

Kolomvatsos, K. and Loukopoulos, T. (2018) Scheduling the Execution of

Tasks at the Edge. In: 2018 IEEE Conference on Evolving and Adaptive

Intelligent Systems (EAIS 2018), Rhodes, Greece, 25-27 May 2018, ISBN

9781538613764 (doi:10.1109/EAIS.2018.8397183).

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/163346/

Deposited on: 14 October 2019

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/EAIS.2018.8397183
http://dx.doi.org/10.1109/EAIS.2018.8397183
http://eprints.gla.ac.uk/163346/
http://eprints.gla.ac.uk/163346/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Scheduling the Execution of Tasks at the Edge

Kostas Kolomvatsos

Dept. of Informatics and Telecommunications, University of

Athens, Athens 15784, Greece &

Dept. of Computer Science, University of Thessaly

Lamia 35100, Greece

kolomvatsos@cs.uth.gr

Thanasis Loukopoulos

Dept. of Biomedical Informatics

University of Thessaly

Lamia 35100, Greece

luke@dib.uth.gr

Abstract— The Internet of Things provides a huge

infrastructure where numerous devices produce, collect and

process data. These data are the basis for offering analytics to

support novel applications. The processing of huge volumes of

data is a demanding process, thus, the power of Cloud is already

utilized. However, latency, privacy and the drawbacks of this

centralized approach became the motivation for the emerge of

edge computing. In edge computing, data could be processed at

the edge of the network; at the IoT nodes to deliver immediate

results. Due to the limited resources of IoT nodes, it is not

possible to have a high number of demanding tasks locally

executed to support applications. In this paper, we propose a

scheme for selecting the most significant tasks to be executed at

the edge while the remaining are transferred into the Cloud. Our

distributed scheme focuses on mobile IoT nodes and provides a

decision making mechanism and an optimization module for

delivering the tasks that will be executed locally. We take into

consideration multiple characteristics of tasks and optimize the

final decision. With our mechanism, IoT nodes can be adapted to,

possibly, unknown environments evolving their decision making.

We evaluate the proposed scheme through a high number of
simulations and give numerical results.

Keywords—IoT, Edge Computing, Energy Requirements, Task

Execution

I. INTRODUCTION

Internet of Things (IoT) offers a vast infrastructure where
numerous devices produce and share data. The dynamic nature
of IoT built on top of the autonomous nature of the IoT nodes
while the heterogeneity of data requires novel processing
models for knowledge production. In legacy systems, data are
transferred to Cloud for further processing to derive knowledge
and support intelligent analytics. In any case, powerful
processing mechanisms and efficient data management
techniques are necessary due to the huge volumes of data.
Large scale data are difficult to be processed no matter the
power of Cloud. Processing data in Cloud may involve a
distant datacenter, thus, increased communication costs with
negative effects in the support of applications (e.g., increased
latency). In addition, Cloud applications do not take into
consideration possible mobility of IoT nodes that impose the
management of the spatio-temporal aspect of the collected
data. Full centralization may disregard significant issues like
privacy, heterogeneity, lack of control in the data processing,
increased latency and so on. Researchers have concluded that
processing the data at the edge of the network offers multiple
advantages avoiding the aforementioned problems [4]. With

the advent of edge and fog computing, data can processed at
the edge of the network limiting the latency for delivering
analytics.

In edge computing, numerous human-controlled devices
form the edge like PCs, tablets, smartphones, sensors or nano
datacenters [8]. They are employed to collect and, in parallel,
process the data. Edge-centric computing aims at a distributed
model that interconnects heterogenenous resources controlled
by various entities (i.e., nodes) to the fog and, accordingly, to
Cloud. Fog computing is the next step, one hop away for the
data production and the aforementioned pre-processing model.
In fog computing, nodes communicate with cloudlets and
cloudlets communicate with Cloud to realize the data
processing. Both edge and fog computing aim to keep multiple
processing tasks close to the nodes. This way, we can easily
handle the heterogeneity of the nodes when supporting
applications. In addition, mobile edge computing [10] aims to
offer an architecture that enables Cloud computing and an IT
service environment at the edge of the cellular network. Mobile
edge computing offers key emerging technologies of cellular
networks together with virtualization capabilities. Network
Function Virtualisation (NFV) and Software Defined
Networking (SDN) capabilities offer many advantages in the
management of resources and services.

