
An OAuth2-based Protocol with Strong User Privacy
Preservation for Smart City Mobile e-Health Apps

Victor Sucasas, Georgios Mantas, Ayman Radwan, and Jonathan Rodriguez
Instituto de Telecomunicações, Aveiro, Portugal

Abstract—In the context of the Smart City concept, mobile e-
Health applications can play a pivotal role towards the improve-
ment of citizens’ quality of life, since they can enable citizens
to access personalized e-Health services, without limitations on
time and location. However, accessing personalized e-Health
services through citizens’ mobile e-Health applications, running
on their mobile devices, raises many privacy issues in terms
of citizens’ identity and location. These privacy issues should
be addressed so that citizens, concerned about privacy leakage,
will embrace Smart City mobile e-Health applications and reap
their benefits. Hence, in this paper we propose an OAuth2-based
protocol with strong user privacy preservation that addresses
these privacy issues. Our proposed protocol follows the OAuth2
protocol flow and integrates a pseudonym-based signature scheme
and a delegation signature scheme into the user authentication
phase of the OAuth2 protocol. The proposed protocol enables
citizens authentication towards the servers providing personalized
e-Health services, while preserving their privacy from malicious
mobile applications and/or eavesdroppers. Moreover, the pro-
posed protocol does not require to store sensitive information
in the citizens’ mobile devices. 1

I. INTRODUCTION

Smart City is an emerging concept whose main goal is
to improve the quality of life of its citizens by leveraging
Information and Communication Technologies (ICTs) as the
key medium [1]. Towards this direction, Smart City mobile
e-Health applications (apps) that are able to gain citizen’s
authorization, and access personalized e-Health services on
behalf of the citizen, can play a pivotal role [2]. In the
context of Smart City, personalized e-Health services, enhanc-
ing citizens’ quality of life, can be developed and provided
by Service Providers (SPs) utilizing emerging technologies
and data available in Smart City. On the other hand, Smart
City mobile e-Health apps can be created either by the SPs,
providing the personalized e-Heath services, or by third-
party developers making use of the Application Programming
Interfaces (APIs) of the SPs [3]. It is worthwhile to mention
that Smart City mobile apps developers can take advantage
of the growing popularity of powerful mobile devices (e.g.
smartphones, tablets) and the large variety of their connectivity
options (e.g., 2G/3G/4G, IEEE 802.11, Bluetooth) to create
mobile apps that enrich the citizen experience in terms of
access to personalized e-Health services without limitations
on time and location.

However, due to the fact that the citizens’ personalized
e-Health services incorporate sensitive information, derived

1The research leading to these results has received funding from the
Fundação para a Ciencia e Tecnologia and the ARTEMIS JU (ACCUS
ARTEMIS-005-2012 / GA number 333020). Author Radwan also acknowl-
edges the grant of the Fundação para a Ciencia e a Tecnologia (FCT -
Portugal): SFRH/BPD/104585/2014.

from resources such as profile data, contextual or even vital
data, the need for authentication and authorization solutions
that enable secure access to them is of paramount importance
[4]. Today, the most widely used solution for mobile apps to
gain authenticated and authorized access to end-user’s services
on remote SPs is the OAuth protocol that has been adopted
by major service providers such as Facebook, Google and
Microsoft [5], [6]. OAuth was primarily designed to provide
a process for end-users to authorize third-party websites to
access their resources stored on a SP on their own behalf.
Nonetheless, ever since OAuth was successfully adopted by
the industry, major identity providers (e.g. Facebook, Google,
Microsoft) have used it for user authentication as well. Fur-
thermore, the developers’ community has retargeted OAuth to
mobile applications, in addition to web applications. Hence,
OAuth has become a de-facto authentication and authorization
protocol for mobile apps [5]. The latest version of OAuth
protocol is the OAuth2 protocol that has obsoleted the OAuth1
protocol [7].

