
 

 
 
 
 
 

Cooper, B., Adriaenssens, B. and Killen, S.S. (2018) Individual variation in the 

compromise between social group membership and exposure to preferred temperatures. 

Proceedings of the Royal Society of London Series B: Biological Sciences, 285(1880), 

20180884. 

 

   

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 
 
 
 

http://eprints.gla.ac.uk/162164/  
      

 
 
 
 
 

 
Deposited on: 5 May 2018 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/162164/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


1  

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

Individual variation in the compromise between social group membership and exposure to preferred 10 

temperatures 11 

B. Cooper1,2, B. Adriaenssens1, S. S. Killen1* 12 

 13 

1 Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr 14 

Building, Glasgow G12 8QQ, UK 15 

2 Current Address: Department for Neuroscience, Psychology and Behaviour, University of Leicester, 16 

Adrian Building, Leicester, LE1 7RH 17 

 18 

  19 

*author for correspondence 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 



2  

ABSTRACT 33 

Group living is widespread among animal species, and comes with a number of costs and benefits 34 

associated with foraging, predator avoidance and reproduction. It is largely unknown, however, whether 35 

individuals sacrifice exposure to their own preferred or optimal environmental conditions so they can 36 

remain part of a social group. Here we demonstrate that individual three-spine sticklebacks vary in the 37 

degree to which they forego exposure to their preferred ambient temperature so they can associate with 38 

a group of conspecifics. Individual fish varied widely in preferred temperature when tested in isolation. 39 

When the same individuals were presented with a choice of a warm or cold thermal regime in the 40 

presence of a social group in one of the environments, fish spent more time with the group if it was close 41 

to their own individually preferred temperature. When a group was in a relatively cool environment, focal 42 

individuals that were more social  deviated most strongly from their preferred temperature to associate 43 

with the group. Standard and maximum metabolic rate were not related to temperature preference or 44 

thermal compromise. However, individuals with a higher standard metabolic rate were less social, and so 45 

energetic demand may indirectly influence the environmental costs experienced by group members. The 46 

reduced tendency to engage with a social group when there is a large difference between the group 47 

temperature and the individual’s preferred temperature suggests a role for temperature in group 48 

formation and cohesion that is mediated by individual physiology and behaviour. Together, these data 49 

highlight exposure to non-preferred temperatures as a potential cost of group membership that likely has 50 

important but to date unrecognized implications for metabolic demand, energy allocation, locomotor 51 

performance, and overall group functioning. 52 
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INTRODUCTION 53 

Group living is widespread across animal taxa and confers a range of advantages for predator avoidance 54 

[1, 2], foraging [3], reproductive success [4, 5], and locomotor efficiency [6-8]. To derive these benefits, 55 

however, group members must cope with costs of group living, including increased competition for 56 

resources [9], disease transfer [10], and increased visibility to predators [11]. Furthermore, although 57 

individuals within groups often adjust their behaviour towards a collective common-ground [12], 58 

individuals within species vary considerably in their behavioural and physiological phenotype [13, 14]. 59 

This suggests that group members also vary in the degree of physiological and behavioural compromise 60 

they must make to align with the group as a whole. 61 

An additional cost of group membership is that individuals sacrifice exposure to their own preferred 62 

environmental conditions so that they can be part of a group [15]. An example of such a compromise, 63 

particularly for ectotherms, is the potential for an individual group member to deviate from its own 64 

preferred temperature to remain with group mates. Temperature has an effect on a range of 65 

physiological processes, including minimum and maximum aerobic metabolic rates [16-18], growth and 66 

digestive capacity [19], and locomotor ability [20, 21]. Within species, individuals can show wide variation 67 

in the temperature that they prefer to experience [22]. Studies have shown that individual preferred 68 

temperatures in some fish species tend to fall within optimum individual temperature ranges for growth 69 

