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ABSTRACT

For the non-abelian simple groups G of order up to 108, excluding the groups PSL(2,q),
q > 9, the presentations in terms of an involution a and an element b of minimal order
( with respect to a ) such that G=<a,b> are well known. The presentations are complete
in the sense that any pair (x,y) of generators of G satisfying x2=yM=1, with m minimal,
will satisfy the defining relations of just one presentation in the list. There are 106 such
presentations.

Using a computer, we give generators for each maximal subgroup of the groups
G. For each presentation of G, the generators of maximal subgroups are given as words
in the group generators. Similarly generators for a Sylow p-subgroup of G, for each p,
are given. For each group G, we give a representative for each conjugacy class of the
group as a word in the group generators.

Minimal presentations for each Sylow p-subgroup of the groups G, and for most
of the maximal subgroups of G are constructed. To obtain such presentations, the Schur
multipliers of the underlying groups are calculated.

The same tasks are carried out for those groups PSL(2,q) of order less than 106
which are included in the "ATLAS of finite groups" ( J H Conway et al., Clarendon
Press, Oxford, 1985). For these groups we consider a presentation on two generators X,
y with x2=y3=1,

A finite group G is said to be efficient if it has a presentation on d generators and
d+rank(M(G)) relations (for some d) where M(G) is the Schur multiplier of G. We show

that the simple groups J;, PSU(3,5) and M,, are efficient. We also give efficient

A ~ A
presentations for the direct products AsxAﬁ, Asxﬁ& AgxAg, AgxA; where H denotes
the covering group of H.
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Notation

(n,m)
<g>

Xl
X\Y
H<G
H«aG
G/K
Hg
IG:H!
G,=G,
Coreg(H)
Stg(X)
fix(x)
HG
Co(®)
Ng(H)
Z(G)
AutG
K&

xy

[x,y]
G'

Ker ¢
D(G)
M(G)
d(G)
def G
rank A
<X>
<X1,X2500- . Xp>
X-1

<X IR>
F(X)

Greatest common divisor of integers n, m
Cyclic group generated by element g
Cardinality of the set X :
Set of elements in X but not in Y ( where Y& X)
H is a subgroup of G
H is a normal subgroup of G

Quotient group of G by K (where K <« G)

Right cosets of H in G containing g (where H < G, ge G)

Index of the subgroup H in the group G

G, is isomorphic to Gy

Core of Hin G ;
Stabilizer of X in G
Fixed points of x (where x is a permutation) |
Normal closure of H in G (where H < G)

Centralizer of x in G (where xe G)

Normalizer of H in G (where H < G)

Centre of G

Group of automorphisms of G

Conjugate of K by g (where K <G, geG)

y-Ixy (where x, ye G)

Commutator x-ly-Ixy

Derived group of G

Kernel of homomorphism ¢

Frattini subgroup of G

Schur multiplier of G

Minimal number of generators of G

Deficiency of G

Rank of A (where A is a finite abelian group)

Subgroup of G generated by X (€ G)

<{xX1.,X2,....,X5} >

{x-1:xeX]} (where XCG)

Group on generators X with relators R

Free group on X



B(X}yeceiXn) F({X1s..:Xn})

I(w) Length of the word w=w(x,...,Xy) in F(x{,...,xp)
H®K Tensor product of H and K

Don Dihedral group of order 2n (n2>3)

Qg Quaternion group

H: K Semi-direct product of H by K

HxK Direct product of H and K

HoK Central product of H and K




0.Introduction

There are 56 isomorphism classes of non-abelian simple groups of order less than 109,
Of the classical groups these include groups PSL(2,q), the projective special linear
groups of dimension n over GF(q), the unitary groups PSU(3,q) of dimension 3 over
GF(q?) for q=3, 4, 5, and symplectic groups PSp(4,q) of dimension 4 over GF(q) for
q=3 and 4, and finally the alternating groups As, Ag, A7, Ag and Ag. Of the
non-classical groups there is the first Suzuki group 5z(8), three Mathieu groups M;,
Mj, and Mj,, and two 'Sporadic’ groups, the first Janko group of order 175560 and

the Hall-Janko group of order 604800.

