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Highlights 

1) Distributed groundwater models were linked together with a river model via the 

OpenMI software platform. 

2) Kriging metamodels were applied to facilitate analysis with the integrated models. 

3) The overall computational savings were in the range of 70-90%. 

4) Monte Carlo simulations demonstrate that metamodels were in good agreement 

with the responses of the integrated models. 

5) Sensitivity Analysis using the metamodels accurately identified the important 

parameters. 

Keywords: Integrated Modelling; Metamodels; Kriging; OpenMI; Monte Carlo 

simulation; Sensitivity Analysis 

 

Abstract: Integrated modelling is a promising approach to simulate processes operating within 

complex environmental systems. It is possible, however, that this integration may lead to 

computationally expensive compositions. In order to retain the process fidelity without loss of 

accuracy, the use of Kriging metamodels is proposed to perform Monte Carlo simulation and 

sensitivity analysis, in lieu of compositions developed using the model linking standard 

OpenMI. Results from the Monte Carlo simulation showed that the metamodels were in a good 

agreement with the original responses. However, metamodels provided a less accurate 

approximation of the original output distribution for the composition which involved a stronger 

non-linear behaviour. The fast runtimes of the metamodels allowed for increased 

computational budgets leading to an accurate screening of the important parameters for an 

Elementary Effects Test. Overall, Kriging metamodels provided significant computational 

savings without compromising the quality of the outcomes, even using small training data sets. 
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1. INTRODUCTION 

The simulation of complex flow and mass transport processes in environmental systems is 

made possible by running sophisticated numerical codes on desktop computers. These 

computer models aim to provide a high-fidelity analysis of the various environmental 

phenomena which often consist of large spatial-scales and long simulation periods. In recent 

years, there is an increasing interest in environmental systems modelling to simulate the various 

processes in a holistic view instead of separately running stand-alone models and link their 

output information in a monomeric manner (Makropoulos et al., 2010; Nalbantis et al., 2011).  

Integrated modelling is a relatively recent discipline and aims to facilitate the solution of 

complex problems by joining models from a range of different sources together (Laniak et al., 

2013).  At its purest it is taking a model code making it linkable and then allowing the scientist 

or other end-user to answer their question by joining together models in a bespoke combination 

(Barkwith et al., 2014).  The aim is to develop methods so that questions can be answered that 

are more complex than can currently be addressed using single instance models.  To achieve 

model integration and depending on the question being posed and the audience for the results, 

various challenges have to be met, particularly the models themselves need to be: 

 Described and made available – metadata catalogues have to exist with access to a way 

of running the model; this includes documenting the model code development process 

and the underlying physic / maths and the assumptions made (Harpham and Danovaro, 

2015) 

 Made linkable – either by using well described file formats or runtime coupling, e.g. 

OpenMI (Harpham et al., 2016) or CSDMS (Peckham et al., 2013) 

 Described properly – e.g. semantics / ontologies, so that different disciplines can 

recognise the same variable even if its described differently (Nativi et al., 2013) 

 Run as quickly as possible – does it need to run in the cloud (High Performance 

Computing), parallelisation employed or be made available via Web Services 

(Castronova et al., 2013)? 

 Uncertainty properly evaluated for the model chain – e.g. UncertWeb (Bastin et al., 

2013) 

 Results visualised appropriately, e.g. summaries for decision-makers or full datasets for 

scientists / higher level users (Voinov et al., 2016). 



Despite the promising aspects of the holistic approach for a more accurate representation of 

the simulated system, there are additional challenges related to the resulting computational 

burden. Inevitably, the higher the complexity of the combined models and processes, the 

heavier the computational cost. In that case, the implementation of iterative tasks, such as 

sensitivity analysis or optimization, is hampered due to impractical computational 

requirements (Queipo et al., 2005). A competitive approach to handle the computational 

burden, assuming that the available computer resources rely on a single PC, is to employ fast 

emulators which mimic the behaviour of the complex physics-based environmental models 

(Ratto et al., 2012). These approximations are usually referred as surrogate models or 

metamodels and are constructed using input-output data derived from the original expensive 

computer simulations (Sacks et al., 1989). For the rest of this work the term metamodel is used. 

Typically, a set of training patterns is designed, which spans the input variable space as widely 

as possible, in order to construct a metamodel that preserves a reasonable level of prediction 

accuracy to unseen data (Forrester and Keane, 2009). 

