NERC Open Research Archive

Article (refereed) - postprint

Kopáček, Jiří; Evans, Christopher D.; Hejzlar, Josef; Kaňa, Jiří; Porcal, Petr; Šantrůčková, Hana. 2018. Factors affecting the leaching of dissolved organic carbon after tree dieback in an unmanaged European mountain forest. *Environmental Science & Technology*, 52 (11). 6291-6299. https://doi.org/10.1021/acs.est.8b00478

© 2018 American Chemical Society

This version available http://nora.nerc.ac.uk/520249/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This document is the Accepted Manuscript version of the journal article, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version is available at http://pubs.acs.org/

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1	Factors affecting leaching of dissolved organic carbon after
2	tree dieback in an unmanaged European mountain forest
3	Jiří Kopáček ^{*1,2} , Christopher D. Evans ³ , Josef Hejzlar ¹ , Jiří Kaňa ^{1,4} , Petr Porcal ^{1,4} , Hana
4	Šantrůčková ^{2,4}
5	¹ Biology Centre CAS, Institute of Hydrobiology, České Budějovice, Czech Republic
6	² University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
7	³ Centre for Ecology and Hydrology, Deiniol Road, Bangor LL57 2UW, United Kingdom
8	⁴ Biology Centre CAS, SoWa, České Budějovice, Czech Republic
9	Abstract- Forest disturbances affect ecosystem biogeochemistry, water quality and carbon
10	cycling. We analysed water chemistry before, during and after a dieback event at a
11	headwater catchment in the Bohemian Forest (central Europe), together with an
12	unimpacted reference catchment, focusing on drivers and responses of dissolved organic
13	carbon (DOC) leaching. We analysed data on carbon input to the forest floor via litter and
14	throughfall, changes in soil moisture and composition, stream water chemistry, discharge
15	and temperature. We observed that: (i) In the first three years following dieback, DOC
16	production from dead biomass led to increased concentrations in soil, but DOC leaching
17	did not increase due to chemical suppression of its solubility by elevated concentrations of
18	protons and polyvalent cations, and elevated microbial demand for DOC associated with

19	high ammonium (NH_4^+) concentrations. (ii) DOC leaching remained low during the next
20	two years, because its availability in soils declined, which also left more NH_4^+ available for
21	nitrifiers, increasing NO_3^- and proton production that further increased chemical
22	suppression of DOC mobility. (iii) After five years, DOC leaching started to increase as
23	concentrations of NO_3^- , protons, and polyvalent cations started to decrease in soil water.
24	Our data suggest that disturbance-induced changes in N cycling strongly influence DOC
25	leaching via both chemical and biological mechanisms, and that the magnitude of DOC
26	leaching may vary over periods following disturbance. Our study adds insights to why the
27	impacts of forest disturbances are sometime observed at the local soil scale but not
28	simultaneously on the larger catchment scale.

30 INTRODUCTION

The susceptibility of forest ecosystems to large disturbance events such as insect 31 infestations and wildfires is increasing globally.^{1,2} Although such disturbances are to some 32 33 extent natural, their frequency and/or severity has tended to be exacerbated by land-34 management factors such as single-species or single-age stand management, increased human presence (fires), and climate change.³ Large-scale tree mortalities have recently 35 36 occurred in Europe and the western USA and Canada, and have been shown to detrimentally impact downstream water quality.^{4–6} Similar increases in frequency of 37 occurrence and severity of impacts on water quality have been recorded for wildfires.² The 38 39 impacts of such disturbances typically include temporally elevated leaching of ions and 40 nutrients (notably nitrogen) to receiving waters. However, the impacts of disturbance on

41	dissolved organic carbon (DOC) are less clear, despite its significance for ecosystem
42	carbon budgets and (due to its high removal costs during treatment) for water supplies. ^{5–9}
43	Concentrations of dissolved organic carbon (DOC) have increased in numerous European
44	and North American surface waters since the 1990s. ^{10–12} These increases have been
45	attributed to: (i) declining atmospheric deposition of strong acid anions (SAAs, sum of
46	SO ₄ ²⁻ , NO ₃ ⁻ , and Cl ⁻) and their effect on soil water pH and ionic strength; ^{13,14} (ii) factors
47	related to climate change including warming, increased frequency of high precipitation
48	events and rising atmospheric carbon dioxide concentrations;15-17 and (iii) elevated N
49	deposition. ^{18,19} These general long-term trends in DOC leaching can be further magnified
50	or weakened by changes in land-use, disturbances, and management practice in
51	catchments. ^{5–9,20,21}
52	Major sources of dissolved organic carbon (DOC) in forest soils are incomplete microbial
53	decomposition of litter and dead biomass (roots, understory vegetation, microbes), root
54	exudates, and leaching from canopies. ²²⁻²⁴ Major DOC sinks are mineralization, microbial
55	and chemical immobilization in soils, and leaching to receiving waters. The proportion of
56	DOC immobilized in new microbial biomass, oxidized to CO ₂ or reduced to CH ₄ depends
57	on its composition (bio-availability), residence time in soils, availability of electron
58	acceptors and nutrients, and soil temperature and moisture, all of which affect efficiency
59	and pathways of C microbial use. ^{25–28} Chemical properties of DOC, soil water, and surfaces
60	of soil particles further affect solubility and mobility of DOC via a complex of physico-
61	chemical processes that affect DOC dissociation, coagulation, precipitation, and adsorption
62	on Al and Fe hydroxides. ^{10,29–31} The amount of DOC leached from soils is further affected

63 by soil hydrology and physical properties that control water residence time, moisture,

hydraulic connection of DOC resources with their microbial sinks, and flow pathways through shallow *vs.* deep soil horizons.^{23,33,34} Consequently, DOC fate in soils and its mobility and leaching from terrestrial to aquatic systems is controlled by a complex of biogeochemical factors, including plant productivity as the original source of organic C (ref. 35), hydrology, soil moisture and temperature, microbial activity, and chemical composition of soil and soil water.

70 Observed trends in DOC leaching from mountain catchments of the Bohemian Forest lakes (central Europe) combine most of the above causes.^{36,37} The DOC concentrations 71 72 have been increasing in the Bohemian Forest lakes since the late 1980s as a response to rapidly decreasing atmospheric deposition of SO_4^{2-} and $NO_3^{-.38}$ In addition, stream water 73 74 DOC concentrations exhibit a pronounced seasonal variation and a high DOC leaching accompanying hydrological events.³⁶ In recent years, DOC concentrations have increased 75 in some streams following insect infestation and tree dieback in their catchments.³⁷ The 76 77 aim of this study is to evaluate mechanisms affecting terrestrial export of DOC following 78 this forest disturbance. In particular, we evaluate changes in C input to the forest floor with 79 litter and throughfall, soil moisture and composition, chemical properties of surface water, 80 physico-chemical factors contributing to DOC variations in stream water, and possible 81 effects of soil N cycle on DOC availability for leaching. Finally, we suggest a general 82 conceptual model and evaluate risks of elevated DOC leaching from disturbed forests.