For supporting applications, IoT nodes should conclude a set
of tasks. Actually, tasks are generated, possibly at high rates, at
the nodes and should be concluded immediately. Tasks are
related to processing needs defined by IoT nodes’ environment.
Each task could be separated into a set of sub-tasks. Without
loss of generality, when we refer to the term ‘task’, we focus
on the execution either of a generic task or a sub-task. In the
relevant literature, task allocation/scheduling originates in the
management of a group of nodes. The allocation of tasks is
adopted to result the assignment of each task to a node while
task scheduling aims to schedule the location and the sequence
of execution for each task. The aim is to maximize the
performance and minimize the energy consumption, thus,
maximizing the lifetime of the network. Multiple research
efforts deal with centralized approaches, thus, the
allocation/scheduling models suffers from the aforementioned
drawbacks reported for Cloud computing. In this paper, we
build on the autonomous nature of nodes focusing on mobile
devices and propose a distributed scheme for the
allocation/scheduling of the incoming tasks. However, in
contrast to other research efforts, we consider that each task
will be executed either by the node itself or in the Cloud. In the

Cloud, a set of virtualized resources/services could be present
that fulfill tasks requirements. Our scheme could be easily
connected with a cloudlet/Cloud infrastructure where tasks
could be assigned to. In the literature, one can observe various
efforts for providing virtualized functionalities. A framework
that offers experimentation capabilities on top of virtualized
resources is SoftFIRE (https://www.softfire.eu). Our research
subject is to separate the incoming tasks in two sets: those that
will be executed locally and those that will be transferred to the
Cloud.

We consider that nodes do not share any tasks with their
counterparts in the network, thus, coordination and
communication costs are eliminated. Each node adopts a
decision making scheme that derives if a task should be
executed locally or not. For instance, if a node sees that a task
requires increased computational resources and energy could
be transferred to Cloud. However, if this task is significant for
supporting applications or requires limited time for getting the
response, nodes may decide to execute it even if it will deplete
its resources. Due to energy constraints, each node could
execute a limited number of tasks, thus, it selects those that
maximize the performance. The performance is maximized
when nodes efficiently support IoT applications and save
energy at the same time. We propose a scheme that consists of
two modules: (a) a pre-processing scheme (a decision making
model) for delivering the significance of each task based on the
known Analytical Hierarchy Process (AHP) and an
aggregation function; (b) a selection scheme for delivering the
tasks that will be executed locally or not. The latter module is
based on the solution of the known Knapsack problem [5] and
aims to select the appropriate tasks under the fulfillment of
energy constraints while, in parallel, incorporating the
significance of each task. Our scheme transforms the IoT nodes
to be evolved in, possibly, unknown and dynamic
environments where various processing tasks demand for
execution. This way, nodes can be adapted in their
environment (through the required tasks) as they decide the
execution of tasks based on multiple criteria.

The paper is organized as follows. Section II reports on the
related work while Section III presents our scheme. In Section
IV, we describe the proposed modules and argue for their
adoption in tasks selection. In Section V, we provide the
experimental evaluation of the proposed scheme and in Section
VI, we conclude our paper discussing our future research plans.

II. RELATED WORK

Edge computing aims to provide an intermediate level of
processing to alleviate the burden of the Cloud infrastructure.
Edge computing offers (near) real time processing of the
collected data just before they are sent into Cloud for further
processing. The efficient processing at the edge is secured
through the adoption of smart gateways [1] and micro
datacenters [9]. Unfortunately, due to the limited computational
resources of IoT nodes, it is not possible for them to execute
any task defined by users or applications. There are multiple
tasks that demand for increased computational resources, thus,
they can only be executed in Cloud.

Tasks allocation / scheduling is a subject widely studied in
the research community. Task scheduling is studied for the
allocation of various tasks in Wireless Sensors Networks
(WSNs). In [16], the authors present an algorithm for task
mapping and scheduling taking into consideration the energy
constraints. The proposed solution adopts channels modelling,
concurrent task mapping, communication and computation
scheduling. This effort manages the nodes as a group. The
focus of [2] is on collaborative processing among multiple
nodes. The proposed algorithm adopts a linear task clustering
and a node assignment mechanism based on task duplication
and migration schemes. The algorithm concurrently allocates
task and communication events for reducing the
communication cost. In [7], a model for minimizing the
execution time is described. The proposed optimal task
scheduling is applied in a clustered network. Two phases are
adopted: the intra-cluster and the inter-cluster scheduling. The
focus of the algorithm is on the elimination of the transmission
collisions. In [3], the authors propose a model for allocating
the incoming tasks in multiple sensors according the energy
requirements. The focus is on a task pre-processor and a
scheduler that allocates the tasks in the available nodes. The
pre-processor tries to identify the energy requirements of the
incoming tasks and based on energy monitoring activities, it
decides the final scheduling. The scheduler allocates the best
available node to the incoming tasks while meeting its Quality
of Service (QoS) requirements.

