
ON EXCEPTIONAL GROUPS OF ORDER p5

JOHN R. BRITNELL, NEIL SAUNDERS, AND TONY SKYNER

Abstract. A finite group G is exceptional if it has a quotient Q whose minimal

faithful permutation degree is greater than that of G. We say that Q is a distin-

guished quotient.

The smallest examples of exceptional p-groups have order p5. For an odd prime p,

we classify all pairs (G,Q) where G has order p5 and Q is a distinguished quotient.

(The case p = 2 has already been treated by Easdown and Praeger.) We estab-

lish the striking asymptotic result that as p increases, the proportion of groups of

order p5 with at least one exceptional quotient tends to 1/2.

1. Introduction

Let G be a finite group. The minimal degree µ(G) of G is the least non-negative

integer n such that G embeds into the symmetric group Sn. The question of repre-

senting finite groups by permutations is one of the oldest in group theory, and the

minimal degree µ(G) is a natural invariant of the group G. However it is well known

that the function µ is badly behaved with regard to quotients: it is possible for a

group G to have a quotient Q such that µ(G) < µ(Q). Such cases are pitfalls in the

design and implementation of permutation group algorithms (see [14]).

The following terminology is derived from Easdown and Praeger [3]. If G has a

normal subgroup N such that µ(G) < µ(G/N), then we say that N is a distinguished

subgroup of G, and that G/N a distinguished quotient. The group G is exceptional if

it has at least one distinguished quotient Q; and we say also that G is an exceptional

extension of Q.

In this paper we give a complete classification of the exceptional groups of order p5,

together with their distinguished subgroups, for any prime p. These are the smallest

exceptional p-groups for each p. In the case p = 2 these groups are known from [3], in

which it is shown there are two exceptional groups of order 32. In the case of an odd

prime p, the only previously known construction of an exceptional group of order p5

is given by Lemieux [13]. Our main result is as follows.

Theorem 1. Let G be a group of order p5, and let Q be a quotient of G such that

µ(Q) > µ(G). Then |Q| = p4, and the pair (G,Q) is one of those listed in Table 1.

Date: December 12, 2016.

2010 Mathematics Subject Classification. 20B35, (secondary) 20D15.

Key words and phrases. permutation representation, minimal degree.
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/158367044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 JOHN R. BRITNELL, NEIL SAUNDERS, AND TONY SKYNER

Table 1 gives an explicit presentation for each exceptional G and distinguished

quotient Q. For the sake of completeness, we include the results of Easdown and

Praeger in the case p = 2 where there is only one such Q, namely the quaternion

2-group of order 16.

The number of exceptional groups of order p5 is surprisingly large. It is perhaps

worth noting that Easdown and Praeger [3] expressed doubt as to whether such groups

existed at all for p > 2, although they found exceptional groups of order p6 for all

primes p.

Theorem 2. The total number of exceptional groups of order p5 is
2 if p = 2,

10 if p = 3,

p+ 6 otherwise.

The number of groups of order p5 is at most 2p + 71. Theorem 2 implies that the

number of exceptional groups of order p5 is p + 6 for p > 3. Hence the proportion

of groups of order p5 which are exceptional is asymptotically 1/2. This suggests

that the established term exceptional for these groups (introduced in [3]) may be less

appropriate than it has previously seemed. It would be interesting to understand the

asymptotics for exceptional groups of order p6 and larger, but we have nothing to add

on this question at present.

1.1. Notation for the exceptional groups. The exceptional groups G are listed in

Table 1. For each possible distinguished quotient Q we first give a presentation of Q

itself; we then give presentations of the exceptional extensions of Q. Our presentations

use the following convention: the generators of G are taken to be preimages of those

of Q (and denoted by the same letters), together with a generator n of N . The

generator n is always central, and we shall write “n central” in our presentations as

a convenient shorthand for the commutator relations.

The names given to the extensions in the table are purely for ease of reference, and

are not used in the text of the paper. The names given here to the various quotients,

however, are introduced and used during the course of our argument.

In the case that p = 2 there are only two exceptional groups, G1 and G2 in the

table; the classification in this case appears in [3] and will not be treated here. For

each odd prime p, we take α = αp to be a fixed quadratic non-residue modulo p. We

shall require the Legendre symbol,

(
a

p

)
=


0 if p divides a,

1 if a is a quadratic residue modulo p,

-1 if a is a quadratic non-residue modulo p.



ON EXCEPTIONAL GROUPS OF ORDER p5 3

Table 1. Exceptional groups of order p5 arranged by distinguished quotients.

Group Presentation Notes

Q16 〈x, y | x8 = 1, y2 = x4, [x, y] = x−2〉 p = 2

G1 〈x, y, n | x8 = n2 = 1, y2 = x4n, n central, [x, y] = x−2〉
G2 〈x, y, n | x8 = n2 = 1, y2 = x4, n central, [x, y] = x−2n〉

Q81 〈x, y, z | x9 = y3 = z3 = 1, [x, y] = 1, [x, z] = y, [y, z] = x−3〉 p = 3

G3 〈x, y, z, n | x9 = y3 = z3 = n3 = 1, n central, [x, y] = n, [x, z] = y, [y, z] = x−3n〉
G4 〈x, y, z, n | x9 = y3 = z3 = n3 = 1, n central, [x, y] = 1, [x, z] = y, [y, z] = x−3n〉

Q1(3) 〈x, y, z | x9 = y3 = 1, z3 = x3, [x, y] = 1, [x, z] = y, [y, z] = x3〉 p = 3

G4 〈x, y, z, n | x9 = y3 = n3 = 1, n central, z3 = x3n, [x, y] = n, [x, z] = y, [y, z] = x3n〉
G5 〈x, y, z, n | x9 = y3 = n3 = 1, n central, z3 = x3n, [x, y], [x, z] = y, [y, z] = x3n2〉
G6 〈x, y, z, n | x9 = y3 = n3 = 1, n central, z3 = x3, [x, y] = 1, [x, z] = y, [y, z] = x3n〉

Qα(3) 〈x, y, z | x9 = y3 = 1, z3 = x6, [x, y] = 1, [x, z] = y, [y, z] = x6〉 p = 3, (α = 2)

G6 〈x, y, z, n | x9 = y3 = n3 = 1, n central, z3 = x6n, [x, y] = 1, [x, z] = y, [y, z] = x6〉
G7 〈x, y, z, n | x9 = y3 = n3 = 1, n central, z3 = x6, [x, y] = 1, [x, z] = y, [y, z] = x6n〉

Q(p) 〈x, y, z | xp2 = yp = zp = [x, y] = [x, z] = 1, [y, z] = xp〉 p odd

E1 〈x, y, z, n | xp2 = yp = zp = 1, n central, [x, y] = [x, z] = 1, [y, z] = xpn〉
E2 〈x, y, z, n | xp2 = zp = 1, yp = n, n central, [x, y] = [x, z] = 1, [y, z] = xpn〉
E3 〈x, y, z, n | xp2 = yp = zp = 1, n central, [x, y] = 1, [x, z] = n, [y, z] = xpn〉
E4 〈x, y, z, n | xp2 = yp = 1, zp = n, n central, [x, y] = 1, [x, z] = n, [y, z] = xpn〉
E5 〈x, y, z, n | xp2 = zp = 1, yp = n, n central, [x, y] = 1, [x, z] = n, [y, z] = xp〉
E6(λ) 〈x, y, z, n | xp2 = zp = 1, yp = n, n central, [x, y] = 1, [x, z] = nλ, [y, z] = xpn〉 λ 6= 0,