83

84 METHODS

85 Study site. Plešné and Čertovo lakes are situated at 13.2–13.9 °E and 48.8–49.2 °N at
86 elevations of 1,087 and of 1,027 m, respectively, in the Bohemian Forest (Supporting

87	Information, SI, Fig. SI-1). The Plešné and Čertovo bedrocks are formed by granite and
88	mica-schist, their catchments are 64 and 89 ha in size and are steep, with maximum local
89	relief of 291 and 316 m, respectively. Both catchments are mostly covered by shallow
90	acidic forest soils (leptosol, podsol and dystric cambisol) and proportions of wetlands and
91	bare rocks in their areas are <5%. Forest vegetation occupies >90% of both catchments and
92	is dominated by Norway spruce (Picea abies). The catchments are part of a protected
93	unmanaged area (Šumava National Park), with restricted access and land use activities.
94	Both catchments were strongly acidified and N-saturated by high atmospheric deposition of
95	SO_4^{2-} , NO_3^{-} and NH_4^{+} since the early 1960s. ³⁹ Acidic deposition dramatically decreased in
96	the 1990s, then its decline continued at a lower rate, and its present level (10, 31 and 37
97	mmol $m^{-2} yr^{-2}$ for SO_4^{2-} , NO_3^{-} and NH_4^{+} , respectively, in precipitation) is similar to the
98	late 19 th century for SO_4^{2-} and NH_4^{+} , and to the 1960s for NO_3^{-} . ^{37,39} The Plešné and
99	Čertovo lakes have three (PL-I to PL-III) and seven (CT-I to CT-VII) surface tributaries,
100	respectively. These are small, first- to second-order streams, except for PL-III, which is
101	partly subsurface and receives a high proportion of its flow from groundwater.
102	Between autumn 2004 and autumn 2008, almost all adult Norway spruce trees in the
103	Plešné catchment were killed by a bark beetle (<i>Ips typographus</i>) outbreak. ³⁷ Dead trees lost
104	their needles during several months after infestation, and subsequently they continuously
105	lost twigs, bark, and branches. ⁴⁰ Most of the dead trees had been blown over by 2016, but
106	all dead biomass has been left in place as part of the minimum-management policy within
107	the area. Natural forest regeneration started within 1-3 years of tree dieback, and the
108	average number of seedlings increased from 47 and 670 trees ha ⁻¹ during the following
109	decade. ³⁷

110 The Čertovo forest has experienced a low level of disturbance, limited to windthrows in 111 2007 and 2008 along the south-western ridge of the catchment, mostly in the upper parts of 112 the CT-IV to CT-VII sub-catchments. Altogether, the total area of damaged forest (with > 113 50% dead trees) increased from ~4 to 18% in the whole Čertovo catchment between 2000 114 and 2015.³⁶

115 **Soil, litterfall and throughfall.** In this study, we synthetize trends in soil chemistry,

116 litterfall, and throughfall amount and composition that were published elsewhere. Sampling

and analyses are described in detail in Part SI-1. Briefly:

(i) Soils were sampled from 9–21 pits in 1997–2001 and 2010 in both catchments, and in

the Plešné catchment also in 2015. We use data on pH, exchangeable base cations (BCs,

120 sum of Ca^{2+} , Mg^{2+} , Na^+ , and K^+), Al_i , and H^+ , and base saturation (percent proportion of

121 BCs in the cation exchange capacity) in the upper soil horizons (O, litter; and A, the

122 uppermost organic rich horizon). In addition, soils were sampled at 6-week intervals at one

research plot in each catchment (PL-plot and CT-plot) from 2007–2017.^{41,42} Trees at the

124 PL-plot were killed by bark beetles in 2006–2007, while the control CT-plot was not

125 affected. Trends in soil chemistry at the PL- and CT-plots are mass weighted means for O-

126 and A-horizons. From this 6-week survey, we use data on soil moisture, exchangeable BCs,

127 Al_i, and H^+ , water extractable DOC, NH_4^+ and NO_3^- , and concentrations of C and N in

128 microbial biomass (C_{MB} and N_{MB}, respectively).

129 (ii) Litterfall was sampled at three and two plots in the Plešné and Čertovo catchments,

- 130 respectively, from 2003 to 2016.⁴⁰ Trends in carbon fluxes associated with litterfall (the
- sum for needles, twigs, bark, cones, lichen and a mixture of poorly identifiable fragments)

132 used in this study are averages for all plots in individual catchments. Large branches (> 2 133 cm in diameter), trunks and roots were not included in this flux. 134 (iii) Throughfall amount and chemical composition have been studied at two plots in each catchment since 1997.^{36,37} Here, we use annual averages for amounts and concentrations of 135 136 DOC and SAAs. 137 Stream water. Tributaries were sampled from May 1997 to April 2017 in three-week intervals. Discharge (O, $L s^{-1}$) was estimated using a stopwatch and calibrated bucket at 138 139 small natural waterfalls or rapids. Water temperature (T, °C) was measured during 140 sampling. 141 Details on water analyses are given in Part SI-2. Briefly: DOC was analysed as CO₂ after 142 sample mineralization in carbon analysers, with a detection limit of $<4 \mu$ mol L⁻¹. Concentrations of NH₄⁺, Ca²⁺, Mg²⁺, Na⁺, K⁺, NO₃⁻, Cl⁻, SO₄²⁻, and F⁻ were determined by 143 ion chromatography. Concentrations of ionic Al and Fe forms (Al_i, Fe_i) were analysed 144 colorimetrically after their fractionation.⁴³ Concentrations of organic acid anions (A⁻) were 145 calculated from concentrations of DOC and pH.44 146 147 Linear regression was used to evaluate the significance of relationships between 148 concentrations of DOC and other water constituents, including ionic strength, in each tributary. We used the seasonal Mann-Kendall test⁴⁵ to determine if long-term trends in 149 150 water chemistry were significantly different from zero. Multiple linear regression with 151 forward stepwise selection (using SigmaPlot 11.0, Systat Software, San Jose, California, 152 USA) was used to determine what variables explained variations in DOC concentrations. For this analysis, we selected seven variables (Q, T and concentrations of SO_4^{2-} , NO_3^{-} , Cl^{-} , 153 H^+ , and Al_i) that were previously shown to play important roles in seasonal and long-term 154

variations in DOC concentrations.^{13,34,38} We did not use ionic strength and concentrations 155 156 of BCs as independent variables in the forward stepwise regression, because ionic strength 157 mostly depended on the chemical variables already included in the statistical analysis, and concentrations of BCs mostly depended on concentrations of SAAs as counter-ions.^{36,37} 158 Concentrations of H⁺ and Al_i were considered as independent variables due to their 159 important roles in DOC dissociation and coagulation.^{29,31,46,47} Data on all tributaries were 160 161 evaluated for the whole study period (May 1997 to April 2017) and also for periods prior to 162 (1997–2003), during (2004–2008), and after (2009–2017) the bark beetle outbreak in the Plešné catchment. In the statistical tests, values of p < 0.05 were considered significant 163 164 throughout the study.