[23].  In a group scenario, however, animals show relatively synchronous behaviour and individuals 70 

occupy a similar spatial location with a given set of environmental parameters. As a result, individuals 71 

within a group will be exposed to similar temperatures, regardless of individual preferences. Some 72 

individuals may therefore face a constant trade-off between the benefits of being in a group and 73 

experiencing temperatures that may cause them to incur a physiological cost. 74 

The degree to which an individual is willing to depart from its preferred environmental conditions to 75 
associate with a group may be affected by its intrinsic sociability, defined as the tendency to associate 76 
with conspecifics for non-aggressive interactions [24]. Individuals within species vary in their sociability, 77 
and more social individuals may be more likely to sacrifice exposure to their own preferred temperature 78 
to remain with a group. There is also evidence that individuals with an intrinsically higher energetic 79 
demand (i.e. those with a higher standard metabolic rate [SMR], the base level of metabolism required 80 
for an ectotherm to sustain life) are less social [25]. It is therefore possible that SMR could have direct or 81 
indirect effects on thermal compromises via effects on sociability. Similarly, maximum aerobic metabolic 82 
rate (MMR) is directly related to aerobic scope (AS; equal to MMR – SMR), locomotor ability, and 83 
potentially the ability to recover from burst-type anaerobic activity [26-28]. In many ectothermic species, 84 
MMR and AS are sensitive to acute and chronic shifts in temperature and so may influence thermal 85 
preferences [16]. In addition, aerobic capacity can positively correlate with competitive ability [29], and 86 
so animals with a higher MMR may be more social if they are able to overcome potential costs of 87 
grouping by out-competing other group members for resources. 88 

We studied these issues in the three-spine stickleback Gasterosteus aculeatus, a shoaling fish species [30, 89 

31] that is frequently used as a model for studying collective behaviour [32-34]. Water temperatures in 90 

this species’ natural habitat can show wide temporal and spatial variation, in some cases spanning a 15◦C 91 

range on daily and annual bases [35]. This makes it an ideal species for studying general behavioural 92 

responses to thermal heterogeneity which remain relevant to the animal’s natural ecology. Specifically, 93 

we aimed to address the following questions: (1) Do individuals differ in their preferred temperature?; (2) 94 

Do individuals vary in the extent to which they will deviate from their own preferred temperature to 95 

associate with conspecifics?; and (3) Does the willingness to deviate from a preferred thermal regime 96 

depend on interactions among sociability, temperature preference, and metabolic traits? Our results 97 
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provide insight into the relative costs and benefits of sociability and the extent to which environmental 98 

temperature can shape interactions between individual animals and their social environment. 99 

METHODS 100 

Study Animals 101 

The sticklebacks used in this study were the second generation progeny of individuals collected in January 102 

2014 from the River Endrick catchment (56◦03’N, 4◦22’W). All fish were generated using in vitro 103 

fertilisation from 2 parents. We used a total of 49 haphazardly sampled focal individuals for temperature 104 

preference and behavioural experiments, comprising 5 fish from each of 10 families (4 fish in the case of 105 

one family). In addition to focal fish, 5 siblings from each of these 10 families were used to act as stimulus 106 

shoals in shoaling trials. When generating families, each male or female parent was used only once. 107 

Approximately 6-8 months after hatching (February 23, 2016), juvenile focal fish from each family were 108 

tagged with one of five colours of visible implant elastomer (Northwest Marine Technology Inc., Shaw 109 

Island, USA) on either the right or left side of the dorsal fin. Individuals from each family were then 110 

moved to 5 separate tanks such that each tank contained one individual from each family (10 fish per 111 

tank with the exception of one tank that had 9 fish). Additionally, the non-focal siblings were held in 112 

separate tanks per family. 113 

Focal fish were measured for body mass and length at this point (mean initial mass (m) = 425 ± 126 mg; 114 

mean initial total length (TL) = 335 ± 29 mm; measurements are presented ± standard deviation). All focal 115 

fish were weighed and measured again approximately 6 months later (m = 807 ± 118 mg; TL = 387 ± 30 116 

mm). Fish were kept at a constant photoperiod of 12h light 12h dark throughout the study. Holding tanks 117 

were kept at 12◦C with in a recirculating aquarium system with biological, mechanical, and UV filtration 118 

that was maintained with regular input of dechlorinated tap water. Fish were fed twice a day with frozen 119 

bloodworms. 120 

Individual Temperature Preference 121 

Fish were scored individually for temperature preference using a shuttlebox tank (Loligo Systems, Tjele, 122 

