[a2,a3]

TC then verifies that IC!=192 giving M(L)=C2. fact we have M(L) = Z(C)nC’=ca3>. 
An efficient presentation for L can now given by

<x,y I x2=y3=l, [x,y]3=(xy)8>.

88



PSL(2,23)

order=6072=23.3.11.23 d=24 mult=2

G=<a,b I a2=b3=(ab)H=((ab)3(ab"^)'3)2=l>

a=/2,l,4,3,6,5,15,9,8,11,10,22,14,13,7,17,16,19,18,21,20,12,24,23/,

b=/3,l,2,14,4,8,6,7,23,9,13,11,12,5,20,15,19,17,18,16,24,21,10,22/

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA
2A

6072
24 A A

1
a

124
212

3A 12 A A b 38
4A 12 A A [a,b] 46
6A 12 AA AA (ab)4(ab'l)2 64
llA 11 A A ab I2i i 2
B*3 11 A A (ab)3 l2l l 2
C*2 11 A A (ab)2 l2l l 2
D*5 11 A A (ab)5 l 2l l 2
E * 4 11 A A (ab)4 l2l l 2
12A 12 AA AA (abMab'̂ )2

((abr(ab'U^)^
(ab)^ab”l

122
B* 12 AA AA 122
23A 23 A A II23I
B** 23 A A b(ab'^)^a II23I

group order

conjugacy classes of maximal subgroups of G

index structure specification mult

Hi 253 24 23:11 N(23AB) 1
H2 24 253 S 4 N(2A2) 2
H3 24 253 S 4 N(2A2) 2
H 4 24 253 D24 N(2A),N(3A) 2
Hs 22 276 H22 N(llABCDE) 1

I. Sylow p-subgroups

(i) Sylow 2 -subgroup order^S
Since G has D24 as a subgroup of odd index, the Sylow 2-subgroup of G is 

isomorphic to Dg ( < D24 ). Using this fact we find the generating pair (a,ab) for a 

Sylow 2-subgroup P2 of G. 

n2(G)=IG:N(P2)l=759.
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(ü) Sylow 3-subgroup order=3
P3 =<b>, n3(G)=IG:N(P3)l=253.

(iii) Sylow 11-subgroup order~ll
Pi i=<ab>=C(ab), ni i(G)=lG:N(Pi i)!=276.

( iv) Sylow 23-subgroup order=23
P23=<(ab)2ab-l>=C((ab)2ab-l), n23(G)=IG;N(P23)l=24.

ILMaximal subgroups

(i) structure: 23:11
Taking x=b'^a(ba)2 in 23A, gives N(<x>)=<x,y>, where y=(ab)^ab"^. The 

elements x, y generate a subgroup %  of minimal index 24 and satisfy the deficiency zero 
presentation

<x,y I x23=yll, y-lx2y=x> 
which is a split metacylic group of structure 23:11.

(ii)-(iii) structure: S4

Using PERM we find the pairs (X2,y2)» (X3»y3), where X2= x 3 = a, 
y2=(ba)^b"^(ab)^, y3=(ba)^b'^(ab)^ for two non-conjugate S4 subgroups of G. The 

subgroups H2=<X2,y2> and H3=<X3,y3> are maximal in G and their intersection is C2.

(iv) structure: D2 4

By PERM we simply find the generators x=a and y= a^^^ for a maximal subgroup 
H4 of G isomorphic to D24. The elements x, y satisfy <x,y I x^=y^=(xy)l^=l>.

(v) structure: D2 2

Similarly we obtain the generators x=a and y=(ba)^b-l(ab)^ for a maximal 
subgroup H5 of G isomorphic to D22.
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PSL(2,25)

order=7800=23.3.5^.13 d=26 mult=2

G=<a,bl a^b^=(ab) I3=((ab)3(ab- >

a=/6,3,2,5,4,1,8,7,10,9,12,11,14,13,16,15,17,19,18,21,20,23,22,24,26,25/, 

b=/5,l,21,3,2,19,6,22,8,20,10,18,12,17,14,16,15,13,7,11,4,9,25,23,24,26/

conjugacy classes of elements of G

class ic(x)l p-power p-part representative cycle type

lA 7800 1 l26
2A 24 A A a 12212
3A 12 A A b 1238
4A 12 A A (ab)2(ab'l)2 1246
5A 25 A A (ab“lab)2abab"i 1152
5B 25 A A ab'^ab(abab"l)^ 1152
6A 12 AA AA (ab)^ab"l 1264
12A 12 AA AA [a,b] 12122
B* 12 AA AA [a,b]5 12122
13A 13 A A ab 132
B*5 13 A A (ab)5 132
C*4 13 A A (ab)4 132
D*6 13 A A (ab)6 132
E*3 13 A A (ab)3 132
F*2 13 A A (ab)2 132

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 300 26 5^:12 N(5A2) 1
H2 120 65 Ss 2
H3 120 65 S5 2
H4 26 300 D26 N(13A-F) 1
H5 24 325 D24 N(2A),N(3A) 2

LSylow p-subgroups

{i) Sylow 2-subgroup order- 8

The Sylow 2-subgroup of G is Dg. Now PERM finds the generators x=a, 

y=abab for a Sylow 2-subgroup P2 of G isomorphic to Dg. P2 is a self-normalizing 
subgroup of G and we have that 

n2(G)=t G:N(P2)i=975.
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(ii) Sylow 3 -subgroup order-3
? 3=<b>, n3(G)=IG:N(P3)l=325.

(iii) Sylow 5-subgroup order=25
Clearly the Sylow 5-subgroup of G is C5XC5. Starting with x=(ab‘lab)2abab“l of 

order 5 PERM finds y=(ab)2(ab‘l)2abab-l with x, y generating a Sylow 5-sujbgroup of 
G.

P5 =<x,y>, n5(G)=IG:N(P5)l=26.

(iv) Sylow 13 -subgroup order= 13 
Pl3=<ab>, ni3(G)=IG:N(Pi3)l=300.

lI.Maximal subgroups

(i) structure: 5^:12
Taking x=a, we find y=b'lab(ab"l)2(ab)4 with <x,y>=Sto(17). The elements x, 

y generate a subgroup of minimal index 26 and satisfy the deficiency zero
presentation

<x,y 1 x2=(xy2)3, (xy)3xy4=yx>.

Let N=<[x,y],[x,y*l]>. Then <x,y> is an split extension of N ( = 5^ ) by <y> ( =€12 ) 
which shows that Hj is a soluble group.

( ii )-( iii ) structure:

G has two conjugacy classes of maximal subgroups of the structure S5 with 

representatives H2, H3. The group S5 has presentation <x,y I x2=y4=(xy)5=[x,y]3> and 
thus a generating pair of type (2,4,5;3). Using PERM we may now obtain the generators 
X2=a, y2=((ab)2ab"^)2ab for H2 and X3=a, y3=ab(ab-l(ab)2)2 for H3.( The subgroups 

H3 and H4 remain non-conjugate in G because their elements of order 5 are in 5A, 5B 

respectively.) We note that H3 has intersection Cg with H4 in G.

(iv) structure: D25
It is easily found that x=a, y= â , where t=b(ab)2, generate a maximal subgroup 

H4 of G isomorphic to D26-

92



(v) structure: D2 4

Similarly we obtain the generating pair (a,a^) for a subgroup H5 isomorphic to 

D24. This subgroup having an element of order 12 is not embeddable in Hj (i=2,3) and 
so is maximal.
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M il

order=7920=24.32.5.11 d=ll mult=l 

presentation:

G=< a,bi a2=b4=(ab)^l=(ab2)6=(ab)2(ab"l)2abab"lab2abab“l=l>

conjugacy classes of elements of G

class lc(x)l p-power p’-part representative cycle type

lA 7920 1 111
2A 48 A A a 1324
3A 18 A A (ab2)2 1233
4A 8 A A b 1342
5A 5 A A abab'lab^ 1152
6A 6 AA AA ab2 2I3I6I
8A 8 A A (ab)4b II2I8I
B** 8 A A b'i(b’ia)4 II2I8I
11A 11 A A ab 111
B** 11 A A b'la 111

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 720 11 MiosAg-2 3
Hz 660 12 PSL(2,11) 2

H3 144 55 Mg:2 = 32:Qg.2 N(3A2) 1
H4 120 66 Ss N(2A,3A,5A) 2

Hs 48 165 Mg:S3 = 2 N(2A) 1

I.Sylow p-subgroups

(i) Sylow 2-subgroup order~16
We shall employ the method 2.3 (vi) to extend the cyclic subgroup <b> of order 4 

to a Sylow 2-subgroup of G by 2-elements. TC finds u=(ab2)2ab(ab2)2a of order 2 in 
No(<b>) with kb,u>!=8 and v=(ab2)2a in NQ(<b,u>) with kb,u,v>l=16. Eliminating 
the redundant generator u and conjugating b and v by a we get the generators x=b2ab2 
and y=b^ for a Sylow 2-subgroup ?2 of G, The pair (x,y) satisfy the presentation

<x,y I x2=l, (xy)3=yx>, and we have ?2=<-2,4 I 2>. 

n2(G)=IG:N(P2)l=495.
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( ii ) Sylow 3-subgroup order-9
G has no element of order 9 and so the Sylow 3-subgroup of G is C3XC3. Starting 

with x=[a,b]2 of order 3 PERM finds y=abab2ab‘l of order 3 with l<xy>l=3 and [x,y]=l. 
Now X and y generate a Sylow 3-subgroup P3 of G. 

n3(G)=IG:N(P3)l=55.

( iii ) Sylow 5-subgroup order-5
P5=<abab-lab2>=C(abab-lab2), IG:N(P5)I=396.

(iv) Sylow 11 -subgroup order-11
Pll=<ab>=C(ab), (G:N(Pi i)l=144.

LMaximal subgroups

(i) Structure: Miq=A^^2
Hi=<a,bl >, where t=(ab)2.

A presentation for Hj on x=a and y=bi, where t=(ab)2, is 
<x,y I x2=y4=(xy2)5=(xy-lxy2)4y-lxy=l>

(see [7]). We now put N=<xY, (xy)2>. Then N being isomorphic to A^ has index 2 in

<x, y> . So <x,y> ( = Mjq) is an extension of Ag by C2.That Mjo cannot split over A^ 
follows immediately from the fact that both groups have an equal number of involutions, 

A covering group C for Hj is
<x,y I (xy2)5=x4, (xy"lxy2)4y-lxy85=[x,y4]=[y,x2]=l>.

By TC, we have iCI-2160 and hence M(Hi)=C3. Now a deficiency -1 presentation for 

Mio may be given by
<x, y I x2y4=(xy-lxy2)4y-lxy=l, (xy2)5=y4 >

Before going ahead, we make the following notes on M^g, M9, and Mg 

subgroups in M  ̂1 (as a permutation group acting on 11 objects) to be used in (iii) and
(v).
Notes The permutation group G=<a, b>, where

a=/10,8,ll,4,7,6,5,2,9,1,3/, b=/4,11,3,7,5,1,6,8,2,9,10/, 
is (sharply) 4-transitive on A={1,2,....,11) and has order 11.10.9.8=7920. We have

(1) Mjo is the stabilizer of a single point in G and has order 10.9.8=720. By 1.2.2 we 

can assume without loss of generality that Mjg^ StQ(ll);
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(2) Mg is the stabilizer of two points in G and has order 9.8=72. It is also the stabilizer 

of a point in M^g ( as a 3-transitive group on A\{11)). Again we may assume that 

M9=StG({10,ll});

(3) Mg is the stabilizer of three points in G and has order 8. It can also be regarded as 

the stabilizer of a point in Mg (as a 2-transitive group on A \ (10,11}).

These facts can now be used to determine the structure of Mg and Mg. As was 

seen in (i), Mjg=<x,y> where x=a, y=(b"la)2b(ab)^. We now check that <x,y>=StQ(4). 

Next we see, by PERM, that Mg=<y,z> where z=xyl(xy)2x. We have here 

<y,z>=StG({ l,4])=Stii(l), where H=<x, y>. Now a presentation for Mg on its 
generators can be constructed as follows :

<y, z I y4=z4=s(y2z2)3-y 222y2y2-l=i >

Finally, on setting u=z2yz’l we observe that Mg=<y,u>=StQ({ 1,3,4))=StK(3), 

where K=<y,z>. A presentation for Mg is
<y,u I y2=u2, u4=l, u"l=yuyl>, 

which is the quaternion group Qg

(ii) Structure: PSL(2,11 )
PSL(2,11) has presentation

<x,y I x2=y3=(xy)ll=((xy)3(xyl)3)2-i>^

and thus is generated by elements of order 2 and 3 whose product has order 11. We 
begin with x=a which is the representative for the only class of involutions in G and find, 
by PERM, y=b'l(ab)2b of order 11 with xy of order 3. TC now verifies that 
IG:<x,y>l=12. This proves that x and y generate a maximal subgroup Hg of G of the 
structure PSL(2,11). Next, (x,xy) satisfies the above presentation for PSL(2,11).

( iii) Structure: • Qg 2

This is the normalizer in G of an M g  subgroup by 3.3.2. As we remarked above.

M g  is generated by two elements r and s with (r,s) of type (4,4,4) and lfix(r) n  flx(s)l= 2. 
We take r=b and find, by PERM, s=ab‘labab2ab(ab‘l)2a with r and s satisfying the above 
conditions. Next r and s generate a subgroup of order 72 and satisfy the presentation for 
Mg. TC is now used to find NQ(<r,$>)=<r,t>, where t=[a,b]^a, with IG:<r,t>l=55. 
Conjugation by ab'l of r and t gives the generators x=a^ and y=b^, where u=b'la and 
v=ab-l, for a subgroup H3 of G of order 144. The subgroup H3, having an element of 

order 6 (namely xy2), cannot be a subgroup of Hj and hence is a maximal subgroup of 
G.
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A presentation for H3 on x and y is
K=<X,y Ix2=y4=(xy)2(xy2)2xyxy-l=l >

On taking N=<(xy2)2,yxy2xy> and M=<xY,y5^>, we have N < K, NsCgxCg, M = <A,B 

I A2=(AB)3a B”1=1>, and NnM=(l). Next we observe that <B,ABA > has index 2 in

<A,B> and is isomorphic to Qg. Therefore K = 32:Qg.2. (we note that M5P2.)
K has the following covering group

<x,y,z 1 x2=y4z=(xy)2(xy2)2xyxy-lz=[x,z]=[y,z]=l> 
of order 144 showing that M(K)=1. A deficiency zero presentation for K may now be 
given by

<x,y I x2y4=(x'ly)2(xy2)2xyxy-l=l>.

(iv) Structure:

S5  has presentation
<x, y I x4=y6=(xy)2=(x“ly)3=l>

(see[18], p i37) and thus a generating pair of type (2,4,6). PERM simply gives x=b2 of 
order 2 and y=b^ of order 4 with kxy>l=6. Now x and y generate a subgroup H5 of 

order 120 and satisfy the above presentation for S5. H5 is maximal in G since IH4I does 

not divide IĤ I ( i=2, 3 ) and that S5, having an element of order 6, is not embeddable in 

Mio-

(v) structure: Mg-'S3  ^  ’S4

This is the normalizer in G of an Mg subgroup, by 3.3.2. A generating pair (r,s)

for Mg ( = Qg) in G is of type (4,4,4) with lfix(r) n  fix(s)l=3. On taking r=b, which fixes 
exactly three points in the permutation representation of G, PERM gives 
s=(ab2)2ab(ab2)2a of order 4 with the property that s fixes the same points which are left

fixed by r and that krs>l=4. It is now easy to check that <r,s>=Qg and 

NQ(<r,s>)=<t,q>, where t=ab2ab2a and q=ab(ab" 1 )5abab2ab((ab' 1 )2ab)2ab" l aba, with 
kt,q>l=48. Next we observe that (t,q2) is a generating pair for <t,q> of type (2,3,8;6). 
This allows PERM to find the generators x=a and y = b a b " ^ (a b )2  for a subgroup H5 of G 
of order 48.

It remains to show that H5 is, in fact, a maximal subgroup of G. To see this we 

first construct the following presentation for H5 on its generators x and y :
L=<x,y 1 x 2 = y 3 = ( x y x y x y l ) 2 = i> ,
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and then observe that 1H5’1=24, IHg'kSb which shows that H5 is not embeddable in H3, 

by 1.1.4 (i). That H5 is not isomorphic to any subgroup of easily follows from the

fact that Hi has no elements of order 6 while [x,y] in L ( = H5) is an element of order 6.

On setting N=<(xy)2,y[x,y]> and M = < x Y ,y X >  one observes that N<q L, N =Qg,

M = S3 and NnM=(l).Thus L=Mg:S3. On the other hand < (x y ) 4 >  is a normal subgroup

of L of order 2 and L/<(xy)4>=S4. So L is an extension C2 by S4. However, L has no

S4 subgroup using SUBGPTEST. This shows that L = 2-S4.
A covering group C for L has presentation

<x,y,z I x2=y3z-l=(xyxyxy”l)2z'l=[x,z]=[y,z]=l> 
with ICI=48, that is M(L)=1. A deficiency zero presentation for L is

<x,y I x2y3=(xyxyx”lyl)2=l>.
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PSL(2,27)

oidep=9828=22.33.7.13 d=28 mult=2

G=< a, b I a2=b3=(ab)i3=((ab)3(ab'*)3)2=i>

a=/2,1,4,3,6,5,8.7,10,9,12,11,14,13,16,15,18,17^,19.22,21,24,23,26,25,28,27/ 

b=/l,20,2,25,4,15,6,14,8,17,10,16,12,9,7,13,ll,21,18,3,19,24,22,23,5,28,26,27/

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA 9828 1 128
2A 28 A A a 214
3A 27 A A b 1139
B** 27 A A b’l 1139
7A 14 A A [a,b]6 74
B*3 14 A A [a,b]-4 74
C*2 14 A A [a,b]2 74
13A 13 A A ab 12132
B*3 13 A A (ab)3 12132
C*4 13 A A (ab)4 12132
D*5 13 A A (ab)5 12132
E*2 13 A A (ab)2 12132
F*6 13 A A (ab)6 12132
14A 14 CA AA [a,b] 142
B*3 14 AA BA [a,b]3 142
C*5 14 BA CA [a,b]5 142

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 351 28 33:13 N(3AB3) 1
H2 28 351 ^28 N(2A),N(7ABC) 2
H3 26 378 E>26 N(13A-F) 1
H4 12 819 A4 N(2A2) 2

LSylow p-subgroups

( i) Sylow 2-subgroup order-4
Using PERM we obtain the generators x=a, y= a^ where t=(ba)2b, for a Sylow

2-subgroup P2  of G isomorphic to C2 XC2 . 

n2(G)=IG:N(P2)l=819.

(ii) Sylow 3-subgroup order=21
The Sylow 3-subgroup of G is an elementary abelian group of order 27 and
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thus has C3XC3 as a subgroup. Starting from x=b^ we find y=(ba)3(b'^a)2(ba)2b with

<x,y> = C3XC3. Now TC can be used to extend <x,y> to the Sylow 3-subgroup 

P3=<x,y,z>, where z=(ba)4(b"^aba)2b"^(ab)4, of G. 

n3(G)=IG:N(P3)l=28.

(in) Sylow 7-subgroup order-?
P?=<[a,b]2>, n7(G)=IG:N(P7)l=351.

(vi) Sylow 13-subgroup order=13
Pl3=<ab>=C(ab), ni3(G)=IG:N(Pi3)l=378.

ILMaximal subgroups

(i) structure: 3^:13
We simply find that StG(l)=<b,ab‘Hab)3ab’laba>. Set x=b, y=ab-l(ab)3ab"^aba. 

Then x, y generate a subgroup of minimal index 28 and satisfy the presentation
<x,y I yl3=[x,y][x-l,y]=l, y^xyx=xy3>.

Now let N=<x,[x,y],[x,yl]>. Then <x,y> is an split extension of N ( = 3  ̂) by <y>.

That is. Hi = 33:31. By combining the first two relations of the presentation into the 

single relation [x,y][x"l,y]yl3=i we are able to show that the soluble group Hi has 
deficiency zero.

(ii) structure: D2 8

PERM gives the generating pair (a,a^) for a maximal subgroup H2 of G 

isomorphic to Ü2g.

(iii) structure: D2 6

Similarly we find H3=<a, a^^^> with H3 = D26.

(iv) structure: A4

That A4 has a generating pair of type (2,3,3) helps us to find the generators 

x=a, y=b ,̂ where t=ab’l(ab)2, for a maximal subgroup H4 of G isomorphic to A4.
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PSL(2,29)

order=12180=22.3.5,7.29 d=30 mult=2

G=<a,b I a2=b3=(ab)^5=((ab)3(ab‘l)'5)2=i>

a=/10,3,2,5,4,7,6,9,8,1,12,11,14,13,16,15.18,17,20,19,22,21,24,23,26.25,28.27,29,30/, 

b=/2,ll,28,3,6,26,30,73,9,1,19,12,18,14,24,16,15,13,27,20,25,22,17,23,5,21,4,10,8/

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA 12180 1 130
2A 28 A A a 12214
3A 15 A A b 310
5A 15 A A (ab)6 56
B* 15 A A (ab)3 56
7A 14 A A [a,b]3 1274
B*2 14 A A [a,b] 1274
C*3 14 A A [a,b]2 1274
14A 14 BA AA (ab)4ab'^ 12142
B*5 14 CA BA ((ab)^(ab'1)2)3 12142
C*3 14 AA CA (ab)5(ab‘i)2 12142
15A 15 BA AA ab 152
B*2 15 AA BA (ab)2 152
C*4 15 BA AA (ab)4 152
D*7 15 AA BA (ab)2 152
29A 29 A A (ab)2(ab'l)2 II29I
B* 29 A A ((ab)2(ab-1)2)2 II29I

conjugacy classes of maximal subgroups

group order index structure specification mult

Hi 406 30 29:14 N(29AB) 1
H2 60 203 As N(2A,3A,5AB) 2
H3 60 203 As N(2A,3A,5AB) 2
H4 30 406 D30 N(3A),N(5AB) 1
Hs 28 435 ^28 N(2A),N(7ABC) 2

I.Sylow p-subgroups

(i) Sylow 2 -subgroup order=4
The elements x=a, y=(bab'^a)3b generate a Sylow 2-subgroup ?2 of G which is 

the Klein 4-group.
U2(G)=IG: N(P2)I=1015.
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(ii) Sylow 3-subgroup order=3
? 3 =<b>, n3(G)=IG:N(P3)i=406.

(iii) Sylow 5-subgroup order-5
P5=<(ab)3>, n5(G)=!G:N(P5)l=406.

(VÏ) Sylow 7-subgroup order- 7
P?=<[a,b]>, n7(G)=IG:N(P7)l=435.

(v) Sylow 29-subgroup order=29
P29=<(ab)2(ab-l)2>=C((ab)2(ab-')2), n29(G)=IG:N(P29)l=30.

II.Maximal subgroups

(i) structure: 29:14
This is the normalizer in G of an element in 29AB by table II. Taking 

x=(ab)2(ab"l)2, we find that N(x)=<x,y>, where y=ab’lab(ab-l)2(ab)3, with <x,y> of 
order 406 using TC. The pair (x,y) satisfies the deficiency zero presentation

<x,y I x29=yl4^y-lxl7y==xl8>

for the split metacyclic group Hi=<x,y>.

(ii)-(iii) structure: Aj

By table II, G has two non-conjugate A5 subgroups H2, H3 both having 
generating pairs of type (2A,3A,5AB). Using PERM we may obtain the generating pairs

(a^, (ba)5) and ((ab)2(ab~l)3(ab)2a,b) for H2 , H3 . We have H2 n H 3 =D%g.

(iv) structure: D^q

We find Hg=<a, (ab)2(abab"l)2> isomorphic to D30. This subgroup is maximal in 

G for A5 cannot have D30 as a subgroup.

(v) structure: D2 8

Similarly we obtain the generators x=a, y=b(abab" 1 )2ab" 1 ab for a dihedral 
subgroup of order 28 which is obviously maximal in G.
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PSL(2,31)

order=14880=2^.3.5.31 d=32 mult=2

G=<a,b I a2=b3=(ab)15=((ab)4(ab’l)ti)2i=i>

a=/2,l,4,3,6,5,8,7,10,9,12,11,14.13.16,15.18.17,20,19,22,21,24,23,26,25,28,27.30,29,32,31/, 

b=/20,21,2,4,l,7,18,9,19,ll,16,13,17,25,14,10,12,6,8,5,3,24,22,23,15,31,26,30,28,29,27,32/

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle-type

lA 14880 1 132
2A 32 A A a 216
3A 15 A A b 12310
4A 16 A A [a,b]2 48
5A 15 A A (ab)6 1256
B* 15 A A (ab)3 1256
8A 16 A A [a,b]3 84
B* 16 A A [a,b] 84
15A 15 BA AA ab 12152
B*2 15 AA BA (ab)2 12152
C*4 15 BA AA (ab)4 12152
D*7 15 AA BA (ab)7 12152
16A 16 A A (ab)5ab*l 162
B*3 16 B A ((ab)5ab"l)3 162
C*7 16 A A ((ab)5ab-i)7 162
D*5 16 B A ((ab)^ab-l)5 162
31A 31 A A (ab‘^ab)2(ab)3ab‘^ II31I
B** 31 A A b(ab"^)3(ab"lab)2a II31I

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 465 32 31:15 N(31AB) 1
% 60 248 As N(2A,3A,5AB) 2
H3 60 248 As N(2A,3A,5AB) 2
H4 32 465 H32 N(2A) 2
Hs 30 496 D30 N(3A),N(5AB) 1

LSylow p-subgroups

(i) Sylow 2-subgroup order-32
By table II, the Sylow 2-subgroup of G is D32. Using this fact we may obtain, by 

PERM, the generators x=a, y=b(abab"l)3ab"l for a Sylow 2-subgroup P2 of G. 

n2(G)=IG:N(P2)l=465.
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{ii) Sylow 3-subgroup order~3
P3 =<b>, n3(G)=IG:N(P3)l=496.

( iii) Sylow 5 -subgroup order ~5
P5=<(ab)3>, n5(G)=IG:N(P5)l=496.

(iv) Sylow 31 -subgroup order=31
P31=<(ab-iab)2(ab)3ab-i>=C((ab-lab)2(ab)3ab-i>, n3i(G)=IG:N(P3i)l=32.

II.Maximal subgroups

(i) structure: 31:15
This is the stabilizer of a point in the permutation representation of G. Taking

x=ab we find y=bal, where t=(ba)2, with lfix(x)nfix(y))=l and kx,y>l=465. Now let 
u=y^x4. Then x, u generate Hj=<x,y> and satisfy the following deficiency zero 

presentation <x, u I xl5=u31, x-lu4x=u^> for the split metacyclic group

(ii)-(iii) structure:
Using PERM, we find the generating pairs (a, bab), ((ab)^, ((ba)2bab‘la)2) for 

two non-conjugate Ag subgroups Hj, H2 of G. We note that has trivial intersection 

with H2.

(iv) structure: £>52

This is simply a Sylow 2-subgroup of G. Thus we may take H4=P2,

(v) structure: D^q

Similarly we find Hg=<a, isomorphic to D30.
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^ 8

order=20160=26.32.5.7 d=8 mult=2

G=< a,b 1 a2=b4=(ab)^5s:(ab2)4=(ab)5ab2ab(ab"l)2(ab)2ab‘l(ab)2ab"l=l>

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA 20160 1 18
2A 192 A A a 24
2B 96 A A b2 1422
3A 180 A A (ab)5 1531
3B 18 A A (abab2ab*̂ )2 1232
4A 16 A A [a,b] 42
4B 8 B A b I22I4I
5A 15 A A (ab)3 1351
6A 12 AB AB abab2 U223I
6B 6 BA BA abab2ab"l 2l6l
7A 7 A A (ab)2ab‘i II7I
B** 7 A A b(ab-l)2a II7I
15A 15 AA AA ab 3I5I
B** 15 AA AA b‘ â 3I5I

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 2520 8 A? 6
H2 1344 15 23;PSL(2,7) N(2A3) 2x2
H3 1344 15 23;PSL(2,7) N(2A3) 2x2
H4 720 28 Se 2

H5 576 35 24;(S3xS3) N(24) = N(2AgB6:I 2x2
H6 360 56 (Agx3):2 N(3A),N(2B,3A,5A) 2

I.Sylow p-subgroups

(i) Sylow 2-subgroup order-64
In G the commutator [a, b] has order 4 and so <a, a^ > is a Dg subgroup of G. 

