
Hackerbot: Attacker Chatbots for Randomised and Interactive Security Labs,

Using SecGen and oVirt

Z. Cliffe Schreuders, Thomas Shaw, Aimée Mac Muireadhaigh, Paul Staniforth, Leeds Beckett University

Abstract

Capture the flag (CTF) has been applied with success in

cybersecurity education, and works particularly well
when learning offensive techniques. However,

defensive security and incident response do not always
naturally fit the existing approaches to CTF. We present

Hackerbot, a unique approach for teaching computer
security: students interact with a malicious attacker

chatbot, who challenges them to complete a variety of
security tasks, including defensive and investigatory

challenges. Challenges are randomised using SecGen,
and deployed onto an oVirt infrastructure.

Evaluation data included system performance, mixed

methods questionnaires (including the Instructional
Materials Motivation Survey (IMMS) and the System

Usability Scale (SUS)), and group interviews/focus
groups. Results were encouraging, finding the approach

convenient, engaging, fun, and interactive; while
significantly decreasing the manual marking workload

for staff. The cloud infrastructure deployment using
SecGen/oVirt was a success, generating VMs with

randomised challenges, and enabling students to work
from home.

1. Introduction

Computer security education benefits from hands-on

interactive learning activities. Capture the flag (CTF)
has been applied with success in education [1]–[4], and

works particularly well when learning offensive
techniques. However, defensive security and incident

response do not always naturally fit the existing
approaches to CTF. Defensive and investigative tasks

can be effective when they are interactive, where there
is a separate actor (such as a red team) working against

the learners [5]. Our aim was to create a new approach
via automation and interactive immersion that supports

defensive and investigative cybersecurity scenarios,
enabling students to work at their own pace with an

interactive adversary.

We developed a free and open source software (FOSS)1

interactive chatbot, Hackerbot, which can be configured

to attack VMs; presenting a variety of security
challenges, rewarding correct solutions with flags. We

deployed an oVirt infrastructure to host the VMs, and
leveraged the SecGen framework [6] to generate lab

1 Hackerbot is incorporated into the SecGen project,

available at https://github.com/cliffe/SecGen

sheets, provision VMs, and provide randomisation

between students.

2. Related Literature

Capture the flag (CTF) is a type of cyber security game
which involves collecting flags by solving security

challenges. CTF events give professionals, students,
and enthusiasts an opportunity to test their security

skills in competition. CTFs emerged out of the
DEFCON hacker conference [7] and remain common

activities at cybersecurity conferences and online [8].
Some events target students with the goal of

encouraging interest in the field: for example, PicoCTF
is an annual high school competition [9], and CSAW

CTF is an annual competition for students in Higher
Education (HE) [10].

Applications of CTF scenarios have demonstrated

pedagogical utility when used within HE. Challenges
have been adapted and used successfully in CTF-style

lab exercises [1], [2], [11], in class competitions [12]
and extra-curricular activities [4], [13].

Prior work on the Security Scenario Generator

(SecGen) framework aimed to solve issues present
when using static CTF challenges in assessment

situations [6], [14]. Hacking challenge scenarios are
expensive and time consuming to create [15]. CTF

challenges should not typically be reused in assessment
situations, such as university assignments, competitions

or job recruitment, as solutions and discussion of the
challenges are commonly found online. SecGen

generates random challenge content and unique flags
per participant, which enables the reusability of a

scenario within the same class of students whilst
limiting the potential for collusion [6], [14].

Gondree et al. [16] note the benefits of using automated

adversaries in computer security games. When
compared with human competitors, automated

adversaries can have increased availability, can be
arbitrarily sophisticated and can be adapted to the level

of difficulty required based on the level of competition
or educational context.

3. Aims

Our aim was to create a new approach to cybersecurity

training that provides interactive immersion while
supporting defensive and investigative security. We

also aimed to create reusable randomised challenges

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leeds Beckett Repository

https://core.ac.uk/display/158367107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/cliffe/SecGen

and scenarios that could be used for learning and
assessment purposes. Furthermore, we aimed to deploy

the lab challenges into a cloud-based infrastructure to
support distance access to the lab environment. Finally,

an underlying goal was to create an enjoyable and
usable experience for students, encouraging motivation

to engage in the course.

4. Methods

A design science research approach was applied, by
designing a solution, followed by implementation and

it’s evaluation. Implementation included development
of a significant private cloud-based infrastructure,

software development (including chatbots and
websites), vulnerable systems and security challenges,

and lab sheets.