Denmark) consisting of two 30 cm diameter circular tanks joined by an 8 cm long connecting section. The 123 

tank was filled with water to a depth of 5 cm, and both of the two sub-chambers had an inlet and an 124 

outlet, connected by tubing to two separate external buffer tanks. The temperatures in each buffer tank 125 

could be increased or decreased independently, and water fed to each side of the shuttlebox tank to alter 126 

the temperature of that side. External heating and cooling units connected to the buffer tanks gave a 127 

maximum possible temperature range of 4oC to 24oC. The inflows and outflows of the shuttlebox tank 128 

were arranged such that water flowed clockwise around one section and anti-clockwise around the other, 129 

minimising mixing between the chambers. Water entering the shuttlebox tank passed over a 130 

temperature probe which was connected to external temperature sensors and a data acquisition module 131 

(DAQ-M, Loligo Systems, Denmark). These were in turn connected to a computer running ShuttleSoft 132 

software (Loligo Systems, Denmark), which could therefore control the temperature in each side of the 133 

shuttlebox tank independently. The computer was also connected to an infra-red sensitive camera (uEye, 134 

Imaging Development Systems GmbH, Obersulm, Germany), one meter above the tank and looking 135 

down, which allowed the software to track a fish placed in the tank by contrast. The tank was lit from 136 

below by two infra-red spotlights to increase the contrast of the fish. Two LED lamps provided faint 137 

illumination to the shuttlebox tank, which was kept behind black curtains for the duration of trials to 138 

minimise disturbance to the fish. 139 
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Fish were transferred between holding tanks and experimental tanks in a bucket of water. Fish were first 140 

left in the tank for 16 h overnight (from 17:00 to 09:00) with the software set in “static” mode, during 141 

which each side was kept at a constant temperature, here 12.5◦C and 15.5◦C ± 0.2◦C. After this point, the 142 

system was set to the “dynamic” mode. During this time, fish were able to explore the two sides for eight 143 

hours, between 09:00 and 17:00. In dynamic mode, the software maintained a set difference in 144 

temperature between the two sections (here 3◦C), but altered the actual temperatures based on the 145 

location of the fish within the tank. If the fish were in the cooler section, the temperature of both 146 

chambers was decreased at a rate of 2◦C h−1, maintaining the set differential between them. Should the 147 

fish move to the warmer chamber, both sides increased in temperature at this same rate. The fish was 148 

therefore able to behaviourally regulate the temperature that it experienced. Data were logged once per 149 

second, including fish position and the temperatures in each side of the shuttlebox. Preferred 150 

temperatures are reported as the modal temperature experienced by the fish during the full 8 hours of 151 

its time in dynamic mode (note that the modal temperature is robust to the duration of the time period 152 

used to determine preferred temperature).  153 

Social Behaviour and Thermal Compromise 154 

Fish were then scored for social behaviour in varying thermal environments over five successive trials,    155 

each of which ran for 30 min using the same shuttlebox tank. For these trials two transparent 12 cm 156 

diameter PVC cylinders were placed in the centre of each shuttlebox chamber to allow the placement of a 157 

physically isolated shoal of five sticklebacks. Small holes were drilled into the sides of these cylinders. An 158 

empty cylinder acted as a control when required. Fish making up the stimulus shoals were full kin of focal 159 

fish, and reared in the same tank until tagging. During each trial the proportion of time the fish spent in 160 

either chamber of the shuttlebox was quantified. 161 

Trials investigating changes in spatial usage of the tank in response to the presence of a group were      162 

performed with static temperatures which did not vary based on the location of the focal fish. Each trial 163 

consisted of a different treatment condition as follows: In the first trial, one shuttlebox chamber was kept 164 

at 12.5◦C and the other at 15.5◦C, with neither side containing a shoal. In trials 2 and 3 a stimulus shoal 165 

was placed in the cylinder on either the warm or cool section for 30 min, then moved to the opposite 166 

section for another 30 minutes. Since the shoal was physically moved from one side of the shuttlebox to 167 

the other between trials 2 and 3, the order in which these trials were carried out was varied among 168 