There is a wide body of literature in various science disciplines which considers 

metamodeling techniques. Artificial Neural Networks (ANN), Polynomial Functions, Kriging, 

Radial Basis Functions (RBF), Support Vector Machines (SVM) and Gaussian Processes (GP), 

are popular examples of metamodels which have been used in the environmental literature 

(Razavi et al., 2012a). ANN appear to be the most common choice in environmental modelling 

literature with various applications in optimization (e.g. Aly and Peralta, 1999; Yan and 

Minsker, 2006; Sun et al., 2015; Yazdi et al., 2015; Fienen et al., 2016) in model calibration 

(e.g. Khu and Werner, 2003; Zou et al., 2009) and uncertainty analysis studies (e.g. Shrestha 

et al., 2009; Yu et al., 2015). Kriging and RBF metamodels have been mainly preferred in water 

resources optimization problems (e.g. Bau and Mayer, 2006; Shoemaker et al., 2007; Castelleti 

et al., 2010; Razavi et al., 2012b; Tsoukalas and Makropoulos, 2015a; Tsoukalas and 

Makropoulos, 2015b; Christelis and Mantoglou, 2016; Tsoukalas et al., 2016; Christelis et al., 

2016; Christelis et al., 2018). They can operate as interpolating metamodels, that is, they pass 

through all the previously evaluated points with the original model and thus can get more 

accurate on predicting the response of the original model as new input-output data become 

available (Forrester et al., 2008). Metamodels with such interpolating capabilities are 

considered beneficial for deterministic simulation outputs (Wang et al., 2014).  Recently, 

another family of metamodels, the Polynomial Chaos Expansions (PCEs) (Xiu and 

Karniadakis, 2002), have been applied in environmental modelling to address uncertainty 

quantification and sensitivity analysis problems (e.g. Rajabi et al., 2015 and references therein; 



Babaei et al., 2015; Bellos et al., 2017). Another approach, less common within environmental 

modelling, is the use of physics-based metamodels which are constructed by combining models 

of different fidelity (e.g. Bianchi et al., 2015; Christelis and Mantoglou, 2017). 

Nevertheless, the selection of the metamodel type, largely depends on the scope of the 

modelling study and the available information on the underlying behaviour of the physics-

based computer model (Broad et al., 2014). In general, metamodeling methods apply 

satisfactorily given that the original model responses are reasonably smooth at least for the 

input domain of interest (Forrester and Keane, 2009). In light of this, it becomes apparent that 

issues such as the range of the input domain, the dimensionality of the input vector or the non-

linear input-output relation of the original model, may adversely affect the metamodel 

accuracy. This can be particularly evident in uncertainty analysis (UA) and sensitivity analysis 

(SA) studies and constitutes a challenging research field for metamodeling studies (Song et al., 

2015). However, SA utilizes simulation-based frameworks which are computationally 

intensive and the use of metamodels, under certain conditions, may allow for a tractable 

computational cost (Pianosi et al., 2016). Borgonovo et al. (2012) investigated the usefulness 

of metamodels in a global SA study for alleviating the computational burden involved in such 

studies. They found that metamodels successfully reduced the computational cost, however, 

their accuracy largely depends on the proper metamodel training and the ability of the 

metamodel to capture the original model structure. Coutts and Yokomizo (2014) used 

metamodels for global SA and they concluded that even simple metamodels may provide the 

user with important information about the original model behaviour, however, complex 

interactions may only be revealed by more sophisticated metamodels which in turn are more 

complicated and time-consuming. Yu et al. (2014) compared different metamodels for reducing 

the cost of uncertainty analysis with a flood inundation model. They mentioned the necessity 

for considering the uncertainty arising from the use of the metamodels in the analysis. Ge et al. 

(2015) proposed an efficient Kriging-metamodel-based approach for SA for high-dimensional 

and computationally expensive computer models.  

In this work, Kriging metamodels are employed in lieu of a computationally expensive 

integrated environmental model, in order to conduct Monte Carlo (MC) simulation and SA 

within reasonable computational times. The original physics-based computer model is a 

composition of two hydrological models that was built using an implementation of the OpenMI 

model linking standard and simulates interactions between surface-subsurface model instances. 

The composition is presented with two variations of the subsurface component, which results 

in different complexity and runtimes for single composition. This allowed for a broader 



assessment of metamodels’ efficiency and efficacy. First, the MC simulation is used as a 

validation set for investigating the impact of metamodel structure and initial training size on 

predicting the output distribution of the physics-based model. Then, the best identified 

metamodel structures are utilized for performing a one-at-a-time (OAT) sensitivity analysis 

run to screen the important input factors of the original model.  