165

166 RESULTS

Litterfall carbon and throughfall DOC fluxes. Annual inputs of organic C to the 167 168 Čertovo catchment were stable throughout the study, with average (\pm standard deviation) fluxes in litterfall and throughfall of 15 ± 2 and 0.80 ± 0.11 mol m⁻² yr⁻¹, respectively (Fig. 169 1). Throughfall fluxes of DOC were only slightly higher in the Plešné than Čertovo 170 catchment prior to and during the tree dieback, but then rapidly decreased to ~ 0.15 mol m⁻² 171 yr⁻¹ during 2014–2016. The litterfall fluxes of C were similar in both catchments prior to 172 173 the bark beetle attack, then increased in the Plešné catchment in 2004 and peaked at 57 mol m^{-2} yr⁻¹ in 2007. Since 2009, litterfall C fluxes have been similar in both catchments. The 174 Plešné litterfall was dominated by needles, with a large proportion of green, non-senescent 175 176 needles and bark in the first year after the tree infestation, and by twigs, small branches and

- 177 bark in the following years. In contrast, composition of the Čertovo litter was stable
- throughout the study and was dominated by needles and twigs.⁴⁰

180

Fig. 1. Time series of inputs of organic carbon to the forest floor of Čertovo (CT) and
Plešné (PL) catchments in litterfall (Litter) and throughfall (TF). Grey area indicates the

183 period of bark beetle outbreak in the Plešné catchment.

184 The thinning of dead canopies caused significant changes in throughfall composition,

leading to decreased fluxes of BCs and SAAs to forest floor; throughfall inputs of SO_4^{2-} ,

186 NO₃⁻ and Cl⁻ decreased on average by 41, 43, and 55%, respectively, in the Plešné relative

187 to Čertovo catchment during 2009–2016 (Fig. SI-3).

188 **Throughfall amount, soil moisture and discharge.** Tree dieback affected throughfall

- amount and soil moisture (Fig. 2). Throughfall amounts were almost similar in both
- 190 catchments till 2007, but then became consistently lower in the Plešné than Čertovo
- 191 catchment (Fig. 2a). Soil moisture was similar at both research plots immediately after the
- 192 tree dieback at the PL-plot in 2008, but became consistently higher than at the CT-plot
- 193 from autumn 2009 (Fig. 2b), despite lower throughfall amounts in the Plešné catchment

195 low precipitation.

196

Fig. 2. Time series of (a) annual throughfall amount in Plešné (PL) and Čertovo (CT)
catchments, and (b) soil moisture (mass weighted mean for O- and A-horizons) at the PL
and CT research plots. Grey area indicates the period of bark beetle outbreak in the Plešné

201 catchment (note that soil moisture data cover the post-disturbance period only).

202 The 1997–2017 average discharges of tributaries ranged over an order of magnitude with

- 203 long-term averages from 0.6–11 L s⁻¹. During the study, water Q decreased in most
- tributaries due to decreasing precipitation (Fig. 2a), but this decrease only was significant
- 205 in CT-VI, CT-VII, and PL-II (Table SI-3). Water discharge had no clear seasonality, except
- 206 for elevated Q values during snowmelt periods.

207 Soil chemistry. Base saturation of the Plešné soils increased dramatically after the tree

- dieback, from 39 to 65% in the O-horizon, and from 21 to 38% in the A-horizon between
- 209 2000 and 2015 (Table SI-1). This increase in base saturation was accompanied by a
- 210 decrease in concentrations of exchangeable Al_i, and also H⁺ in the O-horizon. These

changes were especially pronounced at the research PL-plot, while no significant long-termtrends occurred in the control CT-plot (Fig. SI-3).

- 213 Concentrations of water extractable DOC and NH_4^+ were higher in the upper soil
- 214 horizons at the PL- than CT-plot throughout 2008–2016, but this difference was most
- 215 pronounced during the first three years after the tree dieback (Fig. 3a). In contrast, soil
- 216 NO₃⁻ concentrations were lower at the PL- than CT-plot until 2011, then abruptly increased
- 217 (reciprocally to the DOC decline) and exhibited higher concentrations and variation than at
- 218 the CT-plot until the end of study. Concentrations of C_{MB} and N_{MB} were higher in the
- 219 Plešné than Čertovo soils until 2011, and generally lower thereafter (Fig. 3b). Microbial C
- to N ratios in soil exhibited similar molar averages (~12) and temporal patterns (not shown)
- at both research plots.

Fig. 3. Time series of differences (Δ) between soil properties observed at the Plešné (PL; beginning of tree dieback in 2007) and Čertovo (CT; unaffected control) research plots for: (a) concentrations of DOC, NH₄⁺ and NO₃⁻ in water extracts, and (b) concentrations of C and N in microbial biomass (C_{MB} and N_{MB}, respectively). Lines are moving averages (n = 5). For absolute values see Fig. SI-4.

Water chemistry. The Čertovo and Plešné tributaries were strongly acidic, with 1997–

228

2017 average pH values of 4.1–4.6. Concentrations of SO_4^{2-} and Cl⁻ varied in relatively 229 230 narrow ranges, while those of NO₃⁻ and DOC varied by an order of magnitude (Figs. 4 and 231 SI-5). 232 Concentrations of DOC significantly increased in almost all Čertovo tributaries in 1997-233 2017. The only tributaries with no trends in DOC concentrations during 1997–2017 were 234 CT-VI and CT-VII, where NO_3^{-} concentrations increased following tree damage by 235 windthrows in 2007 and 2008. The chemistry of Čertovo tributaries slowly recovered from atmospheric acidification during our study, exhibiting decreasing concentrations of SO_4^{2-} , 236 Cl^{-} , H^{+} , Al_{i} and ionic strength in all streams. 237 Chemistry of the Plešné tributaries exhibited similar trends to the Čertovo tributaries 238 239 prior to the tree dieback (Tables SI-3 and SI-4), but strongly diverged thereafter (Fig. 4). In the period immediately following dieback there were increases in NO_3^- , H⁺, Al_i, divalent 240 base cations and ionic strength, whilst SO_4^{2-} and Na^+ were unaffected. Concentrations of 241 242 DOC did not immediately respond to dieback, but steep increases occurred from 2008-243 2017 as concentrations of initially affected ions and ionic strength decreased (Fig. 4). Seasonal variations in water composition were highest for NO₃⁻ and DOC (as well as A⁻) 244 245 concentrations and T, and exhibited inverse seasonal patterns, with the lowest NO_3^- and the 246 highest DOC concentrations and T values in the growing season. Concentrations of Al_i and 247 ionic strength (and also BCs, not shown) exhibited similar seasonal variations as SAAs, 248 while the lowest seasonal variation occurred for H^+ concentrations (Fig. 4).

Fig. 4. Time series of concentrations of DOC, NO₃⁻, SO₄²⁻, Cl⁻, H⁺, ionic aluminium (Al_i),
and ionic strength (IS) in the major surface tributary of (a, b) Plešné Lake (PL-I) and (c, d)
Čertovo Lake (CT-II). Grey areas indicate the period of bark beetle outbreak in the PL
catchment. For other tributaries see Fig. SI-5.