individuals in a family such that half of individuals began with the shoal on the warm side, then had it 169 

moved to the cool side, and half the other way round. All fish in the stimulus shoal were netted 170 

simultaneously and transferred between sides of the tank as quickly as possible to minimize stress from 171 

disturbance. 172 

Space use within each trial was quantified using the ratio of the time (s) spent on the cool side to time 173 

spent on the warm side. The degree to which fish changed behaviour from when they were alone based 174 

on the presence of a shoal was calculated as the change in space use (as a ratio of time) between a trial 175 

with no shoal present and the trials with a shoal present on either the cool side or warm side. These 176 

figures were then changed to a percentage, with 50% meaning no preference for either side, 100% being 177 

all time spent on the warmer side, and 0% being all time spent on the cooler side. 178 

Finally, in trials 4 and 5, both sides of the tank were set to 14◦C (the average temperature across the 179 

shuttlebox chambers in the static choice trials), and the trials repeated again, once with the shoal in each 180 

section. As in trials 2 and 3, the order of shoal placement on each side was varied between individuals. 181 

These trials allowed quantification of sociability without a temperature differential. Individual sociability 182 
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score was a unitless value, equivalent to the mean percentage of time spent in the same chamber as the 183 

stimulus shoal across trials 4 and 5.  184 

Estimation of Metabolic Rates 185 

One week after all temperature preference and social trials had taken place, metabolic rates of the focal 186 

fish were estimated using intermittent stopped-flow respirometry [36, 37]. Each day at approximately 187 

14:00 h, eight fish that had been fasted for 36 h were subjected to exhaustive exercise by manually 188 

chasing the fish in a circular tank (50 cm diameter) with a water depth of 10 cm [27, 38]. All fish were 189 

exhausted, defined as being non-responsive to additional stimuli and would not correct themselves if 190 

turned upside down, within 3 min of chasing. Fish were immediately transferred to individual cylindrical 191 

50 mL glass respirometers; transfer time was always less than 20 s. For all measurements, water oxygen 192 

content was quantified once every 2 s using a Firesting 4-channel oxygen meter and associated sensors 193 

(PyroScience GmbH, Aachen, Germany). Rates of oxygen uptake were then calculated in 3 min intervals 194 

during a 20 min closed phase in the respirometers, and the maximum rate of oxygen uptake measured 195 

during this time by measuring the slope of oxygen decline in each chamber and accounting for the 196 

chamber water volume (and associated tubing), minus the volume of the fish (assuming 1 g of fish 197 

approximates 1 ml). The maximum rate during this time was taken as MMR (in mg O2 h−1). The fish were 198 

then left undisturbed overnight. Respirometers were located within a water bath kept at 12◦C. Every 10 199 

min an automated flush pump would switch on or off. When off, respirometers were sealed and the 200 

decrease in oxygen content could be analysed to indicate rate of oxygen uptake. When open, 201 

respirometers would be flushed with aerated water. Oxygen content within chambers was always above 202 

75% air saturation. Fish were removed from respirometers at around 10:00 h the following day. Once fish 203 

were removed, chambers were re-sealed and left to run empty for at least 1 h to control for background 204 

bacterial oxygen consumption (chambers were cleaned daily with bleach and bacterial oxygen 205 

consumption was always less than 10% of the oxygen uptake by fish). Whole animal standard metabolic 206 

rate (SMR; mg O2 h−1) was estimated by first calculating rates of oxygen uptake from slopes as described 207 

for MMR, then determining the lowest 10th percentile of measurements taken throughout the 208 

measurement period, excluding the first 5 h of confinement in the chambers.. Absolute aerobic scope 209 

(AS) was calculated as the difference between MMR and SMR. Due to a technical issue with the 210 

respirometry setup, some data did not record correctly. Therefore the actual sample sizes were 25 for 211 

SMR and AS, and 41 for MMR. These samples recorded normally and can be considered to be 212 

representative of the larger population of fish in the study. 213 

Data and Statistical Analyses 214 

All data are available in the Mendeley Data Repository (http://dx.doi.org/10.17632/34npwr97vn.1). 215 