Using the method 2.3 (vi), we find u=(ba)6b"l(ab)6ab2 in Ng(< a, a^>) with <a,a^),u> 

of order 16 and v = b 2 ( a b ) 2 ( a b 2 ) 2  in NQ(<a,at*,u>) with <a,a^,u,v> of order 32. This 
subgroup can now be extended by b2ab2 to a subgroup of G of order 64. Removing the 
redundant generators u and v gives a Sylow 2-subgroup P2 of G. On putting x=a, 

y=a^, and z=b2ab2, we find the following presentation for P2 on x, y, z :
< x , y ,  z  ! x 2 = y 2 = z 2 = (x z )2 = (x y )4 = (y z )4 = (x y z )4 = l >
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This group is isomorphic to the 2-group 64,259,(13, l4) = with presentation 

<ai, a2, a3 I ai2=a22=a32=l, [ai,a2]2=[ai, a3]2=[ai,a2]=l, [ai,a2,a3j=[ai,a3,a2] >. 
This is immediate on setting a%=y, a2=x, and a3=z. 

n2(G)=l G : N(?2) 1=315.

(ii) Sylow 3-subgroup order-9
It is clear that the Sylow 3-subgroup of G is C3XC3. Now PERM gives 

x=(abab2)2, y=(bab2a)2 for a Sylow 3-subgroup P3 of G. 

n3(G)=l G : N(P3> 1=280.

(iii) Sylow 5-subgroup order=5
P5=< (ab)3 >, n5(G)=l G : N(Pg) I =336.

(iV) Sylow 7-subgroup order=7
P?=< (ab)2ab-l >=C((ab)2ab-l), n7(G)=l G : N(P7> 1=960.

II.Maximal subgroups

In example 3 of Ch. 3 we gave generators for the six conjugacy classes of 
maximal subgroups of G. We proceed here to give presentations for these subgroups 
satisfied by their corresponding generators . Their multipliers are calculated when they 
are needed.

(i) structure : Ay
Hi=< b2, (bab)aba > in 4.I of [16].

(ii)-(iii) structure 2^ : PSL(2,7)
H2=< ab, b^ >, H3=< bab"^, b^ >.

Let X2=ab, y2=ba and X3=bab’ l, y3=ba. Then the pairs (x2,y2) and (X3, y3-l) 
satisfy the presentation

H=< X ,y I x2=y4=(xy)7=[x,y]4=((xy)3yxy-i)3=l >
Taking N=< (xy2)3, (yxy)3, (yx)2(y2x)2y-1 xy^xy > and M=< x̂ , xy>, where t=xY,

shows that N = 23, M = PSL(2,7), N o H, and N n  M=(l). So that H = 23 : PSL(2,7).
The group H is a perfect group and hence has a unique covering group C, by

1.5.14. In order to find a presentation for C we first observe that
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H  =  <  X, y  ! x 2  = ( ( x y ) 3 y x y “l ) 3 = ( x y x y l ) 4 y 4 =  ( x y ) '^ y 4 = l  > .

Then C may be given by
C=< X, y I ((xy)3yxyl)3=(xyxyl)8y8x-4, (xy)6x-5y3=[y,x2]=[x,(xyxy"l)4y4]=

[y» ( x y x y i ) 4 ] = l  >

C has order 5376 proving that IM(H)1=4. Now it is easy to check that

M(H)=<x2,(xyxy l)4y4> = C2 XC2 . This fact together with the latter presentation of H 

proves that H is efficient.
It is of interest to note that there are exactly two isomorphism classes of perfect

groups Gi and G2  of order 1344 with Gj= 2 ^: PSL(2,7) and G2 = 23-PSL(2,7) (the 

normal subgroup has no complement but supplement ) as stated in [40]. Our maximal

subgroup H2 ( = H3) is clearly isomorphic to Gj.

(iv) structure : S5

H4 =< a, (ba)2 b >.

A presentation for H4  on x=a and y=(ba)2b is
< X,y 1 x2=:y6=(xy)5=[x,y]3=[x,y2]2-l>.

Next M(Sg)=C2 , by 1.5.11 (i) and an efficient presentation for Sg is given by 
<x ,y I x2=(xy)5, (xyxy 1)3=1, (xy2xy2)2y6=i >

(v) structure 2  ̂; (S^xS^)
Hg= < (ab2 )2 , (ab)3ab'l >.

Let x=(ab2)2 and y=(ab)3ab"l. Then x, y satisfy the presentation
K= <x , y I x2=y6=(xy2)4=(xyxy3xy2)2=(xyxylxy3)2=l >.

Taking N=< (xy2)2,(y2x)2^(yxy)2^(xy)2(yx)2> and M=<r,s>, where r=y^ and

s=xyxy2xy2, shows that N<K, N nM =(l), N=24, and M=<r,slr6=s6=(rs)2=(rs'l)2=l>.

So K = 24 : M. Next M is the direct product of < r^, g3> ( s  S3 ) and < r3, s2> ( 2 S3 )

indicating that K = 24 : (S3 XS3 ).

Using the above presentation for H5 , we may construct the presentation 

C = < ai,a2,a3,a4,a5 I ai2=a26a3=(aia22)4a3=(aia2aia23aia2-2)2a4-l=

(aia2aia2-laia23)2a5‘ l= l, [aj,aj]=l (1 ^  i < 5, 3 < j <5, i < j ) >

for a covering group of H5 . Now ICI=2304 and so IM(H5 )I=4 . Indeed, M(H5 ) =

<a3 ,a5 >=C2 xC2 . Combining the first and second relation of K gives the following 

efficient presentation for H4  :
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< X, y I x2y6=(xy2)4=(xyxy3xy-2)2=(xyxylxy3)2=l >.

(vi) structure: (A^xS) : 2

b2, (ab)2ab2ab >

We set x=b2 and y=(ab)2ab2ab and find the presentation 
L=< X, y  I x 2 = y 6 = (x y 3 )3 = (x y 2 )4 = i >

for H5 on the generators x and y. The group L is a semi-direct product of 
N=<(xy)2,(yx)2> and < x >. Putting t=(xy)2 and s=(yx)2 we find

N = < t, s 1 (ts)2=(ts"l)3=t3s2r2s2=l >.

We now take M^=< 13, s3> and M2=< 15 > Then Mj = A5, M2 = C3 and N = <t,s> =

M1XM2. Thus L = (Agx3) : 2.

A covering group of has presentation :
C=<ai,a2,a3,a4 I ai2a3a4-3=a26a4=(aia23)3a3a4-3=(aia22)4a4-5=

[ai,a3]=[ai,a4]=[a2,a3]=[a2,a4]=[a3,a4]=l >.

C having order 720 gives M(H6)=C2. We have M(H^) = < a4 > = C2. The group is 
efficient for

% = <x,y I x2=(xy2)4=l, ( x y 3 ) 3 = y 6  >
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PSL(3,4)

orders=20160=26.32.5.7 d=21 mult=4xl2

G=< a,b 1 a2=b4=(ab)^=(ab2)5=(b(ab)3)7= b(ab)3b2(ab)3a(b(b(ab)3)2bab)2=l>

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA 20160 1 121
2A 64 A A a 1528
3A 9 A A ab2(abab“l)2 1336
4A 16 A A b 112242
4B 16 A A abab^ab’i 112242
4C 16 A A abab'lab^ 112242
5A 5 A A at>2 1154
B* 5 A A (ab2)2 II54
7A 7 A A ab 73
B** 7 A A b'la 73

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 960 21 24:A5 N(2A4) 2x4x4
H2 960 21 24:A5 N(2A4) 2x4x4
H3 360 56 A6 N(2A,3A,3A,4A,5AB) 6
H4 360 56 A6 N(2A,3A,3A,4B,5AB) 6
Hs 360 56 A^ N(2A,3A,3A,4C,5AB) 6
H6 168 120 PSL(2,7) N(2A,3A,4A,7AB) 2
H? 168 120 PSL(2,7) N(2A,3A,4B,7AB) 2
Hg 168 120 PSL(2,7) N(2A,3A,4C,7AB) 2
Hg 72 280 32:0» N(3A2) 3

LSylow p-subgroups

(i) Sylow 2-subgroup order=64
By table II, we see that G has a subgroup of the structure C4XC4 with a generating 

pair (r,s) of type (4A,4A,4A;i). Taking r=b, PERM gives s=ab2(ab)2ab"l(ab)2ab2a with

<r,s>=C4xC4 . Now TC is used to find t=(ab'l)2(ab2)2(ab)2a in No(<r,s>) with 

l<r,s,t>l=32 and q=(ab2ab"l)2(abab2)2a in NQ(<r,s,t>) with l<r,s,t,q>i=64. Conjugation 
by ab2 of r, s, t, and q gives the generators x=b^, y=b^(ba)2, z=a®, and u=a^, where 
c=ab2, d=ab'la, e=b2abab‘l, and f=bab2aba, for a Sylow 2-subgroup P2 of G. A 

presentation for P2 on x, y, z, and u is
<x,y,z,u I z2=u2=[x,y]=(yu)2=(xyz)2=:(yzu)2=l, [y,z]=x2, (xu)2=y2>.
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This group is isomorphic to the group 64,183,(l4,l222) = r j 3aj with the presentation

<ai,a2,a3,a41 a32=a42=l,[a3,ai]ai2=[ai,a4]a2'2ai2=l

[a2,a3]a22ai-2=[a4,a2]a22=[ai,a2]=[a3,a4]=l>,

by the mapping a i^xy , a2->y, a3->z, and a4->uy. 

n2(G)=IG:N(P2)l=105

(ii) Sylow 3-subgroup order=9
Clearly the Sylow 3-subgroup of G is C3XC3. Starting with x=ab2[a,b]2, PERM 

finds y=b[a,b]2ba with (x,y) of type (3,3,3; 1). Now x and y generate a Sylow
3-subgroup P3 of G.

n3(G)=lG:N(P3)l=280

( iii) Sylow 5 -subgroup order-5
Ps=<ab2>=C(ab2), n5(G)=IG:N(Pg)l=2016

(iv) Sylow 7-subgroup order-7
P7=<ab>=C(ab), n7(G)=IG:N(P7)l=960

II.Maximal subgroups

( i)-( ii) Structure

G has two non-conjugate isomorphic subgroups Hj and H2 of minimal index 21. 
In [7] the generators xj=ba and yi=a%b, where t=bab2, are given for Hj with

lfix(xi)nfix(yi)i=l andxj, y  ̂ satisfying the presentation
H=<x,y lx4=y5=(xy)3=(xy’l)3=(x2y)5=(x2y2xy-2)2-i>

We now take X2=ba and find, by PERM, y2=baa®, where s=b"lab2, with (X2»y2)

of type (4,5,3) and Ifix(x2)nfix(y2)l=0. Let H2=<X2,y2>- Then H2 has index 21 in G 

and is not conjugate to Hj. The generators X2 and y2 satisfy the above presentation for 

Hj. The subgroup Hi has 24.A4 intersection with H2.
We now take N=<x2,ylx2y, yx2yl,y-2x2y2>^ M=<xy,y 1 xy^xy2> and observe

that N< H, N = 24, M = A5, and NnM=(l). This shows that H is a semi-direct product 

of 24 by A5. We also note that H/H'=l and hence H is a perfect group of order 960.

We shall show that M(H) = C2XC4XC4. Since the above presentation for H leads
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to an unpleasant presentation for a covering group of H, we use the method described in 
3.5 to obtain a new presentation for H with fewer relations. It is easily seen that H can 
be generated by two of its elements x and y with kx>l=ky>l=3 and kxy>!=5. By 
PERM, we find the generators x=(ab"lab)2bab and y=abab"lab2abab’l with (x,y) of type 
(3,3,5) for the stabilizer of a point in the permutation representation of G.Now a 
presentation for <x, y> on x and y is

<x,y Ix3=y3=(xy)5=(xy-l)5=[x,y]3=l>.
Now a covering group C for <x,y> is 

<ai,a2,a3,a4,a5 I ai3a3-la4“5=a23a4-l=(aia2)^a3'2a4-l0=(aia2"l)5a4-7= [ai,a2]^a5-l=l,

[ai,aj]=l (1 < i ^  5,3 < j < 5, i < j ) >. 
Eliminating the redundant generators a3, 84, and ag we get

C=<ai,a2l(aia2)5=ai6,(aia2"l)5=a221, [ai,a23]=[ai3,a2]=[ai,[ai,a2]̂ ]=[a2,[ai,a2]̂ ]=l>.

Next, TC verifies that ICI=30720 and hence IM(H)I=32. In fact M(H) = 

<ai3,a23,[ai,a2]3> = C2XC4XC4.

(iii}-(v) structure:

By table II, G has three conjugacy classes of A5 subgroups with representatives 

H3, H4, and H5 whose elements of order 4 lie in the classes 4A, 4B, and 4C respectively 

(notice that A5 has only one conjugacy class of order 4 ). The group Ag has a generating

pair of type (2,4,5/5) and this allows PERM to seek generating pairs (X3,y3), (X4,y4), 

and (X5,y5) of type (2,4A,5/5), (2,4B,5/5), and (2,4C,5/5) for maximal subgroups 
H3, H4, and H5 respectively. We find X3=b2, y3=(ab)2ab"la, X4=a, y4=bab-l(ab)2, x^=a, 

y5=(ba)2b’lab.

The subgroups H3, H4, and H5 are mutually non-conjugate, and we have 

H3nHi=Dio ( i=4, 5 ) ,  H4 nHg = 32.2.

(vi)-( viii) Structure: PSL(2,7)
Analogous to (iii)-(v) we obtain the generators x^=b2, y^=abab-laba for H^, 

X7=a, y 7= ( b a ) 2b ‘ l a b ( a b 2)2 for H 7 and xg=a, yg=(b2a)2bab-1 (ab)2 for H g . For i=6,7,8,

(xi,yj) is a generating pair of type (2,3,7;4) for a PSL(2,7) subgroup with [x^,y^]E 4A,

[x7,y7]e 4B, and [xg,yg]E4C.
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Again Hg and H7 and Hg are mutually non-conjugate; and we have H|nHj=Sg 
(6^ i , j < 8, M ).

(ix) structure: 3^-Qg
This is the normalizer in G of a Sylow 3-subgroup, by table II. We take 

? 3=<x,y>, where x=ab2[a,b]2 and y=b[a,b]2ba.Then TC gives Ng(P3)=<z,u>, where 
z=b^ and u=(b2a)2bab-1 (ab^j^ab' lab^abab^, with kz, u>!=72. It is easily checked that 
(z,u) is of type (4A,4C,4B;2).This helps us to find, by PERM, the generators v=b and 
w=abab2ab-l(ab)2a for a subgroup Hg of G of order 72 with (v,w) of the same type. We 

now proceed to show that Hg is a maximal subgroup of G with the structure 32;Qg. We 

first construct the following presentation for Hg on its generators
K=<v,w I v4=l, v2wv=wvw2,wvw=vw2v2 >.

Next, on setting N=<vwv"lw, vw^v>, M=<w"^vw, vwv"^> one observes that N = 3 ,̂

M = Qg, N <K  and NnM =(l) showing that K = 32;Qg. Now the maximality of Hg 

follows from the fact that the Sylow 2-subgroup of Ag is Dg while that of K is Qg.
A covering group for K may be given by

C=<v,w I [w,v4]=l, v2wv=wvw2,wvw=vw2v2 >

Then ICI=216 showing that M(K)=C3. In fact we have M(K) = <v^>. So Hg having a 
2-generator 3-relation presentation is efficient. Eliminating the first relation of C gives a 
deficiency zero presentation for a covering group of Hg.
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Sp(4,3) = PSU(4,2)

order=25920=26,34,5 d=27 mult=2

G=<a,b 1 a2=b4=(ab)9=[a,b]5= ab‘^ab2ab‘l(ab)2ab2abab2(ab‘^)2(ab)4=l>

conjugacy classes of elements of G

class lc{x)l p-power p'-part representative cycle type

lA
2A

25920
576 A A

1
b2

127
13212

2B 96 A A a 17210
3A 648 A A (ab)3 39
B** 648 A A (b"̂ a)3 39
3C 108 A A (ababab"i)2 1936
3D 54 A A (ab2)2 39
4A 48 A A b 1346
4B 8 B A ab(ab2)2 122345
5A 5 A A [a,b] 1255
6A 72 BA AA (b2ab‘la)2 3 W
B** 72 AA BA (abab2)2 3164
6C 36 CA CA (ab)2ab~l 132363
D** 36 CA CA b(ab-i)2a 132363
6E 18 DA DA ab2 3164
6F 12 CB CB (abat)2)2ab 11243262
9A 9 A A ab 93
B** 9 B A b’la 93
12A 12 BA AA abab2 31122
B** 12 AA BA b^ab'ia 31122

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 960 27 24:As N(24) = N(2A5Bio) 2x2
H2 720 36 Se N(2B,3C,3D,4B,5A) 2
H3 648 40 3+1+2:2A4 N(3AB) 2
H4 648 40 33;S4 N(33)=N(3AB4C3Dg) 1
H5 576 45 2-(A4xA4).2 N(2A) 2

I.Sylow p-subgroup

(i) Sylow 2 -subgroup order=64
By the information given in [34] about the structure constants for the classes of 

involutions, we see that G has Dg as a subgroup. By PERM we find x=ab and y=ab^a

with <x, y> = Dg. On successively extending <x, y> by 2-elements, we obtain, by TC,
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z=al, where t=bab2, with x, y, and z generating a Sylow 2-subgroup P2 of G. A 

presentation for P2 on x, y, and z is
<x,y,z I x2=y2r=z2-(xy)4=(yz)4=(xyzy)2=(xyzxz)2=l>.

This group is isomorphic to the 2-group 64,259(13,14) = F2^aiwith the 

presentation
<ai,a2,a3 I ai2=a22=a32=l, [ai,a2]2=[ai,a3]2=[a2,a3l=l, [ai,a2,a3]=[ai,a3,a2] >,

by the mapping a%->y, a2 ->x, a3 -»xyzy. 

n2(G)=IG:N(P2)l=135.

(ii) Sylow 3-subgroup order-81
Beginning from x=ab2(ab)2 of order 9, TC gives 

z=b2(abab'l)2abab2(ab"l)3abab-lab2ab’l in N g (< x> ) \ < x> with l<x,z>l=27. Now 

N g (< x ,z> )= < x , y>, where y=bab2ab, wiA x and y generating a Sylow 3-subgroup P3 
of G. A presentation for P3 on x and y is given by

< x ,y  I y 3 = (x y ) 3 = (x 2 y )2 x - ly = l> .  (* )

It may be worth remarking that there are exactly fifteen isomorphism classes of 
p-groups of order p4, (p > 2), (see Burnside, Theory of groups of finite order, p 145 ) 
and that P3 is isomorphic to the group

<P,Q,R I PP2=QP=1, pQ=pl+P, pR=PQ, QR=Q, RP=1>, 
for p=3 (It is number (xi) in the list, p 145 ). To see this one may put x=P and y=QR l.

It should also be emphasised that the presentation (*) for P3 is minimal for rank 

M(P3)=1 as we shall see now. A covering group for P3 may be given by
<x,y t (x y )3 = y 3 , (x2y)2x-ly=[x,y3]= 1 > 

which has order 243 and so M(P3)=C3. 

n3(G)=IG:N(P3))=166.

(iii) Sylow 5-subgroup order-5 
P5=<[a,b]>=C([a,b]), IG:N(Pg)l=1296.

II.Maximal subgroups

(/) structure 2 ^:A^
Hi=< a, b2ab(babab)2 >.

Putting x=a and y=b2ab(babab)2, a presentation for Hi on x and y is 
H=<x,y I x 2 = y 5 = (x y 2 )5 = (x y x y 2 )4 = ( (x y )2 x y - lx y 2 )2 = l>
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(see [7]). We now set N=< (xyxy2)2^(xy2xy)2^(yxy2x)2^(yxyxy)2>, M~<yxy"l,yX>.

Then N< H, N=2^, M=Ag, and NnM=(l) showing that H is a semi-direct product of 2  ̂

by A5.

Since H /H -1 , H is a perfect group of order 960. As was seen earlier, the 
simple group PSL(3,4) has also a ( maximal ) subgroup K of the same order with K 
being both perfect and isomorphic to a semi-direct product of by A5. In fact there are 
two isomorphism classes of perfect groups of order 960, see [40]. On computing the 
Schur multiplier of H we shall see that H and K are really representatives for these 
classes.

In order to find a somewhat simpler covering group for H to be more amenable to 
computation with TC we first replace the third and fifth relation of H by the single 
relation xy-lxy2xy'lxyxy-ixy2xy2=l. Then a covering group for H can be given by

C=<x,y,z I y5=z2, (xyxy^)^=x'^z^, xy-^xy^xy ̂ xyxy-lxy^xy^=x^, [x,z]=[y,z]=
[y,x2]=[z,x2]=l>.

Next (Cl=3840 and hence IM(H)l=4. Now it is easy to check that M(H)=<x2,z>~C2xC2. 
This fact together with the latter presentation for H, proves that H is efficient.

(ii) structure

S5 has presentation
<x,y I x^=y^=(xy)^=[x,y]3=[x,y^]^=l>

(see [18]) and thus is generated by two of its elements of order 2 and 6 whose product 
and commutator have order 5 and 3. Starting from x=a ,which is in 2B, PERM gives 
y=bab^(ab)^ab" ̂  ab  ̂with x and y generating a subgroup H2 of G and satisfying the above 
presentation for Sg.

We note that S5 has three conjugacy classes of involutions with lengths 15, 45, 

and 15. These classes in H2 have representatives belonging to the classes 2A, 2B, and 

2B respectively. This shows that a Sg subgroup in G has involutions both in 2A and 2B. 
We may use this fact to give the generating pair (b ,̂ (abab^)2ab) of type (2A,6,5;3) for a 
S5 subgroup conjugate to H2.

Next M(S6)=C2, by 1.5.11 (i) and an efficient presentation for S5 is given by 
<x,y I x2=(xy)5, (xyxyi)3=l,(xy2xy2)2y6=ix

(Hi ) structure +2;2A^

This is the normalizer in G of a cyclic subgroup of G whose generator lies in 3AB. 
We take r=(ab)3, which is in 3A, and use TC to determine No(<r>). We find
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NG(r)=<s,t>, where s=b(ab-^)^ab^, t=ab'l(ab)^ab“l and IG:< s, t >1=40. Since IG:Hjl-f40 
(i=l, 2), <s,t> is a maximal subgroup of G of order 648. It is now easy to chck that 
(s,t) is of type (3B,6E,4A;4A). As elements of order 3 are not conjugate to their 
inverses, (s"^f^) will have the type (3A,6E,4A;4A), using table I. This enables PERM 
to give the neater generators x=b and y=(ab)^a with (x, y) having the type 
(4A,6E,3A;4A) and x, y generating a maximal subgroup H3 of order 648.

It remains to show that H3 is a semi-direct product of 3+1+2 by 2A4. To see this, 

we first construct the following presentation for H3 on x and y :
K=< X, y I x^=(xy)3=(x^y3)3=x2y2xy-2xyxy-1=1 >

Next we put N=<y^x^, y^x^y >, M=<x, yx"ly>.Then N is a normal subgroup of K,

with the structure 3+1+2, which intersects M trivially. That is, K = 3+1+2: M . The 
subgroup M is now found to have a presentation on its generators x and z=yxyl with

relations x4=(xz" 1 )3=(xz)6=x^z-3=1. We have < x^> <j <x,z> and the factor <x,z>/<x^>

is isomorphic to A4 showing that M = 2A4. Therefore K = 3+1+2: 2A4.
A covering group for K has presentation 

<ai,a2,a3,a4 I ai4a3=(aia2)^a3=(ai2a23)3a32=:a],2a22aia2-2aj[a2aia2'la4-l=

[ai,a3]=[ai,a4]=[a2,a3]=[a2,a4]=[a3,a4]=l>.
Then C has order 648 proving that M(K)=1.

Our reduction method fails here to direct the above presentation of K to a 
deficiency zero presentation. We therefore try to find a new 2-generator presentation for 
K having at most 3 relations. Using the method described in 3.5, we find that r=y^x and 
s=xy generate the group K and satisfy the presentation

<r,s I s^=r3s(r-l s)^=r^srsr ls 'l r  1 srs= 1 >.
Now s^=l is easily shown to be redundant and hence K has deficiency zero.

(iv) structure 3^: S4

By table II, this is the normalizer in G of an elementary abelian group P ( < G) 
whose 13 cyclic subgroups number 4 containing both classes 3A and 3B, 3 containing 
3C only , and 6 containing 3D. Reverting to the Sylow 3-subgroup P3 given in (I) one 
can easily check that P=<y, y*, x^> has this property. Substituting ab^(ab)^ , bab^ab for 
X , y and using TC we get Ng(P)=<z, u>, where z=b-labab^(ab)^ and u=(b^a)^bab. The 
elements z and u generate a maximal subgroup of G of order 648. The pair ( u z ' i ,u z u - l )  

being of type (6E,3D,4B;9) is clearly a generating pair for the same subgroup. Using 
this fact we are now able to find, by PERM, the generators v=(b^a)2 and w=bab for a 
maximal subgroup H4 of G of order 648 with (v, w) of type (3D,6E,4B;9).
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We must show that H4 has structure 3^:84 and that it is not isomorphic to H3. We 
begin with the following presentation for H4 on its generators :

L=<v, w I v^=w^=(vw)4=(vw“l)^=(vw2)3=l>.

Now take N=<w^, v^w^v, vwvw^(vw)^ > and M=<w^, v >. Then N-33 and MSS4

with NnM=(l), N<L. So L = 3^:84. That H3 and H4 are not isomorphic follows simply 

from the fact that H4 has an element of order 12 while H3 has no such element.

Finally we compute the Schur multiplier of H4 in the following way. We first 
combine the second and the fourth relations of L in order to find a new presentation for L 
with four relations. We have

L=cv, w I v^=(vw)4=(vw 2)3=1, (vw-l)4w6=l>.

Then a covering group C for L is found to have a presentation on generators a^, a ,̂ a3, 
a4 with relations ax3a3-la42=(aia2)^a3-la42=:(aia22)3a4=(aia2-l)'^a26a42=l,

[ai,a3]=[ai,a4]=

The group C has order 1296 and hence M(L)=C2. In fact we have that

M(L) = Z(C) n  C'=<a3> = C2. Now an efficient presentation for L is obtainable from 
the latter presentation for L as follows:

<v, w I v^=(vw)4, v^=(vw 2)3, (vw -l)4w 6=1 >

fv) structure: 2 '{A4 xA4 ) 2

By table II, this is the normalizer in G of an involution x g  2A. We take x=b^ and, 
by TC, find NQ(b2)=< r, s >, where r=(ab‘l)5(ab)^bab"^ab2(ab"^)2a,

s=ab2(ab"î)3(ab)2ab2(ab‘l)2aba, with 1 G: < r, s > 1=45. Since i G : Hj if45 (i=l,2,3,4), 
< r, s > is a maximal subgroup of G of order 576. Next we see that (r,s) is of type 
(4B,6D,3B;3D). By an argument similar to that in (iii), ( r l , s"l) is a generating pair of 
type (4B,6C,3A;3D) for a maximal subgroup of G of order 576. Using this fact PERM 
produces the generators x=(ab)3 and y=bab2abab2 for a maximal subgroup H4 conjugate 
to <r,s> with (x,y) of type (3A,4B,6C;3D). Then x and y satisfy the presentation

H=<x,y I x 3 = y 4 = (x y ) 6 = l ,  [x,y]=[y,x‘l] >.