After the semester was complete, and all grades
returned, students were asked to complete a survey, and

participate in a semi-structured group interview. The
survey included questions related to the lab

infrastructure, Hackerbot, flag-based chatbot
assessment structure and engagement, and any further

suggestions, and positive and negative comments. The
Instructional Materials Motivation Survey (IMMS) was

used to measure student engagement and motivation
(based on the ARCS model of motivation: Attention,

Relevance, Confidence, and Satisfaction) [17], and the
System Usability Scale (SUS) [18] was used to measure

usability. The IMMS survey is made up of 36 Likert
scale questions, which are used to calculate a score for

student motivation. The SUS has 10 Likert scale
questions, and produces a non-linear usability score out

of 100. Both of these survey tools are well established
and extensively validated in the literature. Qualitative

feedback received via the survey was analysed using
thematic analysis. Each comment was coded and then

grouped into themes.

5. SecGen/oVirt Security Labs

5.1. oVirt Security Labs infrastructure

A pilot study was conducted to gather student feedback
regarding the interface and capabilities of oVirt for the

purpose of cybersecurity education [19]. Based on this
pilot study we concluded that oVirt is a feasible

platform on which to build a lab environment for
teaching computer security.

Consequently, we developed an oVirt infrastructure

consisting of: a virtual data centre with 1 cluster and 3
hosts running oVirt node 4.1 (HPE Proliant DL360 Gen

9 servers, with 2 sockets, 12 core, 2 threads per core to
give 48 Logical CPUs in each; 288GB of memory;

2x10Gb and 4x1Gb network sockets plus a 1Gb iLO
connection); 3 storage domains hosted on a NFS cluster

(with a Data Domain; ISO Domain and Export
Domain); the students VM networks used the 1Gb

network connected to an isolated switch; the storage,

management, migration, and display networks used a
10Gb network.

Students accessed VMs via the oVirt user portal.

Students were granted permissions to create VMs using
the many templates and ISOs we provided. VMs that

students own could be started, stopped, snapshots
created, and could be configured onto various logical

networks. From the user portal, console files could be
downloaded, which granted graphical/console access to

VMs via SPICE/VNC.

5.2. Accessing oVirt infrastructure remotely

The user portal was available from university labs, and
was available remotely via VPN and RDP access. This

enabled students to access VMs from home.

RDP access was added during the semester due to
problems many students experienced with VPN

connections dropping. Accessing the infrastructure via
RDP involved logging into the RDP server, which

displayed the VMs on the remote desktop (via
SPICE/VNC), which was in turn displayed to students

over the RDP protocol connection. As a consequence,
students did not require any oVirt/SPICE/VNC specific

software installed.

5.3. Provisioning SecGen into an oVirt infrastructure

Figure 1: SecGen creates a project, then Vagrant creates VMs using

VirtualBox or oVirt, and provisions via Puppet

We extended SecGen [6] with the ability to provision
VMs to oVirt. Previously SecGen only supported

creating VirtualBox VMs. Extending SecGen to support
oVirt leveraged the use of an existing Vagrant plugin

and a Ruby gem for oVirt. Templates for oVirt
matching the Virtualbox base boxes were created.

Figure 1 illustrates, that SecGen now supports options
for creating project output that specifies whether

Vagrant should deploy to oVirt or VirtualBox. Briefly,
SecGen reads its options (including credentials for

oVirt), available modules (including vulnerabilities,
security network services, system utilities, and OS

bases), reads the required scenario, performs
randomisation, and generates the project directory

output, which includes everything required for Vagrant

to create the VMs and deploy Puppet to provision
software and configuration changes.

5.4. Batch SecGen processing

To enable us to provision VMs for entire classes of

students, we created a new service to run on a server to
provision from2. The batch_secgen.rb program runs

as a systemd service, using multiple threads to
continuously process a queue of SecGen tasks. The

queue can be added to on the basis of a list of prefixes
to use for the VMs, such as a list of all the student IDs

for students in a class. SecGen was extended to support
specifying IP address ranges. Static IP address ranges

are generated for each scenario, and tracked to prevent
collisions between scenarios. (A future enhancement

will be to optionally separate students further via
logical networks.)

We also developed a set of scripts to assign SecGen

generated VMs to matching oVirt student accounts,
automatically create snapshots, and do some additional

oVirt network configuration.

Each week throughout the module we deployed VMs
using SecGen, which created for each student a set of

VMs with randomised challenges and lab sheets. Each
week involved 2 to 5 VMs. In total 32 VMs were

created for each of the 77 students enrolled on the
module; for a total of 2,464 VMs (plus testing and

backup copies created).

6. Hackerbot

6.1. Introducing Hackerbot

Here we present Hackerbot, which was designed to
achieve the aims related to interactivity, and support for

defensive and investigative exercises. Hackerbot is an
IRC chatbot, which through instant messaging (IM)

interaction, presents challenges to students, typically by
attacking/compromising the student’s VMs, and

challenging the student to defend, investigate, or restore
the VMs in exchange for CTF flags.