Twenty eight of them are PSL(2,p), p a prime, p=5, ..., 113, and eleven of them
are PSL(2,p"), p a prime, n > 1. The remaining seventeen groups listed by their orders

are:
Aq
PSL(3,3)
PSU(3,3)
My,
Ag=PSL(4,2)
PSL(3,4)
Sp(4,3) = PSU(4,2)
Sz(8)
PSU(3,4)
M,
PSU(3,5)
Janko group
Ag
PSL(3,5)
M,
Hall-Janko group
PSp(4,4)

2520=23.32.5.7
5616=24.33.13
6048=25.33.7
7920=24.32,5.11
20160=26.32.5.7
20160=26.32.5.7
25920=26.34.5
29120=26.5.7.13
62400=26.3.52.13
95040=26.33.5.11
126000=24.32.53.7
175560=23.3.5.7.11.19
181440=26.34.5.7
372000=25.3.53.31
443520=27.32,5.7.11
604800=27.33.52.7
979200=28.32,52,17

These non-abelian simple groups, including the following simple groups

As=PSL(2,5) = PSL(2,4)
PSL(3,2 )= PSL(2,7)

Ag=PSL(2,9)

60=22.3.5
168=23.3.7
360=23.325,

have been investigated from various points of view using a computer. Character tables,




maximal subgroups, and intersections of maximal subgroups are given in [34], [21] and
[33]. According to an old conjecture all finite simple groups require at most two
generators. It is shown in [35] that all twenty simple groups G listed above can be
generated by two generators X, y with x an involution.

A pair (a,b) is said to be a minimal (2,m,n) generating pair for G with respect to
x if

(i) <a,b>=G,

(ii) a=x0 for some automorphism 6 of G,
(iii) if <a, c>=G then I<c>|21<b> l=m,
(vi) | <ab> I=n.

A minimal generating pair with respect to x is a minimal generating pair with
respect to any element of xAUG, There are 106 such minimal generating pairs tabulated
in [35] as permutations of minimal degree for these G, including conjugacy classes of
each group and their cycle types and the orders of centralizers of elements.

Presentations satisfied by these permutation generators are given by Cannon,
McKay and Young [15] for those groups G with IGl < 105 and by Campbell and
Robertson [6] in the case 105 < |Gl < 106. In [7] the authors improve the results of [16]
by determining the redundant relations of the presentations and by giving exactly two
words in a, b for a subgroup of G of minimal index.

For each prime p, we give generators of a Sylow p-subgroup for each of the
above groups. For each minimal generating pair the generators of Sylow p-subgroups
are given as words in the group generators . For each prime p, a minimal presentation
on these generators is constructed. All Sylow 2-subgroups of the above simple groups
have order at most 64 with the exception of the Sylow 2-subgroups of My,, J, and
PSp(4,4) which have orders 128, 128 and 256 respectively. We use the lists given in
[22] and [39] to identify each of the 2-groups whose orders are less than or equal 64.
We also, for each prime p, calculate the number of Sylow p-subgroups for each simple
group G.

Similarly generators of each maximal subgroup are given, as words in the group
generators, for each minimal generating pair of the groups. In [21] some maximal
subgroups of the simple groups G, IGl < 100 , are missing and there are also some
errors in the structure of certain maximal subgroups of the groups. We use the
information given in the "ATLAS of finite groups" [17] about the maximal subgroups of
G in order to find generators for each maximal subgroup. It is seen that all of the
maximal subgroups can be generated by two generators x, y (mostly with x an
involution) with the exception of a maximal subgroup of A of order 72 which requires
at least three generators. The Schur multiplier of each maximal subgroup which was not
already known is calculated. We then give an efficient presentation for each of the
obtained maximal subgroups with two exceptions.
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For each group G, representatives of the conjugacy classes of G are given in the
group generators a, b with (a,b) the first minimal generating pair for G appearing in
[35].

The same tasks are carried out for the groups PSL(2,q) of order at most 106
which appear in the ATLAS. For these groups we take a single generating pair (a,b) of
minimal degree with a2=b3=1. There are twelve of them which are listed below by their
orders:

PSL(2,8) = SL(2,8) 504=23.32.7
PSL(2,11) 660=22.3.5.11
PSL(2,13) 1092=22.3.7.13
PSL(2,17) 2448=2432,17
PSL(2,19) 3420=22.32,5.19
PSL(2,16) = SL(2,16) 4080=24.3.5.17
PSL(2,23) 6072=23.3.11.23
PSL(2,25) 7800=23.3.52,13
PSL(2,27) 9828=22.33.7.13
PSL(2,29) 12180=22.3.5.7.29
PSL(2,31) 14880=25.3.5.31
PSL(2,32) = SL(2,32) 32736=25.3.11.31

Presentations for the groups PSL(2,p), p a prime, are well known, see for
example [2]. Information on presentations of the groups PSL(2,p") is taken from [5],
[10].

In Chapter 1 we introduce some definitions and results to be used in later chapters. In
Chapter 2 we describe, concisely, the Todd-Coxeter coset enumeration algorithm and
some of its applications and include a discussion on computer programs used in
obtaining our results. The group theory system CAYLEY [15] is briefly described. It
contributes to the solution of some problems relevant to the last two chapters. Chapter 3
contains some computational methods that have been used in connection with the results
of Chapter 4 and Chapter 5.

Chapter 4 contains the results on representatives of the conjugacy classes, Sylow
p-subgroups, and maximal subgroups of the simple groups G=<a,b> where (a,b) is the
first minimal generating pair appearing in [35]. We added our results on representatives
of the conjugacy classes, Sylow p-subgroups and maximal subgroups to the file
SIMGPS.TLB, a CAYLEY file of finite simple groups [8], which will be introduced in
the Appendix.