Using this presentation for H4 we shall show that H4 = 2-(A4xA4).2.The element 
x y 2  has order 12 in H and (x y 2 )6  generates a cyclic normal subgroup of H of order 2. On 
adding (x y 2 )6 = l to the presentation of H we have

K=<x,y I x 3 = y 4 = (x y ) 6 = (x y 2 ) 6 = l ,  [x,y]=[y,x-l] >, 
with I K 1=288. Then the subgroup N generated by r=xy2 and s=yxy has index 2 in K.
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Using SUBGP, we may obtain the following symmetric presentation for N on u=rs , 
v=rs2

<u,v I u^=v3=[u,v]2=(uv)6=l>.
Now we let Lj=<u, u^> and L2=<(uv)2, (vu)2> and observe that L%, L2 are each

normal in <u, v > with L jn  L2=(l) and Lj = L2 = A4. Thus N = A4XA4 and K =

2.(A4xA4>. This proves that H ( = H5 ) is an extension of C2 by (A4xA4).2, Next 

SUBGPTEST enables us to show that H5 has no subgroup isomorphic to K.Therefore

Hg=2'(A4xA4).2 . Meanwhile, we have found an efficient presentation for A4XA4.

We now show that M(Hg)=C2. Using the presentation for H5 we find the 
following presentation for a covering group C of Hg :

<x,y,z,u I x3=y4z=(xy)6z=l, [x,y]=[y,x"l]u, [x,z]=[x,u]=[y,z]=[y,u]=[z,u]=l>.

Then I C 1=1152 and we have M(H) = < z >=Z(C) n  C, where I < z >1=2. Now an 
efficient presentation for H5 may be given by :

<  X, y 1 x^y4=l, (xy)6=x3, [x,y]=x3[y,x-l] >
Note. By taking r=ab"  ̂ab^abab-1 ab and s=r'l(abab2)2ab we see that r and s generate a 
subgroup of G conjugate to H5 with r, s satisfying the following deficiency zero 
presentation for a covering group of Hg

<r,s I r2s=srs3r, rsrs'2r=srs>.
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SZ{8)
order=29120=26.5.7.13 d=65 mult=2x2

G=< a,b I a2=b‘̂ =(ab)^=[a,b]^=(ab2)l3= ab"^(ab2)2(ab'labab^)^ab2ab(ab2)4=i>

conjugacy classes of elements of G

class lc(x)l p-power p’-part representative cycle type

lA 29120 1 165
2A 64 A A a 11232
4A 16 A A b II4I6
B** 16 A A b-l II4I6
5A 5 A A ab 513
7A 7 A A [a,b] 1279
B*2 7 A A [a,b]2 1279
C*4 7 A A [a.b]4 1279
13A 13 A A 135
B*3 13 A A (ab2)3 135
C*9 13 A A (ab^)-^ 135

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 448 65 23+3:7 N(2A3) 2x2
H2 52 560 13:4 N(13ABC) 1
H3 20 1456 5:4 N(5A) 1
H4 14 2080 Di4 N(7ABC) 1

I.Sylow p-subgroups

(i) Sylow 2 -subgroup order=64
In [7] the generators r=b^^ and s=(ba)2(b2a)2 are given for a subgroup H of G of 

minimal index 65 which, clearly, contains a Sylow 2-subgroup ?2 of G. We shall 

employ the method described in 3.2 to give generators for ?2 by determining generators 
for a Sylow 2-subgroup of H. We begin with the following presentation for H on r, s : 

<r,s I r^=s^=(rs‘2)7=[r2, srs"^]=rsr -lg-3rs2=l > (f)
(see [7]). Using TC we find the generators r, s'^rs, and srs’  ̂ for a Sylow 2-subgroup of
H. Substituting b^^, (ba)2(b2a)2 for r, s and using PERMGP we obtain P2=<x,y,z> 
where x=b^^, y=b2abab-^abab2ab(ab-^)2 and z=ab'labab2(abab’l)2. By the information 
given in table I about the orders of centralizers of involutions we are now able to check 
that P2=C(x2).

Next, a presentation for P2 on x, y, and z may be given by
<x ,y, z 1 xyzxzy=xzyzx‘ly=xzy^x'lzy=x“lyzx'lzy=xyz'lxz‘ly=l >
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which is isomorphic to the 2-group 64,153,(l3,l2) sT^e with the presentation 

<ai, a2, ag I ai2a22a3“2=l, [a2,ai][a2,a3]ai-2=l, [a3,ai][a2,a3]a22=l,

[a2,a3,ai]=[a2,a3,a2l=l>.

To see this, we may consider the mapping a%->x, a2~>z, a3~>yz which yields an 
isomorphism between these two groups. 

n2(G)=l G : N(?2) 1=65.

( ii) Sylow 5-subgroup order=5
Ps=< ab >=C(ab), ng(G)=l G : N(Pg) 1=1456.

(iii) Sylow 7-subgroup order=7
P?=< [a,b] >=C([a,b]), ny(G)= I G : N(Pv) 1=2080.

(iv) Sylow 13-subgroup order=13
Pl3=< ab2 >=C(ab2), ni3(G)=l G: N(Pi3> 1=560.

II. Maximal subgroups

(i) structure: 23+-̂  ; 7
Hi=< bab, (ba)2(b2a)2 >.

Let x=bab and y=(ba)2(b2a)2. Then x and y satisfy the presentation (f) given in (I) 
for Hj, by the change of (r, s)= (x, y). We now proceed to show that Hj is a semi-direct 

product of 23+3 by C7. By the foregoing discussion x, t=y -ixy and q=yxy-1 form 
generators for a Sylow 2-subgroup N of H which is, in fact, normal and has trivial

intersection with <y>. This shows that H = N : 7. Next < x^, t^, q2 > is a nomal

subgroup of N with the structure 23 and we have N /< x2, t ,̂ q2 > = 23. Therefore H = 
23+3 ; 7.

A covering group C for is found to have presentation on generators a%, a2, a3, 
a^, ag with relations ai4a3>ia54=a27=(aia2-2)'7a3-2a57=[ai2 a2aia2-l]a4-l=l, 

aia2ai-la2'3aia22=l, [aj, aj]=l ( 1 < i < 5, 3 < j i < j ).

Then I C 1=1792 and M(H) = Z(C) n  C =< 84, ag > = C2XC2. Now by combining the 

first and second relations of H we find the following deficiency -2 presentation for Hj. 
<x,y I x4y7=(xy-2)7=[x2, yxy“l]=xy2xyx“̂ y3=l >.
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(ii) structure: 13 :4
By table n, this is the normalizer in G of a cyclic subgroup of G whose generator 

lies in 13ABC. We take z=ab^ in 13A and find, by TC, N g (< z> )= < z ,u>  where 
u=b"^ab2)2ab'^ab(ab‘l)2ab(ab2ab‘l)2. Then the pair (z,u) of type (13,4,4) is a 
generating pair for a maximal subgroup of G of order 52. It is now easy to check that u^ 
and zu generate < z, u > and that (u ,̂ zu) is of type (2,4B,4A;13). This helps us to give, 
by PERM, the generators x=ab and y=a[b2, aba] for a maximal subgroup of G of 
order 52. The generators x and y satisfy the deficiency zero presentation

<x, y I x2=xy2[x, y]2=l >.

This is a split metacyclic group of structure 13 :4. In fact <x,y> = <[x,y] >:<y>.

(iii) structure: 5 :4
By a similar method to that of in (ii), we first find 

NG(<ab>)=<ab,ab'l(ab2)2(ab2abab“iab)2b> which is a maximal subgroup of G of order 
20. Then on setting r=ab, s= ab"^(ab2)2(ab2abab"^ab)2b , we observe that s2 and rs 
generate <r,s> and that (s^, rs) is of type (2,4B,4A;5). Using this fact, PERM gives the 
generators x=(b2)^ba and y= b^bb with (x,y) of type (2,4A,4B;5). Then H3 =<x,y> is a 

maximal subgroup of G of order 20 with the presentation
K=< X, y I x2=xy2xyxy-^=l>.

K is a split metacyclic group of stmcture 5 : 4 for K = < [x,y] > : <y> in which the 
commutator [x,y] has order 5 in K.

(iv) structure: Dj4

We simply find , by PERM, the subgroup generators x=a and y=bab'l for a 
dihedral subgroup of G of order 14. We shall now show that H4= < x, y > is maximal in 

G by proving that has no D14 subgroups. Using the presentation (t), we see that 

IH'I=64. On the other hand Dj4 has C7 as its derived group proving that D14 is not 

embeddable in Hj, by 1.1.4 (i).
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PSL(2,32) = SL(2,32)

order=32736=2^.3.11.31 d=33 mult=l

G=<a,b I a2=b3=(ab)31=((ab)3(ab'^)7)2=l>

a=/2.1.16.17,18.19,20.21.22,23,24,25,26.27,28,3,4,5,6,7,8,9,10,11,12,13,14,15,33.32.31.30,29/, 

b=/3,l,2,14,24,8,33,23,13,5,20,17,31,27,26,15,22,11,29,18,30,12,6,10,21,16,4,19,28,25,9,7,32/

conjugacy classes of elements of G

class lc(x)l p-power p’-part representative cycle

lA 32736 1 l33
2A 32 A A a 11216
3A 33 A A b 311
llA 33 A A ((ab)2ab'i)2 113
B*2 33 A A ((ab)^ab-i)4 113
C*4 33 A A ((ab)^ab"l) 3 113
D*3 33 A A ((ab)2ab~l)'6 113
E*5 33 A A ((ab)%b-l)-l 113
31A 31 A A ab 12311
B*2 31 A A (ab)2 12311
C*4 31 A A (ab)4 12311
D*8 31 A A (ab)8 12311
E*15 31 A A (ab)l5 12311
F*5 31 A A (ab)5 12311
G*10 31 A A (ab)^O 12311
H*ll 31 A A (ab)H 12311
1*9 31 A A (ab)9 12311
J*13 31 A A (ab)l3 12311
K*6 31 A A (ab)6 12311
L*12 31 A A (ab)l^ 12311
M*7 31 A A (ab)7 12311
N*14 31 A A (ab)^4 12311
0*3 31 A A (ab)3 12311
33A 33 DA AA (abyab*^ 3 3 I
B*2 33 HA BA (ab)6ab-̂ 3 3 1
C*4 33 AA CA (ab)4(ab’l)2 33I
D*8 33 BA DA ((ab)4(ab‘l)2)2 331
E*16 33 CA EA (ab)5(ab"i)3 331
F*10 33 DA AA ((ab)6ab"l)5 331
G*13 33 EA BA (ab)9(ab"l)4 331
H*7 33 AA CA ((ab)4ab'^)7 33I
1*14 33 BA DA (ab)5(ab“l)4 331
J*5 33 CA EA (ab)3(ab'l)3 331
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conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 992 33 25:31 N(2A5) 1
Hz 66 496 066 N(3A),N(11A-F) 1
H3 62 528 062 N(31A-0) 1

I.Sylow p-subgroups

(i) Sylow 2-subgroup order=32
In example 2 of 3.2 we gave the generators x= ab, y=ab‘l(ab)7(ab'l)2, 

z=(ab-l)3(ab)^(ab*’l)' ,̂ u=(ab“l)^(abab-l)2(ab)3a, v=(ab"lab)2(ab)^(abab"l)2ab’l for a 
Sylow 2-subgroup ?2 of G which is an elementary abelian group of order 32, By 
information given in table I about the order of centralizer of involutions we can now 
check that C(x)=p2.

n2(G)=lG:N(P2)l=33.

(ii) Sylow 3-subgroup order=3
Pg=<b>, n3(G)=IG:N(P3)l=496.

( iii) Sylow 11 -subgroup order=̂  11
Pn=<(ab)2abab-l>, nii(G)=IG:N(Pn)l=496.

(iv) Sylow 31-subgroup 
P31 =<ab>=C(ab),

order~31
n3i(G)=IG:N(P3i)!=528.

II.Maximal subgroups

(i) structure: 2^:31
By PERM we find the generators x=aba and y=(bab)^b for the stabilizer of a 

point in the permutation representation of G. The elements x, y generate a subgroup Hj 
of index 33 and satisfy the presentation

<x, y I x2=y31=l, xy2(xy)3=y5x>.
Let N=<[x,y],[x,y-l],[x,y2],[x,y-2],[x,y3]>. Then N is a normal subgroup of <x,y> 
isomorphic to 2  ̂ and thus <x,y> is an split extension of N by <y>, that is Hj has 
structure 2^:31. Now substitution of aba, (bab)^b for x,y into the generators of N gives 
a subgroup of G of the structure 2^ whose normalizer in G is exactly Hj as our second 
table indicates. By combining the relations of the above presentation we obtain a
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deficiency zero presentation for the soluble group
<x,y I x2y31=l, y2(xy)3=xy5x>.

(ii) structure:

By PERM we find the generators x=a, y=al> where t=(ba)2b, for a maximal 
subgroup H2 of G isomorphic to

(iii) structure:

Similarly we find x=a, y=ab for a subgroup H3 of G isomorphic to Dg2. To 

prove H3 maximal we observe that 1H3'I=31, lHi’l=32, that is H3 is not embeddable in 

Hi.
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PSU(3,4)

order=62400=26.3.52.13 d=65 mult=l

G=< a,b I a2=b^=(ab)l3= ab(ab‘l)2(ab)2ab'lab(ab‘l)4abab'l(ab)4ab"l=l>

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA 62400 1 165
2A 320 A A a 11232
3A 15 A A b 12321
4A 16 A A (ab)4(ab"l)2 II4I6
5A 300 A A ((ab)^b‘l)^ 15512
B** 300 A A ((ab)2ab"l)4 15512
C*2 300 A A ((ab)2ab’i)2 15512
D*3 300 A A (b(ab"l)2a)2 15512
5E 25 A A [a,b] 513
F* 25 A A [a,b]2 513
lOA 20 CA AA (ab)2ab‘l 1122106
B** 20 DA BA b(ab"l)2a 1122106
C*7 20 BA CA ((ab)2ab-i)-3 1122106
D*3 20 AA DA ((ab)2ab-l)3 1122106
13A 13 A A ab 135
B** 13 A A b'la 135
C*5 13 A A (ab)5 135
D*8 13 A A (b’la)5 135
15A 15 DA AA (ab)3(ab-i)2 1231154
B** 15 CA BA (ba)2(b-la)3 1231154
C*2 15 AA CA ((ab)5(ab‘1)2)2 1231154
D*8 15 BA DA ((ab)5(ab-l)2)8 1231154

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 960 65 22+4 -15 N(2A2) 1
Hz 300 208 5xAg N(5ABCD) 2
H3 150 416 52:S3 N(52) 1
H4 39 1600 13:3 N(13ABCD) 1

LSylow p-subgroups

(i) Sylow 2-subgroup order=64
We shall use our method described in 3.2 to give generators for a Sylow

2-subgroup of G by determining generators for a Sylow 2-subgroup of 
<b,(ab(ab‘l)2)2ab'laba > which is a subgroup of G of minimal index 65. We set 

r=b, s=(ab(ab'l)2)2ab'laba. (*)
Then r and s satisfy the presentation

125



H=< r, s I (rs)2s(r 1 s)2=rsr2s"lr$'4rls-l=1 > (f)
as stated in [7]. Using TC, we may arrive at the generators

[r, s], [s, r i] ,  [ r l , s'l], [r,s-l] (*♦)
for a Sylow 2-subgroup of H. Substituting (*) into (**) and using PERMGP, we find 
the generators x=(ab-l)2(ab)4, y=b(ab-l)2(ab)3a, z=((ab)2ab-l)4ab“lab , 
u=b((ab)2ab'l)^ab’la for a Sylow 2-subgroup P2 of G.

A presentation for P2 on these generators may be given by
< X, y, z, u I [x,y]=[z,u]= xzx-lz=xuxu-l=yuy lu=l, y2=z2, x2=(yz)2, x2=y2%]2 >

This group is isomoiphic to the 2-group 64,187,(1^,14) = r^^ag with presentation 

< a%, a2, &3, a4 I ai2a22a4“2=a22a3-2=[a3,ai]ai2=[aj,a4]a2-2ai2=[a2 a3]a22aj-2=

[a4,a2]a22=[ai,a2]=[a3,a4]=l>.
This is immediate on setting ai=u, a2=z, a3=y, and a4=x.

U2(G)=I G : NOP2) 1=65.

(ii) Sylow 3 -subgroup order-3
P3=< b >, n3(G)=l G : N(P3) 1=2080.

(iii) Sylow 5-subgroup order-25
Since G has no element of order 25, the Sylow 5-subgroup of G is C5XC5. Now 

PERM can be used to give generators x and y with (x, y) of type (5,5,5; 1). We find 
x=(ab‘labab)2 and y=(bab"laba)2 for a Sylow 5-subgroup P5 of G.

ng(G)=l G : N(Ps) 1=416.

( iv) Sylow 13-subgroup order-13
P |3=< ab >, ni3(G)=l G : N(P%3) 1=1600.

II.Maximal subgroups

(i) structure: 22+4 ; 75
Hi= < b, (ab(ab’i)2)2ab"laba >.

Setting x= b, y=(ab(ab"l )2)2ab"laba, we have the deficiency zero presentation 
(t) for Hi by the change of (r, s)=(x,y). We take c=[x,y], d=[y,x'l], e=[x-l,yl], and 
f=[x,yl] and observe that N=< c, d, e, f > is a normal subgroup of < x, y, z, u > with 
presentation

< c, d, e, f I c4=c2f-2=[c,d]=[e,f]=cec'le=dfdf“l=d2e‘2=l, c2=(de)2, cfcf"l=d2 >

Now it is easy to verify that < c2, d2 >< N and N/< c2,d2> = 24. Therefore N = 22+4
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for <c2,d2> = 22. Finally on taking M=<xy> we see that = N : M s  22+4 ; 15, 

M(Hi)=l, by 1.5.8 (ii).

( ii ) structure: 5xA^

This is the normalizer in G of an A5 subgroup. By information given in [34] 
about the structure constants for the class 2A, # (2,3,5ABCD)=0 and hence a generating 
pair for an A5 subgroup in G has type (2,3,5EF). We find, by PERM, x=a and

z=b(ab-l)2(ab)3ab”l with <x, z> ~ A5. Next, TC finds Nq (<x, z> )=  < x, y >, where 
y=bab’iab(ab‘i)2(ab)2, with 1 G : <x, y > 1=208. This shows that x and y generate a 
maximal subgroup H2 of G of order 300. Here (x,y) is of type (2,5D,5E;3) and the 
5-elements in < x, y > are both in 5ABCD and 5EF.

A presentation for H2 on x and y is
K=< X, y I x 2 = y 5 = (x y )5 = [x ,y ]3 = ( [x ,y ] [x ,y -2 ] )2 = l > ,

It is now easy to check that K=NxM where N=<[x,y], [x,y‘l]> = A 5 and

M = < (x y 2 )3 > =  C5.

By 1.5.12, M(5xAg)=C2; and an efficient presentation for H2 is obtainable from 
the above presentation for H2 as follows :

< x, y I x2y5=(xy)5=xyx-ly-ixy3x-ly-2xy-ix-iyxy2x-ly2= %

(iii) structure 5^ : 8 3

This is the normalizer in G of a Sylow 5-subgroup of G, by 3.3.2, Returning to 
the Sylow 5-subgroup P5 of G , we find, by TC, Ng(Ps)=< b, t > where t=aba with 

I N(Pg) 1=150. Conjugation by a of b and t gives the generators x=a^ and y=b® for a 

subgroup H3 of G of order 150. In fact H3 is maximal in G as we shall see now.To 

prove H3 maximal we just need to show that H3 of structure 52:83 cannot be 

isomorphic to any subgroup of H2. First, we construct the following presentation for H3 
on X and y:

L=< X, y  I x 2 = y 3 = (x y )1 0 = [x ,y ]5 = l> .

Then L = <(xy)2,(yx)2>;<x,[x,y]> = 52:83 and we have 1L' 1=75. On the other hand, 
referring to (ii),l K' 1=60. Thus L cannot be embeddable in K, by 1.1.4 (i).

In order to compute M(H3), we first consider the following presentation for a 

covering group C of H3 obtained from the above presentation :
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< ai, a2, ag, 3 4  I ai2=a23a4=(aia2aia2-i)^a3-l=(aia2)^%3=[ai,a3]=[ai,a4]=[a2,ag]=

[a2,a4l=[a3,a4]=l >
Then I C 1=150 showing that M(H3>=1. A deficiency zero presentation for H3 may now 
be presented as :

<  X, y I x 2 y 3 =  (x"iy)6xy-2(xy-l)2xy-2xy-lxy2 = 1 > .

(iv) structure: 13 :3
This is the normalizer in G of a cyclic subgroup of G whose generator lies in 

13ABCD, by table H. Using TC, we find NQ(<ab>)=< ab, u >, where 
u=b(ab“l)3((ab)2ab“i)3(ab)3ab”̂  with kab, u >1=39. Setting z=ab, we observe that 
(u,zu) is of type (3,3,3; 13). This allows PERM to look for a generating pair (x,y) of this 
type for a maximal subgroup H4 of G of order 39. We obtain x=tf and y=b® where 
r=abab"^ and s=ab“̂ aba. Putting v=[x,y] gives the following deficiency zero presentation 
for the metacyclic group H4 of order 39 :

<  X, V 1 x3= v^ 3 , [x, v“5]=v >.
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Mj2

order=95040=26.33.5.11 d=12 mult=2

G=< a,b I a2=b3=(ab)l0=[a,b]6=((ab)4ab‘iabab“l)3=l>

conjugacy classes of elements of G

class lc(x)t p-power p'-part representative cycle type

lA 95040 1 112
2A 240 A A (ab)5~[a,b]3 26
2B 192 A A a 1424
3A 54 A A [a,b]2 1333
3B 36 A A b 34
4A 32 A A ((ab" i)2(ab)^ab" i ab)2 2242
4B 32 A A ((ab)3(ab"l )2abab" ̂ )2 1442
5A 10 A A (ab)2 1252
6A 12 BA BA (ab)4(ab"l)2 62
6B 6 AB AB [a,b] II2I3I6I
8A 8 A A (ab"^)2(ab)3ab"lab 4I8I
8B 8 B A (ab)3(ab"^)2abab‘^ 122131
lOA 10 AA AA ab 2IIOI
llA 11 A A (ab)2ab"l lU l i
B** 11 A A ba(b"la)2 D i l i

conjugacy classes of maxima! subgroups of G

group order index structure specification mull

Hi 7920 12 Mil 1
Hz 7920 12 Mil 1
H3 1440 66 Mio:2 = Ag.22 N(2B,3A,3A,4B,5A) 2
H4 1440 66 Mio:2 = Ag.22 N(2B,3A,3A,4A,5A) 2
H5 660 144 PSL(2,11) N(2A,3B,5A,6A,11AB) 2

H6 432 220 MgiSg = 32:2S4 N(3A2) 1

H? 432 220 MpiSg = 32:254 N(3A2) 1
Hg 240 396 2 x8 5 N(2A),N(2B,3B,5A) 2x2
H9 192 495 M8.S4 i= 2+1+4.83 N(2B) 2x2
Hio 192 495 42:Di2 N(2B2) 2x2
H u 72 1320 A4XS3 N(2A2),N(3B) 2

I. Sylow p-subgroups

(i) Sylow 2-subgroup order=64
Since is embeddable in Mj2, G has a subgroup isomorphic to <2,4 I 2> with 

a generating pair of type (8,4,2;4). Starting with x=(ab)5ab’iab(ab“l)2 of order 8,
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PERM finds y=(bab'la)2b“lab(abab"i)2 of order 2 with <x,y> = <-2,4 I 2>. A Sylow
2-subgroup of G is now constructed by successively extending <x,y > by 2-elements. 
Applying our method 2.3 (vi), TC finds
u=(ba)2b"l(ab)2(ab"l)5ab(abab"l)2ab(abab'l)2(ab)2 with l<x,y,u>l=64 . PERMGP now 
gives z=(ab“l)2ab(ab“l)4(ab)3a with x, y, and z generating a Sylow 2-subgroup P2 of G. 

A presentation for P2 on x , y , and z is
< X, y , z I y2=z2=(xz)4=(xyz)2=(xzy)2=(xzyz)2=l>.

This group is isomorphic to the 2-group 64,261,(13,13) = r^^ag with the presentation 

< ai, a2, a3 I ai4=a22=a32=[ai,a2]ai2=[a2,a3]=[ai,a3,ai]=l>,

by the mapping ai~>xy, a2-^z, a3~^xzy.

U2(G)=I G: N(P2) 1=1485.

(ii) Sylow 3-subgroup order=27
The information about the conjugacy classes of G shows that the Sylow

3-subgroup of Mi2 is a 3-group of exponent 3. So it is an extra-special group isomorphic 

to 3+1+2. Using this fact, we look for a generating pair (x,y) of type (3,3,3;3). PERM 

gives x=bl, y=bl& where t=(ab)2 .Then x and y generate a subgroup P3 of order 27 and 
X, y satisfy the presentation <x,y I x3=y3=(xy)3=(xy'l)3=i>.

n3(G)=l G:N(P3) 1=880.

(iii) Sylow 5-subgroup order=5
P5=< (ab)2 >, ng(G)=l G:N(Ps) 1=2376.

(iv) Sylow 11-subgroup order=ll 
Pu=<(ab)2ab-l>=C((ab)2ab-l), nn(G)=l G:N(Pn) 1=1728.

ILMaximal subgroups

(i)'-(ii) structure : A/77

Hi=<a, ab-l(ab-l(ab)3)2ab > in 7.1 of [16].

Setting xj=a, yi=ab-i(ab-l(ab)3)2ab we observe that (xj, yj) is a generating pair 

of type (2,4,11) for an M ^ subgroup with the property that xj, yj fix one, and only 
one, point in the permutation representation of G.

We now seek a generating pair (X2,y2) of the same type with y i moving the points 

which are left fixed by X2- Start with X2=a, which fixes 4 points, PERM finds
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y2=b((ab)3ab‘l)2ab'la. TC verifies that H2=<X2, y2> has index 12 in G and that X2, yz 
satisfy 7.2 of [16].

Hi and H2 are not conjugate in G. We note that M u has a single conjugacy class

of elements of order 4 and that yie4B, y2E 4A. This specifies each of the maximal

subgroups Hi, H2 in G. Finally, H inH 2 is a simple group of order 660 proving that 
the intersection of these maximal subgrops in G is isomorphic to PSL(2,11).

(iii)-(iv) structure : Mjo •* 2 = Â -2^

G has two conjugacy classes of maximal subgroups with representatives H3 and

H4 of the stmcture Miq:2 ( = A^ ^^) both being the normalizer in G of an Mio ( Ag ) 

subgroup, by 3.3.2. In fact G has two conjugacy classes of Mio ( Ag ) subgroups

with representatives K i , K2 and we have Hg s  Nq(Ki), H4 = Ng(K2).

We begin with H3 which contains elements in the class 4B of G, by table II. A 

generating pair (x,y) for Ki is of type (2,4,8) where x and y fix two, and only two, 
points in the permutation representation of G. Clearly x must be chosen from 2B, for 
elements belonging to 2A fix no points. So we take x=a which fixes 4 points. PERM

gives y=ab“l(ab)2ab’lab(ab‘l)3(ab)4 with y g4B and xy e 8B. TC verifies that 

IG:cx,y>l=132 showing that kx,y>i=720. Now x and y satisfy the presentation for Miq 
given earlier. Next we find, by TC, that N^(<x,y>)=<y,z>, where z=b(ab)4 with

IG:<y,z>l=66. So <y,z> is a maximal subgroup of M12, for 12^66.
It is easy to check that (yz5,z) is a generating pair for <y, z> of type 

(2B,10,8B;4B). This helps to obtain neater generators X3, y3 for a maximal subgroup 

H3 of G conjugate to <y, z> with X3 being an involution. By PERM we obtain X3=â >&, 

y3=(ba)2(b‘la)2b of the above type with X3 , y3 satisfying the presentation :
H=<x,y I x2=yl0=(xyxy5)2=xyxy2xy2xy3(xy4)2=l>.

Taking N=<r, s>, where r=xyxy5 and s=(xy)2, we see that N<d H and N ^gw ith

H/N=<x,y I x2=y2=(xy)2=l>sC2xC2. This shows that H is an extension of Ag by 

C2XC2.
Substituting X3 , y3 for x, y in r, s we observe that Nq(< r, s >)=Hg. It also easy to 

verify that (r, s) is a generating pair for an Ag subgroup of type (2B,4B,5A/5A).