For each lab, each student has a desktop VM, which

includes a client used to chat with the bot. Pidgin was
chosen as the client, since it presents a familiar IM

interface to users (rather than a more traditional IRC-
focused interface). When the desktop VM starts,

Firefox also starts displaying the student’s lab sheet,
which includes login details for their VMs.

A “hackerbot_server” VM also runs, serving up HTML

lab worksheets (which SecGen generates), and hosting
the Hackerbot (whose configuration is also generated

by SecGen). Most of the weekly topics involved at least
one other server or desktop system, which the

Hackerbot attacked or interacted with.

2 batch_secgen.rb can be accessed here:

https://github.com/cliffe/SecGen/tree/master/lib/batch

Figure 2: Hackerbot student interaction via Pidgin

6.2. Design of challenges

The lab exercises were adapted from previous iterations
of our Incident Response and Investigation module (as

described in [20], where we noted the previously
demanding marking workload). Our previous approach

already had a lab focused assessment, with some guided
work followed by open-ended problem-based learning

challenges, where students submitted writeups and
screenshots of completed tasks.

Our approach was to design the exercises so that each

topic lab sheet introduced students to the concepts,
provided some step-by-step walk through, then

indicated that they should interact with Hackerbot to be
presented with a challenge, which puts these skills into

practice. This involved creating Hackerbot challenges
directly related to the concepts, skills, and tools covered

by the guided exercises, adapting existing challenges
and replacing many of the less directly related problem-

based learning tasks. This approach was designed to
further improve students’ confidence in the covered

topics: putting more of what they learned into practice
more often. It was also possible for students to choose

to skip sections of the lab sheets, and focus on the
challenges, if they preferred.

6.3. Specification and generation of lab sheets

The challenges and labsheets are randomised for each

student by SecGen. Each topic has a corresponding
SecGen “hackerbot_config” generator. These

generators produce a JSON output with the XML
configuration for the hackerbot (described in the next

section), and also the HTML lab sheet.

As illustrated in Figure 3, the lab sheets are written in
Markdown, and specified as ERB (Embedded RuBy)

template files, with variables for generated content,
such as usernames, passwords, and randomly selected

and/or parameterised challenges. The generated
markdown is rendered into HTML, shown in Figure 4.

https://github.com/cliffe/SecGen/tree/master/lib/batch

Integrity Management: Detecting Changes

Getting started

VMs in this lab

==Start these VMs== (if you haven't already):

- hackerbot_server (leave it running, you don't log

into this)

- desktop

Your login details for the "desktop" VM

User: <%= $main_user %>

Password: tiaspbiqe2r (**t**his **i**s **a**

secure **p**assword **b**ut **i**s **q**uite

easy **2** **r**emember)

Figure 3: Lab sheet markdown ERB snippet

Figure 4: Lab sheet as displayed in Firefox

A separate “hackerbot” SecGen utility module

provisions VMs with the Hackerbot server software,
and the configurations and lab sheets from the

generators. Apache is installed to host the generated lab
sheets, and lab sheets are styled via CSS.

A SecGen scenario for each topic specifies all the

systems, vulnerabilities, and content required. Figure 5
shows an extract of a scenario file specifying the Kali

Linux-based Hackerbot server.

6.4. Hackerbot configuration and interaction

Hackerbot leverages the Cinch framework to provide
IRC functionality [21], and Programr [22], to provide

an Artificial Intelligence Markup Language (AIML)
based chatbot interaction (as used by the seminal

Alicebot) [23].

The behavior of the Hackerbot depends on its
configuration, and throughout the course a fairly linear

approach was taken: the Hackerbot first greets the user,
setting the scene, then presents the user with the first

challenge. Typically the Hackerbot will give
instructions to the student, asking them to let her know

when they are ready. Often this involves a warning that
the Hackerbot is about to take some action, such as

hacking into one of the student’s servers, and what the
student needs to accomplish, such as preventing,

monitoring, or recovering from the attack. The
Hackerbot will perform any pre-shell commands (such

as running a port scan), followed by an attempt to gain
shell on a system (for example, by launching a

Metasploit exploit, or by SSHing to a system), followed
by running any post-exploitation commands, such as

creating, modifying, or deleting files from the
compromised server. The standard IO output and errors

from the attack commands are matched against to
resolve the action taken by the Hackerbot: triggering a

response message, and progressing to the next
challenge or presenting a question for the student to

answer. Typically a correct solution was rewarded by a
message containing a flag that the student could submit

for marks. The Hackerbot can also list all the attacks,
and be instructed to skip to specific tasks (in response

to “list” and “goto 9”).