Analyses were performed in R (R core team) using linear mixed-effects models (LME) using the package 216 

“lme4” [39]. The first used tank spatial usage as a response variable (an individual’s mean position in a 217 

specific trial, ranging from 100% cool side to 100% warm side.)  Explanatory variables were preferred 218 

temperature (of that individual), location of the shoal (3 levels: warm side, cold side, no shoal), sociability 219 

(of that individual at an intermediate temperature), log body mass, log MMR, and the interaction 220 

between sociability and shoal location.  221 

Two additional LMEs were created to explore relationships between metabolic rate and sociability. These 222 

models each had sociability as a response variable, and log body mass as an explanatory variable. One 223 

model had log MMR as an explanatory variable, whilst the other had both log SMR and log AS as 224 

explanatory variables. These models were created separately to account for the difference in sample 225 

sizes between SMR/AS and MMR. For all models and tests, p <0.05 was used as the significance 226 
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threshold; non-significant model terms were systematically removed in a backwards-step model selection 227 

process based on AIC scores [40]. Model assumptions were verified by examining residuals compared to 228 

the fitted values. It was found that families varied in metabolic rate, therefore family was included as a 229 

random effect in all models. Additionally, individual ID was included in the model of spatial tank usage to 230 

account for the effect of repeated measures on the same individual. Finally, Julian date was added as a 231 

fixed effect to control for any systematic changes in mean thermal preference across individuals through 232 

time.  233 

ANOVA was performed on models to obtain F values Model r2 values were computed using the MuMIn 234 

1.9.13 package for R [41]. This included marginal r2 (r2
m) and conditional r2 (r2

c), which indicate the 235 

variance explained by fixed factors and by both fixed and random factors, respectively [42]. Full details of 236 

model terms and output can be found in Supplementary Tables S1 and S2. 237 

Tests for correlations between variables were performed using Pearson’s product-moment correlation 238 

coefficients (r), and tests for differences among families in preferred temperature and sociability were 239 

performed using Friedman rank sum tests (Q). 240 

RESULTS 241 

Individual Temperature Preference 242 

Individuals showed a wide range of preferred temperatures, ranging from 9.68◦C to 19.82◦C. Individuals 243 

with a lower body mass preferred higher temperatures (Figure 1; Pearson correlation coefficient:  r = -244 

0.40, p = 0.006). Even after correction for body mass using residuals of the relationship between 245 

preferred temperature and mass, there remained a 3.92◦C range of preferred temperatures among 246 

individuals (12.67◦C – 16.59◦C). Subsequent statistical models do not use these corrected values, but 247 

instead use raw temperature preferences with body mass included as a covariate. There was no effect of 248 

SMR, MMR, or AS on preferred temperature among individuals. Families did not differ in preferred 249 

temperature (Friedman test:  Q4 = 6.54, p=0.161) 250 

The Effect of Behavioural and Metabolic Traits on Thermal Compromise 251 

When a shoal of conspecifics was added to either side of the tank, fish spent more time on that side of 252 

the tank (Figure 2; LME: F 2,68=81.66, p<0.001; Table S1). However, the degree to which fish changed their 253 

space use in the presence of conspecifics – and therefore, the temperature they experienced – differed 254 

greatly among individuals (Figure 3). This difference was modulated by their preferred temperature: fish 255 

with a preference for warmer temperatures when alone spent more time in the warmer environment, 256 

regardless of the location of the shoal (Figure 3; LME: F 1,68=7.90, p=0.009). 257 

The tendency of fish to change their space use upon addition of a shoal was also dependent on 258 

sociability.  When the stimulus shoal was in the cool environment, the fish that were more social showed 259 

a greater tendency to move towards the shoal (Figure 4B, left panel; LME:  t 1,68 = -4.74, p < 0.001). When 260 

the shoal was on the warm side, however, there was no effect of sociability on space use (Figure 4B, right 261 

panel; LME:  t 1,68 = 0.06, p < 0.956). Sociability did not affect space use when the shoal was not present 262 