Similarly, generators for H4 may be given by X4=a% where t=b"^a, and
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y4=b(ab-l)2(ab)2. Here (X4,y4) is of type (2B,10,8A;4A) with X4, y4 satisfying the above 

presentation for H3. We note that H4=Ng(K2), where K2 is an Mjo ( Ag ) subgroup with 

a generating pair (x,y) of type (2B,4A,8A) ( (2B,4A,5A/5A) ). (Notice that

lfix(x)nfix(y)i=0.)

Finally, we see that H3 is an intransitive permutation subgroup of G acting on 12 

objects with orbit lengths 2, 10 while H4 is a transitive subgroup of G proving that H3 

and H4 are not conjugate in G.

It is worth noting that the maximal subgroups of G of the above structure have 
exactly two conjugacy classes of elements of order 8 and that these elements in H3 fall 

into the class 8B of G while those of H4 fall into 8A. This also proves that H3 and H4 are 

not conjugate in G.
The intersection of H3 and H4 is a group of order 40 with the structure 2x(5 : 4).
We now determine the multiplier of H. We first see, by TC, that

H = <x,y I x2=xyxy2xy-2xy3(xy4)2=l,(xyxy5)2=ylO 

Then a covering group C for H is
<x,y Ix2=xyxy5xyxy"5=[x,yxy2xy-2xy3(xy4)2]=[y,xyxy2xy-2xy3xy4x]=l>.

TC verifies that ICf=2880 and hence M(H)=C2- So H is efficient.

(v) structure: PSL(2,11)
A  generating pair (x,y) for a PSL(2,11) is of type (2,3,11). The specification of a

maximal subgroup of G of the structure PSL(2,11) indicates that x e 2A and y e 3B 
(notice that PSL(2,11) has a single conjugacy class of elements of each of orders 2 and

3). We take x=(ab)5 and by PERM find y=ab~l(ab)2 with y of order 11, xy e 3B, and
l<x,y>l=660. Then x, xy satisfy the presentation for PSL(2,11).

Now H5=< X, y > is a maximal subgroup of G, for H5 has a single conjugacy 
class of involutions with a representative belonging to the class 2A of G while 
involutions in each of Hj and H2 fall into the class 2B. This shows that H5 cannot be a 

subgroup of any conjugate in G of Hjand H2.
We note that PSL(2,11) subgroups in G with generating pairs of type (2B,3,11) I

are not maximal in G. i
II

(vi)-(vii) structure : Mg:S^ =3^: 2 S4  |

G has two non-conjugate maximal subgroups with representatives H^ and H7 of I
the structure Mp:S3. In fact H5=Ng(Li) and H7=Nq(L2) where L| is a subgroup of Kj |
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isomorphic to Mg, for i=l,2.

As we mentioned earlier Mg is the stabilizer of two points in M ^ (as a 4-transitive 
permutation group acting on 11 objects) of order 72 with a generating pair of type 
(4,4,4;2). We shall take Lj to be the stabilizer of three points in the permutation 
representation of G. Starting from x=((ab)3(ab-l)2abab’ )̂2 of order 4 which fixes 4 
points (see the cycle type of x as a representative for the class 4B), PERM gives

y=((ab)3(ab"l)2)2b-i of order 4 with (x,y) of the above type and I fix(x) n  fix(y) 1=3.

Now y, X generate a subgroup Lj ( = M g  ) of order 72 and satisfy the presentation given 

for M g  (see Mn).

Now by TC, we obtain Nq(< x , y >)=<y, z, u>, where z=a^^^, u=b~l(ab)4 with 
IG:< y, z, u >1=220. It is then easy to check that (z,uy^) is a generating pair for <y,z,u > 
of the type (2B,3B,8B;6B). Using this fact PERM produces the generators x^=a^ and 

yg=bs, where r=a^ and s=(b'^)^, for a subgroup %  of G of order 432. is maximal in 

G, for I G:Hi lf220, for i=l,2,3,4,5.

1% is an intransitive subgroup of the permutation group G with orbit lengths 3,9. 

And X5, yg satisfy the presentation given for the maximal subgroup Hi of PSL(3,3).

Similarly, PERM gives the generators xy=a  ̂and y7=b9, where t=bab"l and q=b^ 

for a subgroup H? of order 432 with (X7, ŷ j) of the type (2B,3B,8A;6B). Here H7 is a 

transitive subgroup of G of degree 12 and hence cannot be conjugate to H^.

We note that T=(xyyj)'^, s=(y7X7)2 generate a normal subgroup L2 of H7 which is 

isomorphic to Mg and that Ng(L2)=H7 . Here (r, s) is of the type (4A,4A,4A) and so

Ifix(x) n  fix(y)!=0. (<r, s> is, in fact, a subgroup of K28, for some g in G.) 

Furthermore, H5 has intersection S3 with H7 in G.

(viii) structure: 2 xS^

A presentation for 2xSg is given by
< R , S , T  I R 2 = S 6 = T 5 = ( T S ) 2 = ( T 2 s 2 ) 2 = [ R , S ] = [ R , T ] = 1 > .

It is easy to see that <R,S,T> is generated by S ,̂ RT with (S^, RT) of type (2,10,4;3). 
In order to give generators for a maximal subgroup of G of the structure 2xSg we

may use PERM to look for a generating pair of the above type with [x, y]e 3B. Such a 
generating pair for 2xSg subgroups ( if any ), certainly, generate a maximal subgroup of 

G of this structure, for none of Hi, H2, H3, and H4 have elements of order 3 belonging 
to the class 3A (each of them has only one conjugacy class of order 3). By PERM we
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obtain x=(ab)5, y=(bab)^, where u=abab"i, with (x,y) of type (2A,10,4B;3B) and 
kx,y>l=240. Then x, y satisfy the presentation

<x,y I x2=yl0=(xy)4=[x,y]3=[x,y5]=l>.
Taking N=<x, y2> and M=<y5> we see that N and M are normal in <x, y> and

NnM=(l). It is also seen that N = S5, and so <x, y> = 2xSg.

We note that 2xSg is not embeddable in Mj 1, for 2xSg has an element of order 10 

while Mil does not have such an element and also SUBGPTEST shows that 2xSg is not 

isomorphic to any subgroup of H, where His a group of the structure Miq: 2 discussed 
in (iii)-(iv).

By 1.5.12, M(2xS$)=C2xC2 and an efficient presentation for 2xS$ can be 
obtained from the above presenatation as follows

<x,y I x2y 10=(xy)4=[x,y]3=xy5xy-5=1 >.

(ix) structure:

This is the normalizer in G of an Mg subgroup. An Mg ( s  Qg ) subgroup of G is 

the stabilizer of 4 points in the permutation representation of G. PERM finds the 
generators z=((ab)3(ab’^)2abab‘ )̂2, u=(ab)3(ab"^)2(ab)3(ab"^ab)2a, for an Mg subgroup 
o f G .

Using TC we find that N q (<z , u > ) = < v ,  w > ,  where v=(ab)3(ab"l)2abab’l and 
w=bab'^ab(ab'l)2ab(ab’l)4(ab)2 with kv, w>l=192. It is seen that (w, v) is of type 
(3A,8B,8A/3A). Now PERM can be used to give neater generators x, y in a, b with 
(x,y) of the above type for a subgroup of G of order 192. We find x=[a,b]2, 
y=bab"Hab)4(ab'l)2a. The elements x,y generate a subgrop Hg of order 192 and satisfy 
the presentation

K=<x,y I x3=(xy"f)4=(xy2)3=(xyxyl)2=i>.

We take N=<y2, x'ly2x> and see that N < K with N = Qg.

Now K/N=<x,y I x3=y2=(xy)4=l> = S4. So K = Qg.S4. It is also easy to check that 

K52I+4.S3

Since I GiHj if495 for i=l,2,...,8, we conclude that Hg is a maximal subgroup of 

G of structure Qg.S4.
A covering group C for K is 

<ai,a2,a3,a41 ai3a3"ia4"2=(a 1 a2"l)4a3"ia4-2=(aia22)3a3" 184-3=1, (aia2aia2-i)2a4-3=l,

[ai ,a j]=l( l< i < 4 , 3 < j < 4 , i < j  )>.
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Then 1C1=768 showing that IM(K)I=4. In fact M(K) = <ag,a4> which is isomorphic to 

C2XC2. So H is efficient.

(x) structure: 4^:Dj2

Hjo is the normalizer in G of a subgroup with the stmcture C4XC4, Referring to 

the Sylow 2-subgroup S2 given in (I), we take r=\2, s=xz. Then <r, s>=C4xC4 and TC 

gives NQ(<r, s>)=<t, q>, where t=b(abab"i)2(ab-i)2a, q=b(ab'iab)2(ab)3(ab"i)2abab‘ia 
with kt,q>l=192. It is checked that (t, q) is of type (8A,6A,2A;3B). Using this fact, 
PERM gives x=(ab)5, y=(ab(ab'i)2)2ab"i(ab)2ab'^ of type (2A,6A,8A;3B).The 
generators x, y satisfy the presentation

L=<x,y I x2=y6=(xy)8=(xyxy“2)2=(xyxyxyi)2=l>.
Letting N=< (x y )2 , y i( x y )2 y  > and M = < x ,  ( y x ) 2 y l > ,  we observe that Nc L,

NnM=(l) and that N = 4^, M = 0^2 proving that L = 42:Di2.

A similar argument given for maximality of H g  guarantees that Hjq is a maximal

subgroup of G. We note that H g , Hjq are not isomorphic since L /L  = 2^ and K/K '~ 2. 
A covering group C for L is

<ai,a2,a3,34,a51 ai2=a26a3a5-3=(aia2aia2“2)2a5=(aia2)^a4'la5-4=

(aia2aia2aia2-i)2=l, [ai,aj]=l ( 1 < i < 5, 3 < j < 5, i < j ) >.

Then ICI=768, and hence IM(L)I=4. We have M(L) =<a3, ag>. An efficient presentation 
for L is now given by

<x,y I x2=y6=(xyxy2)2=l, (xy)^=((xy)2xyf)2>.

(xi) structure: A^xS^

A4XS3 has the following presentation :

<R,S,T,UI R2=s3=(RS)3=T2=u3=(TU)2=[R,T]=[R,U]=fS,T]=[S,U]=l>.
It is easy to check that (RT,SU) is a generating pair for A4XS3 of type (2,3,6;6). In an 

attempt to give a generating pair (x,y) for a maximal subgroup of G of the stmcture 
A4XS3, we find that (x,y) must be of type (2A,3B,6B;6A) (see below). PERM then 
gives x=(ab)5, y=bt, where t=ab‘^abab'f with (x,y) of above type and x, y generate a 
subgroup Hii of order 72 and satisfy the presentation

<x,y I x 2 = y 3 = ( x y ) 6 = [x ,y l ] 2 [ x ,y ] 2 ^ 1 > .

It is seen that <x,y> is the direct product of N = < ( x y ) 2 , ( y x ) 2 >  and

M = < ( x y )3 ,[x ,y ]2 >  with N  = A4 and M  =  S 3 .
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It remains to show that i is maximal in G. To see this, we observe that all 

elements of order 3 in Hj, for i=l,2,3,4, fall into the class 3A of G while H ji contains 

elements of order 3 lying in the class 3B. This shows that H u  cannot be a subgroup of 

any conjugate in G of Hj, for i=l,2,3,4. Finally all elements of order 6  in Hj, for j=6,7, 

are in 6 B while H ^ has elements of order 6  in 6 A.

Note. We note that A4 XS3  is not embeddable in M ji because the Sylow 2-subgroup of 

A4 XS3  is an elementary abelian group of order 8  and that of M u is <-2,412> which is a 

2 -group of order 16 containing no subgroups of the structure C2 XC2 XC2 .

The multiplier of A4 XS3  is simply computed by 1.5.12. We have M(A4 xS3 >=C2 . 
An efficient presentation for A4 XS3  is now given by

<X,y I x 2 y 3 = (x y ) 6 = [ x ,y - l ] 2 x y - l ( x y ) 2 y x y = l> .
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PSU(3,5)

order=126000=24.32,53.7 d=50 mult=3

G = <  a , b  I a 2 = b 4 = ( a b ) i 0 = ( a b a b 2 ) 7 = [ a , ( b a ) 2 b ' i a b 2 a b " i ( a b ) 2 ] =
( ( a b ’ i ) 2 ( a b ) 3 ) 2 b ( a b ' ^ ) 2 ( a b ) 2 a b ‘ ï = l  >

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA 126000 1 150
2A 240 A A a 110220
3A 36 A A (ab2)2 15315
4A 8 A A b 1224410
5A 250 A A (ab)2 510
5B 25 A A (ab"l)2(ab)2ab2 1559
5C 25 A A (ab)2(ab'l)2ab2 510
5D 25 A A (ab)2(ab2)2ab"i 510
6A 12 AA AA ab2..,[a,b] 11223366
7A 7 A A abab2 1177
B** 7 A A b2ab‘^a 1177
8A 8 A A (ab)2ab2 214235
B** 8 A A b2(ab"l)2a 214235
lOA 10 AA AA ab 52104

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 2520 50 Ay N(,..5B,...) 6
Hz 2520 50 Ay N(...5C,...) 6
H3 2520 50 Ay N(...5D,...) 6
H4 1000 126 5+1+2: 8 N(5A) 1

H5 720 175 ^10 -  A^'2 N(...5B,...) 3

H6 720 175 ^10 = Ag-2 N(...5C„..) 3

H? 720 175 Mio = Aô-2 N(...5D,...) 3
Hg 240 525 2Sg N(2A) 1

I.Sylow p-subgroup

( Sylow 2-subgroup order=16
By table II, G has Miq as a subgroup of odd index and hence their Sylow 

2-subgroups are isomorphic . However, the Sylow 2-subgroup of Mjq is isomorphic to 

that of M u, namely <2, 4 I 2 >, since I MxiM iqI is odd. As we remarked earlier, the 

2-group <2,4 I 2> has a generating pair (r,s) of type (2,8,4/2). This suggests that we 
look for, using PERM, such a generating pair for a Sylow 2-subgroup of G. Starting
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from r=a we find s=at>2abab2 with l<r, s>l=16. This leads to the generators x=b2ab2 and 
y=b^ for a Sylow 2-subgroup P2 of G. The pair (x,y) then satisfies the presentation

<x,y I x2=l, (xy)3=yx>.
n2(G)=IG:N(P2)l=7875.

(ii) Sylow 3-subgroup order=9
Clearly the Sylow 3-subgroup of G is C3XC3. Using PERM, we find x=(ab2)2, 

y=((ba)4b)2 with (x,y ) of type (3,3,3; 1). Then x and y generate a Sylow 3-subgroup P3
O f G .

n3(G)=IG:N(P3)l=1750.

(iii) Sylow 5-subgroup order=125
By table I, we can easily see that the Sylow 5-subgroup of G is an extra-special 

group of exponent 5. Hence G has a C5XC5 subgroup. Starting with r=(ab)2 of order 5,

PERM finds s=bab(ab’ l)2abab2 with <r,s>=CgxC3. Now TC gives 

t=b2(ab2ab‘l)3ab2abab2(ab“l)2 in NQ(<r,s>) with l<r,s,t>l=125. Putting these 

generators in PERMGP gives q=bab‘lab2abab2ab"laba with ks,q>(=125. Conjugation 
by b of s and q gives the generators x=ab(ab‘l)2abab’l and y=ab"lab^abab^ab"l(ab)2 for 
a Sylow 5-subgroup P5 of G. Next x and y satisfy the presentation

<x,y I x5=y5=l, [x,y]x=[x,y]=[x,y]y>.
An easy computation shows that M(P5)=CgxCg and so the above presentation is 

minimal.
ng(G)=IG:N(Pg)l=126.

(iv) Sylow 7-subgroup order=7 
Py=<abab2>=C(abab2), , ny(G)=IG:N(Py)l=6000.

ILMaximal subgroups

(i)-(iii) structure: A j

By table II, G has three conjugacy classes of Ay subgroups with representatives 

H i, H2, and H3 whose elements of order 5 lie in the classes 5B, 5C, and 5D 

respectively ( notice that Ay has only one conjugacy class of elements of order 5.) We 

now exploit the fact that Ay has a generating pair of type (2,4,7;5) in order to find 

generators for each of Hj, H2, and H3. Using PERM, we find the generating pairs
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(bab’l,b^), (a^»b^), and ((ab2)3,(ba)4b"lab2) for the maximal subgroups Hj, H2 , and H3  

respectively. Each pair now satisfies the presentation 4.1 of [16].
The subgroups Hj, H2 , and H3  are mutually non-conjugate in G because their 

5-elements belong to distinct classes of elements of order 5 of G. Note that Hj having an 
element in 5B is the stabilizer of a point in the permutation representation of G while 
5-elements in each of H2  and H3  fix no points.

Next, Hj has intersection PSL(2,7) with H2  and 8 3 x8 4  with H3 , Also H2 nH 3 = 

8 3 x8 4 .

(i v )  s t r u c t u r e :  5+f +2 ; 8

This is the normalizer in G of a 8  y low 5-subgroup of G. Using TC, we find 
Ng(P5 )==<P5 ,z> of index 126, where z=(ab)2ab2ab‘l and P^=<x,y> in (I). Now it is 
easy to check that x=ab(ab'i)2abab“l and z suffice to generate <Pg,z> which is a maximal

subgroup of G of order 1000 for IG:H[lf 126 ( i=1,2,3 ). Next we see that ((xz2)2,%) is a 
generating pair of type (2,8,8;5) for <x,z>. This helps us to obtain, by PERM, the 
generators u=a, v = b (a b )2 (a b 2 )2  for a maximal subgroup H4  of G with u an involution. 

The pair (u,v) then satisfies the presentation
H=< u, V I u2=l, [u,v2]=v4u, (uv)2v(uv)3=(vu)2 >.

On taking N=<[u,v], [u,v2]>, M=<v>, we observe that N < H, N nM =(l) with

N = 5+ l+2 and M = Cg. 80  H = 5+1+2 : 8.

A covering group C for H may be given by
<u,v,w I u2=w, [u,v2]=v4u, (uv)2v(uv)3=(vu)2, [u,w]=[v,w]==l>.

Then ICI=1000 giving M(H)=1. Despite considerable efforts we failed to determine 
whether H is efficient

( V ) - ( v i i )  s t r u c t u r e :  M j q  = Â -2

By table II, the three conjugacy classes of maximal subgroups of the structure 
Mjo are distinguished by their elements of order 5 which fall into distinct classes of G. 

As was mentioned earlier an Mjq subgroup has a generating pair of type (2,4,8/5). 

Using this fact and that Mjq has only one conjugacy class of elements of order 5, we 

seek generating pairs (xi,yj) ( i=6,7,8 ) of the above type with the property that

X5 ys2 € 5B, x^y62E 5C, and 5D. We find, by PERM, xg=a^, y5 =ab*l(ab)3 ab'l,

X5 =bab"l, y5 =b"l(ab)3 ab’la, xy=b(ab2)2ab, yy=b^. Then Hi=<Xj,yj> is a maximal
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subgroup of G of the structure Miq. for i=5,6,7. And the pairs (Xi,yj) satisfy the

prsentation of M^o (see, M^i). Next we can check that = <-2,4 !2>
for i=5, 6.

(viii) structure: 25j
By information given in [33] about the intersection of maximal subgroups, we see 

that a maximal subgroup M of the above structure is an extension of SL(2,5) by C2. 
This helps us to give generators for M by determining the normalizer in G of a SL(2,5) 
subgroup. The group SL(2,5) has presentation <c,dlc^=d^=(cd)^ > and can be generated 
by c^ and d^ with (c^,d^) of type (3,5,5;6). Using this fact, PERM finds r=(ab2)2 and 
s=(ba)2 for a SL(2,5) subgroup. Now, Ng(<r,s>)=<s,t>, where t=ab%, with 

kr,s>l=240. This leads us to the generators x=a, y=(ab)^ for a subgroup Hg of G of 
order 240.

We shall now show that Hg is maximal in G with structure 2S5. We begin with 
the following presentation for Hg on its generators :

K=< x,y I x^y5=[x,y2]3=(xylxy2xy^)2=l >.

Now (xy2)^ of order 2 generates a normal subgroup of K with K/<(xy)^>=Sg.

So K=2Sg. Next, K having an element of order 6 cannot be isomorphic to any subgroup 

of Mio- This proves that Hg is maximal in G.

We now show that M(Hg)=l. To see this we first find the following presentation 

for a covering group of G, using the presentation K given for Hg :

C=< ai,a2,a3,a4 I ai2=a25a4=[ai,a22]^a3-i=(aia2-laia22aia22)2a4=

[a 1 ,a3] =[aj ,34]=[a2,a3]=[a2,a4]~[a3,a4]=1 >. 
Then C has order 240 and therefore M(Hg)=l.Now by modifying the relations in the 

presentation for K we are able to give a deficiency zero presentation for Hg as follows : 
<x,y I x^y^sy^xy-lxy^x'ly^xyxy^x'ly^xy^x’  ̂=1>.
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order^l75560=23.3.5.7.11.19 d=266 mult=l

G=< a,b I a^b^=(ab)7=[a,b]l9=[a,b‘l(ab)2]6=l>

conjugacy classes of elements of G

class lc(x)l p-power p'-prart representative cycle type

lA 175560 1 1266
2A 120 A A a 1102128
3A 30 A A b 15387
5A 30 A A [a,b]6 16552
B* 30 A A [a,b]2 16552
6A 6 AA AA (ab)2(ab"i)^abab-i ll2^3%42
7A 7 A A ab 738
lOA 10 BA AA [a,b] 23521025
B* 10 AA BA [a,b]3 23521025
llA 11 A A (ababab"l)^ab'i 121124
ISA 15 BA AA ab(abab"i)^ 3251I5I7
B* 15 AA BA (ab(abab-i)2)2 32511517
19A 19 A A (ab)2(ab"l)2 1914
B*2 19 A A ((ab)2(ab“̂ )2)2 1914
C*4 19 A A ((ab)2(ab'^)2)4 1914

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 660 266 PSL(2,11) 2
H2 168 1045 23:7:3 N(2A3) 1
H3 120 1463 2xAg N(2A) 2
H4 114 1540 19:6 N(19ABC) 1
H5 110 1596 11:10 N(llA) 1
He 60 2926 D^xDio N(3A),N(5AB) 2
H? 42 4180 7:6 N(7A) 1

LSylow p-subgroups

(i) Sylow l-subgroup . order^^
By table II, it is easy to see that G has 2XA4 as a subgroup of odd index. The 

group 2xA4 has presentation

H=< u,v I u^v3=(uv)^=[u,v]2=l>
(see [18]), and thus is generated by two of its elements u, v with (u,v) of type (2,3,6;2). 
Using PERM, we find

u=a, v=a(ab(ab”̂ )2)2((ab)2ab’l)3 (*)
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with ku,v>l=24 and u, v satisfying the above presentation. Now generators for a Sylow 
2-subgroup of G are constructed by determining generators for a Sylow 2-subgroup of 
H, using the method described in 3.2. By TC we obtain the following generators for a 
Sylow 2-subgroup of H :

u, v'luv, vuv-1. (**)
Substituting (*) into (**) and conjugating the resulting words by b(ab'lab"lab)2a gives 
the generators x=a^, y=a^, and z=al,where r=b((ab‘l)2ab)2a, s=b((ab"l)2ab)2ab, and 
t=b((ab“l)2ab)2ab"l for a Sylow 2-subgroup ?2 of G. Then x, y, z are each elements of

order 2 and any two of them generate a subgroup of order 4. So <x,y,z> = C2XC2XC2. 

n2(G)=IG:N(P2)l= 1045.

( ii) Sylow 3-subgroup order=^3
P3=<b>, n3(G)=IG:N(P3)l=2926.

(ii) Sylow 5-subgroup order=5
P5=<[a,b]2>, n5(G)=IG:N(P5)l=2926.

(ii) Sylow 7-subgroup order- 7

P7=<ab>=C(ab), n7(G)=lG:N(P7)k4180.

(ii) Sylow 11-subgroup order-11
Pll=<(ababab“l)2ab'l>=C((ababab'l)2ab-l), nii(G)=IG:N(Pn)l=1596.

(ii ) Sylow 19-subgroup order-19
Pl9=<(ab)2(ab-i)2>=C((ab)2(ab-l)2), ni9(G)=IG:N(Pi9)l=1540.

ILMaximal subgroups

( i) Structure: PSL(2,11 )
Hi=<a, bi >, where t=ab(ab"l)2.

Let x=a, y=bl. Then the elements x, y satisfy the presentation for PSL(2,11) given 
earlier.
Note. The group PSL(2,11) has precisely two non-conjugate classes of A5 subgroups. If

R, S are representatives of these classes then R = <x,y^Y> and S = <x, yxyxy"l>. Next, 
R and S remain non-conjugate in G. It is also easy to check that S is a self-normalizing

subgroup of G and Nq(R) = 2xAg as we shall see in (iii) below.In fact there are only two
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distinct classes of A5 subgroups in G, ( see lemma 8.2 of [26] ). The following Hasse 
diagram illustrates the subgroups R and S in G :

G
PSL(2,11)

< 1>

(ii) structure: 2^ :7:3
In [26] the following presentation is constructed for the above maximal subgroup:

K=< |Ll,V, ti,t2,t3 I [L̂ =V̂ =1, V̂ =̂V̂ , tjV=t2, t2̂ =t3, t3V=tit3, tiM-=ti,t2M̂=t3,t3[t=tit2t3>,

where < ti,t2,t3> is a Sylow 2-subgroup of K of structure C2XC2XC2, and <p,v> =

7:3. We now set x=p and y=vptit2t3 and observe that K=<x,y>. Then SUBGP 
constructs the presentation

< x,y I x^=y3=l, [xyx,yl]=y“̂ x> 
for K on the generators x, y. This shows that (x,y) is a generating pair of type 
(3,3,6;7,7) for a subgroup of G isomorphic to K. Using this fact PERM finds the 
generators

x=b^^, y=ab"l(abab“̂ )2 ((ab)2 (ab" 1 )2 ) 2  (f)

for a maximal subgroup H2 of order 168 with x, y satisfying the above presentation. On

taking X=(xy)3, Y=(yx)3, Z=Y^, we see that P=cX,Y,Z> ( = C2XC2XC2) is a normal 

subgroup of <x,y>. By substituting (f) into X, Y, Z we have that N(}(P)=<x,y>, that is 

H3 is the normalizer in G of a Sylow 2-subgroup of G as our second table indicates. On

the other hand, by letting M=<xy,xyl> one can show that MnN=(l) with the subgroup

M=<c,d I c3=[c,d]d-l>. This can now be used to prove that M is a split metacyclic

group of structure 7 : 3 ( indeed, M = <d>:<c> ). Hence H2 = N:M = 2^:7:3.
It is easily seen that y3=l is a redundant relation giving a 2-generator 2-relation 

presentation for the soluble group H2. This, in turn, proves that M(H2)=1, by 1.5.8 (ii).

(Hi) structure: 2 xA^

2xAg h a s  p r e s e n t a t i o n  < u , v , w  I u 2 = v 2 = w 3 = ( v w ) 5 = [ u , v ] = [ u , w ] = l >  a n d  c a n  b e  
g e n e r a t e d  b y  t h e  e l e m e n t s  u v  a n d  w .  We m a y  n o w  u s e  SUBGP t o  c o n s t r u c t  t h e  
p r e s e n t a t i o n
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L=<x,y I x2=y3= ((xy)3xy“l)2=l> 
for 2xAg on x=uv and y=w. In L the product xy and the commutator [x,y] have order 10 
and 5 respectively .This suggests looking for a generating pair of type (2,3,10;5) for a 
maximal subgroup Hg isomorphic to 2xA^. PERM simply finds the generators x=al, 

y=bs, where t=[b'i,a], s=[a,b’i], for Hg with x, y satisfying the above presentation ,

Let N = < (x y ) 2 ,( y x )2 > .  Then N  is a normal subgroup of L isomorphic to A5 with

N(](N)=<x,y>. It is clear that N = R ( see the note made in (i) ).

By 1.5.12, M(2xA5)-C2 and thus 2xAg is efficient.

