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Abstract— The Internet of Things provides a huge 

infrastructure where numerous devices produce, collect and 

process data. These data are the basis for offering analytics to 

support novel applications. The processing of huge volumes of 

data is a demanding process, thus, the power of Cloud is already 

utilized. However, latency, privacy and the drawbacks of this 

centralized approach became the motivation for the emerge of 

edge computing. In edge computing, data could be processed at 

the edge of the network; at the IoT nodes to deliver immediate 

results. Due to the limited resources of IoT nodes, it is not 

possible to have a high number of demanding tasks locally 

executed to support applications. In this paper, we propose a 

scheme for selecting the most significant tasks to be executed at 

the edge while the remaining are transferred into the Cloud. Our 

distributed scheme focuses on mobile IoT nodes and provides a 

decision making mechanism and an optimization module for 

delivering the tasks that will be executed locally. We take into 

consideration multiple characteristics of tasks and optimize the 

final decision. With our mechanism, IoT nodes can be adapted to, 

possibly, unknown environments evolving their decision making. 

We evaluate the proposed scheme through a high number of 
simulations and give numerical results.  

Keywords—IoT, Edge Computing, Energy Requirements, Task 

Execution 

I.  INTRODUCTION 

Internet of Things (IoT) offers a vast infrastructure where 
numerous devices produce and share data. The dynamic nature 
of IoT built on top of the autonomous nature of the IoT nodes 
while the heterogeneity of data requires novel processing 
models for knowledge production. In legacy systems, data are 
transferred to Cloud for further processing to derive knowledge 
and support intelligent analytics. In any case, powerful 
processing mechanisms and efficient data management 
techniques are necessary due to the huge volumes of data. 
Large scale data are difficult to be processed no matter the 
power of Cloud. Processing data in Cloud may involve a 
distant datacenter, thus, increased communication costs with 
negative effects in the support of applications (e.g., increased 
latency). In addition, Cloud applications do not take into 
consideration possible mobility of IoT nodes that impose the 
management of the spatio-temporal aspect of the collected 
data. Full centralization may disregard significant issues like 
privacy, heterogeneity, lack of control in the data processing, 
increased latency and so on. Researchers have concluded that 
processing the data at the edge of the network offers multiple 
advantages avoiding the aforementioned problems [4]. With 

the advent of edge and fog computing, data can processed at 
the edge of the network limiting the latency for delivering 
analytics.  

In edge computing, numerous human-controlled devices 
form the edge like PCs, tablets, smartphones, sensors or nano 
datacenters [8]. They are employed to collect and, in parallel, 
process the data. Edge-centric computing aims at a distributed 
model that interconnects heterogenenous resources controlled 
by various entities (i.e., nodes) to the fog and, accordingly, to 
Cloud. Fog computing is the next step, one hop away for the 
data production and the aforementioned pre-processing model. 
In fog computing, nodes communicate with cloudlets and 
cloudlets communicate with Cloud to realize the data 
processing. Both edge and fog computing aim to keep multiple 
processing tasks close to the nodes. This way, we can easily 
handle the heterogeneity of the nodes when supporting 
applications. In addition, mobile edge computing [10] aims to 
offer an architecture that enables Cloud computing and an IT 
service environment at the edge of the cellular network. Mobile 
edge computing offers key emerging technologies of cellular 
networks together with virtualization capabilities. Network 
Function Virtualisation (NFV) and Software Defined 
Networking (SDN) capabilities offer many advantages in the 
management of resources and services. 

For supporting applications, IoT nodes should conclude a set 
of tasks. Actually, tasks are generated, possibly at high rates, at 
the nodes and should be concluded immediately. Tasks are 
related to processing needs defined by IoT nodes’ environment. 
Each task could be separated into a set of sub-tasks. Without 
loss of generality, when we refer to the term ‘task’, we focus 
on the execution either of a generic task or a sub-task. In the 
relevant literature, task allocation/scheduling originates in the 
management of a group of nodes. The allocation of tasks is 
adopted to result the assignment of each task to a node while 
task scheduling aims to schedule the location and the sequence 
of execution for each task. The aim is to maximize the 
performance and minimize the energy consumption, thus, 
maximizing the lifetime of the network. Multiple research 
efforts deal with centralized approaches, thus, the 
allocation/scheduling models suffers from the aforementioned 
drawbacks reported for Cloud computing. In this paper, we 
build on the autonomous nature of nodes focusing on mobile 
devices and propose a distributed scheme for the 
allocation/scheduling of the incoming tasks. However, in 
contrast to other research efforts, we consider that each task 
will be executed either by the node itself or in the Cloud. In the 



Cloud, a set of virtualized resources/services could be present 
that fulfill tasks requirements. Our scheme could be easily 
connected with a cloudlet/Cloud infrastructure where tasks 
could be assigned to. In the literature, one can observe various 
efforts for providing virtualized functionalities. A framework 
that offers experimentation capabilities on top of virtualized 
resources is SoftFIRE (https://www.softfire.eu). Our research 
subject is to separate the incoming tasks in two sets: those that 
will be executed locally and those that will be transferred to the 
Cloud. 