A task may consist of a set of sub-tasks. The efficient
combination and execution of the sub-tasks will lead to the
efficient completion of the initial, more generic, task. In [17], a
scheduling algorithm for the available sub-tasks is proposed.
The aim is to assign each sub-task into the available nodes for
maximizing the performance. For each assignment, the
algorithm takes into consideration energy constraints, the
compatibility of sub-tasks to nodes and the topology of the
network. The provided solution maximizes network lifetime
and satisfies the constraints of the concluded assignments.
Zenith [18] proposes a methodology for resource allocation in
a set of small-scale micro-datacenters that represent ad-hoc and
distributed collection of a computing infrastructure. Zenith
allows service providers to establish resource sharing contracts
with edge infrastructure. Service providers enjoy latency-aware
scheduling provisions securing that the assigned task will meet
the latency requirements.

Task scheduling heavily depends on the application
domain. For instance, IoT and Cloud define different
requirements in task scheduling due to the different nature of
the application domain. Cloud mainly offers the available
services on demand while IoT may involve applications where
IoT nodes push their data and knowledge. A review on
scheduling algorithms that fit on both the Cloud and IoT are
discussed in [15]. Task scheduling is more important in IoT
and edge computing as IoT nodes are characterized by limited
computational capabilities. In addition, energy constraints
define more requirements for scheduling. Cloud could serve as
the intermediate between the IoT devices and applications
exhibiting a vast infrastructure where increased computational
(possibly virtualized) capabilities are available for processing.
In [13], the authors propose a model for data distribution on a

set of IoT devices. The model aims to eliminate bandwidth and
storage constraints. The assigned tasks are executed on top of a
specific amount of data while only one task is executed in each
machine. However, this could not be the usual case when we
consider real applications. Simulated annealing to solve the
problem of the adaptation of scheduling optimization
techniques in the load of computing tasks in Cloud applications
[12]. The model tries to build on the parallelization of
allocating various tasks in a multi-cloud system. Another tasks
allocation scheme for Cloud is presented in [20]. The provided
model takes into consideration both task and nodes diversity.
Workloads are clustered into different classes with the same
characteristics through the adoption of the K-means algorithm.
On top of the K-means results, the proposed algorithm sets the
number of the necessary nodes for executing the tasks, thus, it
saves energy in the network. In [11], the authors propose a QoS
aware resource scheduling algorithm. In this algorithm,
Particle Swarm Optimization (PSO) is adopted to derive the
final scheduling. The aim is to reduce time and ensure the load
balancing in order to maximize the performance.

III. PROBLEM DESCRIPTION AND PRELIMINARIES

Without loss of generality, we consider that a set of nodes
N={n1, n2, …} are available. Each node ni is capable of
executing a set of tasks Ε={ε1, ε2, ...}. Tasks are characterized
by a set of characteristics C={c1, c2, …, c|C|}. Example
characteristics could be: the size, the type, energy
requirements, the deadline (if present) and so on. Energy
requirements could be based not only on the size but also on
other parameters like the complexity of the task that imposes
the number of computations to conclude it.

We consider an Execution Era (EE) that is the time interval
for allocating and executing a set of tasks. Each node should
separate this set into two disjoint sub-sets i.e., tasks that will be
executed in the node (locally) and tasks that will be transferred
for execution in Cloud. This decision is based on multiple
criteria, i.e., the aforementioned characteristics and the
requirement for real time results. Based on these
characteristics, each node ni should realize the significance Sj
of each task. Sj depicts if a task should be executed
immediately at the edge to deliver real time results. In an EE,
tasks are seen as a group, thus, ni manage them in parallel.

In unknown environments, tasks and their requirements are
dynamically generated. The proposed scheme aims to support
mobile IoT nodes with an adaptive scheme to be fully aligned
with their internal status and tasks requirements. The proposed
model optimizes the selection of tasks according to the status
of each node in order to maximize the performance. Nodes are
based on an adaptive and evolving mechanism that optimizes
any decision during their functioning. The knowledge acquired
at each EE can be easily incorporated into the knowledge base
of the IoT nodes, thus, to support the evolvement of the
decision making. In Fig. 1, we present the envisioned
architecture for supporting each node’s behavior. We focus on
the allocation scheme that consists of two parts: (a) The pre-
processing part responsible to define the Sj for tasks present in
the current EE. The aim is to ‘sort’ the tasks according to their
significance and their time constraints and give priority for
execution to tasks that should be concluded immediately or

their characteristics indicate that their execution will be
efficient if it will be realized at the edge; (b) The selection part
that splits the set of tasks, in the current EE, into two disjoint
sub-sets, i.e., tasks that will be executed locally (at the edge)
and tasks that will be transferred to Cloud for further
processing.