( iv) structure: 19:6

This is the normalizer in G of a cyclic subgroup <x> of G with xe 19ABC, by 
table n. We begin with r=(ab)2(ab~i)2 which is in 19A. Then TC gives N(g(<r>)=<r,s>, 
where s=(b" 1 a)^b(ab(ab"l)2)2ab(abab'i)2ab-1aba, with l<r,s>l=114 and l<s>l=!<rs>l=6. 
Now it is checked that x=s^ and y=(rs)2 generate <r,s> with (x,y) of type (2,3,6; 19). 
This enables us to give, by PERM, the neater generators x=al, where t=(ba)2b'ia, and 
y=(bab"ia)2b“iab with x, y generating a split metacyclic group H4 of structure 19:6. To 
see this we set X=[x,y] and Y=xy. Then <X,Y> has order 114 with presentation

H4=<X,Y I X19=y 6, Y-iX»Y=^X7>, 

which shows that H4 = 19:6, by 1.5.9.

(v) structure: 1 1 : 1 0

By table II, this is the normalizer in G of a Sylow 11-subgroup of G. Setting 
r=(ababab"l)2ab“i, TC gives s=b"i(ab"iab)2(abab"i)2(ab-iab)2ab(ab-i)^ab such that 
N(g(<r>)=<r,s>. The elements r, s generate a subgroup of order 110 with l<r>!=ll and 
l<s>l=krs>l=10. It is now easy to check that (s^,(rs)2) of type (2,5,10,11) is a 
generating pair for <r,s>. Using this fact we may find the generators x=a*̂  and 
y=(ba)2b9, where t=(ba)2 and q=abab"^ab for a subgroup H5 of order 110. The 

subgroup H5 having an element of order 10 is not embeddable in PSL(2,11), and so it is 
a maximal subgroup of G.Next on putting u=[x,y], we have

Hg=<u,y I ull=ylO^ y”̂ u^y=u2>.

This shows that Hg = 11:10.

( vi) structure: jq

The group DgxDio has presentation
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<z,u,v,w I z2=u2=(zu)3=v2=w2=(vw)5=[z,v]=[z,w]=[u,v]=[u,w]=l>, 
and can be generated by x=zv, y=uzw. Using SUBGP, we arrive at the following 
presentation for D^xDjq :

<x,y I x2=y6=(xy)10=(xy2)2=l> (f)

Thus a DgxDjQ subgroup in G has a generating pair of type (2,6,10/2). Now PERM 

gives the generators x=a, y=a[b'i,a]'^[b,a]2b for a subgroup %  of order 60 with x,y 

satisfying the above presentation. That is maximal in G follows immediately from the 

fact that 1% has an element of order 15 while neither of and Hg has such an element.

Finally, M(D^xDio) = C2, by 1.5.12. A deficiency -1 presentation for D^xDjq is 
found by combining two of the relations in (f) as follows:

< x ,y  I x 2 = (x y )  1 0 = x y 2 x y -4 = l

(vii) structure: 7:6
This is the normalizer in G of a cyclic subgroup of G whose generator lies in 7 A. 

We take r-ab and find, by TC, No(<r>)=<r,s> where
s=b(ab-l(ab)2)3ab-iab((ab“i)2ab)2(abab'i)2 wiyh l<r,s>!=42. Now we exploit the fact that 
(s3,(rs)2) is a generating pair of type (2,3,6;7) for <r,s> in order to give generators in a, 
b of shorter lengths for a subgroup isomorphic to <r,s>. By PERM, we find x=a and 
y=bab-l(ab‘iab)2 which generate a subgroup H7 of order 42. Setting u=[x,y] and v=xy, 
we have

Hy =  <U ,V  I U^=V^, V 'iu 2v = u 3 > 
which is a split metacyclic group of structure 7:6.

Now SUBGPTEST ensures that H2 of structure 23:7:3 has no subgroup 

isomorphic to Hy proving that Hy is maximal in G.
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order^l81440=2^.3^. 5.7 d=9 mult=2

G=< a,b Ia2=b^=(ab)^=[a,b]^=[a,bab2]3=[a,b2(ab)2]2 = ((ab)2(ba)3b-i)3=l>

conjugacy classes of elements of G

class lc(x)l p-power p-part representative cycle type

lA
2A

181440
480 A A

1
a

19
1522

2B 192 A A b2 U24
3A 1080 A A (ab2)4 1631
3B 81 A A (ab)3 3 3
3C 54 A A (ababab2)2 1332
4A 24 A A [a,b] 1 3 2 1 4 1
4B 16 A A b 1 1 4 2

5A 60 A A (ab)2(ab2)3 1451
6A 24 AA AA (ab2)2 1 2 2 2 3 1
6B 6 CB CB (ab)2ab2 II2 I6 I
7A 7 A A (ab)3(ab"i)2 1271
9A 9 B A ab 91
9B 9 B A abab2 91
lOA 20 AA AA (ab2ab)2abab2 2 2 5 1
12A 12 AA AA ab2 2 1 3 1 4 1
15A 15 AA AA (ab)2ab‘i II3 I5 I
B** 15 AA AA b(ab"i)2a II3 I5 I

group order

conjugacy classes of maximal subgroups of G

index structure specification mult

Hi 20160 9 Ag 2
H2 5040 36 St 2
Hg 2160 84 (A6x3):2 N(3A) 2
H4 1512 120 SL(2,8):3 N(2B,3B,7A,9A) 1
Hs 1512 120 SL(2,8):3 N(2B,3B,7A,9B) 1
H6 1440 126 (A^xA$):2 N(2A2),N(2A,3A,5A) 2x2
H? 648 280 3^:S4 N(33)=N(3AgB4Co) 2
Hg 216 840 32;2A4 N(3B2) 3

I.Sylow p-subgroups

(i) Sylow 2-subgroup order-64
The Sylow 2-subgroup of Ag is isomorphic to that of Ag because Ag has Ag as a 

subgroup of odd index. Returning to the Sylow 2-subgroup p2=<x,y,z> of Ag, we see 
that X and yz generate a subgroup of order 32 with (x,yz) of type (2,4,4;2). Using this
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fact we find, by PERM, r=a, s=(ba)3b-l(ab)4b with l<r,s>l=32. Now TC gives t=b'lab 
in N g ( < t,s> )  with l<r,s,t>l=64. Using PERMGP we obtain the generators a, a^, and 

(b2)9, where q=(ab"l)3, for a Sylow 2-subgroup P2 of G. 

n2(G)=IG:N(P2)l=2835.

( ii) Sylow 3-subgroup order=81
By a similar method to that used for the Sylow 3-subgroup of PSU(4,2), we 

proceed to extend the cyclic subgroup generated by x=ab to a Sylow 3-subgroup P3 of 
G. We find Pg=<x,y> where y=ab"i(ab)2ab2abab"i(ab2)2. The pair (x'l,yx4) satisfies the 
presentation given for the Sylow 3-subgroup of PSU(4,2).

By information given in table I, we can easily check that C((ab)3)=Pg. 

n3(G)=IG:N(Pg)l=1120.

(iii) Sylow 5-subgroup order-5
P 5 = < (a b )2 (a b 2 )3 > , n 5 (G )= IG :N (P 5 ) l= 7 5 6 .

(iv) Sylow 7-subgroup order-7
Py=<(ab)3(ab-l)2>=C((ab)3(ab-l)2), ny(G)=IG:N(Py)l=4320.

ILMaximal subgroups

(f) structure: Ag

Hi=<bab"l, b^> in 8.2 of [16].

(ii) structure: Sy
S7 has presentation

<T,S IT2=S7=(TS)6=[T,S2]2= [T,S3]2=1>
(see [18]) and thus is generated by elements T, S of order 2 and 7 whose product has 
order 6. This fact together with k[T,S]>l=3 helps us to look for a generating pair of type 
(2,7,6;3) for a S7 subgroup. PERM finds the generators y=(ab’i)2(ab)2ab’l

satisfying the above presenation for S7 with kx,y>l=5040. Next H2=<x,y> is a maximal 

subgroup of G for Ag cannot have S7 as a subgroup ( see maximal subgroups of Ag ). 

M(Sy)=C2, and an efficient presentation for S7 may be given by :
<T,S IT2s7=1, (TS)6=(TS2t S-2)2, (TS3TS-3)2=1>.
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( iii) structure: (A(Çc3 ) : 2

By 3.3.2, this is the normalizer in G of a subgroup isomorphic to Agx3. The 

group Agx3 has presentation <c,d,e 1 c3=d2=e4=(de)5=(de2)5=[c,d]=[c,e]=l> and can be 
generated by d, cd with (d,ce) of type (2,12,15;4). Starting with r=a , which is in 2A, 
PERM finds s=bab(ab2)2 of order 12 such that l<rs>l=15 and l<[r,s]>l=4. Now r, s 
generate a subgroup of order 1080 with NQ(<r,s>)=<r,s,t> where t=(b2a)2b2. The 
subgroup <r,s,t> has index 84 in G and can be generated by st=bab’i and

rs=(ab)2(ab2)2. Since IG:Hilt84 (i=l,2), Hg=:<st,rs> is maximal in G. Here the pair 

(st,rs) is of type (2A,15,6B;3C).
Put x=st, y=strs. Then x, y satisfy the presentation

H=<x,y I x2=yb=[x,y]3=[x,y2]2=((xy)4y)2-(xy(xy2)2)3=:i>^
Now take N=<[x,y2],xy>. Then N has index 2 in H and presentation on generators 
u=[x,y2], v=xy with relations u2=[u,v5]=l, uv4=(vu)4, uv3=(v2u)3. Next <u,v3> is a 
normal subgroup of <u,v> isomorphic to A5 and has trivial intersection with <(uv2)4> of

order 3. This shows that H = N:2 = (A6x3):2 as required.

M(H3 )=C2 . To see this we first observe that

H3=< x,y I x2=(xy2xy-2)2y6=((xy)4y)2y-6=i^ (xyxy"i)3=(xy(xy2)2)3>.

Then a covering group C for H3 can be presented as
C=<x,y I x2(xyxyl)3=(xy(xy2)2)3^ x4(xy2xy2)2y 12=((xy)4y)2=l,

[x2,y]=[x,(xy2xy2)2y6]=[y^(xy2xy-2)2]_i>

TC now verifies that ICI=4320 proving that M(H3)=C2*

We failed to find an efficient presentation for Hg from the above presentation by 

combining relations differently. Therefore we try to find a new presentation for Hg 
having a few number of relations. Employing the method described in 3.5, we arrive at 
the generators u=xy3 and v=(yx)2y3, where x, y are the generators of Hg, which 

generate Hg and satisfy the following deficiency -1 presentation
<u,v I v4=l, u2v2u2v=vu2, [u,v]u[v,u‘l]=v2>.

(iv)-(v) structure: SL(2,8):3
G has two non-conjugate maximal subgroups R, S of structure SL(2,8):3 both 

being the normalizer in G of a SL(2,8) subgroup. In fact G has two non-conjugate 
SL(2,8) subgroups K, L whose elements of order 9 lie in the classes 9A and 9B

respectively and we have R = Ng(K), S = Nq(L).
We begin with R whose SL(2,8) subgroup contains elements in the class 9A, by
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table n. The group SL(2,8) has three conjugacy classes of elements of order 9 (same 
family); and can be generated by elements kj, k2 with (ki,k2) of type (2,3,9;7). Using 

PERM, we find the generators ki=b2, k2=(ab2ab)3 for a SL(2,8) subgroup K whose 

elements of order 9 belong to the class 9 A. Now TC gives NQ(K)=<K,k>, where 
k=ab2(ab‘lab)2, with IG:<K,k>l=120. The subgroup R-<K,k> is a maximal subgroup in

G since IttH ilfnO  ( i=l,2,3 )•

Next we check that (kj,k2k'l) is a generating pair of type (2B,6B,6B;9A) for R. 

This helps us to obtain the generators X4=b2 and y4=(ab)2(ba)2(b"la)2ba for the maximal 

subgroup H4 of G isomorphic to R,

A presentation for H4 on X4, y4 may be given by
<x,y I x2=y6=(xy2)6=(xy2xy3)3sr(xy2xy3xy)3s=l>.

We take N = < x ,y x y 2 > ,  M = < y 2 > . Then N nM -(l) with N = SL(2,8) showing that H4 = 

SL(2,8):3. Now N4= <X4,y4X4y4^> is a SL(2,8) subgroup of G whose elements of 

order 9 are in 9A with Ng(N4)=H4.

Similarly, we find the generators Xg=b2 and y$=bab'lab2a for a maximal subgroup 
of G isomorphic to S as we shall see now. Here Ng=<X5,ygXgyg2> is a SL(2,8) 
subgroup of G with elements of order 9 in 9B ( i.e. isomorphic to S ) and that 
Ng(N5)=H5. Moreover, we note that N4 and N5 are non-conjugate in G. The pair 

((x5ys)^»y5X5) is a generating pair of type (2B,6B,6B;9B) and satisfies the above 
presentation.

That H4, H5 remain non-conjugate in G follows from the fact that elements of 

order 9 in H4 are all in 9A while those of Hg are in 9B. Finally H4 has intersection S3XC3 

with Hg.

The group H4 ( Hg ) is isomorphic to the deficiency zero group Q{l,m,n ), for

1-2, m =3, n =-2, studied by C M. Campbell ( see [28] ). To see this we take u=yg, 

v=xgyg2xgyg'l. Then u, v generate Hg and satisfy the following deficiency zero 
presentation

<u,v I uv3=vu’2vu, vu3=uv'2uv>.
This shows that M(H4)=1.

(vi) structure: (A4 xA^ ) : 2

By 3.3.2, this is the normalizer in G of an A4xAg subgroup. The group A4xAg 
has presentation <r,s,t,q I r2=s3=(rs)3=t2-q3=(tq)5=[r,t]=[r,q]=[s,t]=[s,q]=l> and can 
be generated by rt and sq. That (rt,sq) is of type (2,3,15) allows us to look for, by
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PERM, a generating pair (c,d) for an A5XA4 subgroup. We find the generators c-b^ and 

d=(ba)2(b2a)2, TC now gives NQ(<c,d>)=<d,e>, where e=(ab2)2a, with <d,e> of index 
126. It is then easy to check that (e,d2e) is a generating pair of type (2A,4B,15;3C) for 
<d,e>. Using this enables us to obtain the nice generators x=a^, y=b^ for a subgroup H5 

of index 126. H5 having an element of order 12 (e.g., xy2) cannot be isomorphic to any

subgroup of Hi ( = Ag). This fact together with IG:Hilfl26 ( i=2,3,4,5 ) proves that H5 
is maximal in G.

The pair (x,y) satisfies the following presentation for Hg :
< x ,y  I x 2 = y 4 = (x y ) 1 5 = [x ,y ] 3 = ( ( x y )4 x y 2 x y - l) 2 = l>  ( f )

Now let N-<y2,xy>. Then N has index 2 in <x,y> and trivial intersection with <x>.

Thus <x,y> = N: 2. On taking u=y2, v=xy we find the presentation
<u,v I u2=v^5=(uv2)3=uv3uvuv3uv4> for N which is easily shown to be the direct

product of <v3,(v3)U>( = Ag) and <(uv3)3,v5>( = A4). Hence Hg = (A4xAg):2.

To constmct a covering for Hg we first combine the third and fifth relations of (t) 
into the single relation (xy)^5=((xy)4xy2xy^)2. Then the obtained group is isomorphic to 
Hg with a covering group C :

<x,y I x2yl6- (xy)15((xy)4xy2xyl)-2 y8=[x,y4]=[x,(xyxyl)3]=[y,(xyxy'l)3]=l>.

C has order 5760 and thus IM(Hg)l=4. We have M(Hg)s<y4,(xyxyl)3>=C2xC2. The 

latter presentation of Hg now shows that Hg is efficient.

(vi7j structure: 3 ^ : 8 4

By information given in table II, this is the normalizer in G of an elementary 
abelian group P ( ^ )  of order 27 whose 13 cyclic subgroups number 3 containing class 
3A, 4 containing 3B, and 6 containing 3C. Considering the Sylow 3-subgroup P3 of G, 

the only subgroup of P3 with this property is found to be generated by x^yx^, x’2y, yx, 

where x, y are the generators of P3 given in (I). Substituting ab, 
ab"Hab)2ab2abab“Hab2)2 for x, y in these generators gives a subgroup P whose 
normalizer in G is cab, z>, where z=(b" ̂  aba)2b2(ab" ̂ )2(ab2ab'^)2(ab2)2ab(ab" 1 )2, with 
<ab,z> of order 648. Next, we check that ((abz)3,z5) is a generating pair of type 
(2B,12,3B;9A) for <ab,z>. This allows PERM to give the generators x=b2, 
y=b(abab2)2(ab)2 for a maximal subgroup H7 of order 648.

A presentation for H7 on x, y is
<x,y I x 2 = y 3 = ( x y ) 1 2 = ( ( x y ) 3 ( x y l ) 2 ) 2 - i > ^

Let N=<[x,y]3,(xy)4,(yx)4>, M=<xy^,yxy>, Then <x,y> splits over N and M is a
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complement to N in <x,y> with M = S4 and N = 33. This means that Hy = 33.-S4.

A covering group C for Hy may be given by 

<ai,a2,a3,a4 Iai2=a23a4-l=(aia2)12a3-la4'4=((aja2)3(aia2-l)2)2a4-l=[ai,a3]=

[ai,a4]=[a2,a3]=[a2,a4]=[a3,a4]=l>.

Then ICI=1296 and so M(Hy) = C2; and an efficient presentation for Hy is
<x, y I x2y3=(xy)^2=s((xy)3(xy^)2)2=l>.

It is worth noting that Hy is not isomorphic to the maximal subgroup of PSU(4,2) 

of structure 33:$4 since their multipliers are different.

(viii) structure: 3^'A4

The table o f [21] shows that the maximal subgroup with the above structure is the 
Hessian group. The Hessian group has a generating pair o f type (3,3,4;4). On searching 

for such a pair by PERM we find that t=(ab)3, s=(ab)2(ba)3b"^ generate a subgroup Hg of 

order 216 and satisfy the presentation o f the Hessian group
<T,S I T3=S3=(TS)4=1, (TST)2S-S(TST)2>.

It remains to shows that Hg is maximal in G. Firstly, Hg is not embeddable in Hy 

because IHg'l (=72) does not divide IHy'l (=324). Secondly, Hg has a single conjugacy 

class of elements of order 4 with elements in 4B whereas such elements in H3 are all in 

4A; so H3 cannot be a subgroup of any conjugate in G of H3 . Finally, the index of Hg in 

G is not divisible by IGrHjI (i=l,2). These prove that Hg is a maximal subgroup of G.

Using the above presentation for the Hessian group we are able to construct the 
following presentation for a covering group of Hg
C=<T,S,U,V I T3u =S3=(TS)4U=1,(TST)2S=VS(TST)2,[T,U]=[T,V]=[S,U]=

[S,V]=[U,V]=1>.
Then C having order 648 gives IM(Hg)l=C3. How an efficient presentation for Hg is 
given as follows :

<T,S I T3=1, (TS)4=S3, (TST)2S"2=S(TST)2>.
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PSL(3,5)

ordei=372000=25.3.53.31 d= 31 mult=l

G=< a,b 1 a2=b3=(ab)24=[a,b]6=((ab)6(ab‘l)2)3=((ab)3(abab'1)2)5=

((ab)5(ab' lab)2(ab)2(abab-1)2)2= \ >

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA 372000 1 131
2A 480 A A a 17212
3A 24 A A b 11310
4A 480 A A (ab)6 1746
B** 480 A A (b-la)6 1746
4C 16 A A (ab)2(ab"l)2abab"l 132446
5A 500 A A ((ab)2(ab-1)2)2 1655
5B 25 A A (ab)3(abab”i)2 II56
6A 24 AA AA [a,b] 113264
8A 24 A A (ab)3 112383
B** 24 B A (b"la)3 112383
lOA 20 AA AA (ab)2(ab"l)2 112251102
12A 24 AB AA (b'la)2 1132122
B** 24 AA AB (ab)2 1132122
20A 20 AA AA (ba)2(b’la)5 I24I5I2OI
B** 20 AB AB (ab)5(ab“l)2 I24I5I2OI
24A 24 AB AA (ab)7 II6I24I
B** 24 BA AB (b-la)'^ II6I24I
C**7 24 AB AA b'la II6I24I
D*7 24 BA AB ab II6I24I
31A 31 A A (ab)2ab"l 311
B** 31 A A b(ab'l)2a 311
C*2 31 A A ((ab)2ab‘l)2 311
D**2 31 A A (b(ab‘l)2a)2 311
E*4 31 A A ((ab)2ab’l)4 3 ll
F**4 31 A A (b(ab‘i)2a)4 311
G*8 31 A A ((ab)2ab-l)8 311
H**8 31 A A (b(ab"l)2a)8 311
1*16 31 A A ((ab)2ab-l)-l5 311
J*15 31 A A ((ab)2ab'l)l5 311

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 12000 31 52;GL(2,5) N(5A2) 2
H2 12000 31 52;GL(2,5) N(5A2) 2
H3 120 3100 Ss N(2A,3A,5B) 2
H4 96 3875 42;S3 N(2A2) 2
Hs 93 4000 31:3 N(31ABCDEFGHIJ) 1
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I.Sylow p-subgroups

(i) structure: order=32
By table II, G has GL(2,5) as a subgroup of odd index and thus its Sylow 

2-subgroup is isomorphic to that of GL(2,5). Let u, v,w be the matrices over GF(5)
f l  O] [O l1  [2  Ol

ij ’ i  1 oj i o  ij
Then u, v, and w generate GL(2,5) ( see 7.5 of [18] ). Taking r=w2, s=uvw gives 
<r,s>=<u,v,w> with

GL(2,5) = <r,s I r2=(rs)4=l, rs2=(s4r)2 > (*)
Using the method 2.3 (vi), TC finds the generators x=(rs)2, y=s3 for a Sylow 

2-subgroup of GL(2,5). Having found the generators x, y we observe that (x, xy) is of 
type (2,4,8;4). Now PERM simply gives x=al, where t=(ba)2b"l, and y=(ab)^ for a 
Sylow 2-subgroup P2 of G. It is now easy to check that P^ is isomorphic to the 2-group

Fge.

n2(G)=IG:N(P2)l= 11625.

( ii) Sylow 3 -subgroup order-3
P 3 =<b>, n3(G)=IG:N(P3)l=7750.

(iii) Sylow 5-subgroup order-125
By table I, it is readily seen that the Sylow 5-subgroup of G is an extra-special 

group of exponent 5 and thus is generated by elements x, y with (x,y) of type (5,5,5;5). 
Starting with x=((ab)2(ab’1)2)2 PERM gives y=(ab)3(abab'l)2 with Pg=<x,y> of order 
125.

ng(G)=IG:N(Pg)l=186.

(iv) Sylow 31 -subgroup order=31
P31=<(ab)2ab-l>=C((ab)2ab-l), n3i(G)=IG:N(P3i)l=4000.

ILMaximal subgroups

( i )-( ii) structure: 5^ :GL(2,5)
Hj=<a,(bab)^^>.

Let xi=a, yi=(bab)4b. Then a presentation for Hj on xj, yj is 
H=<x,y I x2=(xy3)4=[x,y]3=(xy5xy-l)3=(xy3xy2xy-l)2=xy2xyxy2xy"2xy-lxyxy3=l>.
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We now take N=<((xy)3xyl)2,(yl(xy)3x)2>, M=<x,y5xy2> and observe that N < H,

NnM=(l) with N = CgxCg. This proves that His a split extension of CgxCg by M. Next 
the generators r=x, s=y^xy2 of M satisfy the presentation (*) given in (I) showing that

M= GL(2,5). Thus H = 5^:GL(2,5). On substituting xj, yj for x, y in the generators of 

M we find a subgroup of G of structure CgxCg whose normalizer in G is precisely H% as 
stated in our second table.

A covering group C of Hi is found to have a presentation on generators x, y with 
relations
x 4 ( x y 3 ) 4 = ( x y 3 x y 2 x y  1)2, x “5 y 2 x y x y 2 x y 2 x y  l x y x y 3 = l , [ y ,x 2 ] = [ x , ( x y 3 ) 4 ] = i ,

[y»(xy3)4]=[x,(xyxyl)3]=[y,(xyxyl)3]=[x,(xy5xyl)3]=[y,(xy5xyl)3]=l,
[ ( x y 3 ) 4 , ( x y x y  I )3 ] = [ ( x y 3 ) 4 ,( x y 5 x y  1 )3 ]= 1 .

TC now verifies that ICl=24000. So M(Hi)=C2. To prove Hi efficient we look for a 
deficiency -1 presentation using the method described in 3.5. It is found that 
R=yi-4xiyi"l, S=xi generate Hi and satisfy the presentation

<R,S I S2=R5s r 4SR-1S(RS)2=R2(RSR-2S)2r -1SR(RS)2=1>.

We now proceed to give generators xy, yy for (ii). It is easy to check that (xi,yi)

is a generating pair for Hi of type (2,24,24;3) with I fix(xi)nfix(yi)l =1. PERM is then 

able to produce the words X2=a, y2==(bab)i, where t=ab'l, with (X2,y2) of the same type

and !fix(x2)nfix(y2)l=0. The elements X2, y2 generate a subgroup H2 of G of order 

12000 which is obviously not conjugate to Hi. Next (X2,y2"l) satisfies the above 

presentation for Hi.

The intersection of Hi and H2 is GL(2,5).

(iii) structure:

As was remarked earlier S5 is generated by two elements T and S with (T,S) of 
type (6,5,2;2). Using PERM, we find the generators x=a^^ and y=b‘l(ab)4 for a 
subgroup H3 isomorphic to S5. Here (x,y) is of type (2,6,5B;2). We note that by the 
information given in [34] about the structure constants for 2A, #(2,6,5A)=0. This 
indicates that G has no Sg subgroup with elements of order 5 in 5A. Now we prove that 

H3 is a maximal subgroup of G in the following way. The derived group Hi* of Hi has 

index 4 and may be generated by z=[xi,yi], u=[xi,yi‘l]. A presentation for H i’ on z, u 
is found to have relations z3=(zu)3zu-lzuz-luzu-l=(zu-l)3z-lu-lzuzu-lz-lu"l=l. A simple 
check using TC shows that v=zuzu"l, w=(uz)3uz-l(uz)3 generate a Sylow 2-subgroup of 
Hi* and that v2=w2, vwv=w from which we imply that Hi* has Qg as a Sylow
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2-subgroup. On the other hand the Sylow 2-subgroup of Sg* (=Ag ) is the Klein 4-group. 

Thus Hj* cannot have Sg' as a subgroup for the quaternion group Qg has no C2XC2 

subgroups. This shows that has no Sg subgroups.
It may be worth mentioning that there is only one perfect group K of order 3000;

K= N'Ag, N=<r,s,t 1 r5=s5=t2=[r,s]=l, [r,t]=r3, [s,t]=s3>, see [40]. The group Hi' 
being perfect of order 3000 is clearly isomorphic to K. A somewhat easy computation 
shows that the covering group of K has order 15000 which proves that M(K)=Cg. Thus 
K having a 2-generator 3-relation presentation is efficient

(iv) structure: 4 ^ : 8 3

This is the normalizer in G of a C4XC4 subgroup. By PERM we first find r=(ab)^,

s=(ba)2(bab-la)2(ba)3(b‘la)2 such that <r,s>=C4xC4.Then TC gives NG(<r,s>) =<z,u>, 
where z=(ab)3, u=b"H(ab"^)2ab)2ab'l((ab)2(ab“l)5)2(abab"l)3(ab)2(ab“̂ )4abab'l, with 
l<z,u>l=96. It is now found that (zu’^u) is a generating pair of type (2,3,8;3) for <z,u> 
which helps us to find the generators x=a^®, y=(ba)4(b'la)3bab for a subgroup H4 of G 
of order 96. The pair (x,y) satisfies the presentation <x,yl x2=y3=(xy)8=[x,y]3=i>. The 
maximality of H4 follows on noting that IH4'I ( =48 ) does not divide IHi'l (=3000 ).

(The multiplier of the same group was calculated earlier.)