We consider that nodes do not share any tasks with their 
counterparts in the network, thus, coordination and 
communication costs are eliminated. Each node adopts a 
decision making scheme that derives if a task should be 
executed locally or not. For instance, if a node sees that a task 
requires increased computational resources and energy could 
be transferred to Cloud. However, if this task is significant for 
supporting applications or requires limited time for getting the 
response, nodes may decide to execute it even if it will deplete 
its resources. Due to energy constraints, each node could 
execute a limited number of tasks, thus, it selects those that 
maximize the performance. The performance is maximized 
when nodes efficiently support IoT applications and save 
energy at the same time. We propose a scheme that consists of 
two modules: (a) a pre-processing scheme (a decision making 
model) for delivering the significance of each task based on the 
known Analytical Hierarchy Process (AHP) and an 
aggregation function; (b) a selection scheme for delivering the 
tasks that will be executed locally or not. The latter module is 
based on the solution of the known Knapsack problem [5] and 
aims to select the appropriate tasks under the fulfillment of 
energy constraints while, in parallel, incorporating the 
significance of each task. Our scheme transforms the IoT nodes 
to be evolved in, possibly, unknown and dynamic 
environments where various processing tasks demand for 
execution. This way, nodes can be adapted in their 
environment (through the required tasks) as they decide the 
execution of tasks based on multiple criteria. 

The paper is organized as follows. Section II reports on the 
related work while Section III presents our scheme. In Section 
IV, we describe the proposed modules and argue for their 
adoption in tasks selection. In Section V, we provide the 
experimental evaluation of the proposed scheme and in Section 
VI, we conclude our paper discussing our future research plans.   

II. RELATED WORK 

Edge computing aims to provide an intermediate level of 
processing to alleviate the burden of the Cloud infrastructure. 
Edge computing offers (near) real time processing of the 
collected data just before they are sent into Cloud for further 
processing. The efficient processing at the edge is secured 
through the adoption of smart gateways [1] and micro 
datacenters [9]. Unfortunately, due to the limited computational 
resources of IoT nodes, it is not possible for them to execute 
any task defined by users or applications. There are multiple 
tasks that demand for increased computational resources, thus, 
they can only be executed in Cloud.     

Tasks allocation / scheduling is a subject widely studied in 
the research community. Task scheduling is studied for the 
allocation of various tasks in Wireless Sensors Networks 
(WSNs). In [16], the authors present an algorithm for task 
mapping and scheduling taking into consideration the energy 
constraints. The proposed solution adopts channels modelling, 
concurrent task mapping, communication and computation 
scheduling. This effort manages the nodes as a group. The 
focus of [2] is on collaborative processing among multiple 
nodes. The proposed algorithm adopts a linear task clustering 
and a node assignment mechanism based on task duplication 
and migration schemes. The algorithm concurrently allocates 
task and communication events for reducing the 
communication cost. In [7], a model for minimizing the 
execution time is described. The proposed optimal task 
scheduling is applied in a clustered network. Two phases are 
adopted: the intra-cluster and the inter-cluster scheduling. The 
focus of the algorithm is on the elimination of the transmission 
collisions. In [3], the authors propose a model for allocating 
the incoming tasks in multiple sensors according the energy 
requirements. The focus is on a task pre-processor and a 
scheduler that allocates the tasks in the available nodes. The 
pre-processor tries to identify the energy requirements of the 
incoming tasks and based on energy monitoring activities, it 
decides the final scheduling. The scheduler allocates the best 
available node to the incoming tasks while meeting its Quality 
of Service (QoS) requirements.  

A task may consist of a set of sub-tasks. The efficient 
combination and execution of the sub-tasks will lead to the 
efficient completion of the initial, more generic, task. In [17], a 
scheduling algorithm for the available sub-tasks is proposed. 
The aim is to assign each sub-task into the available nodes for 
maximizing the performance. For each assignment, the 
algorithm takes into consideration energy constraints, the 
compatibility of sub-tasks to nodes and the topology of the 
network. The provided solution maximizes network lifetime 
and satisfies the constraints of the concluded assignments. 
Zenith [18] proposes a methodology for resource allocation in 
a set of small-scale micro-datacenters that represent ad-hoc and 
distributed collection of a computing infrastructure. Zenith 
allows service providers to establish resource sharing contracts 
with edge infrastructure. Service providers enjoy latency-aware 
scheduling provisions securing that the assigned task will meet 
the latency requirements.  