For pre-processing, we produce two ‘judgments’, i.e., the
tasks ranked by (a) their characteristics; (b) their deadline, i.e.,
the time constraint to deliver the final result. Both ‘judgments’
affect the Sj value, thus, we adopt an aggregation model for
deriving the final Sj. For the first ‘judgment’, we take into
consideration the entire set C and apply the widely known
AHP. We aim to assign a weight in each task that will
represent Sj. AHP acts on top of a set of alternative options
among which the best decision is to be made. It is important to
notice that, since some of the parameters / characteristics could
be contrasting, it is not true that the best option is the one
which optimizes each single criterion, rather the one which
achieves the most suitable trade-off among the different criteria
(i.e., size, type, energy requirements, etc). AHP will realize our
‘view’ on the significance of each characteristic that, finally,
will affect Sj. The advantage is that our scheme does not
require any modeling of the domain under consideration while
being efficient in practice. The second ‘judgment’ is delivered
on top of the time constraints of each task. Actually, in this
‘judgment’, the Sj is equal to the inverse of the deadline. The
shorter the deadline is, the more significant the task becomes.
However, nodes do not want to exhaust their energy reserves to
service a single task that demands immediate responses if this
task is not important for their functioning. We select to
separate the management of the time constraints from the
remaining characteristics to pay more attention on the temporal
aspect of the problem and avoid to ‘aggregate’ it with other
characteristics. This way, the proposed model will be more
efficient in the decision making. It should be noted that the
final aggregated Sj will be delivered by the pre-processing part
that will be the basis for the final selection of the tasks that will
be executed locally.

The first part of the proposed scheme will deliver an ordered
set of tasks according to Sj. Afterwards, the second part (i.e.,
the selection process) will build on top of this set. We focus on
the energy constraints in ni aiming to derive the set of tasks that
will be executed locally. A solution to the typical Knapsack
problem [5] fits well in this setting. The Knapsack problem
belongs to combinatorial optimization problems. Our ordered
set of tasks, each of them has been assigned with a weight
(energy requirements) and a value (Sj), should be processed
and identify the sub-set of tasks that could be executed by ni.
Actually, we adopt the 0-1 version of the problem. The total
weight (energy requirements) of the locally executed tasks
should be below the capacity of the knapsack (the remaining
energy resources of ni). It should be noted that we consider
nodes equipped with batteries, i.e., mobile nodes. If the battery
is exhausted, no task could be executed or data could be
collected. If the battery is replaced or charged, energy
resources are updated and adopted in the upcoming EE.

Through the above described setting, we envision an
intelligent node capable of autonomously deciding in real time,
in consecutive eras, which tasks will execute at the edge to

reduce the latency and efficiently support applications. Our
focus in on multiple parameters before the final decision is
made. We target to optimized decisions in each EE according
to the current needs. A decision could involve the absence of
tasks selected for local execution to the entire set of tasks
present in the specific EE. This forms a complex behavior for
each node. The novelty is that we propose a sequential
processing of the incoming tasks before we conclude the final
decision. This sequential approach deals with an iterative
processing of tasks with different techniques (a decision
making and an optimization technique) to maximize the
performance.

Fig. 1. The architecture of the proposed scheme.

IV. THE PROPOSED APPROACH

A. The Pre-processing Module

The selection of the appropriate tasks involves strategic

decision making to identify the tasks that maximize the

performance at the current EE. AHP [6], [14] offers a method

for decomposing the allocation problem into a hierarchy of

sub-problems. Each sub-problem can be easily evaluated, thus,

solved. A numerical scale is adopted to support the ranking of

each alternative, i.e., the focus on various task characteristics.
AHP allows users to assess the relative weight of multiple

criteria or multiple options against given criteria in an intuitive

manner. In case quantitative ratings are not available, policy

makers or assessors can still recognize whether one criterion is

more important than another. The basic process to carry out the

AHP consists of the following steps:

1. The first step is to decompose the problem into a hierarchy
or goal, criteria, sub-criteria and alternatives. The decision
problem is separated into its constituent parts. The resulted
structure comprises a goal or focus at the topmost level,
criteria (and sub-criteria) at the intermediate levels, while the
lowest level contains the options.

2. For each pair of criteria, we rate the relative ‘priority’ of
every criterion against the others. An assignment of a weight
between 1 (equal importance) and 9 (extreme importance) to
the more important criterion is included in this step.

3. A square matrix is generated for the pair comparisons. The
elements in the diagonal are set to 1. When in the cell (i,j) of
the matrix it is a value over 1 means that the ith criterion is
better than the jth criterion. The opposite stands when the cell
(i,j) contains a value lower than 1.

4. We calculate the principal eigenvalue and the normalized
eigenvector of the aforementioned matrix to get a relative
importance of the criteria under consideration.