(Figure 4B, central panel; Pearson correlation coefficient: r = 0.08, p = 0.581), nor did it have any effect on 263 

preferred temperature (Pearson correlation coefficient: r = 0.08, p=0.622). Families did not differ in 264 

sociability (Friedman test: Q4 = 4.80, p=0.308) 265 

The effect of a shoal in the cooler environment on space use by the focal individual was greater than the 266 

effect of a shoal in the warmer environment (Figure 2; LME, effect of cool side shoal: t2,68 = -7.31, p < 267 

0.001; effect of warm side shoal: t2,68 = 5.30, p < 0.001). There was also greater variance in spatial 268 
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positioning of focal individuals when the shoal was on the cool side compared to the warm side 269 

(coefficients of variance: cool side shoal = 1916.32; warm side shoal = 1336.37). Smaller individuals also 270 

spent more time in the warmer environment across all shoal treatments (Figure 1; LME: F 1,68 = 4.26, p = 271 

0.048) mirroring their tendency towards higher preferred temperatures when alone. 272 

Individual fish varied in their SMR, MMR, and AS after correcting for body mass. Sociability decreased 273 

with increasing SMR (Figure 5; LME: F 1,23 = 7.35, p = 0.012; Table S2) and increasing MMR (LME: F 1,37 = 274 

4.49, p = 0.041), while AS had no effect on sociability (LME: F 116 = 0.22, p = 0.644). Animals with a higher 275 

SMR spent more time away from the shoal when the shoal was on the warmer side (Pearson correlation; 276 

r=0.42, p=0.019). No other links were found among preferred temperature, tank spatial usage and any of 277 

SMR, MMR or AS. Full details on these correlations can be found in Table S3. 278 

DISCUSSION 279 

These results demonstrate that animals will compromise exposure to their individually preferred thermal 280 

regime in order to associate with conspecifics. However, preferred temperature still influenced where 281 

individuals chose to go when a group was present, and therefore the degree of thermal compromise that 282 

each individual experienced. Almost all fish shifted towards the shoal’s location in either a warm or cool 283 

environment, but the magnitude of this shift depended upon individual temperature preference. Many 284 

fish had an individual preferred temperature above both even the warmer environment, but were still 285 

willing to make a profound thermal compromise to associate with the shoal on the cooler side. 286 

These results not only indicate that the environment could be an important modulator of group cohesion 287 

in gregarious species, but also that exposure to non-preferred temperatures may be a compromise 288 

associated with group living that varies among groupmates. In the specific case of sticklebacks, water 289 

temperatures in this species’ natural habitat can show wide temporal and spatial variation, in some cases 290 

spanning a 15◦C range on daily and annual bases [35]. Furthermore, riverine systems similar to that from 291 

which the experimental fish were sourced can have microthermal gradients of up to 7◦C on a scale of 292 

centimetres to meters, based on changing depth, shading, and floating vegetation [43]. In the wild, 293 

sticklebacks exist in variable shoal sizes ranging from a few to dozens of individuals [44]. Depending on 294 

factors such as the degree of environmental heterogeneity and the area or volume occupied by the 295 

group, it is likely that sticklebacks experience trade-offs between social group membership and exposure 296 

to preferred temperatures. Alternatively, individuals may minimize this tradeoff by grouping with 297 

individuals that prefer similar temperatures. 298 

Exposure to a non-preferred thermal regime is likely to affect the physiology and behaviour of individual 299 

animals within social groups. The mechanistic basis for individual variation in thermal preference in 300 

ectotherms is not well understood, and the exact physiological costs of being at a non-preferred 301 

temperature in ectotherms is in need of further study. However, the available evidence suggests that 302 

exposure to temperatures that are warmer or cooler than an individual’s preference will affect metabolic 303 

demand and energy budgeting among growth, activity and possibly reproduction [22]. If individuals 304 

experience varying degrees of thermal compromise whilst part of a group, foraging activity of the group 305 

may not be aligned to the demands of each individual. Additional work could examine how foraging and 306 

growth rates change among individuals in response to the temperature experienced by the group. For 307 

ectotherms, exposure to cooler or warmer temperatures than preferred could cause an individual to 308 

display more or less activity than that of the group, potentially increasing their conspicuousness to 309 

predators via the oddity effect [45]. Individual movement speed has been shown to be a key trait 310 

allowing individuals to direct group movements in animal collectives [32], and so changes in movement 311 

speed could influence which individuals become leaders within groups. Aerobic scope can be affected by 312 
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temperature in ectotherms [36], and a reduced aerobic scope could also constrain the ability to 313 

simultaneously feed and digest food while continuing to match the performance of the group [46, 47]. 314 