 

2. METHODOLOGY 

 

2.1 Composition used for study 

 

The modelling approach consists of two models components in a linked composition 

(integrated model). The basic groundwater model was built using ZOOMQ3D (Jackson and 

Spink, 2004) and was configured as a single layer model of 10 km length by 2 km width with 

a grid mesh of 100 m (see Figure 1).  The model has a base of 35 m above Ordinance Datum 

(aOD, UK equivalent to mean sea level) with a hydraulic conductivity of 5 m/d and 0.5 m/d in 

two zones (see Figure 1) and uniform recharge of 1.0 mm/d.  When the model is operated in 

confined mode, i.e. transmissivity that doesn’t vary with saturated thickness, then the model 

top of 60 m aOD was used.  The model run until steady-state conditions were met, to enable a 

water balanced solution to be reached and to allow interaction with the river model. 

The groundwater model was coupled to a simple river model developed with MCRouter 

(Mansour et al., 2013).  Each node of MCRouter was linked to a corresponding node in the 

groundwater model.  The runtime linkages were undertaken using OpenMI v1.4 (Gregersen et 

al., 2007) to produce a single composition run using Pipistrelle (Harpham et al., 2014) (see 

Figure 2).  A uni-directional coupling with the groundwater model supplying the river model 

with baseflow calculated using leakage nodes was used to link the model instances within the 

composition (Fig. 2) .The model composition was run using the command line version of 

Pipistrelle to enable it to be controlled by the MATLAB code. 

 

Fig. 1.  Basic model setup (black gridlines ZOOMQ3D groundwater model; blue dots MCRouter) 

K2 K1 



 

 

Fig. 2. Screenshot of model composition built using Pipistrelle 

 

The two compositions were run until the groundwater heads reach steady-state conditions. 

As previously discussed two different composition forms have been employed. The 

composition which comprises the Muskingum-Cunge routing channel model and the confined 

groundwater flow model, thereinafter called as MCR-GCF, requires an approximate 

computational time of 4.2 minutes to reach steady-state. On the contrary, the other composition 

form which comprises the Muskingum-Cunge routing channel model and the unconfined 

groundwater flow model, thereinafter called as MCR-GUF, reaches steady-state after 

approximately 63 minutes. The significant difference in the computational burden is due to the 

increased number of iterations needed for the non-linear unconfined groundwater flow equation 

to reach steady-state. Examples of the differences in the simulation output between MCR-GCF 

and MCR-GUF models, as well as, for the time evolution of groundwater heads until steady-

state, are presented below (Figure 3 for steady-state heads and Figure 4 for an example time 

series of groundwater head reaching steady state).  

 



 

Fig. 3.  Simulation output of the groundwater flow model component, in the case of confined and 

unconfined flow for the same input parameter set. 

 

 

Fig. 4. Time evolution of groundwater heads for confined and unconfined flow until steady-state. 

 



2.2 The metamodel 

 

The metamodel used in this study is based on the MATLAB toolbox DACE (Design and 

Analysis of Computer Experiments) (Lophaven et al. 2002). DACE constructs approximation 

models based on Kriging, a method which was originally developed in the field of geostatistics 

(Krige 1951). Kriging has been introduced as an emulator to deterministic computer 

simulations in Sacks et al. (1989). Detailed mathematical background about Kriging 

metamodeling can be found elsewhere in the literature (e.g. Jones et al. 1998; Lophaven et al. 

2002; Forrester et al. 2008; Kleijnen 2009). Here, we only briefly present the general concept 

of a Kriging emulator as applied in our problem.  

Let assume a set of multivariate inputs 𝒙(𝑖), 𝑖 = 1, … . 𝑛 where each one includes numerical 

values of variables,  𝐾1 , 𝐾2 and 𝑅𝑔 (hydraulic conductivity for the two zones and recharge 

respectively). A corresponding univariate scalar output ℎ(𝑖), 𝑖 = 1, … . 𝑛, representing hydraulic 

head, is obtained by running the composition for each input 𝒙(𝑖). Kriging treats the 

deterministic outputs h as if they were generated from a stochastic process where its general 

trend is described by a regression function 𝑓(𝒙) and the associated error terms are correlated 

random variables of a zero mean Gaussian process, with variance 𝜎2 and correlation matrix 𝑹 

(Jones et al. 1998). The general concept, which is very convenient for deterministic computer 

simulations due to the absence of random error, is that if the distance between points 𝒙 and 𝒙′ 

is small, then the approximations ℎ̂(𝒙) and ℎ̂(𝒙′)  of the “true”, black-box function (the 

computer model) should be highly correlated (Forrester et al. 2008). The Kriging model can be 

expressed as the sum of a regression term 𝑓(𝒙) and a Gaussian process 𝑍(𝒙), defined by the 

covariance function 𝐶𝑜𝑣(𝑍(𝒙), 𝑍(𝒙′)) = 𝜎2𝑅(𝒙, 𝒙′), as: 