Task scheduling heavily depends on the application 
domain. For instance, IoT and Cloud define different 
requirements in task scheduling due to the different nature of 
the application domain. Cloud mainly offers the available 
services on demand while IoT may involve applications where 
IoT nodes push their data and knowledge. A review on 
scheduling algorithms that fit on both the Cloud and IoT are 
discussed in [15]. Task scheduling is more important in IoT 
and edge computing as IoT nodes are characterized by limited 
computational capabilities. In addition, energy constraints 
define more requirements for scheduling. Cloud could serve as 
the intermediate between the IoT devices and applications 
exhibiting a vast infrastructure where increased computational 
(possibly virtualized) capabilities are available for processing. 
In [13], the authors propose a model for data distribution on a 



set of IoT devices. The model aims to eliminate bandwidth and 
storage constraints. The assigned tasks are executed on top of a 
specific amount of data while only one task is executed in each 
machine. However, this could not be the usual case when we 
consider real applications. Simulated annealing to solve the 
problem of the adaptation of scheduling optimization 
techniques in the load of computing tasks in Cloud applications 
[12]. The model tries to build on the parallelization of 
allocating various tasks in a multi-cloud system. Another tasks 
allocation scheme for Cloud is presented in [20]. The provided 
model takes into consideration both task and nodes diversity. 
Workloads are clustered into different classes with the same 
characteristics through the adoption of the K-means algorithm. 
On top of the K-means results, the proposed algorithm sets the 
number of the necessary nodes for executing the tasks, thus, it 
saves energy in the network. In [11], the authors propose a QoS 
aware resource scheduling algorithm. In this algorithm, 
Particle Swarm Optimization (PSO) is adopted to derive the 
final scheduling. The aim is to reduce time and ensure the load 
balancing in order to maximize the performance.  

III. PROBLEM DESCRIPTION AND PRELIMINARIES 

Without loss of generality, we consider that a set of nodes 
N={n1, n2, …} are available. Each node ni is capable of 
executing a set of tasks Ε={ε1, ε2, ...}. Tasks are characterized 
by a set of characteristics C={c1, c2, …, c|C|}. Example 
characteristics could be: the size, the type, energy 
requirements, the deadline (if present) and so on. Energy 
requirements could be based not only on the size but also on 
other parameters like the complexity of the task that imposes 
the number of computations to conclude it.  

We consider an Execution Era (EE) that is the time interval 
for allocating and executing a set of tasks. Each node should 
separate this set into two disjoint sub-sets i.e., tasks that will be 
executed in the node (locally) and tasks that will be transferred 
for execution in Cloud. This decision is based on multiple 
criteria, i.e., the aforementioned characteristics and the 
requirement for real time results. Based on these 
characteristics, each node ni should realize the significance Sj 
of each task. Sj depicts if a task should be executed 
immediately at the edge to deliver real time results. In an EE, 
tasks are seen as a group, thus, ni manage them in parallel. 

In unknown environments, tasks and their requirements are 
dynamically generated. The proposed scheme aims to support 
mobile IoT nodes with an adaptive scheme to be fully aligned 
with their internal status and tasks requirements. The proposed 
model optimizes the selection of tasks according to the status 
of each node in order to maximize the performance. Nodes are 
based on an adaptive and evolving mechanism that optimizes 
any decision during their functioning. The knowledge acquired 
at each EE can be easily incorporated into the knowledge base 
of the IoT nodes, thus, to support the evolvement of the 
decision making. In Fig. 1, we present the envisioned 
architecture for supporting each node’s behavior. We focus on 
the allocation scheme that consists of two parts: (a) The pre-
processing part responsible to define the Sj for tasks present in 
the current EE. The aim is to ‘sort’ the tasks according to their 
significance and their time constraints and give priority for 
execution to tasks that should be concluded immediately or 

their characteristics indicate that their execution will be 
efficient if it will be realized at the edge; (b) The selection part 
that splits the set of tasks, in the current EE, into two disjoint 
sub-sets, i.e., tasks that will be executed locally (at the edge) 
and tasks that will be transferred to Cloud for further 
processing.  