(v) structure: 31:3
By table II, this is the normalizer in G of a cyclic subgroup of G whose generator t 

lies in 31A-J. We take t=(ab)2ab'^ which is in 31A, and find No(<t>)=<t,q>where 
q=b-l(ab‘l)^(ab)2(ab"^ab)3ab(ab"^)3(ab)2ab’lab with kt,q>l=39. The subgroup <t,q> of 
G is maximal since 39 does not divide IHil (i=l,2,3,4). That (q,tq) is of type (3,3,31;31) 
enables us to obtain the neater generators x=(abab“̂ )2 and y=b(ab)3aB, where g=(ba)2, 
for a maximal subgroup Hg of G isomorphic to <t,q>. Putting u=[x,y], we obtain the 

following presentation for the split metacyclic group Hg

<u,y I u31=y3, y"lu^y=u9>.
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M 2 2

order=443520=27.32.5.7.11 d=22 mult=12

G=< a,b I a2=b4=(ab)H=s(ab2)6=(abab2)8=[a,b2abab2]2=

((ab)2(ab2)2)3= ((ab)2(ab" ̂ )2ab2)3=i > 

conjugacy classes of elements of G

class lc(x)l p-power p’-part representative cycle type

lA 443520 1 122
2A 384 A A a 1628
3A 36 A A (ab2)2 1436
4A 32 A A b 122242
4B 16 A A ab(ab2)2 122242
5A 5 A A [a,b] 1254
6A 12 AA AA ab2 223262
7A 7 A A (ab)2ab2ab'i II73
B** 7 A A bab2(ab‘l)2a 1173
8A 8 A A abab2 214132
llA 11 A A ab 112
B** 11 A A b’la 112

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 20160 22 M2i=PSL(3,4) 4x12
H2 5760 77 24:Afi N(2A4) 2x12
Hs 2520 176 A? 6
H4 2520 176 6
Hs 1920 231 24;S5 N(2A4) 2x4
H6 1344 330 23;PSL(2.7) N(2A3) 2x2
H? 720 616 3
Hg 660 672 PSL(2,11) 2

I.Sylow p-subgroups

(i) Sylow 2-subgroup order=128
By table I, the centralizer in G of an involution is a subgroup of order 384 and 

thus contains a Sylow 2-subgroup of G. Using the permutation representation of G it is 
found, by CAYLEY, that
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h=(l,17,16,21)(3,9,15,6)(4,10,22,12)(549)(7.14,ll,18)(8,20), 
g=(l,20,21)(2,3X4,14,12,9,5,6X7,19,11,22,15,10)(8,17,16)(13,18) 

generate C(a). A simple check now shows that (hg2,g) is a generating pair of type 
(2,6,8;6) for C(a) which allows PERM to obtain the generators r=a, s=b(ab"l)2ab for a 
subgroup H of G of order 384. A presentation for H on r, s is

<r,s I r2=(rs)6=(rs2)2(rs"2)2-(rs)2s2(rsrs’l)2=l>.
Using TC we find the generators

rsr, s2, srs (*)
for a Sylow 2-subgroup of H. Substituting a, b(ab“l)2ab for r, s in (*) and using 
PERMGP gives the generators ab(ab"l)2aba, (ab2)3a, ab(ab2ab'l)2ab(ba)2 from which 
we may arrive at the generators x=(b2)i, where t=ab"l, y=(b2a)2(bab2a)2, z=b2(ab)2a for 
a Sylow 2-subgroup P2 of G.

A presentation for P^ on these generators may be given by
<x,y,z I x 2 = (x y ) 2 = y 4 = (y z ) 2 = l ,  xz3x=z, z y 2 z = y z 2 y  >

Again using the permutation representation of G, CAYLEY simply shows that

P2/ 0 (P2) = 23 and thus d(P2)=3, by 1.5.17. Next we shall see that rank M(P2)=3 

which, together with d(P2)=3, will prove that the above presentation for P2 is minimal. 
For this purpose, we first construct the following presentation for a covering group of

P2 :
C=<ai,a2,a3,a4,ag,a^ I ai2ag- l=(ai a2)^=a24a4ag2=(a2a3)2ag=a%a3-laia33=l,

a2̂ a3a2-la3‘2a2-la3a^-l=l, [ai,aj]=l (1 ^ i < 6,4  < j < 6, i < j ) >. 
Now NQ can be used to determine the order of the 2-group C. The group C being a

nilpotent group is of class 5 and order 2^ . Then M(P2) = <a4,ag,a^>=C2xC4xC2. 

n2(G)=IG:N(P2)l =3465.

(ii) Sylow 3-subgroup order=9
A simple use of PERM gives the generators x = (a b 2 )2 , y=b(ab2ab“l)2(ab2ab)3 for 

a Sylow 3-subgroup of G.
n3(G)=IG:N(P3)l=6160.

(iii) Sylow 5-subgroup order-5

P5=<[a,b]>=C([a,b]), ng(G)=IG:N(Pg)l=22176.
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(iv) Sylow 7-sübgroup order=7
?7=< (ab)W ab-i >=C( (ab)W ab-l), n7(G)=IG:N(P7)l=21120.

(v) Sylow 11-subgroup order-11
Pn==<ab>=C(ab), ni i (G)=IG:N(Pi i)l=8064.

ILMaximal subgroups

(i) structure: M2 i=PSL(SA)
Hj=<a, b^> where t=ab2ab, in 9,1 of [16].

(ii) structure:

This is the normalizer in G of an elementary abelian group E ( <G ) of order 16. 
Returning to the Sylow 2-subgroup P2 of G given in (I), after some experimenting, we 

find E=<y2z2,[z,y],zy,y2z-ly>. Now TC verifies that NQ(E)=<a,ab,b2ab2> with 
IG:N(E)I=77 from which we obtain the generators u=a and v=b2(ab)2 for a maximal 
subgroup H2 of G of index 77. The pair (u,v) has type (2,5,8;4) and satisfies the 
presentation :

H = < u , v  I u 2 = v 5 = ( u v 2 ) 5 = [ u , v ] 4 = ( u v u v ^ u v 2 ) 3 = l > .

Take N=<(uv)4,(vu)4,v-l(uv)4v,v(vu)4v"l>, M=<u,v2uvuv2>. Then N <1H, NnM=(l)

with N = 24, M = showing that H = 24:A5.

We now determine the multiplier of H2. To do this, we first see that

H 2 = < u , v  I u 2 = v 5 = ( u v 2 ) 5 = i ,  ( u v u v ^ ) 4 = ( u v u v ' l u v 2 ) 3 > .

Then a covering group C for H2 is found to have the following presentation :
<u,v 1 (uv2)5=v5u4, (uvuvl)4=(uvuv^uv2)3, [v,u2]=[u,v5]=l >.

TC is now used to verify that ICI=138240. This gives IM(H2)I=24. We have M(H2) = 

<u2,v5>=C2xCi2- This, in turn, shows that H2 is efficient.

(iii)-(iv) structure: Ay

The group A7 has a generating pair of type (2,4,7;5). Using this fact we find, by 

PERM, the generating pairs (x3,yg) and (x4,y^), where xg=X4=ab2a, yg^b ^ab^abab"^, 

y4=b’labab2ab"l, for two non-conjuagate A7 subgroups H3 and H4 of G. The subgroup
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Hg has intersection (8 3 x8 4 )+ with H4  in G, where (K)+ denotes the subgroup of even 

permutations in the permutation group K. That Hj ( i=3,4 ) is maximal in G foUows from

the fact that A7  has an element of order 6  while Hj ( = P8L(3,4) ) has no such element.

(v) structure:
Similar to that in (ii) we search for an elementary abelian group E ( < G ) of order 

16 whose normalizer in G has index 231.Considering the Sylow 2-subgroup P2 of G we 
find B=<xy,y2,(y-lz)2,z4> for which NQ(E)=<r,s,t>, where r=a^^, s=(ab2)2, 
t=(ab2ab)4, with IG:N(E)I=231. Now it is seen that (r, s(tr)2) is a generating pair of type 
(2,5,6;4) for N(E). Then PERM is able to produce the words u=(b2)h, v=(babab2)k, 
where h=ab‘^a, k=abab"^, for a subgroup Hg of index 231. A simple check using 

SUBGPTEST shows that Hg is not isomorphic to any subgroup of H2, That is, Hg is a 
maximal subgroup of G.

The generators u, v satisfy the presentation
K=<u,v I u2=v5=(uv)5=(uvuv2)3=([u,v][u,v2])2=l>.

Put N=<(uv2)4, (v2u)4,(vuv)4,vl(uv2)4v> , M=<v,uv"luvu>. Then N < K, NnM =(l)

with N = 24, M = Sg. Therefore K = 24:Sg.

To calculate M(Hg) we first see that

Hg = <u,v I u2=v5=([u,v][u,v2])2=l, (uv)^=(uvuv2)3>.

Then a covering group for Hg may be given by

C=<ai,a2,a3,a4lai2=a25a32=(aia2)%ia2aia22)-3a3-l=([ai,a2][ai,a22])2a4-l=l

[ai,aj]=l ( 1< i < 4, 3 < j < 4, i < j ) >.

C has order 15360 and so IM(Hg)l=8 . Next it is easily verified that M(Hg) = <ag,a4> s  

C4XC2, Thus, Hg having a 2-generator 4-relation presentation is efficient.

(vi) structure: 2^ :PSL(2,7)
This is the normalizer in G of an elementary abelian group E ( < G ) of order 8. 

On examining the normalizer in G of randomly chosen subgroups of P2 of the structure 

23 we found E=<x,y2,zxz> with IG:Ng(E)I=330. We have, in fact, N(E)=<r,s> where 

r=a^, s=(ab2ab‘l)3(ab*^)2. That (r,s(rs)2) is a generating pair of type (2,4,7/6) for 
<r,s> can be used to give, by PERM, the generators u=b2, v=b^^^ for a subgroup H5 of
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G of index 330. The maximality of now follows on noting that Hi ( = PSL(3,4) ) 

has no element of order 6 whereas uv^ is an element of order 6 in H^.

The pair (u,v) satisfies the presentation given for the maximal subgroup H2 of

Ag.

(vii) structure: Mjq

As was remarked, Mio has a generating pair of type (2,4,8/5). Using this fact 

PERM finds x=a, y=(ba)2b2(ab)2ab" ̂  with x, y generating a subgroup H7 of order 720 

and satisfying the presentation for Miq given earlier. Now H7 having an element of

order 8 is not embeddable in H%( =PSL(3,4)). Also SUBGPTEST ensures that H2 has 

no subgroup isomorphic to H7. These facts prove the maximality of H7.

(viii) structure: PSL(2,11)
The group PSL(2,11) is generated by two of its elements of order 2 and 3 whose 

product has order 11. PERM finds x=a, y= b(ab"^)2(ab)3 for a maximal subgroup Hg 
isomorphic to PSL(2,11). The pair (x,y) then satisfies the presentation of PSL(2,11).
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h

order=604800=27.33.52.7 d=100 mult=2

G=<a,b I a2=b5=(ab)^=[a,b]5=(ab2)7=[a,b2]4=[a,bab'2]3=i>

conjugacy classes of elements of G

class lc(x)l p-power p-part representative cycle type

lA 604800 1 ilOO
2A 1920 A A a 120240
2B 240 A A (ab)3 250
3A 1080 A A (ab(ab2)2)4 110330
3B 36 A A (ab)2 14332
4A 96 A A [a,b2] 1826420
5A 300 A A [a,b]2 520
BB 300 A A [a,b] 520
5C 50 A A (ab2ab‘ )̂2 520
D* 50 A A (ab2ab"l)4 520
6A 24 AA AA (ab(ab2)2)2 I224366I2
6B 12 BB BB ab 22616
7A 7 A A ab2 12714
8A 8 A A (ab)2ab2ab"̂ 122343810
lOA 20 BB AB abab2 IQlO
B* 20 AB BB (abab2)3 lOlO
IOC 10 DA CA (ab2ab’l)3 54108
D* 10 CA DA ab^ab'l 54108
12A 12 AA AA ab(ab2)2 12324252126
15A 15 BA AA (abab^ab'2)2 52156
B* 15 AA BA abab2ab"2 52156

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 6048 100 PSU(3,3) 1
Hz 2160 280 3-PGL(2,9) N(3A) 2
H3 1920 315 2.1+4:Ag N(2A) 2
H4 1152 525 22-»4;(3xS3) N(2A2) 2
H5 720 840 A4XA5 N(2B2),N(2A,3B,5AB) 2x2
H6 600 1008 A5XD10 N(5AB),N(2B,3A,5CD) 2
H? 336 1800 PSL(2,7):2 N(2A,3B,4A,7A) 2
Hg 300 2016 52;Di2 N(52)=N(5AB3CD3> 2
Hg 60 10080 A5 N(2B,3B,5CD) 2
I.Sylow p-subgroups

(i) Sylow 2-subgroup order-128
Since G has PSU(3,3) as a subgroup, it contains a 2-subgroup isomorphic to the
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Sylow 2-subgroup of PSU(3,3). Invoking the presentation of the Sylow 2-subgroup of 
PSU(3,3), we see that such a 2-subgroup has a generating pair of type (2,8,4;4). Now 
PERM simply finds r=a, s=b2ab(ab"l)2ab with <r,s> isomorphic to the Sylow
2-subgroup of PSU(3,3). Now TC can be used to extend <r,s> to a Sylow 2-subgroup 
of G. We find t=b'l(ab)3b of order 2 in N(<r,s>) with l<r,s,t>l=64 and 
q=b“l(ab"2ab)2ab*labab‘2abab'l in N(<r,s,t>) with l<r,s,t,q>l=128. Removing the 
redundant generator s and conjugating by b‘l the elements r, t, q gives the generators 
x=bab“l, y=(ab)5, z = ( a b ‘2 a b )2 a b “l(a b a b " 2 )2  for a Sylow 2-subgroup P2 of G, A 

presentation on x, y, z  for P2 may now be given by
< x ,y ,z  I x 2 = y 2 = z 2 = ( y z ) 2 = (x y ) 3 (z x ) 5 z y = (x y ) 2 x z x y z x z y x z = l> .

We now proceed to show that the presentation is actually minimal. We first

observe that P2/ 0 % )  is an elementary abelian group of order 8 and so d(P2)=3. Then a 

covering group of P2 is found to have the presentation: C=<a%,a2,a3,a4,ag,a5 I 

ai2=a22=a32a4=(a2a3)2=(aia2)^(a3ai)5a3a2a5' l=1,

(aia2)^aia3aia2a3aia3a2aia3a6-l=l, [ai,bj]=l ( 1 < i < 6,4  < j < 6, i < j >, 
which is easily shown, by NQ, to have order 2lO with nilpotency class 4 . This helps us

to obtain M(P2) = <a4,ag,a5>=C2xC2xC2. 

n2(G)=lG:N(P2)l =1575.

( ii) Sylow 3-subgroup order-27
The fact that G has PSU(3,3) as a subgroup of an index not divisible by 3 allows 

us to determine a Sylow 3-subgroup of G using the method described in 3.2. We begin 
with the following generators of a PSU(3,3) subgroup

A=a, B=(b’2ab2a)2bab (*)
with A, B satisfying the presentation 6.2 of [16], see (II) below. However, a Sylow
3-subgroup of PSU(3,3) can be generated by

r=AB3, s=(BA)2b -1(AB)2 (**)
Substitution of (*) in (**) determines generators for a Sylow 3-subgroup of G which 
may be simplified by an application of PERMGP. In so doing, we find the generators 
x=ala, y=aa9, where t=b’2abab‘l, q=b’l(ab‘2)2, for a Sylow 3-subgroup of G. 

n3(G)=IG:N(P3)l=2800.

(iii) Sylow 5-subgroup order=25
Obviously the Sylow 5-subgroup of G is CgxCg and thus has a generating pair of 

type (5,5,5; 1). Using PERM, we obtain the generators x=abab"\ y=b2ab'2(ab)2ab"2ab 
for a Sylow 5-subgroup of G.
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ng(G)=IG:N(Pg)l=2016.

(iv) Sylow 7-subgroup order-7
P7=< ab2 >=C( ab2), n7(G)=IG:N(P7)!=14400.

ILMaximal subgroups

(i) structure: PSU(3,3)
Hi=<a, (b'2ab2a)2bab> in 6.2 of [16].

(ii) structure: 3 PGL(2,9)
By table II, the above maximal subgroup of G is the normalizer in G of a cyclic

subgroup <x> of G with xe 3 A. Taking r=(ab(ab2)2)4^ which is in 3A, we find, by TC, 
that NQ(<r>)=<a,s>, where S=b2abab‘2abab2ab’2ab2ab’lab'2ab2ab, with ka,s>l=2160. 
A simple check now shows that (a,s) is of type (2A,10A,10A;4) which enables us to give 
the generators x=a^ y=b2ab'lab, where t=b-la, for a maximal subgroup H2 of G using 
PERM. The pair (x,y) satisfies the presentation

H=<x,y I %2=y 10=(xy2)5=(xyxy2xy-2)2=((y3x)2y-1 x)2= 1 >.
Note. We note that y5, xy4 generate H which when written in terms of a , b gives a 
generating pair of type (2B,3B,10AB;4) for the same maximal subgroup of G. Using 
this, we may find the generators x'=(ab)3, y'=bab2ab(ab2)3 for a subgroup of G 
isomorphic to H2. For a given minimal generating pair (a,b) for G, this is, sometimes, 
useful when the class 2B has elements (as words in a, b) of shorter lengh than those of 
2A and we wish to give neater generators for the maximal subgroup of G of order 2160.

Take N = < ( x y ^ x y 3 ) 4 > .  Then N (=C) ) is normal in H and 

H/N=<x,y I x2=y 10=(xy2)5=(xy-Ixy3)4=(xyxy2xy2)2=((y3x)2y-lx)2= \ >

We shall now show that the factor H/N of order 720 is, in fact, isomorphic to PGL(2,9) 
which proves that H is an extension of C3 by PGL(2,9). A simple calculation with 
CAYLEY shows that

i .  4 “'lO i j  [o)4

(where o) is a primitive element of GF(32) ) generate GL(2,9) and that Z(<g,h>)=<k>, 
where
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fû) o | 

[0  cdJ

Now <g,h>/ck> is PGL(2,9) and has the following presentation :
<t,q I q3=[t,q]4=(t2q-ltq-1)2=1, [q,t][q,t2]=t'2>.

Next, the mapping x->[t,q]2, y—>qt^ yields an isomorphism between H /N  and 
PGL(2,9). At this stage, SUBGPTEST can be used to show that G has no PGL(2,9)

subgroups. Therefore, H2 cannot split over C3, that is, H2 = 3*PGL(2,9).

To compute M(H2), we first reduce the above presentation of H2 to the following 
2-generator 4-relation presentation

H2 = <x,y I x2=(xyxy2xy'2)2=((y3x)2y-lx)2=t^ yl6=(xy2)5>.

Then a covering group using this presentation can be constructed as follows 
C=<x,y,z,u I x2u=(xyxy2xy"2)2u3=((y3x)2y-lx)2z-lu3=l, ylO(xy2)-5^-2=i^

[x,z]=[x,u]=[y,z]=[y,u]=[z,u]=l>.
C has order 4320 and so M(H2)=C2.

We failed to reduce the above presentation for H2 to a 2-generator 3-relation 
presentation and therefore resorted to the method described in 3.5 which enabled us to 
construct the following deficiency -1 presentation for H2

<X,Y I X2=(XY)8=XY[X,Y]XY4=1>, 
where X=y5, Y=(xy)^xy4x with x, y generators of H2 given above.

We finally note that by combining the first and the second relation of the 
presentation we may obtain a deficiency zero presentation for a covering group of H2.

( iii) structure: 2 j  +4.- Ay

This is the normalizer in G of a 2-subgroup P ( < G ) of the strcture 2_l+4_ 

Considering the Sylow 2-subgroup P2 of G given in (I), we find P=<r,s,t,q>, where 
r=xyzxzxy, s=xyxyzxz, t=yxzxyxz, q=xzxyxyz, 

with NG(P)=<(ab)3,b2ab‘lab2(ab)2a> of order 1920. (We note that P is the only 

subgroup of P2 of order 32 with the property that IN(P)I=1920.) Put X=(ab)3 and 

Y=b2ab" 1 ab2(ab)2a. Then (X,Y) is a generating pair of type (2B,5D,5C/6A) for a

maximal subgroup of H3 of order 1920 because IH3lflHil ( 1=1,2 ); and satisfies the 
presentation :

<X,Y I X2=Y5=(XY)5=(XY2)6=([X,Y][X,Y-2])2=1>.
It is important to note that X, Y2 generate H3 and that the pair (X,Y2) has type

164



(2B,5CD,6A;10CD). Using this fact we may find, by PERM, the words u=(ab)3 and 
v=(b2)k, where k=ab"lab^, for a maximal subgroup of G isomorphic to H3, A new 

presentation for H3 using these generators is now found to have four relations rather 
than five relations as obtained earlier :

<u,vl u2=v5=(uv2)5=((uv)2uv"luv2)2=i> (f)
This presentation will ease the computing of the multiplier of H3 .We are now going to 

show that H3 is a split extension of 2. 1+4 yy Ag. Let N=<c,d,e,f>, where c=(uv)3, 

d=(vu)3, e=v"l(uv)^v, f=v(vu)^v"l. Then N is a normal subgroup of <u,v> of order 32

which has trivial intersection with M=<(uv)^, uv^>. An easy check shows that M = A5

and thus we have H3 = NiA^. To show N = 2. 1+4  ̂ we first construct the following

presentation for N on c, d, e, f
<c,d,e,f I c^=d^=e^=f^=cdcede=cdcfdf=cdeced=cdfcfd=cecfef=l>.

Then Ni=<def,cdfe> and N2=<fe,fd> are each normal in N with [Ni,N2]= l,

N inN 2=Z(N)=<(cd)2> = C2, Nj = Dg, N2= Qg. Therefore, N is a central product of 

Ni and N2, i.e. N= DgO Qg ( = 2j +4 ).

It may be worth remarking that there are only two perfect groups Gj and G2

having normal subgroups of type DgO Qg with factor groups A5 , see [40] . In fact G^s

(DgoQg):Ag, G2 = (DgOQg)'A3 ( the normal subgroup has no complement but 

supplement ). The group H3 being perfect of the structure (DgoQg):Ag is clearly 

isomorphic to Gj. We shall show here that H3 is efficient.

To prove H3 efficient we combine the relations of (t) as follows :
<u,v I u^=l, (uv^)5=v^, ((uv)2uv‘luv2)2=v5 >.

The group obtained is now easily shown to be isomophic to H3 using TC. Therefore, 

M(H3> is cyclic, by 1.5.8 (ii). But, M(H3) has M(Ag) as a direct factor ( see the note 

made in 1.6). This shows that rank M(H3)=1. So H3 is efficient. By constructing the 

covering group C of H3 we may see that M(H3) is exactly M(Ag). We have that 
C= <u,v I (uv2)5=u4v5, ((uv)2uv"1uv2)2=:u8v5  ̂[v,u2]=l>.

ICI=3840 giving M(H3)=C2 as required.

(iv) structure: 2 '̂*''̂ :(3xS3)
This is the normalizer in G of a subgroup P of structure 22+4. Again considering 

the Sylow 2-subgroup ?2 of G we find P=<xyxyz,xyzxy,xyxz,yxzx>. Substituting 
bab'l, (ab)^, (ab”2ab)2ab‘l(abab’2)2 in P for x,y, z and using TC, we find N(P)=<r,s,t>
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where r=bab"l, s=b2ab”lab~2(ab“l)2abab‘l(ab)2, t=bab-2(ab-2ab2)2abab" i ab^a, with 
1N(P)I=1152. It is easily checked that (rst, tr) is a generating pair of type (2A,6A,6B;3B) 
for N(P) which allows PERM to produce the generators u=a, v=b2ab- lab^ab-^ab^ of type 
(2A,6B,6A;3B) for a maximal subgroup of G of order 1152.The pair (u,v) satisfies 
the presentation

K=<u,v I u2=v^=(uv)6=[u,v]3=(uvuv2)3=[uvu,v2]2=l>.

Let N=<v3,uv3u,(v 1u)2(vu)2,uv'1uv3uvu>, M=<u,v2uv^uv2>. Then N< K, NnM=(l).

So K = N:M. In what follows we show that N = 2^+4 and M = 3xSg. Take r=v3, 
s=uv^u, t=(v’lu)2(vu)2, q=uv"luv^uvu. Then a presentation for N on r, s, t, q is 

<r,s,t,ql r2=s2=t4=q2=(rq)2=(rs)2t2=rstrst"l==rtrqtq=stqsqt=l>.
Now <t2,(st)2> of the structure C2XC2 is normal in <r,s,t,q> and the factor 

<r,s,t,q> /< t2,(st)2> is a 2-group of order 16 having elements of order 2 only.

Therefore, N = 22+4. Next, on taking w=v2uv3uv2 we find the presentation 
<u,wlu2=w3=(uw)2(uw-l)2=l> for M on the generators u, w which is easily shown to

be the direct product of <u,u^> ( = S3 ) and <(uw)2> ( = C3 ) as required.

A covering group for H4 using the above presentation of K may be given by 

C=<ax,a2,a3,a4,a5,a6l ai2=a26a3a5=(aia2)̂ a5=(aia2aia2-l)̂ a4-l=(aia2aia22)3a5
=[axa2ax,a2-2]2a^-l=l, [ai,aj]=l (1 < i < 6, 3 < j < 6, i < j ) >, 

10=2304 and so M(H4>=C2.
To prove H4 efficient we look for a deficiency -1 presentation. Our reduction 

method fails here to reduce the presentation of K to such a presentation. We therefore 
apply the method described in 3.5. In this way we may arrive at the generators X=uvuv3, 

Y=v^u for H4 on which a deficiency -1 presentation is obtained as follows:
<X,Y I (XY2)3=L X3y3=YX3, X2YXYX4=YXY >.

(v) structure:

By table II, this is the normalizer in G of an A5 subgroup with a generating pair 
(r,s) of type (2A,3B,5AB). Using PERM, we find r=a, s=ab(ab2)2ab'2ab2. Now TC 
gives No(<r,s>)=<t,q>, where t=b‘lab2ab'2(ab“l)2(ab2)2ab'2,

q=(ab2)2ab"lab(ab‘2)2ab‘lab2ab, with kt,q>I=720. Now an easy check shows that 
(tqflq"2, t) is a generating pair of type (2B,3B,15AB,10AB) for <t,q>. Using this fact 
PERM gives the generators x=(ab)3, y=b2ab‘2ab2(ab'2)2ab2 for a subgroup H5 of G of 

order 720. We must show that H5 is a maximal subgroup of G of structure A4XA5. To 

see this, we first construct the following presentation for H5 on x, y :
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<x, y I x 2 = y 3 = ( ( x y ) 2 x y - l ) 3 = ( ( x y ) 3 ( x y l ) 3 ) 3 = l> .

Then <x,y> is the direct product of Ki=<[x,y]2,[x,yl]2> and K2=<(xy)5,(yx)5> with

Kx=Ag and K2SA4. Now a simple computation shows that the Sylow 2-subgroup of H2 

is Di5 while that of H5 is C2XC2XC2XC2 proving that H5 is not embeddable in H2. So 

H5 is maximal.

M(A4xAg)=C2xC2, by 1.5.12, and the above presentation having deficiency -2 
proves that A4XA5 is efficient

(vi) structure: AjxD jq

This maximal subgroup is the normalizer in G of an A5 subgroup with a 

generating pair of type (2B,3A,5CD). Now PERM is able to produce the words 
z=(ab)3, u=(ab(ab2)2)4 with (z,u) of type (2B,3A,5D). Using TC we get 
N g (< z ,u> )= < z,v ,w> , where v=(ab‘i)2(ab)2(ab2)2ab‘2 and w=b"2ab2(abab“l)2ab“2ab2, 
with kz,v,w>l=600. The elements zw, zv’l generate <z,v,w> with (zw,zv'l) of type 
(2B,5AB,6A;5CD) which allows PERM to give the generating pair (x,y), x=(ab)3, 
y=b2(ab"l)2(ab2)2, of the same type for a subgroup H5 of order 600. H5 is, in fact, 

maximal in G since IĤ I does not divide IHjl ( i=l,2,3,4,5).

A presentation for on the generators x, y is
<x, y I x2=y5=(xy)6=(xy2xyxy'2)2=i>.

Now <x,y> is the direct product of Li=<(xy)2,(yx)2> and L2=<(xy)3,(yx)3> with L% ~

A5 and L2 = Djo .

M(A5xDio)=C2, by 1.5.12, and a deficiency -1 presentation for H5 can be 
obtained from the above presentation :

<X,y I x2y5=(xy2xyxy-2)2=l, (xy)6=y5>.