Chapter 5 is concerned with the problem of efficiency of certain finite simple
groups and direct products. The deficiency of a finite presentation <X | R> is IXI-IRI,
and the deficiency, defG, of a group G is the maximum of this number taken over all
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finite presentations of G. A finite group G is said to be efficient if rank M(G)=-defG,
where M(G) is the Schur multiplier of G . The simple groups of order less than 106 are
known to be efficient with the exception of PSU(3,5), J;, PSL(3,5), M5, and PSP(4,4)
(see 5.1). We show that PSU(3,5), J; and M22 arc efficient. We also give efﬁcwnt
presentations for the perfect groups A5xA5, A5xA6, AgxAg and AgxA~ where G
denotes the covering group of G.

The question concerning the occurence of the non-abelian simple groups as
composition factors of finite groups of deficiency zero is posed by D. L. Johnson
and E.F. Robertson in [28]. Those simple groups whose covering groups are efficient
have this property. We show that the simple group PSU(4,2) of order 25920 can occur
as a composition factor of a deficiency zero group of order 155520.
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1.Definitions and preliminary results

In this chapter we introduce some terminology and notation from a few areas of group
theory to be used in later chapters. Results are introduced when they are needed. The last
section of the chapter contains a brief discussion of presentations of groups and includes
a deeper result on the Schur multiplier and stem extension of a finite group which is
needed in trying to find efficient presentations in Chapter 4 and Chapter 5.

1.1 Elementary group theory

If H is a subgroup of a group G by the core of H in G we shall mean the subgroup
Coreg(H)=NnHX .
For a subset S of G, the normal closure of S in G is defined to be the intersection
of all normal subgroups of G which contain S, and is denoted by SC.

1.1.1. Let H £ G, S a subset of G. Then
(i) Coreg(H) is the largest normal subgroup of G that is contained in H.
(ii) SG is the unique smallest normal subgroup of G containing S.
(ii) SO=<s& | ge G, se S>.

The centre of a group G is defined by
Z(G)={xe G : xB=x for all ge G}.
For every non-empty subset S of a group G, the normalizer of S in G is defined
by
Ng(S)={xe G: SX=§}.
A subgroup H of a group G is called self-normalizing if Ng(H)=H. We say that a
subset K of G normalizes a subgroup H if for each ke K we have HK=H.
The centralizer of S in G is defined by
Cg(S)=(xeG: s*=s for all se S}.
When there is no confusion over the group, we shall denote the centralizer and the
normalizer of S by simply C(S) and N(S) respectively.

1.1.2. Let H < G. Then N(H) is the largest subgroup of G in which H is normal, and
whenever H <K <G, K < Ng(H).




1.1.3. Let G be a finite group and H < G. Then
(i) Ng(H)={ge G: H < H8}={ge G: HE < H}.
(ii) IG: Ng(H)I=I{HE: ge G}I.

Let x, y be elements of a group G. By the commutator [x,y] of x and y we shall mean
the element x-ly-1xy=x-1xY.

If A, B are subgroups of a group G then we shall use the notation
[A,B]=<[a,b]:ac A,be B}. In particular, we call [G,G] the derived group of G. We
shall denote it by G'. We extend the notation recursively and define GM=[G(n-1), G(n-1)]
for n >1, where G()=G', Define G(0=G. A group G is called perfect if G=G'.

1.1.4. Let G be a group and H £ G. Then
(i) H® < G(),
(i) G'<H if and only if H < G and G/H is abelian.

Let p be a prime. A group G is called a p-group if every element of G has order p™ for
some n 2 1. A p-subgroup P of a finite group G is called a Sylow p-subgroup of G if P
is not properly contained in any p-subgroup of G.

1.1.5. (Sylow). Let G be a finite group and let P be a Sylow p-subgroup of G. Then
(i) Every Sylow p-subgroup is conjugate to P;
(ii) G has 1+kp Sylow p-subgroups, for some k;
(iii) the number np(G) of Sylow p-subgroups divides IGl.

1.1.6. Every p-subgroup of a finite group G is contained in a Sylow p-subgroup.

L.1.7. If G is a finite group and if S, is a Sylow p-subgroup of G of order p™, then S,
is the only subgroup of G of order p™ lying in N(Sp).

1.1.8, Let G be a finite p-group of order p" and H be a proper subgroup of G. Then H
is properly contained in N(H), hence, if H is a subgroup of order p™-1, then H 4 G.

By a maximal subgroup of a group G we shall mean a subgroup H such that H#G and
for every subgroup K with H < K < G either K=H or K=G.

The Frattini subgroup of a group G is defined to be the intersection of the
maximal subgroups of G. ®(G) denotes the Frattini subgroup of G.