For pre-processing, we produce two ‘judgments’, i.e., the 
tasks ranked by (a) their characteristics; (b) their deadline, i.e., 
the time constraint to deliver the final result. Both ‘judgments’ 
affect the Sj value, thus, we adopt an aggregation model for 
deriving the final Sj. For the first ‘judgment’, we take into 
consideration the entire set C and apply the widely known 
AHP. We aim to assign a weight in each task that will 
represent Sj. AHP acts on top of a set of alternative options 
among which the best decision is to be made. It is important to 
notice that, since some of the parameters / characteristics could 
be contrasting, it is not true that the best option is the one 
which optimizes each single criterion, rather the one which 
achieves the most suitable trade-off among the different criteria 
(i.e., size, type, energy requirements, etc). AHP will realize our 
‘view’ on the significance of each characteristic that, finally, 
will affect Sj. The advantage is that our scheme does not 
require any modeling of the domain under consideration while 
being efficient in practice. The second ‘judgment’ is delivered 
on top of the time constraints of each task. Actually, in this 
‘judgment’, the Sj is equal to the inverse of the deadline. The 
shorter the deadline is, the more significant the task becomes. 
However, nodes do not want to exhaust their energy reserves to 
service a single task that demands immediate responses if this 
task is not important for their functioning.   We select to 
separate the management of the time constraints from the 
remaining characteristics to pay more attention on the temporal 
aspect of the problem and avoid to ‘aggregate’ it with other 
characteristics. This way, the proposed model will be more 
efficient in the decision making. It should be noted that the 
final aggregated Sj will be delivered by the pre-processing part 
that will be the basis for the final selection of the tasks that will 
be executed locally.  

The first part of the proposed scheme will deliver an ordered 
set of tasks according to Sj. Afterwards, the second part (i.e., 
the selection process) will build on top of this set. We focus on 
the energy constraints in ni aiming to derive the set of tasks that 
will be executed locally. A solution to the typical Knapsack 
problem [5] fits well in this setting. The Knapsack problem 
belongs to combinatorial optimization problems. Our ordered 
set of tasks, each of them has been assigned with a weight 
(energy requirements) and a value (Sj), should be processed 
and identify the sub-set of tasks that could be executed by ni. 
Actually, we adopt the 0-1 version of the problem. The total 
weight (energy requirements) of the locally executed tasks 
should be below the capacity of the knapsack (the remaining 
energy resources of ni). It should be noted that we consider 
nodes equipped with batteries, i.e., mobile nodes. If the battery 
is exhausted, no task could be executed or data could be 
collected. If the battery is replaced or charged, energy 
resources are updated and adopted in the upcoming EE.  

Through the above described setting, we envision an 
intelligent node capable of autonomously deciding in real time, 
in consecutive eras, which tasks will execute at the edge to 



reduce the latency and efficiently support applications. Our 
focus in on multiple parameters before the final decision is 
made. We target to optimized decisions in each EE according 
to the current needs. A decision could involve the absence of 
tasks selected for local execution to the entire set of tasks 
present in the specific EE. This forms a complex behavior for 
each node. The novelty is that we propose a sequential 
processing of the incoming tasks before we conclude the final 
decision. This sequential approach deals with an iterative 
processing of tasks with different techniques (a decision 
making and an optimization technique) to maximize the 
performance.   

 

Fig. 1.  The architecture of the proposed scheme. 

IV. THE PROPOSED APPROACH 

A. The Pre-processing Module 

The selection of the appropriate tasks involves strategic 

decision making to identify the tasks that maximize the 

performance at the current EE. AHP [6], [14] offers a method 

for decomposing the allocation problem into a hierarchy of 

sub-problems. Each sub-problem can be easily evaluated, thus, 

solved. A numerical scale is adopted to support the ranking of 

each alternative, i.e., the focus on various task characteristics. 
AHP allows users to assess the relative weight of multiple 

criteria or multiple options against given criteria in an intuitive 

manner. In case quantitative ratings are not available, policy 

makers or assessors can still recognize whether one criterion is 

more important than another. The basic process to carry out the 

AHP consists of the following steps:  

1. The first step is to decompose the problem into a hierarchy 
or goal, criteria, sub-criteria and alternatives. The decision 
problem is separated into its constituent parts. The resulted 
structure comprises a goal or focus at the topmost level, 
criteria (and sub-criteria) at the intermediate levels, while the 
lowest level contains the options.  

2. For each pair of criteria, we rate the relative ‘priority’ of 
every criterion against the others. An assignment of a weight 
between 1 (equal importance) and 9 (extreme importance) to 
the more important criterion is included in this step. 

3. A square matrix is generated for the pair comparisons. The 
elements in the diagonal are set to 1. When in the cell (i,j) of 
the matrix it is a value over 1 means that the ith criterion is 
better than the jth criterion. The opposite stands when the cell 
(i,j) contains a value lower than 1. 

4. We calculate the principal eigenvalue and the normalized 
eigenvector of the aforementioned matrix to get a relative 
importance of the criteria under consideration.  

5. In a final step, each element’s score is combined with the 
criterion weights to produce an overall score for each option.  

In the pre-processing module, we take into consideration 
the entire set C providing a ranking of each ci and create the 

|C|X|C| matrix. Table I presents an example matrix. In this 

matrix, we denote that the size of a task is five times more 

important than the type and so on.  