<system>

 <system_name>hb_server</system_name>

 <base distro="Kali" name="MSF"/>

 <service type="ircd"/>

 <utility module_path=".*metasploit_framework"/>

 <utility module_path=".*nmap"/>

 <utility module_path=".*handy_cli_tools"/>

 <service type="httpd"/>

 <utility module_path=".*hackerbot">

 <input into="hackerbot_configs">

 <generator module_path=".*integrity_protection">

 <input into="accounts">

 <datastore>accounts</datastore>

 </input>

 <input into="root_password">

 <datastore>desktop_root_password

 </datastore>

 </input>

 </generator>

 </input>

 </utility>

 <network type="private_network" >

 <input into="IP_address">

 <datastore access="1">IP_addresses</datastore>

 </input>

 </network>

 <build type="cleanup">

 <input into="root_password">

 <generator type="strong_password_generator"/>

 </input>

 </build>

</system>

Figure 5: Scenario file extract

 <attack>
<% $rand_port = rand(65535) %>

 <pre_shell>nmap -p <%= $rand_port %>

{{chat_ip_address}} > /dev/null; echo $? </pre_shell>

 <get_shell>false</get_shell>

 <post_command>false</post_command>

 <prompt>Monitor the network traffic, and look out for

attempts to scan your desktop VM. You need to identify

what port the connection attempt is to.</prompt>

 <condition>

 <output_matches>0</output_matches>

 <message>Hope you found the port number.</message>

 <trigger_quiz />

 </condition>

 <condition>

 <output_matches>1</output_matches>

 <message>:(Failed to scan </message>

 </condition>

 <quiz>

 <question>Now after the attack, what port number

was scanned?</question>

 <answer>^<%= $rand_port %>$</answer>

 <correct_answer_response>

 :) <%= $flags.pop %>

 </correct_answer_response>

 <trigger_next_attack />

 </quiz>

 </attack>

Figure 6: Simple Hackerbot network monitoring challenge

 <attack>

 <get_shell>msfconsole -x "use

exploit/unix/misc/distcc_exec; set RHOST <%=

$web_server_ip %>; exploit"</get_shell>

 <post_command>whoami > /dev/null; echo "<%=

$flags.pop %>" > /dev/null; echo 'Find the flag! (in the

network traffic)'</post_command>

 <prompt>Your webserver is about to be

scanned/attacked. Use Tcpdump and/or Wireshark to view the

behaviour of the attacker. There is a flag to be found

over the wire. </prompt>

 <condition>

 <output_matches>Find the flag</output_matches>

 <message>Hope you caught that.</message>

 <trigger_next_attack />

 </condition>

 <condition>

 <output_matches>1</output_matches>

 <message>:(Failed to contact the web server (<%=

$web_server_ip %>)</message>

 </condition>

 <else_condition>

 <message>:(Something was not right...</message>

 </else_condition>

 </attack>

Figure 7: Launching a Metasploit exploit

The Hackerbot service has an XML based
configuration, which specifies:

● The directory to read AIML chatbot rules for

responses to general chat

● Messages to use in response to specific
Hackerbot functionality

● Attack pre-shell, shell, and post-exploitation

actions, and subsequent behavior

The following snippets demonstrate the flexibility of
the approach. Figure 6 demonstrates a very simple

network monitoring challenge. Note that every student
is generated a different answer and flag. Figure 7,

illustrates launching a Metasploit exploit against a
vulnerable server, and sending a flag across the network

as part of it’s post-exploitation actions.

Challenges developed ranged from protecting files from
change, integrity management hash techniques for

monitoring for changes, creating and using differential
and incremental backups, live and offline analysis of a

compromised server, network monitoring, and writing
IDS Snort rules for detecting attacks and exfiltration. In

total, eight Hackerbot labs and two tests were created.

7. Assessment structure and scoring front end

The course was assessed entirely based on the
challenges presented by Hackerbot (with one exception,

the first week’s group task on risk assessment).

30% flag submissions for labs: Each lab was marked
automatically based on flag submissions, which were

due two weeks after the scheduled lab.

50% scheduled closed book tests: Two timed tests
(worth 20% and 30%) where each student was

presented with a randomised selection of challenges
adapted from the challenges in the labs.

20% Lab book with detailed write-ups: Students

submitted a detailed technical description of each
challenge and their solution, with screenshots

illustrating how the challenges were completed. Every
lab task with flags submitted for marks was required to

be included in their write-up submission.

Flags were submitted via a Google form, which fed into
a Google spreadsheet, which automatically marked

submissions in terms of individual flags for each topic.
The marking spreadsheet ensured that each flag was

submitted by the matching student (and to the correct
topic), and applied late penalties per flag (5% per day,

for a maximum of 10 days late).