5. In a final step, each element’s score is combined with the
criterion weights to produce an overall score for each option.

In the pre-processing module, we take into consideration
the entire set C providing a ranking of each ci and create the

|C|X|C| matrix. Table I presents an example matrix. In this

matrix, we denote that the size of a task is five times more

important than the type and so on.

Based on the aforementioned matrix, we can calculate the

‘significance’ Sj for the jth task. Sj is calculated as follows:

|E|j1

|C|i1
,

ij
A

ij
A

i
wjS (1)

where wi is the weight of ith characteristic derived by AHP and
Aij is the frequency or the value of the specific ith characteristic

in the tasks participating in the current EE. Frequencies are

adopted in the case of nominal/ordinal characteristics while

real values are considered for numeric characteristics. The pre-

processing module derives the ordered set of task according to

Sj as calculated by Eq(1). For each of the adopted

characteristics, we define the utility that the node gains in the

form of a fraction as depicted in Eq(1). The fraction indicates

the amount of utility that the node gains for a specific task

compared to the remaining tasks in the current EE. For

instance, the higher the demand for a task is, the higher the

utility becomes (as a percentage of the sum of demands for all
tasks). The utility for the demand is multiplied by the weight of

the demand as defined by AHP, resulting the final utility for

the specific characteristic. The same rationale holds true for the

remaining characteristics. The importance of each

characteristic consists of a strategic decision towards paying

attention on a sub-set of them. This will be depicted when the

decision for executing locally the specific tasks is realized.

TABLE I. EXAMPLE OF PAIR WISE COMPARISONS.

 Size Type Demand

→

Size Type Demand

Size 1/1 5/1 1/5 1/1 5/1 1/5

Type 1/1 1/7 1/5 1/1 1/7

Demand 1/1 5/1 7/1 1/1

Let Tj be the time constraint of a task for returning the
final response (i.e., deadline). Tj could have any value, e.g., it
may be ‘strict’ meaning that the task immediately demands the
final response/result or it could be more ‘relaxed’ meaning
that the result may be delivered at any time (thus, the latency
of the processing in Cloud could be acceptable). However, a
task εj that may demand immediate response may be
characterized by increased size/demand. The proposed
mechanism considers the tradeoff between all these
characteristics when delivering the final decision. In the pre-
processing mechanism, apart from the adoption of the AHP
technique, we consider a second ‘judgment’ of the Sj. This
‘judgment’ is made on top of Tj. Actually, we get Sj=1/Tj. The
lower the Tj is, the higher the Sj becomes. This means that a

task with a limited deadline is considered as more significant

compared to the remaining tasks. Let
 be the significance of

the jth task as derived by the AHP process and
 be the

significance derived by the inverse of the time constraints. We
propose the use of an aggregation function f(

 ,
) to

derive the final Sj. f(.) aggregates two different views of the
system, i.e., one retrieved by the AHP process and one
affected by the time required for delivering the final response.
We adopt a simple, however, efficient aggregation function,
the linear opinion pool. For each j, we provide the final Sj as
follows: Sj = f(

 ,
) = α

 + (1 - α)
 , with α [0,1]. α is

adopted to enhance the effect of the AHP result or the time
constraints. For instance, when α 0, the proposed model
pays more attention on the time constraints while the scenario
where α 1 pays attention on the remaining characteristics as
depicted by the AHP result. The parameter α could be the
result of a learning process to be adapted in the observed data.
This way, the proposed model will align the effect of the AHP
and time requirements as defined by each task. The learning
model for α’s realization is left for future work.

B. The Final Selection of Tasks

Let K tasks ‘participating’ in the current EE, i.e., E={ε1, ε2,
…, εK}. Each εj has a weight (energy requirements) rj and a
value (significance) Sj. rj is derived by the size and the
complexity of each task and its calculation is not a subject of
this paper. The node also has a constraint related to the upper
amount of energy W that could be used to support the tasks.
The 0-1 Knapsack problem indicates that given a set of K tasks
numbered from ε1, το εΚ, we should solve the following
optimization problem:

Maximize jS
K

1j
j
x

Subject to Wjx
K

1j
j
r

 , }1,0{jx

In the above equations xj represents the cardinality of
instances for the jth task to be included in the knapsack. A
solution to the problem indicates the tasks that should be
executed locally. The solution could be broken into a set of
true/false decisions according to whether the current task will
be included in the knapsack or not. A task is included in the
knapsack by checking the energy that is left over. Hence, the
current decision is to check the available energy capacity or
equivalently the energy requirements of the tasks already
included in the knapsack. The important is that we build on top
of the AHP results that indicate the significance of each task.
Our optimization problem after the definition of the
significance of a task, it checks which tasks could be executed
based on the current energy savings. The knapsack oriented
solution, it is executed in each EE to depict any updates in the
energy levels. As the battery is exhausted, as natural, the tasks
that will be executed locally (at the edge) will be limited.