254 **Relationships between DOC and physico-chemical properties of stream water.** In the

255 Čertovo catchment, concentrations of DOC correlated positively with Q and T, and

256 negatively with BCs, Al_i, and ionic strength in most tributaries. Results of forward stepwise

257 regression showed that majority of the long-term DOC variations in stream waters could be

258 explained by 5–7 of the selected variables. Among them, either T or Q (climate variables)

- 259 played the dominant role in the most Čertovo tributaries during the whole 2009–2017
- 260 period, while SO_4^{2-} , NO_3^{-} , and H⁺ concentrations (i.e., chemical variables) contributed to
- 261 explaining DOC variations in the CT-I and CT-II tributaries (Tables 1, SI-4, SI-5).
- 262

263	Table 1. Results of forward stepwise regression (FSR) between DOC vs. Q, T,	and
-----	---	-----

- 264 concentrations of NO_3^- , SO_4^{2-} , CI^- , H^+ , and AI_i in major surface tributaries to Čertovo
- 265 (CT-II, CT-VI and CT-VII) and Plešné (PL-I and PL-II) lakes, combined with correlation
- 266 coefficients of linear regressions between DOC and these variables (Table SI-4). Values for
- 267 DOC (given in brackets) represent Kendall's tau values of temporal trends for each time
- 268 period (Table SI-3). Bold numbers indicate significant relationships at p < 0.05, negative
- 269 values indicate inverse relationships. Asterisks indicate variables selected by the FSR.
- 270 Coefficient of determination (R²) of FSR are given for all variables selected by FSR (Table
- SI-5). The most important variable in FSR is given in the last row. All values are related to
- the given periods. For other tributaries and periods see Tables SI-3 to SI-5.
- 273

		19	997–2003				2	2009–201	7	
	CT-II	CT-VI	CT-VII	PL-I	PL-II	CT-II	CT-VI	CT-VII	PL-I	PL-II
n	74	67	67	74	56	144	143	144	143	123
DOC trend	(0.07)	(0.10)	(-0.18)	(0.05)	(0.11)	(0.16)	(0.10)	(0.26)	(0.58)	(0.37)
Q	0.54*	0.51*	0.16*	0.55*	0.27*	0.54	0.50*	0.43*	0.08	0.24*
Т	0.14*	0.39	0.66*	0.33*	0.44*	0.38	0.54*	0.63*	0.56*	0.51*
NO_3^-	-0.51*	-0.49*	-0.60*	-0.35	-0.34	-0.48*	-0.43*	-0.61*	-0.75*	-0.81*
$\mathrm{SO_4}^{2-}$	-0.21	-0.11*	-0.29	-0.07	-0.07	-0.59*	-0.07*	-0.54*	-0.63*	-0.45
Cl^{-}	-0.06	-0.31*	0.00*	-0.05	-0.22	-0.20*	-0.22*	-0.02*	-0.72*	-0.74
H^{+}	0.63*	0.33*	0.24	0.30	0.31*	0.54	0.22*	0.03	-0.45*	-0.49
Ali	-0.29	-0.06	-0.43	0.01	-0.11	-0.21	-0.12	-0.12	-0.58*	-0.70*
$FSR(R^2)$	0.84	0.70	0.73	0.54	0.43	0.81	0.75	0.83	0.81	0.83
Variables	H^{+}	Q	Т	Q	Т	$\mathrm{SO_4}^{2-}$	Т	Т	NO_3^-	NO_3^-

275 Climate variables were also important for the Plešné tributaries during the whole study,

but chemical variables dominated after the tree dieback (Tables 1, SI-5). During 1997–

277 2003, most of DOC variation was explained by Q and T. During 2004–2008, H^+ and Cl^-

278 dominated in the relationships. DOC concentrations did not, however, exhibit significant

trends during these two periods, and the selected variables mostly contributed to the

280	explanation of seasonal DOC variations. In contrast, significant DOC increases during
281	2009–2017 were mostly explained by decreasing NO_3^- and Al_i concentrations (Table 1). A
282	surprising positive correlation between DOC and H^+ occurred in Plešné tributaries during
283	1997–2008, but became negative in both PL-I and PL-II (the tributaries with the highest
284	and most steeply increasing DOC concentrations) in 2009–2017 (Table 1). Relationships
285	between DOC concentrations and SAAs, BCs, Ali, and ionic strength were mostly negative
286	and significant in all Plešné tributaries during all tested periods.
287	

288 DISCUSSION

289 Effects of soil physico-chemical properties on DOC leaching. Water discharge and 290 temperature explained most of the DOC variations in most Čertovo tributaries, especially 291 during 2009–2017, and also in Plešné tributaries prior to the tree dieback in its catchment 292 (Table 1). These relationships reflected similar seasonality of DOC concentrations and 293 water T, and elevated DOC leaching during high flow events, and thus do not indicate that 294 climate variations are responsible for longer-term DOC trends. Decreasing concentrations 295 of SAAs, H^+ , and Al_i contributed to the significant long-term increase in DOC 296 concentrations in most Čertovo tributaries, especially during 1997–2008, with the 297 exception of the two tributaries where NO₃⁻ increases following windthrow events in 298 2007–2008 appeared to offset the rising DOC trend (Fig. SI-5). 299 The importance of Q and T in explaining DOC variation in the Plešné tributaries 300 decreased after the tree dieback, while chemical variables became more important (Table 301 1). The close positive DOC vs. H^+ relationships prior to and immediately after the tree

302	dieback probably resulted from a coincidence, because it is not probable that decreasing pH
303	would elevate DOC mobility; more likely, variations in H^+ concentrations were affected by
304	variations of A^- leaching. The most plausible reasons for the absence of trends in DOC
305	leaching immediately after the tree dieback are increased concentrations of $\boldsymbol{H}^{\!\!+}$ and
306	polyvalent cations (especially Al _i), which increase protonation and coagulation of DOC and
307	thereby reduce its mobility ^{29,46} , and elevated microbial DOC uptake (see next section).
308	Chemical suppression was also found to reduce DOC leaching from a Northern Irish
309	moorland catchment during several years following a wildfire ⁹ , suggesting that this
310	mechanism may be a consistent short-term response to ecosystem disturbances in acidic
311	catchments.
312	The increase in H^+ concentrations in soil water and streams was fast (preceded peaks in
313	BCs and Al_i) ³⁷ , and peaked ~3 years after the tree dieback (Fig. 4), as H ⁺ was displaced
314	from the soil sorption complex by other cations in the upper (mostly O) horizons, and
315	leached to surface waters along with NO_3^{-41} .
316	The steepest increasing trends in DOC leaching occurred in the Plešné tributaries during
317	2009–2017, some years after the initial dieback event. During this time, the amount of litter
318	in the catchment was still high, but concentrations of NO_3^- , H^+ and Al_i in stream water had
319	declined, perhaps enabling more of the DOC produced through decomposition to leach to
320	surface waters. The negative correlations between DOC and $H^{\!+}\!,$ Al_i and NO_3^{-} in the
321	surface Plešné tributaries during this period (Table 1) are all consistent with an effect of
322	decreasing soil water acidity and/or ionic strength on DOC mobility. Because changes in Q
323	and T were negligible in the Plešné tributaries during 2009–2017 vs. previous periods, we
324	conclude that these climatic variables did not contribute to the observed DOC increase in