1.1.9. If X is a subset of G with G=< X, ®(G) >, then G=< X >.




If Ny, Ny, ..., Ni are subgroups of G such that 1=Ny<d N1< Nj...< Ny=G, then we say
that the subgroups N; form a subnormal series of G. A subnormal series in which each
of the quotients N;/N;_; is a non-trivial simple group is called a composition series. The
factors in any composition series are called composition factors of G.

A group is said to be soluble if it has a subnormal series 1=Ny< Ny< Nj...q
Ni=G in which each of the factors N;/N;_; is abelian.

A group is said to be nilpotent if it has a normal series G=Hg2 H;2 ... 2 H; =1
such that Hy.;/H; is contained in the centre of G/H,; for each i.

Suppose that G is any group. Let I'y=G and define recursively I';=[I'j.1,G], i22.
Then the series G=I"] 21’5 2 I'3 2... is called the lower central series of G.

1.1.10. A finite p-group is nilpotent.
1.1.11. A group G is nilpotent if and only if I';, ;=1 for some ¢ = 0.
The integer ¢ of 1.1.11 is called the class of the nilpotent group G.

A subgroup H is said to be invariant under 6 Aut G if 6(H) < H. A subgroup H of G
is said to be a characteristic subgroup if it is invariant under all elements of Aut G.

A group is said to be characteristically simple if the only characteristic subgroups
of G are 1 and G.

1.1.12. Let G be a non-trivial finite group. Then G is characteristically simple if and
only if G is a direct product of finitely many isomorphic copies of a simple group.

1.2 Permutation groups

A permutation group on A is a subgroup of S, the symmetric group on A. When
A={1, 2,..,n } we write S, for S, and call it the symmetric group of degree n.

If a, be A we say that a ~ b if and only if there exists re G with an=b. We see
easily that ~ is an equivalence relation and we call the equivalence classes the orbits of
G. For ae A, the orbit containing a is called the orbit of a: it is the subset aG={an:ne G}
of A. We say that G is transitive if, given any pair of elements a, b of A, there exists a
permutation % in G such that an=b. Thus G is transitive if and only if there is exactly one
orbit, namely A itself. Otherwise the group is called intransitive.

Let m be a positive integer. We say that G is m-transitive if given any two ordered
subsets {aj, aj,..., 2, } and {by, by,..., by} of A of size m, then there exists te G with
ajn=b; (i=1,2,...,m ). If m > 2 then m-transitivity implies (m-1)-transitivity. Note that
1-transitivity is simply transitivity.




If X is a non-empty subset of A the szabilizer of X in G, St g(X), is the set of
permutations in G that leave fixed every element of X. Of course St (x) stands for

Stg({x)).

1.2.1. Let G be a permutation group on A and H £ G. Then
(i) 1G: Stg(a) I=laGl forall ac A ;
(ii) If H is transitive then so is HE for all geG.

1.2.2 Let G be an m-transitive permutation group on A, and suppose that X and Y are
subsets of A of cardinality m. Then St g(X) and St g(Y) are conjugate in G.

Let G be a permutation group of degree n, we can express every permutation Te G as a
product of disjoint cycles in an essentially unique manner, thus

=YY% ™
where Y1, Y2, ..., ¥; are disjoint cycles involving
my, my, ..., M, (*¥)

objects. For convenience we retain cycles of unit length so that all n objects are listed in
the product (*). The integers (**) are called the cycle type of ®. Now let & contain e;
cycles of length n;, €5 cycles of length ny, ..., e cycles of length ng, where

n; <Ny, ... <Ng, N=Mj+My+.+M=€1N1+NyCo+.. +Neq.
Then the cycle type of © may be displayed by the pattern

HICI n282 - nses

For example the cycle type of (2,3)(4,5)(7,8,9)(10,11,12)(13,15,17) of degree 17 is
- 142233,

1.2.3. Conjugate elements in a permutation group have the same cycle type.

Let G be a group and A a non-empty set. Let p be any homomorphism from G to S4.
Such a function is called a permutation representation of Gon A.Letp:G —> S, bea
permutation representation of G on A. The cardinality of A is known as the degree of
the representation. Next p is called faithful if Ker p =1, so that G is isomorphic to a

permutation group on A. Also p is said to be transitive if Im p is a transitive permutation
group.

1.2.4. Let H be a subgroup of G and let R be the set of all right cosets of H. For each g
in G define gpe Sy by gp : Hx — Hxg. Then p : G — Sy is a transitive permutation
representation of G on R with kemnel Coreg(H).

s
AN




1.3 Product of groups

If Gy, Gy, ..., G, are groups then by their direct product GxGsx...xG,;, we shall mean
the group whose underlying set is the set of product of G;'s and whose group operation
is defined by

(&15 s 8n) (81" s &0’ )=(£181'++s Bnkn' )-

1.3.1, Let G=GxG3x...xG,, be the direct product of the the groups Gy, ..., Gy.
Then there are subgroups Hy, ..., H, of G such that H; = G; for each i and

(i) H; « G fori=1, .., n.