A BasicLTI (IMS Basic Learning Tools Interoperability
standard) website, “MyFlags”, was developed in PHP

to provide students with a view of their marks and flag
submissions for the lab topics and tests. Once logged

into the University’s Blackboard VLE, they could click
through to MyFlags, and remain authenticated, ensuring

that students only had access to their own marks. As
illustrated in Figure 8, MyFlags included a tab

displaying overall marks, a tab to view every flag they
had submitted and detailed information including

whether the flag was accepted and marks applied, and a
submission tab. MyFlags loaded results by accessing

CSV shares of the marking spreadsheet. The CSV data
was cached so that MyFlags could load quickly, while

the cache was updated in the background from the
Google spreadsheet.

Figure 8: MyFlags, a BasicLTI PHP flag submission frontend for

Google Form/Sheet scoring

8. Results

8.1. Evaluation methods

This section presents the results of the evaluation of
oVirt, Hackerbot, MyFlags, and the student experience.

Data gathered included system performance, technical
issues, mixed methods questionnaires, and group

interviews/focus groups.

In total, the survey had a sample size of n=34 students.
This was followed by a group interview to capture any

qualitative data not captured via the survey. Due to
sample size, when presenting agreement percentages,

we have grouped 1 or 2 as representing disagreement,
and 4 or 5 as agreement, on the 5 point Likert scale.

8.2. oVirt system performance

As described in Section 5.4, 77 students had access to

at a minimum 32 VMs each. By the end of the semester
over 3,000 VMs had been created. We did not limit the

number of VMs each student could have running
concurrently, and often students left VMs running when

not in use. It was not uncommon for over 600 VMs to
be running at a time.

System performance of the infrastructure dealt with this

load without performance issues. As of writing, the
current 4,261 VMs on our oVirt infrastructure have

consumed 4.1 TB of storage. CPU usage has reached a
maximum of 33% with 400% over allocation. The

maximum memory used was 48%.

8.3. oVirt perceptions of suitability and convenience

oVirt was compared to the infrastructure used in
previous security modules using Likert scale questions

(from 1 “strongly disagree” to 5 “strongly agree”) and
also open ended comments. Our approach in previous

security modules was via an in-house solution; the
Image Management System (IMS), which enables

students to save and restore full HDD states (with
various OSs) to a server across lab PCs. A server hosts

a collection of VMs (such as Windows, various Linux
systems, Kali Linux, and Metasploitable), which

students can subsequently download.

The response to “IMS: this infrastructure gives me the
freedom to experiment and learn security concepts” was

78.1% in agreement (agree and strongly agree). Asked
the same question in relation to the oVirt infrastructure

87.1% were in agreement. A paired-samples t-test was
conducted to compare the perceived freedom and utility

of IMS and oVirt. There was no significant difference
in the freedom to experiment and learn security

concepts scores for IMS (M=4.0, SD=0.9) and oVirt
(M=4.2, SD=0.9) conditions; t(60)=1.41, p = 0.17.

43.8% agreed that IMS was convenient and accessible;

in contrast 75.0% agreed that oVirt was convenient and
accessible. A paired-samples t-test was conducted to

compare the perceived convenience of IMS and oVirt.
There was a significant difference in the convenience

and accessibility scores for IMS (M=3.3, SD=1.3) and
oVirt (M=3.9, SD=1.2); t(62)=2.52, p = 0.01.

8.4. Remote access responsiveness

Of the 34 responses, 73.5% of students had worked on

oVirt from home. 24 accessed oVirt via the VPN, and 6
used RDP after that was added as an option. The

perceptions of responsiveness of methods of accessing
were, on a scale of 1 - 5 rated as, M=3.9 for access on

campus; M=2.7 via the VPN, and M=3.2 via RDP.

Qualitative feedback comparing oVirt to IMS was
positive overall (of 31 responses 27 were mostly

positive towards oVirt, with 4 mostly negative
responses). The most common theme in the feedback

on oVirt was regarding the convenience of having
remote access (n=12). The speed to load was also noted

by many (n=10); it was much faster to get started, since
VMs could simply be started on demand rather than

first downloading IMS images and VMs. For example,
one response included: “oVirt is accessible from

outside of uni which means you can continue to work

from home if needed and this was really good because

you didn't have to stay at uni all day to complete

something you could continue it later if needed.”

Closely related was the general theme of freedom
(n=5), in terms of flexibility of working locations and

also running multiple VMs. There were technical issues

noted or hinted at in comments (n=7), described later in
Section 8.8.

When asked for an overall impression of using the

oVirt system (positives and negatives), comments were
mostly positive, with differences from the comparison

with IMS including the theme that oVirt was easy to
use (n=6). It was noted that working from home was

slow via the VPN (n=6). Feature requests were also
common (n=9), described in Section 8.9.