For sticklebacks, growth can occur over wide range of temperatures (3-29oC), with an optimum for 315 

growth occurring around 12-24oC, depending on available rations [35, 48]. Finally, it is worth noting 316 

escape performance in fish is affected by temperature [26, 49], and fish exposed to non-preferred 317 

temperatures could experience a reduced ability to avoid predators during an attack. 318 

Sociability influenced the degree of thermal compromise individuals made to be with the group, but only 319 

when the group was located in the cooler environment. When the shoal was in the warmer environment, 320 

nearly all fish moved towards the group regardless of their own level of sociability. This may have been 321 

due to the fact that the warmer environment was closer in temperature to the individual preferences of 322 

the majority of fish, which may have therefore masked the effect of sociability. The overall picture that 323 

emerges from these findings is that individual fish did not elect to move towards cooler temperatures 324 

unless a shoal was present in that location and they themselves were relatively social, or unless they 325 

already prefer to be at cooler temperatures. The reasons for this shift are unknown but, under conditions 326 

of high food availability, warmer temperatures can increase growth rate in ectotherms until the point at 327 

which their optimal thermal range for growth is exceeded [50]. This effect could also explain why smaller 328 

individuals in the present study preferred warmer temperatures. Studies have shown that individual fish 329 

may prefer temperatures which represent their own optimum temperature for growth [23]. In this study, 330 

many fish, and especially those that were smaller, had a preferred temperature above even the warmer 331 

temperature presented in the shoaling trials, therefore both environments may have presented a 332 

compromise, but differing in magnitude. This suggests that there may be relationships among size, 333 

preferred temperature and sociability which may be important for group formation and cohesion. 334 

An individual’s tendency to associate with a shoal depended on the temperature of the shoal, and those 335 

individuals that associated most with a shoal on the warm side associated least when the shoal was on 336 

the cool side. Very few individuals were observed that either readily joined, or clearly avoided the shoal 337 

at both temperatures. We therefore suggest that the observed behaviours are not just the result of 338 

individual variation in sociability, but interactions among sociability, ambient temperature and likely 339 

intrinsic factors such as body mass or metabolic rate. Further study into interactions among factors may 340 

elucidate the degree to which exposure to non-preferred temperatures may impose a cost in terms of 341 

locomotor performance (and by extension, foraging ability and predator avoidance), growth, or 342 

reproduction. 343 

Metabolic traits, as measured at a common temperature, were not directly related to the temperature 344 

preference of individuals, or the degree of thermal compromise they made. Individuals with a lower SMR, 345 

however, were more social and so individual metabolic demand may indirectly influence thermal 346 

compromises experienced by individual group members via effects on sociability. Group living can 347 

increase competition for food [9], and individuals with increased maintenance costs have previously been 348 

found to be less social, presumably to increase their own food intake [25]. Previous work has observed a 349 

negative correlation between preferred temperature and SMR among individual fish [22], a relationship 350 

that was not observed in the current study. It is possible that the relationships among metabolic traits 351 

and temperature preference vary among species or are labile in response to environmental factors [51]. 352 

A caveat with the current findings is that SMR and MMR were measured at a single temperature, while 353 

fish in the behavioural studies would have been experiencing variable environmental temperatures. 354 