Although OAuth2 has already been supported widely for
mobile apps, it has been vulnerable to mobile malware at-
tacks targeting end-user’s credentials [5], [8], [9]. Malicious
mobile apps, made to look like innocent mobile apps, can be
downloaded and installed on citizen’s mobile device exposing
him/her to credential theft attacks [10], [11]. These attacks can
lead to citizen’s identity and location privacy issues since they
can allow attackers not only to steal citizen’s real identity but
also to track his/her physical location by linking citizen’s real
identity to location information that may be included in trans-
mitted messages [4]. Nevertheless, these identity and location
privacy issues will prevent citizens, concerned about privacy
leakage, from embracing Smart City mobile e-Health apps and
reaping their benefits. Therefore, in this paper, we propose an
OAuth2-based protocol for Smart City mobile e-Health apps
that addresses the citizen’s identity and location privacy issues
by providing strong user privacy preservation. Particularly,
the proposed scheme adopts the OAuth2 protocol flow for
mobile e-Health apps and enhances the end-user authentication
process by integrating a pseudonym-based signature scheme
and a delegation signature scheme in order to achieve user
privacy preservation for Smart City mobile e-Health apps.

Following the introduction, this paper is organized as
follows. In Section II, the OAuth2 protocol flow on mobile
apps is presented. Furthermore, vulnerabilities of the OAuth2
protocol for mobile apps and possible attacks that exploit these
vulnerabilities are discussed. In Section III we provide the
system model. Section IV the proposed OAuth2-based protocol
with strong user privacy preservation is presented. The security
analysis of the proposed protocol is provided in section V.
Finally, section VI concludes this paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/158367056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. OAuth2 protocol flow for mobile apps.

II. OAUTH2 AND MOBILE APPS

According to [12], the OAuth2 protocol defines four dif-
ferent roles: a) the Resource Owner: an entity capable of
granting access to its protected resources, b) the Resource
Server: the server hosting the Resource Owner’s protected
resources, c) the Client: an application requesting access to
the protected resources on behalf of the Resource Owner,
and d) the Authorization Server (AS): the server that issues
access tokens to the Client after successfully authenticating
the Resource Owner and obtaining authorization.

In the implementations of the OAuth2 protocol for mobile
apps, the Resource Owner is the user that holds the protected
resources and the Client is the mobile app, installed and
executed on the user’s mobile device, requesting access to the
users protected resources. In addition, the user-agent can be
implemented by an embedded web browser or a system native
browser. An embedded web browser is a User Interface (UI)
view component that is embedded in the mobile app in order
to display online contents within the hosting mobile app. On
the other hand, the system native browser is a separate app,
running on the mobile device as well, and is not embedded
in the mobile app. However, both of them provide similar
functionality in the OAuth2 protocol flow. For this reason, we
will refer to them as browser [5], [8].

The most common implementations of the OAuth2 protocol
for mobile apps are based on browser redirection. The mobile
app redirects the user’s browser to the AS, which interacts
with the user, and then it redirects the user’s browser back
to the mobile app. The AS authenticates the user, identifies
the mobile app to the user, and then requests the user to
decide whether he/she will grant or deny authorization to the
mobile app to access protected resources on behalf of him/her.
Assuming that the user grants access, the AS redirects the

user’s browser back to the mobile app with an authorization
code. Once the mobile app holds the authorization code, it
can request the AS for an access token, which will grant the
mobile app access to the requested user’s resources hosted in
the Resource Server [5], [8]. As it is illustrated in Fig. 1, the
OAuth2 protocol flow for mobile apps consists of the following
steps [5], [6], [8], [13], [12]:

Step 1: The Mobile App initiates the flow by redirecting
the Browser to the Authorization Server in order to request
the Authorization Code (msg 1 & 2). Particularly, the Mobile
App sends to the Authorization Server via the Browser the
following: a) the response type (t=code) b) the Mobile App
identifier app id assigned during the registration process with
the Authorization Server, c) the requested permission scope
p, d) an optional state parameter s used to maintain the state
between the request and response, and e) a redirection URI
to which the Authorization Server will redirect the Browser
back once access is granted (or denied). Upon receipt of
the AuthzCodeRequest(t, app id, p, s, URI) (msg 2), the
Authorization Server validates the request to ensure that all
required parameters are present and valid against its own local
storage, where these parameters have been defined during the
registration process (msg 3). If the request is invalid, the
protocol stops. Otherwise, the protocol continues to the next
step.