325	the latter phase following tree dieback. Our data thus support the idea of multiple temporal
326	scale drivers involved in trends of DOC leaching, indicating that seasonal and inter-annual
327	variation can be explained by climate variables whereas long-term variation are more
328	probably associated with changes in soil biogeochemistry. ^{11,34,48,49}
329	Effects of soil microbial community on DOC leaching. Changes in soil microbial
330	biomass and tight links between C and N cycling could also have contributed to low DOC
331	leaching immediately after the tree dieback, which occurred despite elevated DOC
332	concentrations in soils (Fig. 3a), and to the subsequent increase as NO ₃ ⁻ leaching declined
333	(Fig. 4a). Štursová et al. ⁵⁰ have shown that soil microbial community significantly changed
334	in the Plešné catchment after the tree dieback, which has also been observed elsewhere. ⁵¹
335	At Plešné, fungal community biomass decreased, despite a relative increase in saprotrophic
336	taxa, due mostly to the disappearance of mycorrhizal fungi following tree death. In
337	contrast, bacterial biomass increased or remained unaffected after the disturbance, which
338	resulted in a substantial decrease in the soil fungi-to-bacteria ratio. ⁵⁰ Bacteria are
339	distributed heterogeneously in small-scale habitats, physically connected by water, or along
340	preferential flow paths, and their growth depends on DOC and nutrients passively
341	transported to their surfaces. ^{23,52} This causes bacteria to be more dependent on water
342	content and the presence of soluble compounds in soil than hyphal fungi. ²³ The elevated
343	soil moisture after the tree dieback (Fig. 2b) thus probably further supports development of
344	bacterial vs. fungal biomass and their increasing role in soil C and N cycling.
345	The Plešné catchment was already N-saturated, and exhibited significant NO_3^- leaching,
346	even before forest disturbance (Fig. 4). The elevated NH_4^+ concentrations in soils
347	immediately after the tree dieback (Fig. 3a) further increased availability of inorganic N for

348 microbial and plant communities. Consequently, N saturation in the Plešné catchment 349 rapidly progressed to an advanced stage in which excess NH_4^+ leads to elevated nitrification.⁵³ The supply of the surplus NH_4^+ to nitrifiers may, however, have remained 350 351 relatively low immediately after the tree dieback due to elevated soil concentrations of bioavailable DOC from decaying dead biomass (e.g., fine roots), enabling immobilization of 352 DOC and NH_4^+ into C_{MB} and N_{MB} (Fig. 3b). This situation lasted for ~3 years, until DOC 353 354 availability in soils decreased (Fig. 3a). The absence of elevated DOC leaching despite its 355 production from dead biomass was therefore probably partly related to its immobilization 356 into soil microbial biomass (as well as to the solubility controls discussed above) during 357 this period. Even though stream water NO₃⁻ concentrations increased immediately after the three dieback (Fig. 4), this trend might have been steeper without abundant bio-available 358 359 DOC in soils. When C and N immobilization in microbial biomass decreased, more NH_4^+ remained for 360 nitrifiers, and soil water NO₃⁻ concentrations rapidly increased (Fig. 3a).⁴² This NO₃⁻ 361 production increased concentrations of electron acceptors in the system, available for NO₃⁻ 362 363 reducing microbes (denitrification and dissimilatory nitrate reduction to ammonium) in 364 anoxic soil micro-sites, which could further reduce the pool of DOC available for leaching.25,26,38 365 Decreasing NO₃⁻ availability in soils due to reduced excess N supply from mineralization 366 of dead biomass and increasing N uptake by re-growing vegetation, and the reduced SO4²⁻ 367 368 and NO₃⁻ throughfall deposition could contribute to the reduced availability of these 369 electron acceptors for DOC mineralization in anoxic soil micro-sites and the increasing

370 DOC leaching during 2009–2017 (Fig. 4). Moreover, the elevated DOC leaching also could

be associated with lower DOC bioavailability, connected with reduced input of fresh deadbiomass.

373 Effects of catchment characteristics and soil moisture on DOC leaching. Long-term 374 increasing trends in DOC leaching after tree dieback caused by bark beetle attack occurred in mountain catchments with > 50% impacted stands in western North America.⁸ DOC 375 376 concentrations increased in soil water of dead (compared to intact) mountain Norway 377 spruce stands in Germany, as well as in streams draining clear-cut Norway spruce forests in Finland.^{4,21} In contrast, some other studies (for review see ref. 7) found negligible effects of 378 forest disturbance on DOC exports from soil to streams. Piirainen et al.²⁰ observed elevated 379 380 DOC leaching from the organic soil horizon, but effective DOC retention in the mineral 381 soil horizons. The spatial differences in DOC leaching after forest dieback thus also seem 382 to reflect differences in catchment characteristics. The effect of forest dieback on DOC 383 leaching is probably smaller when vertical water flow through well developed mineral soil 384 horizons represents the dominant water pathway. In contrast, steep catchments (like that of 385 Plešné Lake), with young organic-rich soils, poorly developed mineral horizons, and short 386 water residence time in soils are more sensitive to elevated DOC leaching after tree 387 dieback.

This leaching is further magnified by lateral flows during high-flow events, when water passes horizontally through the organic rich soil horizons. The probability of lateral flows and the associated risk of elevated DOC leaching increase during high precipitation and runoff events.^{17,54} This may have been amplified following tree dieback by reduced water uptake and evapotranspiration beneath dead trees^{55,56}, leading to increased soil moisture 393 (Fig. 2b), shallower groundwater, and therefore greater water fluxes through shallow,
 394 organic-rich soils.^{5,6}

Another factor potentially affecting DOC leaching after tree dieback is pre-disturbance soil base saturation, which also appears to influence DOC response to wildfire.⁹ In poorly buffered catchments, increases in NO_3^- (and H⁺) are likely to exceed the increases in BCs, thereby acidifying soil water and reduce DOC mobility, whereas in well-buffered catchments, acidity may be unchanged or even decrease (if BC increases exceed acid anion increases).

401 **Interplay of soil C and N responses to tree mortality.** Our data suggest a complex

402 contribution of chemical and microbial variables to ecosystem responses to tree dieback,

403 manifested by initial NO₃⁻ leaching followed by increased DOC leaching. We observed a

404 stable level of DOC leaching in the first years after the tree dieback (Fig. 4a), despite the

405 rapid increase in litter available for decomposition (Fig. 1) and elevated DOC

406 concentrations in soil water (Fig. 3a). In contrast, DOC leaching increased from the system

407 in the latter phase, when litter input to the forest floor had already ceased. These trends can

408 be explained by changes in soil water chemistry, soil microbial community, and links

409 between C and N cycles. Our data suggest that changes in N cycling could play an

410 important role in DOC leaching. We conceptualise ecosystem C and N responses to tree

411 mortality in three stages (Fig. 5):

412 *Stage 1*: Immediately after tree dieback, tree-associated fungi decline, and bacterial

413 populations increase. Elevated N availability for free bacteria enables them to utilize

414 available DOC for transformation into bacterial biomass (Fig. 3b) and energy

415 (mineralization to CO₂). DOC mobility is suppressed by increasing soil water acidity due to