Based on the aforementioned matrix, we can calculate the 

‘significance’ Sj for the jth task. Sj is calculated as follows: 
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where wi is the weight of ith characteristic derived by AHP and 
Aij is the frequency or the value of the specific ith characteristic 

in the tasks participating in the current EE. Frequencies are 

adopted in the case of nominal/ordinal characteristics while 

real values are considered for numeric characteristics. The pre-

processing module derives the ordered set of task according to 

Sj as calculated by Eq(1). For each of the adopted 

characteristics, we define the utility that the node gains in the 

form of a fraction as depicted in Eq(1). The fraction indicates 

the amount of utility that the node gains for a specific task 

compared to the remaining tasks in the current EE. For 

instance, the higher the demand for a task is, the higher the 

utility becomes (as a percentage of the sum of demands for all 
tasks). The utility for the demand is multiplied by the weight of 

the demand as defined by AHP, resulting the final utility for 

the specific characteristic. The same rationale holds true for the 

remaining characteristics. The importance of each 

characteristic consists of a strategic decision towards paying 

attention on a sub-set of them. This will be depicted when the 

decision for executing locally the specific tasks is realized. 

TABLE I. EXAMPLE OF PAIR WISE COMPARISONS. 

 Size Type Demand  

→ 

Size Type Demand 

Size 1/1 5/1 1/5 1/1 5/1 1/5 

Type  1/1 1/7 1/5 1/1 1/7 

Demand   1/1 5/1 7/1 1/1 

 

Let Tj be the time constraint of a task for returning the 
final response (i.e., deadline). Tj could have any value, e.g., it 
may be ‘strict’ meaning that the task immediately demands the 
final response/result or it could be more ‘relaxed’ meaning 
that the result may be delivered at any time (thus, the latency 
of the processing in Cloud could be acceptable). However, a 
task εj that may demand immediate response may be 
characterized by increased size/demand. The proposed 
mechanism considers the tradeoff between all these 
characteristics when delivering the final decision. In the pre-
processing mechanism, apart from the adoption of the AHP 
technique, we consider a second ‘judgment’ of the Sj. This 
‘judgment’ is made on top of Tj. Actually, we get Sj=1/Tj. The 
lower the Tj is, the higher the Sj becomes. This means that a 



task with a limited deadline is considered as more significant 

compared to the remaining tasks. Let   
  be the significance of 

the jth task as derived by the AHP process and   
   be the 

significance derived by the inverse of the time constraints. We 
propose the use of an aggregation function f(  

 ,   
  )      to 

derive the final Sj. f(.) aggregates two different views of the 
system, i.e., one retrieved by the AHP process and one 
affected by the time required for delivering the final response. 
We adopt a simple, however, efficient aggregation function, 
the linear opinion pool. For each j, we provide the final Sj as 
follows: Sj = f(  

 ,   
  ) = α   

  + (1 - α)   
  , with α   [0,1]. α is 

adopted to enhance the effect of the AHP result or the time 
constraints. For instance, when α   0, the proposed model 
pays more attention on the time constraints while the scenario 
where α   1 pays attention on the remaining characteristics as 
depicted by the AHP result. The parameter α could be the 
result of a learning process to be adapted in the observed data. 
This way, the proposed model will align the effect of the AHP 
and time requirements as defined by each task. The learning 
model for α’s realization is left for future work. 

B. The Final Selection of Tasks 

Let K tasks ‘participating’ in the current EE, i.e., E={ε1, ε2, 
…, εK}. Each εj has a weight (energy requirements) rj and a 
value (significance) Sj. rj is derived by the size and the 
complexity of each task and its calculation is not a subject of 
this paper. The node also has a constraint related to the upper 
amount of energy W that could be used to support the tasks. 
The 0-1 Knapsack problem indicates that given a set of K tasks 
numbered from ε1, το εΚ, we should solve the following 
optimization problem: 

Maximize jS
K

1j
j
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K
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j
r 
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In the above equations xj represents the cardinality of 
instances for the jth task to be included in the knapsack. A 
solution to the problem indicates the tasks that should be 
executed locally. The solution could be broken into a set of 
true/false decisions according to whether the current task will 
be included in the knapsack or not. A task is included in the 
knapsack by checking the energy that is left over. Hence, the 
current decision is to check the available energy capacity or 
equivalently the energy requirements of the tasks already 
included in the knapsack. The important is that we build on top 
of the AHP results that indicate the significance of each task. 
Our optimization problem after the definition of the 
significance of a task, it checks which tasks could be executed 
based on the current energy savings. The knapsack oriented 
solution, it is executed in each EE to depict any updates in the 
energy levels. As the battery is exhausted, as natural, the tasks 
that will be executed locally (at the edge) will be limited.  