(
1+4λ
p

)
= 1

Q1(p) 〈x, y, z | xp2 = yp = 1, zp = xp, [x, y] = 1, [x, z] = y, [y, z] = xp〉 p > 3

F
(1)
1 〈x, y, z, n | xp2 = yp = 1, zp = xp, n central, [x, y] = 1, [x, z] = y, [y, z] = xpn〉
F

(1)
2 〈x, y, z, n | xp2 = yp = 1, zp = xp, n central, [x, y] = n−1, [x, z] = y, [y, z] = xpn2〉
F

(1)
3 〈x, y, z, n | xp2 = yp = 1, zp = xpn, n central, [x, y] = 1, [x, z] = y, [y, z] = xpn〉
F

(1)
4 (λ) 〈x, y, z, n | xp2 = yp = 1, zp = xpn, n central, [x, y] = n−1, [x, z] = y, [y, z] = xpn1+λ〉 λ ≥ 0,

(
λ2+4
p

)
= 1

F
(1)
5 (λ) 〈x, y, z, n | xp2 = yp = 1, zp = xpn, n central, [x, y] = n−α, [x, z] = y, [y, z] = xpnα+λ〉 λ ≥ 0,

(
λ2+4α
p

)
= 1

Qα(p) 〈x, y, z | xp2 = yp = 1, zp = xαp, [x, y] = 1, [x, z] = y, [y, z] = xαp〉 p > 3

F
(α)
1 〈x, y, z, n | xp2 = yp = 1, zp = xαp, n central, [x, y] = 1, [x, z] = y, [y, z] = xαpn〉
F

(α)
2 〈x, y, z, n | xp2 = yp = 1, zp = xαp, n central, [x, y] = n−1, [x, z] = y, [y, z] = xαpn(α+1)〉
F

(α)
3 〈x, y, z, n | xp2 = yp = 1, zp = xαpn, n central, [x, y] = 1, [x, z] = y, [y, z] = xαpn〉
F

(α)
4 (λ) 〈x, y, z, n | xp2 = yp = 1, zp = xαpn, n central, [x, y] = n−1, [x, z] = y, [y, z] = xαpnα+λ〉 λ ≥ 0,

(
λ2+4α
p

)
= 1

F
(α)
5 (λ) 〈x, y, z, n | xp2 = yp = 1, zp = xαpn, n central, [x, y] = n−α, [x, z] = y, [y, z] = xαpnα(α+λ)〉 λ ≥ 0,

(
λ2+4
p

)
= 1

Where a parameter λ appears in a presentation, it represents an integer in the range

[−(p− 1)/2, . . . , (p− 1)/2] satisfying the conditions stated in the Notes column. Dis-

tinct values of λ yield presentations of non-isomorphic groups.

The groups named G4 and G6 appear twice in the table with different presentations,

as these groups possess two non-isomorphic distinguished quotients. Furthermore the

exceptional extensions of the groups Q1(p) and Qα(p) are isomorphic in pairs; details

of these isomorphisms are given in Section 4.4.

1.2. Background. Neumann [14] has pointed out that there exists a sequence of

groups (Gi) with quotients (Qi) such that µ(Qi) grows exponentially with µ(Gi).
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Neumann’s example takes Gi to be the direct product, and Qi to be the central

product, of i copies of the dihedral group D8. Holt and Walton [7] have proved the

existence of a constant c such that µ(G/N) ≤ cµ(G)−1 for all groups G and normal

subgroups N . The constant c is shown to be less than 4.5.

The second author [16] has recently described a general construction of exceptional

groups which, like Neumann’s construction, uses the idea of the central product as

a quotient of the direct product. Instances of this construction are found to occur

naturally in the context of binary polyhedral groups.

Recall that the core of a subgroup H of G is the intersection of the conjugates of

H in G. For a permutation representation of a group G on a set Ω, let {H1, . . . , H`}
be a set of point stabilizers, one for each orbit of G on Ω. These subgroups determine

the representation up to equivalence. The representation is faithful if and only if the

cores of the subgroups H1, . . . , H` intersect trivially. The degree of the representation

is given by the sum
∑`

i=1 |G : Hi|, and so the minimal degree of G can be expressed

as the minimum value taken by this sum over collections of subgroups {Hi} whose

cores have trivial intersection (see [15] for a fuller treatment).

We shall require the following theorem of Johnson [8].

Theorem 1.1 (Theorem 3 of [8]). Let G be a p-group whose centre Z(G) is mini-

mally generated by d elements. Let {H1, . . . , H`} be point stabilizers for a minimal

representation of G. Then

(1) if p is odd then ` = d,

(2) if p = 2 then d
2
≤ ` ≤ d, with the bound ` = d being achieved by some minimal

representation of G.

It will be helpful to collect together here a number of conditions which ensure that

a quotient Q of a group G is not distinguished.

Lemma 1.2. Let G be group, and Q a quotient of G. If any one of the following

conditions is met, then Q is not a distinguished quotient of G.

(1) Q is isomorphic to a subgroup of G.

(2) G is abelian.

(3) Q is cyclic.

(4) Q is elementary abelian.

(5) G is a p-group where p is an odd prime, and Q has a maximal cyclic subgroup.

Proof. (1) A faithful representation of G restricts to a faithful representation of

any subgroup.

(2) This follows from the fact that every quotient of a finite abelian group G is

isomorphic to a subgroup of G.

(3) If Q is cyclic then G has a subgroup isomorphic to Q.

(4) This is stated in [9] as a consequence of the main theorem.
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(5) This appears in [12]. The proof is short and so we give it here for convenience.

Suppose that |Q| = pn and that Q has a cyclic subgroup C of order pn−1.

It follows that G itself has a cyclic subgroup subgroup C of order pn−1, and

in particular that µ(G) ≥ pn−1. We may assume that Q is not itself cyclic,

and hence that Q is an extension of C by a group H ∼= Cp. It is well-known

(see [2, Theorem 4.1] for instance) that any such extension is split (since p is

odd). If Q is not abelian, then its non-normal factor H is a core-free subgroup

of index pn−1, and so µ(Q) ≤ pn−1 ≤ µ(G). The remaining case is that

Q ∼= C ×H, in which case µ(Q) = pn−1 + p. Now if Q is distinguished, then

we must have µ(G) = pn−1. Hence a minimal degree representation of G is

transitive, and now by Theorem 1.1 it follows that G has a cyclic centre, and

hence that G has a unique normal subgroup Z of order p. But Z is contained

in the kernel of the canonical map onto Q, and hence intersects trivially with

C. So the subgroup CZ of G is isomorphic to Cpn−1 × Cp ∼= Q.

�

Kovács and Praeger [9] have conjectured that no abelian quotient is distinguished.

In later work [10] they have shown that if a minimal counterexample G exists to

this conjecture, then G is a p-group, with Q being the quotient by the commutator

subgroup G′, and with µ(Q) = µ(G) + p. Perhaps for this reason, the principal focus

of work in this area has been on p-groups; however the conjecture remains open.

Franchi [5] has shown that µ(G/G′) ≤ µ(G) whenever G contains a maximal abelian

subgroup.

The hypothesis that p is odd in Lemma 1.2(5) is necessary only to exclude the case

that the quotient Q is a generalized quaternion group; it is known from [3] that these

groups arise as distinguished quotients. Excepting these groups, the result holds when

p = 2 as well.

1.3. Organisation of the Paper. In Section 2 we set out some preliminary results.

We show that there are no exceptional p-groups of order at most p4, and that if G

is an exceptional group of order p5 with distinguished quotient N , then N has order

p. We classify the possible isomorphism classes of the quotient Q = G/N . Some of

these results have appeared previously in [12]. We also deal with exceptional groups

of order 35, which require special treatment. However groups of this order are easily

handled by computer calculations, and we have not thought it necessary to give

further justification for our results.