(i) HyH,..H,;=G.

(1ii) Hi M Hl"-Hi-IHi+l'"Hn=(l) for 1=1, .., n.

1.3.2 (Basis theorem for abelian groups). Every finitely generated abelian group G can
be written as a direct product of cyclic groups :

G=Bx ... xB,
where | B; I=b; (i=1, ..., 7 ) and by, | b; while B, , ..., B, are infinite cyclic.

When n=r, the group G is finite and | G I=b{b, ... by, ; in this case the number r is called
the rank of G and is denoted by rank G.

An abelian group of exponent p, p a prime, is a direct product of cyclic groups. Such
groups are called elementary abelian groups.

Let H <« G. We say that G splits over H if there is a subgroup K of G such that G=HK
and H N K=(1). Any such subgroup K is said to be a complement to Hin G.

Let H and K be groups and let ¢ : K— Aut H, described by k—@y , be a group
homomorphism. Then by the semi-direct product of H by K with action ¢ we shall
mean the set of ordered pairs (k, h), ke K, he H, with operation

(k, h) (k', h' )=(kK', @y (h) h’).
We shall denote this by Hx o K or H: ? K (or simply by H : K).

1.3.3.

(i) Suppose that G=H x ¢ K. Then G splits over H, and K is a complement to H in
G.

(ii) Let H < G. Suppose that G splits over H, and let K be a complement to H in G.
Define ¢ : K— Aut H by k—@y, where @y (h)=hk. Then G=Hx oK.

Let H and K be two groups with common central subgroup C. Formally we have

9




injections ¢ : C — H and y : C — K of the abstract group C into the centres of H and
K. The central product of Hand K over Cis defined to be the quotient of HXK by the
set of ordered pairs of the form ( @(c), y(c) ) (ce C). When it is omitted from the
notation, C is usually understood to take the largest possible value. Central products
may have more than two factors. We shall denote this group by H o¢ K ( or simply by
HoK).

1.3.4.

(i) Suppose that G=H o¢ K. Then there are normal subgroups G and G, of G with
Gl =H and G2 = K such that G=Gle, [Gl, G2]=1 and Gl M G2=C.

(i) Suppose that H <@ G, K < G, and that G=HK, [H, K]=1, HN K=C, where Cis a
central subgroup of G . Then G = H oc K.

A finite p-group G is called extra-special if G' and Z(G) coincide and have order p; for
example Qg and Dg are extra-special groups.

The structure of extra-special p-groups is provided by the following theorem .

1.3.5. Let G be an extra-special p-group.Then there exists n 2 1 such that | G l=p20+1
and G is a central product of n non-abelian groups of order p3 over Z(G).

1.3.6. Let G be an extra-special group of order 22n+1, Then G is a central product of
Dg's or a central product of Dg's and a single Qg.

1.4 Special and projective special linear groups

Let GL(n,q) denote the group of all n x n non-singular matrices with entries in the field
E, of q elements. The group GL(n,q) is known as the general linear group (in
dimension n); its subgroup consisting of matrices of determinant 1 is called the special
linear group and is denoted by SL(n,q). The centre of GL(n,q) consists of the scalar
matrices and the corresponding factor group PGL(n,q) is called the projective linear
- group. Finally, the image PSL(n,q) of SL(n,q) in PGL(n,q) is called the projective
special linear group. The centre of SL(n, q) is a cyclic group of order (n,g-1).

1.4.1 (see [25] ).
(i) With the exception of PSL(2,2) and PSL(2,3), all the groups PSL(n, q) are simple.
(ii) With the exception of SL(2,3) and SL(2,2), all the groups SL(n,q) are perfect .
(iii) The following isomorphisms hold :
(a) PSL(3,2) = SL(3,2) = PSL(2,7),
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(b) PSL(2,4) = SL(2,4) = PSL(2,5) = As,
(c) PSL(4,2) = SL(4,2) = Ag,
(d) PSL(2,2) =SL(2,2) =83,
(e) PSL(2,3) = A4 and PSL(2,9) = Ag.
(iv) | GL(n,q) I=(q-1)N, | SL(n,q) |=l PGL(n,q) I=N, | PSL(n,q) I=N/d, where
N=qn(0-1)/2(gn-1)(q"-1-1)...(q%-1) and d=(g-1,n) .
(v) PSL(2,q), g=p", has g+1 Sylow p-subgroups.
(vi) PSL(2,q), with q 2 5, has a subgroup of minimal index d=q+1 with the following
exceptions :

(a) g=5 d=5
(b) g=7 d=7
(c) g=9 d=6
(d) g=11 d=11.