(vii) structure: PSL(2,7}:2

This is the normalizer in G of a PSL(2,7) subgroup with a generating pair (u,v)

of type (2A,3B,7A;4A) by table II. Now PERM gives u=a and v=(ab)2 with <u,v> ~ 
PSL(2,7). We then have N g(<u,v>)=<u ,z> , where z=b ^abab'^abab"labab'^abab^, with 
ku,z>l=336. An easy check shows that (u, (zu)2z3) has type (2A,6B,6B;4A) which 
helps us to obtain, by PERM, the generators x=a^^, y=bab"2 for a subgroup H7 of order

336. The maximality of H7 now follows on noting that (=PSU(3,3) ) cannot have a 
subgroup of order 336 ( see maximal subgroups of PSU(3,3) ).
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The pair (x,y) satisfies the presentation
<x,y I x2=y6=(xy)6=(xyxy2xy2)2=((xy)2xy-2)3=i>.

We now let N=<xy,(yx)2>. Then N ( = PSL(2,7) ) has index 2 in <x,y> and trivial 
intersection with <y3>, i.e. <x,y> is an split extension of PSL(2,7) by C2.

A covering group C for H7 may be presented as

<ai,a2,a3,a4,a5,a^l ai2a5=a26a3a4=(aia2)^a4a53=(aia2aia2-2aia22)2a53=l,

((aia2)^axa2"2)3a54=l, [ai,aj]=l ( l < i < 6, 3 < j < 6 ,  i < j ) > .  

C has order 672 and so M(H7)=C2,
Using the method described in 3.5, we constructed the following deficiency -1 

presentation for H7 on the generators X=y^, Y=(xy)2yx :
< X, Y I X2y 8=(XYXY“1)2=(XY3)3=1>.

(viii) structure: 5^ - ^ 1 2

By table n, this is the normalizer in G of a Sylow 5-subgroup. Taking P5 given in

(I), we find N(Pg)=<a,z>, where Z=b‘2ab'2(ab'lab'2ab2)2ab2ab‘l(ab‘2)2ab2(ab)2ab'lab2, 
That the pair (a,z) has type (2A,10AB,6B;3B) can be used to obtain, by PERM, the 
generators x=a, y^b^ab’lab'^ab^ab for a subgroup Hg of G of order 300. We now prove 

that this subgroup is, in fact , maximal in G by showing that H5 of order 600 has no 

subgroups isomorphic to Hg. To see this, we calculate the normal subgroup lattice of 

using CAYLEY. It is found that Hg has a unique normal subgroup of order 300 with 
presentation <u,v I u^=(uv)^=uvu" 1 vuv"l=l>. This group has no element of order 6 
while in Hg the element xy is of order 6,

A presentation for Hg on x, y may be given by
<x,y I x2=yl0=(xy)6=((xy)2xyl)2=(xy2xyl)2=: 1>.

Now it is easy to verify that <x,y> is a split extension of <y2,xy^x> (= 5^) and

<xy,yxyl>(=Di2).

To get at M(Hg) we construct the following presentation for a covering group C of 

G obtained from the above presentation for Hg :

<ai,a2,a3,a4,a5lai2=a2l0a3a45=((aia2)2aia2-l)2a4=(aia22aia2-l)2=(aia2)^a5“l= l ,

[a i , a j ]=l ( l<i^5,  3 < j < 5 , i < j ) > .  

Then ICI=600, so M(Hg)=C2 . An efficient presentation for Hg may now be given by 
<x,y I x2yl0=((xy)2xy 1)2=1, (xy2xyl)2=(xy)b>.
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(ix) structure: Aj

By table II, this is an A5 subgroup with a generating pair of type (2B,3B,5CD). Using

PERM we obtain the generators x=(ab)3, y=(b2a)2b'lab2ab‘2 for a subgroup H9 ( =Ag ) 
with (x,y) of the above type which is maximal in G according to the following comments:

(1) Hg of order 300 has no A5 subgroups because IHg'l=75 is not divisible by IAg1=60.

(2) Hg and H9 have each a single conjugacy class of elements of order 3 and that Hg 

contains elements of order 3 from the class 3A only while H9 contains such elements 
from 3B.

(3) Hg has two conjugacy classes of elements of order 5 and these elements are all in 

the class 5AB whereas elements of order 5 in Hg are all in 5CD.

(4) H3 contains elements of order 3 from 3A only ( one class ) while such elements in 
H9 are all in 3B.

(5) H2 contains elements of order 5 from 5AB only ( two classes ) while such elements 
in H9 are all in 5CD.

From (1) it follows that H9 is not embeddable in Hg and each of (2), (3), (4), (5) 

shows that none of H, ( i=2,3,5,6,8 ) have an Ag subgroup conjugate to H9. These prove 

that H9 is maximal.

Note. As we saw in (v), (vi), and (ix), G had three non-conjugate Ag subgroups with 
generating pairs of type (2A,3B,5AB), (2B,3A,5CD), (2B,3B,5CD). In fact there are 
exactly three non-conjugate Ag subgroups in G (see the proposition 2.3 of [20]). If R, S,

T are representatives of these classes then N(R) = Hg = AgxA^, N(S) = Hg = AgxDjQ,

N(T) = H9S Ag.We also note that by information given in [33] about the intersection of 

maximal subgroups H2, H3 contain Ag subgroups of type R and S respectively.
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PSP(4,4)

otder=979200=2*.32.52.17 d=85 mult=l

G=< a,b I a2=b^=:[a,b]5=(ab2)i7=:[a,b2]2=((ab)2ab“2)4=i>

conjugacy classes of elements of G

class lc(x)l p-power p'-part representative cycle type

lA 979200 1 185
2A 3840 A A a 121232
2B 3840 A A ((ab)4ab“l)3 15240
2C 256 A A [a,b2] 15240
3A 180 A A ((ab’iab)2b)2 17326
3B 180 A A (ab)S 110325
4A 32 C A (ab)3(ab2)2 H22420
4B 32 C A (ab)2ab”2 1122420
5A 300 A A [a,b] 15516
B* 300 A A [a,b]2 1 5 5 1 6
5C 300 A A (ab)3 517
D* 300 A A (ab)ti 5 1 7
5E 25 A A b 517
6A 12 AA AA (ab-lab)2b 132236610
6B 12 BB BB (ab)4ab*^ I2243I6I2
lOA 20 BA AA ab(ab2)2 112254106
B* 20 AA BA (ab(ab2)2)3 II2254106
IOC 20 DB CB (ab)2(ab2)2 5 IIO8
D* 20 CB DB ((ab)2(ab2)2)3 5IIO8
15A 15 BA AA ((ab)3bab'l)2 I23I5I155
B* 15 AA BA (ab)3bab"l 123151155
15C 15 DB CB (ab)2 52155
D* 15 CB DB ab 52155
17A 17 A A ab2 175
B*2 17 A A (ab2)2 175
C*3 17 A A (ab2)3 175
D*6 17 A A (ab2)6 175

conjugacy classes of maximal subgroups of G

group order index structure specification mult

Hi 11520 85 2ti:(3xAg) N(2A2),N(2C4) 2
H2 11520 85 26:(3xAg) N(2B2),N(2C4) 2
H3 8160 120 SL(2,16):2 N(2C,3A,5AB,...) 1
H4 8160 120 SL(2,16):2 N(2C,3B,5CD,...) 1
H5 7200 136 (AgxAg):2 N(2B,3B,5CD)2 2
He 7200 136 (AgxAg):2 N(2A,3A,5AB)2 2
H? 20 1360 Se N(2C,3A,3B,4B,5E) 2
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I.Sylow p-subgroups

(i) Sylow 2-subgroup order-256
By table H, G has a subgroup of minimal index 85 which contains a Sylow

2-subgroup of G. Such a subgroup can be generated by
r=a, s=(ab)3ab"lab (*)

( see n  below ). By constructing the following presentation for <r,s> on r, s we shall 
give generators for a Sylow 2-subgroup of G using the method described in 3.2.

<r,s I r2=sti=(rs)l^=[r,s]^=(rs3)4=(rs"lrsrs3)2=(rs-lrs2rs)3=l>.
Now an easy computation using TC shows that

srs-1, s3, (s3)r r[s,r] (**)
generate a Sylow 2-subgroup of <r,s>. Substituting (*) into (**) gives the generators 
x=al, y=((ab)3ab’lab)3, z=((ba)3b'laba)3, u=aQ, where t==b“lab (a b ’^)3a, 
q=[(ba)^b"^ab,a], for a Sylow 2-subgroup ?2 of G.

A presentation for ?2 on x, y, z, u may be given by 
<x,y,z,u I x2=y2=z2=u2=(xu)2=(yz)2=(xy)4=(xz)4=(yu)4=(zu)4=(xyxz)2=(xzuz)2

=(yuzu)2=(xyuy)2= 1 >.
We now prove that the above presentation is minimal by showing that d(?2)=4 and 

rankM(P2)==10, First a simple calculation with CAYLEY verifies that the factor

P2/0(P2) is an elementary abelian group of order 16 and thus d(P2)=4, by 1.5.17. Next 

a covering group C for P2 is found to have a presentation on fourteen generators 

1,2,3...,14 -chosen for simplicity- with 99 relators :
12911, 2^8 13, 32 6, 42 5, (1 2)2 9 11, (2 3)2 8 13, (1 2)4 7'1 82 92 ll2  132 
(12 13)2 92112 13, (1 2 4 2)2 11 132, (1 3)4 lO'l ll2, (1 3 4 3)2, (2 4)4 12-1 132 
(2 4 3 4)2, (3 4))4 14-1, p j] ( i  g i < 14,5  5 j S 14, i < j ).
NQ verifies that C is of class 3 and order 2l*. Hence IM(P2)l=2lO. It Is not hard now to 
check that

C=<[1,2], [1,3], [1,4], [2,3], [2,4], [3,4], [1,2 3],[14,2 3], [1 2,3 4], [1 3,2 4]>,

and that the subgroup H generated by the elements 5,6,7..., 14 is contained in Z(C)nC‘.

Since IC/HI=2l®, M(P2) = H. The elements 5,6,7,..., 14 are each of order two and thus 

M(P2) is the the direct product of ten copies of C2 as required. 

n2(G)=IG:P2l=425.

(ii) Sylow 3 -subgroup order-9
In order to find generators for a Sylow 3-subgroup of G we exploit the fact that G 

has a subgroup of order 180 containing a Sylow 3-subgroup of G by table I. This
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subgroup is in fact the centralizer in G of an element belonging to the class 3A ( 3B ), A 
similar method to that used for the Sylow 2-subgroup of M22 works here to determine 
generators for C((ab)^). Having found generators for C((ab)^) ( as permutations ) we are 
able to show that it contains a subgroup of order 36 with a generating pair of type 
(3,3,3; 2). Using this fact PERM gives the generators u= (ab)5, v=b(ab"l)2(ab)3ab"2 for 
a subgroup of order 36 with presentation

K=<u,v I u3=v^=(uv)3=[u,v]2=l>.
Now uv-lu, V generate a Sylow 3-subroup of K. Substituting (ab)5, b(ab-l)2(ab)^ab"2 
for u, V in these generators leads us to the generators x=b(ab“l)2(ab)3ab"2, 
y=(ab)4ab’2(ab'l)3(ab)2ab'l(ab)5 for a Sylow 3-subgroup P3 of G. 

n3(G)=IG:P3l=13600.

(Hi) Sylow 5-subgroup order=25
By table I, C((ab)3) is a subgroup of G of order 300 which contains a Sylow 

5-subgroup of G, Similar to that in (ii) we are able to find the following presentation for 
C((ab)3) :

L=<u,v I u2=v5=(uv2)5=(uv)3(uvl)3=l>.
In L the element v has order 15 and thus a subgroup of G isomorphic to L has a 
generating pair of type (2,5,15/5). PERM now gives the generators

u=a, v=b(ab'l)2ab'2 (*)
for a subgroup of order 300 with u, v satisfying the above presentation. However, a 
Sylow 5-subgroup of Lean be generated by

uvu, vuv. (**)
Substituting (*) in (**) gives the generators x=ab2(ab)2ab"^a, y=b2(ab)2ab‘^ab2(ab)2ab”̂  
for a Sylow 5-subgroup P5 of G. 

n5(G)=IG:N(P5)l=4896.

( iv) Sylow 17-subgroup order-17
Pl7=<ab2>=C(ab2), ni7(G)=IG:Pi7l=14400.

ILMaximal subgroups

(i) -(ii) structure: 2^:(3xA^)

In [6] the generators u=b(ba)3b‘ â, v=(ab"^ab)2b are given for the stabilizer of a 
point in the permutation representation of G with (u,v) of type (15,6,6;5), We use these 
generators to show that <u,v> can be generated by two of its elements x, y with x an 
involution either in 2A or 2C. This would be particularly useful in obtaining generators
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for a Sylow 2-subgroup of G using a subgroup isomorphic to <u,v>. To achieve this 
we take r=v^, s=uv. Then r, s generate <u,v> with (r,s) of type (2A,6B,15AB;5AB). 
Now PERM simply gives r=a, s=(ab)3ab"lab for the stabilizer of a point in the 
permutation representation of G. After some experimenting we found that r'=uvuv2uv3 
, s'=uv generate <u,v> and that (r’,s*) has type (2C,6B,15AB). Starting with 
xi=((ab)2ab'2)2, which is in 2C, PERM finds y %=(ab- ̂  ab)2bab" lab^ab" l in 6B, with

xxyjG 15B, lfix(xi)nfix(yi)l=l, and x^, y  ̂generating a subgroup Hj of minimal index 
85.

We now take X2=x% and search for a generating pair (X2,y2) of type (2,6,15) with 

y2 moving the points which are left fixed by X2 such that IG:<X2»y2>J=85. PERM gives 

y2=(ab)5(ab2)2. Here (X2,y2) is of type (2C,6A,15CD). Clearly Hj and H2 are not 

conjugate in G We note that the group Hj has four conjugacy classes of elements of 

order 15 and that H% contains elements of order 15 from 15AB only while H2 contains 
such elements from 15CD. This also proves that these subgroups remain non-conjugate 
inG.

Furthermore, Hj has 24.32 intersection with H2.

The pairs (x%,yx) and (X2,y2) satisfy the presentations 
<x,y I x2=y6=(xy) 15=(xy3)4=(xyxy'^xy3)2=(xy Ixyxy2)3=((xy)3xy3)5=

( x y lx y ^ x y )2 = ( ( x y 2 ) 2 x y - 2 ) 3 = i  >

<x, y I x2=yti=(xy3)4=(xyxy3xyl)2=(xy2xy2xy3)2=(xyxy2)5=(xy2xyxyl)3=l>

respectively. These two presentations are related by the change of (x,y)<->(x,y3xy^x).
We now consider the latter presentation and try to show that Hj is a split 

extension of 2  ̂by 3xAg. Let N-<y3,(y3)x^(y3)xy^(y3)C^(y3)xyx (y3)d>  ̂where c=xy^, 

d=xyxy 1, and M=<xy, yxy lxy3>. Then N is an elementary abelian group of order 64

and normal in <x,y> with NnM=(l), i.e. <x,y> -  2ti;M. Next, it is found that M has 
a presentation <g,h I (gh"l)3=h^=l, hg2h=ghg> on its generators h=xy, g=yxy^xy3

which is easily shown to be the direct product of <h,h8> ( =Ag ) and <gh’l> ( =Cg ). 

Note. Taking ux=x%yx2xxyx3xxyx-2, Vi=[xi,yi-2][xi,yi-l][xx,yx-2] gives a subgroup of 

the structure C2XC2 whose involutions lie in 2A. Now a calculation with CAYLEY 

using the permutation representation of G shows that S=Ng(<ui,vi>) is the stabilizer 

of a point in the permutation representation of G and thus S is conjugate to Hj. A similar 

technique can be used to show that H2 is conjugate to the normalizer in G of a C2XC2 

subgroup whose involutions are in 2B (see table II for the specifications of H% and H2 ). 

We shall show that M(Hj)=C2 ( i=l,2 ). To see this we first proceed to find a
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new presentation for because the above presentations give unpleasant ones for the 

covering groups of Hj. In an attempt to obtain an appropriate presentation for Hj we 
arrived at the generators x==b‘2abab'lab2a, y=(ab)5 of a subgroup of minimal index 85 
(the stabilizer of a point ) having a presentation on x, y with 5 relations :

<x,y I x5=y3=(xy)6=(yx-lyxyx'2)2=x2y(xy*l)3xyxylx'ly-l=l>.
Now using this presentaion a covering group C can be given by

<x,y I y^=x5(xy)-6=[y,x5]=[x,ri]=[y,ri]=[x,r2]=[y,r2]=[ri,r2]=l> 
where rx=(yx-lyxyx"2)2^ r^=x2y(xy I )3xyxy ̂  x" ̂ y-l. A coset enumeration using TC 

verifies that IC:<y>l=7680 and thus M(Hj)=C2. Finally using the method described in 

3.5 we were able to construct the following deficiency -1 presentation for Hj :
<X,Y I X3y 5=x 2y XY(X‘1Y)2(XY-1)2=(Y-1XYXY-1X-1YX-1)2x 3=1>.

( We note that X=yi2, Y=(xxyx"l)3 generate Hj and satisfy the the above presentation. )

(in)-(iv) structure: PSL(2,16):2
G has two conjugacy classes of maximal subgroups of structures PSL(2,16):2. If 

R, S are representatives of these classes then R=Ng(K), S=Nq(L) where K, L are two 
non-conjugate PSL(2,16) subgroups of G. The group PSL(2,16) has a single class of 
both involutions and elements of order 3 with a generating pair of type (2,3,15; 17). Our 
second table indicates that K and L are distinguished by their elements of order 3 which 
are in 3A and 3B respectively (their involutions are in 2C). Using this fact we find , by 
PERM, the generators x=ab2ab‘2, y=b‘2abab'^ab2(ab“lab)2bab for K and 
u==((ab)2ab‘2)2, v=(ba)^ for L. Clearly K, L are non-conjugate in G; and we have 
R=N(K)=<K,a>, S~N(L)=<L,b2ab(abab"l)2> with R, S of index 120, using TC. A 
simple check now shows that elements of order 5 of R are all in 5 AB and those of S in 
5CD proving that the maximal subgroups R, S remain non-conjugate in G. Having 
found these representatives for maximal subgroups of types (iii) and (iv) we proceed to 
obtain neater generating pairs for R, S in order to find simpler generators and 
presentations for these classes of maximal subgroups. To do this we first see that 
R=<x,ay> and S-<u,b2ab(abab"^)2>. Let z=ay, w=b2ab(abab"l)2. Then it can easily be 
shown that (x,(xz^)2xz), (u,(uw)2w) are generating pairs of types (2C,4B,6A;17) and 
(2C,4B,6B;15CD) for R, S respectively. Now by PERM we may obtain the generators 
X3=((ab)2ab“2)2  ̂yg=(ba)3b2 for a maximal subgroup H3 conjugate to R and X4=X3, 

y4=ab"l(ab)3 for a maximal subgroup H4 conjugate to S (see below). Furthermore, H3 

has intersection 17:4 with H4 in G.

The pairs (X3,y3) and (X4,X4) satisfy the following presentations PI and P2 :
PI <x,y Ix2=y4=(xy)ti=(xyxyl(xy2)2)2=:(xyxy2xyi)3=l>
P2 <x, y I x2=y4=(xy)6r=((xyl)2(xy)2(xy2)2)2-(xylxy(xy2)2)3=(xy2(xylxy)2)3=rl>.
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Let N=<(xy)2,(yx)2>. Then N has index 2 in both groups presented by PI, P2 with N 
isomorphic to PSL(2,16). Next the groups split over N, and <(xy)3> is a complement to 
N in both cases. Notice that on setting N%= <(x3y3)2,(y3Xg)2>, N2=<(x4y4)2,(y4X4)2> 
we find two PSL(2,16) subgroups of G conjugate to K, L respectively.

Finally we note that PI and P2 are related by (x,y) (x,y(xy2)2(xy-1)2%).

Using the presentation PI a covering group C for Hj can be constructed as 
follows :
<x,y I (xy)ti=x^y4, (xyxy2xy-l)3=x8, [x,y4]=[y,x2]=[x, (xyxy-l(xy2)2)2]~

[y, (xyxyl(xy2)2)2]=i>.

C has order 8160 and so Hj has trivial multiplier. To find a deficiency zero presentation 

for Hi we take X=X3 , Y=(x3 y3 >2 y3  where Y , XY have order 6. Then PERM finds the 
relation (XY2)2(YX)3(Y-1X)2y2xy3xY-2=1 which together with relations X2=l, y 6=1 
defines the group H3. Combining the two last relations of this presentation gives 

H=<X,Y I X2y6=(XY2)2(YX)3(Y-IX)2y2XY3XY-2=1> 
which is, in fact, isomorphic to H3  as we shall now see . It is easy to check that the 
derived group H' can be generated by [X,Y], [X,Y2] and that Y^ is in H'. Now the

centrality o f Y^ in H shows that H  is a stem extension o f H 3  and thus H  s  H 3  by 

(1.6.13), (1.6.14).

(v)-(vi) structure:

G has two conjugacy classes of maximal subgroups with representatives H5 and 

H5 of structure (AgxA3):2 both being the normalizer in G of A5XA5 subgroups. In fact 

G has two non-conjugate A5XA5 subgroups S, T where the direct factors of S have 
generating pairs of type (2B,3B,5CD) and those of T of type (2A,3A,5AB). We then

have H 5  = Nq(S), H^ = Nq(T). First we show that d(A 5 xAg) = 2  in order to determine 

generators (by PERM) for each of S, T. The group A5 XA5  has presentation 

<x,y,z,u I x2=y3=(xy)5=z2=u3=(zu)5=[x,z]=[x,u]=[y,z]=[z,u]=l> 
and can be generated by xz, yuzuy using TC. The pair (xz,yuzuy) is o f  type 

(2,15,5; 15). After some experimenting we found that S=<c,d>, where c=((ab)2ab-2)2, 

d=b"2(ab)2, with (c,d) o f type (2C,5AB, 15CD; 15CD). TC verifies that N(S)=<S,at>>. 
The subgroup N(S) having order 7200 is actually a maximal subgroup of G o f type (v). 

We now let r=dca^. Then it can be checked that the pair (c, rcr3cr) is a generating pair 

of type (2C,4A,6A) for N(S) which enables us to obtain the generators X5=[b2,a], 

y5=(b2a)2(ba)3 for a maximal subgroup H3  conjugate to N(S) ( see below ).

Similarly we find the generators X6=((ba)2b'2a)2, y^=(ab)3(ab2)2 for a maximal
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subgroup Hg conjugate to N(T ) with (xg,yg) of type (2C,4A,6B). That H5 and Hg are 

not conjugate in G follows from the fact that H5 contains elements of order 15 from 

15CD only while such elements in Hg are all in 15AB. Furthermore, H5 has intersection 

32.Q8 with Hg.

A presentation for H5 on the generators X5, yg is 
<x,y I x2=y4=(xy)ti=((xy)2xylxyxy2)3=(xyxy2xy(xy^)2)3=((xy)2y(xy-Ixy)2)2=ri>.

Let N=<x,(xyxy2)2>. Then N has index 2 in <x,y> with Nn<(xy)3>=(l), i.e. H5 is a 

split extension of N by C2. Next, it is found that N has a presentation on X=x, 
Y=(xyxy2)2 with relations x 2=1,y 5=1. (XY)1^=1, (XYXY2)6=1, (XYXYXY^XY-1)2=1, 
(XYXYXY-1x y 2)2=1. Taking

N i =<(X Y X Y 2)3 , (X Y X Y -2)2>, N 2= < (X Y X Y X Y '1)5 , (Y X Y 2x )2 >

gives N = NjxN2 with N^ = N2 = A5. So H5 = (AgxAg):2. Finally we note that on 

substituting X5, yg for x, y in the generators of Nj, N2 we find two A5 subgroups whose

generating pairs are of type (2B,3B,5CD), i.e. NixN2= S as claimed already.

The pair (xg,yg) satisfies the presentation
<x,y I x 2 = y 4 = (x y )6 = (x y 2 )5 = [x ,y ]6 = :(x y x y 2 )6 = l> .

Similarly we can show that Hg = M:2 where M = A5XA5 = T.

We note that the above presentations for H5 and Hg are related by the change of

(x,y) 4-> (x ,y (x y 2 )3 ).

A covering group C for Hg may be given by 

<x,y I (xy)6=x6y4, (xy2)5=x4, [x,y4]=[y,x2]=[x,ri]=[x,r2]=[y,ri]=[y,r2]=[ri,r2]=l> 

where ri=(xyxyl)ti, r2==(xyxy2)6. Then ICI=14400 and so M(Hi)=C2 ( i=5, 6 ). To 

prove Hi efficient we looked for a 2-generator 3-relation presentation. Using the method 
described in 3.5 we arrived at the presentation:

<v,w I v4=w3=(vw"l)^=(vwvw'l)3=:[v,w][v,wl]=l> 
for Hg on the new generators v=yg, w=(xgygxgyg2xgyg-1)3 from which the following 
deficiency -1 presentation was obtained

<v,w I (vw“l)tiw3= (vwvw" 1)3w^=[v,w] [v,w 1 ] w^= 1 >.

(vii) structure:

As was remarked earlier Sg has a generating pair of type (2,6,5;3). In an attempt 

to obtain a generating pair (x,y) of this type for a Sg subgroup PERM finds x=a, 

y=(ba)4b‘l. The elements x, y then generate a subgroup H7 of G of order 720 with (x,y)
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satisfying the presentation <x,y Ix2=y6=(xy)5=[x,y]3=[x,y2]2=;i> given in [18] for Sg. 

It remains to show that H7 is maximal in G. An easy calculation first shows that 

iHj'l-3840, for i=l,2, and IH7'I=360. Therefore, H7 is not embeddable in Hj ( i-1,2 ). 

We shall prove that H7 is not also embeddable in Hj, for i=5,6. To see this, we consider 

the presentation given in (v) for H5. It can easily be shown that xyxyl, xy2xy2 generate 

the derived group of H5. Now using RS we may obtain the following presentation for

Hs’
<r,s,t I r2=s2=t2=(rst)3=((rs)2trt)3=(rs(rt)2st)3=(rsfr(ts)2trt(st)2=l>.

This group has no elements of order 4 while H7* ( = Ag ) contains elements of order 4. 

Hence H5' has no subgroup isomorphic to H7' which , in turn, shows that H5 is not 

embeddable in H7.

177



5. Efficient presentations for certain simple groups 
and direct products

In this chapter we give efficient presentations for the simple groups PSU(3,5), and 

M22 which were not previously known to be efficient. We also give efficient
A  A  A

presentations for the perfect groups AgxAg, AgxAg, AgxAg and A5XA7 including a new
•A ^

neat presentation for A5XA5. It will be shown that the simple group PSU(4,2) occurs as a 
composition factor of a deficiency zero group of order 155520.

5.1 Introduction

In this section we discuss shortly the problem of finding efficient presentations for the 
twenty simple groups listed on page 1, A comprehensive discussion including the recent 
progress in investigating the efficiency of finite simple groups and related groups will 
appear in a forthcoming survey, Campbell, Robertson and Williams [11].

In 1983 Campbell and Robertson commenced the investigation of the efficiency of 
all the thirteen simple groups of order up to 10  ̂excluding PSL(2,p”), n ^  2. They were 
successful in finding efficient presentations for all but and PSU(3,3), see [4]. This 
work used as a starting point the minimal permutation generators given in [35] and the 
presentations satisfied by these permutations [16]. The method employed to make these 
presentations efficient was explained in 3.5 of this thesis. Three years later P.E. Kenne 
showed that and PSU(3,3) are also efficient [32]. To obtain efficient presentations 
for these groups he used a method which we described in 3.5.

In [37] E.F. Robertson suggested extending the work of [4] to the remaining 
seven simple groups PSU(3,5), Ji, A9, PSL(3,5), M22, J2 and PSp(4,4). A result of

A

himself and Campbell [6] showed that that J2 , and consequently J2, are efficient.

We will show that the three simple groups PSU(3,5), and M22 are efficient. 

Taking these results together with the efficient presentation for A9, [9], among the twenty 
simple groups up to 10  ̂only the efficiency of PSL(3,5) and PSp(4,4) remain undecided. 
Note that each of these groups has trivial multiplier and an efficient presentation for each 
of them requires an equal number of generators and relations.