 

ℎ̂(𝒙) = 𝑓(𝒙) + 𝑍(𝒙)           (1) 

 

Different formulations of Kriging (e.g. ordinary, simple, universal) assume either a constant 

or a polynomial for the regression function 𝑓(𝒙) while the choice for the correlation function 

𝑅(∙ , ∙), is often critical for the accuracy of the Kriging approximation model. DACE toolbox 

allows for regression models of different polynomial order as well as correlation models of 

different structures. Here, Exponential, Gaussian and Linear correlation models are combined 

with zero, first and second order regression models. The correlation function involves a set of 

parameters 𝜽 which are identified using the Maximum Likelihood Estimation method and 



numerical optimization techniques (Forrester et al., 2008). This step adds computational cost 

to the fitting process, particularly as the sample size gets larger. In its original formulation 

DACE employs a simple, efficient optimization algorithm which can be sensitive to the initial 

𝜽 values and might only find local solutions. Here, the lower and upper bounds for 𝜽 values 

were set to 𝑙𝑏 = 0.01 and  𝑢𝑏 = 2 respectively. The initial guess for 𝜽 values was set according 

to Viana (2011).  

 

2.3 Metamodeling framework for MC and SA runs 

 

Both MC simulations and SA are first conducted with the original models to obtain reference 

output data and reference computational times. Note that our objective is neither to perform an 

exhaustive uncertainty analysis using MC simulation nor to delve into the details of SA. Our 

focus here is to assess the metamodel-assisted analysis given that the composition model is 

computationally expensive to run these tasks. In particular, the MC simulation is used to 

investigate two things. First, the impact of using different structures of the Kriging metamodel 

on the approximation of original model output distribution. Second, the effect of the training 

sample size on the metamodel accuracy. For SA, a small number of parameters is involved in 

our case and thus we opt for the well-established method of Elementary Effects Test or Morris 

method (Morris, 1991). This approach is considered reasonable for the problem at hand while 

it allows for a manageable number of runs with the composition models in order to set a 

benchmark solution against the metamodel analysis. 

An offline framework is employed where the metamodel is trained only once and then it is 

used for prediction. This is a generic framework which does not update the metamodel 

knowledge during the MC or the SA runs. It is convenient though for assessing the raw 

metamodel predictive skill without being affected by the selection of an infill strategy. A 

workflow of the present framework is presented below. 

 



 

 

Fig. 5. Generic workflow of the offline metamodel framework. 

 

The impact of the training sample size 𝑛𝑡 on the predictive power of an emulator is an 

important aspect of metamodeling and there are several suggestions in the literature related to 

the type of the metamodel (Razavi et al. 2012a). According to Jones et al. (1998) an empirical 

rule for the size of the training sample for Kriging metamodels could be in the order of  𝑛𝑡 =

10𝐷 , with 𝐷 being the number of input variables. Obviously, this approach can lead to very 

large training samples as 𝐷 increases. In this study, the Kriging metamodels are initially trained 

based on a Latin hypercube sampling (LHS) (Mckay et al., 1979) with 10𝐷 design sites (in our 

case, 𝐷 = 3). LHS was utilized due to its space-filling properties which allow for an effective 

exploration of the input parameter space while facilitating the smoothing interpolating 

capabilities of Kriging. Therefore, 30 training input patterns were generated using the LHS 

method and both the MCR-GCF and the MCR-GUF run on these to produce the required 

output. As an additional investigation on the impact of the training sample size, the same 

modelling procedure was repeated for 60 and 90 training points apart from the base case of 30 

points. 



The MC run is performed by randomly sampling the distributions of the input parameters. 

The hydraulic conductivity in both zones 1 and 2 of the groundwater model component, is 

considered as a lognormal random variable 𝑌 = ln (𝐾) with mean value 𝜇 = 3.3241𝑚/𝑑𝑎𝑦 

and variance 𝜎2 = 0.1541. In addition, recharge is assumed as an exponential random variable 

with mean value 1 𝜆⁄ , where 𝜆 = 1. More specifically, a set of 1000 inputs was used in the 

case of the MCR-GCF model while a smaller set of 100 inputs was used in the case of the 

MCR-GUF model due to the computational restrictions discussed previously. For the MC 

simulation, the univariate scalar output ℎ represents the groundwater head on a specified 

observation point located at a region of the simulation field where significant variations are 

expected as the input parameters change. This point, denoted as O1, is located at the left corner 

of the simulation grid with coordinates(𝑋, 𝑌) = (500, 300).  