V. EXPERIMENTAL EVALUATION 

A. Evaluation Setup and Performance Metrics 

We report on the performance of the proposed scheme 
through a high number of simulations. For this, we define a 
simulator written in Java involving several classes for the 
implementation of, among others, the AHP and the knapsack 
problem modules. We emulate a real environment by setting up 
the involved parameters to values that depict real settings. We 
adopt a set of characteristics, i.e., C={complexity, type, 
supported application, size, energy requirements, demand}. C 
could be easily expanded to involve more characteristics. 
Without loss of generality, we do not focus on hidden 
correlations between the characteristics. For instance, the 
energy requirements of a task may be depended on the 
complexity and the size. Our decision has to make with the 
importance of each separate characteristic in nodes functioning. 
For each nominal/ordinal characteristic we define specific 
values, e.g., for the complexity, we adopt the most known 
complexities like the logarithmic, the linear and so on. The 
same rationale holds true for the remaining nominal/ordinal 
characteristics. For numeric characteristics, we adopt an upper 
value as follows. For the size of tasks, we consider that the 
upper size limit is equal to smax=1,000KB, thus, the size of a 
task is realized in the interval [1, smax]. For energy 
requirements, we consider that the upper limit is defined 
through the parameter emax. In our simulations, we adopt emax   
{10, 100}. The energy requirements of a task are realized in the 
interval [1, emax]. When emax = 10, we adopt tasks with low 
energy requirements while the opposite stands when emax = 
100.  In addition, we assume that nodes are equipped with 
batteries. When AA batteries are used, the upper energy 
capacity of a node is equal to 330 mAh while lithium batteries 
lead to an upper capacity of 3,000 mAh. In our simulations, we 
consider that the capacity of nodes batteries is equal to 1,500 
mAh (an ‘average’ value). We also consider that when the 
energy of the node is exhausted, an energy depletion event 
takes place. This means that the battery should be replaced or 
charged. When such events are realized, al the tasks will be 
transferred to the Cloud. The event is identified and the energy 
capacity of nodes is initiated again to 1,500 mAh. Additionally, 
with probability of 1%, we simulate replacement/recharging 
events at random intervals. Finally, for the demand, we define 
an upper value dmax = 100. The demand takes values in the 
interval [0,dmax]. The demand shows the rate of requests for the 
specific task.  

We simulate 10,000 EEs. We adopt simulation scenarios 
for various values of |E|. Actually, we consider that |E|   {10, 
50, 100, 500}. When |E| = 500, we simulate the management of 
5,000,000 tasks, in total. At each EE, we create |E| tasks with 
random values as explained above. For the selection of values, 
we consider the Uniform. Finally, in the AHP weights 
definition, we consider that energy requirements and the 
demand for a task are the most important characteristics 
compared to the remaining. Characteristics that are not 
important for the strategic decision making are the type and the 
supported applications. We also adopt α = 0.5. 

The performance of the proposed scheme is evaluated by 
the following metrics. We measure the throughput of each node 



τ as the percentage of tasks that are executed locally (at the 
edge of the network). The higher the τ is, the higher the 
throughput becomes. We also focus on the energy spent for the 
execution of the selected tasks. We provide the average energy 
requirements γ that depicts the energy requested for each 
selected task. The metric γ is defined as follows: 
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where ST is the set of the selected tasks and ej is the 
required energy to conclude the task. | | depicts the cardinality 
of the set. The average demand δ represents the demand for a 
task as concluded in the performed experiments. δ is defined as 
follows: 
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where dj is the demand for every selected task. Finally, we 
adopt ω as the number of energy depletion events in the entire 
set of our experiments. ω shows how many times the battery of 
the nodes should be replaced or charged. Actually, ω depicts 
the upper number of tasks that a node, exhibiting a specific 
energy capacity, could support. The following equation holds 
true: 

   |
T
e

c
e|ω   (4) 

where ec is the current energy capacity and eT is the energy 
threshold below which the battery should be replaced or 
charged.  

B. Performance Assessment 

We report on the performance of the proposed scheme 
through the provision of a set of tables where the realizations of 
the adopted metrics are presented. Initially, we report on the 
complexity of the proposed scheme.  

The computational complexity of our scheme is affected by 
the complexity of the two parts, i.e., the pre-processing and the 
tasks selection part. In the first part, the process that contributes 
more in the final complexity is the calculation of the AHP 
weights. As the AHP involves matrix multiplication, the worst 
case performance is O(|C|3). The second part is mainly affected 
by the complexity of the optimization process. The proposed 
model depends on the number of tasks K, thus, the complexity 
is O(K). If we consider that tasks’ characteristics are constant, 
the total complexity depends on the number of tasks in each 
EE.  