8.5. Hackerbot student experience

The response to “Hackerbot increased my enjoyment of

this class” was 76.5% in agreement (agree and strongly
agree), 20.6% neutral, and 2.9% disagreed, (M=4.2,

SD=0.9). When asked whether they “enjoyed having
conversations with Hackerbot”, answers were more

spread: 58.8% were in agreement, 23.5% neutral,
17.6% disagreed, M=3.6, SD=1.4. 88.2% agreed that

they “enjoyed the live interaction practicing security
concepts with Hackerbot” (M=4.4, SD=0.9).

Qualitative feedback on Hackerbot was generally

positive. From the thematic analysis the most common
theme was that students found it fun and enjoyable to

learn via the Hackerbot (n=11). For example, as one
student put it: “Using the Hackerbot was very

enjoyable and interesting. It allowed a human element

to the module and maximised engagement with the

tasks and made the module easier to understand, fun

and memorable. The first few weeks saw many glitches

in the system and took a while to understand how it

works, however student feedback was taken seriously

and implemented to improve the system [on] a

continuous basis.”

Another related theme was that the approach was

interesting and unique (n=6). The instant feedback,
compared to waiting on manual marking, was also was

also noted (n=4). There were some comments related to
feature requests (n=2) and technical issues (n=6),

described in Sections 8.8 and 8.9.

Qualitative feedback on MyFlags included the most
common theme that it was good to have reassurance

that flags had been received, and to track progress
(n=13). However, the site was slow to update (n=12),

and there were feature requests (n=7).

8.6. Assessment structure and engagement

79.4% agreed (as above, agree and strongly agree) that
they “prefer the structure for grades in this class.”

91.2% “enjoyed having separate VMs pre-created for
each lab exercise”. 9.1% “found that having different

(randomised) lab sheets from classmates was
confusing.” 79.4% agreed that “the structure of the

assessment made me: complete more of the allocated
lab work.” 50.0% agreed it made them turn up to class

more often. 70.6% agreed they “enjoyed the assessment
tasks in this module”. 79.4% agreed feedback given in

this module helped them know how they were
performing; and 45.5% found feedback helpfully timely

and fast (33.3% were neutral).

The Instructional Material Motivational Survey
(IMMS) total score mean for the module was 133.66

(M=133.66, SD=25.20, N=34). Cronbach's Alpha for
the 36 item scale (with negatively worded questions

inverted) was 0.95, indicating the scale was highly
reliable.

The system usability scale (SUS) score for Hackerbot,

was a mean of 75.75 out of a possible maximum of 100
(M=75.75, SD=16.37). Cronbach's Alpha for the 10

item scale (with negatively worded questions inverted)
was 0.87, indicating the scale was highly reliable.

Overall qualitative feedback for the module included

suggestions, the most common being that students
should be able to reset their own VMs (n=7). Students

could request VM resets via email, which occasionally
took some time. Students also noted that there were

some classes where VMs were not available in time for
class (this occurred a few times, due to errors

provisioning VMs (since resolved), and due dates were
adjusted accordingly) (n=5).

The most common positive comment for the module

overall was around the interactive challenges, which
provided practical experience (n=6), followed by

finding the module fun (n=5), engaging (n=4), and
interesting (n=4). The most common negative comment

in the overall feedback was that oVirt can be slow to
access at home, with some technical issues (n=7).

8.7. Group interview

During the group interviews, many of the same topics

were raised, with these these additional points:

● The difficulty of challenges was appropriate

● Having the freedom to work from home changed
the way they worked on the module

● They liked having weekly submissions, and the

ability to easily track their progress

● “The best module I’ve done in the three years”,
having learned a lot and now could confidently

use Linux

8.8. Technical issues

Technical issues encountered included:

● Remote access via VPN often dropped
connections (leading to the introduction of RDP

as an alternative)

● It was possible for a student to break their VMs
(for example, some tasks had them editing and

changing the permissions of system files, which
can lead to a “bricked” VM), or get their VMs

into a state where it wasn’t possible to recover

(for example, if they didn’t backup files
correctly before they told Hackerbot they were

ready for an attack).