For the SA problem, we select an additional observation point, denoted as O2, located at 

(𝑋, 𝑌) = (9400, 1100) where the hydraulic head differences are more pronounced between 

the MCR-GCF and the MCR-GUF models (Figure 6). In that sense, SA based on O1 enables 

the identification of the important parameters for the most “active” area of the simulation field. 

On the other hand, SA based on point O2 is suitable for associating the flow type differences 

with the input parameters. All model runs, pre- and post- processing tasks for both the original 

composition and the metamodels were implemented in MATLAB.  

 

Fig. 6. Example of the absolute difference map between the simulation fields of MCR-GCF and MCR-

GUF models at steady-state conditions. 

O1 

O2 



 

3. RESULTS 

 

3.1 MC simulation  

 

The prediction accuracy of the metamodels was quantified based on the MC output from the 

original models. For real-world problems, if the original model is so cheap to run that we can 

afford for MC simulations in the order of thousands the use of a metamodel would be 

redundant. Although the simulation time of the integrated models developed here could be 

reduced by setting appropriate initial conditions, our intention is to mimic the intensive 

runtimes of high-fidelity computer models for real-world applications. Since our study is of 

exploratory nature we attempt to assess the metamodels’ accuracy using a large, yet, reasonable 

number of original model evaluations. As it can be seen in Table 1 even for the less 

computationally expensive MRC-GCF model, almost 3 days were required for a MC 

simulation of 1000 runs while the corresponding time with the Kriging metamodel was only 

2.3 hr (including the original simulations for training the metamodel). Note that the MCR-GUF 

model is computationally expensive (single runtimes of ~ 63 minutes) and thus a smaller MC 

set of 100 runs was used to evaluate metamodels’ performance.  

 

Table 1 

Computational times of the test simulation runs for both the original model and the metamodels. 

 MCR-GCF 

(1000 runs) 

Kriging 

(MCR-GCF) 

(1000 runs) 

MCR-GUF 

(100 runs) 

Kriging 

(MCR-GUF) 

(100 runs) 

Computational time 

(hr) 

~70 ~2.3 ~105.4 ~31.5 

 

 

 The root mean square error (RMSE) metric was used to assess the differences between the 

different metamodel structures and the original models: 

 

𝑅𝑀𝑆𝐸 = √∑ (ℎ(𝑖)−ℎ̂(𝑖))
2𝑛𝑠

𝑖=1

𝑛𝑠
         (2) 

 



where ℎ̂ denotes the metamodel prediction and 𝑛𝑠 is the sample size of the validation set. In 

our case, 𝑛𝑠 is the size of the input sample for the MC simulation. The RMSE values for the 

metamodel-based MC simulation for both composition cases are summarized in Table 2. The 

results refer to different combinations of regression and correlation functions of the metamodel 

structure for the base case scenario of 30 training patterns.  

 

Table 2 

RMSE values for metamodel prediction accuracy for 𝑛𝑡 = 30 (lowest is highlighted). 

  MCR-GCF 

(1000 runs) 

   MCR-GUF 

(100 runs) 

 

 Correlation model  Correlation model 

 Exponential Gaussian 

 

Linear  Exponential Gaussian 

 

Linear 

Polynomial 

order 

       

 

0 

 

0.9702 

 

0.5049 

 

1.0355 

  

0.8577 

 

0.5924 

 

1.7388 

1 0.6559 0.5275 0.9676  0.7294 0.9474 0.8824 

2 0.8393 0.7425 0.8001  0.6766 0.6808 0.7754 

  

The low RMSE values indicate a good agreement between the MC test data and the 

metamodel predictions. The differences among the metamodel structures are relatively small, 

yet, the best results are obtained using a Gaussian-zero-order Kriging structure for both the 

MCR-GCF model and the MCR-GUF model. The Gaussian correlation function is commonly 

selected in most Kriging metamodeling studies, however, there are no systematic guidelines 

for selecting the best correlation model and results may be problem-dependent (Simpson and 

Martin, 2004; Song et al., 2013). In addition, we explore if the best metamodel structure 

changes with increasing the training points. Thus, the RMSE values were recalculated for each 

metamodel structure for different training samples and against the same MC output from the 

original models. In the case of the MCR-GCF model, an Exponential-2nd-order and an 

Exponential-1st-order were identified as best Kriging metamodel structures for the 60 and 90 

training points, respectively. Interestingly, the Gaussian-zero-order structure was identified 

again as best to emulate the MCR-GUF model response and provided the lowest RMSE values 

for both the 60-point and the 90-point training samples. In general, the Exponential and 

Gaussian structures provided the best results, although the formulation of the Kriging 



metamodel regarding the linear trend varied with the selection of different training samples in 

the case of the MCR-GCF model. 