We evaluate the proposed scheme concerning the time 
required to conclude the final set of tasks that will be executed 
locally.  We run a set of 10,000 EEs and get the time for 
executing the AHP and the finalization of Sj for reach task (we 
denote this time with TAHP) as well as the time required to 
conclude the final list of tasks concluded by the Knapsack 
method (we denote this time with TKnapsack). Table II reports on 
our results. Our measurements are in milliseconds. We observe 
that the proposed mechanism is very efficient concerning the 

temporal aspect of the problem. Our model requires 6.8 
milliseconds (approx.) to execute the Knapsack calculation (for 
|E| = 10,000) while the AHP and the aggregation results require 
at most 0.08 milliseconds (approx. - for |E| = 10,000). It should 
be noted that these results are the mean of the required time as 
observed in each EE. In total, every EE requires a conclusion 
time in the level of milliseconds to final the final decision. 

TABLE II. RESULTS FOR THE TIME (MILLISECONDS) REQUIRED TO CONCLUDE 

THE FINAL SUB-SETS OF TASKS. 

|E| TAHP TKnapsack 

10 0.0035 0.0206 

100 0.0088 0.1677 

500 0.0373 2.4496 

1000 0.0446 3.3534 

10000 0.0796 6.7635 

 

In Fig. 2, we present our results for the τ metric. We observe 
that the proposed scheme manages to locally execute the 
majority of the incoming tasks. This is more intense when emax 
= 10. In this scenario, as the AHP pays attention on the energy 
requirements and the demand, the low energy requirements 
make the nodes capable of executing the tasks at the edge. The 
high energy requirements (emax = 100) lead to a limited 
throughput especially when |E|   {100, 500}. In this setting, 
only a few tasks are selected to be executed at the edge. This is 
natural, as the high energy requirements make the battery of 
nodes immediately exhausted.  

 

Fig. 2.  Results for the τ metric. 

Fig. 3 reports on our results related to the γ metric. In 
general, the energy requirements of the selected tasks are kept 
at low levels compared to the upper energy limit. This means 
that multiple tasks could be adopted and executed at the edge. 
The interesting is that as |E| increases, the energy requirements 
of the selected tasks decreases. As natural, the energy 
requirements are high when emax = 100, however, they are 
below the median of the interval.    



 

Fig. 3.  Results for the γ metric. 

In Fig. 4, we present our results related to the δ metric. In 
these results, we depict the effect of the multi criteria decision 
making mechanism. We observe that as emax increases, the 
demand of the selected tasks decreases. The reason is that the 
proposed scheme pays attention on multiple characteristics at 
the same time, thus, the high energy requirements of the entire 
set of the incoming tasks negatively affect the remaining 
characteristics. The selection of tasks is mainly based on the 
energy requirements. Recall that the strategic decision is to 
consider the energy requirements together with the demand as 
the most important characteristics in the AHP model. However, 
pair comparisons between energy requirements and demand 
with the remaining characteristics make the energy to be the 
most important issue in the selection process.  

 

Fig. 4.  Results for the τ metric. 

Finally, Table III presents the number of the energy 

depletion events in the aforementioned evaluation scenarios. 

The high energy requirements negatively affect the 

performance as multiple energy depletion events are observed. 

|E| together with emax negatively affect ω exhibiting an 

increased number of events. It is important to notice that the 

high energy requirements when emax = 100 make the execution 

of tasks at the edge probably impossible due to the large 

amounts of energy required for their conclusion. Such a setting 

could not be the appropriate one to be executed by nodes with 

limited resources, e.g., mobile nodes, especially when a large 

number of tasks should be executed. Hence, the best solution 

when nodes are facing numerous tasks with increased energy 

requirements is to transfer them to Cloud.  

TABLE III. RESULTS FOR THE Ω METRIC. 

|E| 
ω 

emax=10 emax=100 

10 121 833 

50 454 4999 

100 1428 9999 

500 1666 9999 

 

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

Numerous IoT nodes interact with their environment and 
undertake the responsibility of executing tasks for supporting 
applications. Nodes exhibit limited computational resources, 
however, they could perform simple processing tasks. They 
could execute tasks at the edge of the network limiting the 
latency in delivering analytics. A strategic decision is to select 
the most significant tasks to be locally executed while the 
remaining could be transferred to Cloud. We propose a scheme 
for the optimal selection of tasks based on two modules: a pre-
processing module that derives the significance of each task 
and an optimization / selection process that delivers the final 
set of tasks that will be locally executed. The final decision is 
based on multiple characteristics of tasks to provide a more 
intelligent approach in the decision making. Our simulations 
show that when the energy requirements of the incoming tasks 
are low, the proposed scheme manages to execute locally the 
majority of them. Future extensions of our work deal with the 
definition of a more complex decision making mechanism that 
will adopt in the pre-processing module a classification model. 
The classification model could assign the incoming tasks to 
specific execution templates building on top of the experience 
gained in past interactions.  