1.5 Presentations of groups; Schur multiplier

Suppose that

X is a set,

F=F(X) is the free group on X,

R is a subset of F,

N=RF is the normal closure of R in F, and G=F/N.

Then, we write G=< X | R > and call this a presentation of G. The elements of X are
called generators and those of R relators. A group G is called finitely presented if it has
such a presentation with both X and R finite sets.

We shall only be concerned with finite presentations and assume all our presentations
will be finite. The importance of presentations is stated in the following theorem

1.5.1. Every group has a presentation, and every finite group is finitely presented.

It is convenient to work with relations rather than relators. A ( defining ) relation is
obtained from the corresponding relator by setting it equal to 1. Conversely if w; and wy
are words in the group generators, the relation wy=w, yields the relator wy-lwy, for
example. We then write G as

G=<XIr=1,i=1,2,..,m>.

1.5.2 (Von Dyck). If R, S are subsets of the free group F on a set X with R< S, then
there is an epimorphism 6 : <X IR > — <X | § > which fixes X elementwise. The
kernel of 0 is just the normal closure of S\R as a subset of < X | R >.
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1.5.3 (Substitution Test ). Suppose we are given a presentation G= < X | R >, a group
H and a mapping © : X— H. Then 6 extends to a homomorphism 6': G — H if and only
if, for all xe X and re R, the result of substituting x0 for x in r yields the identity of H.

154 IfG=<X IR >and H=< Y | S > are two presentations, then the direct product
GxH has the presentation

<X, YIRS, [X, Y] >
where [X, Y] denotes the set of commutators { [x,y] : xe X, ye Y }.

1.5.5. if G=<X IR >, then G/G'=< X | R, C >, where X= { xy, ..., X; },
C={[xpxj] : 1<i<j<r}.

Given a presentation G=< X | R >, each Tietze transformation T; (i=1,2,3,4) transforms
G into the presentation < X' | R' > according to the following definitions:

Ty, adding a relator : X'=X, R'=R U (r}, where re RF\R ;

T,, removing a relator : X'=X, R'=R\ {r}, where r eR N (R\ {r})F;

T3, adding a generator : X'=X U {y}, R'=R U {y-lw}, where ye X and
weF(X) ;

T4, removing a generator : X'=X\{y}, R'=R\{y-lw}, where ye X,
we F(X\{y)) and y-lw is the only element of R involving y.

1.5.6 (see [27], p 38). Given any two finite presentations
<XIRX)=1><YIS(Y)=1>

for a group G, one can be transformed into the other by means of a finite sequence of

Tietze transformations.

The deficiency of a finite presentation < X | R > of a group is the number of elements in
X less the number of elements in R. The deficiency of a finitely presented group G is
defined by

def G=max { | X |- IR | : all finite presentations <X |R > of G >.

L.5.7. Any group defined by a finite presentation with positive deficiency is necessairly

infinite. Therefore, if a finitely presented group G is finite, the deficiency of G is less
than or equal to zero.
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The Schur multiplier M(G) of a finite group G=< X | R > is defined by

Fn RF
[F,RY]

where RF is the normal closure of R in F=F(X).

1.5.8 (Schur) ( see [25] ).
(i) M(G) is a finite abelian group and is independent of the presentation ;
(ii) rank M(G) < -def G.

A finite group is said to be efficient if rank M(G)= -def G.

A group is called metacyclic if it has a normal subgroup H such that both H and G/H are
cyclic. A group G is said to be split metacyclic if it has a cyclic normal subgroup with a
cyclic complement.

1.5.9. Every non-abelian split metacyclic group G with a cyclic normal subgroup H of
prime order p has trivial Schur multiplier. A deficiency zero presentation for G is of the
form %

G=<x, y | yP=xP, [y, xY=x >,
for some integer t, where n=| G/H .

1.5.10. Let G be a non-abelian group of order p3, p an odd prime. Then

1 if G is of exponent p2
M(G)=

CpxCp if G is of exponent p.

Suppose first that G is of exponent p2. Then G is metacyclic and has the presentation
G=<a, b | aP2=bP, al=al+p >,
Suppose now that G is of exponent p. Then G has the presentation
G=< a,b | aP=bP=1, [a,b]2=[a,b]=[a,b]D >.

(Note that G is always extra-special.)

1.5.11 (see [29] ).

(i) (Schur 1911)
1 if n=3
MAp=¢ Cy if ng {6,7} andn2>4
Cs ifne{6,7);
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1 ifn<3
M(Sy)= 1
LOZ ifnz24.
(ii) Foralln>1
(1 if n is odd
M(Dy,)=¢
. Co if nis even.

(ifi) (Steinberg 1961, 1967)
The Schur multiplier of SL(n,q) is trivial with the following exceptions :
(@) If Gis SL(2,4), SL(3,2), SL(3,3), or SL(4,2), then M(G)=C»;
(b) ¥ Gis SL(2,9) then M(G)=Cj3;
(c) If G is SL(3,4) then M(G)=C4xCy.
(iv) If PSL(2,q) is not one of the following groups in (d), (e) below, then
M(PSL(2,q))=C,, where m=(g-1,2).
(@) M(PSL(2,4))=Cy;
(e) M(PSL(2,9))=Cs.