It is also worth noting that, at the present time, all the simple groups of order up to
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IQti with the above exceptions have been shown to be efficient [11].

5.2 Method

Suppose G is a moderately large "concrete" group, say a permutation or matrix group, 
generated by two of its elements x and y with x an involution. In order to be able to 
obtain an efficient presentation for G we may use methods similar to those of Kenne but 
since we are dealing with a group of large order we are unable to follow his method of 
computing presentations on many randomly chosen pairs of generators using Cannon's 
algorithm. We therefore try to choose a set of generating pairs (x,y) for G with x an 
involution and y having a specified order. This allows us a more efficient method of 
finding relations and also simplifies the final stages of reduction to an efficient 
presentation. In particular if G is a finite simple group < 10^, such generating pairs 
always exist. Now PERM ( or a similar matrix program) can be used to find a 
presentation for one of the groups G that we are examining. We then attempt to reduce 
the number of relations using the method described in 3.5.

Notg.Suppose G is a finite permutation group. The following CAYLEY program tries to 
determine whether G has a generating pair (x,y) with x an involution and y, xy having 
specified orders nj and n2. Whenever G is a large group the program can be modifed so 
that a small set of random elements y of a specific order for which G=<x,y> are sought.

> gorder = order (g) ;
>s = null ;
>t= null;
> FOR EACH X  IN classes (g) DO
> IF order ( X )  EQ 2 THEN
> s = s JOIN [x] ;
> END;
> IF order (x) EQ nl THEN
> t= t  JOIN class (gpc)
> END ;
> END;
> FOR EACH X  IN s DO
> FOR EACH y IN t DO
> IF order (x*y) EQ n2  THEN
> IF order (<x, y > ) EQ gorder THEN
> PRINT X , y ;
> BREAK ;
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> END ;
> END ;
> END;
>END;

The following examples illustrate how the method works in practice.

Example 1. Find a deficiency zero presentation for M ^.

The Mathieu group M ^ has a unique pair of minimal generating permutations a and b of 
degree 11:

a=(l,10)(2,8)(3,ll)(5,7), b=(l,4,7,6)(2,l 1,10,9).
We choose an involution x and an element y of order 5 with <x,y>=Mn. Take x=a and 
y=abab'lab2 where y is a representative of the single conjugacy class of elements of order 
5 chosen so that the product xy has order 11. PERM gives

M i i = < x , y  1 x 2 = y 5 = ( x y ) l l = x y ^ x y x y 2 x y 2 x y x y 2 x y 2 x y 2 x y ~ 2 = l >  

and (xy)ll=l is easily shown to be redundant using TC. Now
H=<x,y I x2y5=l, [x-l,y-2][x,y][x,y2][x“l,yl]=y2xy> 

is a stem extension of M ^ since H is perfect and x^, being both a power of x and y, is 
central. But M(Mu)=l so x2=l and H=Mn.

Example 2. Find an efficient presentation for A5XA5,

The group A5 is generated by the permutations (1,3)(4,5) and (1,4,2) so 
A5xA5=<a,b,c,d> where

a=(l,3)(4,5), b=(l,4,2), c=(6,8)(9,10), d=(6,9,7).
We choose the involution x=ac and look for an element y of order 5 with <x,y>=A^xA3. 
Using CAYLEY, we find y=(l,3,4,5,2)(6,9,8,10,7). Now PERM gives 

A5xA5=<x,y I x2=y5=(xy) 15=(xy 1 )2(xy)4(xy-1 )^xy2= 1 >

which proves that A5XA5 is efficient for M(A3xAg)=C2xC2.

Note. The above presentations for Mjj and A5XA5 are quite different presentations to 
those found by Kenne in [32] and [30]. In particular, the latter presentation can be

A A

reduced to a deficiency zero presentation for A5XA5 as follows:
Let

G=<x,y I x2y5=l, (x" 1 y  ̂ )2(xy)4(x" ̂ y 1 )^xy2= 1 >.
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Then G is a perfect group of order 14400. Now a simple check using TC verifies that the 
relations [x,(xy)i5]==[y^(xy)l5]-i hold in G. Therefore, (xy)l5 is a central element of G.

But, G/<x2,(xy)l5> = A5XA5 so G is a stem extension of A5XA5 . Hence G is a
A  A

homomorphic image of A5XA5. Now, since G and A5XA5 have the same order, G =
A  A

A5XA5.
Note that on adding the relation (xy)l5=l to the presentation for G we find an 

efficient presentation for A5XA5. Also, adding the relation y5=l to the same presentation 

gives a perfect group of order 7200 which is denoted by P4 in [40] ( in fact, P4 is the
A  A

factor group (A$xA3)/C2 ).

5.3 Efficiency of PSU(3,5), and # 2 2 -

In this section we give 2-generator 3-relation presentations for the simple group 
PSU(3,5) of order 126000 and the Mathieu group M22 of order 443520. We also give a 

2-generator 2-relation presentation for the Janko group Jj order 175560. This proves that 
these three simple groups are efficient.

5.3.1 PSU(3,5) is efficient.

Proof. Since M(PSU(3,5)) is cyclic of order 3 we seek a 2-generator 3-relation 
presentation. We start with the unique minimal generating pair (a, b) with a2=b4=l given 
in [6]. PSU(3,5) has 4 conjugacy classes of order 5 and, after some experimenting, we 
choose y=(ab)2ab"l(ab)2 of order 5 and the involution x=a so that xy has order 10.

PERM finds the presentation
PSU(3,5)=<x,y Ix2=y5=(xy)10=[x,y2]4=r=l> 

where i^xy-2xy2x(yxy-2xyxy)2. Coset enumeration shows that j
PSU(3,5)=<X,y Ix2=(xy)10=r=l, [ x ,y 2 ] 4 = y 5 > .  |

Let H be the stem extension of PSU(3,5) |
H=<x,y Ix2=(xy)10, r=l, [x,y2]4=y5>, *

Now, coset enumeration shows that IH:<(xy)3>f=12600 so, by 3.5.1 (i), we see that H 

= PSU(3,5). This gives an efficient presentation as required.
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5.3.2 The Janko group Jj has deficiency zero.

Proof. M(Ji) is trivial so every stem extension of is isomorphic to J^. We seek a 

2-generator 2-relation presentation starting from the presentation 15.20 for Jj given in 

[Q:
Jj=r <a,b I a2=b3 =q7—gl—

where r=abab'^ s=(ab)3(ab"l)3abab'i and q=ab'^(ab)2.
Let

H= <a,b I a2=b3=q7, r^=s2> •
Now coset enumeration verifies that H=<r,s> so is central in H and thus H, being

perfect, is a stem extension of Jj. Hence H = J .̂
Now rewrite r^=s2 as u=l where

u=ab'iab(abab"^)3ab‘lab(ab’^)3abab"l(ab)3
and consider

K=<a,b I a2=b3=l, u=q7>.

Coset enumeration shows, with considerable difficulty, that lK:<b>l=58520 so K ~ Jj. 
Finally let

L=<a,b I a2b3=l, (a"^b'Hab)2)4(a-lb)2a‘^b’l(ab)3ab"^ab)2(a‘ib"^)2=l>.

But L is perfect, aP- is central in L and L/<a2> = K = Jj. Hence L is a stem extension of 

J j so L =  J j .

5.3.3 The Mathieu group M22 is efficient.

Proof. M(M22) is cyclic of order 12 so we seek a 2-generator 3-relation presentation. 
Start with the minimal generating pair of permutations given in 18.3 of [35] but rather 
than use the presentation 18.3 of [6] we use PERM to give the presentation

M22—<â,b I a2=b4=(ab)H=s^=r=l> 
where s=abab2 and r=(ab)2(ab-^)2ab2(ab)2ab"^ab(ab2)2. Now coset enumeration shows 
tiiat

G=<a,b I a2=(ab)H=i, s^=b4, r=b4> 
is isomorphic to M22. Now let H be the stem extension of G given by

H=<a,b I a2=(ab)H, s'^=b4, r=b4>.
Coset enumeration verifies that

IH:<ab>l=IH:<(ab)2>l=IH:<(ab)3>|=IG:<ab>l,

so, by 3.5.1 (ii), we obtain H = M22 as required.

182



5.4. Direct products

Questions concerning the efficiency of direct products are posed by Wiegold in [43]. In
A A

particular, he asked whether A5XA5 is efficient and conjectured that À5XA5 is not 

efficient Kenne [30] showed that A5XA5 and A5XA5 are efficient while Campbell et al.
A  A

[10] proved that A5XA5 has deficiency zero.
A  A  A

We investigate here the efficiency of A5XA5, A5XA5, A5XA5 and A5XA7 and show 
that all these groups are efficient.

5.4.1. AgxAg is efficient.

Proof. The group G=AgxA^ has order 129600 and multiplier C^xC^. Let 
a=(2,3)(4,5) 
b=(l,4,3,2)(5,6) 
c=(8,9)(10,ll) 
d=(7,10,9,8X11,12).

Then a, b, c and d generate G. We take x=ac and look for an element y of order 5 with x 
and y generating G. A calculation with CAYLEY gives y=( 1,6,3,4,5)(7,10,12,11,9) of 
order 5 such that G=<x,y>. Now PERM gives
G=<x,y Ix 2 = y 5 = (x y )2 0 = ((x y )2 (x y 2 )3 )2 _ x y -1 ( x y 2 ) 2 x y 2 x y -1 ( x y 2 ) 2 x y  1 (x y )2 (x y 2 )3 = 1 > 
Let

H=<x,y I x 2 y 5 = l ,  ( x y ) 2 0 = y 5 , ( ( x y ) 2 ( x y 2 ) 3 ) 2 = ; j ̂
( x y 2 ) 2 x y - 2 x y " l ( x y 2 ) 2 x y l ( x y ) 2 ( x y 2 ) 3 x y - l y 5 = j >

Now, coset enumeration shows that
IH:<y>i=IH:<y2>|=IH:<y3>|=25920.

Thus H = G by 3.5.1 (ii).

5.4.2 A5XA7 is efficient

Proof. The group G=A5xA7 has order 151200 and Schur multiplier C2XC6. A7 is 
generated by the permutations (1,5)(6,7) and (1,2,3,4)(5,6). Now let 

a=(l,3)(4,5) 
b=(l,4,2) 
c=(6,10) ( l l ,12) 
d=(6,7,8,9)(10,ll).

We now take x=ac and by a similar method to that used in (5.4.1) find
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y=(l,4,2,3,5X6,12,9,7,8) 
of order 5 such that G=<x,y>. PERM gives

G=<x,y 1 x2=y5=((xy)2xy"2)3=((xy)3xy“l)3=p=;l>
w h e r e  r = x y - lx y x y -2 x y 2 x y -2 x y x y - lx y -2 (x y )3 x y -2 .

Let
H=<x,y I x2=y5, x2=(xyxyxy'2)3, ((xy)3xy-1)3=1, ry^=l>.

Then His a stem extension of G and we have
IH:<y>l=lH:<y2>l=lH:<y3>|=30240.

Therefore, H = G, by 3.5.1(ii).

A  A

5.4.3. AgxAg has deficiency zero.

P roof. We begin by constructing a presentation for G=A5xAg. Since Ag= 

<(1,3)(4,5),(1,4,2)> and A6=<(2,3)(4,5), (1,4,3,2)(5,6)>, G=<a,b,c,d> where 
a=(l,3)(4,5) 
b=(l,4,2) 
c=(7,8)(9,10) 
d=(6,9,8,7)(10,ll).

We take x=ac=(l,3)(4,5)(7,8)(9,10) and search for an element y of order 5 with 
G=<x,y> using CAYLEY. We find y=(l,5,4,2,3)(6,11,8,9,10). Now PERM gives a 
2-generator 4-relation presentation for G on x and y :

G = < x ,y  I x 2 = y 5 = (x y x y 2 ) 4 = ( x y l ) 2 x y ( x y 2 ) 2 x y - lx y ( x y 2 ) 2 x y x y 2 = l>  

which shows that A^xAg is efficient. Next, removing the relation ( x y x y 2 ) 4 = i  from the 
presentation of G gives a perfect group of order 129600. Now, let

H = < x ,y  I x 2 y 5 = l ,  ( x ‘ l y l ) 2 x y ( x y 2 ) 2 x - l y l x y ( x “l y 2 ) 2 x y x y 2 = l> .

Then a moderately difficult coset enumeration showed ( by adding the trivial relation 
[ x 2 , y ] = l  to the presentation of H) that H is a group of order 259200 and that

[ x , ( x y x y 2)4] = l ,  [ y , ( x y x y 2)4] = l .  Now H/<x2,(xyxy2)4>=G showing that H is a stem
A  A  A  A

extension of G ( = AgxA^). Since H and A5XA5 have the same order, H = A5XA5 by 
1.5.13.

A

We now derive the following consequence for AgxA .̂

A

5.4.4. A5XA6 is efficient.

Proof. On adding the relation ( x y x y 2 )4 = i  to the presentation for H , we arrive at a group 
K of order 43200. Let
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N=<(xy)3,(yx)3>, M=<(xy)5,(yx)5>.

Then IK:NI=120, IK:MI=360, N < K, M < K and NnM=(l). Now it is easily checked 
that the factor groups K/N, K/M  are perfect groups of order 360, 120 respectively.

Since the only perfect groups of these orders are Ag and Â5 ([40]), K = AgxA^.

Notes.
A

(1) We failed to find a 2-generator 3-relation presentation for AgxAg using the above 
presentation of H. It is probable that the group obtained by adding the relation x2=l to

A

the presentation of H is isomorphic to A^xAg.
(2) In [12] Campbell, Robertson and Williams give the following efficient presentation

for AgxAg = SL(2,22)xPSL(2,32):
<a,b I a 2 = b ^ = ( a b a b 2 a b "  1 ) 3 = 1, ( a b 2 ) 5 = ( a b a b " l a b 2 ) 3 > .

5.5 The group G

The question as to which non-abelian simple groups are composition factors of finite 
groups of deficiency zero was posed by D.L. Johnson and E.F. Robertson in the survey 
[28], Clearly those non-abelian simple groups whose covering groups are efficient each 
naturally occurs as a composition factor of a finite deficiency zero group. In 1980, the 
efficiency of SL(2,p)=PSL(2,p), p prime, [2] showed that there are an infinite number 
of such simple groups. Since then an attempt was made to show that the covering 
groups of simple groups of order up to 10  ̂are efficient. The survey [11] discusses the 
current status of the efficiency problem for these groups.

We show below that the simple group PSU(4,2) is a composition factor of a finite 
(non-perfect ) group G of deficiency zero.

5.5.1 There exists a deficiency zero group G of structure Cg PSU(4,2).

We begin with the generating permutations a, b given in 10.1 of [35]. Let x=a, and 
y=abab2abab’lab2. Then x and y generate G, and using PERM, we find that they 
satisfy the presentation

<x,y I x2=y5=(xyxy2)2(xy2xy)2xy"l>.
Now, we define

G=<x,y I x2y5=l, (xyxy2)2(xy2x-ly)2xy-l=i>^

Coset enumeration shows that IG1=155520 and IG:<y>l=5184. Thus y has order 30 so

G= CgPSU(4,2).
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APPENDIX

We give below some details of the file SIMGPS.TLB, a Cayley file of finite simple 
groups, which contains our results on conjugacy classes, maximal subgroups and 
Sylow subgroups of the non-abelian simple groups G, IGf<106. The file will be 
distributed world-wide with the group theory system CAYLEY.

What follows are the libraries INFO, CONTENTS, EXAMPLE and NOTATION 
of the file.

A library of simple groups : permutations, presentations 
conjugacy classes, maximal subgroups and Sylow subgroups

A R Jamali, E F Robertson and C M Campbell 
Mathematical Institute University of St Andrews Scotland

I. DESCRIPTION OF THE LIBRARY

The first version of this file is described in [9]. This revised version includes data on 
conjugacy classes, maximal subgroups and Sylow subgroups computed by A R Jamali 
and described in detail in [7].

The non-abelian simple groups G with IGI < 10^, excluding the groups 
PSL(2,p^), have been studied using computing techniques in a series of papers. These 
groups can each be generated by two elements a and b with a an involution. The pair 
(x,y) is a minimal generating pair for G with respect to the involution a if x and y 
generate G, if x = af for some automorphism f of G and if y has order less than or equal 
to the order of z for any z in G such that x and z generate G. All minimal generating 
pairs are given in [8]. For those groups G with I G I < 10 ,̂ presentations on each of the 
minimal generating pairs are given by Cannon, McKay and Young in [5]. In [3] 
presentations are given for those G with 1Q5 < IG I < 106. This file contains each pair of 
minimal permutation generators for each of the groups (taken from [8]) together with a 
presentation of the group satisfied by those permutations (taken from [3] or [4]).There 
are 106 such generating pairs and accompanying presentations which are numbered as in



%

[3], [4], [5] and [8] (see also Contents of this file). We have, however, deliberately 
inserted redundant relations in certain presentations to facilitate coset enumeration and 
these insertions are noted.

We list the conjugacy classes and maximal subgroups of each group and input 
generators for each maximal subgroup in terms of the particular minimal generating pair. 
We list the structure of the Schur multiplier of each maximal subgroup. For the first 
version of each group only we input a representative of each conjugacy class. For each 
of the versions we input generators for a representative of each non-cyclic Sylow 
p-subgroup. Note that cyclic Sylow p-subgroups are not input. The data concerning 
conjugacy classes, maximal subgroups and Sylow subgroups is taken from [7]. The 
notation used for conjugacy classes and the structure of maximal subgroups follows 
fairly closely the notation of the Adas of Finite Groups [6]. The notation is sumarized in 
the Notation library of this file.

Neat presentations for the groups PSL(2,p) and SL(2,p), p a prime, are well 
known, see for example [1]. We include those groups PSL(2,p*i), n >1, of order less 
than 1()6 which are included in the Atlas [6]. For these groups PSL(2,p^) we give only 
one generating pair of permutations and include the same data as for version 1 of the 
other simple groups. Information on presentations of these groups PSL(2,pf*) is taken 
from [2] and [7] whüe other data is taken from [7].

An example of the data contained in each library is given in the library EXAMPLE 
of this file.
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n. CONTENTS

This file contains at least one library for each non-abelian simple group of order less than 
one million except those groups PSL(2,pi^) which are not contained in the 'Atlas of finite 
groups'. See INFO for details of what these libraries contain.

1. For the groups other than PSL(2,p^) there is one library for each (essentially) distinct 
minimal generating pair. The following is a list of these libraries:

A5V1

A6V1

A7VÎ A7V2

A8V1 A8V2

A9V1 A9V3 A9V4

JlV l J1V3 J1V5 J1V7 J1V8 JIVIO J1V12 J1V14 J1V15 J1V16
J1V18 J1V19 J1V20 J1V22 J1V24 J1V26 J1V27 J1V28 J1V29 J1V31
J1V32

J2V1 J2V2 J2V3 J2V4 J2V5 J2V6 J2V8 J2V9 J2V11 J2V13
J2V15 J2V17 J2V18 J2V20 J2V21 J2V22

M il VI

M12V1 M12V2 M12V3

M22V1 M22V2 M22V3 M22V5 M22V6



PSL27V1

PSL33V1 PSL33V2

PSL34V1

PSL35V1 PSL35V2 PSL35V3 PSL35V4 PSL35V5 PSL35V6 PSL35V7

PSP44V1 PSP44V2 PSP44V3 PSP44V4 PSP44V6 PSP44V8 PSP44V9
PSP44V11 PSP44V13 PSP44V15 PSP44V17 PSP44V18 PSP44V19 PSP44V20
PSP44V22 PSP44V23 PSP44V24 PSP44V26 PSP44V27 PSP44V28 PSP44V29
PSP44V31

PSU33V1 PSU33V2 

PSU34V1 PSU34V2 

PSU35V1

PSU42V1 PSÜ42V2 PSU42V3 PSU42V5 PSU42V7 PSU42V8 PSU42V9

SZ8V1 SZ8V3 SZ8V5 SZ8V7 SZ8V9 SZ8V11 SZ8V13 SZ8V15

For each of the above, the permutation version is named as above, with the V replaced 
by a P. E.g. the permutation version of SZ8V7 will be SZ8P7. The finitely presented 
version will have the V replaced by an F. E.g. the finitely presented version of SZ8V7 
will be SZ8F7.

2. For the groups PSL(2,p^) there is one library for each group of order less than one 
million which appears in the 'Atlas of finite groups' as follows:

SL28 PSL211 PSL213 PSL217 PSL219 SL216 PSL223

PSL225 PSL227 PSL229 PSL231 SL232

For each of the above,the permutation version is named as above witha PI 
appended, e.g. SL28 is represented as SL28Pl.The finitely presented version has an FI 
appended,e.g. SL28 is represented as 
SL28F1.



in. EXAMPLE

The following is an example of the data input for version 1 of each of the groups. Note 
that versions other than 1 do not input representatives of the conjugacy classes. We have 
chosen PSU33V1 as the example with its two libraries PSU33P1 and PSU33F1.

LIBRARY PSU33P1;
GP:PERM(28);
GP.GENERATORS:A=/21,2.8,15,5,22,16,3,28,27,20,19,23,14,4,7,26,25,12,11,1,6 
,13,24,18,17,10,9/,B=/3,5,16,22,23,18,10,4,9,14,7,17,6,12,26,24,11,13,1,25,20, 
15,21,27,2,28,19,8/;
GP.RELATIONS:A/\2=B/^6=(A*By\7=(A*B^2)/\3*(A*B/\-2)/^3=(A*B*A*B/^-2)A3*A
*B*(A*B'^-1)^2=1;
PRINT PSU33V1 as permutation group is GP';
PRINT'with maximal subgroups MPi and sylow subgroups SPi';
PRINT'For information about the conjugacy classes and the';
PRINT'maximal subgroups of PSU(3,3) type "CLASSINFO;" and ' MAXINFO;'"; 
procedure classinfo;
print ' class : lA 2A 3A 3B 4A B** 4C 6A 7A ’ ;
print ' lc(x)l : 6048 96 108 9 96 96 16 12 7 ';

   ».

8A B** 12A B** ' ;
8 8 12 12

B**
7

print 
print ‘ 
print ' 
end;
procedure maxinfo; 
print’ 
print ' 
print ’ 
print ' 
print’ 
print ' 
end;
C2A=A;
C3A=BA2;
C3B=(A,B); 
C4A=(A*B*A*BA-2)^2; 
C4B=(B/^2*A*B/\-1 *Ay^2;

group order index structure specification mult '; 
».

MPI 216 28 3'^(l+2):8 N(3A) 1
MP2 168 36 PSL(2,7) N(2A,3B,4C,7AB) 2 ’;
MP3 96 63 4”S4 N(2A) 1
MP4 96 63 4'^2:S3 N(2A^2) 2 ’;



C4C=A*BA3;
C6A=B;
C7A=A*B;
C7B=BA-1*A;
C8A=A*B*A*B^-2;
C8B=BA2*A*B/\-l*A;
C12A=B^-2*A;
C12B=A*B^2;
MP1=<A'^B.(A*B)A3*BA3>;
MP2=<A'^B,B*(B*A)^2>;
MP3=<AW2*A*B/^-2,B/\3*(A*B)/\2>;
MP4=<A'^B,A*B*A*B'^-1>;
SP2=< A,B*A*B'^-2*A*B>;
SP3=< (A,B),A*B*A*B^3*A*BA-1>; 
FINISH;

LIBRARY PSU33F1 
G:FREE(X,Y);
G.RELATIONS:X/^2=Y/^(X*YT7=(X*Y^2)A3*(X*Y^2)A3=(X*Y*X*Y^-2y^3*X
*Y*(X*Y/\-l)/̂ 2
“ 1»
PRINT";
PRINTPSU33V1 as finitely presented group is G';
PRINTwith maximal subgroups Mi and sylow subgroups Si’;
PRINT'For information about the conjugacy classes and the';
PRINTmaximal subgroups of PSU(3,3) type "CLASSINFO;" and "MAXINFO;"'; 
procedure classinfo;
print ' class ; 1A 2A 3A 3B 4A B** 4C 6A 7A ’ ;
print' lc(x)l : 6048 96 108 9 96 96 16 12 7 ';
print -----------------
print ' B**
print' 7
end;
procedure maxinfo; 
print ' 
print ' 
print ’ 
print ’ 
print '

8A
8

B**
8

12A B** ';
12 12

group order index structure specification mult '; 
».

Ml 216 28 3'^(l+2):8 N(3A) 1
M2 168 36 PSL(2,7) N(2A,3B,4C,7AB) 2 ';
M3 96 63 4"S4 N(2A) 1



print ' M4 96 63 4^2:83 N(2A'^2) 2
end;
C2A-X;
C3A=Y'^2;
C3B=(X,Y);
C4A=(X*Y*X*Y'^-2)A2;
C4B=(Y'^2*X*Y^-1*X)'^2;
C4C=X*YA3;
C6A=Y;
C7A=X*Y;
C7B=Y^-1*X;
C8A=X*Y*X*Y^-2;
C8B=Y'^2*X*Y^-1*X;
C12A=YA-2*X;
C12B=X*Y/^2;
M1=<X^Y,(X*Y)^3*YA3>;
M2=<X^Y,Y*(Y*Xy^2>;
M3=<X*Y'^2*X*Y^-2,Y'^3*(X*Y)^2>;
M4=<X/^Y,X*Y*X*Y/^1>;
S2=< X,Y*X*YA-2*X*Y>;
S3=< (X,Y),X*Y*X*Y/'3*X*Y^1>;
FINISH;

IV. NOTATION

After a library for a simple group G has been read into Cayley with a command such as 
LIBRARY PSU33P2; or LIBRARY PSU33F2; data on conjugacy classes and maximal 
subgroups may be displayed by typing CLASSINFO; and MAXINFO;. Notice that in all 
cases the data input for the corresponding permutation version and the finitely presented 
version of a group agree in the following sense. Substituting the generating permutations 
of the permutation version into the words given in the finitely presented version for 
conjugacy class representatives and subgroup generators will always yield the 
permutations given in the permutation version.

Conjugacy classes

The conjugacy classes that contain elements of order n are named nA, nB, nC, .. etc. 
Class names of the form Y*k, Y**k, Y**, Y* give the additional information that the 
class can be obtained fi-om the most recently named class nY by applying the algebraic



conjugacy operator of k th powers, -k th powers, inverses, other powers respectively. 
For each class the order of the centralizer in G of a typical element x of the class is
given. A representative of the class 3A say, is input to Cayley as C3A, so PRINT C3A;
will display a representative of the class. Note that the representatives are input to Cayley 
for version 1 of each group only. If the class named B** follows the main class 4A, 
say, then the class is input to Cayley as C4B so PRINT C4B; prints a representative.

Maximal subgroups

The information regarding the structure of a subgroup is given in a notation similar to the 
Atlas.

m denotes a cyclic group of order m
m^n denotes a direct product of n cyclic groups of order m
A X B is the direct product of groups A and B
A.B or AB is a group with normal subgroup A and quotient B
A:B is a case of A.B where the extension splits
A"B is a case of A.B where the extension does not split
p/^(m+n) is a case of (p'^m).(p'^n)

The specification of H locates a copy of H inside G. For example N(2A) is the 
normalizer of an involution in 2A; N(5AB) is the normalizer of a group of order 5 
containing elements of classes 5A and 5B; N(3^3)=N(3AB4 C3 D6) is the normalizer of 
an elementary abelian group of order 27 whose 13 cyclic subgroups number 4 
containing both classes 3A and 3B, 3 containing 3C only, 6 containing 3D only; 
N(2A,2C,3A,3B,...) is the normalizer of a group containing elements in the indicated 
classes among others. Within Cayley the maximal subgroups are named M l, M2, 
M3,... for a finitely presented group and MPI, MP2, MP3,... within a permutation 
group.

Sylow subgroups

If the prime p divides IGI then generators for a Sylow p-subgroup are input to Cayley 
provided that the Sylow subgroup is not cyclic. Hence if the library for the permutation 
group PSU42P5, say, has been read into Cayley a Sylow 2-subgroup is input as SP2 
while if the finitely presented group PSU42F5, say, has been read into Cayley a Sylow 
2-subgroup is input as S2.