V. EXPERIMENTAL EVALUATION

A. Evaluation Setup and Performance Metrics

We report on the performance of the proposed scheme
through a high number of simulations. For this, we define a
simulator written in Java involving several classes for the
implementation of, among others, the AHP and the knapsack
problem modules. We emulate a real environment by setting up
the involved parameters to values that depict real settings. We
adopt a set of characteristics, i.e., C={complexity, type,
supported application, size, energy requirements, demand}. C
could be easily expanded to involve more characteristics.
Without loss of generality, we do not focus on hidden
correlations between the characteristics. For instance, the
energy requirements of a task may be depended on the
complexity and the size. Our decision has to make with the
importance of each separate characteristic in nodes functioning.
For each nominal/ordinal characteristic we define specific
values, e.g., for the complexity, we adopt the most known
complexities like the logarithmic, the linear and so on. The
same rationale holds true for the remaining nominal/ordinal
characteristics. For numeric characteristics, we adopt an upper
value as follows. For the size of tasks, we consider that the
upper size limit is equal to smax=1,000KB, thus, the size of a
task is realized in the interval [1, smax]. For energy
requirements, we consider that the upper limit is defined
through the parameter emax. In our simulations, we adopt emax
{10, 100}. The energy requirements of a task are realized in the
interval [1, emax]. When emax = 10, we adopt tasks with low
energy requirements while the opposite stands when emax =
100. In addition, we assume that nodes are equipped with
batteries. When AA batteries are used, the upper energy
capacity of a node is equal to 330 mAh while lithium batteries
lead to an upper capacity of 3,000 mAh. In our simulations, we
consider that the capacity of nodes batteries is equal to 1,500
mAh (an ‘average’ value). We also consider that when the
energy of the node is exhausted, an energy depletion event
takes place. This means that the battery should be replaced or
charged. When such events are realized, al the tasks will be
transferred to the Cloud. The event is identified and the energy
capacity of nodes is initiated again to 1,500 mAh. Additionally,
with probability of 1%, we simulate replacement/recharging
events at random intervals. Finally, for the demand, we define
an upper value dmax = 100. The demand takes values in the
interval [0,dmax]. The demand shows the rate of requests for the
specific task.

We simulate 10,000 EEs. We adopt simulation scenarios
for various values of |E|. Actually, we consider that |E| {10,
50, 100, 500}. When |E| = 500, we simulate the management of
5,000,000 tasks, in total. At each EE, we create |E| tasks with
random values as explained above. For the selection of values,
we consider the Uniform. Finally, in the AHP weights
definition, we consider that energy requirements and the
demand for a task are the most important characteristics
compared to the remaining. Characteristics that are not
important for the strategic decision making are the type and the
supported applications. We also adopt α = 0.5.

The performance of the proposed scheme is evaluated by
the following metrics. We measure the throughput of each node

τ as the percentage of tasks that are executed locally (at the
edge of the network). The higher the τ is, the higher the
throughput becomes. We also focus on the energy spent for the
execution of the selected tasks. We provide the average energy
requirements γ that depicts the energy requested for each
selected task. The metric γ is defined as follows:

|ST|

1j
j
e

|ST|

1
γ (2)

where ST is the set of the selected tasks and ej is the
required energy to conclude the task. | | depicts the cardinality
of the set. The average demand δ represents the demand for a
task as concluded in the performed experiments. δ is defined as
follows:

|ST|

1j
j
d

|ST|

1
δ (3)

where dj is the demand for every selected task. Finally, we
adopt ω as the number of energy depletion events in the entire
set of our experiments. ω shows how many times the battery of
the nodes should be replaced or charged. Actually, ω depicts
the upper number of tasks that a node, exhibiting a specific
energy capacity, could support. The following equation holds
true:

 |
T
e

c
e|ω (4)

where ec is the current energy capacity and eT is the energy
threshold below which the battery should be replaced or
charged.

B. Performance Assessment

We report on the performance of the proposed scheme
through the provision of a set of tables where the realizations of
the adopted metrics are presented. Initially, we report on the
complexity of the proposed scheme.

The computational complexity of our scheme is affected by
the complexity of the two parts, i.e., the pre-processing and the
tasks selection part. In the first part, the process that contributes
more in the final complexity is the calculation of the AHP
weights. As the AHP involves matrix multiplication, the worst
case performance is O(|C|3). The second part is mainly affected
by the complexity of the optimization process. The proposed
model depends on the number of tasks K, thus, the complexity
is O(K). If we consider that tasks’ characteristics are constant,
the total complexity depends on the number of tasks in each
EE.