The tensor product of two groups is an abelian group defined as follows. For cyclic
groups we have
G ® Cu= Ca )
For finite abelian groups, we use the Basis theorem (1.3.2) and the universal properties
G@H=H® G, G HxK)=(G®H) x (G ®K).
Finally, all finite groups are covered by defining
G ®H=G/G'® H/H.

1.5.12 (Schur 1907 ) (see [29], p 37 ). For any finite groups G and H,
MGxH)= M(GxMH)x(G®H).

Note. Suppose G=N : ? K. A theorem of Tahara (1972) asserts that M(K) is a direct
factor of M(G) (see the theorem 2.2.5 of [29]). In certain cases, one can use this fact to
determine rank M(G). This would be useful for seeking efficient presentations for
certain semi-direct products whose multipliers cannot be calculated using a computer.

Suppose that G is a finite group. The group H is called a stem extension of G if there

is an A<H with H/A =G and A < Z(H) N H'. A stem extension with A = M(G) is
called a covering group of G.
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The next important result is taken from a paper by Campbell and Robertson [3].

1.5.13. A stem extension H of a group G is a homomorphic image of some covering
group of G.

Proof. Since H is a stem extension of G, there is a subgroup A of H with

A < Z(H) nH' and H/ A = G. We shall prove that A < ®(H). Let D=H'n Z(H) and

assume D £ ®(H). Then there is a maximal subgroup K of H with D€ K. Now K< DK

and so DK=H, by maximality of K. If he H, h=dk with de D and ke K. Thus
h-1Kh=k-1d-1Kdk=k-1Kk=K

since de Z(H). Hence K < H and H/K has prime order. Therefore, H' < K by 1.1.4 (ii)

and D <H' £ K, gives the required contradiction.

Let G= F/R, F=< fy, f, ..., f; >, G=<g;, &9, ..., gp> With gi=f;¢, ¢: F > G
the canonical epimorphism. If W is the canonical epimorphism from H — G, then
Ihe H with hjy=gi. Then H=< hy, hy, ..., hy, A >=< hy, hy, ..., hy >, since A< D(H)
and ®(H) can be omitted form any generating set, by 1.1.9. This gives rise to an
epimorphism © : F— H with f;o=h; such that the following diagram is commutative:

o
F — H

v
Y

We shall now prove that Ro=A. Let re R, then r¢=1. But r¢=roy and so
roe Kery=A.That is, Roc A. If ac A, then ay=1. 3 fe F with fo=a and so
fo=foy=ay=1. Hence fe R and so ac Ro. That is, A= Ro . Also[R, Flo=[Ro, Fol=
[A, H]=1, since A < Z(H). Hence ¢ induces an epimorphism & : F/[R, F]+H. Let
F=F/[R, F] and R=R/[R,F], so that M=M(G)=F' N R. Now,
Mo=(F'n R)o=F'c=F'c N Ro=H' N A=A.
Since Ro=A, we have RG=MG, so if r € R, there is an m in M with m&=r3, i.e.
(rm~1)6=1 giving rm-! € Ker G. Let N=Ker G, we have r= (rm"1).me NM, so R& NM.
But Ker 3=Nc R , FnR=Mc ﬁ, which implies that NM& R and hence NM=R.
Now
N _mM_R R _RF_F
N~M

™M "FAR FAR FF'
Since F/F' is free abelian, N/ (N N M) is also free abelian and so NNM is a direct
factor of N,

in

N= (N N M)xE,
for some E £ N. However, §=ExM; since §=NM=((N N M) xE)M which shows that
R=EM. AlsoEnMcNNM, EnMcEsothat EnMc (NN M)NE=1.
Now F/E is a covering group of G.

15
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. EE_F _F
——z e = =G
O g E"F
... R ExM _
(11) E~T=M
F'nR F'

" R __F
msm.SlmeR—EMmGHES(E).

As [R, F] =1, we have R/E < Z(F/E).
Finally, H is a homomorphic image of the covering group F/E. For E< N=Kerg,
G : F — H induces an epimorphism & : F/E — H.

(iii) M <F' since

1.5.14 (Schur ) ( see [3] ). With the notation in 1.5.13 if (1 G/G'l, | M(G) | )=1, then
G has a unique covering group.

In the case where G is perfect then G has a unique covering group (by 1.5.14) which we
denote by G.

1.5.15. ( see [43] ). K G is a finite perfect group, then M(G)=1.
1.5.16. Let Gj, Gy be finite perfect groups. Then G1§G2 = élxaz.