In Section 3 we consider exceptional extensions of the group we have named Q(p),

in the case p > 3. Similarly, in Section 4 we consider extensions of the two groups we

have named Q1(p) and Qα(p). These admit a common treatment, and indeed their

exceptional extensions turn out to be the same up to isomorphism.
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2. Preliminaries

We shall often use the following elementary observation.

Proposition 2.1. Let P be a p-group. Either P is elementary abelian of rank less

than p, or µ(P ) ≥ p2.

Proof. The Sylow-p subgroups of Sn for n < p2 are generated by bn/pc disjoint p-

cycles, and hence are elementary abelian. �

2.1. Groups of order at most p4.

Proposition 2.2. Let p be a prime, and let Q = G/N be a distinguished quotient of

a p-group G. Then |Q| > p3.

Proof. Let G be a p-group and Q = G/N a proper quotient of order at most p3. Sup-

pose first that Q is abelian. Then since any abelian p-group of order p3 is elementary

abelian, or else has a maximal cyclic subgroup, we see from Lemma 1.2 that Q is not

distinguished. But if Q is non-abelian then it is extraspecial of order p3. If Q is not

the quaternion group Q8, then µ(G/N) = p2; but p2 is the smallest possible degree

of a non-abelian p-group acting faithfully, and so µ(G) ≥ µ(G/N). If Q = Q8 then

µ(Q) = 8, and it is easy to check that no 2-group of degree less than 8 has Q as a

quotient. �

It follows immediately from Proposition 2.2 that no p-group of order at most p4 is

exceptional.

2.2. Distinguished quotients. Throughout this section, we suppose that p is an

odd prime. The following result is essentially due to Lemieux [12]. However he mis-

takenly excludes from his list the group that we have called Q81 (called by him G28).

Also, one extra group in his list (which he calls G29) is excluded by our arguments.

Proposition 2.3. Suppose that G is an p-group of order p5 with a distinguished

subgroup N . Then N is cyclic and G/N is isomorphic to one of the following groups.

Q81 = 〈x, y, z | x9 = y3 = z3 = 1, [x, y] = 1, [x, z] = y, [y, z] = x−3〉 (p = 3),

Q(p) = 〈x, y, z | xp2 = yp = zp = [x, y] = [x, z] = 1, [y, z] = xp〉,
Q1(p) = 〈x, y, z | xp2 = yp = 1, zp = xp, [x, y] = 1, [x, z] = y, [y, z] = xp〉,
Qα(p) = 〈x, y, z | xp2 = yp = 1, zp = xαp, [x, y] = 1, [x, z] = y, [y, z] = xαp〉,

where α is a quadratic non-residue modulo p.

Proof. From Proposition 2.2 we see that G/N has order p4, and hence |N | = p.

The groups of order p4 are well known; a convenient reference for them is [13], who

tabulates them with their minimal degrees. For the sake of brevity, we shall not here

refer explicitly to individual groups.
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Let Q = G/N . Then Lemma 1.2 tells us that Q is not elementary abelian, and

contains no maximal cyclic subgroup. Since G is non-abelian, we see that µ(G) ≥ p2,

and so we must have µ(Q) > p2. These considerations suffice to rule out all but six of

the groups of order p4 for odd p, aside from the four groups listed in the proposition.

These six possibilities for Q each have the property that µ(Q) ≤ 2p2. We must

therefore have µ(G) < 2p2, and it follows that µ(G) = p2 + cp for some c < p.

Hence G ∼= H ×B, where H is a non-abelian permutation group acting on p2 points

and B is elementary abelian, possibly trivial. The action of H is a minimal degree

representation, and it is transitive. So Theorem 1.1 tells us that H has a unique

central subgroup N , which clearly has order p. But now it is clear that N must be

the distinguished subgroup of G. This implies that H is exceptional, and so H = G.

Now we see that G is a subgroup of Cp o Cp, and so G has an elementary abelian

maximal subgroup V . If g ∈ G \ V then g acts indecomposably on V , and its Jordan

form comprises a single unipotent block of size 4. It then follows that the quotient

G/N is isomorphic to an extension of a space of dimension 3 by a linear map of order 3

acting indecomposably. In particular, the centre Z(G/N) is cyclic, and so a minimal

permutation representation of G/N is transitive by Theorem 1.1. But this is not the

case for any of the six possible groups Q under consideration, and so G/N 6∼= Q, which

is a contradiction. �

2.3. Commutators and p-th powers. Recall the well known commutator identity

[x, yz] = [x, z][x, y]z. (1)

In particular, if G is nilpotent of class 2, then commutators are central, and so

[x, yz] = [x, y][x, z].

The following fact is of great importance in what follows.

Proposition 2.4. Let G be a p-group of nilpotency class at most p− 1, such that G′

has exponent at most p. Then the map g 7→ gp is an endomorphism of G.

Proof. For our purposes we shall require the result only in the case where p > 3 and

G has class at most 3. In this case, since commutators of weight 2 are central in G,

a straightforward induction establishes the following identity:

(gh)a = gaha[h, g](
a
2)[[h, g], g](

a
3)[[h, g], h](

a
3)+(a2).

Now since G′ has exponent dividing p, it follows for p > 3 that (gh)p = gphp.

The more general result stated in the proposition can be shown in a similar manner,

using the commutator collection formula [11, Proposition 1.1.32(i)]. �

2.4. Use of computation and the case p = 3. The classification of exceptional

groups for p = 3 stands alone since it does not comply with the general classification

for p ≥ 5. Since groups of order 35 are so readily dealt with computationally, we do

not give full proofs of the results here. The classification of exceptional extensions of
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the groups Q(p), Q1(p) and Qα(p) for p = 3 are presented in Table 1. We remark here

that the groups Q1(3) and Q81 possess a common exceptional extension, the group

which we have called G4. Also, Q1(3) and Qα(3) possess a common exceptional

extension, which we have called G6. These groups appear with distinct presentations

in Table 1, reflecting the particular quotient maps, but we have used a consistent

nomenclature.

For the rest of the paper, we assume p > 3. Our arguments depend no further

on computation; however we have verified our classification of exceptional groups

computationally for all primes p up to 19. For calculating minimal degrees we have

used the procedure described in [4]. Our computations have been performed using

the GAP [6] and Magma [1] computer algebra programs, and have made use of the

library of small p-groups in the Small Groups Database of Besche, Eick and O’Brien.

3. Extensions of Q(p)

3.1. First reduction. Let p be an odd prime, and let Q be Q(p) of order p4, given

by

Q = 〈x, y, z | xp2 = yp = zp = [x, y] = [x, z] = 1, [y, z] = xp〉.
A central extension of Q by a group of order p has the form

G = 〈x, y, z, n | np = 1, xp
2

= nh, yp = ni, zp = nj,

n central, [y, z] = xpnk, [x, z] = n`, [x, y] = nm〉 (2)

for integers h, i, j, k, `,m ∈ {0, . . . , p − 1}. The generators of G in this presentation

have been so labelled that the images of x, y, z, in the quotient of G by its central

subgroup 〈n〉, correspond to the generators x, y, z of Q. We note that it is immediately

clear from the presentation that G has nilpotency class 2, and that its derived group

has exponent p. So Proposition 2.4 tells us that the p-power map is an endomorphism

of G.

It is clear that a subgroup H of Q not containing the socle 〈xp〉 has order at most p,

from which it is clear that µ(Q) = p3. Suppose that µ(G) < µ(Q); then it is clear

that G can have no element of order p3. In particular, the generator x has order p2,

and so we must have h = 0. In fact we may also assume that m = 0, and our next

step is to justify this assertion.

Proposition 3.1. Let G(i, j, k, `,m) denote the group with the presentation (2) above,

with h = 0. Then for all i, j, k, `,m there exist i′, j′, `′ such that G(i, j, k, `,m) ∼=
G(i′, j′, k, `′, 0).

Proof. Let X = 〈y, z, n〉. Then X has order p4, and Z(X) = 〈n, xp〉 has order p2.

Clearly the quotient V = X/Z(X) is elementary abelian of order p2. The derived

subgroup X ′ is equal to the cyclic group 〈xpnk〉.
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There is a well defined map φ : V −→ 〈n〉 given by

φ(v + Z(X)) = [x, v], v ∈ X.

There is also a map ϑ : V × V −→ X ′ defined by

ϑ(u+ Z(X), v + Z(X)) = [u, v].

We may consider V as a vector space, and the cyclic groups 〈n〉 and X ′ as copies

of the field Fp. It is now apparent, by (1), that φ is a linear functional, and ϑ a

non-degenerate alternating form, on the space V . If we pick u to be a non-zero

element of the kernel of φ, then there exists v ∈ V such that ϑ(u, v) = xpnk. Now we

may construct a new presentation for the group G, on generators x, y′, z′, n, where

y′+Z(X) = u and z′+Z(X) = v. It is straightforward to check that this presentation

gives the isomorphism claimed, for some values of i′, j′, `′. �

In the light of Proposition 3.1, we may drop the parameter m from the notation

introduced there, and write G(i, j, k, `) for the group with the presentation (2) with

h = m = 0. We call such a presentation a distinguished presentation with parameters

(i, j, k, `). The group affording such a presentation is a candidate extension of Q;

these include all of the exceptional extensions of Q.

3.2. Structure of a candidate extension of Q. We record here some observations

on the structure of a candidate extension which will be needed later. Throughout

this section G is a candidate extension affording a distinguished presentation with

generators x, y, z, n and parameters (i, j, k, `).

Proposition 3.2. G has order p5 (that is to say, it is a proper central extension

of Q).

Proof. It is clear that |G| is either p4 or p5. Consider the group K with presentation

K = 〈x, y, z, n | xp = np = [x, y] = [x, n] = [y, n] = [z, n] = 1,

yp = ni, zp
2

= 1, [y, z] = nk, [x, z] = n`〉.

The subgroup L of K generated by its elements x, y, n is abelian of order p3. It is easy

to see that there is an automorphism of L of order p such that x 7→ xn`, y 7→ ynk,

n 7→ n; this holds regardless of whether y has order p or p2. So K is a semidirect

product of L by the group 〈z〉 of order p2. The elements n and zp are central in K.

But we observe that the quotient K of K by 〈zpn−j〉 has a presentation obtained

from the presentation for K simply by adding the relation zpn−j = 1, and it can be

checked that this is also a presentation for the quotient of G by its subgroup 〈xp〉.
Now xp has order p in G, since its image in Q has order p, and it follows easily that

|G| = p|K| = |K| = p2|L| = p5 as required. �

Proposition 3.3. If ` 6= 0 the the centre Z(G) is elementary abelian of size p2, and

is equal to 〈xp, n〉. If ` = 0 then Z(G) = 〈x, n〉, which is isomorphic to Cp × Cp2.
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Proof. It is clear that A = 〈xp, n〉 is a central elementary abelian subgroup of order p2.

A set of representatives for the cosets of A in G is {xaybzc | a, b, c ∈ {0, . . . , p− 1}}.
Now the element xaybzc cannot commute with both y and z unless b = c = 0, and

so Z(G) is contained in 〈x, n〉. The result follows from the facts that x has order p2,

and that it is central if and only if ` = 0. �

Proposition 3.4. The subgroup H = 〈x, y, n〉 of G is an abelian subgroup of order p4.

If ` 6= 0 then H is the unique abelian subgroup of G of order p4. If i = 0 then

H ∼= Cp2 × Cp × Cp; otherwise H ∼= Cp2 × Cp2.

Proof. It is obvious that H has order p4 and that it is abelian. Let w ∈ G \H. Then

w ∈ Hzc for some c ∈ {1, . . . , p − 1}, and it is easy to check that if ` 6= 0 then w

centralizes no element of H outside 〈x, n〉. Since |CentG(w) ∩H| = p2 we must have

|CentG(w)| ≤ p3, and so w lies in no abelian subgroup of order p4; it follows that H

is the only such subgroup. If i 6= 0 then H = 〈x, y〉 and so H ∼= Cp2 × Cp2 . But if

i = 0 then 〈xp, y, n〉 is elementary abelian of order p3, and so H ∼= Cp2 ×Cp×Cp. �

Proposition 3.5. If i = j = 0 then the subgroup of p-th powers in G is 〈xp〉 of

order p; otherwise it is 〈xp, n〉 of order p2.

Proof. This is obvious from the presentation for G. �

Proposition 3.6. If G decomposes as a non-trivial direct product then one of the

following statements holds.

(1) (i, j, k, `) = (0, 0, 0, 0). In this case G ∼= Q× Cp.
(2) ` = 0 6= k. In this case G ∼= Cp2 × E, where E is an extraspecial group of

order p3. The group E has exponent p if and only i = j = 0.

Proof. Suppose that G ∼= X × Y , where X and Y are non-trivial.

We observe first that a p-group of class 2 whose derived group is elementary abelian

of rank 2 must have order at least p5. Since the derived group (X × Y )′ is equal to

X ′ × Y ′, and since groups of order p2 are abelian, it follows that |G′| = p. Since the

element xpnk is a non-trivial element of G′, it must generate G′. Now n` lies in G′,

and so it follows that ` = 0. This has the consequence, by Proposition 3.3, that Z(G)

is isomorphic to Cp2 × Cp. Since Z(X × Y ) = Z(X) × Z(Y ), we see that one of

these summands—we may suppose it is X without loss of generality—has a centre

isomorphic to Cp2 .

Suppose first that |X| = p4 and |Y | = p. Then G has a central element u of order p

which is not a p-th power in G. But since u ∈ 〈xp, n〉, this implies that n is not a p-th

power in G, and hence that i = j = 0. We see too that G′ is contained in X, and so

xpnk ∈ X. But the central elements of order p in X are those of 〈xp〉, and so we must

have k = 0. So all parameters are 0 in this case, and we see that G ∼= 〈x, y, z〉 × 〈n〉,
with the first summand being isomorphic to Q.
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Table 2. Some generator maps with the associated changes of parameters.

Map (x′, y′, z′, n′) (i′, j′, k′, `′) Conditions

A(λ) (x, y, z, nλ
−1

) (λi, λj, λk, λ`) λ 6= 0

B(λ) (xλ, yλ, z, n) (λi, j, λk, λ`) λ 6= 0

C(λ) (xλ, y, zλ, n) (i, λj, λk, λ2`) λ 6= 0

D (x, y, y−j/iz, n) (i, 0, k, `) i 6= 0

E (x, z, y−1, n) (j,−i, k, 0) ` = 0

We cannot have |X| = p3, since X has a centre of order p2. So the only remaining

possibility for the orders of X and Y is that |X| = p2 and |Y | = p3. Now since Y is

non-abelian, it is extraspecial. Since G′ = 〈xpnk〉 is contained in Y , it is clear that

k 6= 0. If Y has exponent p then there is no element w of G such that wp = xpnk,

and it clearly follows that i = j = 0.

We conclude the proof by showing that the stated values for the parameters give

decomposable groups G. The case (i, j, k, `) = (0, 0, 0, 0) is obvious. Suppose that

` = 0 6= k. Then it is easily checked that G decomposes as

G = 〈x〉 × 〈xiyk, xjzk, xpnk〉.

The second summand is extraspecial, and has exponent p if and only if i = j = 0. �

3.3. Parameters. A candidate extension of Q may have several distinguished pre-

sentations with differing parameters. For each isomorphism class of extensions we

shall isolate a particular set of parameters. It will be helpful for this purpose to to

introduce some terminology. Let (x, y, z, n) and (x′y′z′n′) be the generators in two

distinguished presentations of a group G, with parameters (i, j, k, l) and (i′, j′, k′, `′)

respectively. We say that the map (x, y, z, n) 7→ (x′, y′, z′, n′) induces the change of

parameters (i, j, k, l) 7→ (i′, j′, k′, `′). We shall always treat parameters as elements

of Zp, since they occur in the presentation (2) only as indices to elements of order p.

Some particular generator maps, with the associated change of parameters, are

recorded in Table 2. It is a routine matter in each case to verify that the specified

values of (x′, y′z′, n′) give generating sets for G, and that they afford a distinguished

presentation with the claimed parameters (i′, j′, k′, `′).

Lemma 3.7. Let G be a candidate extension of Q. Let α be a quadratic non-residue

modulo p. Then G has a distinguished presentation with parameters in Table 3.

Proof. Suppose that G has a distinguished presentation P with parameters (i, j, k, `).

If ` = 0 then it is a simple matter to transform P into one of P0, P1, P2 or P3

using the maps from Table 2, for suitable values of λ. Similarly, if ` 6= 0 and i = 0

then P can be transformed into one of P4, P5, P6 or P7 using these maps. Suppose

that ` and i are both non-zero. Suppose that k = 0. There exists an element
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Table 3. Parameters for candidate extensions of Q(p).

Presentation (i, j, k, `)

P0 (0, 0, 0, 0)

P1 (0, 0, 1, 0)

P2 (1, 0, 1, 0)

P3 (1, 0, 0, 0)

P4 (0, 0, 0, 1)

P5 (0, 0, 1, 1)

P6 (0, 1, 0, 1)

P7 (0, 1, 1, 1)

P8(λ) (1, 0, 0, λ) λ ∈ {1, α}
P9(λ) (1, 0, 1, λ) λ ∈ Z×p

λ ∈ Z×p such that λ2 ∈ {i`−1, αi`−1}, and applying the transformations C(λ), A(i−1)

and D transforms P to P8(λ) for some λ. Otherwise, if k 6= 0, then applying the

transformations C(ik−1), A(i−1) and D transforms P to P9, for λ = i`k−1. �

3.4. Non-isomorphic presentations. We shall show that the presentations listed

in Lemma 3.7 are irredundant, in that no two of them give rise to isomorphic exten-

sions of Q. The observations collected in the following two propositions contain all

that is required for this purpose.

Proposition 3.8. Let G be a candidate extension.

(1) If G has a distinguished presentation with parameter ` = 0 then all of its

distinguished presentations have ` = 0.

(2) If G has a distinguished presentation with ` 6= 0 and with i = 0, then all of its

distinguished presentations have i = 0.

(3) If G has a distinguished presentation with i = j = 0, then all of its distin-

guished presentations have i = j = 0.

(4) If G has a distinguished presentation with parameter k = 0 then all of its

distinguished presentations have k = 0.

Proof. The first three parts follow immediately from Propositions 3.3, 3.4 and 3.5.

We prove the fourth part here.

If ` = 0 then it is clear from Proposition 3.6 that G has direct factors of order p2

and p3 if and only if k 6= 0. So we may suppose that ` 6= 0. By Proposition 3.4, G has

a unique maximal abelian subgroup H. Suppose that i = 0; then H is isomorphic to

Cp2 × Cp × Cp. If A is the elementary abelian subgroup of H of order p3; then A is

a characteristic subgroup of G. It is easy to check that [G,A] = 〈xpnk〉, and this lies

in the Frattini subgroup of H if and only if k = 0. So we suppose instead that i 6= 0.

Then H ∼= Cp2 × Cp2 . Let A be the elementary abelian subgroup of H of order p2;
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this is the subgroup of p-th powers in H. For a fixed element w ∈ G \ H there is a

well defined map ψw : A −→ A given by

ψw(hp) = [h,w] h ∈ H.

If A is considered as a vector space over Fp, then ψw is linear, and it is not hard to

calculate that trφw = 0 if and only if k = 0, irrespective of the choice of w (which

may be assumed to be zt for some t 6= 0). This completes the proof. �

The map ψw defined in the proof of Proposition 3.8 will play an important part in

the analysis of the presentations P8(λ) and P9(λ).

Proposition 3.9. The groups given by the presentations P8(1) and P8(α) are non-

isomorphic. The groups given by the presentations P9(λ) and P9(µ) are non-isomorphic

whenever λ 6= µ.

Proof. Suppose that G has a distinguished presentation with parameters (1, 0, k, `),

where ` 6= 0. Let A be the subgroup and ψw the linear map A −→ A, which are defined

in the proof of Proposition 3.8. It is straightforward to calculate that trφw = τk and

detφw = −τ 2`, for some τ ∈ F×p which depends on the choice of w. It is clear from the

expression for the determinant that whether or not ` is a quadratic residue modulo

p is an invariant of the group. Furthermore, if we suppose that k = 1 then the value

of τ is determined, and so ` itself is an invariant. The proposition follows immediately

from these observations. �

Lemma 3.10. Let G and H be candidate extensions with distinguished presentations

from Table 3. If their parameters are not the same, then G and H are not isomorphic.

Proof. This follows from Propositions 3.8 and 3.9. �

3.5. Exceptional extensions.

Lemma 3.11. Let G be a candidate extension of Q. Then G is exceptional (that is,

µ(G) < µ(Q)) if and only if G has two subgroups K1 and K2, each of order p3, such

that K1 ∩K2 has order p and is non-central in G.

Proof. Since Z(G) has rank 2, Theorem 1.1 tells us that a faithful permutation rep-

resentation of G of minial degree has exactly two orbits. Let K1 and K2 be two

non-conjugate point stabilizers. Then µ(G) = |G : K1||G : K2|. If G us exceptional,

then since µ(Q) = p3, we see that K1 and K2 must each have order at least p3. So

the intersection Y = K1 ∩K2 is non-trivial. Since the representation of G is faithful,

it is clear that Y ∩ Z(G) is trivial. Since all p-th powers in G lie in Z(G) it follows

that Y has exponent p. Now Y V has order p2|Y |, and since it is clear that G has

no elementary abelian subgroup of rank 4, we must have |Y | = p. It follows that

|K1| = |K2| = p3.
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For the converse, suppose that K1 and K2 are subgroups of G of order p3 such that

Y = K1 ∩K2 is a non-central subgroup of order p. Then Y is not normal in G, and

the permutation representation of G on the cosets of K1 and K2 is faithful. It follows

that µ(G) ≤ 2p2, and so G is exceptional. �

Proposition 3.12. The candidate extension with presentation P0 is not exceptional.

The candidate extensions with presentations P1 and P2 are exceptional.

Proof. These are the presentations which give rise to decomposable extensions, by

Proposition 3.6. The presentation P0 is afforded by Q × Cp, which is clearly not

exceptional. Each of P1 and P2 gives a group G ∼= Cp2 × E, where E is extraspecial

of order p3. Since both of the extraspecial groups of order p3 have permutation

representations of degree p2, we see that µ(G) = 2p2 in each case, and so G is

exceptional. �

The groups with presentations P1 and P2 appear in Table 1 as E1 and E2 respec-

tively.

Proposition 3.13. The candidate extension with presentation P3 is not exceptional.

Proof. Let G have presentation P3. Then x is central, and G′ = 〈xp〉. Suppose that K

is a subgroup of order p3, such that xp /∈ K. Then K is abelian, and G = K〈x〉.
But G is not abelian, which is a contradiction. Thus every subgroup of G of order p3

contains the central element xp, and so by Lemma 3.11 G is not exceptional. �

Proposition 3.14. The candidate extensions with presentations P4 and P6 are not

exceptional.

Proof. These are presentations for which ` 6= 0 and i = 0. So by Proposition 3.4 the

candidate subgroup G has an abelian subgroup H = 〈x, y, n〉 which has the structure

Cp2 × Cp × Cp. Suppose that K is a subgroup of G of order p3 which does not

contain xp. Then it is easy to see that Y = K ∩H is elementary abelian of order p2.

Now Y contains an element of H \ V , whose centralizer in G is H. It follows that K

is not abelian. But since k = 0 for these presentations, we see that [Y,G] = 〈xp〉, and

so xp ∈ K, a contradiction. Hence the central element xp lies in every subgroup of G

of order p3. �

Proposition 3.15. The candidate extensions with presentations P5 and P7 are ex-

ceptional.

Proof. It is easy to check that the subgroups K1 = 〈x, y〉 and K2 = 〈xpnk, y, z〉 satisfy

the conditions stated in Lemma 3.11. �

The groups with presentations P5 and P7 appear in Table 1 as E3 and E4 respec-

tively.
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Proposition 3.16. The candidate extension with presentation P8(λ) is exceptional

if λ = 1, but not if λ = α. The candidate extension with presentation P9(λ) is

exceptional if and only if 1 + 4λ is a non-zero quadratic residue modulo p.

Proof. These are the cases for which the parameters i and ` are non-zero. Let H be the

subgroup form Proposition 3.4, and let w ∈ G \H. We show that G is exceptional if

and only if the map ψw defined in the proof of Proposition 3.8 is diagonalizable. (This

does not depend on the choice of w, which affects ψw only up to scalar multiplication.)

Let G be a candidate extension with one of the stated presentations. Let K1

and K2 be subgroups of G of order p3 whose intersection has order p and is non-

central. Since H has the structure Cp2 × Cp2 , we see that K1 and K2 cannot have

exponent p. It follows that K1 ∩H and K2 ∩H are cyclic of order p. Let u1 generate

K1∩H and let u2 generate K2∩H. Then up1 and up2 are linearly independent elements

of V , considered as a vector space. Choose w to be a generator of K1 ∩ K2. Note

that w /∈ H, since the elements of order p in H are central in G. Now we observe

that both up1 and up2 must be eigenvectors of the map ψw.

Conversely, suppose that w ∈ G\H, and suppose that u1 and u2 are elements of H

such that up1 and up2 are linearly independent eigenvectors of ψw. Then it is easy to

check that the subgroups K1 = 〈u1, w〉 and K2 = 〈u2, w〉 satisfy the conditions of

Lemma 3.11, and so G is exceptional.

Since the map ψw is not scalar for any w ∈ G\H, it follows that G is exceptional if

and only if the characteristic polynomial of ψw has distinct roots in Fp. Taking w = z,

we see that the characteristic polynomial is X2 − kX − `, which has distinct roots

if and only if k2 + 4` is a non-zero square in Fp. Now substituting the appropriate

values for k and ` establishes the proposition in all cases. �

The group with presentations P8(1) appears in Table 1 as E5. For some values of λ

the group with presentation P9(λ) is exceptional, and appears there as E6(λ), with

the appropriate conditions on λ.

3.6. Counting exceptional extensions.

Proposition 3.17. The number of groups G which are exceptional extensions of Q,

up to isomorphism, is (p+ 7)/2.

Proof. There is an exceptional extension given by the presentation P9(λ) whenever

λ 6= 0 and 1 + 4λ is a quadratic residue for p. Every quadratic residue for p except

1 is expressible as 1 + 4λ for some non-zero λ, and so there are (p − 3)/2 such

presentations. The five groups with presentations P1, P2, P6, P7 and P8(1) are also

exceptional, giving the total stated in the proposition. �
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4. Extensions of Q1(p) and Qα(p)

Let p be a prime greater than 3, and let Qζ be the group of order p4 given by

Qζ = 〈x, y, z | xp2 = yp = [x, y] = 1, zp = xζp, [x, z] = y, [y, z] = xζp〉,

where ζ is an integer coprime with p. The isomorphism class of Qζ depends only on

whether or not ζ is a quadratic residue modulo p. The particular values ζ = 1 and

ζ = α give the presentations defining the groups Q1(p) and Qα(p) respectively.

A central extension of Qζ by a group of order p has the form

G = 〈x, y, z, n | np = 1, xp
2

= nh, yp = ni, zp = xζpnj, n central,

[x, z] = yn`, [x, y] = n−m, [y, z] = xζpnζm+k〉 (3)

for integers h, i, j, k, `,m ∈ {0, . . . , p − 1}. The generators of G in this presentation

have been so labelled that the images of x, y, z, in the quotient of G by its central

subgroup 〈n〉, correspond to the generators x, y, z of Qζ ; the exponents of n have been

chosen for convenience at a later point of the argument.

It is clear that a subgroup H of Qζ not containing the socle 〈xp〉 has order at

most p, from which it is clear that µ(Qζ) = p3. Suppose that µ(G) < µ(Qζ); then it

is clear that G can have no element of order p3. In particular, the generator x has

order p2, and so we must have h = 0.

It is easy to see that the centre Z of G is 〈xp, n〉, and that G/Z is an extraspecial

group with centre 〈yZ〉. Any subgroup of G/Z of order greater than p contains yZ,

and it follows easily that any subgroup of Z of order greater than p2 contains yp.

So ni is contained in the kernel of any permutation representation of G of degree less

than p3. Hence if G is exceptional, then i = 0.

Now we observe that G has nilpotency class 3 and (since h = i = 0) that its derived

subgroup has exponent at most p. So Proposition 2.4 applies, and we have that the

p-power map on G is an endomorphism.

We may also suppose that ` = 0, simply by replacing the generator y with yn`.

Thus we may drop three parameters from our notation, and write G(j, k,m) for the

group with the presentation (3) with h = i = ` = 0. These are our distinguished

presentations in this case, with parameters (j, k,m). We call groups affording such a

presentation candidate extensions ofQζ ; these include all of the exceptional extensions

of Qζ .

Proposition 4.1. A candidate extension G of Qζ has order p5.

Proof. Consider the group

W = 〈x, y, n | xp = yp = np = [x, n] = [y, n] = 1, [x, y] = n−m〉.

It is clear that W has order p3 and exponent p. We observe that [xy, ynζm+k] = [x, y]

inW , and so there exists an automorphism z ofW such that xz = xy and yz = ynζm+k.



ON EXCEPTIONAL GROUPS OF ORDER p5 17

Table 4. Some generator maps with the associated changes of parameters.

Map (x′, y′, z′, n′) (j′, k′,m′) Conditions

A(λ) (x, y, z, nλ
−1

) (λj, λk, λm) λ 6= 0

B(λ) (xλ, yλnm(λ2), xζ(λ−1)z, n) (j, λk, λ2m) λ 6= 0

It is easy to check that xz
a

= xyan(a2) for any integer a, and it follows easily that z

has order p. Now the extension of W by the automorphism z has the presentation

〈x, y, z, n|xp = yp = zp = np = 1, n central, [x, y] = n−m, [x, z] = y, [y, z] = nζm+k〉,

and we see that this is the quotient of G by the subgroup 〈xp〉. Since xp is non-trivial

in Qζ , it is non-trivial in G, and so |G| = p|W | = p5 as required. �

4.1. Parameters. If (x, y, z, n) and (x′y′z′n′) are the generators in two distinguished

presentations of a group G, with parameters (j, k,m) and (j′, k′,m′) respectively, then

we say that the map (x, y, z, n) 7→ (x′, y′, z′n,′ ) induces the change of parameters

(j, k,m) 7→ (j′, k′,m′).

Some particular generator maps, with the associated change of parameters, are

recorded in Table 4. It is a routine matter to verify that the map A(λ) gives a

distinguished presentation with the parameters claimed. For B(λ), we observe that

[xλ, xζ(λ−1)z] = [xλ, z] = yλnm(λ2),

with the second equality given by an easy induction. So we have [x′, z′] = y′, and it is

straightforward to check that the other relations of a distinguished presentation are

satisfied with the parameters stated.

Proposition 4.2. Let G be a candidate extension. If G has a distinguished pre-

sentation with one of its parameters j, k,m equal to 0, then all of its distinguished

presentations have that parameter equal to 0.

Proof. Let G have a distinguished presentation with parameters j, k,m. We observe

that if j = 0 then the image J of the endomorphism g 7→ gp is the subgroup 〈xp〉 of

order p, whereas if j 6= 0 then this image coincides with the centre Z, of order p2.

If m = 0 then the derived group G′ is 〈y, xζpnk〉 of order p2, whereas if m 6= 0 then

G′ = 〈y, n, xp〉 of order p3. Clearly these are invariants of the group G.

For the parameter k, let w be any non-central element of G contained in the

derived group G′. (The generator y in any distinguished presentation for G is such an

element.) We consider separately the cases that j = 0 and that j 6= 0. When j = 0,

the image J of the p-power endomorphism is a central subgroup of order p. The map

G −→ Z/J given by g 7→ [w, g]J is a homomorphism with kernel 〈xζm+kz−m, y, xp, n〉.
This kernel is independent of the element w, and we observe that it has exponent p
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if and only if the first of the given generators has order p; this occurs if and only if

k = 0.

Suppose next that j 6= 0. By applying the generator map A(1/j) from Table 4, we

see that we may assume that j = 1. We have J = Z, and so every central element has

a p-th root in G. We observe that the map ψw : Z −→ Z given by ψw(up) = [w, u]

is a well defined homomorphism, since w is centralized by the kernel 〈y, xp, n〉 of the

p-power endomorphism. We may consider Z as a 2-dimensional vector space over Fp,
and now the map ψw becomes a linear transformation of Z. Let t be such that

w ∈ ytZ. Then with respect to the basis (xp, n) for Z, the map ψw has the matrix

Mt = t

(
0 ζ

m k

)
.

Now this map has trace 0 if and only if k = 0, regardless of the choice of w. �

The map φw plays a similar role here as in Section 3; it will be essential to the

analysis of the presentations P6(λ) P7(λ).

Proposition 4.3. Let G have two distinguished presentations, each with parameter

j = 1. Let m1 and m2 be the values for the parameter m in these presentations. Then(
m1

p

)
=
(
m2

p

)
, where

(
a
p

)
is the Legendre symbol.

Proof. By Proposition 4.2 we may suppose that m1 and m2 are both non-zero. Since

j = 1, we may construct the transformation ψw from the proof of Proposition 4.2.

We see that detψw = −t2ζm, which is independent of w modulo squares in Z×p . �

Proposition 4.4. Let G have two distinguished presentations, each with parameter

j = 1, and with the same non-zero value for the parameter m. Let k1 and k2 be the

values for the parameter k in these presentations. Then k2 = ±k1.

Proof. Since j = 1, we can construct the transformation ψw from the proof of Propo-

sition 4.2. Now we see that
(trψw)2

detψw
= − k2

ζm
,

and so we must have k21 = k22. �

Lemma 4.5. Let G be a candidate extension of Qζ. Let α be a quadratic non-residue

modulo p. Then G has a distinguished presentation with parameters in Table 5.

Proof. It follows from Propositions 4.2, 4.3 and 4.4 that no two of the sets of pa-

rameters listed give rise to isomorphic groups. It is a routine matter to show that

any set of parameters may be transformed into one of the listed sets by means of the

generator maps listed in Table 4. �
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Table 5. Parameters for candidate extensions of Qζ .

Presentation (j, k,m)

P0 (0, 0, 0)

P1 (0, 0, 1)

P2 (0, 1, 0)

P3 (1, 0, 0)

P4 (0, 1, 1)

P5 (1, 1, 0)

P6(λ) (1, λ, 1) λ ∈ {0, . . . , (p− 1)/2})
P7(λ) (1, λ, α) λ ∈ {0, . . . , (p− 1)/2})

4.2. Exceptional extensions.

Proposition 4.6. Let G be a candidate extension with parameter j = 0. Then G is

exceptional if and only if parameter k 6= 0.

Proof. The group G is exceptional if and only if has subgroups H1 and H2, each of

order p3, such that the intersection H1 ∩H2 ∩ Z is trivial.

The image J of the p-power endomorphism is generated by xp. It follows that any

subgroup of G not containing xp has exponent p. Now the kernel of the p-power

endomorphism is K = 〈y, x−ζz, xp, n〉, which factorizes as

〈y, x−ζz, xζpnk〉 × 〈n〉.

Let L be the factor 〈y, x−ζz, xζpnk〉. Then L is extraspecial, with centre 〈xζpnk〉.
Let H be a subgroup of K of order p3. Then |H ∩ L| ≥ p2, and so xζpnk ∈ H.

It follows that if k = 0, then every subgroup of G of order p3 contains the central

element xp, and hence G is not exceptional.

Conversely, if k 6= 0, then it is easily checked that the subgroups

H1 = 〈y, x−ζz, xζpnk〉, H2 = 〈x−(ζm+k)zm, y〉,

both have order p3, and their intersection is the non-central subgroup 〈y〉. Hence G

is exceptional in this case. �

Proposition 4.6 tells is that the group with presentations P2 and P4 are excep-

tional. Taking ζ to be either 1 or α, these groups appear in Table 1 as F
(ζ)
1 and F

(ζ)
2

respectively.

Proposition 4.7. Let G be a candidate extension with parameter j = 1, and param-

eters k,m. Then G is exceptional if and only if k2 + 4ζm is a non-zero quadratic

residue modulo p.

Proof. Let H1 and H2 be subgroups of G of order p3, such that H1∩H2∩Z is trivial. It

is clear that H1∩H2 has exponent p (since the image J of the p-power endomorphism
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is central). Since j 6= 0, the kernel of the p-power endomorphism is 〈Z, y〉, and so

H1 ∩H2 contains an element w ∈ yZ. We may now construct the map ψw from the

proof of Proposition 4.2. (The value of t is quite unimportant, but as it happens our

choice of w ensures that t = 1.)

It is clear, since any subgroup of G of order p3 intersects the centre non-trivially,

that each of H1∩Z and H2∩Z must have order p. Let these intersections be generated

by u1 and u2 respectively. In particular, neither H1 nor H2 can be contained in the

kernel of the p-power endomorphism, and so each has exponent p2. It follows that u1
and u2 have p-th roots v1 ∈ H1 and v2 ∈ H2 respectively. It follows from the definition

of the map ψw that ψw(u1) = [w, v1] ∈ H1∩Z, and ψw(u2) = [w, v2] ∈ H2∩Z. Hence

each of u1 and u2 is an eigenvector of the map ψw.

As a converse, we note that if ψw has linearly independent eigenvectors u1 and u2,

with p-th roots v1 and v2 in G respectively, then the subgroups H1 = 〈v1, w〉 and

H2 = 〈v2, w〉 both have order p3, and their intersection 〈w〉 is non-central. Hence G

is exceptional if and only if ψw is diagonalizable. The proposition now follows from

the observations that the discriminant of ψw is k2 + 4ζm, and that since ψw is not

scalar, a discriminant of 0 implies that ψw is not diagonalizable. �

Let ζ ∈ {1, α}. The presentation P5 gives an exceptional group, which appears in

Table 1 as F
(ζ)
3 . For suitable values of λ the groups with presentations P6(λ) or P7(λ)

are exceptional; these appear as F
(ζ)
4 (λ) and F

(ζ)
5 (λ) respectively, with the appropriate

conditions on λ.

4.3. Counting exceptional extensions.

Proposition 4.8. The number of groups G which are exceptional extensions of Qζ,

up to isomorphism, is (p+ 5)/2.

Proof. From Propositions 4.6 and 4.7 we see that the presentations P2, P4 and P5

give exceptional extensions, whereas P0, P1 and P3 do not. It remains to deal with

the presentations P6(λ) and P7(λ).

Working in the set Zp of integers modulo p, let t be non-zero, and let

St := {(r, λ) | r 6= 0, t = r2 − λ2}.

Then it is clear that |St| is the number of (ordered) factorizations of t as a product

of distinct elements of Zp. This number is p− 3 if t is a square, and p− 1 otherwise.

Now define

T = {(µ, r, λ) | µ ∈ {1, α}, r 6= 0, r2 − λ2 = 4ζµ}.
Since 4ζ and 4ζα are non-zero, and exactly one of them is a square, we see that

|T | = 2p− 4. Each element of T yields a distinguished presentation with parameters

(j, k,m) = (1,±λ, µ) (where the sign in the second parameter is chosen to put it in

the range {0, . . . , p−1
2
}). Since the discriminant k2 + 4ζm for this presentation is r2,

Proposition 4.7 tells us that the corresponding extension is exceptional; moreover it
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is clear that all the exceptional extensions with presentations P6(λ) or P7(λ) arise in

this way. Now two elements (µ, r, λ) and (µ′, r′, λ′) of T yield the same presentation

if and only if µ = µ′, r = ±r′ and λ = ±λ′. Exactly two elements of T have λ = 0.

So the number of exceptional extensions arising from T is 1 + (|T | − 2)/4, which is

(p− 1)/2. Together with the three exceptional extensions already found, this makes

up the number (p+ 5)/2 stated in the proposition. �

4.4. Isomorphisms of exceptional extensions of Q1(p) and Qα(p). Recall that α

is a quadratic non-residue modulo p. In this section we establish the following fact.

Proposition 4.9. Let G be a group of order p5. Then G is an exceptional extension

of Qα if and only if it is an exceptional extension of Q1.

We show directly that every exceptional extension of Qα is isomorphic to an ex-

ceptional extension of Q1. Since Qα and Q1 have the same number of exceptional

extensions by Proposition 4.8, it follows that the converse also holds.

Proposition 4.10. Let G be an exceptional extension of Qα affording a distinguished

presentation with parameters (j, k,m), where j = 1. Then G is an exceptional exten-

sion of Q1.

Proof. Pick w ∈ G such that w /∈ Z(G) and wp = 1. Then the map ψw is diag-

onalizable by Proposition 4.7. So there exist elements u and v of Z(G) such that

ψw(u) = uγ and ψw(v) = vδ, for some integers γ, δ. Let sp = u and tp = v. Then

[s, t] ∈ wiZ(G) for some i coprime with p. If ij ∼= 1 mod p then it is easy to check

that [sj, t] ∈ wZ(G). Replacing s with sj, and then replacing w with [s, t] (which

does not effect the map ψw), we see that G has a presentation

G = 〈s, t, w|sp2 = tp
2

= wp = 1, [s, t] = w, [w, s] = spγ, [w, t] = tpδ〉.

This presentation is dependent only on the eigenvalues of the map ψw. But from

the matrix for ψw given in the proof of Proposition 4.2, we see that these depend

on α only insofar as they depend on αm. So if we take a distinguished presentation

with parameters (1, k, αm) for an extension E of Q1, then it is clear that E ∼= G. It

remains only to note that E is an exceptional extension of Q1 by Proposition 4.7. �

There are two exceptional extensions of Qα not covered by Proposition 4.10, given

by presentations P2 and P4 in Table 5.

Proposition 4.11. The extension of Qα with presentation P2 is an exceptional ex-

tension of Q1.

Proof. Let x, y, z, n be the generators of a group G given by the presentation P2.

Define elements z̃ = x1−αz and ñ = x(α−1)pnk. It is easy to check that in terms of the
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generators x, y, z̃, ñ, the group G affords the presentation

G = 〈x, y, z̃, ñ | ñp = xp
2

= yp = 1, z̃p = xp, [x, z̃] = y, [x, y] = 1,

[y, z̃] = xpn, [x, ñ] = [y, ñ] = [z̃, ñ] = 1〉.

This is a distinguished presentation with parameters (0, 1, 0) for an extension of Q1,

and as such is exceptional by Proposition 4.6. �

Proposition 4.12. The extension of Qα with presentation P4 is an exceptional ex-

tension of Q1

Proof. There exist elements t and b of Cp such that t2 − b2 = 4α. Define

a =
t− (2α + 1)b

2
, c = −(α + 1)b, d =

t+ (2α + 1)b

2α
.

It is straightforward to check that these values satisfy the following equations:

a+ αb = c+ αd =
t− b

2
(4)

ad− bc = 1 (5)

Let G be given by a distinguished presentation P4. Define elements

x̃ = xazb, z̃ = xczd, ỹ = [x, z], ñ = xpbnd−b.

Note that z̃p = x̃p = xp(t−b)/2 by (4). Since t 6= b, it is clear that x̃ and z̃ have order p2.

Furthermore, it follows from (5) that ỹ ∈ yZ(G), and so [ỹ, g] = [y, g] for all g ∈ G.

We also note that since 4α is a quadratic non-residue modulo p, we must have b 6= 0,

and so ñ is a central element of order p. It is straightforward to check the identities

[x̃, ỹ] = ñ−α, [ỹ, z̃] = x̃pñα+1.

With respect to the generators x̃, ỹ, z̃, ñ, the group G affords the presentation

G = 〈x̃, ỹ, z̃, ñ | ñp = x̃p
2

= ỹp = 1, z̃p = x̃p, [x̃, z̃] = ỹ, [x̃, ỹ] = ñ−α,

[ỹ, z̃] = x̃pñα+1, [x̃, ñ] = [ỹ, ñ] = [z̃, ñ] = 1〉.

This is a distinguished presentation with parameters (0, 1, α) for an extension of Q1,

and as such is exceptional by Proposition 4.6. �

In the nomenclature of Table 1, we have that F
(1)
1
∼= F

(α)
1 , F

(1)
2
∼= F

(α)
2 , and

F
(1)
3
∼= F

(α)
3 . Each group in {F (1)

4 (λ)} is isomorphic with a group in {F (α)
5 (λ)}, while

each group in {F (1)
5 (λ)} is isomorphic with a group in {F (α)

4 (λ)}.

4.5. The number of exceptional groups of order p5. It remains only to marshal

the various results which together establish Theorem 2. For p = 2, the result is

from [3]. For p = 3, it is given by the computation described in Section 2.4. For larger

primes it follows easily from Propositions 3.17 and 4.8 together with Proposition 4.9.
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