We evaluate the proposed scheme concerning the time
required to conclude the final set of tasks that will be executed
locally. We run a set of 10,000 EEs and get the time for
executing the AHP and the finalization of Sj for reach task (we
denote this time with TAHP) as well as the time required to
conclude the final list of tasks concluded by the Knapsack
method (we denote this time with TKnapsack). Table II reports on
our results. Our measurements are in milliseconds. We observe
that the proposed mechanism is very efficient concerning the

temporal aspect of the problem. Our model requires 6.8
milliseconds (approx.) to execute the Knapsack calculation (for
|E| = 10,000) while the AHP and the aggregation results require
at most 0.08 milliseconds (approx. - for |E| = 10,000). It should
be noted that these results are the mean of the required time as
observed in each EE. In total, every EE requires a conclusion
time in the level of milliseconds to final the final decision.

TABLE II. RESULTS FOR THE TIME (MILLISECONDS) REQUIRED TO CONCLUDE

THE FINAL SUB-SETS OF TASKS.

|E| TAHP TKnapsack

10 0.0035 0.0206

100 0.0088 0.1677

500 0.0373 2.4496

1000 0.0446 3.3534

10000 0.0796 6.7635

In Fig. 2, we present our results for the τ metric. We observe
that the proposed scheme manages to locally execute the
majority of the incoming tasks. This is more intense when emax
= 10. In this scenario, as the AHP pays attention on the energy
requirements and the demand, the low energy requirements
make the nodes capable of executing the tasks at the edge. The
high energy requirements (emax = 100) lead to a limited
throughput especially when |E| {100, 500}. In this setting,
only a few tasks are selected to be executed at the edge. This is
natural, as the high energy requirements make the battery of
nodes immediately exhausted.

Fig. 2. Results for the τ metric.

Fig. 3 reports on our results related to the γ metric. In
general, the energy requirements of the selected tasks are kept
at low levels compared to the upper energy limit. This means
that multiple tasks could be adopted and executed at the edge.
The interesting is that as |E| increases, the energy requirements
of the selected tasks decreases. As natural, the energy
requirements are high when emax = 100, however, they are
below the median of the interval.

Fig. 3. Results for the γ metric.

In Fig. 4, we present our results related to the δ metric. In
these results, we depict the effect of the multi criteria decision
making mechanism. We observe that as emax increases, the
demand of the selected tasks decreases. The reason is that the
proposed scheme pays attention on multiple characteristics at
the same time, thus, the high energy requirements of the entire
set of the incoming tasks negatively affect the remaining
characteristics. The selection of tasks is mainly based on the
energy requirements. Recall that the strategic decision is to
consider the energy requirements together with the demand as
the most important characteristics in the AHP model. However,
pair comparisons between energy requirements and demand
with the remaining characteristics make the energy to be the
most important issue in the selection process.

Fig. 4. Results for the τ metric.

Finally, Table III presents the number of the energy

depletion events in the aforementioned evaluation scenarios.

The high energy requirements negatively affect the

performance as multiple energy depletion events are observed.

|E| together with emax negatively affect ω exhibiting an

increased number of events. It is important to notice that the

high energy requirements when emax = 100 make the execution

of tasks at the edge probably impossible due to the large

amounts of energy required for their conclusion. Such a setting

could not be the appropriate one to be executed by nodes with

limited resources, e.g., mobile nodes, especially when a large

number of tasks should be executed. Hence, the best solution

when nodes are facing numerous tasks with increased energy

requirements is to transfer them to Cloud.

TABLE III. RESULTS FOR THE Ω METRIC.

|E|
ω

emax=10 emax=100

10 121 833

50 454 4999

100 1428 9999

500 1666 9999

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Numerous IoT nodes interact with their environment and
undertake the responsibility of executing tasks for supporting
applications. Nodes exhibit limited computational resources,
however, they could perform simple processing tasks. They
could execute tasks at the edge of the network limiting the
latency in delivering analytics. A strategic decision is to select
the most significant tasks to be locally executed while the
remaining could be transferred to Cloud. We propose a scheme
for the optimal selection of tasks based on two modules: a pre-
processing module that derives the significance of each task
and an optimization / selection process that delivers the final
set of tasks that will be locally executed. The final decision is
based on multiple characteristics of tasks to provide a more
intelligent approach in the decision making. Our simulations
show that when the energy requirements of the incoming tasks
are low, the proposed scheme manages to execute locally the
majority of them. Future extensions of our work deal with the
definition of a more complex decision making mechanism that
will adopt in the pre-processing module a classification model.
The classification model could assign the incoming tasks to
specific execution templates building on top of the experience
gained in past interactions.