ACKNOWLEDGMENT 

This effort is supported by the European Commission (Horizon 
2020) that aims to provide research and technological 
development under the project ENFORCE which is part of the 
grant agreement no 687860 (SoftFIRE). 

REFERENCES 

[1] Aazam, M., Hung, P. P., Huh, E. N., ' Smart Gateway based 

Communication for Cloud of Things', in 9th International Conference on 
Intelligent Sensors, Sensor Networks and Information Processing, 2014. 

[2] Awadalla, M. H. A., 'Task Mapping and Scheduling in Wireless Sensor 

Networks', IAENG International Journal of Computer Science, vol. 
440(4), 2013. 

[3] Bharti, S., Pattanaik, K., 'Task Requirement Aware Pre-processing and 

Scheduling for IoT Sensory Environments', Ad Hoc Networks, vol. 50, 
2016, pp. 102-114. 

[4] Bittencourt, L., Diaz-Montes, J., Buyya, R., Rana, O., Parashar, M., 
'Mobility-aware Application Scheduling in Fog Computing', IEEE Cloud 

Computing, March/April, 2017, pp. 34-43. 

[5] Cormen, T., Leiserson, C. E., Rivest, R. L., Stein, C., 'Introduction to 
Algorithms', 3rd Edition, MIT Press, 2009. 



[6] Dagdeviren, M., Yüksel, ‘Developing a fuzzy analytic hierarchy process 

(AHP) model for behavior-based safety management’, Information 
Sciences, 178(6), 2008, 1717–1733. 

[7] Dai, L., Chang, Y., Shen, Z., 'An Optimal Task Scheduling Algorithm in 
Wireless Sensor Networks', International Journal of Computers, 

Communications and Control, vol. 1, 2011, pp. 101-112. 

[8] Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., 
Iamnitchi, A., Barcellos, M., Felber, P., Riviere, E., 'Edge-centric 

Computing: Vision and Challenges', ACM SIGCOMM Computer 
Communication Review, vol. 45(5), 2015. 

[9] Greenberg, A., Hamilton, J., Maltz, D., Patel, 'The Cost of a Cloud: 

Research Problems in Data Center Networks', in ACM SIGCOMM, vol. 
39(1), 2008, pp. 68-73. 

[10] Huang, W., 'A Survey on Mobile Edge Computing', in 10
th
 International 

Conference on Intelligent Systems and Control, 2016. 

[11] Krishnapriya, S., Joby, P. P., 'QoS Aware Resource Scheduling in 
Internet of Things-Cloud Environment', International Journal of 

Scientific & Engineering Research, vol. 6(4), 2015. 

[12] Moschakis, I., Karatza, H., 'Towards Scheduling for Internet-of-Things 
Applications on Clouds: A Simulated Annealing Approach', 

Concurrency and Computation, Combined Special Issues on the Internet 
of Things: shaping the new Internet space and advances on Cloud 

services and Cloud computing, vol. 27(8), 2015, pp. 1886-1899. 

[13] Pasteris, S., Wang, S., Makya, C., Chan, K., Herbster, M., 'Data 

Distribution and Scheduling for Distributed Analytics Tasks', IEEE 
SWC Conference, 2017.  

[14] Saaty, T.L., ‘How to make a decision: The Analytic Hierarchy Process’, 
European Journal of Operational Research, vol. 48, 1990, pp. 9-26. 

[15] Shanthan, BJ., Kumar, A. D. V., Govindrajan, E., Arockian, L., 

'Scheduling for Internet of Things Applications on Cloud: A Review', 
Imperial Journal of Interdisciplinary Research, vol. 3(1), 2017. 

[16] Tian, Y., Ekici, E., Ozguner, F., 'Energy-Constrained Task Mapping and 

Scheduling in Wireless Sensor Networks', in IEEE International 
Conference on Mobile Adhoc and Sensor Systems, 2005. 

[17] Voinescu, A., Tudose, D. S., Tapus, N., 'Task Scheduling in Wireless 

Sensor Networks', in 6th International Conference on Networking and 
Services, 2010. 

[18] Xu, J., Palanisamy, B., Ludwig, H., Wang, Q., ‘Zenith: Utility-Aware 

Resource Allocation for Edge Computing’, in IEEE Edge, 2017. 

[19] Zhang, Q., Zhani, M. F., Boutaba, R., Hellerstein, J. L., 'Dynamic 
Heterogeneity-Aware Resource Provision- ing in the Cloud', IEEE 

Transactions on Industrial Informatics, vol. 2(1), 2014. 

[20] Zhang, Q., Zhani, M. F., Boutaba, R., Hellerstein, J. L., 'Dynamic 

Heterogeneity-Aware Resource Provision- ing in the Cloud', IEEE 
Transactions on Industrial Informatics, vol. 2(1), 2014. 

 