Given that SMR and MMR can be affected by temperature in ectotherms [36, 52], additional work is 355 

required to determine how reaction norms for metabolic traits among individuals across temperatures 356 

align with reaction norms for sociability across temperatures. 357 
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Any effects on behaviour and physiology experienced by individuals by exposure to non-preferred 358 

temperatures could have emergent effects on how social groups are formed, their composition, and their 359 

functioning as a unit. Social groups such as fish shoals are believed to form through a combination of 360 

active and passive processes [53]. Active group assortment occurs when individuals preferentially 361 

associate with conspecifics of a particular phenotype, while passive assortment occurs when individuals 362 

associate in space and time due to mutual environmental association, perhaps based on factors such as 363 

nutritional requirements, or sensitivity to environmental stressors [54]. The current study also suggests 364 

that temperature preference of individuals may interact with sociability to affect these mechanisms of 365 

group formation. If given a choice, individuals should associate with conspecifics with a similar preferred 366 

temperature to themselves. However, associations based on temperature preference could also occur 367 

passively if individuals with similar thermal preferences tend to occupy the same spatial location. 368 

Regardless of the mechanism, if social groups are comprised of individuals with a similar thermal 369 

preference, this could cause clustering of individuals with traits correlated with thermal preference and 370 

possibly influence assortative mating. Sticklebacks in particular have been shown to demonstrate a 371 

degree of shoal fidelity in the wild [44]. While it is likely that familiarity plays an important role in 372 

facilitating stable group composition [55], common preferences for temperature among individuals could 373 

initially determine the conspecifics with which they associate. 374 

In conclusion, the data here demonstrate that individuals will deviate from their preferred environmental 375 

conditions to associate with a group of conspecifics and that thermal compromise in particular is likely to 376 

be a cost experienced by individual fish within shoals. Additional work is needed to precisely quantify the 377 

costs of exposure to non-preferred temperatures in a social context and how effects on physiology and 378 

behaviour may alter the functioning of the group as a whole. 379 
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Figure 1. Smaller fish had significantly higher preferred temperatures (Pearson correlation; r=-0.41, 544 

p=0.005). Each point represents one individual fish. Shaded area is 95% CI around regression line; y = -545 

0.004x + 18.38. 546 

Figure 2. Compared to their position when no shoal was present, animals spent significantly more time 547 

on whichever side the shoal was located (LME; F2,68 = 81.66, p<0.001). This violin plot shows where, on 548 

average, fish spent time in the two-chambered tank under three experimental shoal positions. Each point 549 

represents one individual fish. Diamonds represents the mean ± standard deviation. The width of each 550 

violin represents observation density at that y value. 551 

Figure 3.. Individual fish vary greatly in the degree to which they associate with conspecifics at different 552 

temperatures. White points show the fish’s tank usage with no shoal, and black points show tank usage 553 

when a shoal is added. Black points connected by a red arrow to the white point represent the shift in the 554 

fish’s tank usage when a shoal is added to the warmer side. Conversely, black points connected by a blue 555 

arrow to the white point represent the shift in the fish’s tank usage when a shoal is added to the cooler 556 

side. Most fish tended to shift towards the shoal on either side. 557 

Figure 4. (A) Whilst individuals changed location based on the position of conspecifics, individuals with a 558 

higher temperature preference  always spend more time on the warmer side (LME; F1,27 = 7.90, p=0.009). 559 

Regression line shows the same slope for all three panels with a different intercept for each level of the 560 

“shoal location” variable as part of a linear mixed effects model. (B) More social fish spent more time 561 

with the shoal when it was on the cool side (LME; t2,67 = -4.74, p<0.001), but not when the shoal was on 562 

the warm side.. Lines represent significant trends based on linear mixed effects models described in text. 563 

Equations for lines in panel A are: y = 4.26x – 113.04 for the shoal on the cooler side; y = 4.26x – 61.26 for 564 

no shoal; and y = 4.26x – 14.02 for the shoal on the warmer side. The equation for the line in panel B is y 565 

= -1.36x + 56.57. Shaded area is 95% CI around each regression line. Refer to Table S1 for further 566 

statistical analysis. 567 

Figure 5. Fish with a higher standard metabolic rate (SMR) were less social. Sociability score was taken as 568 

an unitless value, equivalent to the percentage of time an individual spent with the shoal in the absence  569 

of a temperature differential. SMR is shown as residual values after correcting for variation in body mass. 570 

Shaded area is 95% CI around regression line.  The equation for the line is y = -14.47 + 73.27. Refer to 571 

Table S2 for further statistical analysis. 572 
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FIGURE 2 596 
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FIGURE 3 617 
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FIGURE 4 636 
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