ACKNOWLEDGMENT

This effort is supported by the European Commission (Horizon
2020) that aims to provide research and technological
development under the project ENFORCE which is part of the
grant agreement no 687860 (SoftFIRE).

REFERENCES

[1] Aazam, M., Hung, P. P., Huh, E. N., ' Smart Gateway based

Communication for Cloud of Things', in 9th International Conference on
Intelligent Sensors, Sensor Networks and Information Processing, 2014.

[2] Awadalla, M. H. A., 'Task Mapping and Scheduling in Wireless Sensor

Networks', IAENG International Journal of Computer Science, vol.
440(4), 2013.

[3] Bharti, S., Pattanaik, K., 'Task Requirement Aware Pre-processing and

Scheduling for IoT Sensory Environments', Ad Hoc Networks, vol. 50,
2016, pp. 102-114.

[4] Bittencourt, L., Diaz-Montes, J., Buyya, R., Rana, O., Parashar, M.,
'Mobility-aware Application Scheduling in Fog Computing', IEEE Cloud

Computing, March/April, 2017, pp. 34-43.

[5] Cormen, T., Leiserson, C. E., Rivest, R. L., Stein, C., 'Introduction to
Algorithms', 3rd Edition, MIT Press, 2009.

[6] Dagdeviren, M., Yüksel, ‘Developing a fuzzy analytic hierarchy process

(AHP) model for behavior-based safety management’, Information
Sciences, 178(6), 2008, 1717–1733.

[7] Dai, L., Chang, Y., Shen, Z., 'An Optimal Task Scheduling Algorithm in
Wireless Sensor Networks', International Journal of Computers,

Communications and Control, vol. 1, 2011, pp. 101-112.

[8] Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T.,
Iamnitchi, A., Barcellos, M., Felber, P., Riviere, E., 'Edge-centric

Computing: Vision and Challenges', ACM SIGCOMM Computer
Communication Review, vol. 45(5), 2015.

[9] Greenberg, A., Hamilton, J., Maltz, D., Patel, 'The Cost of a Cloud:

Research Problems in Data Center Networks', in ACM SIGCOMM, vol.
39(1), 2008, pp. 68-73.

[10] Huang, W., 'A Survey on Mobile Edge Computing', in 10
th
 International

Conference on Intelligent Systems and Control, 2016.

[11] Krishnapriya, S., Joby, P. P., 'QoS Aware Resource Scheduling in
Internet of Things-Cloud Environment', International Journal of

Scientific & Engineering Research, vol. 6(4), 2015.

[12] Moschakis, I., Karatza, H., 'Towards Scheduling for Internet-of-Things
Applications on Clouds: A Simulated Annealing Approach',

Concurrency and Computation, Combined Special Issues on the Internet
of Things: shaping the new Internet space and advances on Cloud

services and Cloud computing, vol. 27(8), 2015, pp. 1886-1899.

[13] Pasteris, S., Wang, S., Makya, C., Chan, K., Herbster, M., 'Data

Distribution and Scheduling for Distributed Analytics Tasks', IEEE
SWC Conference, 2017.

[14] Saaty, T.L., ‘How to make a decision: The Analytic Hierarchy Process’,
European Journal of Operational Research, vol. 48, 1990, pp. 9-26.

[15] Shanthan, BJ., Kumar, A. D. V., Govindrajan, E., Arockian, L.,

'Scheduling for Internet of Things Applications on Cloud: A Review',
Imperial Journal of Interdisciplinary Research, vol. 3(1), 2017.

[16] Tian, Y., Ekici, E., Ozguner, F., 'Energy-Constrained Task Mapping and

Scheduling in Wireless Sensor Networks', in IEEE International
Conference on Mobile Adhoc and Sensor Systems, 2005.

[17] Voinescu, A., Tudose, D. S., Tapus, N., 'Task Scheduling in Wireless

Sensor Networks', in 6th International Conference on Networking and
Services, 2010.

[18] Xu, J., Palanisamy, B., Ludwig, H., Wang, Q., ‘Zenith: Utility-Aware

Resource Allocation for Edge Computing’, in IEEE Edge, 2017.

[19] Zhang, Q., Zhani, M. F., Boutaba, R., Hellerstein, J. L., 'Dynamic
Heterogeneity-Aware Resource Provision- ing in the Cloud', IEEE

Transactions on Industrial Informatics, vol. 2(1), 2014.

[20] Zhang, Q., Zhani, M. F., Boutaba, R., Hellerstein, J. L., 'Dynamic

Heterogeneity-Aware Resource Provision- ing in the Cloud', IEEE
Transactions on Industrial Informatics, vol. 2(1), 2014.