If G is a group, then d(G) will denote the minimal number of generators of G. The
minimal number m such that G has a presentation
G=< X1 X0, <5 Xy VT 105 005 Ty > ™)
will be denoted by r (G).
Suppose that G has a presentation (*) then the presentation is said to be minimal
if n=d(G) and m=r (G).

1.5.17. Let G be a finite p-group and set d=d(G). Then G/®(G) is elementary abelian
group of order pd,

1.5.18 (Wamsley, Sag) (see [39] ). Let G be a 2-group of order at most 26. Then G
has a minimal presentation.
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2. Coset Enumeration Algorithm; Computer Programs

Because of the importance of the coset enumeration algorithm and because of the
fundamental role it plays in our methods for obtaining generators for subgroups of simple
groups we shall devote the first section of this chapter to a brief discussion of the coset
enumeration algorithm and its applications.

We then give some details of a coset enumeration program and list a number of
programs to be used in the following chapters. These are a Reidemeister-Schreier
rewriting program, a modified Todd-Coxeter program, a Tietze transformation program,
and a nilpotent quotient program.

We shall describe two specially written programs which help find generators and
presentations for subgroups of permutation groups with the aid of a coset enumeration
and a Tietze transformation program.

The chapter contains some computational methods used in connection with a coset
enumeration program. We shall describe a method which enables us, in favourable
circumstances, to obtain generators for a Sylow p-subgroup of a group with generators
and relations. Some examples will be given to illustrate these methods.

The last section of the chapter contains a brief description of CAYLEY, a group
theory system [15], to be used in connection with the results of following chapters.

2.1 Coset enumeration algorithm

The Todd-Coxeter coset enumeration is a method for evaluating the index of a subgroup
H in a finitely presented group G where H is finitely generated by words in the group
generators. The coset enumeration method is not in fact an algorithm for , given that
IG:Hl is finite, there is no bound on the number of steps needed to find the index, even if
the index is 1.

We give here a short description of the method; a comprehensive discussion is
given in [36].

Description of the method

Suppose that G is any finitely presented group given by
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< 81:825+0:8n | T1=Ty= =Ty =1>
where each r; is a word in the gj's. We shall simply write G=<XIR> with
X=(g1,82,---8n}> R={ r1,r2,...,1n }. Suppose further that H is a finite index subgroup
of G generated by h;=h;( g1,82,....&n )» i=1, 2, ..., t.
The Todd-Coxeter method described below attempts to find the index of Hin G
by enumerating the cosets of H in G. The procedure is based on two simple facts :
(i) Hh=H (1<i<t).
(ii) For any coset Hg we have Hgri=Hg for i=1, 2, ..., m.

For each relator rj, written as a product of g;'s with powers * 1, we draw a

rectangular table having 1(r;)+1 columns, where 1(w) is the length of w in the free group
F( 81,82,..,8n ), and at least as many rows as the index of H in G. This table will be
called the relation table of rj and looks like :

&i1 giz .- E&jj

where 1i=gj; giz... £j With gjx € XUX-1 (by X-! we mean the set { g;-1,g2°1,....g471)).
We also draw a table with a single row for each subgroup generator h; again
written out fully as word in the g;'s with powers £1. This table is called the subgroup

table of h;.

We now use positive integers to denote right cosets of H in G. The subgroup H
itself is denoted by 1. We shall fill our tables by entering the positive integers as follows:
We first note that the entry

g
kK | 1
will mean that the coset k multiplied by g from the right yields the coset 1. By the above
remarks (i) and (ii) , we begin by entering the integer 1 in the first and last places of the

first row of each table, the remaining places in the first rows being as yet empty. We
then consider an empty space next to some 1 and fill it with the integer 2. Suppose the
situation to be as in the following diagram :

&il
ll 2

We record this definition 2=1g;, (and / or 2gj;-1=1 ) in a table called the coset table. (A
coset table is headed by the g1, g1-1, &2, £2°1...., &n» &n~! and has as many rows as
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IG:H! .) Clearly, the integers 1, 2 correspond to cosets H, Hgj;. Now we put a 2 in the

first and last places of the second row of each relation table again using the above remark
(ii). We then try to put this information and its consequences into the tables wherever
possible. This process is known as scanning. Having made sure that no more spaces
can be filled in this way, we enter the integer 3 in an empty space that is adjacent to a

filled space. This is a new definition of the form 'ig=3" where ge XUX-1, We record
this in our coset table and scan again. Similarly we introduce the integers 4, §, ... . We
continue in this way until our tables are completed. Then the number of rows in each
relation table is equal to IG:HI. We note that our definitions of new integers will not
suffice to complete the tables. In fact we need more information of the form I=kg than is
contained in our definitions of new integers and such information is obtainable from the
fact that the lines in the subgroup tables or relation tables close up. Whenever this
happens, information of this kind is obtained and is called a deduction. When such a
deduction is made three possibilities can occur : either

(1) the places 