416	$\mathrm{H}^{\!\!\!\!+}$ displacement from the soil sorption complex by other cations, and by microbial $\mathrm{NH_4}^{\!\!\!\!+}$
417	use (Fig. 4b). Nitrification remains low relative to NH_4^+ availability, and NO_3^- leaching is
418	therefore limited despite a steep increase in soil NH_4^+ concentrations after tree dieback
419	(Fig. 3a). Elevated microbial DOC utilisation and chemical suppression of its mobility
420	restrict DOC leaching to waters (Fig. 4a).
421	Stage 2: In the second stage, microorganisms became C-limited as litter inputs decrease,
422	and their capacity to assimilate $\mathrm{NH_4^+}$ becomes saturated. At this point, nitrification rates
423	increase, reducing the pool of available $\mathrm{NH_4}^+$ and increasing $\mathrm{NO_3}^-$ production and leaching
424	The associated production of H^+ and mobilisation of polyvalent cations (including Al_i from
425	dissolution of soil Al(OH) ₃) maintain suppression of DOC mobility. In addition,
426	nitrification increases the availability of electron acceptors for NO ₃ ⁻ reducing
427	microorganisms. These processes together act to delay DOC leaching despite its continued
428	liberation from the dead biomass.
429	Stage 3: In the final stage of ecosystem response to forest dieback, the available N pool
430	begins to decline as the supply of NH_4^+ from organic matter mineralisation is exhausted,
431	and N uptake by re-growing trees begins to occur. During this phase, DOC leaching
432	increases due to: (i) reduced chemical suppression of DOC mobility as soil solution $\boldsymbol{H}^{\!\!+}$ and
433	Al _i decline, following the decrease in NO_3^- production and leaching (Fig. 5c); (ii)
434	decreasing availability of NO_3^- (Fig. 5b) for DOC mineralization by NO_3^- reducing
435	microorganisms in anoxic soil micro-sites; and (iii) decreasing DOC immobilization in
436	microbial biomass (Fig. 5a). The elevated DOC production can be considered as the net
437	difference between ongoing DOC production from dead wood biomass by saprotrophic
438	fungi, and the decreasing utilisation of DOC by free bacteria as the N supply declines. To

the extent that the increase in DOC leaching is due to the alleviation of chemical

- suppression, we would expect DOC concentrations to return to the 'baseline'
- 441 concentrations represented by the Čertovo reference site (note that DOC has been
- 442 increasing in both catchments due to the ongoing decline of atmospheric S and N
- 443 deposition³⁸, therefore this baseline is not flat). However, the enhanced production of DOC
- 444 from dead biomass has the potential to increase DOC leaching above this reference level,
- and previous work has suggested that this production can continue (albeit with decreasing
- 446 intensity) for up to three decades after a mortality event.^{57,58}
- 447

448

Fig. 5. Conceptual graph showing significant processes and chemical changes that can
influence DOC leaching during forest dieback, based on observations from the Plešné
catchment: (a) Changes in production, microbial use, chemical suppression and leaching of
DOC. (b) Changes in availability of inorganic N and electron acceptors (NO₃⁻ and SO₄²⁻)
for microbial C mineralization in anoxic soil micro-sites. (c) Changes in soil water H⁺ and

454	Ali concentrations that affect chemical suppression of DOC mobility. Grey areas indicate
455	period of tree dieback.
456	Our results contribute to the growing body of evidence ^{25,38,59,60} that an integrated
457	understanding of ecosystem C and N cycles is required in order to evaluate and predict
458	DOC and NO ₃ ⁻ leaching from terrestrial ecosystems, especially their responses following
459	forest disturbances.
460	
461	ACKNOWLEDGEMENTS
462	We thank the authorities of the Šumava National Park for their administrative support. This
463	study was supported by the Czech Science Foundation (project No. P504-17-15229S).
464	
465	ASSOCIATED CONTENT
466	Supporting Information Available
467	Part 1: Detailed description of the Plešné and Čertovo catchments, including details on
468	soil, throughfall and litter sampling and composition; Part 2: Details on water sampling and
469	analyses; Part 3: Details on water composition and statistics. This information is available
470	free of charge via the Internet at http://pubs.acs.org.
471	
472	AUTHOR INFORMATION
473	Corresponding author

- 474 Phone: +420 387 775 878. E-mail: jkopacek@hbu.cas.cz
- 475 Notes
- 476 The authors declare no competing financial interests.
- 477
- 478 REFERENCES
- 479 (1) Edburg, S. L.; Hicke, J. A.; Brooks, P. D.; Pendall, E. G.; Ewers, B. E.; Norton, U.;
- 480 Gochis, D.; Gutmann, E. D.; Meddens A. J. H. Cascading impacts of bark beetle-caused
- 481 tree mortality on coupled biogeophysical and biogeochemical processes. Front. Ecol.
- 482 *Environ.*, **2012**, 10(8), 416–424.
- 483 (2) Bladon, K. D.; Emelko, M. B.; Silins, U.; Stone, M. Wildfire and the Future of Water
- 484 Supply. *Environ. Sci. Technol.*, **2014**, 48(16), 8936–8943.
- 485 (3) Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.;
- 486 Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; Lexer, M. J.; Trotsiuk, V.; Mairota, P.;
- 487 Svoboda, M.; Fabrika, M.; Nagel, T. A.; Reyer, C. P. O. Forest disturbances under climate
- 488 change. Nat. Clim. Change, 2017, 7, 395–402.
- 489 (4) Huber, C.; Baumgarten, M.; Göttlein, A.; Rotter V. Nitrogen turnover and nitrate
 490 leaching after bark beetle attack in mountainous spruce stands of the Bavarian Forest
- 491 National Park, *Water Air Soil Poll.*, **2004**, *Focus 4*, 391–414.
- 492 (5) Mikkelson, K. M.; Bearup, L. A.; Maxwell, R. M.; Stednick, J. D.; McCray, J. E.;
 493 Sharp J. O. Bark beetle infestation impacts on nutrient cycling, water quality and
- 494 interdependent hydrological effects. *Biogeochemistry*, **2013**, 115, 1–21.

..

495	(6) Mikkelson, K. M.; Dickerson, E. R. V.; Maxwell, R. M.; McCray, J. E.; Sharp, J. O.
496	Water quality impacts from climate-induced forest die-off. Nat. Clim. Change, 2013, 3,
497	218–222.

- 498 (7) Hope, D.; Billet, M. F.; Cresser, M. S. A review of the export of carbon in river
 499 water: Fluxes and processes. *Environ. Pollut.*, **1994**, 84, 301–324.
- 500 (8) Brouillard, B. M.; Dickenson, E. R. V.; Mikkelson K. M.; Sharp J. O. Water quality
- 501 following extensive beetle-induced tree mortality: Interplay of organic carbon loading,
- 502 disinfection byproducts, and hydrologic drivers. *Sci. Total. Environ.*, **2016**, 572, 649–659.
- 503 (9) Evans, C. D.; Malcolm, I. A.; Shilland, E. M.; Rose, N.L.; Turner, S. D.; Crilly, A.;
- Norris, D.; Granath, G.; Monteith, D. T. Sustained biogeochemical impacts of wildfire in a
 mountain lake catchment. *Ecosystems*, 2017, 20(4), 813-829.
- 506 (10) Evans, C. D.; Monteith, D. T.; Cooper, D. M. Long-term increases in surface water
 507 dissolved organic carbon: observations, possible causes and environmental impacts.
 508 *Environ. Pollut.*, 2005, 137(1), 55–71.
- 509 (11) Oulehle, F.; Hruška, J. Rising trends of dissolved organic matter in drinking water
 510 reservoirs as a result of recovery from acidification in the Ore Mts., Czech Republic.
 511 *Environ. Pollut.* 2009, 157, 3433–3439.
- (12) SanClements, M. D.; Oelsner, G. P.; McKnight, D. M.; Stoddard, J. L.; Nelson, S. J.
 New insights into the source of decadal increases of dissolved organic matter in acidsensitive lakes of the northeastern United States. *Environ. Sci. Technol.*, 2012, 46, 3212–
 3219.