● Copy and paste between VMs sometimes
stopped working

● A few challenges had problems, and students

were told to skip 4 challenges (which were not
marked) and issued corrections for some others

● Mouse scroll and resolution changing didn’t

work in some VMs

● MyFlags was slow to sync flag submissions (and
before caching was added, it was slow to load)

8.9. Feature requests

Feature requests from students included:

● The ability for students to control the snapshots

on their VMs (students did not have this
permission on the VMs generated)

● Improved tracking of flags: notifications of

incorrectly submitted flags; clearer error
messages for incorrect flags; automatic

submission of flags (rather than being given the
flags by Hackerbot)

● More hints from Hackerbot after failed attempts

(Hackerbot does include hints in its replies but
this could be improved)

9. Discussion

Hackerbot presents a unique approach to teaching

cybersecurity, which we contend meets the aims
presented in Section 3. On a practical level, our

developed oVirt infrastructure, SecGen server, and
Hackerbot labs were successfully designed,

implemented, and deployed; although not without some
minor technical challenges. This new approach to

marking overcame the practical issues we faced in
terms of the marking workload in our previous

iterations of the course [20]. Although development
took far longer than marking would have, much of this

time will not have to be re-invested for future delivery
of the course.

The cloud infrastructure deployment using

SecGen/oVirt was a success, generating VMs for
students and enabling them to work from home. Results

showed that students perceptions of both IMS (local
VMs), and oVirt (virtual desktop infrastructure) were

positive in terms of facilitating study of cybersecurity.
However, the cloud-based remotely available oVirt

infrastructure was significantly more convenient for
students (despite speed and drop out issues with VPN

access). Students appreciated the speed with which they
could get started on work, enjoyed the freedom of

movement it afforded, and appreciated having their
VMs prepared for them on a weekly basis.

The attacker chatbot approach enabled us to turn
defensive and incident investigation tasks into

interactive CTF scenarios. The challenges were
successfully randomised by leveraging SecGen;

although the degree of randomisation in a few of the
challenges was limited somewhat by weekly deadlines

to publish the labs and challenges to students. Students
didn’t find the randomisation of labs confusing. Most

students enjoyed the approach to learning, finding it fun
and engaging, and appreciated the interactive nature of

tasks. The assessment structure was prefered by many
students.

The levels of student motivation was positive; however,

motivation scores (M=133.66, SD=25.20, N=34) were
lower than the results we achieved in our previous

gamification study (M=152.32, SD=18.13, N=12) [20].
Although these are separate students with a small

sample size, this may indicate there would be benefits
to bringing back elements of gamification, such as XP,

visual indicators of leveling-up, and class ranks.

The usability of Hackerbot was acceptable (M=75.75,
SD=16.37). Bangor et al. [24, p. 592] presents guidance

on interpreting SUS results, and state that “products
which are at least passable have scores above 70”.

Many of the technical issues identified have already

been addressed with code and configuration updates.
We had not granted access to students to control VM

snapshots to avoid the potential for cheating, since
oVirt also ties disk management/access to the same

permission. However, this is only an issue when the
VM stores flags, and so we now take the approach that

we grant more privileges to students for their VMs,
except for hackerbot servers.

10. Future work

Our plans for future work include further development

of labs and challenges, including new types of
challenges. There is also the potential to further explore

opportunities in storytelling and narrative (for example,
[2]), by expanding the bot framework with non-linear

storytelling, including the use of multiple bots. We are
building a new portal which will replace the MyFlags

interface, and provide a new front end for SecGen,
enabling dynamic generation of labs and CTF

competitions.

11. Conclusions

Hackerbot is a unique approach for teaching computer
security. Students can interact with a simulated

malicious attacker, who challenges them to complete a
variety of security tasks, including defensive and

investigatory challenges. Challenges are randomised
using SecGen, and deployed onto a cloud-based

infrastructure. Results were encouraging, finding the
approach convenient, engaging, fun, and interactive;

while significantly decreasing the marking workload.

References

[1] D. A. Cook, T. J. Beckman, K. G. Thomas, and W.
G. Thompson, ‘Measuring motivational

characteristics of courses: applying Keller’s
instructional materials motivation survey to a web-

based course’, Acad Med, vol. 84, no. 11, pp.
1505–1509, Nov. 2009.

[2] J. Brooke, ‘SUS-A quick and dirty usability scale’,

Usability evaluation in industry, vol. 189, p. 194,
1996.

[3] T. Chothia and C. Novakovic, ‘An Offline Capture

The Flag-Style Virtual Machine and an
Assessment of Its Value for Cybersecurity

Education’, in 2015 USENIX Summit on Gaming,

Games, and Gamification in Security Education

(3GSE 15), Washington, D.C., 2015.

[4] T. Chothia, S. Holdcroft, A.-I. Radu, and R. J.
Thomas, ‘Jail, Hero or Drug Lord? Turning a

Cyber Security Course Into an 11 Week Choose
Your Own Adventure Story’, in 2017 USENIX

Workshop on Advances in Security Education

(ASE 17), Vancouver, BC, 2017.

[5] W. Feng, ‘A Scaffolded, Metamorphic CTF for

Reverse Engineering’, in 2015 USENIX Summit on

Gaming, Games, and Gamification in Security

Education (3GSE 15), Washington, D.C., 2015.

[6] A. Mansurov, ‘A CTF-Based Approach in
Information Security Education: An

Extracurricular Activity in Teaching Students at
Altai State University, Russia’, Modern Applied

Science, vol. 10, no. 11, p. 159, Aug. 2016.

[7] NCCDC, ‘Collegiate Cyber Defense Competition
(CCDC)’. [Online]. Available:

http://www.nationalccdc.org/index.php/competitio
n/about-ccdc. [Accessed: 06-May-2018].

[8] Z. C. Schreuders, T. Shaw, M. Shan-A-Khuda, G.

Ravichandran, J. Keighley, and M. Ordean,
‘Security Scenario Generator (SecGen): A

Framework for Generating Randomly Vulnerable
Rich-scenario VMs for Learning Computer

Security and Hosting CTF Events’, in 2017

USENIX Workshop on Advances in Security

Education (ASE 17), Vancouver, BC, 2017.

[9] DEF CON Communications, Inc., ‘DEF CON
Hacking Conference - Capture the Flag Archive’.

[Online]. Available:
https://www.defcon.org/html/links/dc-ctf.html.

[Accessed: 05-May-2018].

[10] ‘CTFtime.org / All about CTF (Capture The
Flag)’. [Online]. Available: https://ctftime.org/.

[Accessed: 05-May-2018].

[11] P. Chapman, J. Burket, and D. Brumley,

‘PicoCTF: A Game-Based Computer Security
Competition for High School Students’, in 2014

USENIX Summit on Gaming, Games, and

Gamification in Security Education (3GSE 14),

San Diego, CA, 2014.

[12] K. Chung and J. Cohen, ‘Learning Obstacles in the
Capture The Flag Model’, in 2014 USENIX

Summit on Gaming, Games, and Gamification in

Security Education (3GSE 14), San Diego, CA,

2014.

[13] M. Carlisle, M. Chiaramonte, and D. Caswell,
‘Using CTFs for an Undergraduate Cyber

Education’, in 2015 USENIX Summit on Gaming,

Games, and Gamification in Security Education

(3GSE 15), Washington, D.C., 2015.

[14] J. Mirkovic and P. A. H. Peterson, ‘Class Capture-
the-Flag Exercises’, in 2014 USENIX Summit on

Gaming, Games, and Gamification in Security

Education (3GSE 14), San Diego, CA, 2014.

[15] A. R. Schrock, ‘Education in Disguise: Culture of

a Hacker and Maker Space’, InterActions: UCLA

Journal of Education and Information Studies, vol.

10, no. 1, 2014.

[16] Z. C. Schreuders and L. Ardern, ‘Generating
randomised virtualised scenarios for ethical

hacking and computer security education: SecGen
implementation and deployment’, in 1st UK

Workshop on Cybersecurity Training & Education

(VIBRANT 2015), Liverpool, UK.

[17] P. Hulin et al., ‘AutoCTF: Creating Diverse

Pwnables via Automated Bug Injection’, in 11th

USENIX Workshop on Offensive Technologies

(WOOT 17), Vancouver, BC, 2017.

[18] M. Gondree, Z. N. J. Peterson, and P. Pusey,
‘Talking about Talking about Cybersecurity

Games’, ;login:, vol. 41, no. 1, 2016.

[19] Z. C. Schreuders and E. Butterfield, ‘Gamification
for Teaching and Learning Computer Security in

Higher Education’, in 2016 USENIX Workshop on

Advances in Security Education (ASE 16), Austin,

TX, 2016.

[20] Z. C. Schreuders, E. Butterfield, and P. Staniforth,
‘An open cloud-based virtual lab environment for

computer security education: A pilot study
evaluation of oVirt’, in The first UK Workshop on

Cybersecurity Training & Education (Vibrant

Workshop 2015), Liverpool, UK, 2015.

[21] ‘cinch: The IRC Bot Building Framework’.

[Online]. Available:
https://github.com/cinchrb/cinch. [Accessed: 05-

May-2018].

[22] R. Whitney, ‘programr: Ruby interpreter for the

AIML as an updated rubygem’. [Online].
Available:

https://github.com/robertjwhitney/programr.
[Accessed: 05-May-2018].

[23] R. S. Wallace, ‘The anatomy of ALICE’, in

Parsing the Turing Test, Springer, 2009, pp. 181–
210.

[24] A. Bangor, P. T. Kortum, and J. T. Miller, ‘An

Empirical Evaluation of the System Usability
Scale’, International Journal of Human-Computer

Interaction, vol. 24, no. 6, pp. 574–594, 2008.