Step 2: The Authorization Server sends to the Browser an
authentication page (msg 4), where the user is prompted (msg
5) to provide his own credentials (msg 6 & 7) in order to
authenticate with the Authorization Server. The Authorization
Server verifies the received User’s credentials (msg 8). If the
verification process fails, then the OAuth2 protocol flow is
stopped. Otherwise, the User is authenticated to the Autho-
rization Server and the protocol continues to the next step.

Fig. 2. System model of the proposed privacy-preserving OAuth2-based protocol for Smart City mobile e-Health apps.

Step 3: The Authorization Server requests the User to
decide whether or not to grant specific permissions to the
Mobile App (msg 9 & 10). The User replies to indicate his
decision (msg 11 & 12). Upon receipt of the User’s decision,
the Authorization Server evaluates it (msg 13). If the User
denies to grant the requested permissions, the protocol stops.
On the other hand, if the User agrees to grant the requested
permissions, the protocol continues to the next step.

Step 4: The Authorization Server redirects the Browser
back to the Mobile App using the redirection URI including
the Authorization Code authz code and the state parameter s
provided by the Mobile App in Step 1 (msg 14 & 15).

Step 5: The Mobile App requests an access token
from the Authorization Server by sending the grant type
(g=authorization code), the Authorization Code authz code,
the redirection URI and the Mobile App identifier app id
(msg 16). Upon receipt of the ATReq(g, authz code, URI,
app id) (msg 16), the Authorization Server authenticates the
Mobile App, validates the Authorization Code, and ensures
that the received redirection URI matches the URI used by
the Authorization Server to redirect the Browser back to the
Mobile App in Step 4. If all validations completed successfully
(msg 17), the protocol continues to the next step.

Step 6: The Authorization Server responds back to the
Mobile App with an access token and, optionally, a refresh
token (msg 18).

However, an attacker can exploit a malicious mobile app,
running on the user’s mobile device, to steal user’s credentials
and compromise user’s privacy in terms of identity and loca-
tion. This threat is possible either an embedded web browser or
a system native browser is used by the mobile app in the user
authentication process. A malicious mobile app can steal the
user’s credentials from its embedded web browser by injecting
JavaScript code that is able to retrieve them upon clicking
the submit button and then by using a JavaScript interface to
receive them [8]. On the other hand, in the case of a system
native browser, a malicious mobile app can phish the user’s
credentials by presenting its own UI instead of allowing the
system browser to render the user authentication UI [9].

III. SYSTEM MODEL

The proposed privacy-preserving OAuth2-based protocol
is designed for Smart City mobile e-Health apps to gain
authenticated and authorized access to citizens’ personalized
e-Health services hosted on remote resource servers (i.e. SPs)
located in the Smart City. In this sense, the system where our
proposed protocol is applied consists of the following entities,
as it is also shown in the Fig. 2:

• Citizen: A person subscribed to personalized e-Health
services hosted on one or more resource servers.
Citizen achieves privacy-preserving authentication,
through the proposed protocol, towards the AS. Citi-
zen is referred to as user in the rest of the paper.

• Smart City mobile e-Health app: An e-Health app
running on a citizen’s mobile providing the citizen
with access to his/her personalized e-Health services.
It gains citizen’s authorization and access personalized
services on behalf of the citizen.

• Resource servers: The servers hosting the protected
citizen’s e-Health services.

• Authorization servers (ASs): The servers providing
authenticated and authorized access to the protected
citizen’s e-Health services hosted on the Resource
Servers.

• Privacy server (PS): The server that stores the citizens’
real identities and that provides the appropriate cryp-
tographic elements so that the citizens can privately
authenticate towards the ASs, which can contact the
PS to obtain his/her real identity.

The proposed privacy-preserving OAuth2-based protocol,
described in sec. IV, follows the OAuth2 protocol flow, de-
scribed in sec. II, in which we integrate a pseudonym-based
signature scheme and a delegation signature scheme. This
modification only affects the information transmitted in the
Step 2 of the OAuth2 protocol.

IV. PROPOSED OAUTH2-BASED PROTOCOL WITH STRONG
USER PRIVACY PRESERVATION

In this section we propose a novel privacy-preserving
OAuth2-based protocol that achieves user authentication to-
wards an AS without the disclosure of the user credentials
(nickname and password), hence without disclosing any private
information towards the browser and mobile app that could be
exploited by an attacker. The proposed protocol is based on a
pseudonym-based signature scheme and a delegation signature
scheme in order to provide privacy-preserving user authen-
tication between the user and the AS. These two schemes
are integrated in the Step 2 of the OAuth2. However, our
signature scheme does not affect the information exchanged
in the messages of the other Steps of the OAuth2 protocol,
as they are described in Fig. 1. Hence, our proposed OAuth2-
based protocol only modifies the Step2 of the original version
of OAuth2. The rest of the Steps remain as they are described
in the section II.

The proposed signature scheme is an adaptation of the
scheme presented in [14] (preliminaries on Elliptic Curve
Cryptography can be found in this work) and our work in [15],
hence it relays on the same security proof. With the proposed
protocol, a user can use different mobile apps, and authenticate
himself towards an AS using a different pseudonym per
application, hence avoiding that any eavesdropper can link the
activities of different applications to the same user. Moreover,
the proposed protocol does not require the user to store any
sensitive information in the mobile device.

A. Protocol initialization

The proposed protocol requires users and ASs to register
in the Smarty City PS. During the registration in the PS, the
user u selects nickname, nicku, and a password, pswu, which
can be used to access his user account. This account includes
the user real identity. For the ASs, the registration in the PS
requires the AS to provide the list of users profiled in the
Resource Servers hosting the personalized e-Health services.
Such list of users is mapped to the users registered in the PS.

The PS is in charge of generating the public parameters.
The protocol initialization is composed of three steps: i)
parameter generation; ii) anonymous credential generation; and
iii) static pseudonym generation.

1) Parameter generation: For protocol parameters genera-
tion the PS performs the following steps:

• The PS picks randomly a prime number p of K bits,
the value of K defines the security level of the system.
Then select two cyclic groups of order p containing
points on the selected elliptic curve, G1 and G2, in
which the Elliptic Curve Discrete Logarithm Problem
(ECDLP) is hard [16].

• The PS selects a point in the curve P as a generator
of G1.

• The PS selects a bilinear map e such that e : G1 ×
G2 → G2.

• The PS selects two cryptographic hash functions
H1, H2 : {0, 1}∗ → G1 and a function H1 :

{0, 1}∗ → Zp. 2

• The PS selects a hash function H3 : {0, 1}∗ → Zp.
• The PS chooses at random a secret and public key

pair: secret key s ∈R Zp, and public key W = sP .
• The PS chooses a public value Qs ∈R G1 and

compute a restriction key Ws = sQs.

The calculated parameters are stored in the PS and each
AS, as well as a in a Privacy Application, P-App, that we
consider in our proposed OAuth2-based protocol. P-App can
be downloaded from the PS after user registration and installed
in the users’ mobile devices. The P-App is in charge of per-
forming the cryptographic operations described in the proposed
privacy-preserving OAuth2-based protocol. It is important to
mention that the P-App does not store any user’s private
or sensitive information and does not require to be tamper
resistant.

2) Anonymous credential generation: The PS, holding the
public and secret values, generates an anonymous credential
for each AS. To generate such credential for the AS v the PS
performs the following steps:

• The PS selects a random value µv ∈R Zp.
• The PS computes the AS v secret key Sv = P 1

(s+µv)
.

• The PS sends to the AS v, over a secure channel, the
credential Crev = (µv, Sv). The AS v can verify the
correctness of the credential by checking if e(µvP +
W,Sv) = e(P, P) holds.

3) Static pseudonym generation: Each AS v, provided with
a credential Crev , computes a pseudonym by using the secret
value µv and the public value Qs, pseuv = µvQs. This
pseudonym is published by the PS, and identifies the AS as
a valid server providing a privacy-preserving authentication
mechanism. The user u also computes an static pseudonym
constructed with the public value Qs and his nickname and
password: pseuu = µuQs, where µu = H3(nicku||pswu).
Note that the operation || denotes concatenation. The user’s
static pseudonym is stored in the P-App, and although this
pseudonym is never transmitted for user authentication, its
leakage does not provide any advantage to perform user
impersonation.

B. Privacy-preserving user authentication

In the proposed privacy-preserving OAuth2-based protocol,
the Step 2 maintains the same interactive procedure, as it
is described in the sec. II, but integrates information related
to the pseudonym-based signature scheme in the exchanged
messages. As a result the exchanged messages of the Step 2
in our protocol are structured with the following way:

UserAuthRequest1 The AS v sends an authentication
request code to the user u, through the browser, composed
of a pseudonym and a signature. To construct this message
the AS v, with a public pseudonym pseuv , and an anonymous
credential (µv, Sv), performs the following steps:

• The AS v converts the app id into an integer value and
calculates the specific client application value Qi =
H1(app id).

2As it is explained in [16], it is sufficient with a function H : {0, 1}∗ → A,
for a given set A, and an admissible encoding function L : A → G1

• The AS v generates an app-specific pseudonym
pseuv,i = µvQi and a nonce rn.

• The AS v signs the pseudonym pseuv,i and the nonce
rn with its public pseudonym pseuv , by performing
the message signing algorithm.

• The AS v sends an authentication request code com-
posed of the message M = rn||pseuv,i and a signa-
ture sigpseuv (M), to the user u.

For the AS v to sign the message M = rn||pseuv,i (a
concatenation of the nonce and the app-specific pseudonym)
with its public pseudonym pseuv and obtain sigpseuv

(M), the
AS performs the message signing algorithm which has the
following steps:

• The AS v picks randomly α, r, r′ ∈R Zp.
• The AS v computes T = αSv , RG1 = rQi and R =

e(Qi, P)
r′ .

• The AS v computes c = H2(M ||T ||RG1
||R||pseuv),

where the operator || represents concatenation.
• The AS v calculates z1 = cα+ r′ and z2 = cµv + r.
• The signature of the value M with the pseudonym

pseuv is composed by the tuple sigpseuv
(M) =

(T, c, z1, z2).

UserAuthRequest2 The browser receives the authentica-
tion request code, opens the P-App, and passes the code to the
P-App. The P-App validates the signature sigpseuv

= (M) by
using the signature verification algorithm:

• The P-App computes R′G1
= z2Qs−cpseuv and R′ =

e(Qs, P)
z1/e(pseuv +Ws, T)

c.
• The P-App calculates c′ =

H2(M ||T ||R′G1
||R′||pseuv).

• The P-App validates the signature if the equality c′ =
c holds.

Note that the verification algorithm requires the public
values Qs and Ws, which are stored in the P-App. After
validation, the P-App prompts a user interface for the user
to insert his nickname and password.

UserAuthReponse1() The user u types the nickname,
nicku and password, pswu. The P-App generates the value
pseuu = µuQs, where µu = H3(nicku||pswu), and checks
that it matches with the stored user static pseudonym pseuu.
If the P-App gets a positive match, then the P-App is certain
that the user u introduced a valid nickname and password and
performs the following steps:

• The P-App computes the app-specific value Qi =
H1(app id).

• The P-App generates an app-specific pseudonym
pseuu,i = µuQi. The pseudonym is app-specific
because the user u will generate different pseudonyms
for other apps, but it will always generate the same
pseudonym for the same app. It is also important to
mention that this pseudonym will be different than that
of other users of the same app.

• The P-App uses the pseuu,i to sign a warrant wu with
a delegation signing algorithm by performing:
◦ The P-App creates a warrant, wu, which

includes the AS v app-specific pseudonym

pseuv,i, the nonce rn, and the right delegation
scope, i.e. time of validity.

◦ The P-App signs the warrant by computing
sig′pseuu,i

(wu) = µuH1(wu).
◦ The P-App constructs the tuple Delu,v =

(pseuu,i, wu, sig
′
pseuu,i

(wu)).
• The P-App passes the value Delu,v to the browser

as an authentication response code. This code is
forwarded through the browser to the AS v. Note
that, the browser or the app cannot learn any private
information from the response code. Moreover, the
response code cannot be reused in future occasions.

UserAuthResponse2() The AS v receives the authentica-
tion response code, Delu,v , and makes a delegated signature
by performing the following steps.

• The AS v creates a request for the PS, a string R,
asking for the user u real identity.

• The AS v, holding the tuple Delu,v from the user u,
signs the request R with his pseudonym pseuv,i, in
combination with the signature received from u, by
computing:

Delsig′pseuv,pseuu
(R,wu) =

sig′pseuu
(wu) + µvH2(R||wu).

(1)

UserAuthentication() In this step, the AS v contacts
the PS in order to identify the user u, i.e. to obtain its
real identity. The AS v transmits a message with the re-
quest, the combined signature, and the server v signature
sigpseuv (M) to the PS. The message includes the values:
R, wu, Delsig′pseuv,i,pseuu,i

(R,wu), pseuu,i, pseuv,i, pseuv ,
sigpseuv

(M), app id, rn.

The PS receives the message from the AS v. and performs
the following steps:

• The PS checks whether the pseudonym pseuv is
included in its list of valid servers and validates
the signature sigpseuv

(M), where M = rn||pseuv,i,
using the signature verification algorithm described
above.

• The PS computes the app-specific value Qi =
H1(app id)

• The PS validates the delegated signature,
Delsig′pseuv,i,pseuu,i

(R,wu), using the Qi, with
the delegation verification algorithm, which consists
of checking that the following equation holds:

e(Delsig′pseuv,i,pseuu,i
(R,wu), Qi)

= e(H1(wu), pseuu,i)e(H2(R||wu), pseuv,i)
(2)

• The PS takes the value Qi and and computes the app-
specific pseudonyms for the list of users registered
with the AS v, i.e. it computes pseu=µuQi for all
users in the list of users of the AS v. Then, the PS
looks up the user with pseudonym pseuu,i and re-
trieves his real identity. Note that the PS can store the
app-specific pseudonyms, in the AS v users’ profile,
for future pseudonym searches.

• The PS sends back, to the AS v, the real identity of
the users if this does not violate any of the constraints
specified in the signed user’s warrant wu.

V. SECURITY ANALYSIS

In this section we provide the correctness proof of
the pseudonym-based signature scheme and the delegation
scheme. We also provide an analysis of the proposed protocol
in terms of location privacy and conditional privacy.

A. Correctness of the signature and delegation schemes

It is worth mentioning that the correctness of the signature
scheme is provided in [14], hence we do not include it here
due to space constraints. However, we provide the correctness
of the delegation signature scheme, in which the user u and
AS v compute a combined signature, which is validated by
the AS and the PS. This delegation signature scheme was first
presented in [17]. Such signature, Delsig′pseuv,pseuu

(R,wu),
is validated if the following equation holds:

e(Delsig′pseuv,i,pseuu,i
(R,wu), Qi)

= e(H1(wu), pseuu,i)e(H2(R||wu), pseuv,i)
(3)

Note that according the properties of the Bilinear map e,
[16], we can state that:

e(H1(wu), pseuu,i)e(H2(R||wu), pseuv,i) =
e(H1(wu), Qi)

µue(H2(R||wu), Qi)µv =

e(H1(wu)µu, Qi)e(H2(R||wu)µv, Qi) =
e(H1(wu)µu +H2(R||wu)µv, Qi) =
e(Delsig′pseuv,i,pseuu,i

(R,wu), Qi)

(4)

B. Identity privacy

To achieve identity privacy, only the PS should be able to
recover the real identity linked to a given pseudonym, whereas
any other entity, apart from the citizen holding the pseudonym
and the PS, should not be able to obtain such relationship.
According to the proposed protocol, the citizen’s pseudonyms
are computed as pseuu,i = µuQi and pseuu = µuQs. Only
the PS and the citizen hold the secret value µu, constructed
with the user’s nickname and password. Hence, knowing or
calculating the public values Qi and Qs, the PS can always
compute the pseudonym of the citizen and retrieve his/her
real identity. On the other hand, any third-party, without
the knowledge of the µu value, is not able to compute the
pseudonym of a citizen. Moreover, the knowledge of the
pseudonym pseuu or pseuu,i, by an attacker, does not provide
any advantage to obtain the µu value, under the assumption
that the ECDLP is hard.

C. Location privacy

As indicated in [18], location privacy can be achieved
by granting a large number of pseudonyms and providing
effective mechanisms to change the active pseudonym. In the
proposed scheme a citizen is given a set of pseudonyms, one
app-specific pseudonym per mobile e-Health app. In addition,
these app-specific pseudonyms, pseuu,i, cannot be linked to
each other since they are seen as random sequence strings
by eavesdroppers. This prevents eavesdroppers from linking
different mobile e-Health apps running on a device to the
location of this specific device, which would facilitate the the
citizen tracking, and hence allowing eavesdroppers to collect
valuable information to infer the citizen’s identity.

VI. CONCLUSION

In this paper we have proposed an OAuth2-based protocol
for Smart City mobile e-Health apps. The proposed protocol
addresses the citizen’s identity and location privacy issues of
citizens accessing personalized e-Health services through their
mobile e-Health apps running on their mobile devices. Our
proposed protocol follows the OAuth2 protocol flow, but it
provides privacy-preserving user authentication by integrating
a pseudonym-based signature scheme and a delegation sig-
nature scheme. This modification only affects the information
transmitted in the Step 2 of the OAuth2 protocol. Moreover, the
proposed protocol does not require the storage of any sensitive
information, e.g. secret keys or credentials, in the citizen’s
mobile device, hence avoiding attackers to steal information
that could be used to reveal the citizen’s real identity.

REFERENCES

[1] ITU. An overview of smart sustainable cities and the role of information
and communication technologies. 2014.

[2] Solanas et al. Smart health: A context-aware health paradigm within
smart cities. Communications Magazine, IEEE, 52(8):74–81, Aug 2014.

[3] M. Fengou, G. Mantas, D. Lymberopoulos, N. Komninos, S. Fengos,
and N. Lazarou. A new framework architecture for next generation e-
health services. Biomedical and Health Informatics, IEEE Journal of,
17(1):9–18, Jan 2013.

[4] Antoni Martinez-Balleste, Pablo Perez-Martinez, and Agusti Solanas.
The pursuit of citizens’ privacy: A privacy-aware smart city is possible.
IEEE Communications Magazine, 51:136–141, 2013.

[5] Eric Y. Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and
Patrick Tague. Oauth demystified for mobile application developers. In
2014 ACM SIGSAC, CCS ’14. ACM, 2014.

[6] San-Tsai Sun and Konstantin Beznosov. The devil is in the (imple-
mentation) details: An empirical analysis of oauth sso systems. Aug
2012.

[7] E. Hammer-Lahav. The oauth 1.0 protocol. In IETF, 2010.
[8] M. Shehab and F. Mohsen. Towards enhancing the security of oauth

implementations in smart phones. In MS, 2014 IEEE, June.
[9] M. M. T. Lodderstedt and P. Hunt. Oauth 2.0 threat model and security

considerations. In IETF2013, 2013.
[10] Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra. A

survey on security for mobile devices. IEEE Communications Surveys
and Tutorials, 15(1):446–471, 2013.

[11] Mantas G, Komninos N, Rodriguez J, Logota E, and Marques H.
Security for 5g communications. In Fundamentals of 5G Mobile
Networks. John Wiley & Sons, 2015.

[12] D. Hardt. The oauth 2.0 authorization framework. In IETF2012, 2012.
[13] G. Developers. Using oauth 2.0 for installed applications. In Available:

https://developers.google.com/identity/protocols/OAuth2InstalledApp,
2015.

[14] Yong Zhang and Jun-Liang Chen. A delegation solution for universal
identity management in soa. Services Computing, IEEE Transactions
on, 4(1):70–81, Jan 2011.

[15] V. Sucasas, F. Saghezchi, A. Radwan, H. Marques, J. Rodriguez,
S. Vahid, and R. Tafazolli. Efficient privacy preserving security protocol
for vanets with sparse infrastructure deployment. In ICC, IEEE, 2015.

[16] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil
pairing. SIAM J. of Computing, 32(3):586–615, 2003. extended abstract
in Crypto’01.

[17] Huang et al. A short proxy signature scheme: Efficient authentication
in the ubiquitous world. In Tomoya Enokido, editor, EUC Workshops,
volume 3823, pages 480–489. Springer, 2005.

[18] Rongxing et al. A lightweight conditional privacy-preservation protocol
for vehicular traffic-monitoring systems. Intelligent Systems, IEEE,
28(3):62–65, May 2013.