- 516 (13) Monteith, D. T.; Stoddard, J. L.; Evans. C. D.; de Wit, H. A.; Forsius, M.; Høgåsen,
- 517 T.; Wilander, A.; Skjelkvåle, B. L.; Jeffries, D. S.; Vuorenmaa, J.; Keller, B.; Kopáèek, J.;
- 518 Veselý, J. Dissolved organic carbon trends resulting from changes in atmospheric
- 519 deposition chemistry. *Nature*, **2007**, 450, 537–540.

- 520 (14) Hruška, J.; Krám, P.; McDowell, W. H.; Oulehle, F. Increased dissolved organic

carbon (DOC) in Central European Streams is driven by reductions in ionic strength rather

- than climate change or decreasing acidity. *Environ. Sci Technol.*, **2009**, 43(12), 4320–4326.
- 523 (15) Freeman, C.; Fenner, N.; Ostle, N. J.; Kang, H.; Dowrick, D. J.; Reynolds, B.; Lock,
- 524 M. A.; Sleep, D.; Hughes, S.; Hudson, J. Export of dissolved organic carbon from
- 525 peatlands under elevated carbon dioxide levels. *Nature*, **2004**, 430(6996), 195–198.
- 526 (16) Tranvik, L. J.; Jansson, M.; Climate change: Terrestrial export of organic carbon.
 527 *Nature*, **2002**, 415(6874), 861–862.
- 528 (17) Porcal, P.; Koprivnjak, J. F.; Molot, L. A.; Dillon, P. J. Humic substances Part 7:
- 529 The biogeochemistry of dissolved organic carbon and its interactions with climate change.
- 530 Environ. Sci. Pollut. Res., 2009, 16, 714–726.
- (18) Findlay, S. E. G. Increased carbon transport in the Hudson River: unexpected
 consequence of nitrogen deposition? *Front. Ecol. Environ.*, 2005, 3, 133–137.
- (19) Pregitzer, K.; Zak, D. R.; Burton, A. J.; Ashby, J. A.; MacDonald, N. W. Chronic
 nitrate additions dramatically increase the export of carbon and nitrogen from northern
 hardwood ecosystems. *Biogeochemistry*, 2004, 68, 179–197.

1. 11 0

536	(20) Piirainen, S.; Finér, L.; Mannerkoski, H.; Starr, M. Effects of forest clear-cutting on
537	the carbon and nitrogen fluxes through podzolic soil horizons. Plant Soil, 2002, 239, 301-
538	311.

- 539 (21) Nieminen, M. Export of dissolved organic carbon, nitrogen and phosphorus 540 following clear-cutting of three Norway spruce forests growing on drained peatlands in 541 southern Finland. Silva Fennica, 2004, 38(2): 123–132.
- 542 (22) Kalbitz, K.; Meyer, A.; Yang, R.; Gerstberger, P. Response of dissolved organic 543 matter in the forest floor to long-term manipulation of litter and throughfall inputs.
- 544 Biogeochemistry, 2007, 86: 301–318.

- 545 (23) Ekschmitt, K.; Kandeler, E.; Poll, C.; Brune, A.; Buscot, F.; Friedrich, M.; Gleixner,
- G.; Hartmann, A.; Kästner, M.; Marhan, S.; Miltner, A.; Scheu, S.; Wolters, V. Soil-carbon 546
- 547 preservation through habitat constraints and biological limitations on decomposer activity.
- 548 J. Plant Nutr. Soil Sci., 2008, 171, 27–35.
- 549 (24) Janssens, I. A.; Dieleman, W.; Luyssaert, S.; Subke, J.-A.; Reichstein, M.;
- 550 Ceulemans, R.; Ciais, P.; Dolman, A. J.; Grace, J.; Matteucci, G.; Papale, D.; Piao, S. L.;
- 551 Schulze, E.-D.; Tang, J.; Law, B. E. Reduction of forest soil respiration in response to
- 552 nitrogen deposition. Nature Geosci., 2010, 3, 315-322.
- 553 (25) Hedin, L. O.; von Fischer, J. C.; Ostrom, N. E.; Kennedy, B. P.; Brown, M. G.;
- 554 Robertson, G. P. Thermodynamic constraints on nitrogen transformations and other
- biogeochemical processes at soil-stream interfaces. Ecology, 1998, 79, 684–703. 555

556	(26) Alewell, C.; Paul, S.; Lischeid, G.; Storck, F. R. Co-regulation of redox processes in
557	freshwater wetlands as a function of organic matter availability? Sci. Total Environ., 2008,
558	404, 335–342
559	(27) Wickland, K. P.; Neff, J. C. Decomposition of soil organic matter from boreal black
560	spruce forest: environmental and chemical controls. <i>Biogeochemistry</i> , 2008, 87, 29-47.
561	(28) Dick, J. J.; Tetzlaff, D.; Birkel, C.; Soulsby, C. Modelling landscape controls on

- dissolved organic carbon sources and fluxes to streams. *Biogeochemistry*, 2015, 122, 361–
 374.
- 564 (29) Stumm, W. Chemistry of the Solid-Water Interface. Processes at the Mineral-Water
- 565 and Particle-Water Interface in Natural Systems; John Wiley: New York, 1992.
- 566 (30) Kalbitz, K.; Solinger, S.; Park J.-H.; Michalzik, B.; Matzner, E. Controls on the
- 567 dynamics of dissolved organic matter in soils: A review. *Soil Sci.*, **2000**, 165(4), 277–304.
- 568 (31) Nierop, K. G. J.; Jansen, B.; Verstraten, J. M. Dissolved organic matter, aluminium
- and iron interactions: Precipitation induced by metal/carbon ratio, pH and competition. *Sci.*
- 570 *Total Environ.*, **2002**, 300, 201–211.
- 571 (32) Scheel, T.; Dörfler, C.; Kalbitz, K. Precipitation of dissolved organic matter by
- aluminum stabilizes carbon in acidic forest soils. *Soil Sci. Soc. Am. J.*, **2007**, 71, 64–74.
- 573 (33) McDowell, W. H.; Likens, G. E. Origin, composition, and flux of dissolved organic-
- carbon in the Hubbard Brook valley. *Ecol. Monogr.*, **1988**, 58(3), 177–195.
- 575 (34) Clark, J. M.; Bottrell, S. H.; Evans, C. D.; Monteith, D. T.; Bartlett, R.; Rose, R.;
- 576 Newton, R. J.; Chapman, P. J. The importance of the relationship between scale and