   

Table 3 

RMSE values for metamodel prediction accuracy for 𝑛𝑡 = 60 (lowest is highlighted). 

  MCR-GCF 

(1000 runs) 

   MCR-GUF 

(100 runs) 

 

 Correlation model  Correlation model 

 Exponential Gaussian 

 

Linear  Exponential Gaussian 

 

Linear 

Polynomial 

order 

       

 

0 

 

1.0989 

 

0.7435 

 

1.0508 

  

1.1763 

 

0.5598 

 

1.0496 

1 0.6476 0.7857 0.7385  0.8519 0.6530 1.0394 

2 0.4228 0.5413 0.5777  0.5983 0.7717 0.5738 

 

Table 4 

RMSE values for metamodel prediction accuracy for 𝑛𝑡 = 90 (lowest is highlighted). 

  MCR-GCF 

(1000 runs) 

   MCR-GUF 

(100 runs) 

 

 Correlation model  Correlation model 

 Exponential Gaussian 

 

Linear  Exponential Gaussian 

 

Linear 

Polynomial 

order 

       

 

0 

 

0.4859 

 

0.4601 

 

0.4437 

  

0.3479 

 

0.2891 

 

0.3252 

1 0.4175 2.9454 0.4991  0.3844 2.2393 0.3841 

2 0.5073 2.6800 0.6246  0.5139 1.8571 0.6373 

 

The performance of the best metamodel structures against the original model groundwater 

head data from the MC simulation is also visually demonstrated in Figure 7. It is evident that 

as more points are added for training, the metamodels’ prediction converges to the original MC 

data.  



 

Fig. 7. Metamodel predictions versus the original model MC output for different training sample 

sizes. Left column refers to MCR-GCF model and right column to MCR-GUF model. 

 

Frequency histograms were also utilized to provide information about the hydraulic head 

distribution from the original model and the metamodels’ predictions (Figure 8). Again, the 

best metamodels are shown for the three different sets of training samples. However, a more 

conclusive result about the metamodels’ performance can be obtained for the case of the MRC-

GCF model where the MC set comprises 1000 runs. In general, the metamodels appear to 

reproduce adequately the original model distribution of the higher groundwater head values. In 

both cases though, the variability of the original model predictions is less well explained by the 

metamodels that were trained with 30 points (top row of figure 8). These metamodels mostly 

failed to capture the variability in the lower groundwater head values. From the histogram 

comparison it can be also implied that the metamodels are less successful to capture the MRC-

GUF model behaviour which involves the non-linear unconfined aquifer flow. For example, 

the metamodel with a 60-point training sample, which is already 60% of the MC simulation 

budget for the MRC-GCF model, provides a poorer representation of the original hydraulic 

head distribution than the corresponding metamodel for the MRC-GCF model. However, the 

metamodels trained with larger data sets (60 and 90 points) appear to better reproduce the 



distribution of the simulated heads from the original models. Note that MRC-GUF model only 

involves a set of 100 runs for the MC simulation due to the prohibitive computational cost. 

 

 

Fig. 8. Histograms of the MC output from the original models and the corresponding best metamodels 

for training sample sizes of 30, 60 and 90 training points. 

 

3.2 SA results 

 

The computational budget specified for SA studies, is related to both the type and the 

sampling approach of the SA methodology. For example, variance-based SA methods require 

a large number of model evaluations in the order of 1000 × 𝐷 (Pianosi et al., 2016). In our 

case 𝐷 is small, yet, a robust analysis would require 3000 model runs which leads to the 

unmanageable computational time of 125 days for the case of the computationally expensive 

MCR-GUF model. User’s experience with the problem at hand could inform the SA approach 

by narrowing the parameter bounds or by eliminating inactive parameters. However, most 

high-fidelity, physics-based computer models involve a moderate to large number of 

parameters and/or external forcing variables with varying space-time behaviour so that a global 

SA would normally lead to thousands of model runs. In such cases, the use of a metamodel 



may allow for more complex SA methods to be applied and the analysis of high-dimensional 

input vectors.  

Here, due to the small number of input factors (𝐾1, 𝐾2, 𝑅𝑔) and the long runtimes of the 

composition, we opt for the established method of Morris or Elementary Effect Test (EET), in 

order to screen important factors and identify possible interactions (Morris, 1991). EET may 

provide a reasonable SA output in the order of 10 to 100 × 𝐷 model runs (Pianosi et al., 2016). 

Since our aim is to compare the effectiveness and efficiency of the metamodels against the 

original model, EET, is a manageable SA framework in terms of computational requirements, 

particularly for the expensive MRC-GUF model.  

The robust and well-documented SAFE Toolbox, developed by Pianosi et al. (2015), was 

used for the SA task. The EET for the original models was performed using 𝐿 = 8 and 𝑟 = 10 

for the number of levels in the grid size and number of Elementary Effects, respectively 

(Pianosi et al., 2015). The total number of model runs with the Morris method is defined as 

𝑁𝑟 = 𝑟 × (𝐷 + 1), thus, in our case  𝑁𝑟 = 40. This amounts to a computational cost of 42 hr 

with the MRC-GUF model and 2.8 hr with the MRC-GCF model. The metamodel-based EET 

run, was based on the metamodels that were trained with 𝑛𝑡 = 30  in order to approximately 

match the number of SA runs 𝑁𝑟 performed with the original model compositions.  Given the 

negligible metamodel’s evaluation time compared to the original models, we set 𝑟 = 75 since 

we can easily afford for 𝑁𝑟 = 300. In addition, we also assume that the same Kriging model 

structure is the best metamodel for the observational point O2 and it is fitted to 30 training 

points obtained for that point. 

Figures 9 and 10 present the SA results related to the observation point O1 and O2, 

respectively, for the compositions and the corresponding metamodels. Qualitatively, all models 

identified similarly the important input factors and the possible interactions among the 

parameters. 𝑅𝑔 is the variable with the largest sample mean in all plots having the most 

significant impact on the simulated groundwater levels.  The SA results are also consistent with 

the expected hydraulic behaviour of the models. In particular, 𝐾2 obviously has a stronger 

impact than 𝐾1 on the response of both MRC-GCF and MRC-GUF models at O1, since the 

latter is located in the part of the simulation grid where  𝐾2 is assigned (see Figure 1). Perhaps 

unsurprisingly, the opposite effect of  𝐾2 is observed for the observation point O2. 

 



 

Fig. 9. Sample means 𝜇 versus sample standard deviations 𝜎 of EET. The results refer to the 

observation point O1.  

 

 

Fig. 10. Sample means 𝜇 versus sample standard deviations 𝜎 of EET. The results refer to the 

observation point O2. 



 

However, there are some discrepancies between the compositions and the metamodels. In the 

case of the MCR-GCF model at observation point O1, 𝑅𝑔 appears to have a stronger impact 

and a larger degree of interaction with other parameters compared to the metamodel results. 

For the same observation point, EET based on the MCR-GUF model shows that  𝐾2 is involved 

in interactions whereas 𝑅𝑔 is not. The metamodel-based EET gives a low but yet measurable 

degree of interaction for 𝑅𝑔. On the other hand, at observation point O2, the metamodel-based 

EET is more similar to the composition analysis. 𝐾1 and 𝐾2 are grouped together and more 

clustered around the origin as shown by both compositions and metamodels. This difference 

can be explained by the observation point O2 being hydraulically more controlled than O1 due 

to the river impact and thus less variability of hydraulic heads is expected. Therefore, the 

metamodels were able to capture the response of the compositions to different inputs better 

than O1, for 𝑛𝑡 = 30. 

Since O1 is expected to be more sensitive to the input variables a second SA was performed 

for the MCR-GCF model by increasing 𝑟 to 75 and thus resulting in a number of 300 runs 

(100 × 𝐷) for the EET. That was to identify if both the composition and the emulator misplaced 

the importance or the interaction of the input variables due to the low amount of original model 

runs. That is, 40 runs for SA with MCR-GCF model and only 30 training points to train the 

Kriging metamodel. The SA results from the MCR-GCF model are compared with the best 

metamodel found using 90 training points, which are presented in Table 4. Note that in real-

world problems 300 runs may be computationally impractical, for example, it would take 

approximately 13.5 days to run the MRC-GUF model. In this case, the SA based on the MCR-

GCF model required a computational time of 21.2 hr while the metamodel-based SA, including 

the training time, required 6.3 hr. The results from the SA based on 300 runs with the MRC-

GCF model are presented in Figure 11. 

 

 



 

Fig. 11. Sample means 𝜇 versus sample standard deviations 𝜎 of EET, produced by the MCR-GCF 

model after increasing the number of runs to 300. The corresponding metamodel results are also 

shown. 

  

Results demonstrate a different placement of the input variables with the increase in the 

number of simulations. The sample means and the sample standard deviations of 𝐾1 and 𝑅𝑔 

are very similar between the metamodel and the composition. 𝐾2 is identified as the variable 

mostly involved in interactions with the metamodel-based EET showing a smaller measure of 

spread. In overall, the comparison between the original model and the metamodel indicates a 

good match in terms of screening the important parameters while reducing the computational 

budget by 70%. 

 

4. CONCLUSIONS 

 

Integrated modelling is a promising, relatively new approach for solving complex 

environmental problems. It is based on the concept of linking together stand-alone codes that 

simulate different aspects of the system under study. One possible challenge associated with 

integrated modelling is the resulting computational burden when either complex models are 



linked together and/or dynamic processes are simulated. In that case, computationally 

demanding tasks which require multiple runs of the integrated model may be hampered by 

impractical runtimes. To address that, the use of metamodels was proposed in the present study 

in order to perform MC simulations and SA in manageable computational times.  

In particular, we employed Kriging metamodels for emulating the steady-state response of 

a distributed groundwater model that was linked together with a simple river model via the 

OpenMI software platform. Two compositions were implemented, one with a confined 

groundwater flow model that reached steady-state after 4.2 minutes and one with an unconfined 

groundwater flow model that reached steady-state after 63 minutes. First, the compositions run 

to get benchmark solutions for MC simulations and SA. Then, the metamodels were trained 

using a small number of input-output data based on Latin Hypercube Sampling and used in lieu 

of the composition models to perform the same tasks. 

Results from the MC simulations demonstrate that the predictions of the metamodels were 

in a  good agreement with the responses of the original models while the overall computational 

savings were in the order of 90% and 70% in the case of the confined groundwater model 

(MCR-GCF) and the unconfined (MCR-GUF), respectively. In our study, the impact of the 

metamodel structure was not decisive regarding its prediction skills. However, there were 

specific combinations of covariance and regression models that provided the best results. In 

general, in this study, Gaussian and Exponential correlation models provided the lowest error 

values against the original models. While an increase of the training sample size, improved, as 

expected, the Kriging metamodel prediction skills, there was not a specific Kriging structure 

that was consistently identified as the best for MCR-GCF model. However, a Gaussian 

correlation model was identified as best for the MCR-GUF model. It should also be noted that 

the Kriging metamodels provided a poorer representation of the original output distribution in 

the case of the composition with the unconfined groundwater flow model. The unconfined 

groundwater flow model is characterized by a stronger non-linear behaviour than the confined 

model which is not in favour of constructing robust metamodels of global accuracy, particularly 

when the metamodel is used in an offline training framework. 

For the SA runs, it was observed that by using only a small amount of training data, the 

metamodels comparably screened the input parameters and those that can interact with others 

with the SA based on the compositions. The results were consistent with the expected hydraulic 

response of the groundwater models given the specified parameter input set. Due to their fast 

implementation the metamodel-based SA was performed easily in the order of the 

recommended number of runs for an EET approach without worrying about the computational 



cost A more conclusive result was obtained for the MCR-GUF model where its runtimes 

allowed for an EET at the order of 100 × 𝐷. By comparing the results produced by the 

metamodel and the original model for the less hydraulically controlled observation point, the 

input variables were screened in a similar way while the overall computational time was 

reduced by 70%.Overall, Kriging metamodels provided a fast and reasonably accurate 

approximation to the computationally expensive integrated models. Whilst,  the present study 

represents a simple example of the benefits of metamodeling to integrated modelling, based on 

the promising results presented here, future work is oriented to the emulation of much more 

complex compositions.  

Reducing the computation time that integrated modelling (IM) takes is one of the key 

challenges in making IM usable to address deceptively simple questions.  There are a number 

of ways of doing this: HPC “brute force and ignorance”, parallelisation and emulation.  There 

are advantages and disadvantage for all three approaches.  HPC requires learning a new 

language / porting an existing composition to another language, e.g. UNIX; parallelisation 

enables different components from the composition to be run on different processors or batches 

of runs for multiple realisations for MC techniques.  Emulation, as shown in this paper, requires 

investment in time to develop the reduced complexity models, but reaps rewards in terms of 

reduced runtime, particularly for multiple realisations. 

By representing highly computational demanding linked model systems by emulators then 

sensitivity and uncertainty analysis can be undertaken.  The next steps are using and testing 

the techniques on more complex compositions: those containing more model instances and 

greater complexity of feedbacks between the different components.  Given that model 

compositions can be made up of a range of different components including databases, real-

time feeds from sensors and models then emulators can themselves be components in 

compositions.  This adds to the flexibility of any model linking approach and ensures that 

integration can be achieved even if the outputs are from complex, computationally 

demanding model instances.  
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