- process in understanding long-term DOC dynamics. *Sci. Total. Environ.*, 2010, 408, 2768–
 2775.
- 579 (35) Peterson, F. S.; Lajtha, K. J. Linking aboveground net primary productivity to soil
- 580 carbon and dissolved organic carbon in complex terrain. J. Geophys Res-Biogeo., 2013,
- 581 118(3), 1225–1236.
- (36) Kopáček, J.; Hejzlar, J.; Kaňa, J.; Porcal, P.; Turek, J. The sensitivity of water
 chemistry to climate in a forested, nitrogen-saturated catchment recovering from
 acidification. *Ecol. Indic.*, **2016**, 63, 196–208.
- (37) Kopáček, J.; Fluksová, H.; Hejzlar, J.; Kaňa, J.; Porcal, P.; Turek J. Changes in
 surface water chemistry caused by natural forest dieback in an unmanaged mountain
 catchment. *Sci. Total Environ.*, 2017, 584–585, 971–981.
- (38) Kopáček, J.; Cosby, B. J.; Evans, C. D.; Hruška, J.; Moldan, F.; Oulehle, F.;
 Šantrůčková, H.; Tahovská, K.; Wright, R. F. Nitrogen, organic carbon and sulphur
 cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil
 microbial processes. *Biogeochemistry*, 2013, 115, 33–51.
- (39) Majer, V.; Cosby, B. J.; Kopáček, J.; Veselý, J. Modelling Reversibility of Central
 European Mountain Lakes from Acidification: Part I The Bohemian Forest, *Hydrol. Earth Syst. Sci.*, 2003, 7(4), 494–509.
- 595 (40) Kopáček, J.; Cudlín, P.; Fluksová, H.; Kaňa, J.; Picek, T.; Šantrůčková, H.;
 596 Svoboda, M.; Vaňek, D. Dynamics and composition of litterfall in an unmanaged Norway

- spruce (*Picea abies*) forest after bark-beetle outbreak, *Boreal Environ. Res.*, 2015, 20, 305–
 323.
- 599 (41) Kaňa, J.; Tahovská, K.; Kopáček, J. Response of soil chemistry to forest dieback
- 600 after bark beetle infestation. *Biogeochemistry*, **2013**, 113, 369–383.
- 601 (42) Kaňa, J.; Tahovská, K.; Kopáček, J.; Šantrůčková, H. Excess of organic carbon in
- 602 mountain spruce forest soils after bark beetle outbreak altered microbial N transformations
- 603 and mitigated N-saturation. *PLoS ONE*, **2015**, 10(7), e0134165.
- 604 (43) Driscoll, C. T. A procedure for the fractionation of aqueous aluminum in dilute
- 605 acidic waters. Int. J. Environ. An. Ch., 1984, 16, 267–284.
- 606 (44) Kopáček, J.; Hejzlar J.; Mosello R. Estimation of organic acid anion concentrations 607 and evaluation of charge balance in atmospherically acidified colored waters, *Water Res.*,
- 608 **2000**, 34, 3598–3606.
- 609 (45) R Core Team, *R: A language and environment for statistical computing;* R
 610 Foundation for Statistical Computing: Vienna, 2015.
- (46) Evans, C. D.; Jones, T. G.; Burden, A.; Ostle, N.; Zieliński, P.; Cooper, M. D. A.;
 Peacock, M.; Clark, J. M.; Oulehle, F.; Cooper, D.; Freeman C. Acidity controls on
 dissolved organic carbon mobility in organic soils, *Glob. Change Biol.*, 2012, 18(11),
 3317–3331.
- 615 (47) Oulehle, F.; Jones, T. G.; Burden, A.; Cooper, M. D. A.; Lebrona, I.; Zielinski, P.;
- 616 Evans, C. D. Soil-solution partitioning of DOC in acid organic soils: results from a UK
- 617 field acidification and alkalization experiment. *Eur. J. Soil Sci.*, **2013**, 64, 787–796.

618	(48) Erlandsson, M.; Buffam, I.; Folster, J.; Laudon, H.; Temnerud, J.; Weyhenmeyer, G.
619	A.; Bishop, K. Thirty five years of synchrony in the organic matter concentrations of
620	Swedish rivers explained by variation in flow and sulphate. Glob. Change Biol., 2008,
621	14(5), 1191–1198.

- 622 (49) Futter M. N.; de Wit, H. A. Testing seasonal and long-term controls of streamwater 623 DOC using empirical and process-based models. Sci. Total Environ., 2008, 407(1), 698-624 707.
- 625 (50) Štursová, M.; Šnajdr, J.; Cajthaml, T.; Bárta, J.; Šantrůčková, H.; Baldrian, P. When 626 the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME 627 *J.*, *2014*, 8, 1920–1931.
- 628 (51) Mikkelson, K. M.; Brouillard, B. M.; Bokman, C. M; Sharp, J. O. Ecosystem 629 resilience and limitations revealed by soil bacterial community dynamics in a bark beetle-630 impacted forest. *mBio*, **2017**, 8, e01305-17.
- 631 (52) Evans, C. D.; Norris, D.; Ostle, N.; Grant, H.; Rowe, E. C.; Curtis, C. J.; Reynolds,
- 632 B. Rapid immobilisation and leaching of wet-deposited nitrate in upland organic soils. 633 Environ. Pollut., 2008, 156, 636–643.
- (53) Schimel, J. P.; Bennett, J. Nitrogen mineralization: challenges of a changing 634 635 paradigm. Ecology, 2004, 85(3), 591-602.
- 636 (54) Worrall, F.; Burt, T. Time series analysis of long-term river dissolved organic carbon records. Hydrol. Process., 2004, 18, 893-911. 637

- (55) Hubbard, R. M.; Rhoades, C. C.; Elder, K.; Negron, J. Changes in transpiration and
 foliage growth in lodgepole pine trees following mountain pine beetle attack and
 mechanical girdling. *For. Ecol. Manag.*, 2013, 289, 312–317.
 (56) Bearup, L. A.; Maxwell, R. M.; Clow, D. W.; McCray J. E. Hydrological effects of
- 642 forest transpiration loss in bark beetle-impacted watersheds. *Nat. Clim. Change.*, 2014,
 643 4(6), 481–486.
- 644 (57) Hyvönen, R.; Olsson, B. A.; Lundkvist, H.; Staaf, H. Decomposition and nutrient
- 645 release from Picea abies (L.) Karst. and Pinus sylvestris L. logging residues. *Forest Ecol.*
- 646 *Manag.*, **2000**, 126, 97–112.
- (58) Shorohova, E.; Kapitsa, E. The decomposition rate of non-stem components of
 coarse woody debris (CWD) in European boreal forests mainly depends on site moisture
 and tree species. *Eur. J. For. Res.*, 2016, 135, 593–606.
- (59) Goodale, C. L.; Aber, J. D.; Vitousek, P. M.; McDowell, W. H. Long-term decreases
 in stream nitrate: successional causes unlikely; possible links to DOC? *Ecosystems*, 2005,
 8, 334–337.
- 653 (60) Gärdenäs, A. I.; Ågren, G. I.; Bird, J. A.; Clarholm, M.; Hallin, S.; Ineson, P.;
- Kätterer, T.; Knicker, H.; Nilsson, S. I.; Näsholm, T.; Ogle, S.; Paustian, K.; Persson, T.;
- 655 Stendahl, J. Knowledge gaps in soil carbon and nitrogen interactions From molecular to
- 656 global scale. Soil Bio. Biochem., 2011, 43, 702–717.

Table of Contents graphic:

